47
components/language/micropython/.git-blame-ignore-revs
Normal file
47
components/language/micropython/.git-blame-ignore-revs
Normal file
@@ -0,0 +1,47 @@
|
||||
#all: Reformat remaining C code that doesn't have a space after a comma.
|
||||
5b700b0af90591d6b1a2c087bb8de6b7f1bfdd2d
|
||||
|
||||
# ports: Reformat more C and Python source code.
|
||||
5c32111fa0e31e451b0f1666bdf926be2fdfd82c
|
||||
|
||||
# all: Update Python formatting to latest Black version 22.1.0.
|
||||
ab2923dfa1174dc177f0a90cb00a7e4ff87958d2
|
||||
|
||||
# all: Update Python formatting to latest Black version 21.12b0.
|
||||
3770fab33449a5dadf8eb06edfae0767e75320a6
|
||||
|
||||
# tools/gen-cpydiff.py: Fix formatting of doc strings for new Black.
|
||||
0f78c36c5aa458a954eed39a46942209107a553e
|
||||
|
||||
# tests/run-tests.py: Reformat with Black.
|
||||
2a38d7103672580882fb621a5b76e8d26805d593
|
||||
|
||||
# all: Update Python code to conform to latest black formatting.
|
||||
06659077a81b85882254cf0953c33b27614e018e
|
||||
|
||||
# tools/uncrustify: Enable more opts to remove space between func and '('.
|
||||
77ed6f69ac35c1663a5633a8ee1d8a2446542204
|
||||
|
||||
# tools/codeformat.py: Include extmod/{btstack,nimble} in code formatting.
|
||||
026fda605e03113d6e753290d65fed774418bc53
|
||||
|
||||
# all: Format code to add space after C++-style comment start.
|
||||
84fa3312cfa7d2237d4b56952f2cd6e3591210c4
|
||||
|
||||
# tests: Format all Python code with black, except tests in basics subdir.
|
||||
3dc324d3f1312e40d3a8ed87e7244966bb756f26
|
||||
|
||||
# all: Remove spaces inside and around parenthesis.
|
||||
1a3e386c67e03a79eb768cb6e9f6777e002d6660
|
||||
|
||||
# all: Remove spaces between nested paren and inside function arg paren.
|
||||
feb25775851ba0c04b8d1013716f442258879d9c
|
||||
|
||||
# all: Reformat C and Python source code with tools/codeformat.py.
|
||||
69661f3343bedf86e514337cff63d96cc42f8859
|
||||
|
||||
# stm32/usbdev: Convert files to unix line endings.
|
||||
abde0fa2267f9062b28c3c015d7662a550125cc6
|
||||
|
||||
# all: Remove trailing spaces, per coding conventions.
|
||||
761e4c7ff62896c7d8f8c3dfc3cc98a4cc4f2f6f
|
26
components/language/micropython/.gitattributes
vendored
Normal file
26
components/language/micropython/.gitattributes
vendored
Normal file
@@ -0,0 +1,26 @@
|
||||
# Per default everything gets normalized and gets LF line endings on checkout.
|
||||
* text eol=lf
|
||||
|
||||
# These will always have CRLF line endings on checkout.
|
||||
*.vcxproj text eol=crlf
|
||||
*.props text eol=crlf
|
||||
*.bat text eol=crlf
|
||||
|
||||
# These are binary so should never be modified by git.
|
||||
*.a binary
|
||||
*.png binary
|
||||
*.jpg binary
|
||||
*.dxf binary
|
||||
*.mpy binary
|
||||
|
||||
# These should also not be modified by git.
|
||||
tests/basics/string_cr_conversion.py -text
|
||||
tests/basics/string_crlf_conversion.py -text
|
||||
ports/stm32/pybcdc.inf_template -text
|
||||
ports/stm32/usbhost/** -text
|
||||
ports/cc3200/hal/aes.c -text
|
||||
ports/cc3200/hal/aes.h -text
|
||||
ports/cc3200/hal/des.c -text
|
||||
ports/cc3200/hal/i2s.c -text
|
||||
ports/cc3200/hal/i2s.h -text
|
||||
ports/cc3200/version.h -text
|
1
components/language/micropython/.github/FUNDING.yml
vendored
Normal file
1
components/language/micropython/.github/FUNDING.yml
vendored
Normal file
@@ -0,0 +1 @@
|
||||
github: micropython
|
25
components/language/micropython/.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
25
components/language/micropython/.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
@@ -0,0 +1,25 @@
|
||||
---
|
||||
name: Bug report
|
||||
about: Report an issue
|
||||
title: ''
|
||||
labels: bug
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
* Remove all placeholder text below before submitting.
|
||||
|
||||
* Please search existing issues before raising a new issue. For questions about MicroPython or for help using MicroPython, please see the MicroPython Forum -- https://forum.micropython.org/
|
||||
|
||||
* In your issue, please include a clear and concise description of what the bug is, the expected output, and how to replicate it.
|
||||
|
||||
* If this issue involves external hardware, please include links to relevant datasheets and schematics.
|
||||
|
||||
* If you are seeing code being executed incorrectly, please provide a minimal example and expected output (e.g. comparison to CPython).
|
||||
|
||||
* For build issues, please include full details of your environment, compiler versions, command lines, and build output.
|
||||
|
||||
* Please provide as much information as possible about the version of MicroPython you're running, such as:
|
||||
- firmware file name
|
||||
- git commit hash and port/board
|
||||
- version information shown in the REPL (hit Ctrl-B to see the startup message)
|
11
components/language/micropython/.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
11
components/language/micropython/.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
@@ -0,0 +1,11 @@
|
||||
blank_issues_enabled: false
|
||||
contact_links:
|
||||
- name: MicroPython Forum
|
||||
url: https://forum.micropython.org/
|
||||
about: Community discussion about all things MicroPython. This is the best place to start if you have questions about using MicroPython or getting started with MicroPython development.
|
||||
- name: MicroPython Documentation
|
||||
url: https://docs.micropython.org/
|
||||
about: Documentation for using and working with MicroPython and libraries.
|
||||
- name: MicroPython Downloads
|
||||
url: https://micropython.org/download/
|
||||
about: Pre-built firmware and information for most supported boards.
|
16
components/language/micropython/.github/ISSUE_TEMPLATE/documentation.md
vendored
Normal file
16
components/language/micropython/.github/ISSUE_TEMPLATE/documentation.md
vendored
Normal file
@@ -0,0 +1,16 @@
|
||||
---
|
||||
name: Documentation issue
|
||||
about: Report areas of the documentation or examples that need improvement
|
||||
title: 'docs: '
|
||||
labels: documentation
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
* Remove all placeholder text below before submitting.
|
||||
|
||||
* Please search existing issues before raising a new issue. For questions about MicroPython or for help using MicroPython, please see the MicroPython Forum -- https://forum.micropython.org/
|
||||
|
||||
* Describe what was missing from the documentation and/or what was incorrect/incomplete.
|
||||
|
||||
* If possible, please link to the relevant page on https://docs.micropython.org/
|
24
components/language/micropython/.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
24
components/language/micropython/.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
@@ -0,0 +1,24 @@
|
||||
---
|
||||
name: Feature request
|
||||
about: Request a feature or improvement
|
||||
title: ''
|
||||
labels: enhancement
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
* Remove all placeholder text below before submitting.
|
||||
|
||||
* Please search existing issues before raising a new issue. For questions about MicroPython or for help using MicroPython, please see the MicroPython Forum -- https://forum.micropython.org/
|
||||
|
||||
* Describe the feature you'd like to see added to MicroPython. In particular, what does this feature enable and why is it useful. MicroPython aims to strike a balance between functionality and code size, so please consider whether this feature can be optionally enabled and whether it can be provided in other ways (e.g. pure-Python library).
|
||||
|
||||
* For core Python features, where possible please include a link to the relevant PEP.
|
||||
|
||||
* For new architectures / ports / boards, please provide links to relevant documentation, specifications, and toolchains. Any information about the popularity and unique features about this hardware would also be useful.
|
||||
|
||||
* For features for existing ports (e.g. new peripherals or microcontroller features), please describe which port(s) it applies too, and whether this is could be an extension to the machine API or a port-specific module?
|
||||
|
||||
* For drivers (e.g. for external hardware), please link to datasheets and/or existing drivers from other sources.
|
||||
|
||||
* Who do you expect will implement the feature you are requesting? Would you be willing to sponsor this work?
|
16
components/language/micropython/.github/ISSUE_TEMPLATE/security.md
vendored
Normal file
16
components/language/micropython/.github/ISSUE_TEMPLATE/security.md
vendored
Normal file
@@ -0,0 +1,16 @@
|
||||
---
|
||||
name: Security report
|
||||
about: Report a security issue or vunerability in MicroPython
|
||||
title: ''
|
||||
labels: security
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
* Remove all placeholder text before submitting the new issue.
|
||||
|
||||
* If you need to raise this issue privately with the MicroPython team, please email contact@micropython.org instead.
|
||||
|
||||
* Include a clear and concise description of what the security issue is.
|
||||
|
||||
* What does this issue allow an attacker to do?
|
16
components/language/micropython/.github/workflows/code_formatting.yml
vendored
Normal file
16
components/language/micropython/.github/workflows/code_formatting.yml
vendored
Normal file
@@ -0,0 +1,16 @@
|
||||
name: Check code formatting
|
||||
|
||||
on: [push, pull_request]
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/setup-python@v1
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_code_formatting_setup
|
||||
- name: Run code formatting
|
||||
run: source tools/ci.sh && ci_code_formatting_run
|
||||
- name: Check code formatting
|
||||
run: git diff --exit-code
|
27
components/language/micropython/.github/workflows/code_size.yml
vendored
Normal file
27
components/language/micropython/.github/workflows/code_size.yml
vendored
Normal file
@@ -0,0 +1,27 @@
|
||||
name: Check code size
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/*.yml'
|
||||
- 'tools/**'
|
||||
- 'py/**'
|
||||
- 'extmod/**'
|
||||
- 'lib/**'
|
||||
- 'ports/bare-arm/**'
|
||||
- 'ports/minimal/**'
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-20.04
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
fetch-depth: 100
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_code_size_setup
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_code_size_build
|
||||
- name: Compute code size difference
|
||||
run: tools/metrics.py diff --error-threshold 0 ~/size0 ~/size1
|
14
components/language/micropython/.github/workflows/commit_formatting.yml
vendored
Normal file
14
components/language/micropython/.github/workflows/commit_formatting.yml
vendored
Normal file
@@ -0,0 +1,14 @@
|
||||
name: Check commit message formatting
|
||||
|
||||
on: [push, pull_request]
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
fetch-depth: '100'
|
||||
- uses: actions/setup-python@v1
|
||||
- name: Check commit message formatting
|
||||
run: source tools/ci.sh && ci_commit_formatting_run
|
18
components/language/micropython/.github/workflows/docs.yml
vendored
Normal file
18
components/language/micropython/.github/workflows/docs.yml
vendored
Normal file
@@ -0,0 +1,18 @@
|
||||
name: Build docs
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
paths:
|
||||
- docs/**
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/setup-python@v1
|
||||
- name: Install Python packages
|
||||
run: pip install Sphinx
|
||||
- name: Build docs
|
||||
run: make -C docs/ html
|
21
components/language/micropython/.github/workflows/examples.yml
vendored
Normal file
21
components/language/micropython/.github/workflows/examples.yml
vendored
Normal file
@@ -0,0 +1,21 @@
|
||||
name: Check examples
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/*.yml'
|
||||
- 'examples/**'
|
||||
- 'ports/unix/**'
|
||||
- 'py/**'
|
||||
- 'shared/**'
|
||||
|
||||
jobs:
|
||||
embedding:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Build
|
||||
run: make -C examples/embedding
|
||||
- name: Run
|
||||
run: test "$(./examples/embedding/hello-embed)" = "Hello world of easy embedding!"
|
18
components/language/micropython/.github/workflows/mpy_format.yml
vendored
Normal file
18
components/language/micropython/.github/workflows/mpy_format.yml
vendored
Normal file
@@ -0,0 +1,18 @@
|
||||
name: .mpy file format and tools
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/*.yml'
|
||||
- 'tools/**'
|
||||
|
||||
jobs:
|
||||
test:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_mpy_format_setup
|
||||
- name: Test mpy-tool.py
|
||||
run: source tools/ci.sh && ci_mpy_format_test
|
18
components/language/micropython/.github/workflows/ports.yml
vendored
Normal file
18
components/language/micropython/.github/workflows/ports.yml
vendored
Normal file
@@ -0,0 +1,18 @@
|
||||
name: Build ports metadata
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/*.yml'
|
||||
- 'tools/**'
|
||||
- ports/**
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Build ports download metadata
|
||||
run: mkdir boards && ./tools/autobuild/build-downloads.py . ./boards
|
23
components/language/micropython/.github/workflows/ports_cc3200.yml
vendored
Normal file
23
components/language/micropython/.github/workflows/ports_cc3200.yml
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
name: cc3200 port
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/*.yml'
|
||||
- 'tools/**'
|
||||
- 'py/**'
|
||||
- 'extmod/**'
|
||||
- 'lib/**'
|
||||
- 'drivers/**'
|
||||
- 'ports/cc3200/**'
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_cc3200_setup
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_cc3200_build
|
32
components/language/micropython/.github/workflows/ports_esp32.yml
vendored
Normal file
32
components/language/micropython/.github/workflows/ports_esp32.yml
vendored
Normal file
@@ -0,0 +1,32 @@
|
||||
name: esp32 port
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/*.yml'
|
||||
- 'tools/**'
|
||||
- 'py/**'
|
||||
- 'extmod/**'
|
||||
- 'lib/**'
|
||||
- 'drivers/**'
|
||||
- 'ports/esp32/**'
|
||||
|
||||
jobs:
|
||||
build_idf402:
|
||||
runs-on: ubuntu-20.04
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_esp32_idf402_setup
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_esp32_build
|
||||
|
||||
build_idf44:
|
||||
runs-on: ubuntu-20.04
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_esp32_idf44_setup
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_esp32_build
|
23
components/language/micropython/.github/workflows/ports_esp8266.yml
vendored
Normal file
23
components/language/micropython/.github/workflows/ports_esp8266.yml
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
name: esp8266 port
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/*.yml'
|
||||
- 'tools/**'
|
||||
- 'py/**'
|
||||
- 'extmod/**'
|
||||
- 'lib/**'
|
||||
- 'drivers/**'
|
||||
- 'ports/esp8266/**'
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_esp8266_setup && ci_esp8266_path >> $GITHUB_PATH
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_esp8266_build
|
24
components/language/micropython/.github/workflows/ports_javascript.yml
vendored
Normal file
24
components/language/micropython/.github/workflows/ports_javascript.yml
vendored
Normal file
@@ -0,0 +1,24 @@
|
||||
name: javascript port
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/*.yml'
|
||||
- 'tools/**'
|
||||
- 'py/**'
|
||||
- 'extmod/**'
|
||||
- 'lib/**'
|
||||
- 'ports/javascript/**'
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_javascript_setup
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_javascript_build
|
||||
- name: Run tests
|
||||
run: source tools/ci.sh && ci_javascript_run_tests
|
23
components/language/micropython/.github/workflows/ports_mimxrt.yml
vendored
Normal file
23
components/language/micropython/.github/workflows/ports_mimxrt.yml
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
name: mimxrt port
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/*.yml'
|
||||
- 'tools/**'
|
||||
- 'py/**'
|
||||
- 'extmod/**'
|
||||
- 'lib/**'
|
||||
- 'drivers/**'
|
||||
- 'ports/mimxrt/**'
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-20.04
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_mimxrt_setup
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_mimxrt_build
|
23
components/language/micropython/.github/workflows/ports_nrf.yml
vendored
Normal file
23
components/language/micropython/.github/workflows/ports_nrf.yml
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
name: nrf port
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/*.yml'
|
||||
- 'tools/**'
|
||||
- 'py/**'
|
||||
- 'extmod/**'
|
||||
- 'lib/**'
|
||||
- 'drivers/**'
|
||||
- 'ports/nrf/**'
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-20.04
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_nrf_setup
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_nrf_build
|
23
components/language/micropython/.github/workflows/ports_powerpc.yml
vendored
Normal file
23
components/language/micropython/.github/workflows/ports_powerpc.yml
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
name: powerpc port
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/*.yml'
|
||||
- 'tools/**'
|
||||
- 'py/**'
|
||||
- 'extmod/**'
|
||||
- 'lib/**'
|
||||
- 'drivers/**'
|
||||
- 'ports/powerpc/**'
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_powerpc_setup
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_powerpc_build
|
27
components/language/micropython/.github/workflows/ports_qemu-arm.yml
vendored
Normal file
27
components/language/micropython/.github/workflows/ports_qemu-arm.yml
vendored
Normal file
@@ -0,0 +1,27 @@
|
||||
name: qemu-arm port
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/*.yml'
|
||||
- 'tools/**'
|
||||
- 'py/**'
|
||||
- 'extmod/**'
|
||||
- 'lib/**'
|
||||
- 'drivers/**'
|
||||
- 'ports/qemu-arm/**'
|
||||
- 'tests/**'
|
||||
|
||||
jobs:
|
||||
build_and_test:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_qemu_arm_setup
|
||||
- name: Build and run test suite
|
||||
run: source tools/ci.sh && ci_qemu_arm_build
|
||||
- name: Print failures
|
||||
if: failure()
|
||||
run: grep --before-context=100 --text "FAIL" ports/qemu-arm/build/console.out
|
24
components/language/micropython/.github/workflows/ports_renesas-ra.yml
vendored
Normal file
24
components/language/micropython/.github/workflows/ports_renesas-ra.yml
vendored
Normal file
@@ -0,0 +1,24 @@
|
||||
name: renesas-ra port
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/*.yml'
|
||||
- 'tools/**'
|
||||
- 'py/**'
|
||||
- 'extmod/**'
|
||||
- 'lib/**'
|
||||
- 'drivers/**'
|
||||
- 'ports/renesas-ra/**'
|
||||
|
||||
jobs:
|
||||
build_renesas_ra_board:
|
||||
runs-on: ubuntu-20.04
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_renesas_ra_setup
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_renesas_ra_board_build
|
||||
|
23
components/language/micropython/.github/workflows/ports_rp2.yml
vendored
Normal file
23
components/language/micropython/.github/workflows/ports_rp2.yml
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
name: rp2 port
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/*.yml'
|
||||
- 'tools/**'
|
||||
- 'py/**'
|
||||
- 'extmod/**'
|
||||
- 'lib/**'
|
||||
- 'drivers/**'
|
||||
- 'ports/rp2/**'
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_rp2_setup
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_rp2_build
|
23
components/language/micropython/.github/workflows/ports_samd.yml
vendored
Normal file
23
components/language/micropython/.github/workflows/ports_samd.yml
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
name: samd port
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/*.yml'
|
||||
- 'tools/**'
|
||||
- 'py/**'
|
||||
- 'extmod/**'
|
||||
- 'lib/**'
|
||||
- 'drivers/**'
|
||||
- 'ports/samd/**'
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_samd_setup
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_samd_build
|
32
components/language/micropython/.github/workflows/ports_stm32.yml
vendored
Normal file
32
components/language/micropython/.github/workflows/ports_stm32.yml
vendored
Normal file
@@ -0,0 +1,32 @@
|
||||
name: stm32 port
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/*.yml'
|
||||
- 'tools/**'
|
||||
- 'py/**'
|
||||
- 'extmod/**'
|
||||
- 'lib/**'
|
||||
- 'drivers/**'
|
||||
- 'ports/stm32/**'
|
||||
|
||||
jobs:
|
||||
build_pyb:
|
||||
runs-on: ubuntu-20.04
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_stm32_setup
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_stm32_pyb_build
|
||||
|
||||
build_nucleo:
|
||||
runs-on: ubuntu-20.04
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_stm32_setup
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_stm32_nucleo_build
|
23
components/language/micropython/.github/workflows/ports_teensy.yml
vendored
Normal file
23
components/language/micropython/.github/workflows/ports_teensy.yml
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
name: teensy port
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/*.yml'
|
||||
- 'tools/**'
|
||||
- 'py/**'
|
||||
- 'extmod/**'
|
||||
- 'lib/**'
|
||||
- 'drivers/**'
|
||||
- 'ports/teensy/**'
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_teensy_setup
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_teensy_build
|
230
components/language/micropython/.github/workflows/ports_unix.yml
vendored
Normal file
230
components/language/micropython/.github/workflows/ports_unix.yml
vendored
Normal file
@@ -0,0 +1,230 @@
|
||||
name: unix port
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/*.yml'
|
||||
- 'tools/**'
|
||||
- 'py/**'
|
||||
- 'extmod/**'
|
||||
- 'lib/**'
|
||||
- 'examples/**'
|
||||
- 'ports/unix/**'
|
||||
- 'tests/**'
|
||||
|
||||
jobs:
|
||||
minimal:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_unix_minimal_build
|
||||
- name: Run main test suite
|
||||
run: source tools/ci.sh && ci_unix_minimal_run_tests
|
||||
- name: Print failures
|
||||
if: failure()
|
||||
run: tests/run-tests.py --print-failures
|
||||
|
||||
reproducible:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Build with reproducible date
|
||||
run: source tools/ci.sh && ci_unix_minimal_build
|
||||
env:
|
||||
SOURCE_DATE_EPOCH: 1234567890
|
||||
- name: Check reproducible build date
|
||||
run: echo | ports/unix/micropython-minimal -i | grep 'on 2009-02-13;'
|
||||
|
||||
standard:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_unix_standard_build
|
||||
- name: Run main test suite
|
||||
run: source tools/ci.sh && ci_unix_standard_run_tests
|
||||
- name: Print failures
|
||||
if: failure()
|
||||
run: tests/run-tests.py --print-failures
|
||||
|
||||
dev:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_unix_dev_build
|
||||
- name: Run main test suite
|
||||
run: source tools/ci.sh && ci_unix_dev_run_tests
|
||||
- name: Print failures
|
||||
if: failure()
|
||||
run: tests/run-tests.py --print-failures
|
||||
|
||||
coverage:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_unix_coverage_setup
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_unix_coverage_build
|
||||
- name: Run main test suite
|
||||
run: source tools/ci.sh && ci_unix_coverage_run_tests
|
||||
- name: Test merging .mpy files
|
||||
run: source tools/ci.sh && ci_unix_coverage_run_mpy_merge_tests
|
||||
- name: Build native mpy modules
|
||||
run: source tools/ci.sh && ci_native_mpy_modules_build
|
||||
- name: Test importing .mpy generated by mpy_ld.py
|
||||
run: source tools/ci.sh && ci_unix_coverage_run_native_mpy_tests
|
||||
- name: Run gcov coverage analysis
|
||||
run: |
|
||||
(cd ports/unix && gcov -o build-coverage/py ../../py/*.c || true)
|
||||
(cd ports/unix && gcov -o build-coverage/extmod ../../extmod/*.c || true)
|
||||
- name: Upload coverage to Codecov
|
||||
uses: codecov/codecov-action@v1
|
||||
with:
|
||||
fail_ci_if_error: true
|
||||
verbose: true
|
||||
- name: Print failures
|
||||
if: failure()
|
||||
run: tests/run-tests.py --print-failures
|
||||
|
||||
coverage_32bit:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_unix_32bit_setup
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_unix_coverage_32bit_build
|
||||
- name: Run main test suite
|
||||
run: source tools/ci.sh && ci_unix_coverage_32bit_run_tests
|
||||
- name: Build native mpy modules
|
||||
run: source tools/ci.sh && ci_native_mpy_modules_32bit_build
|
||||
- name: Test importing .mpy generated by mpy_ld.py
|
||||
run: source tools/ci.sh && ci_unix_coverage_32bit_run_native_mpy_tests
|
||||
- name: Print failures
|
||||
if: failure()
|
||||
run: tests/run-tests.py --print-failures
|
||||
|
||||
nanbox:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_unix_32bit_setup
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_unix_nanbox_build
|
||||
- name: Run main test suite
|
||||
run: source tools/ci.sh && ci_unix_nanbox_run_tests
|
||||
- name: Print failures
|
||||
if: failure()
|
||||
run: tests/run-tests.py --print-failures
|
||||
|
||||
float:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_unix_float_build
|
||||
- name: Run main test suite
|
||||
run: source tools/ci.sh && ci_unix_float_run_tests
|
||||
- name: Print failures
|
||||
if: failure()
|
||||
run: tests/run-tests.py --print-failures
|
||||
|
||||
stackless_clang:
|
||||
runs-on: ubuntu-20.04
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_unix_clang_setup
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_unix_stackless_clang_build
|
||||
- name: Run main test suite
|
||||
run: source tools/ci.sh && ci_unix_stackless_clang_run_tests
|
||||
- name: Print failures
|
||||
if: failure()
|
||||
run: tests/run-tests.py --print-failures
|
||||
|
||||
float_clang:
|
||||
runs-on: ubuntu-20.04
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_unix_clang_setup
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_unix_float_clang_build
|
||||
- name: Run main test suite
|
||||
run: source tools/ci.sh && ci_unix_float_clang_run_tests
|
||||
- name: Print failures
|
||||
if: failure()
|
||||
run: tests/run-tests.py --print-failures
|
||||
|
||||
settrace:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_unix_settrace_build
|
||||
- name: Run main test suite
|
||||
run: source tools/ci.sh && ci_unix_settrace_run_tests
|
||||
- name: Print failures
|
||||
if: failure()
|
||||
run: tests/run-tests.py --print-failures
|
||||
|
||||
settrace_stackless:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_unix_settrace_stackless_build
|
||||
- name: Run main test suite
|
||||
run: source tools/ci.sh && ci_unix_settrace_stackless_run_tests
|
||||
- name: Print failures
|
||||
if: failure()
|
||||
run: tests/run-tests.py --print-failures
|
||||
|
||||
macos:
|
||||
runs-on: macos-11.0
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: '3.8'
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_unix_macos_build
|
||||
- name: Run tests
|
||||
run: source tools/ci.sh && ci_unix_macos_run_tests
|
||||
- name: Print failures
|
||||
if: failure()
|
||||
run: tests/run-tests.py --print-failures
|
||||
|
||||
qemu_mips:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_unix_qemu_mips_setup
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_unix_qemu_mips_build
|
||||
- name: Run main test suite
|
||||
run: source tools/ci.sh && ci_unix_qemu_mips_run_tests
|
||||
- name: Print failures
|
||||
if: failure()
|
||||
run: tests/run-tests.py --print-failures
|
||||
|
||||
qemu_arm:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_unix_qemu_arm_setup
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_unix_qemu_arm_build
|
||||
- name: Run main test suite
|
||||
run: source tools/ci.sh && ci_unix_qemu_arm_run_tests
|
||||
- name: Print failures
|
||||
if: failure()
|
||||
run: tests/run-tests.py --print-failures
|
23
components/language/micropython/.github/workflows/ports_windows.yml
vendored
Normal file
23
components/language/micropython/.github/workflows/ports_windows.yml
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
name: windows port
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/*.yml'
|
||||
- 'tools/**'
|
||||
- 'py/**'
|
||||
- 'extmod/**'
|
||||
- 'lib/**'
|
||||
- 'ports/unix/**'
|
||||
- 'ports/windows/**'
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_windows_setup
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_windows_build
|
24
components/language/micropython/.github/workflows/ports_zephyr.yml
vendored
Normal file
24
components/language/micropython/.github/workflows/ports_zephyr.yml
vendored
Normal file
@@ -0,0 +1,24 @@
|
||||
name: zephyr port
|
||||
|
||||
on:
|
||||
push:
|
||||
pull_request:
|
||||
paths:
|
||||
- '.github/workflows/ports_zephyr.yml'
|
||||
- 'tools/**'
|
||||
- 'py/**'
|
||||
- 'extmod/**'
|
||||
- 'lib/**'
|
||||
- 'ports/zephyr/**'
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Install packages
|
||||
run: source tools/ci.sh && ci_zephyr_setup
|
||||
- name: Install Zephyr
|
||||
run: source tools/ci.sh && ci_zephyr_install
|
||||
- name: Build
|
||||
run: source tools/ci.sh && ci_zephyr_build
|
48
components/language/micropython/.gitignore
vendored
Normal file
48
components/language/micropython/.gitignore
vendored
Normal file
@@ -0,0 +1,48 @@
|
||||
# Compiled Sources
|
||||
###################
|
||||
*.o
|
||||
*.a
|
||||
*.elf
|
||||
*.bin
|
||||
*.map
|
||||
*.hex
|
||||
*.dis
|
||||
*.exe
|
||||
|
||||
# Packages
|
||||
############
|
||||
|
||||
# Logs and Databases
|
||||
######################
|
||||
*.log
|
||||
|
||||
# VIM Swap Files
|
||||
######################
|
||||
*.swp
|
||||
|
||||
# Build directories
|
||||
######################
|
||||
build/
|
||||
build-*/
|
||||
|
||||
# Test failure outputs
|
||||
######################
|
||||
tests/results/*
|
||||
|
||||
# Python cache files
|
||||
######################
|
||||
__pycache__/
|
||||
*.pyc
|
||||
|
||||
# Customized Makefile/project overrides
|
||||
######################
|
||||
GNUmakefile
|
||||
user.props
|
||||
|
||||
# Generated rst files
|
||||
######################
|
||||
genrst/
|
||||
|
||||
# MacOS desktop metadata files
|
||||
######################
|
||||
.DS_Store
|
52
components/language/micropython/.gitmodules
vendored
Normal file
52
components/language/micropython/.gitmodules
vendored
Normal file
@@ -0,0 +1,52 @@
|
||||
[submodule "lib/axtls"]
|
||||
path = lib/axtls
|
||||
url = https://github.com/micropython/axtls.git
|
||||
[submodule "lib/libffi"]
|
||||
path = lib/libffi
|
||||
url = https://github.com/atgreen/libffi
|
||||
[submodule "lib/lwip"]
|
||||
path = lib/lwip
|
||||
url = https://github.com/lwip-tcpip/lwip.git
|
||||
[submodule "lib/berkeley-db-1.xx"]
|
||||
path = lib/berkeley-db-1.xx
|
||||
url = https://github.com/pfalcon/berkeley-db-1.xx
|
||||
[submodule "lib/stm32lib"]
|
||||
path = lib/stm32lib
|
||||
url = https://github.com/micropython/stm32lib
|
||||
branch = work-F0-1.9.0+F4-1.16.0+F7-1.7.0+G4-1.3.0+H7-1.6.0+L0-1.11.2+L4-1.17.0+WB-1.10.0+WL-1.1.0
|
||||
[submodule "lib/nrfx"]
|
||||
path = lib/nrfx
|
||||
url = https://github.com/NordicSemiconductor/nrfx.git
|
||||
[submodule "lib/mbedtls"]
|
||||
path = lib/mbedtls
|
||||
url = https://github.com/ARMmbed/mbedtls.git
|
||||
[submodule "lib/asf4"]
|
||||
path = lib/asf4
|
||||
url = https://github.com/adafruit/asf4
|
||||
branch = circuitpython
|
||||
[submodule "lib/tinyusb"]
|
||||
path = lib/tinyusb
|
||||
url = https://github.com/hathach/tinyusb
|
||||
[submodule "lib/mynewt-nimble"]
|
||||
path = lib/mynewt-nimble
|
||||
url = https://github.com/micropython/mynewt-nimble.git
|
||||
[submodule "lib/btstack"]
|
||||
path = lib/btstack
|
||||
url = https://github.com/bluekitchen/btstack.git
|
||||
[submodule "lib/nxp_driver"]
|
||||
path = lib/nxp_driver
|
||||
url = https://github.com/hathach/nxp_driver.git
|
||||
[submodule "lib/libhydrogen"]
|
||||
path = lib/libhydrogen
|
||||
url = https://github.com/jedisct1/libhydrogen.git
|
||||
[submodule "lib/pico-sdk"]
|
||||
path = lib/pico-sdk
|
||||
url = https://github.com/raspberrypi/pico-sdk.git
|
||||
[submodule "lib/fsp"]
|
||||
path = lib/fsp
|
||||
url = https://github.com/renesas/fsp.git
|
||||
[submodule "lib/wiznet"]
|
||||
path = lib/wiznet5k
|
||||
url = https://github.com/andrewleech/wiznet_ioLibrary_Driver.git
|
||||
# Requires https://github.com/Wiznet/ioLibrary_Driver/pull/120
|
||||
# url = https://github.com/Wiznet/ioLibrary_Driver.git
|
1764
components/language/micropython/ACKNOWLEDGEMENTS
Normal file
1764
components/language/micropython/ACKNOWLEDGEMENTS
Normal file
File diff suppressed because it is too large
Load Diff
235
components/language/micropython/CODECONVENTIONS.md
Normal file
235
components/language/micropython/CODECONVENTIONS.md
Normal file
@@ -0,0 +1,235 @@
|
||||
Git commit conventions
|
||||
======================
|
||||
|
||||
Each commit message should start with a directory or full file path
|
||||
prefix, so it was clear which part of codebase a commit affects. If
|
||||
a change affects one file, it's better to use path to a file. If it
|
||||
affects few files in a subdirectory, using subdirectory as a prefix
|
||||
is ok. For longish paths, it's acceptable to drop intermediate
|
||||
components, which still should provide good context of a change.
|
||||
It's also ok to drop file extensions.
|
||||
|
||||
Besides prefix, first line of a commit message should describe a
|
||||
change clearly and to the point, and be a grammatical sentence with
|
||||
final full stop. First line should fit within 72 characters. Examples
|
||||
of good first line of commit messages:
|
||||
|
||||
py/objstr: Add splitlines() method.
|
||||
py: Rename FOO to BAR.
|
||||
docs/machine: Fix typo in reset() description.
|
||||
ports: Switch to use lib/foo instead of duplicated code.
|
||||
|
||||
After the first line add an empty line and in the following lines describe
|
||||
the change in a detail, if needed, with lines fitting within 75 characters
|
||||
(with an exception for long items like URLs which cannot be broken). Any
|
||||
change beyond 5 lines would likely require such detailed description.
|
||||
|
||||
To get good practical examples of good commits and their messages, browse
|
||||
the `git log` of the project.
|
||||
|
||||
When committing you are encouraged to sign-off your commit by adding
|
||||
"Signed-off-by" lines and similar, eg using "git commit -s". If you don't
|
||||
explicitly sign-off in this way then the commit message, which includes your
|
||||
name and email address in the "Author" line, implies your sign-off. In either
|
||||
case, of explicit or implicit sign-off, you are certifying and signing off
|
||||
against the following:
|
||||
|
||||
* That you wrote the change yourself, or took it from a project with
|
||||
a compatible license (in the latter case the commit message, and possibly
|
||||
source code should provide reference where the implementation was taken
|
||||
from and give credit to the original author, as required by the license).
|
||||
* That you are allowed to release these changes to an open-source project
|
||||
(for example, changes done during paid work for a third party may require
|
||||
explicit approval from that third party).
|
||||
* That you (or your employer) agree to release the changes under
|
||||
MicroPython's license, which is the MIT license. Note that you retain
|
||||
copyright for your changes (for smaller changes, the commit message
|
||||
conveys your copyright; if you make significant changes to a particular
|
||||
source module, you're welcome to add your name to the file header).
|
||||
* Your contribution including commit message will be publicly and
|
||||
indefinitely available for anyone to access, including redistribution
|
||||
under the terms of the project's license.
|
||||
* Your signature for all of the above, which is the "Signed-off-by" line
|
||||
or the "Author" line in the commit message, includes your full real name and
|
||||
a valid and active email address by which you can be contacted in the
|
||||
foreseeable future.
|
||||
|
||||
Code auto-formatting
|
||||
====================
|
||||
|
||||
Both C and Python code are auto-formatted using the `tools/codeformat.py`
|
||||
script. This uses [uncrustify](https://github.com/uncrustify/uncrustify) to
|
||||
format C code and [black](https://github.com/psf/black) to format Python code.
|
||||
After making changes, and before committing, run this tool to reformat your
|
||||
changes to the correct style. Without arguments this tool will reformat all
|
||||
source code (and may take some time to run). Otherwise pass as arguments to
|
||||
the tool the files that changed and it will only reformat those.
|
||||
|
||||
Python code conventions
|
||||
=======================
|
||||
|
||||
Python code follows [PEP 8](https://legacy.python.org/dev/peps/pep-0008/) and
|
||||
is auto-formatted using [black](https://github.com/psf/black) with a line-length
|
||||
of 99 characters.
|
||||
|
||||
Naming conventions:
|
||||
- Module names are short and all lowercase; eg pyb, stm.
|
||||
- Class names are CamelCase, with abbreviations all uppercase; eg I2C, not
|
||||
I2c.
|
||||
- Function and method names are all lowercase with words separated by
|
||||
a single underscore as necessary to improve readability; eg mem_read.
|
||||
- Constants are all uppercase with words separated by a single underscore;
|
||||
eg GPIO_IDR.
|
||||
|
||||
C code conventions
|
||||
==================
|
||||
|
||||
C code is auto-formatted using [uncrustify](https://github.com/uncrustify/uncrustify)
|
||||
and the corresponding configuration file `tools/uncrustify.cfg`, with a few
|
||||
minor fix-ups applied by `tools/codeformat.py`. When writing new C code please
|
||||
adhere to the existing style and use `tools/codeformat.py` to check any changes.
|
||||
The main conventions, and things not enforceable via the auto-formatter, are
|
||||
described below.
|
||||
|
||||
White space:
|
||||
- Expand tabs to 4 spaces.
|
||||
- Don't leave trailing whitespace at the end of a line.
|
||||
- For control blocks (if, for, while), put 1 space between the
|
||||
keyword and the opening parenthesis.
|
||||
- Put 1 space after a comma, and 1 space around operators.
|
||||
|
||||
Braces:
|
||||
- Use braces for all blocks, even no-line and single-line pieces of
|
||||
code.
|
||||
- Put opening braces on the end of the line it belongs to, not on
|
||||
a new line.
|
||||
- For else-statements, put the else on the same line as the previous
|
||||
closing brace.
|
||||
|
||||
Header files:
|
||||
- Header files should be protected from multiple inclusion with #if
|
||||
directives. See an existing header for naming convention.
|
||||
|
||||
Names:
|
||||
- Use underscore_case, not camelCase for all names.
|
||||
- Use CAPS_WITH_UNDERSCORE for enums and macros.
|
||||
- When defining a type use underscore_case and put '_t' after it.
|
||||
|
||||
Integer types: MicroPython runs on 16, 32, and 64 bit machines, so it's
|
||||
important to use the correctly-sized (and signed) integer types. The
|
||||
general guidelines are:
|
||||
- For most cases use mp_int_t for signed and mp_uint_t for unsigned
|
||||
integer values. These are guaranteed to be machine-word sized and
|
||||
therefore big enough to hold the value from a MicroPython small-int
|
||||
object.
|
||||
- Use size_t for things that count bytes / sizes of objects.
|
||||
- You can use int/uint, but remember that they may be 16-bits wide.
|
||||
- If in doubt, use mp_int_t/mp_uint_t.
|
||||
|
||||
Comments:
|
||||
- Be concise and only write comments for things that are not obvious.
|
||||
- Use `// ` prefix, NOT `/* ... */`. No extra fluff.
|
||||
|
||||
Memory allocation:
|
||||
- Use m_new, m_renew, m_del (and friends) to allocate and free heap memory.
|
||||
These macros are defined in py/misc.h.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
Braces, spaces, names and comments:
|
||||
|
||||
#define TO_ADD (123)
|
||||
|
||||
// This function will always recurse indefinitely and is only used to show
|
||||
// coding style
|
||||
int foo_function(int x, int some_value) {
|
||||
if (x < some_value) {
|
||||
foo(some_value, x);
|
||||
} else {
|
||||
foo(x + TO_ADD, some_value - 1);
|
||||
}
|
||||
|
||||
for (int my_counter = 0; my_counter < x; ++my_counter) {
|
||||
}
|
||||
}
|
||||
|
||||
Type declarations:
|
||||
|
||||
typedef struct _my_struct_t {
|
||||
int member;
|
||||
void *data;
|
||||
} my_struct_t;
|
||||
|
||||
Documentation conventions
|
||||
=========================
|
||||
|
||||
MicroPython generally follows CPython in documentation process and
|
||||
conventions. reStructuredText syntax is used for the documention.
|
||||
|
||||
Specific conventions/suggestions:
|
||||
|
||||
* Use `*` markup to refer to arguments of a function, e.g.:
|
||||
|
||||
```
|
||||
.. method:: poll.unregister(obj)
|
||||
|
||||
Unregister *obj* from polling.
|
||||
```
|
||||
|
||||
* Use following syntax for cross-references/cross-links:
|
||||
|
||||
```
|
||||
:func:`foo` - function foo in current module
|
||||
:func:`module1.foo` - function foo in module "module1"
|
||||
(similarly for other referent types)
|
||||
:class:`Foo` - class Foo
|
||||
:meth:`Class.method1` - method1 in Class
|
||||
:meth:`~Class.method1` - method1 in Class, but rendered just as "method1()",
|
||||
not "Class.method1()"
|
||||
:meth:`title <method1>` - reference method1, but render as "title" (use only
|
||||
if really needed)
|
||||
:mod:`module1` - module module1
|
||||
|
||||
`symbol` - generic xref syntax which can replace any of the above in case
|
||||
the xref is unambiguous. If there's ambiguity, there will be a warning
|
||||
during docs generation, which need to be fixed using one of the syntaxes
|
||||
above
|
||||
```
|
||||
|
||||
* Cross-referencing arbitrary locations
|
||||
~~~
|
||||
.. _xref_target:
|
||||
|
||||
Normal non-indented text.
|
||||
|
||||
This is :ref:`reference <xref_target>`.
|
||||
|
||||
(If xref target is followed by section title, can be just
|
||||
:ref:`xref_target`).
|
||||
~~~
|
||||
|
||||
* Linking to external URL:
|
||||
```
|
||||
`link text <http://foo.com/...>`_
|
||||
```
|
||||
|
||||
* Referencing builtin singleton objects:
|
||||
```
|
||||
``None``, ``True``, ``False``
|
||||
```
|
||||
|
||||
* Use following syntax to create common description for more than one element:
|
||||
~~~
|
||||
.. function:: foo(x)
|
||||
bar(y)
|
||||
|
||||
Description common to foo() and bar().
|
||||
~~~
|
||||
|
||||
|
||||
More detailed guides and quickrefs:
|
||||
|
||||
* http://www.sphinx-doc.org/en/stable/rest.html
|
||||
* http://www.sphinx-doc.org/en/stable/markup/inline.html
|
||||
* http://docutils.sourceforge.net/docs/user/rst/quickref.html
|
53
components/language/micropython/CODEOFCONDUCT.md
Normal file
53
components/language/micropython/CODEOFCONDUCT.md
Normal file
@@ -0,0 +1,53 @@
|
||||
MicroPython Code of Conduct
|
||||
===========================
|
||||
|
||||
The MicroPython community is made up of members from around the globe with a
|
||||
diverse set of skills, personalities, and experiences. It is through these
|
||||
differences that our community experiences great successes and continued growth.
|
||||
When you're working with members of the community, this Code of Conduct will
|
||||
help steer your interactions and keep MicroPython a positive, successful, and
|
||||
growing community.
|
||||
|
||||
Members of the MicroPython community are open, considerate, and respectful.
|
||||
Behaviours that reinforce these values contribute to a positive environment, and
|
||||
include: acknowledging time and effort, being respectful of differing viewpoints
|
||||
and experiences, gracefully accepting constructive criticism, and using
|
||||
welcoming and inclusive language.
|
||||
|
||||
Every member of our community has the right to have their identity respected.
|
||||
The MicroPython community is dedicated to providing a positive experience for
|
||||
everyone, regardless of age, gender identity and expression, sexual orientation,
|
||||
disability, physical appearance, body size, ethnicity, nationality, race, or
|
||||
religion (or lack thereof), education, or socio-economic status.
|
||||
|
||||
Unacceptable behaviour includes: harassment, trolling, deliberate intimidation,
|
||||
violent threats or language directed against another person; insults, put downs,
|
||||
or jokes that are based upon stereotypes, that are exclusionary, or that hold
|
||||
others up for ridicule; unwelcome sexual attention or advances; sustained
|
||||
disruption of community discussions; publishing others' private information
|
||||
without explicit permission; and other conduct that is inappropriate for a
|
||||
professional audience including people of many different backgrounds.
|
||||
|
||||
This code of conduct covers all online and offline presence related to the
|
||||
MicroPython project, including GitHub and the forum. If a participant engages
|
||||
in behaviour that violates this code of conduct, the MicroPython team may take
|
||||
action as they deem appropriate, including warning the offender or expulsion
|
||||
from the community. Community members asked to stop any inappropriate behaviour
|
||||
are expected to comply immediately.
|
||||
|
||||
Thank you for helping make this a welcoming, friendly community for everyone.
|
||||
|
||||
If you believe that someone is violating the code of conduct, or have any other
|
||||
concerns, please contact a member of the MicroPython team by emailing
|
||||
contact@micropython.org.
|
||||
|
||||
License
|
||||
-------
|
||||
|
||||
This Code of Conduct is licensed under the Creative Commons
|
||||
Attribution-ShareAlike 3.0 Unported License.
|
||||
|
||||
Attributions
|
||||
------------
|
||||
|
||||
Based on the Python code of conduct found at https://www.python.org/psf/conduct/
|
8
components/language/micropython/CONTRIBUTING.md
Normal file
8
components/language/micropython/CONTRIBUTING.md
Normal file
@@ -0,0 +1,8 @@
|
||||
When reporting an issue and especially submitting a pull request, please
|
||||
make sure that you are acquainted with Contributor Guidelines:
|
||||
|
||||
https://github.com/micropython/micropython/wiki/ContributorGuidelines
|
||||
|
||||
as well as the Code Conventions, which includes details of how to commit:
|
||||
|
||||
https://github.com/micropython/micropython/blob/master/CODECONVENTIONS.md
|
85
components/language/micropython/LICENSE
Normal file
85
components/language/micropython/LICENSE
Normal file
@@ -0,0 +1,85 @@
|
||||
The MIT License (MIT)
|
||||
|
||||
Copyright (c) 2013-2022 Damien P. George
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
Unless specified otherwise (see below), the above license and copyright applies
|
||||
to all files in this repository.
|
||||
|
||||
Individual files may include additional copyright holders.
|
||||
|
||||
The various ports of MicroPython may include third-party software that is
|
||||
licensed under different terms. These licenses are summarised in the tree
|
||||
below, please refer to these files and directories for further license and
|
||||
copyright information. Note that (L)GPL-licensed code listed below is only
|
||||
used during the build process and is not part of the compiled source code.
|
||||
|
||||
/ (MIT)
|
||||
/drivers
|
||||
/cc3000 (BSD-3-clause)
|
||||
/cc3100 (BSD-3-clause)
|
||||
/wiznet5k (BSD-3-clause)
|
||||
/lib
|
||||
/asf4 (Apache-2.0)
|
||||
/axtls (BSD-3-clause)
|
||||
/config
|
||||
/scripts
|
||||
/config (GPL-2.0-or-later)
|
||||
/Rules.mak (GPL-2.0)
|
||||
/berkeley-db-1xx (BSD-4-clause)
|
||||
/btstack (See btstack/LICENSE)
|
||||
/cmsis (BSD-3-clause)
|
||||
/crypto-algorithms (NONE)
|
||||
/libhydrogen (ISC)
|
||||
/littlefs (BSD-3-clause)
|
||||
/lwip (BSD-3-clause)
|
||||
/mynewt-nimble (Apache-2.0)
|
||||
/nrfx (BSD-3-clause)
|
||||
/nxp_driver (BSD-3-Clause)
|
||||
/oofatfs (BSD-1-clause)
|
||||
/pico-sdk (BSD-3-clause)
|
||||
/re15 (BSD-3-clause)
|
||||
/stm32lib (BSD-3-clause)
|
||||
/tinytest (BSD-3-clause)
|
||||
/tinyusb (MIT)
|
||||
/uzlib (Zlib)
|
||||
/logo (uses OFL-1.1)
|
||||
/ports
|
||||
/cc3200
|
||||
/hal (BSD-3-clause)
|
||||
/simplelink (BSD-3-clause)
|
||||
/FreeRTOS (GPL-2.0 with FreeRTOS exception)
|
||||
/stm32
|
||||
/usbd*.c (MCD-ST Liberty SW License Agreement V2)
|
||||
/stm32_it.* (MIT + BSD-3-clause)
|
||||
/system_stm32*.c (MIT + BSD-3-clause)
|
||||
/boards
|
||||
/startup_stm32*.s (BSD-3-clause)
|
||||
/*/stm32*.h (BSD-3-clause)
|
||||
/usbdev (MCD-ST Liberty SW License Agreement V2)
|
||||
/usbhost (MCD-ST Liberty SW License Agreement V2)
|
||||
/teensy
|
||||
/core (PJRC.COM)
|
||||
/zephyr
|
||||
/src (Apache-2.0)
|
||||
/tools
|
||||
/dfu.py (LGPL-3.0-only)
|
188
components/language/micropython/README.md
Normal file
188
components/language/micropython/README.md
Normal file
@@ -0,0 +1,188 @@
|
||||
[](https://github.com/micropython/micropython/actions?query=branch%3Amaster+event%3Apush) [](https://codecov.io/gh/micropython/micropython)
|
||||
|
||||
The MicroPython project
|
||||
=======================
|
||||
<p align="center">
|
||||
<img src="https://raw.githubusercontent.com/micropython/micropython/master/logo/upython-with-micro.jpg" alt="MicroPython Logo"/>
|
||||
</p>
|
||||
|
||||
This is the MicroPython project, which aims to put an implementation
|
||||
of Python 3.x on microcontrollers and small embedded systems.
|
||||
You can find the official website at [micropython.org](http://www.micropython.org).
|
||||
|
||||
WARNING: this project is in beta stage and is subject to changes of the
|
||||
code-base, including project-wide name changes and API changes.
|
||||
|
||||
MicroPython implements the entire Python 3.4 syntax (including exceptions,
|
||||
`with`, `yield from`, etc., and additionally `async`/`await` keywords from
|
||||
Python 3.5). The following core datatypes are provided: `str` (including
|
||||
basic Unicode support), `bytes`, `bytearray`, `tuple`, `list`, `dict`, `set`,
|
||||
`frozenset`, `array.array`, `collections.namedtuple`, classes and instances.
|
||||
Builtin modules include `sys`, `time`, and `struct`, etc. Select ports have
|
||||
support for `_thread` module (multithreading). Note that only a subset of
|
||||
Python 3 functionality is implemented for the data types and modules.
|
||||
|
||||
MicroPython can execute scripts in textual source form or from precompiled
|
||||
bytecode, in both cases either from an on-device filesystem or "frozen" into
|
||||
the MicroPython executable.
|
||||
|
||||
See the repository http://github.com/micropython/pyboard for the MicroPython
|
||||
board (PyBoard), the officially supported reference electronic circuit board.
|
||||
|
||||
Major components in this repository:
|
||||
- py/ -- the core Python implementation, including compiler, runtime, and
|
||||
core library.
|
||||
- mpy-cross/ -- the MicroPython cross-compiler which is used to turn scripts
|
||||
into precompiled bytecode.
|
||||
- ports/unix/ -- a version of MicroPython that runs on Unix.
|
||||
- ports/stm32/ -- a version of MicroPython that runs on the PyBoard and similar
|
||||
STM32 boards (using ST's Cube HAL drivers).
|
||||
- ports/minimal/ -- a minimal MicroPython port. Start with this if you want
|
||||
to port MicroPython to another microcontroller.
|
||||
- tests/ -- test framework and test scripts.
|
||||
- docs/ -- user documentation in Sphinx reStructuredText format. Rendered
|
||||
HTML documentation is available at http://docs.micropython.org.
|
||||
|
||||
Additional components:
|
||||
- ports/bare-arm/ -- a bare minimum version of MicroPython for ARM MCUs. Used
|
||||
mostly to control code size.
|
||||
- ports/teensy/ -- a version of MicroPython that runs on the Teensy 3.1
|
||||
(preliminary but functional).
|
||||
- ports/pic16bit/ -- a version of MicroPython for 16-bit PIC microcontrollers.
|
||||
- ports/cc3200/ -- a version of MicroPython that runs on the CC3200 from TI.
|
||||
- ports/esp8266/ -- a version of MicroPython that runs on Espressif's ESP8266 SoC.
|
||||
- ports/esp32/ -- a version of MicroPython that runs on Espressif's ESP32 SoC.
|
||||
- ports/nrf/ -- a version of MicroPython that runs on Nordic's nRF51 and nRF52 MCUs.
|
||||
- extmod/ -- additional (non-core) modules implemented in C.
|
||||
- tools/ -- various tools, including the pyboard.py module.
|
||||
- examples/ -- a few example Python scripts.
|
||||
|
||||
The subdirectories above may include READMEs with additional info.
|
||||
|
||||
"make" is used to build the components, or "gmake" on BSD-based systems.
|
||||
You will also need bash, gcc, and Python 3.3+ available as the command `python3`
|
||||
(if your system only has Python 2.7 then invoke make with the additional option
|
||||
`PYTHON=python2`).
|
||||
|
||||
The MicroPython cross-compiler, mpy-cross
|
||||
-----------------------------------------
|
||||
|
||||
Most ports require the MicroPython cross-compiler to be built first. This
|
||||
program, called mpy-cross, is used to pre-compile Python scripts to .mpy
|
||||
files which can then be included (frozen) into the firmware/executable for
|
||||
a port. To build mpy-cross use:
|
||||
|
||||
$ cd mpy-cross
|
||||
$ make
|
||||
|
||||
The Unix version
|
||||
----------------
|
||||
|
||||
The "unix" port requires a standard Unix environment with gcc and GNU make.
|
||||
x86 and x64 architectures are supported (i.e. x86 32- and 64-bit), as well
|
||||
as ARM and MIPS. Making full-featured port to another architecture requires
|
||||
writing some assembly code for the exception handling and garbage collection.
|
||||
Alternatively, fallback implementation based on setjmp/longjmp can be used.
|
||||
|
||||
To build (see section below for required dependencies):
|
||||
|
||||
$ cd ports/unix
|
||||
$ make submodules
|
||||
$ make
|
||||
|
||||
Then to give it a try:
|
||||
|
||||
$ ./micropython
|
||||
>>> list(5 * x + y for x in range(10) for y in [4, 2, 1])
|
||||
|
||||
Use `CTRL-D` (i.e. EOF) to exit the shell.
|
||||
Learn about command-line options (in particular, how to increase heap size
|
||||
which may be needed for larger applications):
|
||||
|
||||
$ ./micropython -h
|
||||
|
||||
Run complete testsuite:
|
||||
|
||||
$ make test
|
||||
|
||||
Unix version comes with a builtin package manager called upip, e.g.:
|
||||
|
||||
$ ./micropython -m upip install micropython-pystone
|
||||
$ ./micropython -m pystone
|
||||
|
||||
Browse available modules on
|
||||
[PyPI](https://pypi.python.org/pypi?%3Aaction=search&term=micropython).
|
||||
Standard library modules come from
|
||||
[micropython-lib](https://github.com/micropython/micropython-lib) project.
|
||||
|
||||
External dependencies
|
||||
---------------------
|
||||
|
||||
Building MicroPython ports may require some dependencies installed.
|
||||
|
||||
For Unix port, `libffi` library and `pkg-config` tool are required. On
|
||||
Debian/Ubuntu/Mint derivative Linux distros, install `build-essential`
|
||||
(includes toolchain and make), `libffi-dev`, and `pkg-config` packages.
|
||||
|
||||
Other dependencies can be built together with MicroPython. This may
|
||||
be required to enable extra features or capabilities, and in recent
|
||||
versions of MicroPython, these may be enabled by default. To build
|
||||
these additional dependencies, in the port directory you're
|
||||
interested in (e.g. `ports/unix/`) first execute:
|
||||
|
||||
$ make submodules
|
||||
|
||||
This will fetch all the relevant git submodules (sub repositories) that
|
||||
the port needs. Use the same command to get the latest versions of
|
||||
submodules as they are updated from time to time. After that execute:
|
||||
|
||||
$ make deplibs
|
||||
|
||||
This will build all available dependencies (regardless whether they
|
||||
are used or not). If you intend to build MicroPython with additional
|
||||
options (like cross-compiling), the same set of options should be passed
|
||||
to `make deplibs`. To actually enable/disable use of dependencies, edit
|
||||
`ports/unix/mpconfigport.mk` file, which has inline descriptions of the options.
|
||||
For example, to build SSL module (required for `upip` tool described above,
|
||||
and so enabled by default), `MICROPY_PY_USSL` should be set to 1.
|
||||
|
||||
For some ports, building required dependences is transparent, and happens
|
||||
automatically. But they still need to be fetched with the `make submodules`
|
||||
command.
|
||||
|
||||
The STM32 version
|
||||
-----------------
|
||||
|
||||
The "stm32" port requires an ARM compiler, arm-none-eabi-gcc, and associated
|
||||
bin-utils. For those using Arch Linux, you need arm-none-eabi-binutils,
|
||||
arm-none-eabi-gcc and arm-none-eabi-newlib packages. Otherwise, try here:
|
||||
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm
|
||||
|
||||
To build:
|
||||
|
||||
$ cd ports/stm32
|
||||
$ make submodules
|
||||
$ make
|
||||
|
||||
You then need to get your board into DFU mode. On the pyboard, connect the
|
||||
3V3 pin to the P1/DFU pin with a wire (on PYBv1.0 they are next to each other
|
||||
on the bottom left of the board, second row from the bottom).
|
||||
|
||||
Then to flash the code via USB DFU to your device:
|
||||
|
||||
$ make deploy
|
||||
|
||||
This will use the included `tools/pydfu.py` script. If flashing the firmware
|
||||
does not work it may be because you don't have the correct permissions, and
|
||||
need to use `sudo make deploy`.
|
||||
See the README.md file in the ports/stm32/ directory for further details.
|
||||
|
||||
Contributing
|
||||
------------
|
||||
|
||||
MicroPython is an open-source project and welcomes contributions. To be
|
||||
productive, please be sure to follow the
|
||||
[Contributors' Guidelines](https://github.com/micropython/micropython/wiki/ContributorGuidelines)
|
||||
and the [Code Conventions](https://github.com/micropython/micropython/blob/master/CODECONVENTIONS.md).
|
||||
Note that MicroPython is licenced under the MIT license, and all contributions
|
||||
should follow this license.
|
191
components/language/micropython/docs/Makefile
Normal file
191
components/language/micropython/docs/Makefile
Normal file
@@ -0,0 +1,191 @@
|
||||
# Makefile for Sphinx documentation
|
||||
#
|
||||
|
||||
# You can set these variables from the command line.
|
||||
PYTHON = python3
|
||||
SPHINXOPTS = -W --keep-going
|
||||
SPHINXBUILD = sphinx-build
|
||||
PAPER =
|
||||
BUILDDIR = build/$(MICROPY_PORT)
|
||||
CPYDIFFDIR = ../tools
|
||||
CPYDIFF = gen-cpydiff.py
|
||||
GENRSTDIR = genrst
|
||||
# Run "make FORCE= ..." to avoid rebuilding from scratch (and risk
|
||||
# producing incorrect docs).
|
||||
FORCE = -E
|
||||
|
||||
# User-friendly check for sphinx-build
|
||||
ifeq ($(shell which $(SPHINXBUILD) >/dev/null 2>&1; echo $$?), 1)
|
||||
$(error The '$(SPHINXBUILD)' command was not found. Make sure you have Sphinx installed, then set the SPHINXBUILD environment variable to point to the full path of the '$(SPHINXBUILD)' executable. Alternatively you can add the directory with the executable to your PATH. If you don't have Sphinx installed, grab it from http://sphinx-doc.org/)
|
||||
endif
|
||||
|
||||
# Internal variables.
|
||||
PAPEROPT_a4 = -D latex_paper_size=a4
|
||||
PAPEROPT_letter = -D latex_paper_size=letter
|
||||
ALLSPHINXOPTS = -d $(BUILDDIR)/doctrees $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) .
|
||||
# the i18n builder cannot share the environment and doctrees with the others
|
||||
I18NSPHINXOPTS = $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) .
|
||||
|
||||
.PHONY: help clean html dirhtml singlehtml pickle json htmlhelp qthelp devhelp epub latex latexpdf text man changes linkcheck doctest gettext
|
||||
|
||||
help:
|
||||
@echo "Please use \`make <target>' where <target> is one of"
|
||||
@echo " html to make standalone HTML files"
|
||||
@echo " dirhtml to make HTML files named index.html in directories"
|
||||
@echo " singlehtml to make a single large HTML file"
|
||||
@echo " pickle to make pickle files"
|
||||
@echo " json to make JSON files"
|
||||
@echo " htmlhelp to make HTML files and a HTML help project"
|
||||
@echo " qthelp to make HTML files and a qthelp project"
|
||||
@echo " devhelp to make HTML files and a Devhelp project"
|
||||
@echo " epub to make an epub"
|
||||
@echo " latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter"
|
||||
@echo " latexpdf to make LaTeX files and run them through pdflatex"
|
||||
@echo " latexpdfja to make LaTeX files and run them through platex/dvipdfmx"
|
||||
@echo " text to make text files"
|
||||
@echo " man to make manual pages"
|
||||
@echo " texinfo to make Texinfo files"
|
||||
@echo " info to make Texinfo files and run them through makeinfo"
|
||||
@echo " gettext to make PO message catalogs"
|
||||
@echo " changes to make an overview of all changed/added/deprecated items"
|
||||
@echo " xml to make Docutils-native XML files"
|
||||
@echo " pseudoxml to make pseudoxml-XML files for display purposes"
|
||||
@echo " linkcheck to check all external links for integrity"
|
||||
@echo " doctest to run all doctests embedded in the documentation (if enabled)"
|
||||
@echo " cpydiff to generate the MicroPython differences from CPython"
|
||||
|
||||
clean:
|
||||
rm -rf $(BUILDDIR)/*
|
||||
rm -f $(GENRSTDIR)/*
|
||||
|
||||
cpydiff:
|
||||
@echo "Generating MicroPython Differences."
|
||||
rm -f $(GENRSTDIR)/*
|
||||
cd $(CPYDIFFDIR) && $(PYTHON) $(CPYDIFF)
|
||||
|
||||
html: cpydiff
|
||||
$(SPHINXBUILD) $(FORCE) -b html $(ALLSPHINXOPTS) $(BUILDDIR)/html
|
||||
@echo
|
||||
@echo "Build finished. The HTML pages are in $(BUILDDIR)/html."
|
||||
|
||||
dirhtml:
|
||||
$(SPHINXBUILD) -b dirhtml $(ALLSPHINXOPTS) $(BUILDDIR)/dirhtml
|
||||
@echo
|
||||
@echo "Build finished. The HTML pages are in $(BUILDDIR)/dirhtml."
|
||||
|
||||
singlehtml:
|
||||
$(SPHINXBUILD) -b singlehtml $(ALLSPHINXOPTS) $(BUILDDIR)/singlehtml
|
||||
@echo
|
||||
@echo "Build finished. The HTML page is in $(BUILDDIR)/singlehtml."
|
||||
|
||||
pickle:
|
||||
$(SPHINXBUILD) -b pickle $(ALLSPHINXOPTS) $(BUILDDIR)/pickle
|
||||
@echo
|
||||
@echo "Build finished; now you can process the pickle files."
|
||||
|
||||
json:
|
||||
$(SPHINXBUILD) -b json $(ALLSPHINXOPTS) $(BUILDDIR)/json
|
||||
@echo
|
||||
@echo "Build finished; now you can process the JSON files."
|
||||
|
||||
htmlhelp:
|
||||
$(SPHINXBUILD) -b htmlhelp $(ALLSPHINXOPTS) $(BUILDDIR)/htmlhelp
|
||||
@echo
|
||||
@echo "Build finished; now you can run HTML Help Workshop with the" \
|
||||
".hhp project file in $(BUILDDIR)/htmlhelp."
|
||||
|
||||
qthelp:
|
||||
$(SPHINXBUILD) -b qthelp $(ALLSPHINXOPTS) $(BUILDDIR)/qthelp
|
||||
@echo
|
||||
@echo "Build finished; now you can run "qcollectiongenerator" with the" \
|
||||
".qhcp project file in $(BUILDDIR)/qthelp, like this:"
|
||||
@echo "# qcollectiongenerator $(BUILDDIR)/qthelp/MicroPython.qhcp"
|
||||
@echo "To view the help file:"
|
||||
@echo "# assistant -collectionFile $(BUILDDIR)/qthelp/MicroPython.qhc"
|
||||
|
||||
devhelp:
|
||||
$(SPHINXBUILD) -b devhelp $(ALLSPHINXOPTS) $(BUILDDIR)/devhelp
|
||||
@echo
|
||||
@echo "Build finished."
|
||||
@echo "To view the help file:"
|
||||
@echo "# mkdir -p $$HOME/.local/share/devhelp/MicroPython"
|
||||
@echo "# ln -s $(BUILDDIR)/devhelp $$HOME/.local/share/devhelp/MicroPython"
|
||||
@echo "# devhelp"
|
||||
|
||||
epub:
|
||||
$(SPHINXBUILD) -b epub $(ALLSPHINXOPTS) $(BUILDDIR)/epub
|
||||
@echo
|
||||
@echo "Build finished. The epub file is in $(BUILDDIR)/epub."
|
||||
|
||||
latex: cpydiff
|
||||
$(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex
|
||||
@echo
|
||||
@echo "Build finished; the LaTeX files are in $(BUILDDIR)/latex."
|
||||
@echo "Run \`make' in that directory to run these through (pdf)latex" \
|
||||
"(use \`make latexpdf' here to do that automatically)."
|
||||
|
||||
latexpdf: cpydiff
|
||||
$(SPHINXBUILD) $(FORCE) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex
|
||||
@echo "Running LaTeX files through pdflatex..."
|
||||
$(MAKE) -C $(BUILDDIR)/latex all-pdf
|
||||
@echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex."
|
||||
|
||||
latexpdfja: cpydiff
|
||||
$(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex
|
||||
@echo "Running LaTeX files through platex and dvipdfmx..."
|
||||
$(MAKE) -C $(BUILDDIR)/latex all-pdf-ja
|
||||
@echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex."
|
||||
|
||||
text:
|
||||
$(SPHINXBUILD) -b text $(ALLSPHINXOPTS) $(BUILDDIR)/text
|
||||
@echo
|
||||
@echo "Build finished. The text files are in $(BUILDDIR)/text."
|
||||
|
||||
man:
|
||||
$(SPHINXBUILD) -b man $(ALLSPHINXOPTS) $(BUILDDIR)/man
|
||||
@echo
|
||||
@echo "Build finished. The manual pages are in $(BUILDDIR)/man."
|
||||
|
||||
texinfo:
|
||||
$(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo
|
||||
@echo
|
||||
@echo "Build finished. The Texinfo files are in $(BUILDDIR)/texinfo."
|
||||
@echo "Run \`make' in that directory to run these through makeinfo" \
|
||||
"(use \`make info' here to do that automatically)."
|
||||
|
||||
info:
|
||||
$(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo
|
||||
@echo "Running Texinfo files through makeinfo..."
|
||||
make -C $(BUILDDIR)/texinfo info
|
||||
@echo "makeinfo finished; the Info files are in $(BUILDDIR)/texinfo."
|
||||
|
||||
gettext:
|
||||
$(SPHINXBUILD) -b gettext $(I18NSPHINXOPTS) $(BUILDDIR)/locale
|
||||
@echo
|
||||
@echo "Build finished. The message catalogs are in $(BUILDDIR)/locale."
|
||||
|
||||
changes:
|
||||
$(SPHINXBUILD) -b changes $(ALLSPHINXOPTS) $(BUILDDIR)/changes
|
||||
@echo
|
||||
@echo "The overview file is in $(BUILDDIR)/changes."
|
||||
|
||||
linkcheck:
|
||||
$(SPHINXBUILD) -b linkcheck $(ALLSPHINXOPTS) $(BUILDDIR)/linkcheck
|
||||
@echo
|
||||
@echo "Link check complete; look for any errors in the above output " \
|
||||
"or in $(BUILDDIR)/linkcheck/output.txt."
|
||||
|
||||
doctest:
|
||||
$(SPHINXBUILD) -b doctest $(ALLSPHINXOPTS) $(BUILDDIR)/doctest
|
||||
@echo "Testing of doctests in the sources finished, look at the " \
|
||||
"results in $(BUILDDIR)/doctest/output.txt."
|
||||
|
||||
xml:
|
||||
$(SPHINXBUILD) -b xml $(ALLSPHINXOPTS) $(BUILDDIR)/xml
|
||||
@echo
|
||||
@echo "Build finished. The XML files are in $(BUILDDIR)/xml."
|
||||
|
||||
pseudoxml:
|
||||
$(SPHINXBUILD) -b pseudoxml $(ALLSPHINXOPTS) $(BUILDDIR)/pseudoxml
|
||||
@echo
|
||||
@echo "Build finished. The pseudo-XML files are in $(BUILDDIR)/pseudoxml."
|
53
components/language/micropython/docs/README.md
Normal file
53
components/language/micropython/docs/README.md
Normal file
@@ -0,0 +1,53 @@
|
||||
MicroPython Documentation
|
||||
=========================
|
||||
|
||||
The MicroPython documentation can be found at:
|
||||
http://docs.micropython.org/en/latest/
|
||||
|
||||
The documentation you see there is generated from the files in the docs tree:
|
||||
https://github.com/micropython/micropython/tree/master/docs
|
||||
|
||||
Building the documentation locally
|
||||
----------------------------------
|
||||
|
||||
If you're making changes to the documentation, you may want to build the
|
||||
documentation locally so that you can preview your changes.
|
||||
|
||||
Install Sphinx, and optionally (for the RTD-styling), sphinx_rtd_theme,
|
||||
preferably in a virtualenv:
|
||||
|
||||
pip install sphinx
|
||||
pip install sphinx_rtd_theme
|
||||
|
||||
In `micropython/docs`, build the docs:
|
||||
|
||||
make html
|
||||
|
||||
You'll find the index page at `micropython/docs/build/html/index.html`.
|
||||
|
||||
Having readthedocs.org build the documentation
|
||||
----------------------------------------------
|
||||
|
||||
If you would like to have docs for forks/branches hosted on GitHub, GitLab or
|
||||
BitBucket an alternative to building the docs locally is to sign up for a free
|
||||
https://readthedocs.org account. The rough steps to follow are:
|
||||
1. sign-up for an account, unless you already have one
|
||||
2. in your account settings: add GitHub as a connected service (assuming
|
||||
you have forked this repo on github)
|
||||
3. in your account projects: import your forked/cloned micropython repository
|
||||
into readthedocs
|
||||
4. in the project's versions: add the branches you are developing on or
|
||||
for which you'd like readthedocs to auto-generate docs whenever you
|
||||
push a change
|
||||
|
||||
PDF manual generation
|
||||
---------------------
|
||||
|
||||
This can be achieved with:
|
||||
|
||||
make latexpdf
|
||||
|
||||
but require rather complete install of LaTeX with various extensions. On
|
||||
Debian/Ubuntu, try (500MB+ download):
|
||||
|
||||
apt-get install texlive-latex-recommended texlive-latex-extra
|
301
components/language/micropython/docs/conf.py
Normal file
301
components/language/micropython/docs/conf.py
Normal file
@@ -0,0 +1,301 @@
|
||||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# MicroPython documentation build configuration file, created by
|
||||
# sphinx-quickstart on Sun Sep 21 11:42:03 2014.
|
||||
#
|
||||
# This file is execfile()d with the current directory set to its
|
||||
# containing dir.
|
||||
#
|
||||
# Note that not all possible configuration values are present in this
|
||||
# autogenerated file.
|
||||
#
|
||||
# All configuration values have a default; values that are commented out
|
||||
# serve to show the default.
|
||||
|
||||
import sys
|
||||
import os
|
||||
|
||||
# If extensions (or modules to document with autodoc) are in another directory,
|
||||
# add these directories to sys.path here. If the directory is relative to the
|
||||
# documentation root, use os.path.abspath to make it absolute, like shown here.
|
||||
sys.path.insert(0, os.path.abspath('.'))
|
||||
|
||||
# The members of the html_context dict are available inside topindex.html
|
||||
micropy_version = os.getenv('MICROPY_VERSION') or 'latest'
|
||||
micropy_all_versions = (os.getenv('MICROPY_ALL_VERSIONS') or 'latest').split(',')
|
||||
url_pattern = '%s/en/%%s' % (os.getenv('MICROPY_URL_PREFIX') or '/',)
|
||||
html_context = {
|
||||
'cur_version':micropy_version,
|
||||
'all_versions':[
|
||||
(ver, url_pattern % ver) for ver in micropy_all_versions
|
||||
],
|
||||
'downloads':[
|
||||
('PDF', url_pattern % micropy_version + '/micropython-docs.pdf'),
|
||||
],
|
||||
}
|
||||
|
||||
|
||||
# -- General configuration ------------------------------------------------
|
||||
|
||||
# If your documentation needs a minimal Sphinx version, state it here.
|
||||
#needs_sphinx = '1.0'
|
||||
|
||||
# Add any Sphinx extension module names here, as strings. They can be
|
||||
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
|
||||
# ones.
|
||||
extensions = [
|
||||
'sphinx.ext.autodoc',
|
||||
'sphinx.ext.doctest',
|
||||
'sphinx.ext.intersphinx',
|
||||
'sphinx.ext.todo',
|
||||
'sphinx.ext.coverage',
|
||||
]
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
templates_path = ['templates']
|
||||
|
||||
# The suffix of source filenames.
|
||||
source_suffix = '.rst'
|
||||
|
||||
# The encoding of source files.
|
||||
#source_encoding = 'utf-8-sig'
|
||||
|
||||
# The master toctree document.
|
||||
master_doc = 'index'
|
||||
|
||||
# General information about the project.
|
||||
project = 'MicroPython'
|
||||
copyright = '- The MicroPython Documentation is Copyright © 2014-2022, Damien P. George, Paul Sokolovsky, and contributors'
|
||||
|
||||
# The version info for the project you're documenting, acts as replacement for
|
||||
# |version| and |release|, also used in various other places throughout the
|
||||
# built documents.
|
||||
#
|
||||
# We don't follow "The short X.Y version" vs "The full version, including alpha/beta/rc tags"
|
||||
# breakdown, so use the same version identifier for both to avoid confusion.
|
||||
version = release = '1.19'
|
||||
|
||||
# The language for content autogenerated by Sphinx. Refer to documentation
|
||||
# for a list of supported languages.
|
||||
#language = None
|
||||
|
||||
# There are two options for replacing |today|: either, you set today to some
|
||||
# non-false value, then it is used:
|
||||
#today = ''
|
||||
# Else, today_fmt is used as the format for a strftime call.
|
||||
#today_fmt = '%B %d, %Y'
|
||||
|
||||
# List of patterns, relative to source directory, that match files and
|
||||
# directories to ignore when looking for source files.
|
||||
exclude_patterns = ['build', '.venv']
|
||||
|
||||
# The reST default role (used for this markup: `text`) to use for all
|
||||
# documents.
|
||||
default_role = 'any'
|
||||
|
||||
# If true, '()' will be appended to :func: etc. cross-reference text.
|
||||
#add_function_parentheses = True
|
||||
|
||||
# If true, the current module name will be prepended to all description
|
||||
# unit titles (such as .. function::).
|
||||
#add_module_names = True
|
||||
|
||||
# If true, sectionauthor and moduleauthor directives will be shown in the
|
||||
# output. They are ignored by default.
|
||||
#show_authors = False
|
||||
|
||||
# The name of the Pygments (syntax highlighting) style to use.
|
||||
pygments_style = 'sphinx'
|
||||
|
||||
# A list of ignored prefixes for module index sorting.
|
||||
#modindex_common_prefix = []
|
||||
|
||||
# If true, keep warnings as "system message" paragraphs in the built documents.
|
||||
#keep_warnings = False
|
||||
|
||||
# Global include files. Sphinx docs suggest using rst_epilog in preference
|
||||
# of rst_prolog, so we follow. Absolute paths below mean "from the base
|
||||
# of the doctree".
|
||||
rst_epilog = """
|
||||
.. include:: /templates/replace.inc
|
||||
"""
|
||||
|
||||
# -- Options for HTML output ----------------------------------------------
|
||||
|
||||
# on_rtd is whether we are on readthedocs.org
|
||||
on_rtd = os.environ.get('READTHEDOCS', None) == 'True'
|
||||
|
||||
if not on_rtd: # only import and set the theme if we're building docs locally
|
||||
try:
|
||||
import sphinx_rtd_theme
|
||||
html_theme = 'sphinx_rtd_theme'
|
||||
html_theme_path = [sphinx_rtd_theme.get_html_theme_path(), '.']
|
||||
except:
|
||||
html_theme = 'default'
|
||||
html_theme_path = ['.']
|
||||
else:
|
||||
html_theme_path = ['.']
|
||||
|
||||
# Theme options are theme-specific and customize the look and feel of a theme
|
||||
# further. For a list of options available for each theme, see the
|
||||
# documentation.
|
||||
#html_theme_options = {}
|
||||
|
||||
# Add any paths that contain custom themes here, relative to this directory.
|
||||
# html_theme_path = ['.']
|
||||
|
||||
# The name for this set of Sphinx documents. If None, it defaults to
|
||||
# "<project> v<release> documentation".
|
||||
#html_title = None
|
||||
|
||||
# A shorter title for the navigation bar. Default is the same as html_title.
|
||||
#html_short_title = None
|
||||
|
||||
# The name of an image file (relative to this directory) to place at the top
|
||||
# of the sidebar.
|
||||
#html_logo = '../../logo/trans-logo.png'
|
||||
|
||||
# The name of an image file (within the static path) to use as favicon of the
|
||||
# docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
|
||||
# pixels large.
|
||||
html_favicon = 'static/favicon.ico'
|
||||
|
||||
# Add any paths that contain custom static files (such as style sheets) here,
|
||||
# relative to this directory. They are copied after the builtin static files,
|
||||
# so a file named "default.css" will overwrite the builtin "default.css".
|
||||
html_static_path = ['static']
|
||||
|
||||
# Add any extra paths that contain custom files (such as robots.txt or
|
||||
# .htaccess) here, relative to this directory. These files are copied
|
||||
# directly to the root of the documentation.
|
||||
#html_extra_path = []
|
||||
|
||||
# If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
|
||||
# using the given strftime format.
|
||||
html_last_updated_fmt = '%d %b %Y'
|
||||
|
||||
# If true, SmartyPants will be used to convert quotes and dashes to
|
||||
# typographically correct entities.
|
||||
#html_use_smartypants = True
|
||||
|
||||
# Custom sidebar templates, maps document names to template names.
|
||||
#html_sidebars = {}
|
||||
|
||||
# Additional templates that should be rendered to pages, maps page names to
|
||||
# template names.
|
||||
html_additional_pages = {"index": "topindex.html"}
|
||||
|
||||
# If false, no module index is generated.
|
||||
#html_domain_indices = True
|
||||
|
||||
# If false, no index is generated.
|
||||
#html_use_index = True
|
||||
|
||||
# If true, the index is split into individual pages for each letter.
|
||||
#html_split_index = False
|
||||
|
||||
# If true, links to the reST sources are added to the pages.
|
||||
#html_show_sourcelink = True
|
||||
|
||||
# If true, "Created using Sphinx" is shown in the HTML footer. Default is True.
|
||||
#html_show_sphinx = True
|
||||
|
||||
# If true, "(C) Copyright ..." is shown in the HTML footer. Default is True.
|
||||
#html_show_copyright = True
|
||||
|
||||
# If true, an OpenSearch description file will be output, and all pages will
|
||||
# contain a <link> tag referring to it. The value of this option must be the
|
||||
# base URL from which the finished HTML is served.
|
||||
#html_use_opensearch = ''
|
||||
|
||||
# This is the file name suffix for HTML files (e.g. ".xhtml").
|
||||
#html_file_suffix = None
|
||||
|
||||
# Output file base name for HTML help builder.
|
||||
htmlhelp_basename = 'MicroPythondoc'
|
||||
|
||||
|
||||
# -- Options for LaTeX output ---------------------------------------------
|
||||
|
||||
latex_elements = {
|
||||
# The paper size ('letterpaper' or 'a4paper').
|
||||
#'papersize': 'letterpaper',
|
||||
|
||||
# The font size ('10pt', '11pt' or '12pt').
|
||||
#'pointsize': '10pt',
|
||||
|
||||
# Additional stuff for the LaTeX preamble.
|
||||
#'preamble': '',
|
||||
# Include 3 levels of headers in PDF ToC
|
||||
'preamble': '\setcounter{tocdepth}{2}',
|
||||
}
|
||||
|
||||
# Grouping the document tree into LaTeX files. List of tuples
|
||||
# (source start file, target name, title,
|
||||
# author, documentclass [howto, manual, or own class]).
|
||||
latex_documents = [
|
||||
(master_doc, 'MicroPython.tex', 'MicroPython Documentation',
|
||||
'Damien P. George, Paul Sokolovsky, and contributors', 'manual'),
|
||||
]
|
||||
|
||||
# The name of an image file (relative to this directory) to place at the top of
|
||||
# the title page.
|
||||
#latex_logo = None
|
||||
|
||||
# For "manual" documents, if this is true, then toplevel headings are parts,
|
||||
# not chapters.
|
||||
#latex_use_parts = False
|
||||
|
||||
# If true, show page references after internal links.
|
||||
#latex_show_pagerefs = False
|
||||
|
||||
# If true, show URL addresses after external links.
|
||||
#latex_show_urls = False
|
||||
|
||||
# Documents to append as an appendix to all manuals.
|
||||
#latex_appendices = []
|
||||
|
||||
# If false, no module index is generated.
|
||||
#latex_domain_indices = True
|
||||
|
||||
|
||||
# -- Options for manual page output ---------------------------------------
|
||||
|
||||
# One entry per manual page. List of tuples
|
||||
# (source start file, name, description, authors, manual section).
|
||||
man_pages = [
|
||||
('index', 'micropython', 'MicroPython Documentation',
|
||||
['Damien P. George, Paul Sokolovsky, and contributors'], 1),
|
||||
]
|
||||
|
||||
# If true, show URL addresses after external links.
|
||||
#man_show_urls = False
|
||||
|
||||
|
||||
# -- Options for Texinfo output -------------------------------------------
|
||||
|
||||
# Grouping the document tree into Texinfo files. List of tuples
|
||||
# (source start file, target name, title, author,
|
||||
# dir menu entry, description, category)
|
||||
texinfo_documents = [
|
||||
(master_doc, 'MicroPython', 'MicroPython Documentation',
|
||||
'Damien P. George, Paul Sokolovsky, and contributors', 'MicroPython', 'One line description of project.',
|
||||
'Miscellaneous'),
|
||||
]
|
||||
|
||||
# Documents to append as an appendix to all manuals.
|
||||
#texinfo_appendices = []
|
||||
|
||||
# If false, no module index is generated.
|
||||
#texinfo_domain_indices = True
|
||||
|
||||
# How to display URL addresses: 'footnote', 'no', or 'inline'.
|
||||
#texinfo_show_urls = 'footnote'
|
||||
|
||||
# If true, do not generate a @detailmenu in the "Top" node's menu.
|
||||
#texinfo_no_detailmenu = False
|
||||
|
||||
|
||||
# Example configuration for intersphinx: refer to the Python standard library.
|
||||
intersphinx_mapping = {'python': ('https://docs.python.org/3.5', None)}
|
266
components/language/micropython/docs/develop/cmodules.rst
Normal file
266
components/language/micropython/docs/develop/cmodules.rst
Normal file
@@ -0,0 +1,266 @@
|
||||
.. _cmodules:
|
||||
|
||||
MicroPython external C modules
|
||||
==============================
|
||||
|
||||
When developing modules for use with MicroPython you may find you run into
|
||||
limitations with the Python environment, often due to an inability to access
|
||||
certain hardware resources or Python speed limitations.
|
||||
|
||||
If your limitations can't be resolved with suggestions in :ref:`speed_python`,
|
||||
writing some or all of your module in C (and/or C++ if implemented for your port)
|
||||
is a viable option.
|
||||
|
||||
If your module is designed to access or work with commonly available
|
||||
hardware or libraries please consider implementing it inside the MicroPython
|
||||
source tree alongside similar modules and submitting it as a pull request.
|
||||
If however you're targeting obscure or proprietary systems it may make
|
||||
more sense to keep this external to the main MicroPython repository.
|
||||
|
||||
This chapter describes how to compile such external modules into the
|
||||
MicroPython executable or firmware image. Both Make and CMake build
|
||||
tools are supported, and when writing an external module it's a good idea to
|
||||
add the build files for both of these tools so the module can be used on all
|
||||
ports. But when compiling a particular port you will only need to use one
|
||||
method of building, either Make or CMake.
|
||||
|
||||
An alternative approach is to use :ref:`natmod` which allows writing custom C
|
||||
code that is placed in a .mpy file, which can be imported dynamically in to
|
||||
a running MicroPython system without the need to recompile the main firmware.
|
||||
|
||||
|
||||
Structure of an external C module
|
||||
---------------------------------
|
||||
|
||||
A MicroPython user C module is a directory with the following files:
|
||||
|
||||
* ``*.c`` / ``*.cpp`` / ``*.h`` source code files for your module.
|
||||
|
||||
These will typically include the low level functionality being implemented and
|
||||
the MicroPython binding functions to expose the functions and module(s).
|
||||
|
||||
Currently the best reference for writing these functions/modules is
|
||||
to find similar modules within the MicroPython tree and use them as examples.
|
||||
|
||||
* ``micropython.mk`` contains the Makefile fragment for this module.
|
||||
|
||||
``$(USERMOD_DIR)`` is available in ``micropython.mk`` as the path to your
|
||||
module directory. As it's redefined for each c module, is should be expanded
|
||||
in your ``micropython.mk`` to a local make variable,
|
||||
eg ``EXAMPLE_MOD_DIR := $(USERMOD_DIR)``
|
||||
|
||||
Your ``micropython.mk`` must add your modules source files relative to your
|
||||
expanded copy of ``$(USERMOD_DIR)`` to ``SRC_USERMOD``, eg
|
||||
``SRC_USERMOD += $(EXAMPLE_MOD_DIR)/example.c``
|
||||
|
||||
If you have custom compiler options (like ``-I`` to add directories to search
|
||||
for header files), these should be added to ``CFLAGS_USERMOD`` for C code
|
||||
and to ``CXXFLAGS_USERMOD`` for C++ code.
|
||||
|
||||
* ``micropython.cmake`` contains the CMake configuration for this module.
|
||||
|
||||
In ``micropython.cmake``, you may use ``${CMAKE_CURRENT_LIST_DIR}`` as the path to
|
||||
the current module.
|
||||
|
||||
Your ``micropython.cmake`` should define an ``INTERFACE`` library and associate
|
||||
your source files, compile definitions and include directories with it.
|
||||
The library should then be linked to the ``usermod`` target.
|
||||
|
||||
.. code-block:: cmake
|
||||
|
||||
add_library(usermod_cexample INTERFACE)
|
||||
|
||||
target_sources(usermod_cexample INTERFACE
|
||||
${CMAKE_CURRENT_LIST_DIR}/examplemodule.c
|
||||
)
|
||||
|
||||
target_include_directories(usermod_cexample INTERFACE
|
||||
${CMAKE_CURRENT_LIST_DIR}
|
||||
)
|
||||
|
||||
target_link_libraries(usermod INTERFACE usermod_cexample)
|
||||
|
||||
|
||||
See below for full usage example.
|
||||
|
||||
|
||||
Basic example
|
||||
-------------
|
||||
|
||||
This simple module named ``cexample`` provides a single function
|
||||
``cexample.add_ints(a, b)`` which adds the two integer args together and returns
|
||||
the result. It can be found in the MicroPython source tree
|
||||
`in the examples directory <https://github.com/micropython/micropython/tree/master/examples/usercmodule/cexample>`_
|
||||
and has a source file and a Makefile fragment with content as described above::
|
||||
|
||||
micropython/
|
||||
└──examples/
|
||||
└──usercmodule/
|
||||
└──cexample/
|
||||
├── examplemodule.c
|
||||
├── micropython.mk
|
||||
└── micropython.cmake
|
||||
|
||||
|
||||
Refer to the comments in these files for additional explanation.
|
||||
Next to the ``cexample`` module there's also ``cppexample`` which
|
||||
works in the same way but shows one way of mixing C and C++ code
|
||||
in MicroPython.
|
||||
|
||||
|
||||
Compiling the cmodule into MicroPython
|
||||
--------------------------------------
|
||||
|
||||
To build such a module, compile MicroPython (see `getting started
|
||||
<https://github.com/micropython/micropython/wiki/Getting-Started>`_),
|
||||
applying 2 modifications:
|
||||
|
||||
1. Set the build-time flag ``USER_C_MODULES`` to point to the modules
|
||||
you want to include. For ports that use Make this variable should be a
|
||||
directory which is searched automatically for modules. For ports that
|
||||
use CMake this variable should be a file which includes the modules to
|
||||
build. See below for details.
|
||||
|
||||
2. Enable the modules by setting the corresponding C preprocessor macro to
|
||||
1. This is only needed if the modules you are building are not
|
||||
automatically enabled.
|
||||
|
||||
For building the example modules which come with MicroPython,
|
||||
set ``USER_C_MODULES`` to the ``examples/usercmodule`` directory for Make,
|
||||
or to ``examples/usercmodule/micropython.cmake`` for CMake.
|
||||
|
||||
For example, here's how the to build the unix port with the example modules:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
cd micropython/ports/unix
|
||||
make USER_C_MODULES=../../examples/usercmodule
|
||||
|
||||
You may need to run ``make clean`` once at the start when including new
|
||||
user modules in the build. The build output will show the modules found::
|
||||
|
||||
...
|
||||
Including User C Module from ../../examples/usercmodule/cexample
|
||||
Including User C Module from ../../examples/usercmodule/cppexample
|
||||
...
|
||||
|
||||
For a CMake-based port such as rp2, this will look a little different (note
|
||||
that CMake is actually invoked by ``make``):
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
cd micropython/ports/rp2
|
||||
make USER_C_MODULES=../../examples/usercmodule/micropython.cmake
|
||||
|
||||
Again, you may need to run ``make clean`` first for CMake to pick up the
|
||||
user modules. The CMake build output lists the modules by name::
|
||||
|
||||
...
|
||||
Including User C Module(s) from ../../examples/usercmodule/micropython.cmake
|
||||
Found User C Module(s): usermod_cexample, usermod_cppexample
|
||||
...
|
||||
|
||||
The contents of the top-level ``micropython.cmake`` can be used to control which
|
||||
modules are enabled.
|
||||
|
||||
For your own projects it's more convenient to keep custom code out of the main
|
||||
MicroPython source tree, so a typical project directory structure will look
|
||||
like this::
|
||||
|
||||
my_project/
|
||||
├── modules/
|
||||
│ ├── example1/
|
||||
│ │ ├── example1.c
|
||||
│ │ ├── micropython.mk
|
||||
│ │ └── micropython.cmake
|
||||
│ ├── example2/
|
||||
│ │ ├── example2.c
|
||||
│ │ ├── micropython.mk
|
||||
│ │ └── micropython.cmake
|
||||
│ └── micropython.cmake
|
||||
└── micropython/
|
||||
├──ports/
|
||||
... ├──stm32/
|
||||
...
|
||||
|
||||
When building with Make set ``USER_C_MODULES`` to the ``my_project/modules``
|
||||
directory. For example, building the stm32 port:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
cd my_project/micropython/ports/stm32
|
||||
make USER_C_MODULES=../../../modules
|
||||
|
||||
When building with CMake the top level ``micropython.cmake`` -- found directly
|
||||
in the ``my_project/modules`` directory -- should ``include`` all of the modules
|
||||
you want to have available:
|
||||
|
||||
.. code-block:: cmake
|
||||
|
||||
include(${CMAKE_CURRENT_LIST_DIR}/example1/micropython.cmake)
|
||||
include(${CMAKE_CURRENT_LIST_DIR}/example2/micropython.cmake)
|
||||
|
||||
Then build with:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
cd my_project/micropython/ports/esp32
|
||||
make USER_C_MODULES=../../../../modules/micropython.cmake
|
||||
|
||||
Note that the esp32 port needs the extra ``..`` for relative paths due to the
|
||||
location of its main ``CMakeLists.txt`` file. You can also specify absolute
|
||||
paths to ``USER_C_MODULES``.
|
||||
|
||||
All modules specified by the ``USER_C_MODULES`` variable (either found in this
|
||||
directory when using Make, or added via ``include`` when using CMake) will be
|
||||
compiled, but only those which are enabled will be available for importing.
|
||||
User modules are usually enabled by default (this is decided by the developer
|
||||
of the module), in which case there is nothing more to do than set ``USER_C_MODULES``
|
||||
as described above.
|
||||
|
||||
If a module is not enabled by default then the corresponding C preprocessor macro
|
||||
must be enabled. This macro name can be found by searching for the ``MP_REGISTER_MODULE``
|
||||
line in the module's source code (it usually appears at the end of the main source file).
|
||||
This macro should be surrounded by a ``#if X`` / ``#endif`` pair, and the configuration
|
||||
option ``X`` must be set to 1 using ``CFLAGS_EXTRA`` to make the module available. If
|
||||
there is no ``#if X`` / ``#endif`` pair then the module is enabled by default.
|
||||
|
||||
For example, the ``examples/usercmodule/cexample`` module is enabled by default so
|
||||
has the following line in its source code:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
MP_REGISTER_MODULE(MP_QSTR_cexample, example_user_cmodule);
|
||||
|
||||
Alternatively, to make this module disabled by default but selectable through
|
||||
a preprocessor configuration option, it would be:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
#if MODULE_CEXAMPLE_ENABLED
|
||||
MP_REGISTER_MODULE(MP_QSTR_cexample, example_user_cmodule);
|
||||
#endif
|
||||
|
||||
In this case the module is enabled by adding ``CFLAGS_EXTRA=-DMODULE_CEXAMPLE_ENABLED=1``
|
||||
to the ``make`` command, or editing ``mpconfigport.h`` or ``mpconfigboard.h`` to add
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
#define MODULE_CEXAMPLE_ENABLED (1)
|
||||
|
||||
Note that the exact method depends on the port as they have different
|
||||
structures. If not done correctly it will compile but importing will
|
||||
fail to find the module.
|
||||
|
||||
|
||||
Module usage in MicroPython
|
||||
---------------------------
|
||||
|
||||
Once built into your copy of MicroPython, the module
|
||||
can now be accessed in Python just like any other builtin module, e.g.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import cexample
|
||||
print(cexample.add_ints(1, 3))
|
||||
# should display 4
|
317
components/language/micropython/docs/develop/compiler.rst
Normal file
317
components/language/micropython/docs/develop/compiler.rst
Normal file
@@ -0,0 +1,317 @@
|
||||
.. _compiler:
|
||||
|
||||
The Compiler
|
||||
============
|
||||
|
||||
The compilation process in MicroPython involves the following steps:
|
||||
|
||||
* The lexer converts the stream of text that makes up a MicroPython program into tokens.
|
||||
* The parser then converts the tokens into an abstract syntax (parse tree).
|
||||
* Then bytecode or native code is emitted based on the parse tree.
|
||||
|
||||
For purposes of this discussion we are going to add a simple language feature ``add1``
|
||||
that can be use in Python as:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
>>> add1 3
|
||||
4
|
||||
>>>
|
||||
|
||||
The ``add1`` statement takes an integer as argument and adds ``1`` to it.
|
||||
|
||||
Adding a grammar rule
|
||||
----------------------
|
||||
|
||||
MicroPython's grammar is based on the `CPython grammar <https://docs.python.org/3.5/reference/grammar.html>`_
|
||||
and is defined in `py/grammar.h <https://github.com/micropython/micropython/blob/master/py/grammar.h>`_.
|
||||
This grammar is what is used to parse MicroPython source files.
|
||||
|
||||
There are two macros you need to know to define a grammar rule: ``DEF_RULE`` and ``DEF_RULE_NC``.
|
||||
``DEF_RULE`` allows you to define a rule with an associated compile function,
|
||||
while ``DEF_RULE_NC`` has no compile (NC) function for it.
|
||||
|
||||
A simple grammar definition with a compile function for our new ``add1`` statement
|
||||
looks like the following:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
DEF_RULE(add1_stmt, c(add1_stmt), and(2), tok(KW_ADD1), rule(testlist))
|
||||
|
||||
The second argument ``c(add1_stmt)`` is the corresponding compile function that should be implemented
|
||||
in ``py/compile.c`` to turn this rule into executable code.
|
||||
|
||||
The third required argument can be ``or`` or ``and``. This specifies the number of nodes associated
|
||||
with a statement. For example, in this case, our ``add1`` statement is similar to ADD1 in assembly
|
||||
language. It takes one numeric argument. Therefore, the ``add1_stmt`` has two nodes associated with it.
|
||||
One node is for the statement itself, i.e the literal ``add1`` corresponding to ``KW_ADD1``,
|
||||
and the other for its argument, a ``testlist`` rule which is the top-level expression rule.
|
||||
|
||||
.. note::
|
||||
The ``add1`` rule here is just an example and not part of the standard
|
||||
MicroPython grammar.
|
||||
|
||||
The fourth argument in this example is the token associated with the rule, ``KW_ADD1``. This token should be
|
||||
defined in the lexer by editing ``py/lexer.h``.
|
||||
|
||||
Defining the same rule without a compile function is achieved by using the ``DEF_RULE_NC`` macro
|
||||
and omitting the compile function argument:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
DEF_RULE_NC(add1_stmt, and(2), tok(KW_ADD1), rule(testlist))
|
||||
|
||||
The remaining arguments take on the same meaning. A rule without a compile function must
|
||||
be handled explicitly by all rules that may have this rule as a node. Such NC-rules are usually
|
||||
used to express sub-parts of a complicated grammar structure that cannot be expressed in a
|
||||
single rule.
|
||||
|
||||
.. note::
|
||||
The macros ``DEF_RULE`` and ``DEF_RULE_NC`` take other arguments. For an in-depth understanding of
|
||||
supported parameters, see `py/grammar.h <https://github.com/micropython/micropython/blob/master/py/grammar.h>`_.
|
||||
|
||||
Adding a lexical token
|
||||
----------------------
|
||||
|
||||
Every rule defined in the grammar should have a token associated with it that is defined in ``py/lexer.h``.
|
||||
Add this token by editing the ``_mp_token_kind_t`` enum:
|
||||
|
||||
.. code-block:: c
|
||||
:emphasize-lines: 12
|
||||
|
||||
typedef enum _mp_token_kind_t {
|
||||
...
|
||||
MP_TOKEN_KW_OR,
|
||||
MP_TOKEN_KW_PASS,
|
||||
MP_TOKEN_KW_RAISE,
|
||||
MP_TOKEN_KW_RETURN,
|
||||
MP_TOKEN_KW_TRY,
|
||||
MP_TOKEN_KW_WHILE,
|
||||
MP_TOKEN_KW_WITH,
|
||||
MP_TOKEN_KW_YIELD,
|
||||
MP_TOKEN_KW_ADD1,
|
||||
...
|
||||
} mp_token_kind_t;
|
||||
|
||||
Then also edit ``py/lexer.c`` to add the new keyword literal text:
|
||||
|
||||
.. code-block:: c
|
||||
:emphasize-lines: 12
|
||||
|
||||
STATIC const char *const tok_kw[] = {
|
||||
...
|
||||
"or",
|
||||
"pass",
|
||||
"raise",
|
||||
"return",
|
||||
"try",
|
||||
"while",
|
||||
"with",
|
||||
"yield",
|
||||
"add1",
|
||||
...
|
||||
};
|
||||
|
||||
Notice the keyword is named depending on what you want it to be. For consistency, maintain the
|
||||
naming standard accordingly.
|
||||
|
||||
.. note::
|
||||
The order of these keywords in ``py/lexer.c`` must match the order of tokens in the enum
|
||||
defined in ``py/lexer.h``.
|
||||
|
||||
Parsing
|
||||
-------
|
||||
|
||||
In the parsing stage the parser takes the tokens produced by the lexer and converts them to an abstract syntax tree (AST) or
|
||||
*parse tree*. The implementation for the parser is defined in `py/parse.c <https://github.com/micropython/micropython/blob/master/py/parse.c>`_.
|
||||
|
||||
The parser also maintains a table of constants for use in different aspects of parsing, similar to what a
|
||||
`symbol table <https://steemit.com/programming/@drifter1/writing-a-simple-compiler-on-my-own-symbol-table-basic-structure>`_
|
||||
does.
|
||||
|
||||
Several optimizations like `constant folding <http://compileroptimizations.com/category/constant_folding.htm>`_
|
||||
on integers for most operations e.g. logical, binary, unary, etc, and optimizing enhancements on parenthesis
|
||||
around expressions are performed during this phase, along with some optimizations on strings.
|
||||
|
||||
It's worth noting that *docstrings* are discarded and not accessible to the compiler.
|
||||
Even optimizations like `string interning <https://en.wikipedia.org/wiki/String_interning>`_ are
|
||||
not applied to *docstrings*.
|
||||
|
||||
Compiler passes
|
||||
---------------
|
||||
|
||||
Like many compilers, MicroPython compiles all code to MicroPython bytecode or native code. The functionality
|
||||
that achieves this is implemented in `py/compile.c <https://github.com/micropython/micropython/blob/master/py/compile.c>`_.
|
||||
The most relevant method you should know about is this:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
mp_obj_t mp_compile(mp_parse_tree_t *parse_tree, qstr source_file, bool is_repl) {
|
||||
// Compile the input parse_tree to a raw-code structure.
|
||||
mp_raw_code_t *rc = mp_compile_to_raw_code(parse_tree, source_file, is_repl);
|
||||
// Create and return a function object that executes the outer module.
|
||||
return mp_make_function_from_raw_code(rc, MP_OBJ_NULL, MP_OBJ_NULL);
|
||||
}
|
||||
|
||||
The compiler compiles the code in four passes: scope, stack size, code size and emit.
|
||||
Each pass runs the same C code over the same AST data structure, with different things
|
||||
being computed each time based on the results of the previous pass.
|
||||
|
||||
First pass
|
||||
~~~~~~~~~~
|
||||
|
||||
In the first pass, the compiler learns about the known identifiers (variables) and
|
||||
their scope, being global, local, closed over, etc. In the same pass the emitter
|
||||
(bytecode or native code) also computes the number of labels needed for the emitted
|
||||
code.
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
// Compile pass 1.
|
||||
comp->emit = emit_bc;
|
||||
comp->emit_method_table = &emit_bc_method_table;
|
||||
|
||||
uint max_num_labels = 0;
|
||||
for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) {
|
||||
if (s->emit_options == MP_EMIT_OPT_ASM) {
|
||||
compile_scope_inline_asm(comp, s, MP_PASS_SCOPE);
|
||||
} else {
|
||||
compile_scope(comp, s, MP_PASS_SCOPE);
|
||||
|
||||
// Check if any implicitly declared variables should be closed over.
|
||||
for (size_t i = 0; i < s->id_info_len; ++i) {
|
||||
id_info_t *id = &s->id_info[i];
|
||||
if (id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
|
||||
scope_check_to_close_over(s, id);
|
||||
}
|
||||
}
|
||||
}
|
||||
...
|
||||
}
|
||||
|
||||
Second and third passes
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The second and third passes involve computing the Python stack size and code size
|
||||
for the bytecode or native code. After the third pass the code size cannot change,
|
||||
otherwise jump labels will be incorrect.
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) {
|
||||
...
|
||||
|
||||
// Pass 2: Compute the Python stack size.
|
||||
compile_scope(comp, s, MP_PASS_STACK_SIZE);
|
||||
|
||||
// Pass 3: Compute the code size.
|
||||
if (comp->compile_error == MP_OBJ_NULL) {
|
||||
compile_scope(comp, s, MP_PASS_CODE_SIZE);
|
||||
}
|
||||
|
||||
...
|
||||
}
|
||||
|
||||
Just before pass two there is a selection for the type of code to be emitted, which can
|
||||
either be native or bytecode.
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
// Choose the emitter type.
|
||||
switch (s->emit_options) {
|
||||
case MP_EMIT_OPT_NATIVE_PYTHON:
|
||||
case MP_EMIT_OPT_VIPER:
|
||||
if (emit_native == NULL) {
|
||||
emit_native = NATIVE_EMITTER(new)(&comp->compile_error, &comp->next_label, max_num_labels);
|
||||
}
|
||||
comp->emit_method_table = NATIVE_EMITTER_TABLE;
|
||||
comp->emit = emit_native;
|
||||
break;
|
||||
|
||||
default:
|
||||
comp->emit = emit_bc;
|
||||
comp->emit_method_table = &emit_bc_method_table;
|
||||
break;
|
||||
}
|
||||
|
||||
The bytecode option is the default but something unique to note for the native
|
||||
code option is that there is another option via ``VIPER``. See the
|
||||
:ref:`Emitting native code <emitting_native_code>` section for more details on
|
||||
viper annotations.
|
||||
|
||||
There is also support for *inline assembly code*, where assembly instructions are
|
||||
written as Python function calls but are emitted directly as the corresponding
|
||||
machine code. This assembler has only three passes (scope, code size, emit)
|
||||
and uses a different implementation, not the ``compile_scope`` function.
|
||||
See the `inline assembler tutorial <https://docs.micropython.org/en/latest/pyboard/tutorial/assembler.html#pyboard-tutorial-assembler>`_
|
||||
for more details.
|
||||
|
||||
Fourth pass
|
||||
~~~~~~~~~~~
|
||||
|
||||
The fourth pass emits the final code that can be executed, either bytecode in
|
||||
the virtual machine, or native code directly by the CPU.
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) {
|
||||
...
|
||||
|
||||
// Pass 4: Emit the compiled bytecode or native code.
|
||||
if (comp->compile_error == MP_OBJ_NULL) {
|
||||
compile_scope(comp, s, MP_PASS_EMIT);
|
||||
}
|
||||
}
|
||||
|
||||
Emitting bytecode
|
||||
-----------------
|
||||
|
||||
Statements in Python code usually correspond to emitted bytecode, for example ``a + b``
|
||||
generates "push a" then "push b" then "binary op add". Some statements do not emit
|
||||
anything but instead affect other things like the scope of variables, for example
|
||||
``global a``.
|
||||
|
||||
The implementation of a function that emits bytecode looks similar to this:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
void mp_emit_bc_unary_op(emit_t *emit, mp_unary_op_t op) {
|
||||
emit_write_bytecode_byte(emit, 0, MP_BC_UNARY_OP_MULTI + op);
|
||||
}
|
||||
|
||||
We use the unary operator expressions for an example here but the implementation
|
||||
details are similar for other statements/expressions. The method ``emit_write_bytecode_byte()``
|
||||
is a wrapper around the main function ``emit_get_cur_to_write_bytecode()`` that all
|
||||
functions must call to emit bytecode.
|
||||
|
||||
.. _emitting_native_code:
|
||||
|
||||
Emitting native code
|
||||
---------------------
|
||||
|
||||
Similar to how bytecode is generated, there should be a corresponding function in ``py/emitnative.c`` for each
|
||||
code statement:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
STATIC void emit_native_unary_op(emit_t *emit, mp_unary_op_t op) {
|
||||
vtype_kind_t vtype;
|
||||
emit_pre_pop_reg(emit, &vtype, REG_ARG_2);
|
||||
if (vtype == VTYPE_PYOBJ) {
|
||||
emit_call_with_imm_arg(emit, MP_F_UNARY_OP, op, REG_ARG_1);
|
||||
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
|
||||
} else {
|
||||
adjust_stack(emit, 1);
|
||||
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
|
||||
MP_ERROR_TEXT("unary op %q not implemented"), mp_unary_op_method_name[op]);
|
||||
}
|
||||
}
|
||||
|
||||
The difference here is that we have to handle *viper typing*. Viper annotations allow
|
||||
us to handle more than one type of variable. By default all variables are Python objects,
|
||||
but with viper a variable can also be declared as a machine-typed variable like a native
|
||||
integer or pointer. Viper can be thought of as a superset of Python, where normal Python
|
||||
objects are handled as usual, while native machine variables are handled in an optimised
|
||||
way by using direct machine instructions for the operations. Viper typing may break
|
||||
Python equivalence because, for example, integers become native integers and can overflow
|
||||
(unlike Python integers which extend automatically to arbitrary precision).
|
@@ -0,0 +1,18 @@
|
||||
.. _extendingmicropython:
|
||||
|
||||
Extending MicroPython in C
|
||||
==========================
|
||||
|
||||
This chapter describes options for implementing additional functionality in C, but from code
|
||||
written outside of the main MicroPython repository. The first approach is useful for building
|
||||
your own custom firmware with some project-specific additional modules or functions that can
|
||||
be accessed from Python. The second approach is for building modules that can be loaded at runtime.
|
||||
|
||||
Please see the :ref:`library section <internals_library>` for more information on building core modules that
|
||||
live in the main MicroPython repository.
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 3
|
||||
|
||||
cmodules.rst
|
||||
natmod.rst
|
329
components/language/micropython/docs/develop/gettingstarted.rst
Normal file
329
components/language/micropython/docs/develop/gettingstarted.rst
Normal file
@@ -0,0 +1,329 @@
|
||||
.. _gettingstarted:
|
||||
|
||||
Getting Started
|
||||
===============
|
||||
|
||||
This guide covers a step-by-step process on setting up version control, obtaining and building
|
||||
a copy of the source code for a port, building the documentation, running tests, and a description of the
|
||||
directory structure of the MicroPython code base.
|
||||
|
||||
Source control with git
|
||||
-----------------------
|
||||
|
||||
MicroPython is hosted on `GitHub <https://github.com/micropython/micropython>`_ and uses
|
||||
`Git <https://git-scm.com>`_ for source control. The workflow is such that
|
||||
code is pulled and pushed to and from the main repository. Install the respective version
|
||||
of Git for your operating system to follow through the rest of the steps.
|
||||
|
||||
.. note::
|
||||
For a reference on the installation instructions, please refer to
|
||||
the `Git installation instructions <https://git-scm.com/book/en/v2/Getting-Started-Installing-Git>`_.
|
||||
Learn about the basic git commands in this `Git Handbook <https://guides.github.com/introduction/git-handbook/>`_
|
||||
or any other sources on the internet.
|
||||
|
||||
.. note::
|
||||
A .git-blame-ignore-revs file is included which avoids the output of git blame getting cluttered
|
||||
by commits which are only for formatting code but have no functional changes. See `git blame documentation
|
||||
<https://git-scm.com/docs/git-blame#Documentation/git-blame.txt---ignore-revltrevgt>`_ on how to use this.
|
||||
|
||||
Get the code
|
||||
------------
|
||||
|
||||
It is recommended that you maintain a fork of the MicroPython repository for your development purposes.
|
||||
The process of obtaining the source code includes the following:
|
||||
|
||||
#. Fork the repository https://github.com/micropython/micropython
|
||||
#. You will now have a fork at <https://github.com/<your-user-name>/micropython>.
|
||||
#. Clone the forked repository using the following command:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ git clone https://github.com/<your-user-name>/micropython
|
||||
|
||||
Then, `configure the remote repositories <https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes>`_ to be able to
|
||||
collaborate on the MicroPython project.
|
||||
|
||||
Configure remote upstream:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd micropython
|
||||
$ git remote add upstream https://github.com/micropython/micropython
|
||||
|
||||
It is common to configure ``upstream`` and ``origin`` on a forked repository
|
||||
to assist with sharing code changes. You can maintain your own mapping but
|
||||
it is recommended that ``origin`` maps to your fork and ``upstream`` to the main
|
||||
MicroPython repository.
|
||||
|
||||
After the above configuration, your setup should be similar to this:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ git remote -v
|
||||
origin https://github.com/<your-user-name>/micropython (fetch)
|
||||
origin https://github.com/<your-user-name>/micropython (push)
|
||||
upstream https://github.com/micropython/micropython (fetch)
|
||||
upstream https://github.com/micropython/micropython (push)
|
||||
|
||||
You should now have a copy of the source code. By default, you are pointing
|
||||
to the master branch. To prepare for further development, it is recommended
|
||||
to work on a development branch.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ git checkout -b dev-branch
|
||||
|
||||
You can give it any name. You will have to compile MicroPython whenever you change
|
||||
to a different branch.
|
||||
|
||||
Compile and build the code
|
||||
--------------------------
|
||||
|
||||
When compiling MicroPython, you compile a specific :term:`port`, usually
|
||||
targeting a specific :ref:`board <glossary>`. Start by installing the required dependencies.
|
||||
Then build the MicroPython cross-compiler before you can successfully compile and build.
|
||||
This applies specifically when using Linux to compile.
|
||||
The Windows instructions are provided in a later section.
|
||||
|
||||
.. _required_dependencies:
|
||||
|
||||
Required dependencies
|
||||
~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Install the required dependencies for Linux:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ sudo apt-get install build-essential libffi-dev git pkg-config
|
||||
|
||||
For the stm32 port, the ARM cross-compiler is required:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ sudo apt-get install arm-none-eabi-gcc arm-none-eabi-binutils arm-none-eabi-newlib
|
||||
|
||||
See the `ARM GCC
|
||||
toolchain <https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm>`_
|
||||
for the latest details.
|
||||
|
||||
Python is also required. Python 2 is supported for now, but we recommend using Python 3.
|
||||
Check that you have Python available on your system:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ python3
|
||||
Python 3.5.0 (default, Jul 17 2020, 14:04:10)
|
||||
[GCC 5.4.0 20160609] on linux
|
||||
Type "help", "copyright", "credits" or "license" for more information.
|
||||
>>>
|
||||
|
||||
All supported ports have different dependency requirements, see their respective
|
||||
`readme files <https://github.com/micropython/micropython/tree/master/ports>`_.
|
||||
|
||||
Building the MicroPython cross-compiler
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Almost all ports require building ``mpy-cross`` first to perform pre-compilation
|
||||
of Python code that will be included in the port firmware:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd mpy-cross
|
||||
$ make
|
||||
|
||||
.. note::
|
||||
Note that, ``mpy-cross`` must be built for the host architecture
|
||||
and not the target architecture.
|
||||
|
||||
If it built successfully, you should see a message similar to this:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
LINK mpy-cross
|
||||
text data bss dec hex filename
|
||||
279328 776 880 280984 44998 mpy-cross
|
||||
|
||||
.. note::
|
||||
|
||||
Use ``make -C mpy-cross`` to build the cross-compiler in one statement
|
||||
without moving to the ``mpy-cross`` directory otherwise, you will need
|
||||
to do ``cd ..`` for the next steps.
|
||||
|
||||
Building the Unix port of MicroPython
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The Unix port is a version of MicroPython that runs on Linux, macOS, and other Unix-like operating systems.
|
||||
It's extremely useful for developing MicroPython as it avoids having to deploy your code to a device to test it.
|
||||
In many ways, it works a lot like CPython's python binary.
|
||||
|
||||
To build for the Unix port, make sure all Linux related dependencies are installed as detailed in the
|
||||
required dependencies section. See the :ref:`required_dependencies`
|
||||
to make sure that all dependencies are installed for this port. Also, make sure you have a working
|
||||
environment for ``gcc`` and ``GNU make``. Ubuntu 20.04 has been used for the example
|
||||
below but other unixes ought to work with little modification:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ gcc --version
|
||||
gcc (Ubuntu 9.3.0-10ubuntu2) 9.3.0
|
||||
Copyright (C) 2019 Free Software Foundation, Inc.
|
||||
This is free software; see the source for copying conditions. There is NO
|
||||
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.then build:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd ports/unix
|
||||
$ make submodules
|
||||
$ make
|
||||
|
||||
If MicroPython built correctly, you should see the following:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
LINK micropython
|
||||
text data bss dec hex filename
|
||||
412033 5680 2496 420209 66971 micropython
|
||||
|
||||
Now run it:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ ./micropython
|
||||
MicroPython v1.13-38-gc67012d-dirty on 2020-09-13; linux version
|
||||
Use Ctrl-D to exit, Ctrl-E for paste mode
|
||||
>>> print("hello world")
|
||||
hello world
|
||||
>>>
|
||||
|
||||
Building the Windows port
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The Windows port includes a Visual Studio project file micropython.vcxproj that you can use to build micropython.exe.
|
||||
It can be opened in Visual Studio or built from the command line using msbuild. Alternatively, it can be built using mingw,
|
||||
either in Windows with Cygwin, or on Linux.
|
||||
See `windows port documentation <https://github.com/micropython/micropython/tree/master/ports/windows>`_ for more information.
|
||||
|
||||
Building the STM32 port
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Like the Unix port, you need to install some required dependencies
|
||||
as detailed in the :ref:`required_dependencies` section, then build:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd ports/stm32
|
||||
$ make submodules
|
||||
$ make
|
||||
|
||||
Please refer to the `stm32 documentation <https://github.com/micropython/micropython/tree/master/ports/stm32>`_
|
||||
for more details on flashing the firmware.
|
||||
|
||||
.. note::
|
||||
See the :ref:`required_dependencies` to make sure that all dependencies are installed for this port.
|
||||
The cross-compiler is needed. ``arm-none-eabi-gcc`` should also be in the $PATH or specified manually
|
||||
via CROSS_COMPILE, either by setting the environment variable or in the ``make`` command line arguments.
|
||||
|
||||
You can also specify which board to use:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd ports/stm32
|
||||
$ make submodules
|
||||
$ make BOARD=<board>
|
||||
|
||||
See `ports/stm32/boards <https://github.com/micropython/micropython/tree/master/ports/stm32/boards>`_
|
||||
for the available boards. e.g. "PYBV11" or "NUCLEO_WB55".
|
||||
|
||||
Building the documentation
|
||||
--------------------------
|
||||
|
||||
MicroPython documentation is created using ``Sphinx``. If you have already
|
||||
installed Python, then install ``Sphinx`` using ``pip``. It is recommended
|
||||
that you use a virtual environment:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ python3 -m venv env
|
||||
$ source env/bin/activate
|
||||
$ pip install sphinx
|
||||
|
||||
Navigate to the ``docs`` directory:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd docs
|
||||
|
||||
Build the docs:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ make html
|
||||
|
||||
Open ``docs/build/html/index.html`` in your browser to view the docs locally. Refer to the
|
||||
documentation on `importing your documentation
|
||||
<https://docs.readthedocs.io/en/stable/intro/import-guide.html>`_ to use Read the Docs.
|
||||
|
||||
Running the tests
|
||||
-----------------
|
||||
|
||||
To run all tests in the test suite on the Unix port use:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd ports/unix
|
||||
$ make test
|
||||
|
||||
To run a selection of tests on a board/device connected over USB use:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd tests
|
||||
$ ./run-tests.py --target minimal --device /dev/ttyACM0
|
||||
|
||||
See also :ref:`writingtests`.
|
||||
|
||||
Folder structure
|
||||
----------------
|
||||
|
||||
There are a couple of directories to take note of in terms of where certain implementation details
|
||||
are. The following is a break down of the top-level folders in the source code.
|
||||
|
||||
py
|
||||
|
||||
Contains the compiler, runtime, and core library implementation.
|
||||
|
||||
mpy-cross
|
||||
|
||||
Has the MicroPython cross-compiler which pre-compiles the Python scripts to bytecode.
|
||||
|
||||
ports
|
||||
|
||||
Code for all the versions of MicroPython for the supported ports.
|
||||
|
||||
lib
|
||||
|
||||
Low-level C libraries used by any port which are mostly 3rd-party libraries.
|
||||
|
||||
drivers
|
||||
|
||||
Has drivers for specific hardware and intended to work across multiple ports.
|
||||
|
||||
extmod
|
||||
|
||||
Contains a C implementation of more non-core modules.
|
||||
|
||||
docs
|
||||
|
||||
Has the standard documentation found at https://docs.micropython.org/.
|
||||
|
||||
tests
|
||||
|
||||
An implementation of the test suite.
|
||||
|
||||
tools
|
||||
|
||||
Contains helper tools including the ``upip`` and the ``pyboard.py`` module.
|
||||
|
||||
examples
|
||||
|
||||
Example code for building MicroPython as a library as well as native modules.
|
BIN
components/language/micropython/docs/develop/img/bitmap.png
Normal file
BIN
components/language/micropython/docs/develop/img/bitmap.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 6.2 KiB |
BIN
components/language/micropython/docs/develop/img/collision.png
Normal file
BIN
components/language/micropython/docs/develop/img/collision.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 3.4 KiB |
BIN
components/language/micropython/docs/develop/img/linprob.png
Normal file
BIN
components/language/micropython/docs/develop/img/linprob.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 3.6 KiB |
26
components/language/micropython/docs/develop/index.rst
Normal file
26
components/language/micropython/docs/develop/index.rst
Normal file
@@ -0,0 +1,26 @@
|
||||
MicroPython Internals
|
||||
=====================
|
||||
|
||||
This chapter covers a tour of MicroPython from the perspective of a developer, contributing
|
||||
to MicroPython. It acts as a comprehensive resource on the implementation details of MicroPython
|
||||
for both novice and expert contributors.
|
||||
|
||||
Development around MicroPython usually involves modifying the core runtime, porting or
|
||||
maintaining a new library. This guide describes at great depth, the implementation
|
||||
details of MicroPython including a getting started guide, compiler internals, porting
|
||||
MicroPython to a new platform and implementing a core MicroPython library.
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 3
|
||||
|
||||
gettingstarted.rst
|
||||
writingtests.rst
|
||||
compiler.rst
|
||||
memorymgt.rst
|
||||
library.rst
|
||||
optimizations.rst
|
||||
qstr.rst
|
||||
maps.rst
|
||||
publiccapi.rst
|
||||
extendingmicropython.rst
|
||||
porting.rst
|
86
components/language/micropython/docs/develop/library.rst
Normal file
86
components/language/micropython/docs/develop/library.rst
Normal file
@@ -0,0 +1,86 @@
|
||||
.. _internals_library:
|
||||
|
||||
Implementing a Module
|
||||
=====================
|
||||
|
||||
This chapter details how to implement a core module in MicroPython.
|
||||
MicroPython modules can be one of the following:
|
||||
|
||||
- Built-in module: A general module that is be part of the MicroPython repository.
|
||||
- User module: A module that is useful for your specific project that you maintain
|
||||
in your own repository or private codebase.
|
||||
- Dynamic module: A module that can be deployed and imported at runtime to your device.
|
||||
|
||||
A module in MicroPython can be implemented in one of the following locations:
|
||||
|
||||
- py/: A core library that mirrors core CPython functionality.
|
||||
- extmod/: A CPython or MicroPython-specific module that is shared across multiple ports.
|
||||
- ports/<port>/: A port-specific module.
|
||||
|
||||
.. note::
|
||||
This chapter describes modules implemented in ``py/`` or core modules.
|
||||
See :ref:`extendingmicropython` for details on implementing an external module.
|
||||
For details on port-specific modules, see :ref:`porting_to_a_board`.
|
||||
|
||||
Implementing a core module
|
||||
--------------------------
|
||||
|
||||
Like CPython, MicroPython has core builtin modules that can be accessed through import statements.
|
||||
An example is the ``gc`` module discussed in :ref:`memorymanagement`.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
>>> import gc
|
||||
>>> gc.enable()
|
||||
>>>
|
||||
|
||||
MicroPython has several other builtin standard/core modules like ``io``, ``array`` etc.
|
||||
Adding a new core module involves several modifications.
|
||||
|
||||
First, create the ``C`` file in the ``py/`` directory. In this example we are adding a
|
||||
hypothetical new module ``subsystem`` in the file ``modsubsystem.c``:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
#include "py/builtin.h"
|
||||
#include "py/runtime.h"
|
||||
|
||||
#if MICROPY_PY_SUBSYSTEM
|
||||
|
||||
// info()
|
||||
STATIC mp_obj_t py_subsystem_info(void) {
|
||||
return MP_OBJ_NEW_SMALL_INT(42);
|
||||
}
|
||||
MP_DEFINE_CONST_FUN_OBJ_0(subsystem_info_obj, py_subsystem_info);
|
||||
|
||||
STATIC const mp_rom_map_elem_t mp_module_subsystem_globals_table[] = {
|
||||
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_subsystem) },
|
||||
{ MP_ROM_QSTR(MP_QSTR_info), MP_ROM_PTR(&subsystem_info_obj) },
|
||||
};
|
||||
STATIC MP_DEFINE_CONST_DICT(mp_module_subsystem_globals, mp_module_subsystem_globals_table);
|
||||
|
||||
const mp_obj_module_t mp_module_subsystem = {
|
||||
.base = { &mp_type_module },
|
||||
.globals = (mp_obj_dict_t *)&mp_module_subsystem_globals,
|
||||
};
|
||||
|
||||
MP_REGISTER_MODULE(MP_QSTR_subsystem, mp_module_subsystem);
|
||||
|
||||
#endif
|
||||
|
||||
The implementation includes a definition of all functions related to the module and adds the
|
||||
functions to the module's global table in ``mp_module_subsystem_globals_table``. It also
|
||||
creates the module object with ``mp_module_subsystem``. The module is then registered with
|
||||
the wider system via the ``MP_REGISTER_MODULE`` macro.
|
||||
|
||||
After building and running the modified MicroPython, the module should now be importable:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
>>> import subsystem
|
||||
>>> subsystem.info()
|
||||
42
|
||||
>>>
|
||||
|
||||
Our ``info()`` function currently returns just a single number but can be extended
|
||||
to do anything. Similarly, more functions can be added to this new module.
|
63
components/language/micropython/docs/develop/maps.rst
Normal file
63
components/language/micropython/docs/develop/maps.rst
Normal file
@@ -0,0 +1,63 @@
|
||||
.. _maps:
|
||||
|
||||
Maps and Dictionaries
|
||||
=====================
|
||||
|
||||
MicroPython dictionaries and maps use techniques called open addressing and linear probing.
|
||||
This chapter details both of these methods.
|
||||
|
||||
Open addressing
|
||||
---------------
|
||||
|
||||
`Open addressing <https://en.wikipedia.org/wiki/Open_addressing>`_ is used to resolve collisions.
|
||||
Collisions are very common occurrences and happen when two items happen to hash to the same
|
||||
slot or location. For example, given a hash setup as this:
|
||||
|
||||
.. image:: img/collision.png
|
||||
|
||||
If there is a request to fill slot ``0`` with ``70``, since the slot ``0`` is not empty, open addressing
|
||||
finds the next available slot in the dictionary to service this request. This sequential search for an alternate
|
||||
location is called *probing*. There are several sequence probing algorithms but MicroPython uses
|
||||
linear probing that is described in the next section.
|
||||
|
||||
Linear probing
|
||||
--------------
|
||||
|
||||
Linear probing is one of the methods for finding an available address or slot in a dictionary. In MicroPython,
|
||||
it is used with open addressing. To service the request described above, unlike other probing algorithms,
|
||||
linear probing assumes a fixed interval of ``1`` between probes. The request will therefore be serviced by
|
||||
placing the item in the next free slot which is slot ``4`` in our example:
|
||||
|
||||
.. image:: img/linprob.png
|
||||
|
||||
The same methods i.e open addressing and linear probing are used to search for an item in a dictionary.
|
||||
Assume we want to search for the data item ``33``. The computed hash value will be 2. Looking at slot 2
|
||||
reveals ``33``, at this point, we return ``True``. Searching for ``70`` is quite different as there was a
|
||||
collision at the time of insertion. Therefore computing the hash value is ``0`` which is currently
|
||||
holding ``44``. Instead of simply returning ``False``, we perform a sequential search starting at point
|
||||
``1`` until the item ``70`` is found or we encounter a free slot. This is the general way of performing
|
||||
look-ups in hashes:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
// not yet found, keep searching in this table
|
||||
pos = (pos + 1) % set->alloc;
|
||||
|
||||
if (pos == start_pos) {
|
||||
// search got back to starting position, so index is not in table
|
||||
if (lookup_kind & MP_MAP_LOOKUP_ADD_IF_NOT_FOUND) {
|
||||
if (avail_slot != NULL) {
|
||||
// there was an available slot, so use that
|
||||
set->used++;
|
||||
*avail_slot = index;
|
||||
return index;
|
||||
} else {
|
||||
// not enough room in table, rehash it
|
||||
mp_set_rehash(set);
|
||||
// restart the search for the new element
|
||||
start_pos = pos = hash % set->alloc;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
return MP_OBJ_NULL;
|
||||
}
|
141
components/language/micropython/docs/develop/memorymgt.rst
Normal file
141
components/language/micropython/docs/develop/memorymgt.rst
Normal file
@@ -0,0 +1,141 @@
|
||||
.. _memorymanagement:
|
||||
|
||||
Memory Management
|
||||
=================
|
||||
|
||||
Unlike programming languages such as C/C++, MicroPython hides memory management
|
||||
details from the developer by supporting automatic memory management.
|
||||
Automatic memory management is a technique used by operating systems or applications to automatically manage
|
||||
the allocation and deallocation of memory. This eliminates challenges such as forgetting to
|
||||
free the memory allocated to an object. Automatic memory management also avoids the critical issue of using memory
|
||||
that is already released. Automatic memory management takes many forms, one of them being
|
||||
garbage collection (GC).
|
||||
|
||||
The garbage collector usually has two responsibilities;
|
||||
|
||||
#. Allocate new objects in available memory.
|
||||
#. Free unused memory.
|
||||
|
||||
There are many GC algorithms but MicroPython uses the
|
||||
`Mark and Sweep <https://en.wikipedia.org/wiki/Tracing_garbage_collection#Basic_algorithm>`_
|
||||
policy for managing memory. This algorithm has a mark phase that traverses the heap marking all
|
||||
live objects while the sweep phase goes through the heap reclaiming all unmarked objects.
|
||||
|
||||
Garbage collection functionality in MicroPython is available through the ``gc`` built-in
|
||||
module:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
>>> x = 5
|
||||
>>> x
|
||||
5
|
||||
>>> import gc
|
||||
>>> gc.enable()
|
||||
>>> gc.mem_alloc()
|
||||
1312
|
||||
>>> gc.mem_free()
|
||||
2071392
|
||||
>>> gc.collect()
|
||||
19
|
||||
>>> gc.disable()
|
||||
>>>
|
||||
|
||||
Even when ``gc.disable()`` is invoked, collection can be triggered with ``gc.collect()``.
|
||||
|
||||
The object model
|
||||
----------------
|
||||
|
||||
All MicroPython objects are referred to by the ``mp_obj_t`` data type.
|
||||
This is usually word-sized (i.e. the same size as a pointer on the target architecture),
|
||||
and can be typically 32-bit (STM32, nRF, ESP32, Unix x86) or 64-bit (Unix x64).
|
||||
It can also be greater than a word-size for certain object representations, for
|
||||
example ``OBJ_REPR_D`` has a 64-bit sized ``mp_obj_t`` on a 32-bit architecture.
|
||||
|
||||
An ``mp_obj_t`` represents a MicroPython object, for example an integer, float, type, dict or
|
||||
class instance. Some objects, like booleans and small integers, have their value stored directly
|
||||
in the ``mp_obj_t`` value and do not require additional memory. Other objects have their value
|
||||
store elsewhere in memory (for example on the garbage-collected heap) and their ``mp_obj_t`` contains
|
||||
a pointer to that memory. A portion of ``mp_obj_t`` is the tag which tells what type of object it is.
|
||||
|
||||
See ``py/mpconfig.h`` for the specific details of the available representations.
|
||||
|
||||
**Pointer tagging**
|
||||
|
||||
Because pointers are word-aligned, when they are stored in an ``mp_obj_t`` the
|
||||
lower bits of this object handle will be zero. For example on a 32-bit architecture
|
||||
the lower 2 bits will be zero:
|
||||
|
||||
``********|********|********|******00``
|
||||
|
||||
These bits are reserved for purposes of storing a tag. The tag stores extra information as
|
||||
opposed to introducing a new field to store that information in the object, which may be
|
||||
inefficient. In MicroPython the tag tells if we are dealing with a small integer, interned
|
||||
(small) string or a concrete object, and different semantics apply to each of these.
|
||||
|
||||
For small integers the mapping is this:
|
||||
|
||||
``********|********|********|*******1``
|
||||
|
||||
Where the asterisks hold the actual integer value. For an interned string or an immediate
|
||||
object (e.g. ``True``) the layout of the ``mp_obj_t`` value is, respectively:
|
||||
|
||||
``********|********|********|*****010``
|
||||
|
||||
``********|********|********|*****110``
|
||||
|
||||
While a concrete object that is none of the above takes the form:
|
||||
|
||||
``********|********|********|******00``
|
||||
|
||||
The stars here correspond to the address of the concrete object in memory.
|
||||
|
||||
Allocation of objects
|
||||
----------------------
|
||||
|
||||
The value of a small integer is stored directly in the ``mp_obj_t`` and will be
|
||||
allocated in-place, not on the heap or elsewhere. As such, creation of small
|
||||
integers does not affect the heap. Similarly for interned strings that already have
|
||||
their textual data stored elsewhere, and immediate values like ``None``, ``False``
|
||||
and ``True``.
|
||||
|
||||
Everything else which is a concrete object is allocated on the heap and its object structure is such that
|
||||
a field is reserved in the object header to store the type of the object.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
+++++++++++
|
||||
+ +
|
||||
+ type + object header
|
||||
+ +
|
||||
+++++++++++
|
||||
+ + object items
|
||||
+ +
|
||||
+ +
|
||||
+++++++++++
|
||||
|
||||
The heap's smallest unit of allocation is a block, which is four machine words in
|
||||
size (16 bytes on a 32-bit machine, 32 bytes on a 64-bit machine).
|
||||
Another structure also allocated on the heap tracks the allocation of
|
||||
objects in each block. This structure is called a *bitmap*.
|
||||
|
||||
.. image:: img/bitmap.png
|
||||
|
||||
The bitmap tracks whether a block is "free" or "in use" and use two bits to track this state
|
||||
for each block.
|
||||
|
||||
The mark-sweep garbage collector manages the objects allocated on the heap, and also
|
||||
utilises the bitmap to mark objects that are still in use.
|
||||
See `py/gc.c <https://github.com/micropython/micropython/blob/master/py/gc.c>`_
|
||||
for the full implementation of these details.
|
||||
|
||||
**Allocation: heap layout**
|
||||
|
||||
The heap is arranged such that it consists of blocks in pools. A block
|
||||
can have different properties:
|
||||
|
||||
- *ATB(allocation table byte):* If set, then the block is a normal block
|
||||
- *FREE:* Free block
|
||||
- *HEAD:* Head of a chain of blocks
|
||||
- *TAIL:* In the tail of a chain of blocks
|
||||
- *MARK :* Marked head block
|
||||
- *FTB(finaliser table byte):* If set, then the block has a finaliser
|
225
components/language/micropython/docs/develop/natmod.rst
Normal file
225
components/language/micropython/docs/develop/natmod.rst
Normal file
@@ -0,0 +1,225 @@
|
||||
.. _natmod:
|
||||
|
||||
Native machine code in .mpy files
|
||||
=================================
|
||||
|
||||
This section describes how to build and work with .mpy files that contain native
|
||||
machine code from a language other than Python. This allows you to
|
||||
write code in a language like C, compile and link it into a .mpy file, and then
|
||||
import this file like a normal Python module. This can be used for implementing
|
||||
functionality which is performance critical, or for including an existing
|
||||
library written in another language.
|
||||
|
||||
One of the main advantages of using native .mpy files is that native machine code
|
||||
can be imported by a script dynamically, without the need to rebuild the main
|
||||
MicroPython firmware. This is in contrast to :ref:`cmodules` which also allows
|
||||
defining custom modules in C but they must be compiled into the main firmware image.
|
||||
|
||||
The focus here is on using C to build native modules, but in principle any
|
||||
language which can be compiled to stand-alone machine code can be put into a
|
||||
.mpy file.
|
||||
|
||||
A native .mpy module is built using the ``mpy_ld.py`` tool, which is found in the
|
||||
``tools/`` directory of the project. This tool takes a set of object files
|
||||
(.o files) and links them together to create a native .mpy files. It requires
|
||||
CPython 3 and the library pyelftools v0.25 or greater.
|
||||
|
||||
Supported features and limitations
|
||||
----------------------------------
|
||||
|
||||
A .mpy file can contain MicroPython bytecode and/or native machine code. If it
|
||||
contains native machine code then the .mpy file has a specific architecture
|
||||
associated with it. Current supported architectures are (these are the valid
|
||||
options for the ``ARCH`` variable, see below):
|
||||
|
||||
* ``x86`` (32 bit)
|
||||
* ``x64`` (64 bit x86)
|
||||
* ``armv6m`` (ARM Thumb, eg Cortex-M0)
|
||||
* ``armv7m`` (ARM Thumb 2, eg Cortex-M3)
|
||||
* ``armv7emsp`` (ARM Thumb 2, single precision float, eg Cortex-M4F, Cortex-M7)
|
||||
* ``armv7emdp`` (ARM Thumb 2, double precision float, eg Cortex-M7)
|
||||
* ``xtensa`` (non-windowed, eg ESP8266)
|
||||
* ``xtensawin`` (windowed with window size 8, eg ESP32)
|
||||
|
||||
When compiling and linking the native .mpy file the architecture must be chosen
|
||||
and the corresponding file can only be imported on that architecture. For more
|
||||
details about .mpy files see :ref:`mpy_files`.
|
||||
|
||||
Native code must be compiled as position independent code (PIC) and use a global
|
||||
offset table (GOT), although the details of this varies from architecture to
|
||||
architecture. When importing .mpy files with native code the import machinery
|
||||
is able to do some basic relocation of the native code. This includes
|
||||
relocating text, rodata and BSS sections.
|
||||
|
||||
Supported features of the linker and dynamic loader are:
|
||||
|
||||
* executable code (text)
|
||||
* read-only data (rodata), including strings and constant data (arrays, structs, etc)
|
||||
* zeroed data (BSS)
|
||||
* pointers in text to text, rodata and BSS
|
||||
* pointers in rodata to text, rodata and BSS
|
||||
|
||||
The known limitations are:
|
||||
|
||||
* data sections are not supported; workaround: use BSS data and initialise the
|
||||
data values explicitly
|
||||
|
||||
* static BSS variables are not supported; workaround: use global BSS variables
|
||||
|
||||
So, if your C code has writable data, make sure the data is defined globally,
|
||||
without an initialiser, and only written to within functions.
|
||||
|
||||
Linker limitation: the native module is not linked against the symbol table of the
|
||||
full MicroPython firmware. Rather, it is linked against an explicit table of exported
|
||||
symbols found in ``mp_fun_table`` (in ``py/nativeglue.h``), that is fixed at firmware
|
||||
build time. It is thus not possible to simply call some arbitrary HAL/OS/RTOS/system
|
||||
function, for example.
|
||||
|
||||
New symbols can be added to the end of the table and the firmware rebuilt.
|
||||
The symbols also need to be added to ``tools/mpy_ld.py``'s ``fun_table`` dict in the
|
||||
same location. This allows ``mpy_ld.py`` to be able to pick the new symbols up and
|
||||
provide relocations for them when the mpy is imported. Finally, if the symbol is a
|
||||
function, a macro or stub should be added to ``py/dynruntime.h`` to make it easy to
|
||||
call the function.
|
||||
|
||||
Defining a native module
|
||||
------------------------
|
||||
|
||||
A native .mpy module is defined by a set of files that are used to build the .mpy.
|
||||
The filesystem layout consists of two main parts, the source files and the Makefile:
|
||||
|
||||
* In the simplest case only a single C source file is required, which contains all
|
||||
the code that will be compiled into the .mpy module. This C source code must
|
||||
include the ``py/dynruntime.h`` file to access the MicroPython dynamic API, and
|
||||
must at least define a function called ``mpy_init``. This function will be the
|
||||
entry point of the module, called when the module is imported.
|
||||
|
||||
The module can be split into multiple C source files if desired. Parts of the
|
||||
module can also be implemented in Python. All source files should be listed in
|
||||
the Makefile, by adding them to the ``SRC`` variable (see below). This includes
|
||||
both C source files as well as any Python files which will be included in the
|
||||
resulting .mpy file.
|
||||
|
||||
* The ``Makefile`` contains the build configuration for the module and list the
|
||||
source files used to build the .mpy module. It should define ``MPY_DIR`` as the
|
||||
location of the MicroPython repository (to find header files, the relevant Makefile
|
||||
fragment, and the ``mpy_ld.py`` tool), ``MOD`` as the name of the module, ``SRC``
|
||||
as the list of source files, optionally specify the machine architecture via ``ARCH``,
|
||||
and then include ``py/dynruntime.mk``.
|
||||
|
||||
Minimal example
|
||||
---------------
|
||||
|
||||
This section provides a fully working example of a simple module named ``factorial``.
|
||||
This module provides a single function ``factorial.factorial(x)`` which computes the
|
||||
factorial of the input and returns the result.
|
||||
|
||||
Directory layout::
|
||||
|
||||
factorial/
|
||||
├── factorial.c
|
||||
└── Makefile
|
||||
|
||||
The file ``factorial.c`` contains:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
// Include the header file to get access to the MicroPython API
|
||||
#include "py/dynruntime.h"
|
||||
|
||||
// Helper function to compute factorial
|
||||
STATIC mp_int_t factorial_helper(mp_int_t x) {
|
||||
if (x == 0) {
|
||||
return 1;
|
||||
}
|
||||
return x * factorial_helper(x - 1);
|
||||
}
|
||||
|
||||
// This is the function which will be called from Python, as factorial(x)
|
||||
STATIC mp_obj_t factorial(mp_obj_t x_obj) {
|
||||
// Extract the integer from the MicroPython input object
|
||||
mp_int_t x = mp_obj_get_int(x_obj);
|
||||
// Calculate the factorial
|
||||
mp_int_t result = factorial_helper(x);
|
||||
// Convert the result to a MicroPython integer object and return it
|
||||
return mp_obj_new_int(result);
|
||||
}
|
||||
// Define a Python reference to the function above
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_1(factorial_obj, factorial);
|
||||
|
||||
// This is the entry point and is called when the module is imported
|
||||
mp_obj_t mpy_init(mp_obj_fun_bc_t *self, size_t n_args, size_t n_kw, mp_obj_t *args) {
|
||||
// This must be first, it sets up the globals dict and other things
|
||||
MP_DYNRUNTIME_INIT_ENTRY
|
||||
|
||||
// Make the function available in the module's namespace
|
||||
mp_store_global(MP_QSTR_factorial, MP_OBJ_FROM_PTR(&factorial_obj));
|
||||
|
||||
// This must be last, it restores the globals dict
|
||||
MP_DYNRUNTIME_INIT_EXIT
|
||||
}
|
||||
|
||||
The file ``Makefile`` contains:
|
||||
|
||||
.. code-block:: make
|
||||
|
||||
# Location of top-level MicroPython directory
|
||||
MPY_DIR = ../../..
|
||||
|
||||
# Name of module
|
||||
MOD = factorial
|
||||
|
||||
# Source files (.c or .py)
|
||||
SRC = factorial.c
|
||||
|
||||
# Architecture to build for (x86, x64, armv6m, armv7m, xtensa, xtensawin)
|
||||
ARCH = x64
|
||||
|
||||
# Include to get the rules for compiling and linking the module
|
||||
include $(MPY_DIR)/py/dynruntime.mk
|
||||
|
||||
Compiling the module
|
||||
--------------------
|
||||
|
||||
The prerequisite tools needed to build a native .mpy file are:
|
||||
|
||||
* The MicroPython repository (at least the ``py/`` and ``tools/`` directories).
|
||||
* CPython 3, and the library pyelftools (eg ``pip install 'pyelftools>=0.25'``).
|
||||
* GNU make.
|
||||
* A C compiler for the target architecture (if C source is used).
|
||||
* Optionally ``mpy-cross``, built from the MicroPython repository (if .py source is used).
|
||||
|
||||
Be sure to select the correct ``ARCH`` for the target you are going to run on.
|
||||
Then build with::
|
||||
|
||||
$ make
|
||||
|
||||
Without modifying the Makefile you can specify the target architecture via::
|
||||
|
||||
$ make ARCH=armv7m
|
||||
|
||||
Module usage in MicroPython
|
||||
---------------------------
|
||||
|
||||
Once the module is built there should be a file called ``factorial.mpy``. Copy
|
||||
this so it is accessible on the filesystem of your MicroPython system and can be
|
||||
found in the import path. The module can now be accessed in Python just like any
|
||||
other module, for example::
|
||||
|
||||
import factorial
|
||||
print(factorial.factorial(10))
|
||||
# should display 3628800
|
||||
|
||||
Further examples
|
||||
----------------
|
||||
|
||||
See ``examples/natmod/`` for further examples which show many of the available
|
||||
features of native .mpy modules. Such features include:
|
||||
|
||||
* using multiple C source files
|
||||
* including Python code alongside C code
|
||||
* rodata and BSS data
|
||||
* memory allocation
|
||||
* use of floating point
|
||||
* exception handling
|
||||
* including external C libraries
|
@@ -0,0 +1,72 @@
|
||||
.. _optimizations:
|
||||
|
||||
Optimizations
|
||||
=============
|
||||
|
||||
MicroPython uses several optimizations to save RAM but also ensure the efficient
|
||||
execution of programs. This chapter discusses some of these optimizations.
|
||||
|
||||
.. note::
|
||||
:ref:`qstr` and :ref:`maps` details other optimizations on strings and
|
||||
dictionaries.
|
||||
|
||||
Frozen bytecode
|
||||
---------------
|
||||
|
||||
When MicroPython loads Python code from the filesystem, it first has to parse the file into
|
||||
a temporary in-memory representation, and then generate bytecode for execution, both of which
|
||||
are stored in the heap (in RAM). This can lead to significant amounts of memory being used.
|
||||
The MicroPython cross compiler can be used to generate
|
||||
a ``.mpy`` file, containing the pre-compiled bytecode for a Python module. This will still
|
||||
be loaded into RAM, but it avoids the additional overhead of the parsing stage.
|
||||
|
||||
As a further optimisation, the pre-compiled bytecode from a ``.mpy`` file can be "frozen"
|
||||
into the firmware image as part of the main firmware compilation process, which means that
|
||||
the bytecode will be executed from ROM. This can lead to a significant memory saving, and
|
||||
reduce heap fragmentation.
|
||||
|
||||
Variables
|
||||
---------
|
||||
|
||||
MicroPython processes local and global variables differently. Global variables
|
||||
are stored and looked up from a global dictionary that is allocated on the heap
|
||||
(note that each module has its own separate dict, so separate namespace).
|
||||
Local variables on the other hand are are stored on the Python value stack, which may
|
||||
live on the C stack or on the heap. They are accessed directly by their offset
|
||||
within the Python stack, which is more efficient than a global lookup in a dict.
|
||||
|
||||
The length of global variable names also affects how much RAM is used as identifiers
|
||||
are stored in RAM. The shorter the identifier, the less memory is used.
|
||||
|
||||
The other aspect is that ``const`` variables that start with an underscore are treated as
|
||||
proper constants and are not allocated or added in a dictionary, hence saving some memory.
|
||||
These variables use ``const()`` from the MicroPython library. Therefore:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from micropython import const
|
||||
|
||||
X = const(1)
|
||||
_Y = const(2)
|
||||
foo(X, _Y)
|
||||
|
||||
Compiles to:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
X = 1
|
||||
foo(1, 2)
|
||||
|
||||
Allocation of memory
|
||||
--------------------
|
||||
|
||||
Most of the common MicroPython constructs are not allocated on the heap.
|
||||
However the following are:
|
||||
|
||||
- Dynamic data structures like lists, mappings, etc;
|
||||
- Functions, classes and object instances;
|
||||
- imports; and
|
||||
- First-time assignment of global variables (to create the slot in the global dict).
|
||||
|
||||
For a detailed discussion on a more user-centric perspective on optimization,
|
||||
see `Maximising MicroPython speed <https://docs.micropython.org/en/latest/reference/speed_python.html>`_
|
306
components/language/micropython/docs/develop/porting.rst
Normal file
306
components/language/micropython/docs/develop/porting.rst
Normal file
@@ -0,0 +1,306 @@
|
||||
.. _porting_to_a_board:
|
||||
|
||||
Porting MicroPython
|
||||
===================
|
||||
|
||||
The MicroPython project contains several ports to different microcontroller families and
|
||||
architectures. The project repository has a `ports <https://github.com/micropython/micropython/tree/master/ports>`_
|
||||
directory containing a subdirectory for each supported port.
|
||||
|
||||
A port will typically contain definitions for multiple "boards", each of which is a specific piece of
|
||||
hardware that that port can run on, e.g. a development kit or device.
|
||||
|
||||
The `minimal port <https://github.com/micropython/micropython/tree/master/ports/minimal>`_ is
|
||||
available as a simplified reference implementation of a MicroPython port. It can run on both the
|
||||
host system and an STM32F4xx MCU.
|
||||
|
||||
In general, starting a port requires:
|
||||
|
||||
- Setting up the toolchain (configuring Makefiles, etc).
|
||||
- Implementing boot configuration and CPU initialization.
|
||||
- Initialising basic drivers required for development and debugging (e.g. GPIO, UART).
|
||||
- Performing the board-specific configurations.
|
||||
- Implementing the port-specific modules.
|
||||
|
||||
Minimal MicroPython firmware
|
||||
----------------------------
|
||||
|
||||
The best way to start porting MicroPython to a new board is by integrating a minimal
|
||||
MicroPython interpreter. For this walkthrough, create a subdirectory for the new
|
||||
port in the ``ports`` directory:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd ports
|
||||
$ mkdir example_port
|
||||
|
||||
The basic MicroPython firmware is implemented in the main port file, e.g ``main.c``:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
#include "py/compile.h"
|
||||
#include "py/gc.h"
|
||||
#include "py/mperrno.h"
|
||||
#include "py/stackctrl.h"
|
||||
#include "shared/runtime/gchelper.h"
|
||||
#include "shared/runtime/pyexec.h"
|
||||
|
||||
// Allocate memory for the MicroPython GC heap.
|
||||
static char heap[4096];
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
// Initialise the MicroPython runtime.
|
||||
mp_stack_ctrl_init();
|
||||
gc_init(heap, heap + sizeof(heap));
|
||||
mp_init();
|
||||
|
||||
// Start a normal REPL; will exit when ctrl-D is entered on a blank line.
|
||||
pyexec_friendly_repl();
|
||||
|
||||
// Deinitialise the runtime.
|
||||
gc_sweep_all();
|
||||
mp_deinit();
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Handle uncaught exceptions (should never be reached in a correct C implementation).
|
||||
void nlr_jump_fail(void *val) {
|
||||
for (;;) {
|
||||
}
|
||||
}
|
||||
|
||||
// Do a garbage collection cycle.
|
||||
void gc_collect(void) {
|
||||
gc_collect_start();
|
||||
gc_helper_collect_regs_and_stack();
|
||||
gc_collect_end();
|
||||
}
|
||||
|
||||
// There is no filesystem so stat'ing returns nothing.
|
||||
mp_import_stat_t mp_import_stat(const char *path) {
|
||||
return MP_IMPORT_STAT_NO_EXIST;
|
||||
}
|
||||
|
||||
// There is no filesystem so opening a file raises an exception.
|
||||
mp_lexer_t *mp_lexer_new_from_file(const char *filename) {
|
||||
mp_raise_OSError(MP_ENOENT);
|
||||
}
|
||||
|
||||
We also need a Makefile at this point for the port:
|
||||
|
||||
.. code-block:: Makefile
|
||||
|
||||
# Include the core environment definitions; this will set $(TOP).
|
||||
include ../../py/mkenv.mk
|
||||
|
||||
# Include py core make definitions.
|
||||
include $(TOP)/py/py.mk
|
||||
|
||||
# Set CFLAGS and libraries.
|
||||
CFLAGS = -I. -I$(BUILD) -I$(TOP)
|
||||
LIBS = -lm
|
||||
|
||||
# Define the required source files.
|
||||
SRC_C = \
|
||||
main.c \
|
||||
mphalport.c \
|
||||
shared/readline/readline.c \
|
||||
shared/runtime/gchelper_generic.c \
|
||||
shared/runtime/pyexec.c \
|
||||
shared/runtime/stdout_helpers.c \
|
||||
|
||||
# Define the required object files.
|
||||
OBJ = $(PY_CORE_O) $(addprefix $(BUILD)/, $(SRC_C:.c=.o))
|
||||
|
||||
# Define the top-level target, the main firmware.
|
||||
all: $(BUILD)/firmware.elf
|
||||
|
||||
# Define how to build the firmware.
|
||||
$(BUILD)/firmware.elf: $(OBJ)
|
||||
$(ECHO) "LINK $@"
|
||||
$(Q)$(CC) $(LDFLAGS) -o $@ $^ $(LIBS)
|
||||
$(Q)$(SIZE) $@
|
||||
|
||||
# Include remaining core make rules.
|
||||
include $(TOP)/py/mkrules.mk
|
||||
|
||||
Remember to use proper tabs to indent the Makefile.
|
||||
|
||||
MicroPython Configurations
|
||||
--------------------------
|
||||
|
||||
After integrating the minimal code above, the next step is to create the MicroPython
|
||||
configuration files for the port. The compile-time configurations are specified in
|
||||
``mpconfigport.h`` and additional hardware-abstraction functions, such as time keeping,
|
||||
in ``mphalport.h``.
|
||||
|
||||
The following is an example of an ``mpconfigport.h`` file:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
// Python internal features.
|
||||
#define MICROPY_ENABLE_GC (1)
|
||||
#define MICROPY_HELPER_REPL (1)
|
||||
#define MICROPY_ERROR_REPORTING (MICROPY_ERROR_REPORTING_TERSE)
|
||||
#define MICROPY_FLOAT_IMPL (MICROPY_FLOAT_IMPL_FLOAT)
|
||||
|
||||
// Enable u-modules to be imported with their standard name, like sys.
|
||||
#define MICROPY_MODULE_WEAK_LINKS (1)
|
||||
|
||||
// Fine control over Python builtins, classes, modules, etc.
|
||||
#define MICROPY_PY_ASYNC_AWAIT (0)
|
||||
#define MICROPY_PY_BUILTINS_SET (0)
|
||||
#define MICROPY_PY_ATTRTUPLE (0)
|
||||
#define MICROPY_PY_COLLECTIONS (0)
|
||||
#define MICROPY_PY_MATH (0)
|
||||
#define MICROPY_PY_IO (0)
|
||||
#define MICROPY_PY_STRUCT (0)
|
||||
|
||||
// Type definitions for the specific machine.
|
||||
|
||||
typedef intptr_t mp_int_t; // must be pointer size
|
||||
typedef uintptr_t mp_uint_t; // must be pointer size
|
||||
typedef long mp_off_t;
|
||||
|
||||
// We need to provide a declaration/definition of alloca().
|
||||
#include <alloca.h>
|
||||
|
||||
// Define the port's name and hardware.
|
||||
#define MICROPY_HW_BOARD_NAME "example-board"
|
||||
#define MICROPY_HW_MCU_NAME "unknown-cpu"
|
||||
|
||||
#define MP_STATE_PORT MP_STATE_VM
|
||||
|
||||
#define MICROPY_PORT_ROOT_POINTERS \
|
||||
const char *readline_hist[8];
|
||||
|
||||
This configuration file contains machine-specific configurations including aspects like if different
|
||||
MicroPython features should be enabled e.g. ``#define MICROPY_ENABLE_GC (1)``. Making this Setting
|
||||
``(0)`` disables the feature.
|
||||
|
||||
Other configurations include type definitions, root pointers, board name, microcontroller name
|
||||
etc.
|
||||
|
||||
Similarly, an minimal example ``mphalport.h`` file looks like this:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
static inline void mp_hal_set_interrupt_char(char c) {}
|
||||
|
||||
Support for standard input/output
|
||||
---------------------------------
|
||||
|
||||
MicroPython requires at least a way to output characters, and to have a REPL it also
|
||||
requires a way to input characters. Functions for this can be implemented in the file
|
||||
``mphalport.c``, for example:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
#include <unistd.h>
|
||||
#include "py/mpconfig.h"
|
||||
|
||||
// Receive single character, blocking until one is available.
|
||||
int mp_hal_stdin_rx_chr(void) {
|
||||
unsigned char c = 0;
|
||||
int r = read(STDIN_FILENO, &c, 1);
|
||||
(void)r;
|
||||
return c;
|
||||
}
|
||||
|
||||
// Send the string of given length.
|
||||
void mp_hal_stdout_tx_strn(const char *str, mp_uint_t len) {
|
||||
int r = write(STDOUT_FILENO, str, len);
|
||||
(void)r;
|
||||
}
|
||||
|
||||
These input and output functions have to be modified depending on the
|
||||
specific board API. This example uses the standard input/output stream.
|
||||
|
||||
Building and running
|
||||
--------------------
|
||||
|
||||
At this stage the directory of the new port should contain::
|
||||
|
||||
ports/example_port/
|
||||
├── main.c
|
||||
├── Makefile
|
||||
├── mpconfigport.h
|
||||
├── mphalport.c
|
||||
└── mphalport.h
|
||||
|
||||
The port can now be built by running ``make`` (or otherwise, depending on your system).
|
||||
|
||||
If you are using the default compiler settings in the Makefile given above then this
|
||||
will create an executable called ``build/firmware.elf`` which can be executed directly.
|
||||
To get a functional REPL you may need to first configure the terminal to raw mode:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ stty raw opost -echo
|
||||
$ ./build/firmware.elf
|
||||
|
||||
That should give a MicroPython REPL. You can then run commands like:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
MicroPython v1.13 on 2021-01-01; example-board with unknown-cpu
|
||||
>>> import sys
|
||||
>>> sys.implementation
|
||||
('micropython', (1, 13, 0))
|
||||
>>>
|
||||
|
||||
Use Ctrl-D to exit, and then run ``reset`` to reset the terminal.
|
||||
|
||||
Adding a module to the port
|
||||
---------------------------
|
||||
|
||||
To add a custom module like ``myport``, first add the module definition in a file
|
||||
``modmyport.c``:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
#include "py/runtime.h"
|
||||
|
||||
STATIC mp_obj_t myport_info(void) {
|
||||
mp_printf(&mp_plat_print, "info about my port\n");
|
||||
return mp_const_none;
|
||||
}
|
||||
STATIC MP_DEFINE_CONST_FUN_OBJ_0(myport_info_obj, myport_info);
|
||||
|
||||
STATIC const mp_rom_map_elem_t myport_module_globals_table[] = {
|
||||
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_myport) },
|
||||
{ MP_ROM_QSTR(MP_QSTR_info), MP_ROM_PTR(&myport_info_obj) },
|
||||
};
|
||||
STATIC MP_DEFINE_CONST_DICT(myport_module_globals, myport_module_globals_table);
|
||||
|
||||
const mp_obj_module_t myport_module = {
|
||||
.base = { &mp_type_module },
|
||||
.globals = (mp_obj_dict_t *)&myport_module_globals,
|
||||
};
|
||||
|
||||
MP_REGISTER_MODULE(MP_QSTR_myport, myport_module);
|
||||
|
||||
You will also need to edit the Makefile to add ``modmyport.c`` to the ``SRC_C`` list, and
|
||||
a new line adding the same file to ``SRC_QSTR`` (so qstrs are searched for in this new file),
|
||||
like this:
|
||||
|
||||
.. code-block:: Makefile
|
||||
|
||||
SRC_C = \
|
||||
main.c \
|
||||
modmyport.c \
|
||||
mphalport.c \
|
||||
...
|
||||
|
||||
SRC_QSTR += modmyport.c
|
||||
|
||||
If all went correctly then, after rebuilding, you should be able to import the new module:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
>>> import myport
|
||||
>>> myport.info()
|
||||
info about my port
|
||||
>>>
|
25
components/language/micropython/docs/develop/publiccapi.rst
Normal file
25
components/language/micropython/docs/develop/publiccapi.rst
Normal file
@@ -0,0 +1,25 @@
|
||||
.. _publiccapi:
|
||||
|
||||
The public C API
|
||||
================
|
||||
|
||||
The public C-API comprises functions defined in all C header files in the ``py/``
|
||||
directory. Most of the important core runtime C APIs are exposed in ``runtime.h`` and
|
||||
``obj.h``.
|
||||
|
||||
The following is an example of public API functions from ``obj.h``:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
mp_obj_t mp_obj_new_list(size_t n, mp_obj_t *items);
|
||||
mp_obj_t mp_obj_list_append(mp_obj_t self_in, mp_obj_t arg);
|
||||
mp_obj_t mp_obj_list_remove(mp_obj_t self_in, mp_obj_t value);
|
||||
void mp_obj_list_get(mp_obj_t self_in, size_t *len, mp_obj_t **items);
|
||||
|
||||
At its core, any functions and macros in header files make up the public
|
||||
API and can be used to access very low-level details of MicroPython. Static
|
||||
inline functions in header files are fine too, such functions will be
|
||||
inlined in the code when used.
|
||||
|
||||
Header files in the ``ports`` directory are only exposed to the functionality
|
||||
specific to a given port.
|
115
components/language/micropython/docs/develop/qstr.rst
Normal file
115
components/language/micropython/docs/develop/qstr.rst
Normal file
@@ -0,0 +1,115 @@
|
||||
.. _qstr:
|
||||
|
||||
MicroPython string interning
|
||||
============================
|
||||
|
||||
MicroPython uses `string interning`_ to save both RAM and ROM. This avoids
|
||||
having to store duplicate copies of the same string. Primarily, this applies to
|
||||
identifiers in your code, as something like a function or variable name is very
|
||||
likely to appear in multiple places in the code. In MicroPython an interned
|
||||
string is called a QSTR (uniQue STRing).
|
||||
|
||||
A QSTR value (with type ``qstr``) is a index into a linked list of QSTR pools.
|
||||
QSTRs store their length and a hash of their contents for fast comparison during
|
||||
the de-duplication process. All bytecode operations that work with strings use
|
||||
a QSTR argument.
|
||||
|
||||
Compile-time QSTR generation
|
||||
----------------------------
|
||||
|
||||
In the MicroPython C code, any strings that should be interned in the final
|
||||
firmware are written as ``MP_QSTR_Foo``. At compile time this will evaluate to
|
||||
a ``qstr`` value that points to the index of ``"Foo"`` in the QSTR pool.
|
||||
|
||||
A multi-step process in the ``Makefile`` makes this work. In summary this
|
||||
process has three parts:
|
||||
|
||||
1. Find all ``MP_QSTR_Foo`` tokens in the code.
|
||||
|
||||
2. Generate a static QSTR pool containing all the string data (including lengths
|
||||
and hashes).
|
||||
|
||||
3. Replace all ``MP_QSTR_Foo`` (via the preprocessor) with their corresponding
|
||||
index.
|
||||
|
||||
``MP_QSTR_Foo`` tokens are searched for in two sources:
|
||||
|
||||
1. All files referenced in ``$(SRC_QSTR)``. This is all C code (i.e. ``py``,
|
||||
``extmod``, ``ports/stm32``) but not including third-party code such as
|
||||
``lib``.
|
||||
|
||||
2. Additional ``$(QSTR_GLOBAL_DEPENDENCIES)`` (which includes ``mpconfig*.h``).
|
||||
|
||||
*Note:* ``frozen_mpy.c`` (generated by mpy-tool.py) has its own QSTR generation
|
||||
and pool.
|
||||
|
||||
Some additional strings that can't be expressed using the ``MP_QSTR_Foo`` syntax
|
||||
(e.g. they contain non-alphanumeric characters) are explicitly provided in
|
||||
``qstrdefs.h`` and ``qstrdefsport.h`` via the ``$(QSTR_DEFS)`` variable.
|
||||
|
||||
Processing happens in the following stages:
|
||||
|
||||
1. ``qstr.i.last`` is the concatenation of putting every single input file
|
||||
through the C pre-processor. This means that any conditionally disabled code
|
||||
will be removed, and macros expanded. This means we don't add strings to the
|
||||
pool that won't be used in the final firmware. Because at this stage (thanks
|
||||
to the ``NO_QSTR`` macro added by ``QSTR_GEN_CFLAGS``) there is no
|
||||
definition for ``MP_QSTR_Foo`` it passes through this stage unaffected. This
|
||||
file also includes comments from the preprocessor that include line number
|
||||
information. Note that this step only uses files that have changed, which
|
||||
means that ``qstr.i.last`` will only contain data from files that have
|
||||
changed since the last compile.
|
||||
|
||||
2. ``qstr.split`` is an empty file created after running ``makeqstrdefs.py split``
|
||||
on qstr.i.last. It's just used as a dependency to indicate that the step ran.
|
||||
This script outputs one file per input C file, ``genhdr/qstr/...file.c.qstr``,
|
||||
which contains only the matched QSTRs. Each QSTR is printed as ``Q(Foo)``.
|
||||
This step is necessary to combine the existing files with the new data
|
||||
generated from the incremental update in ``qstr.i.last``.
|
||||
|
||||
3. ``qstrdefs.collected.h`` is the output of concatenating ``genhdr/qstr/*``
|
||||
using ``makeqstrdefs.py cat``. This is now the full set of ``MP_QSTR_Foo``'s
|
||||
found in the code, now formatted as ``Q(Foo)``, one-per-line, with duplicates.
|
||||
This file is only updated if the set of qstrs has changed. A hash of the QSTR
|
||||
data is written to another file (``qstrdefs.collected.h.hash``) which allows
|
||||
it to track changes across builds.
|
||||
|
||||
4. Generate an enumeration, each entry of which maps a ``MP_QSTR_Foo`` to it's corresponding index.
|
||||
It concatenates ``qstrdefs.collected.h`` with ``qstrdefs*.h``, then it transforms
|
||||
each line from ``Q(Foo)`` to ``"Q(Foo)"`` so they pass through the preprocessor
|
||||
unchanged. Then the preprocessor is used to deal with any conditional
|
||||
compilation in ``qstrdefs*.h``. Then the transformation is undone back to
|
||||
``Q(Foo)``, and saved as ``qstrdefs.preprocessed.h``.
|
||||
|
||||
5. ``qstrdefs.generated.h`` is the output of ``makeqstrdata.py``. For each
|
||||
``Q(Foo)`` in qstrdefs.preprocessed.h (plus some extra hard-coded ones), it outputs
|
||||
``QDEF(MP_QSTR_Foo, (const byte*)"hash" "Foo")``.
|
||||
|
||||
Then in the main compile, two things happen with ``qstrdefs.generated.h``:
|
||||
|
||||
1. In qstr.h, each QDEF becomes an entry in an enum, which makes ``MP_QSTR_Foo``
|
||||
available to code and equal to the index of that string in the QSTR table.
|
||||
|
||||
2. In qstr.c, the actual QSTR data table is generated as elements of the
|
||||
``mp_qstr_const_pool->qstrs``.
|
||||
|
||||
.. _`string interning`: https://en.wikipedia.org/wiki/String_interning
|
||||
|
||||
Run-time QSTR generation
|
||||
------------------------
|
||||
|
||||
Additional QSTR pools can be created at runtime so that strings can be added to
|
||||
them. For example, the code::
|
||||
|
||||
foo[x] = 3
|
||||
|
||||
Will need to create a QSTR for the value of ``x`` so it can be used by the
|
||||
"load attr" bytecode.
|
||||
|
||||
Also, when compiling Python code, identifiers and literals need to have QSTRs
|
||||
created. Note: only literals shorter than 10 characters become QSTRs. This is
|
||||
because a regular string on the heap always takes up a minimum of 16 bytes (one
|
||||
GC block), whereas QSTRs allow them to be packed more efficiently into the pool.
|
||||
|
||||
QSTR pools (and the underlying "chunks" that store the string data) are allocated
|
||||
on-demand on the heap with a minimum size.
|
@@ -0,0 +1,70 @@
|
||||
.. _writingtests:
|
||||
|
||||
Writing tests
|
||||
=============
|
||||
|
||||
Tests in MicroPython are located at the path ``tests/``. The following is a listing of
|
||||
key directories and the run-tests.py runner script:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
.
|
||||
├── basics
|
||||
├── extmod
|
||||
├── float
|
||||
├── micropython
|
||||
├── run-tests.py
|
||||
...
|
||||
|
||||
There are subfolders maintained to categorize the tests. Add a test by creating a new file in one of the
|
||||
existing folders or in a new folder. It's also possible to make custom tests outside this tests folder,
|
||||
which would be recommended for a custom port.
|
||||
|
||||
For example, add the following code in a file ``print.py`` in the ``tests/unix/`` subdirectory:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def print_one():
|
||||
print(1)
|
||||
|
||||
print_one()
|
||||
|
||||
If you run your tests, this test should appear in the test output:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd ports/unix
|
||||
$ make tests
|
||||
skip unix/extra_coverage.py
|
||||
pass unix/ffi_callback.py
|
||||
pass unix/ffi_float.py
|
||||
pass unix/ffi_float2.py
|
||||
pass unix/print.py
|
||||
pass unix/time.py
|
||||
pass unix/time2.py
|
||||
|
||||
Tests are run by comparing the output from the test target against the output from CPython.
|
||||
So any test should use print statements to indicate test results.
|
||||
|
||||
For tests that can't be compared to CPython (i.e. micropython-specific functionality),
|
||||
you can provide a ``.py.exp`` file which will be used as the truth for comparison.
|
||||
|
||||
The other way to run tests, which is useful when running on targets other than the Unix port, is:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd tests
|
||||
$ ./run-tests.py
|
||||
|
||||
Then to run on a board:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ ./run-tests.py --target minimal --device /dev/ttyACM0
|
||||
|
||||
And to run only a certain set of tests (eg a directory):
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ ./run-tests.py -d basics
|
||||
$ ./run-tests.py float/builtin*.py
|
@@ -0,0 +1,24 @@
|
||||
.. _cpython_diffs:
|
||||
|
||||
MicroPython differences from CPython
|
||||
====================================
|
||||
|
||||
MicroPython implements Python 3.4 and some select features of Python 3.5 and
|
||||
above. The sections below describe the current status of these features.
|
||||
|
||||
.. toctree::
|
||||
|
||||
../differences/python_35.rst
|
||||
../differences/python_36.rst
|
||||
../differences/python_37.rst
|
||||
../differences/python_38.rst
|
||||
../differences/python_39.rst
|
||||
|
||||
For the features of Python that are implemented by MicroPython, there are
|
||||
sometimes differences in their behaviour compared to standard Python. The
|
||||
operations listed in the sections below produce conflicting results in
|
||||
MicroPython when compared to standard Python.
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
|
181
components/language/micropython/docs/differences/python_35.rst
Normal file
181
components/language/micropython/docs/differences/python_35.rst
Normal file
@@ -0,0 +1,181 @@
|
||||
.. _python_35:
|
||||
|
||||
Python 3.5
|
||||
==========
|
||||
|
||||
Below is a list of finalised/accepted PEPs for Python 3.5 grouped into their impact to MicroPython.
|
||||
|
||||
+----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| **Extensions to the syntax:** | **Status** |
|
||||
+--------------------------------------------------------+-------------------------------------------------+---------------+
|
||||
| `PEP 448 <https://www.python.org/dev/peps/pep-0448/>`_ | additional unpacking generalizations | Partial |
|
||||
+--------------------------------------------------------+-------------------------------------------------+---------------+
|
||||
| `PEP 465 <https://www.python.org/dev/peps/pep-0465/>`_ | a new matrix multiplication operator | Completed |
|
||||
+--------------------------------------------------------+-------------------------------------------------+---------------+
|
||||
| `PEP 492 <https://www.python.org/dev/peps/pep-0492/>`_ | coroutines with async and await syntax | Completed |
|
||||
+--------------------------------------------------------+-------------------------------------------------+---------------+
|
||||
| **Extensions and changes to runtime:** |
|
||||
+--------------------------------------------------------+-------------------------------------------------+---------------+
|
||||
| `PEP 461 <https://www.python.org/dev/peps/pep-0461/>`_ | % formatting for binary strings | Completed |
|
||||
+--------------------------------------------------------+-------------------------------------------------+---------------+
|
||||
| `PEP 475 <https://www.python.org/dev/peps/pep-0475/>`_ | retrying system calls that fail with EINTR | Completed |
|
||||
+--------------------------------------------------------+-------------------------------------------------+---------------+
|
||||
| `PEP 479 <https://www.python.org/dev/peps/pep-0479/>`_ | change StopIteration handling inside generators | Completed |
|
||||
+--------------------------------------------------------+-------------------------------------------------+---------------+
|
||||
| **Standard library changes:** |
|
||||
+--------------------------------------------------------+-------------------------------------------------+---------------+
|
||||
| `PEP 471 <https://www.python.org/dev/peps/pep-0471/>`_ | os.scandir() | |
|
||||
+--------------------------------------------------------+-------------------------------------------------+---------------+
|
||||
| `PEP 485 <https://www.python.org/dev/peps/pep-0485/>`_ | math.isclose(), a function for testing | Completed |
|
||||
| | approximate equality | |
|
||||
+--------------------------------------------------------+-------------------------------------------------+---------------+
|
||||
| **Miscellaneous changes:** |
|
||||
+--------------------------------------------------------+-------------------------------------------------+---------------+
|
||||
| `PEP 441 <https://www.python.org/dev/peps/pep-0441/>`_ | improved Python zip application support | |
|
||||
+--------------------------------------------------------+-------------------------------------------------+---------------+
|
||||
| `PEP 486 <https://www.python.org/dev/peps/pep-0486/>`_ | make the Python Launcher aware of virtual | Not relevant |
|
||||
| | environments | |
|
||||
+--------------------------------------------------------+-------------------------------------------------+---------------+
|
||||
| `PEP 484 <https://www.python.org/dev/peps/pep-0484/>`_ | type hints (advisory only) | In Progress |
|
||||
+--------------------------------------------------------+-------------------------------------------------+---------------+
|
||||
| `PEP 488 <https://www.python.org/dev/peps/pep-0488/>`_ | elimination of PYO files | Not relevant |
|
||||
+--------------------------------------------------------+-------------------------------------------------+---------------+
|
||||
| `PEP 489 <https://www.python.org/dev/peps/pep-0489/>`_ | redesigning extension module loading | |
|
||||
+--------------------------------------------------------+-------------------------------------------------+---------------+
|
||||
|
||||
|
||||
Other Language Changes:
|
||||
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Added the *namereplace* error handlers. The *backslashreplace* error handlers now work with decoding and | |
|
||||
| translating. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Property docstrings are now writable. This is especially useful for collections.namedtuple() docstrings | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Circular imports involving relative imports are now supported. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
|
||||
|
||||
New Modules:
|
||||
|
||||
* `typing <https://docs.python.org/3/whatsnew/3.5.html#typing>`_
|
||||
|
||||
* `zipzap <https://docs.python.org/3/whatsnew/3.5.html#zipapp>`_
|
||||
|
||||
|
||||
Changes to built-in modules:
|
||||
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| `collections <https://docs.python.org/3/whatsnew/3.5.html#collections>`_ |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| The *OrderedDict* class is now implemented in C, which makes it 4 to 100 times faster. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| *OrderedDict.items()* , *OrderedDict.keys()* , *OrderedDict.values()* views now support reversed() | |
|
||||
| iteration. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| The deque class now defines *index()*, *insert()*, and *copy()*, and supports the + and * operators. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Docstrings produced by namedtuple() can now be updated. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| The UserString class now implements the *__getnewargs__()*, *__rmod__()*, *casefold()*, *format_map()*, | |
|
||||
| *isprintable()*, and *maketrans()* methods to match the corresponding methods of str. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| `heapq <https://docs.python.org/3/whatsnew/3.5.html#heapq>`_ |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Element comparison in *merge()* can now be customized by passing a key function in a new optional key | |
|
||||
| keyword argument, and a new optional *reverse* keyword argument can be used to reverse element comparison | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| `io <https://docs.python.org/3/whatsnew/3.5.html#io>`_ |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| A new *BufferedIOBase.readinto1()* method, that uses at most one call to the underlying raw stream's | |
|
||||
| *RawIOBase.read()* or *RawIOBase.readinto()* methods | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| `json <https://docs.python.org/3/whatsnew/3.5.html#json>`_ | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| JSON decoder now raises JSONDecodeError instead of ValueError to provide better context information about | |
|
||||
| the error. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| `math <https://docs.python.org/3/whatsnew/3.5.html#math>`_ |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Two new constants have been added to the math module: *inf* and *nan*. | Completed |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| A new function *isclose()* provides a way to test for approximate equality. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| A new *gcd()* function has been added. The *fractions.gcd()* function is now deprecated. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| `os <https://docs.python.org/3/whatsnew/3.5.html#os>`_ |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| The new *scandir()* function returning an iterator of DirEntry objects has been added. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| The *urandom()* function now uses the *getrandom()* syscall on Linux 3.17 or newer, and *getentropy()* on | |
|
||||
| OpenBSD 5.6 and newer, removing the need to use /dev/urandom and avoiding failures due to potential file | |
|
||||
| descriptor exhaustion. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| New *get_blocking()* and *set_blocking()* functions allow getting and setting a file descriptor's blocking| |
|
||||
| mode (O_NONBLOCK.) | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| There is a new *os.path.commonpath()* function returning the longest common sub-path of each passed | |
|
||||
| pathname | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| `re <https://docs.python.org/3/whatsnew/3.5.html#re>`_ | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| References and conditional references to groups with fixed length are now allowed in lookbehind assertions| |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| The number of capturing groups in regular expressions is no longer limited to 100. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| The *sub()* and *subn()* functions now replace unmatched groups with empty strings instead of raising an | |
|
||||
| exception. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| The *re.error* exceptions have new attributes, msg, pattern, pos, lineno, and colno, that provide better | |
|
||||
| context information about the error | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| `socket <https://docs.python.org/3/whatsnew/3.5.html#socket>`_ |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Functions with timeouts now use a monotonic clock, instead of a system clock. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| A new *socket.sendfile()* method allows sending a file over a socket by using the high-performance | |
|
||||
| *os.sendfile()* function on UNIX, resulting in uploads being from 2 to 3 times faster than when using | |
|
||||
| plain *socket.send()* | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| The *socket.sendall()* method no longer resets the socket timeout every time bytes are received or sent. | |
|
||||
| The socket timeout is now the maximum total duration to send all data. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| The backlog argument of the *socket.listen()* method is now optional. By default it is set to SOMAXCONN or| Completed |
|
||||
| to 128, whichever is less. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| `ssl <https://docs.python.org/3/whatsnew/3.5.html#ssl>`_ |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Memory BIO Support | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Application-Layer Protocol Negotiation Support | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| There is a new *SSLSocket.version()* method to query the actual protocol version in use. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| The SSLSocket class now implements a *SSLSocket.sendfile()* method. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| The *SSLSocket.send()* method now raises either the *ssl.SSLWantReadError* or *ssl.SSLWantWriteError* | |
|
||||
| exception on a non-blocking socket if the operation would block. Previously, it would return 0. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| The *cert_time_to_seconds()* function now interprets the input time as UTC and not as local time, per RFC | |
|
||||
| 5280. Additionally, the return value is always an int. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| New *SSLObject.shared_ciphers()* and *SSLSocket.shared_ciphers()* methods return the list of ciphers sent | |
|
||||
| by the client during the handshake. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| The *SSLSocket.do_handshake()*, *SSLSocket.read()*, *SSLSocket.shutdown()*, and *SSLSocket.write()* | |
|
||||
| methods of the SSLSocket class no longer reset the socket timeout every time bytes are received or sent. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| The *match_hostname()* function now supports matching of IP addresses. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| `sys <https://docs.python.org/3/whatsnew/3.5.html#sys>`_ |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| A new *set_coroutine_wrapper()* function allows setting a global hook that will be called whenever a | |
|
||||
| coroutine object is created by an async def function. A corresponding *get_coroutine_wrapper()* can be | |
|
||||
| used to obtain a currently set wrapper. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| A new *is_finalizing()* function can be used to check if the Python interpreter is shutting down. | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| `time <https://docs.python.org/3/whatsnew/3.5.html#time>`_ |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
||||
| The *monotonic()* function is now always available | |
|
||||
+-----------------------------------------------------------------------------------------------------------+---------------+
|
191
components/language/micropython/docs/differences/python_36.rst
Normal file
191
components/language/micropython/docs/differences/python_36.rst
Normal file
@@ -0,0 +1,191 @@
|
||||
.. _python_36:
|
||||
|
||||
Python 3.6
|
||||
==========
|
||||
|
||||
Python 3.6 beta 1 was released on 12 Sep 2016, and a summary of the new features can be found here:
|
||||
|
||||
+-----------------------------------------------------------------------------------------------------------+--------------+
|
||||
| **New Syntax Features:** | **Status** |
|
||||
+--------------------------------------------------------+--------------------------------------------------+--------------+
|
||||
| `PEP 498 <https://www.python.org/dev/peps/pep-0498/>`_ | Literal String Formatting | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+--------------+
|
||||
| `PEP 515 <https://www.python.org/dev/peps/pep-0515/>`_ | Underscores in Numeric Literals | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+--------------+
|
||||
| `PEP 525 <https://www.python.org/dev/peps/pep-0525/>`_ | Asynchronous Generators | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+--------------+
|
||||
| `PEP 526 <https://www.python.org/dev/peps/pep-0526/>`_ | Syntax for Variable Annotations (provisional) | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+--------------+
|
||||
| `PEP 530 <https://www.python.org/dev/peps/pep-0530/>`_ | Asynchronous Comprehensions | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+--------------+
|
||||
| **New Built-in Features:** |
|
||||
+--------------------------------------------------------+--------------------------------------------------+--------------+
|
||||
| `PEP 468 <https://www.python.org/dev/peps/pep-0468/>`_ | Preserving the order of *kwargs* in a function | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+--------------+
|
||||
| `PEP 487 <https://www.python.org/dev/peps/pep-0487/>`_ | Simpler customization of class creation | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+--------------+
|
||||
| `PEP 520 <https://www.python.org/dev/peps/pep-0520/>`_ | Preserving Class Attribute Definition Order | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+--------------+
|
||||
| **Standard Library Changes:** |
|
||||
+--------------------------------------------------------+--------------------------------------------------+--------------+
|
||||
| `PEP 495 <https://www.python.org/dev/peps/pep-0495/>`_ | Local Time Disambiguation | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+--------------+
|
||||
| `PEP 506 <https://www.python.org/dev/peps/pep-0506/>`_ | Adding A Secrets Module To The Standard Library | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+--------------+
|
||||
| `PEP 519 <https://www.python.org/dev/peps/pep-0519/>`_ | Adding a file system path protocol | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+--------------+
|
||||
| **CPython internals:** |
|
||||
+--------------------------------------------------------+--------------------------------------------------+--------------+
|
||||
| `PEP 509 <https://www.python.org/dev/peps/pep-0509/>`_ | Add a private version to dict | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+--------------+
|
||||
| `PEP 523 <https://www.python.org/dev/peps/pep-0523/>`_ | Adding a frame evaluation API to CPython | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+--------------+
|
||||
| **Linux/Window Changes** |
|
||||
+--------------------------------------------------------+--------------------------------------------------+--------------+
|
||||
| `PEP 524 <https://www.python.org/dev/peps/pep-0524/>`_ | Make os.urandom() blocking on Linux | |
|
||||
| | (during system startup) | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+--------------+
|
||||
| `PEP 528 <https://www.python.org/dev/peps/pep-0528/>`_ | Change Windows console encoding to UTF-8 | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+--------------+
|
||||
| `PEP 529 <https://www.python.org/dev/peps/pep-0529/>`_ | Change Windows filesystem encoding to UTF-8 | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+--------------+
|
||||
|
||||
Other Language Changes:
|
||||
|
||||
+-------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| A *global* or *nonlocal* statement must now textually appear before the first use of the affected name in | |
|
||||
| the same scope. Previously this was a SyntaxWarning. | |
|
||||
+-------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| It is now possible to set a special method to None to indicate that the corresponding operation is not | |
|
||||
| available. For example, if a class sets *__iter__()* to *None* , the class is not iterable. | |
|
||||
+-------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Long sequences of repeated traceback lines are now abbreviated as *[Previous line repeated {count} more | |
|
||||
| times]* | |
|
||||
+-------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Import now raises the new exception *ModuleNotFoundError* when it cannot find a module. Code that currently | |
|
||||
| checks for ImportError (in try-except) will still work. | |
|
||||
+-------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Class methods relying on zero-argument *super()* will now work correctly when called from metaclass methods | |
|
||||
| during class creation. | |
|
||||
+-------------------------------------------------------------------------------------------------------------+---------------+
|
||||
|
||||
Changes to built-in modules:
|
||||
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| `array <https://docs.python.org/3.6/whatsnew/3.6.html#array>`_ | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| Exhausted iterators of *array.array* will now stay exhausted even if the iterated array is extended. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| `binascii <https://docs.python.org/3.6/whatsnew/3.6.html#binascii>`_ | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| The b2a_base64() function now accepts an optional newline keyword argument to control whether the newline | Completed |
|
||||
| character is appended to the return value | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| `cmath <https://docs.python.org/3.6/whatsnew/3.6.html#cmath>`_ | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| The new cmath.tau (τ) constant has been added | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| New constants: *cmath.inf* and *cmath.nan* to match *math.inf* and *math.nan* , and also *cmath.infj* and | |
|
||||
| *cmath.nanj* to match the format used by complex repr | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| `collections <https://docs.python.org/3.6/whatsnew/3.6.html#collections>`_ |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| The new Collection abstract base class has been added to represent sized iterable container classes | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| The new *Reversible* abstract base class represents iterable classes that also provide the *__reversed__()* | |
|
||||
| method. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| The new *AsyncGenerator* abstract base class represents asynchronous generators. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| The *namedtuple()* function now accepts an optional keyword argument module, which, when specified, is used | |
|
||||
| for the *__module__* attribute of the returned named tuple class. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| The verbose and rename arguments for *namedtuple()* are now keyword-only. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| Recursive *collections.deque* instances can now be pickled. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| `hashlib <https://docs.python.org/3.6/whatsnew/3.6.html#hashlib>`_ |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| BLAKE2 hash functions were added to the module. *blake2b()* and *blake2s()* are always available and support | |
|
||||
| the full feature set of BLAKE2. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| The SHA-3 hash functions *sha3_224()*, *sha3_256()*, *sha3_384()*, *sha3_512()*, and *SHAKE* hash functions | |
|
||||
| *shake_128()* and *shake_256()* were added. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| The password-based key derivation function *scrypt()* is now available with OpenSSL 1.1.0 and newer. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| `json <https://docs.python.org/3.6/whatsnew/3.6.html#json>`_ |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| *json.load()* and *json.loads()* now support binary input. Encoded JSON should be represented using either | |
|
||||
| UTF-8, UTF-16, or UTF-32. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| `math <https://docs.python.org/3.6/whatsnew/3.6.html#math>`_ |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| The new math.tau (τ) constant has been added | Completed |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| `os <https://docs.python.org/3.6/whatsnew/3.6.html#os>`_ |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| A new *close()* method allows explicitly closing a *scandir()* iterator. The *scandir()* iterator now | |
|
||||
| supports the context manager protocol. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| On Linux, *os.urandom()* now blocks until the system urandom entropy pool is initialized to increase the | |
|
||||
| security. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| The Linux *getrandom()* syscall (get random bytes) is now exposed as the new *os.getrandom()* function. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| `re <https://docs.python.org/3.6/whatsnew/3.6.html#re>`_ |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| Added support of modifier spans in regular expressions. Examples: *'(?i:p)ython'* matches 'python' and | |
|
||||
| 'Python', but not 'PYTHON'; *'(?i)g(?-i:v)r'* matches *'GvR'* and *'gvr'*, but not *'GVR'* . | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| Match object groups can be accessed by *__getitem__*, which is equivalent to *group()*. So *mo['name']* is | |
|
||||
| now equivalent to *mo.group('name')*. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| Match objects now support index-like objects as group indices. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| `socket <https://docs.python.org/3.6/whatsnew/3.6.html#socket>`_ |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| The *ioctl()* function now supports the *SIO_LOOPBACK_FAST_PATH* control code. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| The *getsockopt()* constants *SO_DOMAIN* , *SO_PROTOCOL*, *SO_PEERSEC* , and *SO_PASSSEC* are now supported. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| The *setsockopt()* now supports the *setsockopt(level, optname, None, optlen: int)* form. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| The socket module now supports the address family *AF_ALG* to interface with Linux Kernel crypto API. | |
|
||||
| *ALG_*, *SOL_ALG* and *sendmsg_afalg()* were added. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| New Linux constants *TCP_USER_TIMEOUT* and *TCP_CONGESTION* were added. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| `ssl <https://docs.python.org/3.6/whatsnew/3.6.html#ssl>`_ |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| ssl supports OpenSSL 1.1.0. The minimum recommend version is 1.0.2. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| 3DES has been removed from the default cipher suites and ChaCha20 Poly1305 cipher suites have been added. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| *SSLContext* has better default configuration for options and ciphers. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| SSL session can be copied from one client-side connection to another with the new *SSLSession* class. TLS | |
|
||||
| session resumption can speed up the initial handshake, reduce latency and improve performance. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| The new *get_ciphers()* method can be used to get a list of enabled ciphers in order of cipher priority. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| All constants and flags have been converted to *IntEnum* and *IntFlags*. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| Server and client-side specific TLS protocols for *SSLContext* were added. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| Added *SSLContext.post_handshake_auth* to enable and *ssl.SSLSocket.verify_client_post_handshake()* to | |
|
||||
| initiate TLS 1.3 post-handshake authentication. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| `struct <https://docs.python.org/3.6/whatsnew/3.6.html#struct>`_ | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| now supports IEEE 754 half-precision floats via the 'e' format specifier. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| `sys <https://docs.python.org/3.6/whatsnew/3.6.html#sys>`_ | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| The new *getfilesystemencodeerrors()* function returns the name of the error mode used to convert between | |
|
||||
| Unicode filenames and bytes filenames. | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| `zlib <https://docs.python.org/3.6/whatsnew/3.6.html#zlib>`_ | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| The *compress()* and *decompress()* functions now accept keyword arguments | |
|
||||
+--------------------------------------------------------------------------------------------------------------+----------------+
|
@@ -0,0 +1,95 @@
|
||||
.. _python_37:
|
||||
|
||||
Python 3.7
|
||||
==========
|
||||
|
||||
New Features:
|
||||
|
||||
+--------------------------------------------------------+--------------------------------------------------+----------------+
|
||||
| **Features:** | **Status** |
|
||||
+--------------------------------------------------------+--------------------------------------------------+----------------+
|
||||
| `PEP 538 <https://www.python.org/dev/peps/pep-0538/>`_ | Coercing the legacy C locale to a UTF-8 based | |
|
||||
| | locale | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+----------------+
|
||||
| `PEP 539 <https://www.python.org/dev/peps/pep-0539/>`_ | A New C-API for Thread-Local Storage in CPython | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+----------------+
|
||||
| `PEP 540 <https://www.python.org/dev/peps/pep-0540/>`_ | UTF-8 mode | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+----------------+
|
||||
| `PEP 552 <https://www.python.org/dev/peps/pep-0552/>`_ | Deterministic pyc | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+----------------+
|
||||
| `PEP 553 <https://www.python.org/dev/peps/pep-0553/>`_ | Built-in breakpoint() | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+----------------+
|
||||
| `PEP 557 <https://www.python.org/dev/peps/pep-0557/>`_ | Data Classes | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+----------------+
|
||||
| `PEP 560 <https://www.python.org/dev/peps/pep-0560/>`_ | Core support for typing module and generic types | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+----------------+
|
||||
| `PEP 562 <https://www.python.org/dev/peps/pep-0562/>`_ | Module __getattr__ and __dir__ | Partially done |
|
||||
+--------------------------------------------------------+--------------------------------------------------+----------------+
|
||||
| `PEP 563 <https://www.python.org/dev/peps/pep-0563/>`_ | Postponed Evaluation of Annotations | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+----------------+
|
||||
| `PEP 564 <https://www.python.org/dev/peps/pep-0564/>`_ | Time functions with nanosecond resolution | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+----------------+
|
||||
| `PEP 565 <https://www.python.org/dev/peps/pep-0565/>`_ | Show DeprecationWarning in __main__ | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+----------------+
|
||||
| `PEP 567 <https://www.python.org/dev/peps/pep-0567/>`_ | Context Variables | |
|
||||
+--------------------------------------------------------+--------------------------------------------------+----------------+
|
||||
|
||||
Other Language Changes:
|
||||
|
||||
+----------------------------------------------------------------------------------------------------------+----------------+
|
||||
| async and await are now reserved keywords | Completed |
|
||||
+----------------------------------------------------------------------------------------------------------+----------------+
|
||||
| dict objects must preserve insertion-order | |
|
||||
+----------------------------------------------------------------------------------------------------------+----------------+
|
||||
| More than 255 arguments can now be passed to a function; a function can now have more than 255 parameters| |
|
||||
+----------------------------------------------------------------------------------------------------------+----------------+
|
||||
| bytes.fromhex() and bytearray.fromhex() now ignore all ASCII whitespace, not only spaces | |
|
||||
+----------------------------------------------------------------------------------------------------------+----------------+
|
||||
| str, bytes, and bytearray gained support for the new isascii() method, which can be used to test if a | |
|
||||
| string or bytes contain only the ASCII characters | |
|
||||
+----------------------------------------------------------------------------------------------------------+----------------+
|
||||
| ImportError now displays module name and module __file__ path whenfrom ... import ... fails | |
|
||||
+----------------------------------------------------------------------------------------------------------+----------------+
|
||||
| Circular imports involving absolute imports with binding a submodule to a name are now supported | |
|
||||
+----------------------------------------------------------------------------------------------------------+----------------+
|
||||
| object.__format__(x, '') is now equivalent to str(x) rather than format(str(self), '') | |
|
||||
+----------------------------------------------------------------------------------------------------------+----------------+
|
||||
| In order to better support dynamic creation of stack traces, types.TracebackType can now be instantiated | |
|
||||
| from Python code, and the tb_next attribute on tracebacks is now writable | |
|
||||
+----------------------------------------------------------------------------------------------------------+----------------+
|
||||
| When using the -m switch, sys.path[0] is now eagerly expanded to the full starting directory path, rather| |
|
||||
| than being left as the empty directory (which allows imports from the current working directory at the | |
|
||||
| time when an import occurs) | |
|
||||
+----------------------------------------------------------------------------------------------------------+----------------+
|
||||
| The new -X importtime option or the PYTHONPROFILEIMPORTTIME environment variable can be used to show the | |
|
||||
| timing of each module import | |
|
||||
+----------------------------------------------------------------------------------------------------------+----------------+
|
||||
|
||||
Changes to built-in modules:
|
||||
|
||||
+------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| `asyncio <https://docs.python.org/3/whatsnew/3.7.html#asyncio>`_ | |
|
||||
+------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| asyncio (many, may need a separate ticket) | |
|
||||
+------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| `gc <https://docs.python.org/3/whatsnew/3.7.html#gc>`_ | |
|
||||
+------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| New features include *gc.freeze()*, *gc.unfreeze()*, *gc-get_freeze_count* | |
|
||||
+------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| `math <https://docs.python.org/3/whatsnew/3.7.html#math>`_ | |
|
||||
+------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| math.remainder() added to implement IEEE 754-style remainder | |
|
||||
+------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| `re <https://docs.python.org/3/whatsnew/3.7.html#re>`_ | |
|
||||
+------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| A number of tidy up features including better support for splitting on empty strings and copy support for | |
|
||||
| compiled expressions and match objects | |
|
||||
+------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| `sys <https://docs.python.org/3/whatsnew/3.7.html#sys>`_ | |
|
||||
+------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| sys.breakpointhook() added. sys.get(/set)_coroutine_origin_tracking_depth() added | |
|
||||
+------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| `time <https://docs.python.org/3/whatsnew/3.7.html#time>`_ | |
|
||||
+------------------------------------------------------------------------------------------------------------+----------------+
|
||||
| Mostly updates to support nanosecond resolution in PEP564, see above | |
|
||||
+------------------------------------------------------------------------------------------------------------+----------------+
|
118
components/language/micropython/docs/differences/python_38.rst
Normal file
118
components/language/micropython/docs/differences/python_38.rst
Normal file
@@ -0,0 +1,118 @@
|
||||
.. _python_38:
|
||||
|
||||
Python 3.8
|
||||
==========
|
||||
|
||||
Python 3.8.0 (final) was released on the 14 October 2019. The Features for 3.8
|
||||
are defined in `PEP 569 <https://www.python.org/dev/peps/pep-0569/#id9>`_ and
|
||||
a detailed description of the changes can be found in What's New in `Python
|
||||
3.8. <https://docs.python.org/3/whatsnew/3.8.html>`_
|
||||
|
||||
+--------------------------------------------------------+---------------------------------------------------+---------------+
|
||||
| **Features:** | Status |
|
||||
+--------------------------------------------------------+---------------------------------------------------+---------------+
|
||||
| `PEP 570 <https://www.python.org/dev/peps/pep-0570/>`_ | Positional-only arguments | |
|
||||
+--------------------------------------------------------+---------------------------------------------------+---------------+
|
||||
| `PEP 572 <https://www.python.org/dev/peps/pep-0572/>`_ | Assignment Expressions | |
|
||||
+--------------------------------------------------------+---------------------------------------------------+---------------+
|
||||
| `PEP 574 <https://www.python.org/dev/peps/pep-0574/>`_ | Pickle protocol 5 with out-of-band data | |
|
||||
+--------------------------------------------------------+---------------------------------------------------+---------------+
|
||||
| `PEP 578 <https://www.python.org/dev/peps/pep-0578/>`_ | Runtime audit hooks | |
|
||||
+--------------------------------------------------------+---------------------------------------------------+---------------+
|
||||
| `PEP 587 <https://www.python.org/dev/peps/pep-0587/>`_ | Python Initialization Configuration | |
|
||||
+--------------------------------------------------------+---------------------------------------------------+---------------+
|
||||
| `PEP 590 <https://www.python.org/dev/peps/pep-0590/>`_ | Vectorcall: a fast calling protocol for CPython | |
|
||||
+--------------------------------------------------------+---------------------------------------------------+---------------+
|
||||
| **Miscellaneous** |
|
||||
+------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| f-strings support = for self-documenting expressions and debugging | Completed |
|
||||
+------------------------------------------------------------------------------------------------------------+---------------+
|
||||
|
||||
Other Language Changes:
|
||||
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| A *continue* statement was illegal in the *finally* clause due to a problem with the implementation. In | Completed |
|
||||
| Python 3.8 this restriction was lifted | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| The *bool*, *int* , and *fractions.Fraction* types now have an *as_integer_ratio()* method like that found | |
|
||||
| in *float* and *decimal.Decimal* | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| Constructors of *int*, *float* and *complex* will now use the *__index__()* special method, if available | |
|
||||
| and the corresponding method *__int__()*, *__float__()* or *__complex__()* is not available | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| Added support of *\N{name}* escapes in regular expressions | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| Dict and dictviews are now iterable in reversed insertion order using *reversed()* | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| The syntax allowed for keyword names in function calls was further restricted. In particular, | |
|
||||
| f((keyword)=arg) is no longer allowed | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| Generalized iterable unpacking in yield and return statements no longer requires enclosing parentheses | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| When a comma is missed in code such as [(10, 20) (30, 40)], the compiler displays a SyntaxWarning with a | |
|
||||
| helpful suggestion | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| Arithmetic operations between subclasses of *datetime.date* or *datetime.datetime* and *datetime.timedelta*| |
|
||||
| objects now return an instance of the subclass, rather than the base class | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| When the Python interpreter is interrupted by *Ctrl-C (SIGINT)* and the resulting *KeyboardInterrupt* | |
|
||||
| exception is not caught, the Python process now exits via a SIGINT signal or with the correct exit code | |
|
||||
| such that the calling process can detect that it died due to a *Ctrl-C* | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| Some advanced styles of programming require updating the *types.CodeType* object for an existing function | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| For integers, the three-argument form of the pow() function now permits the exponent to be negative in the | |
|
||||
| case where the base is relatively prime to the modulus | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| Dict comprehensions have been synced-up with dict literals so that the key is computed first and the value | |
|
||||
| second | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| The *object.__reduce__()* method can now return a tuple from two to six elements long | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
|
||||
Changes to built-in modules:
|
||||
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| `asyncio` |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| *asyncio.run()* has graduated from the provisional to stable API | Completed |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| Running *python -m asyncio* launches a natively async REPL | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| The exception *asyncio.CancelledError* now inherits from *BaseException* rather than *Exception* and no | Completed |
|
||||
| longer inherits from *concurrent.futures.CancelledError* | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| Added *asyncio.Task.get_coro()* for getting the wrapped coroutine within an *asyncio.Task* | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| Asyncio tasks can now be named, either by passing the name keyword argument to *asyncio.create_task()* or | |
|
||||
| the *create_task()* event loop method, or by calling the *set_name()* method on the task object | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| Added support for Happy Eyeballs to *asyncio.loop.create_connection()*. To specify the behavior, two new | |
|
||||
| parameters have been added: *happy_eyeballs_delay* and interleave. | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| `gc` |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| *get_objects()* can now receive an optional generation parameter indicating a generation to get objects | |
|
||||
| from. (Note, though, that while *gc* is a built-in, *get_objects()* is not implemented for MicroPython) | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| `math` |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| Added new function *math.dist()* for computing Euclidean distance between two points | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| Expanded the *math.hypot()* function to handle multiple dimensions | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| Added new function, *math.prod()*, as analogous function to *sum()* that returns the product of a "start" | |
|
||||
| value (default: 1) times an iterable of numbers | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| Added two new combinatoric functions *math.perm()* and *math.comb()* | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| Added a new function *math.isqrt()* for computing accurate integer square roots without conversion to | |
|
||||
| floating point | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| The function *math.factorial()* no longer accepts arguments that are not int-like | Completed |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| `sys` |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
||||
| Add new *sys.unraisablehook()* function which can be overridden to control how "unraisable exceptions" | |
|
||||
| are handled | |
|
||||
+------------------------------------------------------------------------------------------------------------+-------------+
|
121
components/language/micropython/docs/differences/python_39.rst
Normal file
121
components/language/micropython/docs/differences/python_39.rst
Normal file
@@ -0,0 +1,121 @@
|
||||
.. _python_39:
|
||||
|
||||
Python 3.9
|
||||
==========
|
||||
|
||||
Python 3.9.0 (final) was released on the 5th October 2020. The Features for 3.9 are
|
||||
defined in `PEP 596 <https://www.python.org/dev/peps/pep-0596/#features-for-3-9>`_
|
||||
and a detailed description of the changes can be found in
|
||||
`What's New in Python 3.9 <https://docs.python.org/3/whatsnew/3.9.html>`_
|
||||
|
||||
+--------------------------------------------------------+----------------------------------------------------+--------------+
|
||||
| **Features:** | | **Status** |
|
||||
+--------------------------------------------------------+----------------------------------------------------+--------------+
|
||||
| `PEP 573 <https://www.python.org/dev/peps/pep-0573/>`_ | fast access to module state from methods of C | |
|
||||
| | extension types | |
|
||||
+--------------------------------------------------------+----------------------------------------------------+--------------+
|
||||
| `PEP 584 <https://www.python.org/dev/peps/pep-0584/>`_ | union operators added to dict | |
|
||||
+--------------------------------------------------------+----------------------------------------------------+--------------+
|
||||
| `PEP 585 <https://www.python.org/dev/peps/pep-0584/>`_ | type hinting generics in standard collections | |
|
||||
+--------------------------------------------------------+----------------------------------------------------+--------------+
|
||||
| `PEP 593 <https://www.python.org/dev/peps/pep-0593/>`_ | flexible function and variable annotations | |
|
||||
+--------------------------------------------------------+----------------------------------------------------+--------------+
|
||||
| `PEP 602 <https://www.python.org/dev/peps/pep-0602/>`_ | CPython adopts an annual release cycle. Instead of | |
|
||||
| | annual, aiming for two month release cycle | |
|
||||
+--------------------------------------------------------+----------------------------------------------------+--------------+
|
||||
| `PEP 614 <https://www.python.org/dev/peps/pep-0614/>`_ | relaxed grammar restrictions on decorators | |
|
||||
+--------------------------------------------------------+----------------------------------------------------+--------------+
|
||||
| `PEP 615 <https://www.python.org/dev/peps/pep-0615/>`_ | the IANA Time Zone Database is now present in the | |
|
||||
| | standard library in the zoneinfo module | |
|
||||
+--------------------------------------------------------+----------------------------------------------------+--------------+
|
||||
| `PEP 616 <https://www.python.org/dev/peps/pep-0616/>`_ | string methods to remove prefixes and suffixes | |
|
||||
+--------------------------------------------------------+----------------------------------------------------+--------------+
|
||||
| `PEP 617 <https://www.python.org/dev/peps/pep-0617/>`_ | CPython now uses a new parser based on PEG | |
|
||||
+--------------------------------------------------------+----------------------------------------------------+--------------+
|
||||
|
||||
Other Language Changes:
|
||||
|
||||
+-------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| *__import__()* now raises *ImportError* instead of *ValueError* | Completed |
|
||||
+-------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Python now gets the absolute path of the script filename specified on the command line (ex: *python3* | |
|
||||
| *script.py*): the *__file__* attribute of the *__main__* module became an absolute path, rather than a | |
|
||||
| relative path | |
|
||||
+-------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| By default, for best performance, the errors argument is only checked at the first encoding/decoding error | |
|
||||
| and the encoding argument is sometimes ignored for empty strings | |
|
||||
+-------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| *"".replace("", s, n)* now returns *s* instead of an empty string for all non-zero n. It is now consistent | |
|
||||
| with *"".replace("", s)* | |
|
||||
+-------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Any valid expression can now be used as a decorator. Previously, the grammar was much more restrictive | |
|
||||
+-------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Parallel running of *aclose()* / *asend()* / *athrow()* is now prohibited, and *ag_running* now reflects | |
|
||||
| the actual running status of the async generator | |
|
||||
+-------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Unexpected errors in calling the *__iter__* method are no longer masked by TypeError in the in operator and | |
|
||||
| functions contains(), indexOf() and countOf() of the operator module | |
|
||||
+-------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Unparenthesized lambda expressions can no longer be the expression part in an if clause in comprehensions | |
|
||||
| and generator expressions | |
|
||||
+-------------------------------------------------------------------------------------------------------------+---------------+
|
||||
|
||||
Changes to built-in modules:
|
||||
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| `asyncio` |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Due to significant security concerns, the reuse_address parameter of *asyncio.loop.create_datagram_endpoint()*| |
|
||||
| is no longer supported | |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Added a new coroutine *shutdown_default_executor()* that schedules a shutdown for the default executor that | |
|
||||
| waits on the *ThreadPoolExecutor* to finish closing. Also, *asyncio.run()* has been updated to use the new | |
|
||||
| coroutine. | |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Added *asyncio.PidfdChildWatcher*, a Linux-specific child watcher implementation that polls process file | |
|
||||
| descriptors | |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| added a new *coroutine asyncio.to_thread()* | |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| When cancelling the task due to a timeout, *asyncio.wait_for()* will now wait until the cancellation is | |
|
||||
| complete also in the case when timeout is <= 0, like it does with positive timeouts | |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| *asyncio* now raises *TyperError* when calling incompatible methods with an *ssl.SSLSocket* socket | |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| `gc` |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Garbage collection does not block on resurrected objects | |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Added a new function *gc.is_finalized()* to check if an object has been finalized by the garbage collector | |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| `math` |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Expanded the *math.gcd()* function to handle multiple arguments. Formerly, it only supported two arguments | |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Added *math.lcm()*: return the least common multiple of specified arguments | |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Added *math.nextafter()*: return the next floating-point value after x towards y | |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Added *math.ulp()*: return the value of the least significant bit of a float | |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| `os` |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Exposed the Linux-specific *os.pidfd_open()* and *os.P_PIDFD* | |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| The *os.unsetenv()* function is now also available on Windows | Completed |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| The *os.putenv()* and *os.unsetenv()* functions are now always available | Completed |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Added *os.waitstatus_to_exitcode()* function: convert a wait status to an exit code | |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| `random` |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Added a new *random.Random.randbytes* method: generate random bytes | |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| `sys` |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Added a new *sys.platlibdir* attribute: name of the platform-specific library directory | |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
||||
| Previously, *sys.stderr* was block-buffered when non-interactive. Now stderr defaults to always being | |
|
||||
| line-buffered | |
|
||||
+---------------------------------------------------------------------------------------------------------------+---------------+
|
64
components/language/micropython/docs/esp32/general.rst
Normal file
64
components/language/micropython/docs/esp32/general.rst
Normal file
@@ -0,0 +1,64 @@
|
||||
.. _esp32_general:
|
||||
|
||||
General information about the ESP32 port
|
||||
========================================
|
||||
|
||||
The ESP32 is a popular WiFi and Bluetooth enabled System-on-Chip (SoC) by
|
||||
Espressif Systems.
|
||||
|
||||
Multitude of boards
|
||||
-------------------
|
||||
|
||||
There is a multitude of modules and boards from different sources which carry
|
||||
the ESP32 chip. MicroPython tries to provide a generic port which would run on
|
||||
as many boards/modules as possible, but there may be limitations. Espressif
|
||||
development boards are taken as reference for the port (for example, testing is
|
||||
performed on them). For any board you are using please make sure you have a
|
||||
datasheet, schematics and other reference materials so you can look up any
|
||||
board-specific functions.
|
||||
|
||||
To make a generic ESP32 port and support as many boards as possible the
|
||||
following design and implementation decision were made:
|
||||
|
||||
* GPIO pin numbering is based on ESP32 chip numbering. Please have the manual/pin
|
||||
diagram of your board at hand to find correspondence between your board pins and
|
||||
actual ESP32 pins.
|
||||
* All pins are supported by MicroPython but not all are usable on any given board.
|
||||
For example pins that are connected to external SPI flash should not be used,
|
||||
and a board may only expose a certain selection of pins.
|
||||
|
||||
|
||||
Technical specifications and SoC datasheets
|
||||
-------------------------------------------
|
||||
|
||||
The datasheets and other reference material for ESP32 chip are available
|
||||
from the vendor site: https://www.espressif.com/en/support/download/documents?keys=esp32 .
|
||||
They are the primary reference for the chip technical specifications, capabilities,
|
||||
operating modes, internal functioning, etc.
|
||||
|
||||
For your convenience, some of technical specifications are provided below:
|
||||
|
||||
* Architecture: Xtensa Dual-Core 32-bit LX6
|
||||
* CPU frequency: up to 240MHz
|
||||
* Total RAM available: 528KB (part of it reserved for system)
|
||||
* BootROM: 448KB
|
||||
* Internal FlashROM: none
|
||||
* External FlashROM: code and data, via SPI Flash; usual size 4MB
|
||||
* GPIO: 34 (GPIOs are multiplexed with other functions, including
|
||||
external FlashROM, UART, etc.)
|
||||
* UART: 3 RX/TX UART (no hardware handshaking), one TX-only UART
|
||||
* SPI: 4 SPI interfaces (one used for FlashROM)
|
||||
* I2C: 2 I2C (bitbang implementation available on any pins)
|
||||
* I2S: 2
|
||||
* ADC: 12-bit SAR ADC up to 18 channels
|
||||
* DAC: 2 8-bit DACs
|
||||
* RMT: 8 channels allowing accurate pulse transmit/receive
|
||||
* Programming: using BootROM bootloader from UART - due to external FlashROM
|
||||
and always-available BootROM bootloader, the ESP32 is not brickable
|
||||
|
||||
For more information see the ESP32 datasheet: https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
|
||||
|
||||
MicroPython is implemented on top of the ESP-IDF, Espressif's development
|
||||
framework for the ESP32. This is a FreeRTOS based system. See the
|
||||
`ESP-IDF Programming Guide <https://docs.espressif.com/projects/esp-idf/en/latest/index.html>`_
|
||||
for details.
|
BIN
components/language/micropython/docs/esp32/img/esp32.jpg
Normal file
BIN
components/language/micropython/docs/esp32/img/esp32.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 84 KiB |
756
components/language/micropython/docs/esp32/quickref.rst
Normal file
756
components/language/micropython/docs/esp32/quickref.rst
Normal file
@@ -0,0 +1,756 @@
|
||||
.. _esp32_quickref:
|
||||
|
||||
Quick reference for the ESP32
|
||||
=============================
|
||||
|
||||
.. image:: img/esp32.jpg
|
||||
:alt: ESP32 board
|
||||
:width: 640px
|
||||
|
||||
The Espressif ESP32 Development Board (image attribution: Adafruit).
|
||||
|
||||
Below is a quick reference for ESP32-based boards. If it is your first time
|
||||
working with this board it may be useful to get an overview of the microcontroller:
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
|
||||
general.rst
|
||||
tutorial/index.rst
|
||||
|
||||
Installing MicroPython
|
||||
----------------------
|
||||
|
||||
See the corresponding section of tutorial: :ref:`esp32_intro`. It also includes
|
||||
a troubleshooting subsection.
|
||||
|
||||
General board control
|
||||
---------------------
|
||||
|
||||
The MicroPython REPL is on UART0 (GPIO1=TX, GPIO3=RX) at baudrate 115200.
|
||||
Tab-completion is useful to find out what methods an object has.
|
||||
Paste mode (ctrl-E) is useful to paste a large slab of Python code into
|
||||
the REPL.
|
||||
|
||||
The :mod:`machine` module::
|
||||
|
||||
import machine
|
||||
|
||||
machine.freq() # get the current frequency of the CPU
|
||||
machine.freq(240000000) # set the CPU frequency to 240 MHz
|
||||
|
||||
The :mod:`esp` module::
|
||||
|
||||
import esp
|
||||
|
||||
esp.osdebug(None) # turn off vendor O/S debugging messages
|
||||
esp.osdebug(0) # redirect vendor O/S debugging messages to UART(0)
|
||||
|
||||
# low level methods to interact with flash storage
|
||||
esp.flash_size()
|
||||
esp.flash_user_start()
|
||||
esp.flash_erase(sector_no)
|
||||
esp.flash_write(byte_offset, buffer)
|
||||
esp.flash_read(byte_offset, buffer)
|
||||
|
||||
The :mod:`esp32` module::
|
||||
|
||||
import esp32
|
||||
|
||||
esp32.hall_sensor() # read the internal hall sensor
|
||||
esp32.raw_temperature() # read the internal temperature of the MCU, in Fahrenheit
|
||||
esp32.ULP() # access to the Ultra-Low-Power Co-processor
|
||||
|
||||
Note that the temperature sensor in the ESP32 will typically read higher than
|
||||
ambient due to the IC getting warm while it runs. This effect can be minimised
|
||||
by reading the temperature sensor immediately after waking up from sleep.
|
||||
|
||||
Networking
|
||||
----------
|
||||
|
||||
The :mod:`network` module::
|
||||
|
||||
import network
|
||||
|
||||
wlan = network.WLAN(network.STA_IF) # create station interface
|
||||
wlan.active(True) # activate the interface
|
||||
wlan.scan() # scan for access points
|
||||
wlan.isconnected() # check if the station is connected to an AP
|
||||
wlan.connect('essid', 'password') # connect to an AP
|
||||
wlan.config('mac') # get the interface's MAC address
|
||||
wlan.ifconfig() # get the interface's IP/netmask/gw/DNS addresses
|
||||
|
||||
ap = network.WLAN(network.AP_IF) # create access-point interface
|
||||
ap.config(essid='ESP-AP') # set the ESSID of the access point
|
||||
ap.config(max_clients=10) # set how many clients can connect to the network
|
||||
ap.active(True) # activate the interface
|
||||
|
||||
A useful function for connecting to your local WiFi network is::
|
||||
|
||||
def do_connect():
|
||||
import network
|
||||
wlan = network.WLAN(network.STA_IF)
|
||||
wlan.active(True)
|
||||
if not wlan.isconnected():
|
||||
print('connecting to network...')
|
||||
wlan.connect('essid', 'password')
|
||||
while not wlan.isconnected():
|
||||
pass
|
||||
print('network config:', wlan.ifconfig())
|
||||
|
||||
Once the network is established the :mod:`socket <socket>` module can be used
|
||||
to create and use TCP/UDP sockets as usual, and the ``urequests`` module for
|
||||
convenient HTTP requests.
|
||||
|
||||
After a call to ``wlan.connect()``, the device will by default retry to connect
|
||||
**forever**, even when the authentication failed or no AP is in range.
|
||||
``wlan.status()`` will return ``network.STAT_CONNECTING`` in this state until a
|
||||
connection succeeds or the interface gets disabled. This can be changed by
|
||||
calling ``wlan.config(reconnects=n)``, where n are the number of desired reconnect
|
||||
attempts (0 means it won't retry, -1 will restore the default behaviour of trying
|
||||
to reconnect forever).
|
||||
|
||||
Delay and timing
|
||||
----------------
|
||||
|
||||
Use the :mod:`time <time>` module::
|
||||
|
||||
import time
|
||||
|
||||
time.sleep(1) # sleep for 1 second
|
||||
time.sleep_ms(500) # sleep for 500 milliseconds
|
||||
time.sleep_us(10) # sleep for 10 microseconds
|
||||
start = time.ticks_ms() # get millisecond counter
|
||||
delta = time.ticks_diff(time.ticks_ms(), start) # compute time difference
|
||||
|
||||
Timers
|
||||
------
|
||||
|
||||
The ESP32 port has four hardware timers. Use the :ref:`machine.Timer <machine.Timer>` class
|
||||
with a timer ID from 0 to 3 (inclusive)::
|
||||
|
||||
from machine import Timer
|
||||
|
||||
tim0 = Timer(0)
|
||||
tim0.init(period=5000, mode=Timer.ONE_SHOT, callback=lambda t:print(0))
|
||||
|
||||
tim1 = Timer(1)
|
||||
tim1.init(period=2000, mode=Timer.PERIODIC, callback=lambda t:print(1))
|
||||
|
||||
The period is in milliseconds.
|
||||
|
||||
Virtual timers are not currently supported on this port.
|
||||
|
||||
.. _Pins_and_GPIO:
|
||||
|
||||
Pins and GPIO
|
||||
-------------
|
||||
|
||||
Use the :ref:`machine.Pin <machine.Pin>` class::
|
||||
|
||||
from machine import Pin
|
||||
|
||||
p0 = Pin(0, Pin.OUT) # create output pin on GPIO0
|
||||
p0.on() # set pin to "on" (high) level
|
||||
p0.off() # set pin to "off" (low) level
|
||||
p0.value(1) # set pin to on/high
|
||||
|
||||
p2 = Pin(2, Pin.IN) # create input pin on GPIO2
|
||||
print(p2.value()) # get value, 0 or 1
|
||||
|
||||
p4 = Pin(4, Pin.IN, Pin.PULL_UP) # enable internal pull-up resistor
|
||||
p5 = Pin(5, Pin.OUT, value=1) # set pin high on creation
|
||||
p6 = Pin(6, Pin.OUT, drive=Pin.DRIVE_3) # set maximum drive strength
|
||||
|
||||
Available Pins are from the following ranges (inclusive): 0-19, 21-23, 25-27, 32-39.
|
||||
These correspond to the actual GPIO pin numbers of ESP32 chip. Note that many
|
||||
end-user boards use their own adhoc pin numbering (marked e.g. D0, D1, ...).
|
||||
For mapping between board logical pins and physical chip pins consult your board
|
||||
documentation.
|
||||
|
||||
Four drive strengths are supported, using the ``drive`` keyword argument to the
|
||||
``Pin()`` constructor or ``Pin.init()`` method, with different corresponding
|
||||
safe maximum source/sink currents and approximate internal driver resistances:
|
||||
|
||||
- ``Pin.DRIVE_0``: 5mA / 130 ohm
|
||||
- ``Pin.DRIVE_1``: 10mA / 60 ohm
|
||||
- ``Pin.DRIVE_2``: 20mA / 30 ohm (default strength if not configured)
|
||||
- ``Pin.DRIVE_3``: 40mA / 15 ohm
|
||||
|
||||
The ``hold=`` keyword argument to ``Pin()`` and ``Pin.init()`` will enable the
|
||||
ESP32 "pad hold" feature. When set to ``True``, the pin configuration
|
||||
(direction, pull resistors and output value) will be held and any further
|
||||
changes (including changing the output level) will not be applied. Setting
|
||||
``hold=False`` will immediately apply any outstanding pin configuration changes
|
||||
and release the pin. Using ``hold=True`` while a pin is already held will apply
|
||||
any configuration changes and then immediately reapply the hold.
|
||||
|
||||
Notes:
|
||||
|
||||
* Pins 1 and 3 are REPL UART TX and RX respectively
|
||||
|
||||
* Pins 6, 7, 8, 11, 16, and 17 are used for connecting the embedded flash,
|
||||
and are not recommended for other uses
|
||||
|
||||
* Pins 34-39 are input only, and also do not have internal pull-up resistors
|
||||
|
||||
* See :ref:`Deep_sleep_Mode` for a discussion of pin behaviour during sleep
|
||||
|
||||
There's a higher-level abstraction :ref:`machine.Signal <machine.Signal>`
|
||||
which can be used to invert a pin. Useful for illuminating active-low LEDs
|
||||
using ``on()`` or ``value(1)``.
|
||||
|
||||
UART (serial bus)
|
||||
-----------------
|
||||
|
||||
See :ref:`machine.UART <machine.UART>`. ::
|
||||
|
||||
from machine import UART
|
||||
|
||||
uart1 = UART(1, baudrate=9600, tx=33, rx=32)
|
||||
uart1.write('hello') # write 5 bytes
|
||||
uart1.read(5) # read up to 5 bytes
|
||||
|
||||
The ESP32 has three hardware UARTs: UART0, UART1 and UART2.
|
||||
They each have default GPIO assigned to them, however depending on your
|
||||
ESP32 variant and board, these pins may conflict with embedded flash,
|
||||
onboard PSRAM or peripherals.
|
||||
|
||||
Any GPIO can be used for hardware UARTs using the GPIO matrix, so to avoid
|
||||
conflicts simply provide ``tx`` and ``rx`` pins when constructing. The default
|
||||
pins listed below.
|
||||
|
||||
===== ===== ===== =====
|
||||
\ UART0 UART1 UART2
|
||||
===== ===== ===== =====
|
||||
tx 1 10 17
|
||||
rx 3 9 16
|
||||
===== ===== ===== =====
|
||||
|
||||
PWM (pulse width modulation)
|
||||
----------------------------
|
||||
|
||||
PWM can be enabled on all output-enabled pins. The base frequency can
|
||||
range from 1Hz to 40MHz but there is a tradeoff; as the base frequency
|
||||
*increases* the duty resolution *decreases*. See
|
||||
`LED Control <https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/peripherals/ledc.html>`_
|
||||
for more details.
|
||||
|
||||
Use the :ref:`machine.PWM <machine.PWM>` class::
|
||||
|
||||
from machine import Pin, PWM
|
||||
|
||||
pwm0 = PWM(Pin(0)) # create PWM object from a pin
|
||||
freq = pwm0.freq() # get current frequency (default 5kHz)
|
||||
pwm0.freq(1000) # set PWM frequency from 1Hz to 40MHz
|
||||
|
||||
duty = pwm0.duty() # get current duty cycle, range 0-1023 (default 512, 50%)
|
||||
pwm0.duty(256) # set duty cycle from 0 to 1023 as a ratio duty/1023, (now 25%)
|
||||
|
||||
duty_u16 = pwm0.duty_u16() # get current duty cycle, range 0-65535
|
||||
pwm0.duty_u16(2**16*3//4) # set duty cycle from 0 to 65535 as a ratio duty_u16/65535, (now 75%)
|
||||
|
||||
duty_ns = pwm0.duty_ns() # get current pulse width in ns
|
||||
pwm0.duty_ns(250_000) # set pulse width in nanoseconds from 0 to 1_000_000_000/freq, (now 25%)
|
||||
|
||||
pwm0.deinit() # turn off PWM on the pin
|
||||
|
||||
pwm2 = PWM(Pin(2), freq=20000, duty=512) # create and configure in one go
|
||||
print(pwm2) # view PWM settings
|
||||
|
||||
ESP chips have different hardware peripherals:
|
||||
|
||||
===================================================== ======== ======== ========
|
||||
Hardware specification ESP32 ESP32-S2 ESP32-C3
|
||||
----------------------------------------------------- -------- -------- --------
|
||||
Number of groups (speed modes) 2 1 1
|
||||
Number of timers per group 4 4 4
|
||||
Number of channels per group 8 8 6
|
||||
----------------------------------------------------- -------- -------- --------
|
||||
Different PWM frequencies (groups * timers) 8 4 4
|
||||
Total PWM channels (Pins, duties) (groups * channels) 16 8 6
|
||||
===================================================== ======== ======== ========
|
||||
|
||||
A maximum number of PWM channels (Pins) are available on the ESP32 - 16 channels,
|
||||
but only 8 different PWM frequencies are available, the remaining 8 channels must
|
||||
have the same frequency. On the other hand, 16 independent PWM duty cycles are
|
||||
possible at the same frequency.
|
||||
|
||||
See more examples in the :ref:`esp32_pwm` tutorial.
|
||||
|
||||
ADC (analog to digital conversion)
|
||||
----------------------------------
|
||||
|
||||
On the ESP32, ADC functionality is available on pins 32-39 (ADC block 1) and
|
||||
pins 0, 2, 4, 12-15 and 25-27 (ADC block 2).
|
||||
|
||||
Use the :ref:`machine.ADC <machine.ADC>` class::
|
||||
|
||||
from machine import ADC
|
||||
|
||||
adc = ADC(pin) # create an ADC object acting on a pin
|
||||
val = adc.read_u16() # read a raw analog value in the range 0-65535
|
||||
val = adc.read_uv() # read an analog value in microvolts
|
||||
|
||||
ADC block 2 is also used by WiFi and so attempting to read analog values from
|
||||
block 2 pins when WiFi is active will raise an exception.
|
||||
|
||||
The internal ADC reference voltage is typically 1.1V, but varies slightly from
|
||||
package to package. The ADC is less linear close to the reference voltage
|
||||
(particularly at higher attenuations) and has a minimum measurement voltage
|
||||
around 100mV, voltages at or below this will read as 0. To read voltages
|
||||
accurately, it is recommended to use the ``read_uv()`` method (see below).
|
||||
|
||||
ESP32-specific ADC class method reference:
|
||||
|
||||
.. class:: ADC(pin, *, atten)
|
||||
|
||||
Return the ADC object for the specified pin. ESP32 does not support
|
||||
different timings for ADC sampling and so the ``sample_ns`` keyword argument
|
||||
is not supported.
|
||||
|
||||
To read voltages above the reference voltage, apply input attenuation with
|
||||
the ``atten`` keyword argument. Valid values (and approximate linear
|
||||
measurement ranges) are:
|
||||
|
||||
- ``ADC.ATTN_0DB``: No attenuation (100mV - 950mV)
|
||||
- ``ADC.ATTN_2_5DB``: 2.5dB attenuation (100mV - 1250mV)
|
||||
- ``ADC.ATTN_6DB``: 6dB attenuation (150mV - 1750mV)
|
||||
- ``ADC.ATTN_11DB``: 11dB attenuation (150mV - 2450mV)
|
||||
|
||||
.. Warning::
|
||||
Note that the absolute maximum voltage rating for input pins is 3.6V. Going
|
||||
near to this boundary risks damage to the IC!
|
||||
|
||||
.. method:: ADC.read_uv()
|
||||
|
||||
This method uses the known characteristics of the ADC and per-package eFuse
|
||||
values - set during manufacture - to return a calibrated input voltage
|
||||
(before attenuation) in microvolts. The returned value has only millivolt
|
||||
resolution (i.e., will always be a multiple of 1000 microvolts).
|
||||
|
||||
The calibration is only valid across the linear range of the ADC. In
|
||||
particular, an input tied to ground will read as a value above 0 microvolts.
|
||||
Within the linear range, however, more accurate and consistent results will
|
||||
be obtained than using `read_u16()` and scaling the result with a constant.
|
||||
|
||||
The ESP32 port also supports the :ref:`machine.ADC <machine.ADCBlock>` API:
|
||||
|
||||
.. class:: ADCBlock(id, *, bits)
|
||||
|
||||
Return the ADC block object with the given ``id`` (1 or 2) and initialize
|
||||
it to the specified resolution (9 to 12-bits depending on the ESP32 series)
|
||||
or the highest supported resolution if not specified.
|
||||
|
||||
.. method:: ADCBlock.connect(pin)
|
||||
ADCBlock.connect(channel)
|
||||
ADCBlock.connect(channel, pin)
|
||||
|
||||
Return the ``ADC`` object for the specified ADC pin or channel number.
|
||||
Arbitrary connection of ADC channels to GPIO is not supported and so
|
||||
specifying a pin that is not connected to this block, or specifying a
|
||||
mismatched channel and pin, will raise an exception.
|
||||
|
||||
Legacy methods:
|
||||
|
||||
.. method:: ADC.read()
|
||||
|
||||
This method returns the raw ADC value ranged according to the resolution of
|
||||
the block, e.g., 0-4095 for 12-bit resolution.
|
||||
|
||||
.. method:: ADC.atten(atten)
|
||||
|
||||
Equivalent to ``ADC.init(atten=atten)``.
|
||||
|
||||
.. method:: ADC.width(bits)
|
||||
|
||||
Equivalent to ``ADC.block().init(bits=bits)``.
|
||||
|
||||
For compatibility, the ``ADC`` object also provides constants matching the
|
||||
supported ADC resolutions:
|
||||
|
||||
- ``ADC.WIDTH_9BIT`` = 9
|
||||
- ``ADC.WIDTH_10BIT`` = 10
|
||||
- ``ADC.WIDTH_11BIT`` = 11
|
||||
- ``ADC.WIDTH_12BIT`` = 12
|
||||
|
||||
|
||||
Software SPI bus
|
||||
----------------
|
||||
|
||||
Software SPI (using bit-banging) works on all pins, and is accessed via the
|
||||
:ref:`machine.SoftSPI <machine.SoftSPI>` class::
|
||||
|
||||
from machine import Pin, SoftSPI
|
||||
|
||||
# construct a SoftSPI bus on the given pins
|
||||
# polarity is the idle state of SCK
|
||||
# phase=0 means sample on the first edge of SCK, phase=1 means the second
|
||||
spi = SoftSPI(baudrate=100000, polarity=1, phase=0, sck=Pin(0), mosi=Pin(2), miso=Pin(4))
|
||||
|
||||
spi.init(baudrate=200000) # set the baudrate
|
||||
|
||||
spi.read(10) # read 10 bytes on MISO
|
||||
spi.read(10, 0xff) # read 10 bytes while outputting 0xff on MOSI
|
||||
|
||||
buf = bytearray(50) # create a buffer
|
||||
spi.readinto(buf) # read into the given buffer (reads 50 bytes in this case)
|
||||
spi.readinto(buf, 0xff) # read into the given buffer and output 0xff on MOSI
|
||||
|
||||
spi.write(b'12345') # write 5 bytes on MOSI
|
||||
|
||||
buf = bytearray(4) # create a buffer
|
||||
spi.write_readinto(b'1234', buf) # write to MOSI and read from MISO into the buffer
|
||||
spi.write_readinto(buf, buf) # write buf to MOSI and read MISO back into buf
|
||||
|
||||
.. Warning::
|
||||
Currently *all* of ``sck``, ``mosi`` and ``miso`` *must* be specified when
|
||||
initialising Software SPI.
|
||||
|
||||
Hardware SPI bus
|
||||
----------------
|
||||
|
||||
There are two hardware SPI channels that allow faster transmission
|
||||
rates (up to 80Mhz). These may be used on any IO pins that support the
|
||||
required direction and are otherwise unused (see :ref:`Pins_and_GPIO`)
|
||||
but if they are not configured to their default pins then they need to
|
||||
pass through an extra layer of GPIO multiplexing, which can impact
|
||||
their reliability at high speeds. Hardware SPI channels are limited
|
||||
to 40MHz when used on pins other than the default ones listed below.
|
||||
|
||||
===== =========== ============
|
||||
\ HSPI (id=1) VSPI (id=2)
|
||||
===== =========== ============
|
||||
sck 14 18
|
||||
mosi 13 23
|
||||
miso 12 19
|
||||
===== =========== ============
|
||||
|
||||
Hardware SPI is accessed via the :ref:`machine.SPI <machine.SPI>` class and
|
||||
has the same methods as software SPI above::
|
||||
|
||||
from machine import Pin, SPI
|
||||
|
||||
hspi = SPI(1, 10000000)
|
||||
hspi = SPI(1, 10000000, sck=Pin(14), mosi=Pin(13), miso=Pin(12))
|
||||
vspi = SPI(2, baudrate=80000000, polarity=0, phase=0, bits=8, firstbit=0, sck=Pin(18), mosi=Pin(23), miso=Pin(19))
|
||||
|
||||
Software I2C bus
|
||||
----------------
|
||||
|
||||
Software I2C (using bit-banging) works on all output-capable pins, and is
|
||||
accessed via the :ref:`machine.SoftI2C <machine.SoftI2C>` class::
|
||||
|
||||
from machine import Pin, SoftI2C
|
||||
|
||||
i2c = SoftI2C(scl=Pin(5), sda=Pin(4), freq=100000)
|
||||
|
||||
i2c.scan() # scan for devices
|
||||
|
||||
i2c.readfrom(0x3a, 4) # read 4 bytes from device with address 0x3a
|
||||
i2c.writeto(0x3a, '12') # write '12' to device with address 0x3a
|
||||
|
||||
buf = bytearray(10) # create a buffer with 10 bytes
|
||||
i2c.writeto(0x3a, buf) # write the given buffer to the peripheral
|
||||
|
||||
Hardware I2C bus
|
||||
----------------
|
||||
|
||||
There are two hardware I2C peripherals with identifiers 0 and 1. Any available
|
||||
output-capable pins can be used for SCL and SDA but the defaults are given
|
||||
below.
|
||||
|
||||
===== =========== ============
|
||||
\ I2C(0) I2C(1)
|
||||
===== =========== ============
|
||||
scl 18 25
|
||||
sda 19 26
|
||||
===== =========== ============
|
||||
|
||||
The driver is accessed via the :ref:`machine.I2C <machine.I2C>` class and
|
||||
has the same methods as software I2C above::
|
||||
|
||||
from machine import Pin, I2C
|
||||
|
||||
i2c = I2C(0)
|
||||
i2c = I2C(1, scl=Pin(5), sda=Pin(4), freq=400000)
|
||||
|
||||
I2S bus
|
||||
-------
|
||||
|
||||
See :ref:`machine.I2S <machine.I2S>`. ::
|
||||
|
||||
from machine import I2S, Pin
|
||||
|
||||
i2s = I2S(0, sck=Pin(13), ws=Pin(14), sd=Pin(34), mode=I2S.TX, bits=16, format=I2S.STEREO, rate=44100, ibuf=40000) # create I2S object
|
||||
i2s.write(buf) # write buffer of audio samples to I2S device
|
||||
|
||||
i2s = I2S(1, sck=Pin(33), ws=Pin(25), sd=Pin(32), mode=I2S.RX, bits=16, format=I2S.MONO, rate=22050, ibuf=40000) # create I2S object
|
||||
i2s.readinto(buf) # fill buffer with audio samples from I2S device
|
||||
|
||||
The I2S class is currently available as a Technical Preview. During the preview period, feedback from
|
||||
users is encouraged. Based on this feedback, the I2S class API and implementation may be changed.
|
||||
|
||||
ESP32 has two I2S buses with id=0 and id=1
|
||||
|
||||
Real time clock (RTC)
|
||||
---------------------
|
||||
|
||||
See :ref:`machine.RTC <machine.RTC>` ::
|
||||
|
||||
from machine import RTC
|
||||
|
||||
rtc = RTC()
|
||||
rtc.datetime((2017, 8, 23, 1, 12, 48, 0, 0)) # set a specific date and time
|
||||
rtc.datetime() # get date and time
|
||||
|
||||
WDT (Watchdog timer)
|
||||
--------------------
|
||||
|
||||
See :ref:`machine.WDT <machine.WDT>`. ::
|
||||
|
||||
from machine import WDT
|
||||
|
||||
# enable the WDT with a timeout of 5s (1s is the minimum)
|
||||
wdt = WDT(timeout=5000)
|
||||
wdt.feed()
|
||||
|
||||
.. _Deep_sleep_mode:
|
||||
|
||||
Deep-sleep mode
|
||||
---------------
|
||||
|
||||
The following code can be used to sleep, wake and check the reset cause::
|
||||
|
||||
import machine
|
||||
|
||||
# check if the device woke from a deep sleep
|
||||
if machine.reset_cause() == machine.DEEPSLEEP_RESET:
|
||||
print('woke from a deep sleep')
|
||||
|
||||
# put the device to sleep for 10 seconds
|
||||
machine.deepsleep(10000)
|
||||
|
||||
Notes:
|
||||
|
||||
* Calling ``deepsleep()`` without an argument will put the device to sleep
|
||||
indefinitely
|
||||
* A software reset does not change the reset cause
|
||||
|
||||
Some ESP32 pins (0, 2, 4, 12-15, 25-27, 32-39) are connected to the RTC during
|
||||
deep-sleep and can be used to wake the device with the ``wake_on_`` functions in
|
||||
the :mod:`esp32` module. The output-capable RTC pins (all except 34-39) will
|
||||
also retain their pull-up or pull-down resistor configuration when entering
|
||||
deep-sleep.
|
||||
|
||||
If the pull resistors are not actively required during deep-sleep and are likely
|
||||
to cause current leakage (for example a pull-up resistor is connected to ground
|
||||
through a switch), then they should be disabled to save power before entering
|
||||
deep-sleep mode::
|
||||
|
||||
from machine import Pin, deepsleep
|
||||
|
||||
# configure input RTC pin with pull-up on boot
|
||||
pin = Pin(2, Pin.IN, Pin.PULL_UP)
|
||||
|
||||
# disable pull-up and put the device to sleep for 10 seconds
|
||||
pin.init(pull=None)
|
||||
machine.deepsleep(10000)
|
||||
|
||||
Output-configured RTC pins will also retain their output direction and level in
|
||||
deep-sleep if pad hold is enabled with the ``hold=True`` argument to
|
||||
``Pin.init()``.
|
||||
|
||||
Non-RTC GPIO pins will be disconnected by default on entering deep-sleep.
|
||||
Configuration of non-RTC pins - including output level - can be retained by
|
||||
enabling pad hold on the pin and enabling GPIO pad hold during deep-sleep::
|
||||
|
||||
from machine import Pin, deepsleep
|
||||
import esp32
|
||||
|
||||
opin = Pin(19, Pin.OUT, value=1, hold=True) # hold output level
|
||||
ipin = Pin(21, Pin.IN, Pin.PULL_UP, hold=True) # hold pull-up
|
||||
|
||||
# enable pad hold in deep-sleep for non-RTC GPIO
|
||||
esp32.gpio_deep_sleep_hold(True)
|
||||
|
||||
# put the device to sleep for 10 seconds
|
||||
deepsleep(10000)
|
||||
|
||||
The pin configuration - including the pad hold - will be retained on wake from
|
||||
sleep. See :ref:`Pins_and_GPIO` above for a further discussion of pad holding.
|
||||
|
||||
SD card
|
||||
-------
|
||||
|
||||
See :ref:`machine.SDCard <machine.SDCard>`. ::
|
||||
|
||||
import machine, os
|
||||
|
||||
# Slot 2 uses pins sck=18, cs=5, miso=19, mosi=23
|
||||
sd = machine.SDCard(slot=2)
|
||||
os.mount(sd, "/sd") # mount
|
||||
|
||||
os.listdir('/sd') # list directory contents
|
||||
|
||||
os.umount('/sd') # eject
|
||||
|
||||
RMT
|
||||
---
|
||||
|
||||
The RMT is ESP32-specific and allows generation of accurate digital pulses with
|
||||
12.5ns resolution. See :ref:`esp32.RMT <esp32.RMT>` for details. Usage is::
|
||||
|
||||
import esp32
|
||||
from machine import Pin
|
||||
|
||||
r = esp32.RMT(0, pin=Pin(18), clock_div=8)
|
||||
r # RMT(channel=0, pin=18, source_freq=80000000, clock_div=8)
|
||||
# The channel resolution is 100ns (1/(source_freq/clock_div)).
|
||||
r.write_pulses((1, 20, 2, 40), 0) # Send 0 for 100ns, 1 for 2000ns, 0 for 200ns, 1 for 4000ns
|
||||
|
||||
OneWire driver
|
||||
--------------
|
||||
|
||||
The OneWire driver is implemented in software and works on all pins::
|
||||
|
||||
from machine import Pin
|
||||
import onewire
|
||||
|
||||
ow = onewire.OneWire(Pin(12)) # create a OneWire bus on GPIO12
|
||||
ow.scan() # return a list of devices on the bus
|
||||
ow.reset() # reset the bus
|
||||
ow.readbyte() # read a byte
|
||||
ow.writebyte(0x12) # write a byte on the bus
|
||||
ow.write('123') # write bytes on the bus
|
||||
ow.select_rom(b'12345678') # select a specific device by its ROM code
|
||||
|
||||
There is a specific driver for DS18S20 and DS18B20 devices::
|
||||
|
||||
import time, ds18x20
|
||||
ds = ds18x20.DS18X20(ow)
|
||||
roms = ds.scan()
|
||||
ds.convert_temp()
|
||||
time.sleep_ms(750)
|
||||
for rom in roms:
|
||||
print(ds.read_temp(rom))
|
||||
|
||||
Be sure to put a 4.7k pull-up resistor on the data line. Note that
|
||||
the ``convert_temp()`` method must be called each time you want to
|
||||
sample the temperature.
|
||||
|
||||
NeoPixel and APA106 driver
|
||||
--------------------------
|
||||
|
||||
Use the ``neopixel`` and ``apa106`` modules::
|
||||
|
||||
from machine import Pin
|
||||
from neopixel import NeoPixel
|
||||
|
||||
pin = Pin(0, Pin.OUT) # set GPIO0 to output to drive NeoPixels
|
||||
np = NeoPixel(pin, 8) # create NeoPixel driver on GPIO0 for 8 pixels
|
||||
np[0] = (255, 255, 255) # set the first pixel to white
|
||||
np.write() # write data to all pixels
|
||||
r, g, b = np[0] # get first pixel colour
|
||||
|
||||
|
||||
The APA106 driver extends NeoPixel, but internally uses a different colour order::
|
||||
|
||||
from apa106 import APA106
|
||||
ap = APA106(pin, 8)
|
||||
r, g, b = ap[0]
|
||||
|
||||
.. Warning::
|
||||
By default ``NeoPixel`` is configured to control the more popular *800kHz*
|
||||
units. It is possible to use alternative timing to control other (typically
|
||||
400kHz) devices by passing ``timing=0`` when constructing the
|
||||
``NeoPixel`` object.
|
||||
|
||||
For low-level driving of a NeoPixel see `machine.bitstream`.
|
||||
This low-level driver uses an RMT channel by default. To configure this see
|
||||
`RMT.bitstream_channel`.
|
||||
|
||||
APA102 (DotStar) uses a different driver as it has an additional clock pin.
|
||||
|
||||
Capacitive touch
|
||||
----------------
|
||||
|
||||
Use the ``TouchPad`` class in the ``machine`` module::
|
||||
|
||||
from machine import TouchPad, Pin
|
||||
|
||||
t = TouchPad(Pin(14))
|
||||
t.read() # Returns a smaller number when touched
|
||||
|
||||
``TouchPad.read`` returns a value relative to the capacitive variation. Small numbers (typically in
|
||||
the *tens*) are common when a pin is touched, larger numbers (above *one thousand*) when
|
||||
no touch is present. However the values are *relative* and can vary depending on the board
|
||||
and surrounding composition so some calibration may be required.
|
||||
|
||||
There are ten capacitive touch-enabled pins that can be used on the ESP32: 0, 2, 4, 12, 13
|
||||
14, 15, 27, 32, 33. Trying to assign to any other pins will result in a ``ValueError``.
|
||||
|
||||
Note that TouchPads can be used to wake an ESP32 from sleep::
|
||||
|
||||
import machine
|
||||
from machine import TouchPad, Pin
|
||||
import esp32
|
||||
|
||||
t = TouchPad(Pin(14))
|
||||
t.config(500) # configure the threshold at which the pin is considered touched
|
||||
esp32.wake_on_touch(True)
|
||||
machine.lightsleep() # put the MCU to sleep until a touchpad is touched
|
||||
|
||||
For more details on touchpads refer to `Espressif Touch Sensor
|
||||
<https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/peripherals/touch_pad.html>`_.
|
||||
|
||||
|
||||
DHT driver
|
||||
----------
|
||||
|
||||
The DHT driver is implemented in software and works on all pins::
|
||||
|
||||
import dht
|
||||
import machine
|
||||
|
||||
d = dht.DHT11(machine.Pin(4))
|
||||
d.measure()
|
||||
d.temperature() # eg. 23 (°C)
|
||||
d.humidity() # eg. 41 (% RH)
|
||||
|
||||
d = dht.DHT22(machine.Pin(4))
|
||||
d.measure()
|
||||
d.temperature() # eg. 23.6 (°C)
|
||||
d.humidity() # eg. 41.3 (% RH)
|
||||
|
||||
WebREPL (web browser interactive prompt)
|
||||
----------------------------------------
|
||||
|
||||
WebREPL (REPL over WebSockets, accessible via a web browser) is an
|
||||
experimental feature available in ESP32 port. Download web client
|
||||
from https://github.com/micropython/webrepl (hosted version available
|
||||
at http://micropython.org/webrepl), and configure it by executing::
|
||||
|
||||
import webrepl_setup
|
||||
|
||||
and following on-screen instructions. After reboot, it will be available
|
||||
for connection. If you disabled automatic start-up on boot, you may
|
||||
run configured daemon on demand using::
|
||||
|
||||
import webrepl
|
||||
webrepl.start()
|
||||
|
||||
# or, start with a specific password
|
||||
webrepl.start(password='mypass')
|
||||
|
||||
The WebREPL daemon listens on all active interfaces, which can be STA or
|
||||
AP. This allows you to connect to the ESP32 via a router (the STA
|
||||
interface) or directly when connected to its access point.
|
||||
|
||||
In addition to terminal/command prompt access, WebREPL also has provision
|
||||
for file transfer (both upload and download). The web client has buttons for
|
||||
the corresponding functions, or you can use the command-line client
|
||||
``webrepl_cli.py`` from the repository above.
|
||||
|
||||
See the MicroPython forum for other community-supported alternatives
|
||||
to transfer files to an ESP32 board.
|
@@ -0,0 +1,23 @@
|
||||
.. _esp32_tutorial:
|
||||
|
||||
MicroPython tutorial for ESP32
|
||||
==============================
|
||||
|
||||
This tutorial is intended to get you started using MicroPython on the ESP32
|
||||
system-on-a-chip. If it is your first time it is recommended to follow the
|
||||
tutorial through in the order below. Otherwise the sections are mostly self
|
||||
contained, so feel free to skip to those that interest you.
|
||||
|
||||
The tutorial does not assume that you know Python, but it also does not attempt
|
||||
to explain any of the details of the Python language. Instead it provides you
|
||||
with commands that are ready to run, and hopes that you will gain a bit of
|
||||
Python knowledge along the way. To learn more about Python itself please refer
|
||||
to `<https://www.python.org>`__.
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
:numbered:
|
||||
|
||||
intro.rst
|
||||
pwm.rst
|
||||
peripheral_access.rst
|
139
components/language/micropython/docs/esp32/tutorial/intro.rst
Normal file
139
components/language/micropython/docs/esp32/tutorial/intro.rst
Normal file
@@ -0,0 +1,139 @@
|
||||
.. _esp32_intro:
|
||||
|
||||
Getting started with MicroPython on the ESP32
|
||||
=============================================
|
||||
|
||||
Using MicroPython is a great way to get the most of your ESP32 board. And
|
||||
vice versa, the ESP32 chip is a great platform for using MicroPython. This
|
||||
tutorial will guide you through setting up MicroPython, getting a prompt, using
|
||||
WebREPL, connecting to the network and communicating with the Internet, using
|
||||
the hardware peripherals, and controlling some external components.
|
||||
|
||||
Let's get started!
|
||||
|
||||
Requirements
|
||||
------------
|
||||
|
||||
The first thing you need is a board with an ESP32 chip. The MicroPython
|
||||
software supports the ESP32 chip itself and any board should work. The main
|
||||
characteristic of a board is how the GPIO pins are connected to the outside
|
||||
world, and whether it includes a built-in USB-serial convertor to make the
|
||||
UART available to your PC.
|
||||
|
||||
Names of pins will be given in this tutorial using the chip names (eg GPIO2)
|
||||
and it should be straightforward to find which pin this corresponds to on your
|
||||
particular board.
|
||||
|
||||
Powering the board
|
||||
------------------
|
||||
|
||||
If your board has a USB connector on it then most likely it is powered through
|
||||
this when connected to your PC. Otherwise you will need to power it directly.
|
||||
Please refer to the documentation for your board for further details.
|
||||
|
||||
Getting the firmware
|
||||
--------------------
|
||||
|
||||
The first thing you need to do is download the most recent MicroPython firmware
|
||||
.bin file to load onto your ESP32 device. You can download it from the
|
||||
`MicroPython downloads page <https://micropython.org/download#esp32>`_.
|
||||
From here, you have 3 main choices:
|
||||
|
||||
* Stable firmware builds
|
||||
* Daily firmware builds
|
||||
* Daily firmware builds with SPIRAM support
|
||||
|
||||
If you are just starting with MicroPython, the best bet is to go for the Stable
|
||||
firmware builds. If you are an advanced, experienced MicroPython ESP32 user
|
||||
who would like to follow development closely and help with testing new
|
||||
features, there are daily builds. If your board has SPIRAM support you can
|
||||
use either the standard firmware or the firmware with SPIRAM support, and in
|
||||
the latter case you will have access to more RAM for Python objects.
|
||||
|
||||
Deploying the firmware
|
||||
----------------------
|
||||
|
||||
Once you have the MicroPython firmware you need to load it onto your ESP32 device.
|
||||
There are two main steps to do this: first you need to put your device in
|
||||
bootloader mode, and second you need to copy across the firmware. The exact
|
||||
procedure for these steps is highly dependent on the particular board and you will
|
||||
need to refer to its documentation for details.
|
||||
|
||||
Fortunately, most boards have a USB connector, a USB-serial convertor, and the DTR
|
||||
and RTS pins wired in a special way then deploying the firmware should be easy as
|
||||
all steps can be done automatically. Boards that have such features
|
||||
include the Adafruit Feather HUZZAH32, M5Stack, Wemos LOLIN32, and TinyPICO
|
||||
boards, along with the Espressif DevKitC, PICO-KIT, WROVER-KIT dev-kits.
|
||||
|
||||
For best results it is recommended to first erase the entire flash of your
|
||||
device before putting on new MicroPython firmware.
|
||||
|
||||
Currently we only support esptool.py to copy across the firmware. You can find
|
||||
this tool here: `<https://github.com/espressif/esptool/>`__, or install it
|
||||
using pip::
|
||||
|
||||
pip install esptool
|
||||
|
||||
Versions starting with 1.3 support both Python 2.7 and Python 3.4 (or newer).
|
||||
An older version (at least 1.2.1 is needed) works fine but will require Python
|
||||
2.7.
|
||||
|
||||
Using esptool.py you can erase the flash with the command::
|
||||
|
||||
esptool.py --port /dev/ttyUSB0 erase_flash
|
||||
|
||||
And then deploy the new firmware using::
|
||||
|
||||
esptool.py --chip esp32 --port /dev/ttyUSB0 write_flash -z 0x1000 esp32-20180511-v1.9.4.bin
|
||||
|
||||
Notes:
|
||||
|
||||
* You might need to change the "port" setting to something else relevant for your
|
||||
PC
|
||||
* You may need to reduce the baudrate if you get errors when flashing
|
||||
(eg down to 115200 by adding ``--baud 115200`` into the command)
|
||||
* For some boards with a particular FlashROM configuration you may need to
|
||||
change the flash mode (eg by adding ``-fm dio`` into the command)
|
||||
* The filename of the firmware should match the file that you have
|
||||
|
||||
If the above commands run without error then MicroPython should be installed on
|
||||
your board!
|
||||
|
||||
Serial prompt
|
||||
-------------
|
||||
|
||||
Once you have the firmware on the device you can access the REPL (Python prompt)
|
||||
over UART0 (GPIO1=TX, GPIO3=RX), which might be connected to a USB-serial
|
||||
convertor, depending on your board. The baudrate is 115200.
|
||||
|
||||
From here you can now follow the ESP8266 tutorial, because these two Espressif chips
|
||||
are very similar when it comes to using MicroPython on them. The ESP8266 tutorial
|
||||
is found at :ref:`esp8266_tutorial` (but skip the Introduction section).
|
||||
|
||||
Troubleshooting installation problems
|
||||
-------------------------------------
|
||||
|
||||
If you experience problems during flashing or with running firmware immediately
|
||||
after it, here are troubleshooting recommendations:
|
||||
|
||||
* Be aware of and try to exclude hardware problems. There are 2 common
|
||||
problems: bad power source quality, and worn-out/defective FlashROM.
|
||||
Speaking of power source, not just raw amperage is important, but also low
|
||||
ripple and noise/EMI in general. The most reliable and convenient power
|
||||
source is a USB port.
|
||||
|
||||
* The flashing instructions above use flashing speed of 460800 baud, which is
|
||||
good compromise between speed and stability. However, depending on your
|
||||
module/board, USB-UART convertor, cables, host OS, etc., the above baud
|
||||
rate may be too high and lead to errors. Try a more common 115200 baud
|
||||
rate instead in such cases.
|
||||
|
||||
* To catch incorrect flash content (e.g. from a defective sector on a chip),
|
||||
add ``--verify`` switch to the commands above.
|
||||
|
||||
* If you still experience problems with flashing the firmware please
|
||||
refer to esptool.py project page, https://github.com/espressif/esptool
|
||||
for additional documentation and a bug tracker where you can report problems.
|
||||
|
||||
* If you are able to flash the firmware but the ``--verify`` option returns
|
||||
errors even after multiple retries the you may have a defective FlashROM chip.
|
@@ -0,0 +1,44 @@
|
||||
Accessing peripherals directly via registers
|
||||
============================================
|
||||
|
||||
The ESP32's peripherals can be controlled via direct register reads and writes.
|
||||
This requires reading the datasheet to know what registers to use and what
|
||||
values to write to them. The following example shows how to turn on and change
|
||||
the prescaler of the MCPWM0 peripheral.
|
||||
|
||||
.. code-block:: python3
|
||||
|
||||
from micropython import const
|
||||
from machine import mem32
|
||||
|
||||
# Define the register addresses that will be used.
|
||||
DR_REG_DPORT_BASE = const(0x3FF00000)
|
||||
DPORT_PERIP_CLK_EN_REG = const(DR_REG_DPORT_BASE + 0x0C0)
|
||||
DPORT_PERIP_RST_EN_REG = const(DR_REG_DPORT_BASE + 0x0C4)
|
||||
DPORT_PWM0_CLK_EN = const(1 << 17)
|
||||
MCPWM0 = const(0x3FF5E000)
|
||||
MCPWM1 = const(0x3FF6C000)
|
||||
|
||||
# Enable CLK and disable RST.
|
||||
print(hex(mem32[DPORT_PERIP_CLK_EN_REG] & 0xffffffff))
|
||||
print(hex(mem32[DPORT_PERIP_RST_EN_REG] & 0xffffffff))
|
||||
mem32[DPORT_PERIP_CLK_EN_REG] |= DPORT_PWM0_CLK_EN
|
||||
mem32[DPORT_PERIP_RST_EN_REG] &= ~DPORT_PWM0_CLK_EN
|
||||
print(hex(mem32[DPORT_PERIP_CLK_EN_REG] & 0xffffffff))
|
||||
print(hex(mem32[DPORT_PERIP_RST_EN_REG] & 0xffffffff))
|
||||
|
||||
# Change the MCPWM0 prescaler.
|
||||
print(hex(mem32[MCPWM0])) # read PWM_CLK_CFG_REG (reset value = 0)
|
||||
mem32[MCPWM0] = 0x55 # change PWM_CLK_PRESCALE
|
||||
print(hex(mem32[MCPWM0])) # read PWM_CLK_CFG_REG
|
||||
|
||||
Note that before a peripheral can be used its clock must be enabled and it must
|
||||
be taken out of reset. In the above example the following registers are used
|
||||
for this:
|
||||
|
||||
- ``DPORT_PERI_CLK_EN_REG``: used to enable a peripheral clock
|
||||
|
||||
- ``DPORT_PERI_RST_EN_REG``: used to reset (or take out of reset) a peripheral
|
||||
|
||||
The MCPWM0 peripheral is in bit position 17 of the above two registers, hence
|
||||
the value of ``DPORT_PWM0_CLK_EN``.
|
115
components/language/micropython/docs/esp32/tutorial/pwm.rst
Normal file
115
components/language/micropython/docs/esp32/tutorial/pwm.rst
Normal file
@@ -0,0 +1,115 @@
|
||||
.. _esp32_pwm:
|
||||
|
||||
Pulse Width Modulation
|
||||
======================
|
||||
|
||||
Pulse width modulation (PWM) is a way to get an artificial analog output on a
|
||||
digital pin. It achieves this by rapidly toggling the pin from low to high.
|
||||
There are two parameters associated with this: the frequency of the toggling,
|
||||
and the duty cycle. The duty cycle is defined to be how long the pin is high
|
||||
compared with the length of a single period (low plus high time). Maximum
|
||||
duty cycle is when the pin is high all of the time, and minimum is when it is
|
||||
low all of the time.
|
||||
|
||||
* More comprehensive example with all 16 PWM channels and 8 timers::
|
||||
|
||||
from machine import Pin, PWM
|
||||
try:
|
||||
f = 100 # Hz
|
||||
d = 1024 // 16 # 6.25%
|
||||
pins = (15, 2, 4, 16, 18, 19, 22, 23, 25, 26, 27, 14 , 12, 13, 32, 33)
|
||||
pwms = []
|
||||
for i, pin in enumerate(pins):
|
||||
pwms.append(PWM(Pin(pin), freq=f * (i // 2 + 1), duty= 1023 if i==15 else d * (i + 1)))
|
||||
print(pwms[i])
|
||||
finally:
|
||||
for pwm in pwms:
|
||||
try:
|
||||
pwm.deinit()
|
||||
except:
|
||||
pass
|
||||
|
||||
Output is::
|
||||
|
||||
PWM(Pin(15), freq=100, duty=64, resolution=10, mode=0, channel=0, timer=0)
|
||||
PWM(Pin(2), freq=100, duty=128, resolution=10, mode=0, channel=1, timer=0)
|
||||
PWM(Pin(4), freq=200, duty=192, resolution=10, mode=0, channel=2, timer=1)
|
||||
PWM(Pin(16), freq=200, duty=256, resolution=10, mode=0, channel=3, timer=1)
|
||||
PWM(Pin(18), freq=300, duty=320, resolution=10, mode=0, channel=4, timer=2)
|
||||
PWM(Pin(19), freq=300, duty=384, resolution=10, mode=0, channel=5, timer=2)
|
||||
PWM(Pin(22), freq=400, duty=448, resolution=10, mode=0, channel=6, timer=3)
|
||||
PWM(Pin(23), freq=400, duty=512, resolution=10, mode=0, channel=7, timer=3)
|
||||
PWM(Pin(25), freq=500, duty=576, resolution=10, mode=1, channel=0, timer=0)
|
||||
PWM(Pin(26), freq=500, duty=640, resolution=10, mode=1, channel=1, timer=0)
|
||||
PWM(Pin(27), freq=600, duty=704, resolution=10, mode=1, channel=2, timer=1)
|
||||
PWM(Pin(14), freq=600, duty=768, resolution=10, mode=1, channel=3, timer=1)
|
||||
PWM(Pin(12), freq=700, duty=832, resolution=10, mode=1, channel=4, timer=2)
|
||||
PWM(Pin(13), freq=700, duty=896, resolution=10, mode=1, channel=5, timer=2)
|
||||
PWM(Pin(32), freq=800, duty=960, resolution=10, mode=1, channel=6, timer=3)
|
||||
PWM(Pin(33), freq=800, duty=1023, resolution=10, mode=1, channel=7, timer=3)
|
||||
|
||||
* Example of a smooth frequency change::
|
||||
|
||||
from utime import sleep
|
||||
from machine import Pin, PWM
|
||||
|
||||
F_MIN = 500
|
||||
F_MAX = 1000
|
||||
|
||||
f = F_MIN
|
||||
delta_f = 1
|
||||
|
||||
p = PWM(Pin(5), f)
|
||||
print(p)
|
||||
|
||||
while True:
|
||||
p.freq(f)
|
||||
|
||||
sleep(10 / F_MIN)
|
||||
|
||||
f += delta_f
|
||||
if f >= F_MAX or f <= F_MIN:
|
||||
delta_f = -delta_f
|
||||
|
||||
See PWM wave at Pin(5) with an oscilloscope.
|
||||
|
||||
* Example of a smooth duty change::
|
||||
|
||||
from utime import sleep
|
||||
from machine import Pin, PWM
|
||||
|
||||
DUTY_MAX = 2**16 - 1
|
||||
|
||||
duty_u16 = 0
|
||||
delta_d = 16
|
||||
|
||||
p = PWM(Pin(5), 1000, duty_u16=duty_u16)
|
||||
print(p)
|
||||
|
||||
while True:
|
||||
p.duty_u16(duty_u16)
|
||||
|
||||
sleep(1 / 1000)
|
||||
|
||||
duty_u16 += delta_d
|
||||
if duty_u16 >= DUTY_MAX:
|
||||
duty_u16 = DUTY_MAX
|
||||
delta_d = -delta_d
|
||||
elif duty_u16 <= 0:
|
||||
duty_u16 = 0
|
||||
delta_d = -delta_d
|
||||
|
||||
See PWM wave at Pin(5) with an oscilloscope.
|
||||
|
||||
Note: the Pin.OUT mode does not need to be specified. The channel is initialized
|
||||
to PWM mode internally once for each Pin that is passed to the PWM constructor.
|
||||
|
||||
The following code is wrong::
|
||||
|
||||
pwm = PWM(Pin(5, Pin.OUT), freq=1000, duty=512) # Pin(5) in PWM mode here
|
||||
pwm = PWM(Pin(5, Pin.OUT), freq=500, duty=256) # Pin(5) in OUT mode here, PWM is off
|
||||
|
||||
Use this code instead::
|
||||
|
||||
pwm = PWM(Pin(5), freq=1000, duty=512)
|
||||
pwm.init(freq=500, duty=256)
|
211
components/language/micropython/docs/esp8266/general.rst
Normal file
211
components/language/micropython/docs/esp8266/general.rst
Normal file
@@ -0,0 +1,211 @@
|
||||
.. _esp8266_general:
|
||||
|
||||
General information about the ESP8266 port
|
||||
==========================================
|
||||
|
||||
ESP8266 is a popular WiFi-enabled System-on-Chip (SoC) by Espressif Systems.
|
||||
|
||||
Multitude of boards
|
||||
-------------------
|
||||
|
||||
There is a multitude of modules and boards from different sources which carry
|
||||
the ESP8266 chip. MicroPython tries to provide a generic port which would run on
|
||||
as many boards/modules as possible, but there may be limitations. Adafruit
|
||||
Feather HUZZAH board is taken as a reference board for the port (for example,
|
||||
testing is performed on it). If you have another board, please make sure you
|
||||
have a datasheet, schematics and other reference materials for your board
|
||||
handy to look up various aspects of your board functioning.
|
||||
|
||||
To make a generic ESP8266 port and support as many boards as possible,
|
||||
the following design and implementation decision were made:
|
||||
|
||||
* GPIO pin numbering is based on ESP8266 chip numbering, not some "logical"
|
||||
numbering of a particular board. Please have the manual/pin diagram of your board
|
||||
at hand to find correspondence between your board pins and actual ESP8266 pins.
|
||||
We also encourage users of various boards to share this mapping via MicroPython
|
||||
forum, with the idea to collect community-maintained reference materials
|
||||
eventually.
|
||||
* All pins which make sense to support, are supported by MicroPython
|
||||
(for example, pins which are used to connect SPI flash
|
||||
are not exposed, as they're unlikely useful for anything else, and
|
||||
operating on them will lead to board lock-up). However, any particular
|
||||
board may expose only subset of pins. Consult your board reference manual.
|
||||
* Some boards may lack external pins/internal connectivity to support
|
||||
ESP8266 deepsleep mode.
|
||||
|
||||
|
||||
Technical specifications and SoC datasheets
|
||||
-------------------------------------------
|
||||
|
||||
The datasheets and other reference material for ESP8266 chip are available
|
||||
from the vendor site: http://bbs.espressif.com/viewtopic.php?f=67&t=225 .
|
||||
They are the primary reference for the chip technical specifications, capabilities,
|
||||
operating modes, internal functioning, etc.
|
||||
|
||||
For your convenience, some of technical specifications are provided below:
|
||||
|
||||
* Architecture: Xtensa lx106
|
||||
* CPU frequency: 80MHz overclockable to 160MHz
|
||||
* Total RAM available: 96KB (part of it reserved for system)
|
||||
* BootROM: 64KB
|
||||
* Internal FlashROM: None
|
||||
* External FlashROM: code and data, via SPI Flash. Normal sizes 512KB-4MB.
|
||||
* GPIO: 16 + 1 (GPIOs are multiplexed with other functions, including
|
||||
external FlashROM, UART, deep sleep wake-up, etc.)
|
||||
* UART: One RX/TX UART (no hardware handshaking), one TX-only UART.
|
||||
* SPI: 2 SPI interfaces (one used for FlashROM).
|
||||
* I2C: No native external I2C (bitbang implementation available on any pins).
|
||||
* I2S: 1.
|
||||
* Programming: using BootROM bootloader from UART. Due to external FlashROM
|
||||
and always-available BootROM bootloader, ESP8266 is not brickable.
|
||||
|
||||
|
||||
Scarcity of runtime resources
|
||||
-----------------------------
|
||||
|
||||
ESP8266 has very modest resources (first of all, RAM memory). So, please
|
||||
avoid allocating too big container objects (lists, dictionaries) and
|
||||
buffers. There is also no full-fledged OS to keep track of resources
|
||||
and automatically clean them up, so that's the task of a user/user
|
||||
application: please be sure to close open files, sockets, etc. as soon
|
||||
as possible after use.
|
||||
|
||||
|
||||
Boot process
|
||||
------------
|
||||
|
||||
On boot, MicroPython EPS8266 port executes ``_boot.py`` script from internal
|
||||
frozen modules. It mounts filesystem in FlashROM, or if it's not available,
|
||||
performs first-time setup of the module and creates the filesystem. This
|
||||
part of the boot process is considered fixed, and not available for customization
|
||||
for end users (even if you build from source, please refrain from changes to
|
||||
it; customization of early boot process is available only to advanced users
|
||||
and developers, who can diagnose themselves any issues arising from
|
||||
modifying the standard process).
|
||||
|
||||
Once the filesystem is mounted, ``boot.py`` is executed from it. The standard
|
||||
version of this file is created during first-time module set up and has
|
||||
commands to start a WebREPL daemon (disabled by default, configurable
|
||||
with ``webrepl_setup`` module), etc. This
|
||||
file is customizable by end users (for example, you may want to set some
|
||||
parameters or add other services which should be run on
|
||||
a module start-up). But keep in mind that incorrect modifications to boot.py
|
||||
may still lead to boot loops or lock ups, requiring to reflash a module
|
||||
from scratch. (In particular, it's recommended that you use either
|
||||
``webrepl_setup`` module or manual editing to configure WebREPL, but not
|
||||
both).
|
||||
|
||||
As a final step of boot procedure, ``main.py`` is executed from filesystem,
|
||||
if exists. This file is a hook to start up a user application each time
|
||||
on boot (instead of going to REPL). For small test applications, you may
|
||||
name them directly as ``main.py``, and upload to module, but instead it's
|
||||
recommended to keep your application(s) in separate files, and have just
|
||||
the following in ``main.py``::
|
||||
|
||||
import my_app
|
||||
my_app.main()
|
||||
|
||||
This will allow to keep the structure of your application clear, as well as
|
||||
allow to install multiple applications on a board, and switch among them.
|
||||
|
||||
|
||||
Known Issues
|
||||
------------
|
||||
|
||||
Real-time clock
|
||||
~~~~~~~~~~~~~~~
|
||||
|
||||
RTC in ESP8266 has very bad accuracy, drift may be seconds per minute. As
|
||||
a workaround, to measure short enough intervals you can use
|
||||
``time.time()``, etc. functions, and for wall clock time, synchronize from
|
||||
the net using included ``ntptime.py`` module.
|
||||
|
||||
Due to limitations of the ESP8266 chip the internal real-time clock (RTC)
|
||||
will overflow every 7:45h. If a long-term working RTC time is required then
|
||||
``time()`` or ``localtime()`` must be called at least once within 7 hours.
|
||||
MicroPython will then handle the overflow.
|
||||
|
||||
Simultaneous operation of STA_IF and AP_IF
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Simultaneous operation of STA_IF and AP_IF interfaces is supported.
|
||||
|
||||
However, due to restrictions of the hardware, there may be performance
|
||||
issues in the AP_IF, if the STA_IF is not connected and searching.
|
||||
An application should manage these interfaces and for example
|
||||
deactivate the STA_IF in environments where only the AP_IF is used.
|
||||
|
||||
Sockets and WiFi buffers overflow
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Socket instances remain active until they are explicitly closed. This has two
|
||||
consequences. Firstly they occupy RAM, so an application which opens sockets
|
||||
without closing them may eventually run out of memory. Secondly not properly
|
||||
closed socket can cause the low-level part of the vendor WiFi stack to emit
|
||||
``Lmac`` errors. This occurs if data comes in for a socket and is not
|
||||
processed in a timely manner. This can overflow the WiFi stack input queue
|
||||
and lead to a deadlock. The only recovery is by a hard reset.
|
||||
|
||||
The above may also happen after an application terminates and quits to the REPL
|
||||
for any reason including an exception. Subsequent arrival of data provokes the
|
||||
failure with the above error message repeatedly issued. So, sockets should be
|
||||
closed in any case, regardless whether an application terminates successfully
|
||||
or by an exception, for example using try/finally::
|
||||
|
||||
sock = socket(...)
|
||||
try:
|
||||
# Use sock
|
||||
finally:
|
||||
sock.close()
|
||||
|
||||
|
||||
SSL/TLS limitations
|
||||
~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
ESP8266 uses `axTLS <http://axtls.sourceforge.net/>`_ library, which is one
|
||||
of the smallest TLS libraries with compatible licensing. However, it
|
||||
also has some known issues/limitations:
|
||||
|
||||
1. No support for Diffie-Hellman (DH) key exchange and Elliptic-curve
|
||||
cryptography (ECC). This means it can't work with sites which require
|
||||
the use of these features (it works ok with the typical sites that use
|
||||
RSA certificates).
|
||||
2. Half-duplex communication nature. axTLS uses a single buffer for both
|
||||
sending and receiving, which leads to considerable memory saving and
|
||||
works well with protocols like HTTP. But there may be problems with
|
||||
protocols which don't follow classic request-response model.
|
||||
|
||||
Besides axTLS's own limitations, the configuration used for MicroPython is
|
||||
highly optimized for code size, which leads to additional limitations
|
||||
(these may be lifted in the future):
|
||||
|
||||
3. Optimized RSA algorithms are not enabled, which may lead to slow
|
||||
SSL handshakes.
|
||||
4. Session Reuse is not enabled, which means every connection must undergo
|
||||
the full, expensive SSL handshake.
|
||||
|
||||
Besides axTLS specific limitations described above, there's another generic
|
||||
limitation with usage of TLS on the low-memory devices:
|
||||
|
||||
5. The TLS standard specifies the maximum length of the TLS record (unit
|
||||
of TLS communication, the entire record must be buffered before it can
|
||||
be processed) as 16KB. That's almost half of the available ESP8266 memory,
|
||||
and inside a more or less advanced application would be hard to allocate
|
||||
due to memory fragmentation issues. As a compromise, a smaller buffer is
|
||||
used, with the idea that the most interesting usage for SSL would be
|
||||
accessing various REST APIs, which usually require much smaller messages.
|
||||
The buffers size is on the order of 5KB, and is adjusted from time to
|
||||
time, taking as a reference being able to access https://google.com .
|
||||
The smaller buffer however means that some sites can't be accessed using
|
||||
it, and it's not possible to stream large amounts of data. axTLS does
|
||||
have support for TLS's Max Fragment Size extension, but no HTTPS website
|
||||
does, so use of the extension is really only effective for local
|
||||
communication with other devices.
|
||||
|
||||
There are also some not implemented features specifically in MicroPython's
|
||||
``ssl`` module based on axTLS:
|
||||
|
||||
6. Certificates are not validated (this makes connections susceptible
|
||||
to man-in-the-middle attacks).
|
||||
7. There is no support for client certificates (scheduled to be fixed in
|
||||
1.9.4 release).
|
Binary file not shown.
After Width: | Height: | Size: 78 KiB |
466
components/language/micropython/docs/esp8266/quickref.rst
Normal file
466
components/language/micropython/docs/esp8266/quickref.rst
Normal file
@@ -0,0 +1,466 @@
|
||||
.. _esp8266_quickref:
|
||||
|
||||
Quick reference for the ESP8266
|
||||
===============================
|
||||
|
||||
.. image:: img/adafruit_products_pinoutstop.jpg
|
||||
:alt: Adafruit Feather HUZZAH board
|
||||
:width: 640px
|
||||
|
||||
The Adafruit Feather HUZZAH board (image attribution: Adafruit).
|
||||
|
||||
Below is a quick reference for ESP8266-based boards. If it is your first time
|
||||
working with this board please consider reading the following sections first:
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
|
||||
general.rst
|
||||
tutorial/index.rst
|
||||
|
||||
Installing MicroPython
|
||||
----------------------
|
||||
|
||||
See the corresponding section of tutorial: :ref:`intro`. It also includes
|
||||
a troubleshooting subsection.
|
||||
|
||||
General board control
|
||||
---------------------
|
||||
|
||||
The MicroPython REPL is on UART0 (GPIO1=TX, GPIO3=RX) at baudrate 115200.
|
||||
Tab-completion is useful to find out what methods an object has.
|
||||
Paste mode (ctrl-E) is useful to paste a large slab of Python code into
|
||||
the REPL.
|
||||
|
||||
The :mod:`machine` module::
|
||||
|
||||
import machine
|
||||
|
||||
machine.freq() # get the current frequency of the CPU
|
||||
machine.freq(160000000) # set the CPU frequency to 160 MHz
|
||||
|
||||
The :mod:`esp` module::
|
||||
|
||||
import esp
|
||||
|
||||
esp.osdebug(None) # turn off vendor O/S debugging messages
|
||||
esp.osdebug(0) # redirect vendor O/S debugging messages to UART(0)
|
||||
|
||||
Networking
|
||||
----------
|
||||
|
||||
The :mod:`network` module::
|
||||
|
||||
import network
|
||||
|
||||
wlan = network.WLAN(network.STA_IF) # create station interface
|
||||
wlan.active(True) # activate the interface
|
||||
wlan.scan() # scan for access points
|
||||
wlan.isconnected() # check if the station is connected to an AP
|
||||
wlan.connect('essid', 'password') # connect to an AP
|
||||
wlan.config('mac') # get the interface's MAC address
|
||||
wlan.ifconfig() # get the interface's IP/netmask/gw/DNS addresses
|
||||
|
||||
ap = network.WLAN(network.AP_IF) # create access-point interface
|
||||
ap.active(True) # activate the interface
|
||||
ap.config(essid='ESP-AP') # set the ESSID of the access point
|
||||
|
||||
A useful function for connecting to your local WiFi network is::
|
||||
|
||||
def do_connect():
|
||||
import network
|
||||
wlan = network.WLAN(network.STA_IF)
|
||||
wlan.active(True)
|
||||
if not wlan.isconnected():
|
||||
print('connecting to network...')
|
||||
wlan.connect('essid', 'password')
|
||||
while not wlan.isconnected():
|
||||
pass
|
||||
print('network config:', wlan.ifconfig())
|
||||
|
||||
Once the network is established the :mod:`socket <socket>` module can be used
|
||||
to create and use TCP/UDP sockets as usual.
|
||||
|
||||
Delay and timing
|
||||
----------------
|
||||
|
||||
Use the :mod:`time <time>` module::
|
||||
|
||||
import time
|
||||
|
||||
time.sleep(1) # sleep for 1 second
|
||||
time.sleep_ms(500) # sleep for 500 milliseconds
|
||||
time.sleep_us(10) # sleep for 10 microseconds
|
||||
start = time.ticks_ms() # get millisecond counter
|
||||
delta = time.ticks_diff(time.ticks_ms(), start) # compute time difference
|
||||
|
||||
Timers
|
||||
------
|
||||
|
||||
Virtual (RTOS-based) timers are supported. Use the :ref:`machine.Timer <machine.Timer>` class
|
||||
with timer ID of -1::
|
||||
|
||||
from machine import Timer
|
||||
|
||||
tim = Timer(-1)
|
||||
tim.init(period=5000, mode=Timer.ONE_SHOT, callback=lambda t:print(1))
|
||||
tim.init(period=2000, mode=Timer.PERIODIC, callback=lambda t:print(2))
|
||||
|
||||
The period is in milliseconds.
|
||||
|
||||
Pins and GPIO
|
||||
-------------
|
||||
|
||||
Use the :ref:`machine.Pin <machine.Pin>` class::
|
||||
|
||||
from machine import Pin
|
||||
|
||||
p0 = Pin(0, Pin.OUT) # create output pin on GPIO0
|
||||
p0.on() # set pin to "on" (high) level
|
||||
p0.off() # set pin to "off" (low) level
|
||||
p0.value(1) # set pin to on/high
|
||||
|
||||
p2 = Pin(2, Pin.IN) # create input pin on GPIO2
|
||||
print(p2.value()) # get value, 0 or 1
|
||||
|
||||
p4 = Pin(4, Pin.IN, Pin.PULL_UP) # enable internal pull-up resistor
|
||||
p5 = Pin(5, Pin.OUT, value=1) # set pin high on creation
|
||||
|
||||
Available pins are: 0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 16, which correspond
|
||||
to the actual GPIO pin numbers of ESP8266 chip. Note that many end-user
|
||||
boards use their own adhoc pin numbering (marked e.g. D0, D1, ...). As
|
||||
MicroPython supports different boards and modules, physical pin numbering
|
||||
was chosen as the lowest common denominator. For mapping between board
|
||||
logical pins and physical chip pins, consult your board documentation.
|
||||
|
||||
Note that Pin(1) and Pin(3) are REPL UART TX and RX respectively.
|
||||
Also note that Pin(16) is a special pin (used for wakeup from deepsleep
|
||||
mode) and may be not available for use with higher-level classes like
|
||||
``Neopixel``.
|
||||
|
||||
There's a higher-level abstraction :ref:`machine.Signal <machine.Signal>`
|
||||
which can be used to invert a pin. Useful for illuminating active-low LEDs
|
||||
using ``on()`` or ``value(1)``.
|
||||
|
||||
UART (serial bus)
|
||||
-----------------
|
||||
|
||||
See :ref:`machine.UART <machine.UART>`. ::
|
||||
|
||||
from machine import UART
|
||||
uart = UART(0, baudrate=9600)
|
||||
uart.write('hello')
|
||||
uart.read(5) # read up to 5 bytes
|
||||
|
||||
Two UARTs are available. UART0 is on Pins 1 (TX) and 3 (RX). UART0 is
|
||||
bidirectional, and by default is used for the REPL. UART1 is on Pins 2
|
||||
(TX) and 8 (RX) however Pin 8 is used to connect the flash chip, so
|
||||
UART1 is TX only.
|
||||
|
||||
When UART0 is attached to the REPL, all incoming chars on UART(0) go
|
||||
straight to stdin so uart.read() will always return None. Use
|
||||
sys.stdin.read() if it's needed to read characters from the UART(0)
|
||||
while it's also used for the REPL (or detach, read, then reattach).
|
||||
When detached the UART(0) can be used for other purposes.
|
||||
|
||||
If there are no objects in any of the dupterm slots when the REPL is
|
||||
started (on hard or soft reset) then UART(0) is automatically attached.
|
||||
Without this, the only way to recover a board without a REPL would be to
|
||||
completely erase and reflash (which would install the default boot.py which
|
||||
attaches the REPL).
|
||||
|
||||
To detach the REPL from UART0, use::
|
||||
|
||||
import os
|
||||
os.dupterm(None, 1)
|
||||
|
||||
The REPL is attached by default. If you have detached it, to reattach
|
||||
it use::
|
||||
|
||||
import os, machine
|
||||
uart = machine.UART(0, 115200)
|
||||
os.dupterm(uart, 1)
|
||||
|
||||
PWM (pulse width modulation)
|
||||
----------------------------
|
||||
|
||||
PWM can be enabled on all pins except Pin(16). There is a single frequency
|
||||
for all channels, with range between 1 and 1000 (measured in Hz). The duty
|
||||
cycle is between 0 and 1023 inclusive.
|
||||
|
||||
Use the ``machine.PWM`` class::
|
||||
|
||||
from machine import Pin, PWM
|
||||
|
||||
pwm0 = PWM(Pin(0)) # create PWM object from a pin
|
||||
pwm0.freq() # get current frequency
|
||||
pwm0.freq(1000) # set frequency
|
||||
pwm0.duty() # get current duty cycle
|
||||
pwm0.duty(200) # set duty cycle
|
||||
pwm0.deinit() # turn off PWM on the pin
|
||||
|
||||
pwm2 = PWM(Pin(2), freq=500, duty=512) # create and configure in one go
|
||||
|
||||
ADC (analog to digital conversion)
|
||||
----------------------------------
|
||||
|
||||
ADC is available on a dedicated pin.
|
||||
Note that input voltages on the ADC pin must be between 0v and 1.0v.
|
||||
|
||||
Use the :ref:`machine.ADC <machine.ADC>` class::
|
||||
|
||||
from machine import ADC
|
||||
|
||||
adc = ADC(0) # create ADC object on ADC pin
|
||||
adc.read() # read value, 0-1024
|
||||
|
||||
Software SPI bus
|
||||
----------------
|
||||
|
||||
There are two SPI drivers. One is implemented in software (bit-banging)
|
||||
and works on all pins, and is accessed via the :ref:`machine.SoftSPI <machine.SoftSPI>`
|
||||
class::
|
||||
|
||||
from machine import Pin, SoftSPI
|
||||
|
||||
# construct an SPI bus on the given pins
|
||||
# polarity is the idle state of SCK
|
||||
# phase=0 means sample on the first edge of SCK, phase=1 means the second
|
||||
spi = SoftSPI(baudrate=100000, polarity=1, phase=0, sck=Pin(0), mosi=Pin(2), miso=Pin(4))
|
||||
|
||||
spi.init(baudrate=200000) # set the baudrate
|
||||
|
||||
spi.read(10) # read 10 bytes on MISO
|
||||
spi.read(10, 0xff) # read 10 bytes while outputting 0xff on MOSI
|
||||
|
||||
buf = bytearray(50) # create a buffer
|
||||
spi.readinto(buf) # read into the given buffer (reads 50 bytes in this case)
|
||||
spi.readinto(buf, 0xff) # read into the given buffer and output 0xff on MOSI
|
||||
|
||||
spi.write(b'12345') # write 5 bytes on MOSI
|
||||
|
||||
buf = bytearray(4) # create a buffer
|
||||
spi.write_readinto(b'1234', buf) # write to MOSI and read from MISO into the buffer
|
||||
spi.write_readinto(buf, buf) # write buf to MOSI and read MISO back into buf
|
||||
|
||||
|
||||
Hardware SPI bus
|
||||
----------------
|
||||
|
||||
The hardware SPI is faster (up to 80Mhz), but only works on following pins:
|
||||
``MISO`` is GPIO12, ``MOSI`` is GPIO13, and ``SCK`` is GPIO14. It has the same
|
||||
methods as the bitbanging SPI class above, except for the pin parameters for the
|
||||
constructor and init (as those are fixed)::
|
||||
|
||||
from machine import Pin, SPI
|
||||
|
||||
hspi = SPI(1, baudrate=80000000, polarity=0, phase=0)
|
||||
|
||||
(``SPI(0)`` is used for FlashROM and not available to users.)
|
||||
|
||||
I2C bus
|
||||
-------
|
||||
|
||||
The I2C driver is implemented in software and works on all pins,
|
||||
and is accessed via the :ref:`machine.I2C <machine.I2C>` class (which is an
|
||||
alias of :ref:`machine.SoftI2C <machine.SoftI2C>`)::
|
||||
|
||||
from machine import Pin, I2C
|
||||
|
||||
# construct an I2C bus
|
||||
i2c = I2C(scl=Pin(5), sda=Pin(4), freq=100000)
|
||||
|
||||
i2c.readfrom(0x3a, 4) # read 4 bytes from peripheral device with address 0x3a
|
||||
i2c.writeto(0x3a, '12') # write '12' to peripheral device with address 0x3a
|
||||
|
||||
buf = bytearray(10) # create a buffer with 10 bytes
|
||||
i2c.writeto(0x3a, buf) # write the given buffer to the peripheral
|
||||
|
||||
Real time clock (RTC)
|
||||
---------------------
|
||||
|
||||
See :ref:`machine.RTC <machine.RTC>` ::
|
||||
|
||||
from machine import RTC
|
||||
|
||||
rtc = RTC()
|
||||
rtc.datetime((2017, 8, 23, 1, 12, 48, 0, 0)) # set a specific date and time
|
||||
rtc.datetime() # get date and time
|
||||
|
||||
# synchronize with ntp
|
||||
# need to be connected to wifi
|
||||
import ntptime
|
||||
ntptime.settime() # set the rtc datetime from the remote server
|
||||
rtc.datetime() # get the date and time in UTC
|
||||
|
||||
.. note:: Not all methods are implemented: `RTC.now()`, `RTC.irq(handler=*) <RTC.irq>`
|
||||
(using a custom handler), `RTC.init()` and `RTC.deinit()` are
|
||||
currently not supported.
|
||||
|
||||
WDT (Watchdog timer)
|
||||
--------------------
|
||||
|
||||
See :ref:`machine.WDT <machine.WDT>`. ::
|
||||
|
||||
from machine import WDT
|
||||
|
||||
# enable the WDT
|
||||
wdt = WDT()
|
||||
wdt.feed()
|
||||
|
||||
Deep-sleep mode
|
||||
---------------
|
||||
|
||||
Connect GPIO16 to the reset pin (RST on HUZZAH). Then the following code
|
||||
can be used to sleep, wake and check the reset cause::
|
||||
|
||||
import machine
|
||||
|
||||
# configure RTC.ALARM0 to be able to wake the device
|
||||
rtc = machine.RTC()
|
||||
rtc.irq(trigger=rtc.ALARM0, wake=machine.DEEPSLEEP)
|
||||
|
||||
# check if the device woke from a deep sleep
|
||||
if machine.reset_cause() == machine.DEEPSLEEP_RESET:
|
||||
print('woke from a deep sleep')
|
||||
|
||||
# set RTC.ALARM0 to fire after 10 seconds (waking the device)
|
||||
rtc.alarm(rtc.ALARM0, 10000)
|
||||
|
||||
# put the device to sleep
|
||||
machine.deepsleep()
|
||||
|
||||
OneWire driver
|
||||
--------------
|
||||
|
||||
The OneWire driver is implemented in software and works on all pins::
|
||||
|
||||
from machine import Pin
|
||||
import onewire
|
||||
|
||||
ow = onewire.OneWire(Pin(12)) # create a OneWire bus on GPIO12
|
||||
ow.scan() # return a list of devices on the bus
|
||||
ow.reset() # reset the bus
|
||||
ow.readbyte() # read a byte
|
||||
ow.writebyte(0x12) # write a byte on the bus
|
||||
ow.write('123') # write bytes on the bus
|
||||
ow.select_rom(b'12345678') # select a specific device by its ROM code
|
||||
|
||||
There is a specific driver for DS18S20 and DS18B20 devices::
|
||||
|
||||
import time, ds18x20
|
||||
ds = ds18x20.DS18X20(ow)
|
||||
roms = ds.scan()
|
||||
ds.convert_temp()
|
||||
time.sleep_ms(750)
|
||||
for rom in roms:
|
||||
print(ds.read_temp(rom))
|
||||
|
||||
Be sure to put a 4.7k pull-up resistor on the data line. Note that
|
||||
the ``convert_temp()`` method must be called each time you want to
|
||||
sample the temperature.
|
||||
|
||||
NeoPixel driver
|
||||
---------------
|
||||
|
||||
Use the ``neopixel`` module::
|
||||
|
||||
from machine import Pin
|
||||
from neopixel import NeoPixel
|
||||
|
||||
pin = Pin(0, Pin.OUT) # set GPIO0 to output to drive NeoPixels
|
||||
np = NeoPixel(pin, 8) # create NeoPixel driver on GPIO0 for 8 pixels
|
||||
np[0] = (255, 255, 255) # set the first pixel to white
|
||||
np.write() # write data to all pixels
|
||||
r, g, b = np[0] # get first pixel colour
|
||||
|
||||
.. Warning::
|
||||
By default ``NeoPixel`` is configured to control the more popular *800kHz*
|
||||
units. It is possible to use alternative timing to control other (typically
|
||||
400kHz) devices by passing ``timing=0`` when constructing the
|
||||
``NeoPixel`` object.
|
||||
|
||||
For low-level driving of a NeoPixel see `machine.bitstream`.
|
||||
|
||||
APA102 driver
|
||||
-------------
|
||||
|
||||
Use the ``apa102`` module::
|
||||
|
||||
from machine import Pin
|
||||
from apa102 import APA102
|
||||
|
||||
clock = Pin(14, Pin.OUT) # set GPIO14 to output to drive the clock
|
||||
data = Pin(13, Pin.OUT) # set GPIO13 to output to drive the data
|
||||
apa = APA102(clock, data, 8) # create APA102 driver on the clock and the data pin for 8 pixels
|
||||
apa[0] = (255, 255, 255, 31) # set the first pixel to white with a maximum brightness of 31
|
||||
apa.write() # write data to all pixels
|
||||
r, g, b, brightness = apa[0] # get first pixel colour
|
||||
|
||||
For low-level driving of an APA102::
|
||||
|
||||
import esp
|
||||
esp.apa102_write(clock_pin, data_pin, rgbi_buf)
|
||||
|
||||
DHT driver
|
||||
----------
|
||||
|
||||
The DHT driver is implemented in software and works on all pins::
|
||||
|
||||
import dht
|
||||
import machine
|
||||
|
||||
d = dht.DHT11(machine.Pin(4))
|
||||
d.measure()
|
||||
d.temperature() # eg. 23 (°C)
|
||||
d.humidity() # eg. 41 (% RH)
|
||||
|
||||
d = dht.DHT22(machine.Pin(4))
|
||||
d.measure()
|
||||
d.temperature() # eg. 23.6 (°C)
|
||||
d.humidity() # eg. 41.3 (% RH)
|
||||
|
||||
SSD1306 driver
|
||||
--------------
|
||||
|
||||
Driver for SSD1306 monochrome OLED displays. See tutorial :ref:`ssd1306`. ::
|
||||
|
||||
from machine import Pin, I2C
|
||||
import ssd1306
|
||||
|
||||
i2c = I2C(scl=Pin(5), sda=Pin(4), freq=100000)
|
||||
display = ssd1306.SSD1306_I2C(128, 64, i2c)
|
||||
|
||||
display.text('Hello World', 0, 0, 1)
|
||||
display.show()
|
||||
|
||||
WebREPL (web browser interactive prompt)
|
||||
----------------------------------------
|
||||
|
||||
WebREPL (REPL over WebSockets, accessible via a web browser) is an
|
||||
experimental feature available in ESP8266 port. Download web client
|
||||
from https://github.com/micropython/webrepl (hosted version available
|
||||
at http://micropython.org/webrepl), and configure it by executing::
|
||||
|
||||
import webrepl_setup
|
||||
|
||||
and following on-screen instructions. After reboot, it will be available
|
||||
for connection. If you disabled automatic start-up on boot, you may
|
||||
run configured daemon on demand using::
|
||||
|
||||
import webrepl
|
||||
webrepl.start()
|
||||
|
||||
The supported way to use WebREPL is by connecting to ESP8266 access point,
|
||||
but the daemon is also started on STA interface if it is active, so if your
|
||||
router is set up and works correctly, you may also use WebREPL while connected
|
||||
to your normal Internet access point (use the ESP8266 AP connection method
|
||||
if you face any issues).
|
||||
|
||||
Besides terminal/command prompt access, WebREPL also has provision for file
|
||||
transfer (both upload and download). Web client has buttons for the
|
||||
corresponding functions, or you can use command-line client ``webrepl_cli.py``
|
||||
from the repository above.
|
||||
|
||||
See the MicroPython forum for other community-supported alternatives
|
||||
to transfer files to ESP8266.
|
@@ -0,0 +1,19 @@
|
||||
Analog to Digital Conversion
|
||||
============================
|
||||
|
||||
The ESP8266 has a single pin (separate to the GPIO pins) which can be used to
|
||||
read analog voltages and convert them to a digital value. You can construct
|
||||
such an ADC pin object using::
|
||||
|
||||
>>> import machine
|
||||
>>> adc = machine.ADC(0)
|
||||
|
||||
Then read its value with::
|
||||
|
||||
>>> adc.read()
|
||||
58
|
||||
|
||||
The values returned from the ``read()`` function are between 0 (for 0.0 volts)
|
||||
and 1024 (for 1.0 volts). Please note that this input can only tolerate a
|
||||
maximum of 1.0 volts and you must use a voltage divider circuit to measure
|
||||
larger voltages.
|
@@ -0,0 +1,91 @@
|
||||
Controlling APA102 LEDs
|
||||
=======================
|
||||
|
||||
APA102 LEDs, also known as DotStar LEDs, are individually addressable
|
||||
full-colour RGB LEDs, generally in a string formation. They differ from
|
||||
NeoPixels in that they require two pins to control - both a Clock and Data pin.
|
||||
They can operate at a much higher data and PWM frequencies than NeoPixels and
|
||||
are more suitable for persistence-of-vision effects.
|
||||
|
||||
To create an APA102 object do the following::
|
||||
|
||||
>>> import machine, apa102
|
||||
>>> strip = apa102.APA102(machine.Pin(5), machine.Pin(4), 60)
|
||||
|
||||
This configures an 60 pixel APA102 strip with clock on GPIO5 and data on GPIO4.
|
||||
You can adjust the pin numbers and the number of pixels to suit your needs.
|
||||
|
||||
The RGB colour data, as well as a brightness level, is sent to the APA102 in a
|
||||
certain order. Usually this is ``(Red, Green, Blue, Brightness)``.
|
||||
If you are using one of the newer APA102C LEDs the green and blue are swapped,
|
||||
so the order is ``(Red, Blue, Green, Brightness)``.
|
||||
The APA102 has more of a square lens while the APA102C has more of a round one.
|
||||
If you are using a APA102C strip and would prefer to provide colours in RGB
|
||||
order instead of RBG, you can customise the tuple colour order like so::
|
||||
|
||||
>>> strip.ORDER = (0, 2, 1, 3)
|
||||
|
||||
To set the colour of pixels use::
|
||||
|
||||
>>> strip[0] = (255, 255, 255, 31) # set to white, full brightness
|
||||
>>> strip[1] = (255, 0, 0, 31) # set to red, full brightness
|
||||
>>> strip[2] = (0, 255, 0, 15) # set to green, half brightness
|
||||
>>> strip[3] = (0, 0, 255, 7) # set to blue, quarter brightness
|
||||
|
||||
Use the ``write()`` method to output the colours to the LEDs::
|
||||
|
||||
>>> strip.write()
|
||||
|
||||
Demonstration::
|
||||
|
||||
import time
|
||||
import machine, apa102
|
||||
|
||||
# 1M strip with 60 LEDs
|
||||
strip = apa102.APA102(machine.Pin(5), machine.Pin(4), 60)
|
||||
|
||||
brightness = 1 # 0 is off, 1 is dim, 31 is max
|
||||
|
||||
# Helper for converting 0-255 offset to a colour tuple
|
||||
def wheel(offset, brightness):
|
||||
# The colours are a transition r - g - b - back to r
|
||||
offset = 255 - offset
|
||||
if offset < 85:
|
||||
return (255 - offset * 3, 0, offset * 3, brightness)
|
||||
if offset < 170:
|
||||
offset -= 85
|
||||
return (0, offset * 3, 255 - offset * 3, brightness)
|
||||
offset -= 170
|
||||
return (offset * 3, 255 - offset * 3, 0, brightness)
|
||||
|
||||
# Demo 1: RGB RGB RGB
|
||||
red = 0xff0000
|
||||
green = red >> 8
|
||||
blue = red >> 16
|
||||
for i in range(strip.n):
|
||||
colour = red >> (i % 3) * 8
|
||||
strip[i] = ((colour & red) >> 16, (colour & green) >> 8, (colour & blue), brightness)
|
||||
strip.write()
|
||||
|
||||
# Demo 2: Show all colours of the rainbow
|
||||
for i in range(strip.n):
|
||||
strip[i] = wheel((i * 256 // strip.n) % 255, brightness)
|
||||
strip.write()
|
||||
|
||||
# Demo 3: Fade all pixels together through rainbow colours, offset each pixel
|
||||
for r in range(5):
|
||||
for n in range(256):
|
||||
for i in range(strip.n):
|
||||
strip[i] = wheel(((i * 256 // strip.n) + n) & 255, brightness)
|
||||
strip.write()
|
||||
time.sleep_ms(25)
|
||||
|
||||
# Demo 4: Same colour, different brightness levels
|
||||
for b in range(31,-1,-1):
|
||||
strip[0] = (255, 153, 0, b)
|
||||
strip.write()
|
||||
time.sleep_ms(250)
|
||||
|
||||
# End: Turn off all the LEDs
|
||||
strip.fill((0, 0, 0, 0))
|
||||
strip.write()
|
@@ -0,0 +1,65 @@
|
||||
Temperature and Humidity
|
||||
========================
|
||||
|
||||
DHT (Digital Humidity & Temperature) sensors are low cost digital sensors with
|
||||
capacitive humidity sensors and thermistors to measure the surrounding air.
|
||||
They feature a chip that handles analog to digital conversion and provide a
|
||||
1-wire interface. Newer sensors additionally provide an I2C interface.
|
||||
|
||||
The DHT11 (blue) and DHT22 (white) sensors provide the same 1-wire interface,
|
||||
however, the DHT22 requires a separate object as it has more complex
|
||||
calculation. DHT22 have 1 decimal place resolution for both humidity and
|
||||
temperature readings. DHT11 have whole number for both.
|
||||
|
||||
A custom 1-wire protocol, which is different to Dallas 1-wire, is used to get
|
||||
the measurements from the sensor. The payload consists of a humidity value,
|
||||
a temperature value and a checksum.
|
||||
|
||||
To use the 1-wire interface, construct the objects referring to their data pin::
|
||||
|
||||
>>> import dht
|
||||
>>> import machine
|
||||
>>> d = dht.DHT11(machine.Pin(4))
|
||||
|
||||
>>> import dht
|
||||
>>> import machine
|
||||
>>> d = dht.DHT22(machine.Pin(4))
|
||||
|
||||
Then measure and read their values with::
|
||||
|
||||
>>> d.measure()
|
||||
>>> d.temperature()
|
||||
>>> d.humidity()
|
||||
|
||||
Values returned from ``temperature()`` are in degrees Celsius and values
|
||||
returned from ``humidity()`` are a percentage of relative humidity.
|
||||
|
||||
The DHT11 can be called no more than once per second and the DHT22 once every
|
||||
two seconds for most accurate results. Sensor accuracy will degrade over time.
|
||||
Each sensor supports a different operating range. Refer to the product
|
||||
datasheets for specifics.
|
||||
|
||||
In 1-wire mode, only three of the four pins are used and in I2C mode, all four
|
||||
pins are used. Older sensors may still have 4 pins even though they do not
|
||||
support I2C. The 3rd pin is simply not connected.
|
||||
|
||||
Pin configurations:
|
||||
|
||||
Sensor without I2C in 1-wire mode (eg. DHT11, DHT22, AM2301, AM2302):
|
||||
|
||||
1=VDD, 2=Data, 3=NC, 4=GND
|
||||
|
||||
Sensor with I2C in 1-wire mode (eg. DHT12, AM2320, AM2321, AM2322):
|
||||
|
||||
1=VDD, 2=Data, 3=GND, 4=GND
|
||||
|
||||
Sensor with I2C in I2C mode (eg. DHT12, AM2320, AM2321, AM2322):
|
||||
|
||||
1=VDD, 2=SDA, 3=GND, 4=SCL
|
||||
|
||||
You should use pull-up resistors for the Data, SDA and SCL pins.
|
||||
|
||||
To make newer I2C sensors work in backwards compatible 1-wire mode, you must
|
||||
connect both pins 3 and 4 to GND. This disables the I2C interface.
|
||||
|
||||
DHT22 sensors are now sold under the name AM2302 and are otherwise identical.
|
@@ -0,0 +1,69 @@
|
||||
The internal filesystem
|
||||
=======================
|
||||
|
||||
If your devices has 1Mbyte or more of storage then it will be set up (upon first
|
||||
boot) to contain a filesystem. This filesystem uses the FAT format and is
|
||||
stored in the flash after the MicroPython firmware.
|
||||
|
||||
Creating and reading files
|
||||
--------------------------
|
||||
|
||||
MicroPython on the ESP8266 supports the standard way of accessing files in
|
||||
Python, using the built-in ``open()`` function.
|
||||
|
||||
To create a file try::
|
||||
|
||||
>>> f = open('data.txt', 'w')
|
||||
>>> f.write('some data')
|
||||
9
|
||||
>>> f.close()
|
||||
|
||||
The "9" is the number of bytes that were written with the ``write()`` method.
|
||||
Then you can read back the contents of this new file using::
|
||||
|
||||
>>> f = open('data.txt')
|
||||
>>> f.read()
|
||||
'some data'
|
||||
>>> f.close()
|
||||
|
||||
Note that the default mode when opening a file is to open it in read-only mode,
|
||||
and as a text file. Specify ``'wb'`` as the second argument to ``open()`` to
|
||||
open for writing in binary mode, and ``'rb'`` to open for reading in binary
|
||||
mode.
|
||||
|
||||
Listing file and more
|
||||
---------------------
|
||||
|
||||
The os module can be used for further control over the filesystem. First
|
||||
import the module::
|
||||
|
||||
>>> import os
|
||||
|
||||
Then try listing the contents of the filesystem::
|
||||
|
||||
>>> os.listdir()
|
||||
['boot.py', 'port_config.py', 'data.txt']
|
||||
|
||||
You can make directories::
|
||||
|
||||
>>> os.mkdir('dir')
|
||||
|
||||
And remove entries::
|
||||
|
||||
>>> os.remove('data.txt')
|
||||
|
||||
Start up scripts
|
||||
----------------
|
||||
|
||||
There are two files that are treated specially by the ESP8266 when it starts up:
|
||||
boot.py and main.py. The boot.py script is executed first (if it exists) and
|
||||
then once it completes the main.py script is executed. You can create these
|
||||
files yourself and populate them with the code that you want to run when the
|
||||
device starts up.
|
||||
|
||||
Accessing the filesystem via WebREPL
|
||||
------------------------------------
|
||||
|
||||
You can access the filesystem over WebREPL using the web client in a browser
|
||||
or via the command-line tool. Please refer to Quick Reference and Tutorial
|
||||
sections for more information about WebREPL.
|
@@ -0,0 +1,35 @@
|
||||
.. _esp8266_tutorial:
|
||||
|
||||
MicroPython tutorial for ESP8266
|
||||
================================
|
||||
|
||||
This tutorial is intended to get you started using MicroPython on the ESP8266
|
||||
system-on-a-chip. If it is your first time it is recommended to follow the
|
||||
tutorial through in the order below. Otherwise the sections are mostly self
|
||||
contained, so feel free to skip to those that interest you.
|
||||
|
||||
The tutorial does not assume that you know Python, but it also does not attempt
|
||||
to explain any of the details of the Python language. Instead it provides you
|
||||
with commands that are ready to run, and hopes that you will gain a bit of
|
||||
Python knowledge along the way. To learn more about Python itself please refer
|
||||
to `<https://www.python.org>`__.
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
:numbered:
|
||||
|
||||
intro.rst
|
||||
repl.rst
|
||||
filesystem.rst
|
||||
network_basics.rst
|
||||
network_tcp.rst
|
||||
pins.rst
|
||||
pwm.rst
|
||||
adc.rst
|
||||
powerctrl.rst
|
||||
onewire.rst
|
||||
neopixel.rst
|
||||
apa102.rst
|
||||
dht.rst
|
||||
ssd1306.rst
|
||||
nextsteps.rst
|
212
components/language/micropython/docs/esp8266/tutorial/intro.rst
Normal file
212
components/language/micropython/docs/esp8266/tutorial/intro.rst
Normal file
@@ -0,0 +1,212 @@
|
||||
.. _intro:
|
||||
|
||||
Getting started with MicroPython on the ESP8266
|
||||
===============================================
|
||||
|
||||
Using MicroPython is a great way to get the most of your ESP8266 board. And
|
||||
vice versa, the ESP8266 chip is a great platform for using MicroPython. This
|
||||
tutorial will guide you through setting up MicroPython, getting a prompt, using
|
||||
WebREPL, connecting to the network and communicating with the Internet, using
|
||||
the hardware peripherals, and controlling some external components.
|
||||
|
||||
Let's get started!
|
||||
|
||||
Requirements
|
||||
------------
|
||||
|
||||
The first thing you need is a board with an ESP8266 chip. The MicroPython
|
||||
software supports the ESP8266 chip itself and any board should work. The main
|
||||
characteristic of a board is how much flash it has, how the GPIO pins are
|
||||
connected to the outside world, and whether it includes a built-in USB-serial
|
||||
convertor to make the UART available to your PC.
|
||||
|
||||
The minimum requirement for flash size is 1Mbyte. There is also a special
|
||||
build for boards with 512KB, but it is highly limited comparing to the
|
||||
normal build: there is no support for filesystem, and thus features which
|
||||
depend on it won't work (WebREPL, upip, etc.). As such, 512KB build will
|
||||
be more interesting for users who build from source and fine-tune parameters
|
||||
for their particular application.
|
||||
|
||||
Names of pins will be given in this tutorial using the chip names (eg GPIO0)
|
||||
and it should be straightforward to find which pin this corresponds to on your
|
||||
particular board.
|
||||
|
||||
Powering the board
|
||||
------------------
|
||||
|
||||
If your board has a USB connector on it then most likely it is powered through
|
||||
this when connected to your PC. Otherwise you will need to power it directly.
|
||||
Please refer to the documentation for your board for further details.
|
||||
|
||||
Getting the firmware
|
||||
--------------------
|
||||
|
||||
The first thing you need to do is download the most recent MicroPython firmware
|
||||
.bin file to load onto your ESP8266 device. You can download it from the
|
||||
`MicroPython downloads page <http://micropython.org/download#esp8266>`_.
|
||||
From here, you have 3 main choices
|
||||
|
||||
* Stable firmware builds for 1024kb modules and above.
|
||||
* Daily firmware builds for 1024kb modules and above.
|
||||
* Daily firmware builds for 512kb modules.
|
||||
|
||||
If you are just starting with MicroPython, the best bet is to go for the Stable
|
||||
firmware builds. If you are an advanced, experienced MicroPython ESP8266 user
|
||||
who would like to follow development closely and help with testing new
|
||||
features, there are daily builds (note: you actually may need some
|
||||
development experience, e.g. being ready to follow git history to know
|
||||
what new changes and features were introduced).
|
||||
|
||||
Support for 512kb modules is provided on a feature preview basis. For end
|
||||
users, it's recommended to use modules with flash of 1024kb or more. As
|
||||
such, only daily builds for 512kb modules are provided.
|
||||
|
||||
Deploying the firmware
|
||||
----------------------
|
||||
|
||||
Once you have the MicroPython firmware (compiled code), you need to load it onto
|
||||
your ESP8266 device. There are two main steps to do this: first you
|
||||
need to put your device in boot-loader mode, and second you need to copy across
|
||||
the firmware. The exact procedure for these steps is highly dependent on the
|
||||
particular board and you will need to refer to its documentation for details.
|
||||
|
||||
If you have a board that has a USB connector, a USB-serial convertor, and has
|
||||
the DTR and RTS pins wired in a special way then deploying the firmware should
|
||||
be easy as all steps can be done automatically. Boards that have such features
|
||||
include the Adafruit Feather HUZZAH and NodeMCU boards.
|
||||
|
||||
If you do not have such a board, you need keep GPIO0 pulled to ground and reset
|
||||
the device by pulling the reset pin to ground and releasing it again to enter
|
||||
programming mode.
|
||||
|
||||
For best results it is recommended to first erase the entire flash of your
|
||||
device before putting on new MicroPython firmware.
|
||||
|
||||
Currently we only support esptool.py to copy across the firmware. You can find
|
||||
this tool here: `<https://github.com/espressif/esptool/>`__, or install it
|
||||
using pip::
|
||||
|
||||
pip install esptool
|
||||
|
||||
Versions starting with 1.3 support both Python 2.7 and Python 3.4 (or newer).
|
||||
An older version (at least 1.2.1 is needed) works fine but will require Python
|
||||
2.7.
|
||||
|
||||
Any other flashing program should work, so feel free to try them out or refer
|
||||
to the documentation for your board to see its recommendations.
|
||||
|
||||
Using esptool.py you can erase the flash with the command::
|
||||
|
||||
esptool.py --port /dev/ttyUSB0 erase_flash
|
||||
|
||||
And then deploy the new firmware using::
|
||||
|
||||
esptool.py --port /dev/ttyUSB0 --baud 460800 write_flash --flash_size=detect 0 esp8266-20170108-v1.8.7.bin
|
||||
|
||||
You might need to change the "port" setting to something else relevant for your
|
||||
PC. You may also need to reduce the baudrate if you get errors when flashing
|
||||
(eg down to 115200). The filename of the firmware should also match the file
|
||||
that you have.
|
||||
|
||||
For some boards with a particular FlashROM configuration (e.g. some variants of
|
||||
a NodeMCU board) you may need to manually set a compatible
|
||||
`SPI Flash Mode <https://github.com/espressif/esptool/wiki/SPI-Flash-Modes>`_.
|
||||
You'd usually pick the fastest option that is compatible with your device, but
|
||||
the ``-fm dout`` option (the slowest option) should have the best compatibility::
|
||||
|
||||
esptool.py --port /dev/ttyUSB0 --baud 460800 write_flash --flash_size=detect -fm dout 0 esp8266-20170108-v1.8.7.bin
|
||||
|
||||
If the above commands run without error then MicroPython should be installed on
|
||||
your board!
|
||||
|
||||
If you pulled GPIO0 manually to ground to enter programming mode, release it
|
||||
now and reset the device by again pulling the reset pin to ground for a short
|
||||
duration.
|
||||
|
||||
Serial prompt
|
||||
-------------
|
||||
|
||||
Once you have the firmware on the device you can access the REPL (Python prompt)
|
||||
over UART0 (GPIO1=TX, GPIO3=RX), which might be connected to a USB-serial
|
||||
convertor, depending on your board. The baudrate is 115200. The next part of
|
||||
the tutorial will discuss the prompt in more detail.
|
||||
|
||||
WiFi
|
||||
----
|
||||
|
||||
After a fresh install and boot the device configures itself as a WiFi access
|
||||
point (AP) that you can connect to. The ESSID is of the form MicroPython-xxxxxx
|
||||
where the x's are replaced with part of the MAC address of your device (so will
|
||||
be the same everytime, and most likely different for all ESP8266 chips). The
|
||||
password for the WiFi is micropythoN (note the upper-case N). Its IP address
|
||||
will be 192.168.4.1 once you connect to its network. WiFi configuration will
|
||||
be discussed in more detail later in the tutorial.
|
||||
|
||||
Troubleshooting installation problems
|
||||
-------------------------------------
|
||||
|
||||
If you experience problems during flashing or with running firmware immediately
|
||||
after it, here are troubleshooting recommendations:
|
||||
|
||||
* Be aware of and try to exclude hardware problems. There are 2 common problems:
|
||||
bad power source quality and worn-out/defective FlashROM. Speaking of power
|
||||
source, not just raw amperage is important, but also low ripple and noise/EMI
|
||||
in general. If you experience issues with self-made or wall-wart style power
|
||||
supply, try USB power from a computer. Unearthed power supplies are also known
|
||||
to cause problems as they source of increased EMI (electromagnetic interference)
|
||||
- at the very least, and may lead to electrical devices breakdown. So, you are
|
||||
advised to avoid using unearthed power connections when working with ESP8266
|
||||
and other boards. In regard to FlashROM hardware problems, there are independent
|
||||
(not related to MicroPython in any way) reports
|
||||
`(e.g.) <http://internetofhomethings.com/homethings/?p=538>`_
|
||||
that on some ESP8266 modules, FlashROM can be programmed as little as 20 times
|
||||
before programming errors occur. This is *much* less than 100,000 programming
|
||||
cycles cited for FlashROM chips of a type used with ESP8266 by reputable
|
||||
vendors, which points to either production rejects, or second-hand worn-out
|
||||
flash chips to be used on some (apparently cheap) modules/boards. You may want
|
||||
to use your best judgement about source, price, documentation, warranty,
|
||||
post-sales support for the modules/boards you purchase.
|
||||
|
||||
* The flashing instructions above use flashing speed of 460800 baud, which is
|
||||
good compromise between speed and stability. However, depending on your
|
||||
module/board, USB-UART convertor, cables, host OS, etc., the above baud
|
||||
rate may be too high and lead to errors. Try a more common 115200 baud
|
||||
rate instead in such cases.
|
||||
|
||||
* If lower baud rate didn't help, you may want to try older version of
|
||||
esptool.py, which had a different programming algorithm::
|
||||
|
||||
pip install esptool==1.0.1
|
||||
|
||||
This version doesn't support ``--flash_size=detect`` option, so you will
|
||||
need to specify FlashROM size explicitly (in megabits). It also requires
|
||||
Python 2.7, so you may need to use ``pip2`` instead of ``pip`` in the
|
||||
command above.
|
||||
|
||||
* The ``--flash_size`` option in the commands above is mandatory. Omitting
|
||||
it will lead to a corrupted firmware.
|
||||
|
||||
* To catch incorrect flash content (e.g. from a defective sector on a chip),
|
||||
add ``--verify`` switch to the commands above.
|
||||
|
||||
* Additionally, you can check the firmware integrity from a MicroPython REPL
|
||||
prompt (assuming you were able to flash it and ``--verify`` option doesn't
|
||||
report errors)::
|
||||
|
||||
import esp
|
||||
esp.check_fw()
|
||||
|
||||
If the last output value is True, the firmware is OK. Otherwise, it's
|
||||
corrupted and need to be reflashed correctly.
|
||||
|
||||
* If you experience any issues with another flashing application (not
|
||||
esptool.py), try esptool.py, it is a generally accepted flashing
|
||||
application in the ESP8266 community.
|
||||
|
||||
* If you still experience problems with even flashing the firmware, please
|
||||
refer to esptool.py project page, https://github.com/espressif/esptool
|
||||
for additional documentation and bug tracker where you can report problems.
|
||||
|
||||
* If you are able to flash firmware, but ``--verify`` option or
|
||||
``esp.check_fw()`` return errors even after multiple retries, you
|
||||
may have a defective FlashROM chip, as explained above.
|
@@ -0,0 +1,84 @@
|
||||
Controlling NeoPixels
|
||||
=====================
|
||||
|
||||
NeoPixels, also known as WS2812 LEDs, are full-colour LEDs that are connected in
|
||||
serial, are individually addressable, and can have their red, green and blue
|
||||
components set between 0 and 255. They require precise timing to control them
|
||||
and there is a special neopixel module to do just this.
|
||||
|
||||
To create a NeoPixel object do the following::
|
||||
|
||||
>>> import machine, neopixel
|
||||
>>> np = neopixel.NeoPixel(machine.Pin(4), 8)
|
||||
|
||||
This configures a NeoPixel strip on GPIO4 with 8 pixels. You can adjust the
|
||||
"4" (pin number) and the "8" (number of pixel) to suit your set up.
|
||||
|
||||
To set the colour of pixels use::
|
||||
|
||||
>>> np[0] = (255, 0, 0) # set to red, full brightness
|
||||
>>> np[1] = (0, 128, 0) # set to green, half brightness
|
||||
>>> np[2] = (0, 0, 64) # set to blue, quarter brightness
|
||||
|
||||
For LEDs with more than 3 colours, such as RGBW pixels or RGBY pixels, the
|
||||
NeoPixel class takes a ``bpp`` parameter. To setup a NeoPixel object for an
|
||||
RGBW Pixel, do the following::
|
||||
|
||||
>>> import machine, neopixel
|
||||
>>> np = neopixel.NeoPixel(machine.Pin(4), 8, bpp=4)
|
||||
|
||||
In a 4-bpp mode, remember to use 4-tuples instead of 3-tuples to set the colour.
|
||||
For example to set the first three pixels use::
|
||||
|
||||
>>> np[0] = (255, 0, 0, 128) # Orange in an RGBY Setup
|
||||
>>> np[1] = (0, 255, 0, 128) # Yellow-green in an RGBY Setup
|
||||
>>> np[2] = (0, 0, 255, 128) # Green-blue in an RGBY Setup
|
||||
|
||||
Then use the ``write()`` method to output the colours to the LEDs::
|
||||
|
||||
>>> np.write()
|
||||
|
||||
The following demo function makes a fancy show on the LEDs::
|
||||
|
||||
import time
|
||||
|
||||
def demo(np):
|
||||
n = np.n
|
||||
|
||||
# cycle
|
||||
for i in range(4 * n):
|
||||
for j in range(n):
|
||||
np[j] = (0, 0, 0)
|
||||
np[i % n] = (255, 255, 255)
|
||||
np.write()
|
||||
time.sleep_ms(25)
|
||||
|
||||
# bounce
|
||||
for i in range(4 * n):
|
||||
for j in range(n):
|
||||
np[j] = (0, 0, 128)
|
||||
if (i // n) % 2 == 0:
|
||||
np[i % n] = (0, 0, 0)
|
||||
else:
|
||||
np[n - 1 - (i % n)] = (0, 0, 0)
|
||||
np.write()
|
||||
time.sleep_ms(60)
|
||||
|
||||
# fade in/out
|
||||
for i in range(0, 4 * 256, 8):
|
||||
for j in range(n):
|
||||
if (i // 256) % 2 == 0:
|
||||
val = i & 0xff
|
||||
else:
|
||||
val = 255 - (i & 0xff)
|
||||
np[j] = (val, 0, 0)
|
||||
np.write()
|
||||
|
||||
# clear
|
||||
for i in range(n):
|
||||
np[i] = (0, 0, 0)
|
||||
np.write()
|
||||
|
||||
Execute it using::
|
||||
|
||||
>>> demo(np)
|
@@ -0,0 +1,81 @@
|
||||
Network basics
|
||||
==============
|
||||
|
||||
The network module is used to configure the WiFi connection. There are two WiFi
|
||||
interfaces, one for the station (when the ESP8266 connects to a router) and one
|
||||
for the access point (for other devices to connect to the ESP8266). Create
|
||||
instances of these objects using::
|
||||
|
||||
>>> import network
|
||||
>>> sta_if = network.WLAN(network.STA_IF)
|
||||
>>> ap_if = network.WLAN(network.AP_IF)
|
||||
|
||||
You can check if the interfaces are active by::
|
||||
|
||||
>>> sta_if.active()
|
||||
False
|
||||
>>> ap_if.active()
|
||||
True
|
||||
|
||||
You can also check the network settings of the interface by::
|
||||
|
||||
>>> ap_if.ifconfig()
|
||||
('192.168.4.1', '255.255.255.0', '192.168.4.1', '8.8.8.8')
|
||||
|
||||
The returned values are: IP address, netmask, gateway, DNS.
|
||||
|
||||
Configuration of the WiFi
|
||||
-------------------------
|
||||
|
||||
Upon a fresh install the ESP8266 is configured in access point mode, so the
|
||||
AP_IF interface is active and the STA_IF interface is inactive. You can
|
||||
configure the module to connect to your own network using the STA_IF interface.
|
||||
|
||||
First activate the station interface::
|
||||
|
||||
>>> sta_if.active(True)
|
||||
|
||||
Then connect to your WiFi network::
|
||||
|
||||
>>> sta_if.connect('<your ESSID>', '<your password>')
|
||||
|
||||
To check if the connection is established use::
|
||||
|
||||
>>> sta_if.isconnected()
|
||||
|
||||
Once established you can check the IP address::
|
||||
|
||||
>>> sta_if.ifconfig()
|
||||
('192.168.0.2', '255.255.255.0', '192.168.0.1', '8.8.8.8')
|
||||
|
||||
You can then disable the access-point interface if you no longer need it::
|
||||
|
||||
>>> ap_if.active(False)
|
||||
|
||||
Here is a function you can run (or put in your boot.py file) to automatically
|
||||
connect to your WiFi network::
|
||||
|
||||
def do_connect():
|
||||
import network
|
||||
sta_if = network.WLAN(network.STA_IF)
|
||||
if not sta_if.isconnected():
|
||||
print('connecting to network...')
|
||||
sta_if.active(True)
|
||||
sta_if.connect('<essid>', '<password>')
|
||||
while not sta_if.isconnected():
|
||||
pass
|
||||
print('network config:', sta_if.ifconfig())
|
||||
|
||||
Sockets
|
||||
-------
|
||||
|
||||
Once the WiFi is set up the way to access the network is by using sockets.
|
||||
A socket represents an endpoint on a network device, and when two sockets are
|
||||
connected together communication can proceed.
|
||||
Internet protocols are built on top of sockets, such as email (SMTP), the web
|
||||
(HTTP), telnet, ssh, among many others. Each of these protocols is assigned
|
||||
a specific port, which is just an integer. Given an IP address and a port
|
||||
number you can connect to a remote device and start talking with it.
|
||||
|
||||
The next part of the tutorial discusses how to use sockets to do some common
|
||||
and useful network tasks.
|
@@ -0,0 +1,123 @@
|
||||
Network - TCP sockets
|
||||
=====================
|
||||
|
||||
The building block of most of the internet is the TCP socket. These sockets
|
||||
provide a reliable stream of bytes between the connected network devices.
|
||||
This part of the tutorial will show how to use TCP sockets in a few different
|
||||
cases.
|
||||
|
||||
Star Wars Asciimation
|
||||
---------------------
|
||||
|
||||
The simplest thing to do is to download data from the internet. In this case
|
||||
we will use the Star Wars Asciimation service provided by the blinkenlights.nl
|
||||
website. It uses the telnet protocol on port 23 to stream data to anyone that
|
||||
connects. It's very simple to use because it doesn't require you to
|
||||
authenticate (give a username or password), you can just start downloading data
|
||||
straight away.
|
||||
|
||||
The first thing to do is make sure we have the socket module available::
|
||||
|
||||
>>> import socket
|
||||
|
||||
Then get the IP address of the server::
|
||||
|
||||
>>> addr_info = socket.getaddrinfo("towel.blinkenlights.nl", 23)
|
||||
|
||||
The ``getaddrinfo`` function actually returns a list of addresses, and each
|
||||
address has more information than we need. We want to get just the first valid
|
||||
address, and then just the IP address and port of the server. To do this use::
|
||||
|
||||
>>> addr = addr_info[0][-1]
|
||||
|
||||
If you type ``addr_info`` and ``addr`` at the prompt you will see exactly what
|
||||
information they hold.
|
||||
|
||||
Using the IP address we can make a socket and connect to the server::
|
||||
|
||||
>>> s = socket.socket()
|
||||
>>> s.connect(addr)
|
||||
|
||||
Now that we are connected we can download and display the data::
|
||||
|
||||
>>> while True:
|
||||
... data = s.recv(500)
|
||||
... print(str(data, 'utf8'), end='')
|
||||
...
|
||||
|
||||
When this loop executes it should start showing the animation (use ctrl-C to
|
||||
interrupt it).
|
||||
|
||||
You should also be able to run this same code on your PC using normal Python if
|
||||
you want to try it out there.
|
||||
|
||||
HTTP GET request
|
||||
----------------
|
||||
|
||||
The next example shows how to download a webpage. HTTP uses port 80 and you
|
||||
first need to send a "GET" request before you can download anything. As part
|
||||
of the request you need to specify the page to retrieve.
|
||||
|
||||
Let's define a function that can download and print a URL::
|
||||
|
||||
def http_get(url):
|
||||
import socket
|
||||
_, _, host, path = url.split('/', 3)
|
||||
addr = socket.getaddrinfo(host, 80)[0][-1]
|
||||
s = socket.socket()
|
||||
s.connect(addr)
|
||||
s.send(bytes('GET /%s HTTP/1.0\r\nHost: %s\r\n\r\n' % (path, host), 'utf8'))
|
||||
while True:
|
||||
data = s.recv(100)
|
||||
if data:
|
||||
print(str(data, 'utf8'), end='')
|
||||
else:
|
||||
break
|
||||
s.close()
|
||||
|
||||
Then you can try::
|
||||
|
||||
>>> http_get('http://micropython.org/ks/test.html')
|
||||
|
||||
This should retrieve the webpage and print the HTML to the console.
|
||||
|
||||
Simple HTTP server
|
||||
------------------
|
||||
|
||||
The following code creates an simple HTTP server which serves a single webpage
|
||||
that contains a table with the state of all the GPIO pins::
|
||||
|
||||
import machine
|
||||
pins = [machine.Pin(i, machine.Pin.IN) for i in (0, 2, 4, 5, 12, 13, 14, 15)]
|
||||
|
||||
html = """<!DOCTYPE html>
|
||||
<html>
|
||||
<head> <title>ESP8266 Pins</title> </head>
|
||||
<body> <h1>ESP8266 Pins</h1>
|
||||
<table border="1"> <tr><th>Pin</th><th>Value</th></tr> %s </table>
|
||||
</body>
|
||||
</html>
|
||||
"""
|
||||
|
||||
import socket
|
||||
addr = socket.getaddrinfo('0.0.0.0', 80)[0][-1]
|
||||
|
||||
s = socket.socket()
|
||||
s.bind(addr)
|
||||
s.listen(1)
|
||||
|
||||
print('listening on', addr)
|
||||
|
||||
while True:
|
||||
cl, addr = s.accept()
|
||||
print('client connected from', addr)
|
||||
cl_file = cl.makefile('rwb', 0)
|
||||
while True:
|
||||
line = cl_file.readline()
|
||||
if not line or line == b'\r\n':
|
||||
break
|
||||
rows = ['<tr><td>%s</td><td>%d</td></tr>' % (str(p), p.value()) for p in pins]
|
||||
response = html % '\n'.join(rows)
|
||||
cl.send('HTTP/1.0 200 OK\r\nContent-type: text/html\r\n\r\n')
|
||||
cl.send(response)
|
||||
cl.close()
|
@@ -0,0 +1,12 @@
|
||||
Next steps
|
||||
==========
|
||||
|
||||
That brings us to the end of the tutorial! Hopefully by now you have a good
|
||||
feel for the capabilities of MicroPython on the ESP8266 and understand how to
|
||||
control both the WiFi and IO aspects of the chip.
|
||||
|
||||
There are many features that were not covered in this tutorial. The best way
|
||||
to learn about them is to read the full documentation of the modules, and to
|
||||
experiment!
|
||||
|
||||
Good luck creating your Internet of Things devices!
|
@@ -0,0 +1,37 @@
|
||||
Controlling 1-wire devices
|
||||
==========================
|
||||
|
||||
The 1-wire bus is a serial bus that uses just a single wire for communication
|
||||
(in addition to wires for ground and power). The DS18B20 temperature sensor
|
||||
is a very popular 1-wire device, and here we show how to use the onewire module
|
||||
to read from such a device.
|
||||
|
||||
For the following code to work you need to have at least one DS18S20 or DS18B20 temperature
|
||||
sensor with its data line connected to GPIO12. You must also power the sensors
|
||||
and connect a 4.7k Ohm resistor between the data pin and the power pin. ::
|
||||
|
||||
import time
|
||||
import machine
|
||||
import onewire, ds18x20
|
||||
|
||||
# the device is on GPIO12
|
||||
dat = machine.Pin(12)
|
||||
|
||||
# create the onewire object
|
||||
ds = ds18x20.DS18X20(onewire.OneWire(dat))
|
||||
|
||||
# scan for devices on the bus
|
||||
roms = ds.scan()
|
||||
print('found devices:', roms)
|
||||
|
||||
# loop 10 times and print all temperatures
|
||||
for i in range(10):
|
||||
print('temperatures:', end=' ')
|
||||
ds.convert_temp()
|
||||
time.sleep_ms(750)
|
||||
for rom in roms:
|
||||
print(ds.read_temp(rom), end=' ')
|
||||
print()
|
||||
|
||||
Note that you must execute the ``convert_temp()`` function to initiate a
|
||||
temperature reading, then wait at least 750ms before reading the value.
|
@@ -0,0 +1,76 @@
|
||||
GPIO Pins
|
||||
=========
|
||||
|
||||
The way to connect your board to the external world, and control other
|
||||
components, is through the GPIO pins. Not all pins are available to use,
|
||||
in most cases only pins 0, 2, 4, 5, 12, 13, 14, 15, and 16 can be used.
|
||||
|
||||
The pins are available in the machine module, so make sure you import that
|
||||
first. Then you can create a pin using::
|
||||
|
||||
>>> pin = machine.Pin(0)
|
||||
|
||||
Here, the "0" is the pin that you want to access. Usually you want to
|
||||
configure the pin to be input or output, and you do this when constructing
|
||||
it. To make an input pin use::
|
||||
|
||||
>>> pin = machine.Pin(0, machine.Pin.IN, machine.Pin.PULL_UP)
|
||||
|
||||
You can either use PULL_UP or None for the input pull-mode. If it's
|
||||
not specified then it defaults to None, which is no pull resistor. GPIO16
|
||||
has no pull-up mode.
|
||||
You can read the value on the pin using::
|
||||
|
||||
>>> pin.value()
|
||||
0
|
||||
|
||||
The pin on your board may return 0 or 1 here, depending on what it's connected
|
||||
to. To make an output pin use::
|
||||
|
||||
>>> pin = machine.Pin(0, machine.Pin.OUT)
|
||||
|
||||
Then set its value using::
|
||||
|
||||
>>> pin.value(0)
|
||||
>>> pin.value(1)
|
||||
|
||||
Or::
|
||||
|
||||
>>> pin.off()
|
||||
>>> pin.on()
|
||||
|
||||
External interrupts
|
||||
-------------------
|
||||
|
||||
All pins except number 16 can be configured to trigger a hard interrupt if their
|
||||
input changes. You can set code (a callback function) to be executed on the
|
||||
trigger.
|
||||
|
||||
Let's first define a callback function, which must take a single argument,
|
||||
being the pin that triggered the function. We will make the function just print
|
||||
the pin::
|
||||
|
||||
>>> def callback(p):
|
||||
... print('pin change', p)
|
||||
|
||||
Next we will create two pins and configure them as inputs::
|
||||
|
||||
>>> from machine import Pin
|
||||
>>> p0 = Pin(0, Pin.IN)
|
||||
>>> p2 = Pin(2, Pin.IN)
|
||||
|
||||
An finally we need to tell the pins when to trigger, and the function to call
|
||||
when they detect an event::
|
||||
|
||||
>>> p0.irq(trigger=Pin.IRQ_FALLING, handler=callback)
|
||||
>>> p2.irq(trigger=Pin.IRQ_RISING | Pin.IRQ_FALLING, handler=callback)
|
||||
|
||||
We set pin 0 to trigger only on a falling edge of the input (when it goes from
|
||||
high to low), and set pin 2 to trigger on both a rising and falling edge. After
|
||||
entering this code you can apply high and low voltages to pins 0 and 2 to see
|
||||
the interrupt being executed.
|
||||
|
||||
A hard interrupt will trigger as soon as the event occurs and will interrupt any
|
||||
running code, including Python code. As such your callback functions are
|
||||
limited in what they can do (they cannot allocate memory, for example) and
|
||||
should be as short and simple as possible.
|
@@ -0,0 +1,61 @@
|
||||
Power control
|
||||
=============
|
||||
|
||||
The ESP8266 provides the ability to change the CPU frequency on the fly, and
|
||||
enter a deep-sleep state. Both can be used to manage power consumption.
|
||||
|
||||
Changing the CPU frequency
|
||||
--------------------------
|
||||
|
||||
The machine module has a function to get and set the CPU frequency. To get the
|
||||
current frequency use::
|
||||
|
||||
>>> import machine
|
||||
>>> machine.freq()
|
||||
80000000
|
||||
|
||||
By default the CPU runs at 80MHz. It can be changed to 160MHz if you need more
|
||||
processing power, at the expense of current consumption::
|
||||
|
||||
>>> machine.freq(160000000)
|
||||
>>> machine.freq()
|
||||
160000000
|
||||
|
||||
You can change to the higher frequency just while your code does the heavy
|
||||
processing and then change back when it's finished.
|
||||
|
||||
Deep-sleep mode
|
||||
---------------
|
||||
|
||||
The deep-sleep mode will shut down the ESP8266 and all its peripherals,
|
||||
including the WiFi (but not including the real-time-clock, which is used to wake
|
||||
the chip). This drastically reduces current consumption and is a good way to
|
||||
make devices that can run for a while on a battery.
|
||||
|
||||
To be able to use the deep-sleep feature you must connect GPIO16 to the reset
|
||||
pin (RST on the Adafruit Feather HUZZAH board). Then the following code can be
|
||||
used to sleep and wake the device::
|
||||
|
||||
import machine
|
||||
|
||||
# configure RTC.ALARM0 to be able to wake the device
|
||||
rtc = machine.RTC()
|
||||
rtc.irq(trigger=rtc.ALARM0, wake=machine.DEEPSLEEP)
|
||||
|
||||
# set RTC.ALARM0 to fire after 10 seconds (waking the device)
|
||||
rtc.alarm(rtc.ALARM0, 10000)
|
||||
|
||||
# put the device to sleep
|
||||
machine.deepsleep()
|
||||
|
||||
Note that when the chip wakes from a deep-sleep it is completely reset,
|
||||
including all of the memory. The boot scripts will run as usual and you can
|
||||
put code in them to check the reset cause to perhaps do something different if
|
||||
the device just woke from a deep-sleep. For example, to print the reset cause
|
||||
you can use::
|
||||
|
||||
if machine.reset_cause() == machine.DEEPSLEEP_RESET:
|
||||
print('woke from a deep sleep')
|
||||
else:
|
||||
print('power on or hard reset')
|
||||
|
@@ -0,0 +1,87 @@
|
||||
Pulse Width Modulation
|
||||
======================
|
||||
|
||||
Pulse width modulation (PWM) is a way to get an artificial analog output on a
|
||||
digital pin. It achieves this by rapidly toggling the pin from low to high.
|
||||
There are two parameters associated with this: the frequency of the toggling,
|
||||
and the duty cycle. The duty cycle is defined to be how long the pin is high
|
||||
compared with the length of a single period (low plus high time). Maximum
|
||||
duty cycle is when the pin is high all of the time, and minimum is when it is
|
||||
low all of the time.
|
||||
|
||||
On the ESP8266 the pins 0, 2, 4, 5, 12, 13, 14 and 15 all support PWM. The
|
||||
limitation is that they must all be at the same frequency, and the frequency
|
||||
must be between 1Hz and 1kHz.
|
||||
|
||||
To use PWM on a pin you must first create the pin object, for example::
|
||||
|
||||
>>> import machine
|
||||
>>> p12 = machine.Pin(12)
|
||||
|
||||
Then create the PWM object using::
|
||||
|
||||
>>> pwm12 = machine.PWM(p12)
|
||||
|
||||
You can set the frequency and duty cycle using::
|
||||
|
||||
>>> pwm12.freq(500)
|
||||
>>> pwm12.duty(512)
|
||||
|
||||
Note that the duty cycle is between 0 (all off) and 1023 (all on), with 512
|
||||
being a 50% duty. Values beyond this min/max will be clipped. If you
|
||||
print the PWM object then it will tell you its current configuration::
|
||||
|
||||
>>> pwm12
|
||||
PWM(12, freq=500, duty=512)
|
||||
|
||||
You can also call the ``freq()`` and ``duty()`` methods with no arguments to
|
||||
get their current values.
|
||||
|
||||
The pin will continue to be in PWM mode until you deinitialise it using::
|
||||
|
||||
>>> pwm12.deinit()
|
||||
|
||||
Fading an LED
|
||||
-------------
|
||||
|
||||
Let's use the PWM feature to fade an LED. Assuming your board has an LED
|
||||
connected to pin 2 (ESP-12 modules do) we can create an LED-PWM object using::
|
||||
|
||||
>>> led = machine.PWM(machine.Pin(2), freq=1000)
|
||||
|
||||
Notice that we can set the frequency in the PWM constructor.
|
||||
|
||||
For the next part we will use timing and some math, so import these modules::
|
||||
|
||||
>>> import time, math
|
||||
|
||||
Then create a function to pulse the LED::
|
||||
|
||||
>>> def pulse(l, t):
|
||||
... for i in range(20):
|
||||
... l.duty(int(math.sin(i / 10 * math.pi) * 500 + 500))
|
||||
... time.sleep_ms(t)
|
||||
|
||||
You can try this function out using::
|
||||
|
||||
>>> pulse(led, 50)
|
||||
|
||||
For a nice effect you can pulse many times in a row::
|
||||
|
||||
>>> for i in range(10):
|
||||
... pulse(led, 20)
|
||||
|
||||
Remember you can use ctrl-C to interrupt the code.
|
||||
|
||||
Control a hobby servo
|
||||
---------------------
|
||||
|
||||
Hobby servo motors can be controlled using PWM. They require a frequency of
|
||||
50Hz and then a duty between about 40 and 115, with 77 being the centre value.
|
||||
If you connect a servo to the power and ground pins, and then the signal line
|
||||
to pin 12 (other pins will work just as well), you can control the motor using::
|
||||
|
||||
>>> servo = machine.PWM(machine.Pin(12), freq=50)
|
||||
>>> servo.duty(40)
|
||||
>>> servo.duty(115)
|
||||
>>> servo.duty(77)
|
212
components/language/micropython/docs/esp8266/tutorial/repl.rst
Normal file
212
components/language/micropython/docs/esp8266/tutorial/repl.rst
Normal file
@@ -0,0 +1,212 @@
|
||||
Getting a MicroPython REPL prompt
|
||||
=================================
|
||||
|
||||
REPL stands for Read Evaluate Print Loop, and is the name given to the
|
||||
interactive MicroPython prompt that you can access on the ESP8266. Using the
|
||||
REPL is by far the easiest way to test out your code and run commands.
|
||||
|
||||
There are two ways to access the REPL: either via a wired connection through the
|
||||
UART serial port, or via WiFi.
|
||||
|
||||
REPL over the serial port
|
||||
-------------------------
|
||||
|
||||
The REPL is always available on the UART0 serial peripheral, which is connected
|
||||
to the pins GPIO1 for TX and GPIO3 for RX. The baudrate of the REPL is 115200.
|
||||
If your board has a USB-serial convertor on it then you should be able to access
|
||||
the REPL directly from your PC. Otherwise you will need to have a way of
|
||||
communicating with the UART.
|
||||
|
||||
To access the prompt over USB-serial you need to use a terminal emulator program.
|
||||
On Windows TeraTerm is a good choice, on Mac you can use the built-in ``screen``
|
||||
program, and Linux has ``picocom`` and ``minicom``. Of course, there are many
|
||||
other terminal programs that will work, so pick your favourite!
|
||||
|
||||
For example, on Linux you can try running::
|
||||
|
||||
picocom /dev/ttyUSB0 -b115200
|
||||
|
||||
Once you have made the connection over the serial port you can test if it is
|
||||
working by hitting enter a few times. You should see the Python REPL prompt,
|
||||
indicated by ``>>>``.
|
||||
|
||||
WebREPL - a prompt over WiFi
|
||||
----------------------------
|
||||
|
||||
WebREPL allows you to use the Python prompt over WiFi, connecting through a
|
||||
browser. The latest versions of Firefox and Chrome are supported.
|
||||
|
||||
For your convenience, WebREPL client is hosted at
|
||||
`<http://micropython.org/webrepl>`__. Alternatively, you can install it
|
||||
locally from the the GitHub repository
|
||||
`<https://github.com/micropython/webrepl>`__.
|
||||
|
||||
Before connecting to WebREPL, you should set a password and enable it via
|
||||
a normal serial connection. Initial versions of MicroPython for ESP8266
|
||||
came with WebREPL automatically enabled on the boot and with the
|
||||
ability to set a password via WiFi on the first connection, but as WebREPL
|
||||
was becoming more widely known and popular, the initial setup has switched
|
||||
to a wired connection for improved security::
|
||||
|
||||
import webrepl_setup
|
||||
|
||||
Follow the on-screen instructions and prompts. To make any changes active,
|
||||
you will need to reboot your device.
|
||||
|
||||
To use WebREPL connect your computer to the ESP8266's access point
|
||||
(MicroPython-xxxxxx, see the previous section about this). If you have
|
||||
already reconfigured your ESP8266 to connect to a router then you can
|
||||
skip this part.
|
||||
|
||||
Once you are on the same network as the ESP8266 you click the "Connect" button
|
||||
(if you are connecting via a router then you may need to change the IP address,
|
||||
by default the IP address is correct when connected to the ESP8266's access
|
||||
point). If the connection succeeds then you should see a password prompt.
|
||||
|
||||
Once you type the password configured at the setup step above, press Enter once
|
||||
more and you should get a prompt looking like ``>>>``. You can now start
|
||||
typing Python commands!
|
||||
|
||||
Using the REPL
|
||||
--------------
|
||||
|
||||
Once you have a prompt you can start experimenting! Anything you type at the
|
||||
prompt will be executed after you press the Enter key. MicroPython will run
|
||||
the code that you enter and print the result (if there is one). If there is an
|
||||
error with the text that you enter then an error message is printed.
|
||||
|
||||
Try typing the following at the prompt::
|
||||
|
||||
>>> print('hello esp8266!')
|
||||
hello esp8266!
|
||||
|
||||
Note that you shouldn't type the ``>>>`` arrows, they are there to indicate that
|
||||
you should type the text after it at the prompt. And then the line following is
|
||||
what the device should respond with. In the end, once you have entered the text
|
||||
``print("hello esp8266!")`` and pressed the Enter key, the output on your screen
|
||||
should look exactly like it does above.
|
||||
|
||||
If you already know some python you can now try some basic commands here. For
|
||||
example::
|
||||
|
||||
>>> 1 + 2
|
||||
3
|
||||
>>> 1 / 2
|
||||
0.5
|
||||
>>> 12**34
|
||||
4922235242952026704037113243122008064
|
||||
|
||||
If your board has an LED attached to GPIO2 (the ESP-12 modules do) then you can
|
||||
turn it on and off using the following code::
|
||||
|
||||
>>> import machine
|
||||
>>> pin = machine.Pin(2, machine.Pin.OUT)
|
||||
>>> pin.on()
|
||||
>>> pin.off()
|
||||
|
||||
Note that ``on`` method of a Pin might turn the LED off and ``off`` might
|
||||
turn it on (or vice versa), depending on how the LED is wired on your board.
|
||||
To resolve this, machine.Signal class is provided.
|
||||
|
||||
Line editing
|
||||
~~~~~~~~~~~~
|
||||
|
||||
You can edit the current line that you are entering using the left and right
|
||||
arrow keys to move the cursor, as well as the delete and backspace keys. Also,
|
||||
pressing Home or ctrl-A moves the cursor to the start of the line, and pressing
|
||||
End or ctrl-E moves to the end of the line.
|
||||
|
||||
Input history
|
||||
~~~~~~~~~~~~~
|
||||
|
||||
The REPL remembers a certain number of previous lines of text that you entered
|
||||
(up to 8 on the ESP8266). To recall previous lines use the up and down arrow
|
||||
keys.
|
||||
|
||||
Tab completion
|
||||
~~~~~~~~~~~~~~
|
||||
|
||||
Pressing the Tab key will do an auto-completion of the current word that you are
|
||||
entering. This can be very useful to find out functions and methods that a
|
||||
module or object has. Try it out by typing "ma" and then pressing Tab. It
|
||||
should complete to "machine" (assuming you imported machine in the above
|
||||
example). Then type "." and press Tab again to see a list of all the functions
|
||||
that the machine module has.
|
||||
|
||||
Line continuation and auto-indent
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Certain things that you type will need "continuing", that is, will need more
|
||||
lines of text to make a proper Python statement. In this case the prompt will
|
||||
change to ``...`` and the cursor will auto-indent the correct amount so you can
|
||||
start typing the next line straight away. Try this by defining the following
|
||||
function::
|
||||
|
||||
>>> def toggle(p):
|
||||
... p.value(not p.value())
|
||||
...
|
||||
...
|
||||
...
|
||||
>>>
|
||||
|
||||
In the above, you needed to press the Enter key three times in a row to finish
|
||||
the compound statement (that's the three lines with just dots on them). The
|
||||
other way to finish a compound statement is to press backspace to get to the
|
||||
start of the line, then press the Enter key. (If you did something wrong and
|
||||
want to escape the continuation mode then press ctrl-C; all lines will be
|
||||
ignored.)
|
||||
|
||||
The function you just defined allows you to toggle a pin. The pin object you
|
||||
created earlier should still exist (recreate it if it doesn't) and you can
|
||||
toggle the LED using::
|
||||
|
||||
>>> toggle(pin)
|
||||
|
||||
Let's now toggle the LED in a loop (if you don't have an LED then you can just
|
||||
print some text instead of calling toggle, to see the effect)::
|
||||
|
||||
>>> import time
|
||||
>>> while True:
|
||||
... toggle(pin)
|
||||
... time.sleep_ms(500)
|
||||
...
|
||||
...
|
||||
...
|
||||
>>>
|
||||
|
||||
This will toggle the LED at 1Hz (half a second on, half a second off). To stop
|
||||
the toggling press ctrl-C, which will raise a KeyboardInterrupt exception and
|
||||
break out of the loop.
|
||||
|
||||
The time module provides some useful functions for making delays and doing
|
||||
timing. Use tab completion to find out what they are and play around with them!
|
||||
|
||||
Paste mode
|
||||
~~~~~~~~~~
|
||||
|
||||
Pressing ctrl-E will enter a special paste mode. This allows you to copy and
|
||||
paste a chunk of text into the REPL. If you press ctrl-E you will see the
|
||||
paste-mode prompt::
|
||||
|
||||
paste mode; Ctrl-C to cancel, Ctrl-D to finish
|
||||
===
|
||||
|
||||
You can then paste (or type) your text in. Note that none of the special keys
|
||||
or commands work in paste mode (eg Tab or backspace), they are just accepted
|
||||
as-is. Press ctrl-D to finish entering the text and execute it.
|
||||
|
||||
Other control commands
|
||||
~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
There are four other control commands:
|
||||
|
||||
* Ctrl-A on a blank line will enter raw REPL mode. This is like a permanent
|
||||
paste mode, except that characters are not echoed back.
|
||||
|
||||
* Ctrl-B on a blank like goes to normal REPL mode.
|
||||
|
||||
* Ctrl-C cancels any input, or interrupts the currently running code.
|
||||
|
||||
* Ctrl-D on a blank line will do a soft reset.
|
||||
|
||||
Note that ctrl-A and ctrl-D do not work with WebREPL.
|
@@ -0,0 +1,93 @@
|
||||
.. _ssd1306:
|
||||
|
||||
Using a SSD1306 OLED display
|
||||
============================
|
||||
|
||||
The SSD1306 OLED display uses either a SPI or I2C interface and comes in a variety of
|
||||
sizes (128x64, 128x32, 72x40, 64x48) and colours (white, yellow, blue, yellow + blue).
|
||||
|
||||
Hardware SPI interface::
|
||||
|
||||
from machine import Pin, SPI
|
||||
import ssd1306
|
||||
|
||||
hspi = SPI(1) # sck=14 (scl), mosi=13 (sda), miso=12 (unused)
|
||||
|
||||
dc = Pin(4) # data/command
|
||||
rst = Pin(5) # reset
|
||||
cs = Pin(15) # chip select, some modules do not have a pin for this
|
||||
|
||||
display = ssd1306.SSD1306_SPI(128, 64, hspi, dc, rst, cs)
|
||||
|
||||
Software SPI interface::
|
||||
|
||||
from machine import Pin, SoftSPI
|
||||
import ssd1306
|
||||
|
||||
spi = SoftSPI(baudrate=500000, polarity=1, phase=0, sck=Pin(14), mosi=Pin(13), miso=Pin(12))
|
||||
|
||||
dc = Pin(4) # data/command
|
||||
rst = Pin(5) # reset
|
||||
cs = Pin(15) # chip select, some modules do not have a pin for this
|
||||
|
||||
display = ssd1306.SSD1306_SPI(128, 64, spi, dc, rst, cs)
|
||||
|
||||
I2C interface::
|
||||
|
||||
from machine import Pin, I2C
|
||||
import ssd1306
|
||||
|
||||
# using default address 0x3C
|
||||
i2c = I2C(sda=Pin(4), scl=Pin(5))
|
||||
display = ssd1306.SSD1306_I2C(128, 64, i2c)
|
||||
|
||||
Print Hello World on the first line::
|
||||
|
||||
display.text('Hello, World!', 0, 0, 1)
|
||||
display.show()
|
||||
|
||||
Basic functions::
|
||||
|
||||
display.poweroff() # power off the display, pixels persist in memory
|
||||
display.poweron() # power on the display, pixels redrawn
|
||||
display.contrast(0) # dim
|
||||
display.contrast(255) # bright
|
||||
display.invert(1) # display inverted
|
||||
display.invert(0) # display normal
|
||||
display.rotate(True) # rotate 180 degrees
|
||||
display.rotate(False) # rotate 0 degrees
|
||||
display.show() # write the contents of the FrameBuffer to display memory
|
||||
|
||||
Subclassing FrameBuffer provides support for graphics primitives::
|
||||
|
||||
display.fill(0) # fill entire screen with colour=0
|
||||
display.pixel(0, 10) # get pixel at x=0, y=10
|
||||
display.pixel(0, 10, 1) # set pixel at x=0, y=10 to colour=1
|
||||
display.hline(0, 8, 4, 1) # draw horizontal line x=0, y=8, width=4, colour=1
|
||||
display.vline(0, 8, 4, 1) # draw vertical line x=0, y=8, height=4, colour=1
|
||||
display.line(0, 0, 127, 63, 1) # draw a line from 0,0 to 127,63
|
||||
display.rect(10, 10, 107, 43, 1) # draw a rectangle outline 10,10 to 117,53, colour=1
|
||||
display.fill_rect(10, 10, 107, 43, 1) # draw a solid rectangle 10,10 to 117,53, colour=1
|
||||
display.text('Hello World', 0, 0, 1) # draw some text at x=0, y=0, colour=1
|
||||
display.scroll(20, 0) # scroll 20 pixels to the right
|
||||
|
||||
# draw another FrameBuffer on top of the current one at the given coordinates
|
||||
import framebuf
|
||||
fbuf = framebuf.FrameBuffer(bytearray(8 * 8 * 1), 8, 8, framebuf.MONO_VLSB)
|
||||
fbuf.line(0, 0, 7, 7, 1)
|
||||
display.blit(fbuf, 10, 10, 0) # draw on top at x=10, y=10, key=0
|
||||
display.show()
|
||||
|
||||
Draw the MicroPython logo and print some text::
|
||||
|
||||
display.fill(0)
|
||||
display.fill_rect(0, 0, 32, 32, 1)
|
||||
display.fill_rect(2, 2, 28, 28, 0)
|
||||
display.vline(9, 8, 22, 1)
|
||||
display.vline(16, 2, 22, 1)
|
||||
display.vline(23, 8, 22, 1)
|
||||
display.fill_rect(26, 24, 2, 4, 1)
|
||||
display.text('MicroPython', 40, 0, 1)
|
||||
display.text('SSD1306', 40, 12, 1)
|
||||
display.text('OLED 128x64', 40, 24, 1)
|
||||
display.show()
|
19
components/language/micropython/docs/index.rst
Normal file
19
components/language/micropython/docs/index.rst
Normal file
@@ -0,0 +1,19 @@
|
||||
MicroPython documentation and references
|
||||
========================================
|
||||
|
||||
.. toctree::
|
||||
|
||||
library/index.rst
|
||||
reference/index.rst
|
||||
genrst/index.rst
|
||||
develop/index.rst
|
||||
license.rst
|
||||
pyboard/quickref.rst
|
||||
esp8266/quickref.rst
|
||||
esp32/quickref.rst
|
||||
rp2/quickref.rst
|
||||
mimxrt/quickref.rst
|
||||
wipy/quickref.rst
|
||||
unix/quickref.rst
|
||||
zephyr/quickref.rst
|
||||
renesas-ra/quickref.rst
|
12
components/language/micropython/docs/library/_thread.rst
Normal file
12
components/language/micropython/docs/library/_thread.rst
Normal file
@@ -0,0 +1,12 @@
|
||||
:mod:`_thread` -- multithreading support
|
||||
========================================
|
||||
|
||||
.. module:: _thread
|
||||
:synopsis: multithreading support
|
||||
|
||||
|see_cpython_module| :mod:`python:_thread`.
|
||||
|
||||
This module implements multithreading support.
|
||||
|
||||
This module is highly experimental and its API is not yet fully settled
|
||||
and not yet described in this documentation.
|
29
components/language/micropython/docs/library/array.rst
Normal file
29
components/language/micropython/docs/library/array.rst
Normal file
@@ -0,0 +1,29 @@
|
||||
:mod:`array` -- arrays of numeric data
|
||||
======================================
|
||||
|
||||
.. module:: array
|
||||
:synopsis: efficient arrays of numeric data
|
||||
|
||||
|see_cpython_module| :mod:`python:array`.
|
||||
|
||||
Supported format codes: ``b``, ``B``, ``h``, ``H``, ``i``, ``I``, ``l``,
|
||||
``L``, ``q``, ``Q``, ``f``, ``d`` (the latter 2 depending on the
|
||||
floating-point support).
|
||||
|
||||
Classes
|
||||
-------
|
||||
|
||||
.. class:: array(typecode, [iterable])
|
||||
|
||||
Create array with elements of given type. Initial contents of the
|
||||
array are given by *iterable*. If it is not provided, an empty
|
||||
array is created.
|
||||
|
||||
.. method:: append(val)
|
||||
|
||||
Append new element *val* to the end of array, growing it.
|
||||
|
||||
.. method:: extend(iterable)
|
||||
|
||||
Append new elements as contained in *iterable* to the end of
|
||||
array, growing it.
|
38
components/language/micropython/docs/library/binascii.rst
Normal file
38
components/language/micropython/docs/library/binascii.rst
Normal file
@@ -0,0 +1,38 @@
|
||||
:mod:`binascii` -- binary/ASCII conversions
|
||||
===========================================
|
||||
|
||||
.. module:: binascii
|
||||
:synopsis: binary/ASCII conversions
|
||||
|
||||
|see_cpython_module| :mod:`python:binascii`.
|
||||
|
||||
This module implements conversions between binary data and various
|
||||
encodings of it in ASCII form (in both directions).
|
||||
|
||||
Functions
|
||||
---------
|
||||
|
||||
.. function:: hexlify(data, [sep])
|
||||
|
||||
Convert the bytes in the *data* object to a hexadecimal representation.
|
||||
Returns a bytes object.
|
||||
|
||||
If the additional argument *sep* is supplied it is used as a separator
|
||||
between hexadecimal values.
|
||||
|
||||
.. function:: unhexlify(data)
|
||||
|
||||
Convert hexadecimal data to binary representation. Returns bytes string.
|
||||
(i.e. inverse of hexlify)
|
||||
|
||||
.. function:: a2b_base64(data)
|
||||
|
||||
Decode base64-encoded data, ignoring invalid characters in the input.
|
||||
Conforms to `RFC 2045 s.6.8 <https://tools.ietf.org/html/rfc2045#section-6.8>`_.
|
||||
Returns a bytes object.
|
||||
|
||||
.. function:: b2a_base64(data, *, newline=True)
|
||||
|
||||
Encode binary data in base64 format, as in `RFC 3548
|
||||
<https://tools.ietf.org/html/rfc3548.html>`_. Returns the encoded data
|
||||
followed by a newline character if newline is true, as a bytes object.
|
761
components/language/micropython/docs/library/bluetooth.rst
Normal file
761
components/language/micropython/docs/library/bluetooth.rst
Normal file
@@ -0,0 +1,761 @@
|
||||
:mod:`bluetooth` --- low-level Bluetooth
|
||||
========================================
|
||||
|
||||
.. module:: bluetooth
|
||||
:synopsis: Low-level Bluetooth radio functionality
|
||||
|
||||
This module provides an interface to a Bluetooth controller on a board.
|
||||
Currently this supports Bluetooth Low Energy (BLE) in Central, Peripheral,
|
||||
Broadcaster, and Observer roles, as well as GATT Server and Client and L2CAP
|
||||
connection-oriented-channels. A device may operate in multiple roles
|
||||
concurrently. Pairing (and bonding) is supported on some ports.
|
||||
|
||||
This API is intended to match the low-level Bluetooth protocol and provide
|
||||
building-blocks for higher-level abstractions such as specific device types.
|
||||
|
||||
.. note:: This module is still under development and its classes, functions,
|
||||
methods and constants are subject to change.
|
||||
|
||||
class BLE
|
||||
---------
|
||||
|
||||
Constructor
|
||||
-----------
|
||||
|
||||
.. class:: BLE()
|
||||
|
||||
Returns the singleton BLE object.
|
||||
|
||||
Configuration
|
||||
-------------
|
||||
|
||||
.. method:: BLE.active([active], /)
|
||||
|
||||
Optionally changes the active state of the BLE radio, and returns the
|
||||
current state.
|
||||
|
||||
The radio must be made active before using any other methods on this class.
|
||||
|
||||
.. method:: BLE.config('param', /)
|
||||
BLE.config(*, param=value, ...)
|
||||
|
||||
Get or set configuration values of the BLE interface. To get a value the
|
||||
parameter name should be quoted as a string, and just one parameter is
|
||||
queried at a time. To set values use the keyword syntax, and one ore more
|
||||
parameter can be set at a time.
|
||||
|
||||
Currently supported values are:
|
||||
|
||||
- ``'mac'``: The current address in use, depending on the current address mode.
|
||||
This returns a tuple of ``(addr_type, addr)``.
|
||||
|
||||
See :meth:`gatts_write <BLE.gatts_write>` for details about address type.
|
||||
|
||||
This may only be queried while the interface is currently active.
|
||||
|
||||
- ``'addr_mode'``: Sets the address mode. Values can be:
|
||||
|
||||
* 0x00 - PUBLIC - Use the controller's public address.
|
||||
* 0x01 - RANDOM - Use a generated static address.
|
||||
* 0x02 - RPA - Use resolvable private addresses.
|
||||
* 0x03 - NRPA - Use non-resolvable private addresses.
|
||||
|
||||
By default the interface mode will use a PUBLIC address if available, otherwise
|
||||
it will use a RANDOM address.
|
||||
|
||||
- ``'gap_name'``: Get/set the GAP device name used by service 0x1800,
|
||||
characteristic 0x2a00. This can be set at any time and changed multiple
|
||||
times.
|
||||
|
||||
- ``'rxbuf'``: Get/set the size in bytes of the internal buffer used to store
|
||||
incoming events. This buffer is global to the entire BLE driver and so
|
||||
handles incoming data for all events, including all characteristics.
|
||||
Increasing this allows better handling of bursty incoming data (for
|
||||
example scan results) and the ability to receive larger characteristic values.
|
||||
|
||||
- ``'mtu'``: Get/set the MTU that will be used during a ATT MTU exchange. The
|
||||
resulting MTU will be the minimum of this and the remote device's MTU.
|
||||
ATT MTU exchange will not happen automatically (unless the remote device initiates
|
||||
it), and must be manually initiated with
|
||||
:meth:`gattc_exchange_mtu<BLE.gattc_exchange_mtu>`.
|
||||
Use the ``_IRQ_MTU_EXCHANGED`` event to discover the MTU for a given connection.
|
||||
|
||||
- ``'bond'``: Sets whether bonding will be enabled during pairing. When
|
||||
enabled, pairing requests will set the "bond" flag and the keys will be stored
|
||||
by both devices.
|
||||
|
||||
- ``'mitm'``: Sets whether MITM-protection is required for pairing.
|
||||
|
||||
- ``'io'``: Sets the I/O capabilities of this device.
|
||||
|
||||
Available options are::
|
||||
|
||||
_IO_CAPABILITY_DISPLAY_ONLY = const(0)
|
||||
_IO_CAPABILITY_DISPLAY_YESNO = const(1)
|
||||
_IO_CAPABILITY_KEYBOARD_ONLY = const(2)
|
||||
_IO_CAPABILITY_NO_INPUT_OUTPUT = const(3)
|
||||
_IO_CAPABILITY_KEYBOARD_DISPLAY = const(4)
|
||||
|
||||
- ``'le_secure'``: Sets whether "LE Secure" pairing is required. Default is
|
||||
false (i.e. allow "Legacy Pairing").
|
||||
|
||||
Event Handling
|
||||
--------------
|
||||
|
||||
.. method:: BLE.irq(handler, /)
|
||||
|
||||
Registers a callback for events from the BLE stack. The *handler* takes two
|
||||
arguments, ``event`` (which will be one of the codes below) and ``data``
|
||||
(which is an event-specific tuple of values).
|
||||
|
||||
**Note:** As an optimisation to prevent unnecessary allocations, the ``addr``,
|
||||
``adv_data``, ``char_data``, ``notify_data``, and ``uuid`` entries in the
|
||||
tuples are read-only memoryview instances pointing to :mod:`bluetooth`'s internal
|
||||
ringbuffer, and are only valid during the invocation of the IRQ handler
|
||||
function. If your program needs to save one of these values to access after
|
||||
the IRQ handler has returned (e.g. by saving it in a class instance or global
|
||||
variable), then it needs to take a copy of the data, either by using ``bytes()``
|
||||
or ``bluetooth.UUID()``, like this::
|
||||
|
||||
connected_addr = bytes(addr) # equivalently: adv_data, char_data, or notify_data
|
||||
matched_uuid = bluetooth.UUID(uuid)
|
||||
|
||||
For example, the IRQ handler for a scan result might inspect the ``adv_data``
|
||||
to decide if it's the correct device, and only then copy the address data to be
|
||||
used elsewhere in the program. And to print data from within the IRQ handler,
|
||||
``print(bytes(addr))`` will be needed.
|
||||
|
||||
An event handler showing all possible events::
|
||||
|
||||
def bt_irq(event, data):
|
||||
if event == _IRQ_CENTRAL_CONNECT:
|
||||
# A central has connected to this peripheral.
|
||||
conn_handle, addr_type, addr = data
|
||||
elif event == _IRQ_CENTRAL_DISCONNECT:
|
||||
# A central has disconnected from this peripheral.
|
||||
conn_handle, addr_type, addr = data
|
||||
elif event == _IRQ_GATTS_WRITE:
|
||||
# A client has written to this characteristic or descriptor.
|
||||
conn_handle, attr_handle = data
|
||||
elif event == _IRQ_GATTS_READ_REQUEST:
|
||||
# A client has issued a read. Note: this is only supported on STM32.
|
||||
# Return a non-zero integer to deny the read (see below), or zero (or None)
|
||||
# to accept the read.
|
||||
conn_handle, attr_handle = data
|
||||
elif event == _IRQ_SCAN_RESULT:
|
||||
# A single scan result.
|
||||
addr_type, addr, adv_type, rssi, adv_data = data
|
||||
elif event == _IRQ_SCAN_DONE:
|
||||
# Scan duration finished or manually stopped.
|
||||
pass
|
||||
elif event == _IRQ_PERIPHERAL_CONNECT:
|
||||
# A successful gap_connect().
|
||||
conn_handle, addr_type, addr = data
|
||||
elif event == _IRQ_PERIPHERAL_DISCONNECT:
|
||||
# Connected peripheral has disconnected.
|
||||
conn_handle, addr_type, addr = data
|
||||
elif event == _IRQ_GATTC_SERVICE_RESULT:
|
||||
# Called for each service found by gattc_discover_services().
|
||||
conn_handle, start_handle, end_handle, uuid = data
|
||||
elif event == _IRQ_GATTC_SERVICE_DONE:
|
||||
# Called once service discovery is complete.
|
||||
# Note: Status will be zero on success, implementation-specific value otherwise.
|
||||
conn_handle, status = data
|
||||
elif event == _IRQ_GATTC_CHARACTERISTIC_RESULT:
|
||||
# Called for each characteristic found by gattc_discover_services().
|
||||
conn_handle, def_handle, value_handle, properties, uuid = data
|
||||
elif event == _IRQ_GATTC_CHARACTERISTIC_DONE:
|
||||
# Called once service discovery is complete.
|
||||
# Note: Status will be zero on success, implementation-specific value otherwise.
|
||||
conn_handle, status = data
|
||||
elif event == _IRQ_GATTC_DESCRIPTOR_RESULT:
|
||||
# Called for each descriptor found by gattc_discover_descriptors().
|
||||
conn_handle, dsc_handle, uuid = data
|
||||
elif event == _IRQ_GATTC_DESCRIPTOR_DONE:
|
||||
# Called once service discovery is complete.
|
||||
# Note: Status will be zero on success, implementation-specific value otherwise.
|
||||
conn_handle, status = data
|
||||
elif event == _IRQ_GATTC_READ_RESULT:
|
||||
# A gattc_read() has completed.
|
||||
conn_handle, value_handle, char_data = data
|
||||
elif event == _IRQ_GATTC_READ_DONE:
|
||||
# A gattc_read() has completed.
|
||||
# Note: The value_handle will be zero on btstack (but present on NimBLE).
|
||||
# Note: Status will be zero on success, implementation-specific value otherwise.
|
||||
conn_handle, value_handle, status = data
|
||||
elif event == _IRQ_GATTC_WRITE_DONE:
|
||||
# A gattc_write() has completed.
|
||||
# Note: The value_handle will be zero on btstack (but present on NimBLE).
|
||||
# Note: Status will be zero on success, implementation-specific value otherwise.
|
||||
conn_handle, value_handle, status = data
|
||||
elif event == _IRQ_GATTC_NOTIFY:
|
||||
# A server has sent a notify request.
|
||||
conn_handle, value_handle, notify_data = data
|
||||
elif event == _IRQ_GATTC_INDICATE:
|
||||
# A server has sent an indicate request.
|
||||
conn_handle, value_handle, notify_data = data
|
||||
elif event == _IRQ_GATTS_INDICATE_DONE:
|
||||
# A client has acknowledged the indication.
|
||||
# Note: Status will be zero on successful acknowledgment, implementation-specific value otherwise.
|
||||
conn_handle, value_handle, status = data
|
||||
elif event == _IRQ_MTU_EXCHANGED:
|
||||
# ATT MTU exchange complete (either initiated by us or the remote device).
|
||||
conn_handle, mtu = data
|
||||
elif event == _IRQ_L2CAP_ACCEPT:
|
||||
# A new channel has been accepted.
|
||||
# Return a non-zero integer to reject the connection, or zero (or None) to accept.
|
||||
conn_handle, cid, psm, our_mtu, peer_mtu = data
|
||||
elif event == _IRQ_L2CAP_CONNECT:
|
||||
# A new channel is now connected (either as a result of connecting or accepting).
|
||||
conn_handle, cid, psm, our_mtu, peer_mtu = data
|
||||
elif event == _IRQ_L2CAP_DISCONNECT:
|
||||
# Existing channel has disconnected (status is zero), or a connection attempt failed (non-zero status).
|
||||
conn_handle, cid, psm, status = data
|
||||
elif event == _IRQ_L2CAP_RECV:
|
||||
# New data is available on the channel. Use l2cap_recvinto to read.
|
||||
conn_handle, cid = data
|
||||
elif event == _IRQ_L2CAP_SEND_READY:
|
||||
# A previous l2cap_send that returned False has now completed and the channel is ready to send again.
|
||||
# If status is non-zero, then the transmit buffer overflowed and the application should re-send the data.
|
||||
conn_handle, cid, status = data
|
||||
elif event == _IRQ_CONNECTION_UPDATE:
|
||||
# The remote device has updated connection parameters.
|
||||
conn_handle, conn_interval, conn_latency, supervision_timeout, status = data
|
||||
elif event == _IRQ_ENCRYPTION_UPDATE:
|
||||
# The encryption state has changed (likely as a result of pairing or bonding).
|
||||
conn_handle, encrypted, authenticated, bonded, key_size = data
|
||||
elif event == _IRQ_GET_SECRET:
|
||||
# Return a stored secret.
|
||||
# If key is None, return the index'th value of this sec_type.
|
||||
# Otherwise return the corresponding value for this sec_type and key.
|
||||
sec_type, index, key = data
|
||||
return value
|
||||
elif event == _IRQ_SET_SECRET:
|
||||
# Save a secret to the store for this sec_type and key.
|
||||
sec_type, key, value = data
|
||||
return True
|
||||
elif event == _IRQ_PASSKEY_ACTION:
|
||||
# Respond to a passkey request during pairing.
|
||||
# See gap_passkey() for details.
|
||||
# action will be an action that is compatible with the configured "io" config.
|
||||
# passkey will be non-zero if action is "numeric comparison".
|
||||
conn_handle, action, passkey = data
|
||||
|
||||
|
||||
The event codes are::
|
||||
|
||||
from micropython import const
|
||||
_IRQ_CENTRAL_CONNECT = const(1)
|
||||
_IRQ_CENTRAL_DISCONNECT = const(2)
|
||||
_IRQ_GATTS_WRITE = const(3)
|
||||
_IRQ_GATTS_READ_REQUEST = const(4)
|
||||
_IRQ_SCAN_RESULT = const(5)
|
||||
_IRQ_SCAN_DONE = const(6)
|
||||
_IRQ_PERIPHERAL_CONNECT = const(7)
|
||||
_IRQ_PERIPHERAL_DISCONNECT = const(8)
|
||||
_IRQ_GATTC_SERVICE_RESULT = const(9)
|
||||
_IRQ_GATTC_SERVICE_DONE = const(10)
|
||||
_IRQ_GATTC_CHARACTERISTIC_RESULT = const(11)
|
||||
_IRQ_GATTC_CHARACTERISTIC_DONE = const(12)
|
||||
_IRQ_GATTC_DESCRIPTOR_RESULT = const(13)
|
||||
_IRQ_GATTC_DESCRIPTOR_DONE = const(14)
|
||||
_IRQ_GATTC_READ_RESULT = const(15)
|
||||
_IRQ_GATTC_READ_DONE = const(16)
|
||||
_IRQ_GATTC_WRITE_DONE = const(17)
|
||||
_IRQ_GATTC_NOTIFY = const(18)
|
||||
_IRQ_GATTC_INDICATE = const(19)
|
||||
_IRQ_GATTS_INDICATE_DONE = const(20)
|
||||
_IRQ_MTU_EXCHANGED = const(21)
|
||||
_IRQ_L2CAP_ACCEPT = const(22)
|
||||
_IRQ_L2CAP_CONNECT = const(23)
|
||||
_IRQ_L2CAP_DISCONNECT = const(24)
|
||||
_IRQ_L2CAP_RECV = const(25)
|
||||
_IRQ_L2CAP_SEND_READY = const(26)
|
||||
_IRQ_CONNECTION_UPDATE = const(27)
|
||||
_IRQ_ENCRYPTION_UPDATE = const(28)
|
||||
_IRQ_GET_SECRET = const(29)
|
||||
_IRQ_SET_SECRET = const(30)
|
||||
|
||||
For the ``_IRQ_GATTS_READ_REQUEST`` event, the available return codes are::
|
||||
|
||||
_GATTS_NO_ERROR = const(0x00)
|
||||
_GATTS_ERROR_READ_NOT_PERMITTED = const(0x02)
|
||||
_GATTS_ERROR_WRITE_NOT_PERMITTED = const(0x03)
|
||||
_GATTS_ERROR_INSUFFICIENT_AUTHENTICATION = const(0x05)
|
||||
_GATTS_ERROR_INSUFFICIENT_AUTHORIZATION = const(0x08)
|
||||
_GATTS_ERROR_INSUFFICIENT_ENCRYPTION = const(0x0f)
|
||||
|
||||
For the ``_IRQ_PASSKEY_ACTION`` event, the available actions are::
|
||||
|
||||
_PASSKEY_ACTION_NONE = const(0)
|
||||
_PASSKEY_ACTION_INPUT = const(2)
|
||||
_PASSKEY_ACTION_DISPLAY = const(3)
|
||||
_PASSKEY_ACTION_NUMERIC_COMPARISON = const(4)
|
||||
|
||||
In order to save space in the firmware, these constants are not included on the
|
||||
:mod:`bluetooth` module. Add the ones that you need from the list above to your
|
||||
program.
|
||||
|
||||
|
||||
Broadcaster Role (Advertiser)
|
||||
-----------------------------
|
||||
|
||||
.. method:: BLE.gap_advertise(interval_us, adv_data=None, *, resp_data=None, connectable=True)
|
||||
|
||||
Starts advertising at the specified interval (in **micro**\ seconds). This
|
||||
interval will be rounded down to the nearest 625us. To stop advertising, set
|
||||
*interval_us* to ``None``.
|
||||
|
||||
*adv_data* and *resp_data* can be any type that implements the buffer
|
||||
protocol (e.g. ``bytes``, ``bytearray``, ``str``). *adv_data* is included
|
||||
in all broadcasts, and *resp_data* is send in reply to an active scan.
|
||||
|
||||
**Note:** if *adv_data* (or *resp_data*) is ``None``, then the data passed
|
||||
to the previous call to ``gap_advertise`` will be re-used. This allows a
|
||||
broadcaster to resume advertising with just ``gap_advertise(interval_us)``.
|
||||
To clear the advertising payload pass an empty ``bytes``, i.e. ``b''``.
|
||||
|
||||
|
||||
Observer Role (Scanner)
|
||||
-----------------------
|
||||
|
||||
.. method:: BLE.gap_scan(duration_ms, interval_us=1280000, window_us=11250, active=False, /)
|
||||
|
||||
Run a scan operation lasting for the specified duration (in **milli**\ seconds).
|
||||
|
||||
To scan indefinitely, set *duration_ms* to ``0``.
|
||||
|
||||
To stop scanning, set *duration_ms* to ``None``.
|
||||
|
||||
Use *interval_us* and *window_us* to optionally configure the duty cycle.
|
||||
The scanner will run for *window_us* **micro**\ seconds every *interval_us*
|
||||
**micro**\ seconds for a total of *duration_ms* **milli**\ seconds. The default
|
||||
interval and window are 1.28 seconds and 11.25 milliseconds respectively
|
||||
(background scanning).
|
||||
|
||||
For each scan result the ``_IRQ_SCAN_RESULT`` event will be raised, with event
|
||||
data ``(addr_type, addr, adv_type, rssi, adv_data)``.
|
||||
|
||||
``addr_type`` values indicate public or random addresses:
|
||||
* 0x00 - PUBLIC
|
||||
* 0x01 - RANDOM (either static, RPA, or NRPA, the type is encoded in the address itself)
|
||||
|
||||
``adv_type`` values correspond to the Bluetooth Specification:
|
||||
|
||||
* 0x00 - ADV_IND - connectable and scannable undirected advertising
|
||||
* 0x01 - ADV_DIRECT_IND - connectable directed advertising
|
||||
* 0x02 - ADV_SCAN_IND - scannable undirected advertising
|
||||
* 0x03 - ADV_NONCONN_IND - non-connectable undirected advertising
|
||||
* 0x04 - SCAN_RSP - scan response
|
||||
|
||||
``active`` can be set ``True`` if you want to receive scan responses in the results.
|
||||
|
||||
When scanning is stopped (either due to the duration finishing or when
|
||||
explicitly stopped), the ``_IRQ_SCAN_DONE`` event will be raised.
|
||||
|
||||
|
||||
Central Role
|
||||
------------
|
||||
|
||||
A central device can connect to peripherals that it has discovered using the observer role (see :meth:`gap_scan<BLE.gap_scan>`) or with a known address.
|
||||
|
||||
.. method:: BLE.gap_connect(addr_type, addr, scan_duration_ms=2000, min_conn_interval_us=None, max_conn_interval_us=None, /)
|
||||
|
||||
Connect to a peripheral.
|
||||
|
||||
See :meth:`gap_scan <BLE.gap_scan>` for details about address types.
|
||||
|
||||
To cancel an outstanding connection attempt early, call
|
||||
``gap_connect(None)``.
|
||||
|
||||
On success, the ``_IRQ_PERIPHERAL_CONNECT`` event will be raised. If
|
||||
cancelling a connection attempt, the ``_IRQ_PERIPHERAL_DISCONNECT`` event
|
||||
will be raised.
|
||||
|
||||
The device will wait up to *scan_duration_ms* to receive an advertising
|
||||
payload from the device.
|
||||
|
||||
The connection interval can be configured in **micro**\ seconds using either
|
||||
or both of *min_conn_interval_us* and *max_conn_interval_us*. Otherwise a
|
||||
default interval will be chosen, typically between 30000 and 50000
|
||||
microseconds. A shorter interval will increase throughput, at the expense
|
||||
of power usage.
|
||||
|
||||
|
||||
Peripheral Role
|
||||
---------------
|
||||
|
||||
A peripheral device is expected to send connectable advertisements (see
|
||||
:meth:`gap_advertise<BLE.gap_advertise>`). It will usually be acting as a GATT
|
||||
server, having first registered services and characteristics using
|
||||
:meth:`gatts_register_services<BLE.gatts_register_services>`.
|
||||
|
||||
When a central connects, the ``_IRQ_CENTRAL_CONNECT`` event will be raised.
|
||||
|
||||
|
||||
Central & Peripheral Roles
|
||||
--------------------------
|
||||
|
||||
.. method:: BLE.gap_disconnect(conn_handle, /)
|
||||
|
||||
Disconnect the specified connection handle. This can either be a
|
||||
central that has connected to this device (if acting as a peripheral)
|
||||
or a peripheral that was previously connected to by this device (if acting
|
||||
as a central).
|
||||
|
||||
On success, the ``_IRQ_PERIPHERAL_DISCONNECT`` or ``_IRQ_CENTRAL_DISCONNECT``
|
||||
event will be raised.
|
||||
|
||||
Returns ``False`` if the connection handle wasn't connected, and ``True``
|
||||
otherwise.
|
||||
|
||||
|
||||
GATT Server
|
||||
-----------
|
||||
|
||||
A GATT server has a set of registered services. Each service may contain
|
||||
characteristics, which each have a value. Characteristics can also contain
|
||||
descriptors, which themselves have values.
|
||||
|
||||
These values are stored locally, and are accessed by their "value handle" which
|
||||
is generated during service registration. They can also be read from or written
|
||||
to by a remote client device. Additionally, a server can "notify" a
|
||||
characteristic to a connected client via a connection handle.
|
||||
|
||||
A device in either central or peripheral roles may function as a GATT server,
|
||||
however in most cases it will be more common for a peripheral device to act
|
||||
as the server.
|
||||
|
||||
Characteristics and descriptors have a default maximum size of 20 bytes.
|
||||
Anything written to them by a client will be truncated to this length. However,
|
||||
any local write will increase the maximum size, so if you want to allow larger
|
||||
writes from a client to a given characteristic, use
|
||||
:meth:`gatts_write<BLE.gatts_write>` after registration. e.g.
|
||||
``gatts_write(char_handle, bytes(100))``.
|
||||
|
||||
.. method:: BLE.gatts_register_services(services_definition, /)
|
||||
|
||||
Configures the server with the specified services, replacing any
|
||||
existing services.
|
||||
|
||||
*services_definition* is a list of **services**, where each **service** is a
|
||||
two-element tuple containing a UUID and a list of **characteristics**.
|
||||
|
||||
Each **characteristic** is a two-or-three-element tuple containing a UUID, a
|
||||
**flags** value, and optionally a list of *descriptors*.
|
||||
|
||||
Each **descriptor** is a two-element tuple containing a UUID and a **flags**
|
||||
value.
|
||||
|
||||
The **flags** are a bitwise-OR combination of the flags defined below. These
|
||||
set both the behaviour of the characteristic (or descriptor) as well as the
|
||||
security and privacy requirements.
|
||||
|
||||
The return value is a list (one element per service) of tuples (each element
|
||||
is a value handle). Characteristics and descriptor handles are flattened
|
||||
into the same tuple, in the order that they are defined.
|
||||
|
||||
The following example registers two services (Heart Rate, and Nordic UART)::
|
||||
|
||||
HR_UUID = bluetooth.UUID(0x180D)
|
||||
HR_CHAR = (bluetooth.UUID(0x2A37), bluetooth.FLAG_READ | bluetooth.FLAG_NOTIFY,)
|
||||
HR_SERVICE = (HR_UUID, (HR_CHAR,),)
|
||||
UART_UUID = bluetooth.UUID('6E400001-B5A3-F393-E0A9-E50E24DCCA9E')
|
||||
UART_TX = (bluetooth.UUID('6E400003-B5A3-F393-E0A9-E50E24DCCA9E'), bluetooth.FLAG_READ | bluetooth.FLAG_NOTIFY,)
|
||||
UART_RX = (bluetooth.UUID('6E400002-B5A3-F393-E0A9-E50E24DCCA9E'), bluetooth.FLAG_WRITE,)
|
||||
UART_SERVICE = (UART_UUID, (UART_TX, UART_RX,),)
|
||||
SERVICES = (HR_SERVICE, UART_SERVICE,)
|
||||
( (hr,), (tx, rx,), ) = bt.gatts_register_services(SERVICES)
|
||||
|
||||
The three value handles (``hr``, ``tx``, ``rx``) can be used with
|
||||
:meth:`gatts_read <BLE.gatts_read>`, :meth:`gatts_write <BLE.gatts_write>`, :meth:`gatts_notify <BLE.gatts_notify>`, and
|
||||
:meth:`gatts_indicate <BLE.gatts_indicate>`.
|
||||
|
||||
**Note:** Advertising must be stopped before registering services.
|
||||
|
||||
Available flags for characteristics and descriptors are::
|
||||
|
||||
from micropython import const
|
||||
_FLAG_BROADCAST = const(0x0001)
|
||||
_FLAG_READ = const(0x0002)
|
||||
_FLAG_WRITE_NO_RESPONSE = const(0x0004)
|
||||
_FLAG_WRITE = const(0x0008)
|
||||
_FLAG_NOTIFY = const(0x0010)
|
||||
_FLAG_INDICATE = const(0x0020)
|
||||
_FLAG_AUTHENTICATED_SIGNED_WRITE = const(0x0040)
|
||||
|
||||
_FLAG_AUX_WRITE = const(0x0100)
|
||||
_FLAG_READ_ENCRYPTED = const(0x0200)
|
||||
_FLAG_READ_AUTHENTICATED = const(0x0400)
|
||||
_FLAG_READ_AUTHORIZED = const(0x0800)
|
||||
_FLAG_WRITE_ENCRYPTED = const(0x1000)
|
||||
_FLAG_WRITE_AUTHENTICATED = const(0x2000)
|
||||
_FLAG_WRITE_AUTHORIZED = const(0x4000)
|
||||
|
||||
As for the IRQs above, any required constants should be added to your Python code.
|
||||
|
||||
.. method:: BLE.gatts_read(value_handle, /)
|
||||
|
||||
Reads the local value for this handle (which has either been written by
|
||||
:meth:`gatts_write <BLE.gatts_write>` or by a remote client).
|
||||
|
||||
.. method:: BLE.gatts_write(value_handle, data, send_update=False, /)
|
||||
|
||||
Writes the local value for this handle, which can be read by a client.
|
||||
|
||||
If *send_update* is ``True``, then any subscribed clients will be notified
|
||||
(or indicated, depending on what they're subscribed to and which operations
|
||||
the characteristic supports) about this write.
|
||||
|
||||
.. method:: BLE.gatts_notify(conn_handle, value_handle, data=None, /)
|
||||
|
||||
Sends a notification request to a connected client.
|
||||
|
||||
If *data* is not ``None``, then that value is sent to the client as part of
|
||||
the notification. The local value will not be modified.
|
||||
|
||||
Otherwise, if *data* is ``None``, then the current local value (as
|
||||
set with :meth:`gatts_write <BLE.gatts_write>`) will be sent.
|
||||
|
||||
**Note:** The notification will be sent regardless of the subscription
|
||||
status of the client to this characteristic.
|
||||
|
||||
.. method:: BLE.gatts_indicate(conn_handle, value_handle, /)
|
||||
|
||||
Sends an indication request containing the characteristic's current value to
|
||||
a connected client.
|
||||
|
||||
On acknowledgment (or failure, e.g. timeout), the
|
||||
``_IRQ_GATTS_INDICATE_DONE`` event will be raised.
|
||||
|
||||
**Note:** The indication will be sent regardless of the subscription
|
||||
status of the client to this characteristic.
|
||||
|
||||
.. method:: BLE.gatts_set_buffer(value_handle, len, append=False, /)
|
||||
|
||||
Sets the internal buffer size for a value in bytes. This will limit the
|
||||
largest possible write that can be received. The default is 20.
|
||||
|
||||
Setting *append* to ``True`` will make all remote writes append to, rather
|
||||
than replace, the current value. At most *len* bytes can be buffered in
|
||||
this way. When you use :meth:`gatts_read <BLE.gatts_read>`, the value will
|
||||
be cleared after reading. This feature is useful when implementing something
|
||||
like the Nordic UART Service.
|
||||
|
||||
GATT Client
|
||||
-----------
|
||||
|
||||
A GATT client can discover and read/write characteristics on a remote GATT server.
|
||||
|
||||
It is more common for a central role device to act as the GATT client, however
|
||||
it's also possible for a peripheral to act as a client in order to discover
|
||||
information about the central that has connected to it (e.g. to read the
|
||||
device name from the device information service).
|
||||
|
||||
.. method:: BLE.gattc_discover_services(conn_handle, uuid=None, /)
|
||||
|
||||
Query a connected server for its services.
|
||||
|
||||
Optionally specify a service *uuid* to query for that service only.
|
||||
|
||||
For each service discovered, the ``_IRQ_GATTC_SERVICE_RESULT`` event will
|
||||
be raised, followed by ``_IRQ_GATTC_SERVICE_DONE`` on completion.
|
||||
|
||||
.. method:: BLE.gattc_discover_characteristics(conn_handle, start_handle, end_handle, uuid=None, /)
|
||||
|
||||
Query a connected server for characteristics in the specified range.
|
||||
|
||||
Optionally specify a characteristic *uuid* to query for that
|
||||
characteristic only.
|
||||
|
||||
You can use ``start_handle=1``, ``end_handle=0xffff`` to search for a
|
||||
characteristic in any service.
|
||||
|
||||
For each characteristic discovered, the ``_IRQ_GATTC_CHARACTERISTIC_RESULT``
|
||||
event will be raised, followed by ``_IRQ_GATTC_CHARACTERISTIC_DONE`` on completion.
|
||||
|
||||
.. method:: BLE.gattc_discover_descriptors(conn_handle, start_handle, end_handle, /)
|
||||
|
||||
Query a connected server for descriptors in the specified range.
|
||||
|
||||
For each descriptor discovered, the ``_IRQ_GATTC_DESCRIPTOR_RESULT`` event
|
||||
will be raised, followed by ``_IRQ_GATTC_DESCRIPTOR_DONE`` on completion.
|
||||
|
||||
.. method:: BLE.gattc_read(conn_handle, value_handle, /)
|
||||
|
||||
Issue a remote read to a connected server for the specified
|
||||
characteristic or descriptor handle.
|
||||
|
||||
When a value is available, the ``_IRQ_GATTC_READ_RESULT`` event will be
|
||||
raised. Additionally, the ``_IRQ_GATTC_READ_DONE`` will be raised.
|
||||
|
||||
.. method:: BLE.gattc_write(conn_handle, value_handle, data, mode=0, /)
|
||||
|
||||
Issue a remote write to a connected server for the specified
|
||||
characteristic or descriptor handle.
|
||||
|
||||
The argument *mode* specifies the write behaviour, with the currently
|
||||
supported values being:
|
||||
|
||||
* ``mode=0`` (default) is a write-without-response: the write will
|
||||
be sent to the remote server but no confirmation will be
|
||||
returned, and no event will be raised.
|
||||
* ``mode=1`` is a write-with-response: the remote server is
|
||||
requested to send a response/acknowledgement that it received the
|
||||
data.
|
||||
|
||||
If a response is received from the remote server the
|
||||
``_IRQ_GATTC_WRITE_DONE`` event will be raised.
|
||||
|
||||
.. method:: BLE.gattc_exchange_mtu(conn_handle, /)
|
||||
|
||||
Initiate MTU exchange with a connected server, using the preferred MTU
|
||||
set using ``BLE.config(mtu=value)``.
|
||||
|
||||
The ``_IRQ_MTU_EXCHANGED`` event will be raised when MTU exchange
|
||||
completes.
|
||||
|
||||
**Note:** MTU exchange is typically initiated by the central. When using
|
||||
the BlueKitchen stack in the central role, it does not support a remote
|
||||
peripheral initiating the MTU exchange. NimBLE works for both roles.
|
||||
|
||||
|
||||
L2CAP connection-oriented-channels
|
||||
----------------------------------
|
||||
|
||||
This feature allows for socket-like data exchange between two BLE devices.
|
||||
Once the devices are connected via GAP, either device can listen for the
|
||||
other to connect on a numeric PSM (Protocol/Service Multiplexer).
|
||||
|
||||
**Note:** This is currently only supported when using the NimBLE stack on
|
||||
STM32 and Unix (not ESP32). Only one L2CAP channel may be active at a given
|
||||
time (i.e. you cannot connect while listening).
|
||||
|
||||
Active L2CAP channels are identified by the connection handle that they were
|
||||
established on and a CID (channel ID).
|
||||
|
||||
Connection-oriented channels have built-in credit-based flow control. Unlike
|
||||
ATT, where devices negotiate a shared MTU, both the listening and connecting
|
||||
devices each set an independent MTU which limits the maximum amount of
|
||||
outstanding data that the remote device can send before it is fully consumed
|
||||
in :meth:`l2cap_recvinto <BLE.l2cap_recvinto>`.
|
||||
|
||||
.. method:: BLE.l2cap_listen(psm, mtu, /)
|
||||
|
||||
Start listening for incoming L2CAP channel requests on the specified *psm*
|
||||
with the local MTU set to *mtu*.
|
||||
|
||||
When a remote device initiates a connection, the ``_IRQ_L2CAP_ACCEPT``
|
||||
event will be raised, which gives the listening server a chance to reject
|
||||
the incoming connection (by returning a non-zero integer).
|
||||
|
||||
Once the connection is accepted, the ``_IRQ_L2CAP_CONNECT`` event will be
|
||||
raised, allowing the server to obtain the channel id (CID) and the local and
|
||||
remote MTU.
|
||||
|
||||
**Note:** It is not currently possible to stop listening.
|
||||
|
||||
.. method:: BLE.l2cap_connect(conn_handle, psm, mtu, /)
|
||||
|
||||
Connect to a listening peer on the specified *psm* with local MTU set to *mtu*.
|
||||
|
||||
On successful connection, the the ``_IRQ_L2CAP_CONNECT`` event will be
|
||||
raised, allowing the client to obtain the CID and the local and remote (peer) MTU.
|
||||
|
||||
An unsuccessful connection will raise the ``_IRQ_L2CAP_DISCONNECT`` event
|
||||
with a non-zero status.
|
||||
|
||||
.. method:: BLE.l2cap_disconnect(conn_handle, cid, /)
|
||||
|
||||
Disconnect an active L2CAP channel with the specified *conn_handle* and
|
||||
*cid*.
|
||||
|
||||
.. method:: BLE.l2cap_send(conn_handle, cid, buf, /)
|
||||
|
||||
Send the specified *buf* (which must support the buffer protocol) on the
|
||||
L2CAP channel identified by *conn_handle* and *cid*.
|
||||
|
||||
The specified buffer cannot be larger than the remote (peer) MTU, and no
|
||||
more than twice the size of the local MTU.
|
||||
|
||||
This will return ``False`` if the channel is now "stalled", which means that
|
||||
:meth:`l2cap_send <BLE.l2cap_send>` must not be called again until the
|
||||
``_IRQ_L2CAP_SEND_READY`` event is received (which will happen when the
|
||||
remote device grants more credits, typically after it has received and
|
||||
processed the data).
|
||||
|
||||
.. method:: BLE.l2cap_recvinto(conn_handle, cid, buf, /)
|
||||
|
||||
Receive data from the specified *conn_handle* and *cid* into the provided
|
||||
*buf* (which must support the buffer protocol, e.g. bytearray or
|
||||
memoryview).
|
||||
|
||||
Returns the number of bytes read from the channel.
|
||||
|
||||
If *buf* is None, then returns the number of bytes available.
|
||||
|
||||
**Note:** After receiving the ``_IRQ_L2CAP_RECV`` event, the application should
|
||||
continue calling :meth:`l2cap_recvinto <BLE.l2cap_recvinto>` until no more
|
||||
bytes are available in the receive buffer (typically up to the size of the
|
||||
remote (peer) MTU).
|
||||
|
||||
Until the receive buffer is empty, the remote device will not be granted
|
||||
more channel credits and will be unable to send any more data.
|
||||
|
||||
|
||||
Pairing and bonding
|
||||
-------------------
|
||||
|
||||
Pairing allows a connection to be encrypted and authenticated via exchange
|
||||
of secrets (with optional MITM protection via passkey authentication).
|
||||
|
||||
Bonding is the process of storing those secrets into non-volatile storage.
|
||||
When bonded, a device is able to resolve a resolvable private address (RPA)
|
||||
from another device based on the stored identity resolving key (IRK).
|
||||
To support bonding, an application must implement the ``_IRQ_GET_SECRET``
|
||||
and ``_IRQ_SET_SECRET`` events.
|
||||
|
||||
**Note:** This is currently only supported when using the NimBLE stack on
|
||||
STM32 and Unix (not ESP32).
|
||||
|
||||
.. method:: BLE.gap_pair(conn_handle, /)
|
||||
|
||||
Initiate pairing with the remote device.
|
||||
|
||||
Before calling this, ensure that the ``io``, ``mitm``, ``le_secure``, and
|
||||
``bond`` configuration options are set (via :meth:`config<BLE.config>`).
|
||||
|
||||
On successful pairing, the ``_IRQ_ENCRYPTION_UPDATE`` event will be raised.
|
||||
|
||||
.. method:: BLE.gap_passkey(conn_handle, action, passkey, /)
|
||||
|
||||
Respond to a ``_IRQ_PASSKEY_ACTION`` event for the specified *conn_handle*
|
||||
and *action*.
|
||||
|
||||
The *passkey* is a numeric value and will depend on on the
|
||||
*action* (which will depend on what I/O capability has been set):
|
||||
|
||||
* When the *action* is ``_PASSKEY_ACTION_INPUT``, then the application should
|
||||
prompt the user to enter the passkey that is shown on the remote device.
|
||||
* When the *action* is ``_PASSKEY_ACTION_DISPLAY``, then the application should
|
||||
generate a random 6-digit passkey and show it to the user.
|
||||
* When the *action* is ``_PASSKEY_ACTION_NUMERIC_COMPARISON``, then the application
|
||||
should show the passkey that was provided in the ``_IRQ_PASSKEY_ACTION`` event
|
||||
and then respond with either ``0`` (cancel pairing), or ``1`` (accept pairing).
|
||||
|
||||
|
||||
class UUID
|
||||
----------
|
||||
|
||||
|
||||
Constructor
|
||||
-----------
|
||||
|
||||
.. class:: UUID(value, /)
|
||||
|
||||
Creates a UUID instance with the specified **value**.
|
||||
|
||||
The **value** can be either:
|
||||
|
||||
- A 16-bit integer. e.g. ``0x2908``.
|
||||
- A 128-bit UUID string. e.g. ``'6E400001-B5A3-F393-E0A9-E50E24DCCA9E'``.
|
159
components/language/micropython/docs/library/btree.rst
Normal file
159
components/language/micropython/docs/library/btree.rst
Normal file
@@ -0,0 +1,159 @@
|
||||
:mod:`btree` -- simple BTree database
|
||||
=====================================
|
||||
|
||||
.. module:: btree
|
||||
:synopsis: simple BTree database
|
||||
|
||||
The ``btree`` module implements a simple key-value database using external
|
||||
storage (disk files, or in general case, a random-access `stream`). Keys are
|
||||
stored sorted in the database, and besides efficient retrieval by a key
|
||||
value, a database also supports efficient ordered range scans (retrieval
|
||||
of values with the keys in a given range). On the application interface
|
||||
side, BTree database work as close a possible to a way standard `dict`
|
||||
type works, one notable difference is that both keys and values must
|
||||
be `bytes` objects (so, if you want to store objects of other types, you
|
||||
need to serialize them to `bytes` first).
|
||||
|
||||
The module is based on the well-known BerkelyDB library, version 1.xx.
|
||||
|
||||
Example::
|
||||
|
||||
import btree
|
||||
|
||||
# First, we need to open a stream which holds a database
|
||||
# This is usually a file, but can be in-memory database
|
||||
# using io.BytesIO, a raw flash partition, etc.
|
||||
# Oftentimes, you want to create a database file if it doesn't
|
||||
# exist and open if it exists. Idiom below takes care of this.
|
||||
# DO NOT open database with "a+b" access mode.
|
||||
try:
|
||||
f = open("mydb", "r+b")
|
||||
except OSError:
|
||||
f = open("mydb", "w+b")
|
||||
|
||||
# Now open a database itself
|
||||
db = btree.open(f)
|
||||
|
||||
# The keys you add will be sorted internally in the database
|
||||
db[b"3"] = b"three"
|
||||
db[b"1"] = b"one"
|
||||
db[b"2"] = b"two"
|
||||
|
||||
# Assume that any changes are cached in memory unless
|
||||
# explicitly flushed (or database closed). Flush database
|
||||
# at the end of each "transaction".
|
||||
db.flush()
|
||||
|
||||
# Prints b'two'
|
||||
print(db[b"2"])
|
||||
|
||||
# Iterate over sorted keys in the database, starting from b"2"
|
||||
# until the end of the database, returning only values.
|
||||
# Mind that arguments passed to values() method are *key* values.
|
||||
# Prints:
|
||||
# b'two'
|
||||
# b'three'
|
||||
for word in db.values(b"2"):
|
||||
print(word)
|
||||
|
||||
del db[b"2"]
|
||||
|
||||
# No longer true, prints False
|
||||
print(b"2" in db)
|
||||
|
||||
# Prints:
|
||||
# b"1"
|
||||
# b"3"
|
||||
for key in db:
|
||||
print(key)
|
||||
|
||||
db.close()
|
||||
|
||||
# Don't forget to close the underlying stream!
|
||||
f.close()
|
||||
|
||||
|
||||
Functions
|
||||
---------
|
||||
|
||||
.. function:: open(stream, *, flags=0, pagesize=0, cachesize=0, minkeypage=0)
|
||||
|
||||
Open a database from a random-access `stream` (like an open file). All
|
||||
other parameters are optional and keyword-only, and allow to tweak advanced
|
||||
parameters of the database operation (most users will not need them):
|
||||
|
||||
* *flags* - Currently unused.
|
||||
* *pagesize* - Page size used for the nodes in BTree. Acceptable range
|
||||
is 512-65536. If 0, a port-specific default will be used, optimized for
|
||||
port's memory usage and/or performance.
|
||||
* *cachesize* - Suggested memory cache size in bytes. For a
|
||||
board with enough memory using larger values may improve performance.
|
||||
Cache policy is as follows: entire cache is not allocated at once;
|
||||
instead, accessing a new page in database will allocate a memory buffer
|
||||
for it, until value specified by *cachesize* is reached. Then, these
|
||||
buffers will be managed using LRU (least recently used) policy. More
|
||||
buffers may still be allocated if needed (e.g., if a database contains
|
||||
big keys and/or values). Allocated cache buffers aren't reclaimed.
|
||||
* *minkeypage* - Minimum number of keys to store per page. Default value
|
||||
of 0 equivalent to 2.
|
||||
|
||||
Returns a BTree object, which implements a dictionary protocol (set
|
||||
of methods), and some additional methods described below.
|
||||
|
||||
Methods
|
||||
-------
|
||||
|
||||
.. method:: btree.close()
|
||||
|
||||
Close the database. It's mandatory to close the database at the end of
|
||||
processing, as some unwritten data may be still in the cache. Note that
|
||||
this does not close underlying stream with which the database was opened,
|
||||
it should be closed separately (which is also mandatory to make sure that
|
||||
data flushed from buffer to the underlying storage).
|
||||
|
||||
.. method:: btree.flush()
|
||||
|
||||
Flush any data in cache to the underlying stream.
|
||||
|
||||
.. method:: btree.__getitem__(key)
|
||||
btree.get(key, default=None, /)
|
||||
btree.__setitem__(key, val)
|
||||
btree.__delitem__(key)
|
||||
btree.__contains__(key)
|
||||
|
||||
Standard dictionary methods.
|
||||
|
||||
.. method:: btree.__iter__()
|
||||
|
||||
A BTree object can be iterated over directly (similar to a dictionary)
|
||||
to get access to all keys in order.
|
||||
|
||||
.. method:: btree.keys([start_key, [end_key, [flags]]])
|
||||
btree.values([start_key, [end_key, [flags]]])
|
||||
btree.items([start_key, [end_key, [flags]]])
|
||||
|
||||
These methods are similar to standard dictionary methods, but also can
|
||||
take optional parameters to iterate over a key sub-range, instead of
|
||||
the entire database. Note that for all 3 methods, *start_key* and
|
||||
*end_key* arguments represent key values. For example, `values()`
|
||||
method will iterate over values corresponding to they key range
|
||||
given. None values for *start_key* means "from the first key", no
|
||||
*end_key* or its value of None means "until the end of database".
|
||||
By default, range is inclusive of *start_key* and exclusive of
|
||||
*end_key*, you can include *end_key* in iteration by passing *flags*
|
||||
of `btree.INCL`. You can iterate in descending key direction
|
||||
by passing *flags* of `btree.DESC`. The flags values can be ORed
|
||||
together.
|
||||
|
||||
Constants
|
||||
---------
|
||||
|
||||
.. data:: INCL
|
||||
|
||||
A flag for `keys()`, `values()`, `items()` methods to specify that
|
||||
scanning should be inclusive of the end key.
|
||||
|
||||
.. data:: DESC
|
||||
|
||||
A flag for `keys()`, `values()`, `items()` methods to specify that
|
||||
scanning should be in descending direction of keys.
|
195
components/language/micropython/docs/library/builtins.rst
Normal file
195
components/language/micropython/docs/library/builtins.rst
Normal file
@@ -0,0 +1,195 @@
|
||||
:mod:`builtins` -- builtin functions and exceptions
|
||||
===================================================
|
||||
|
||||
All builtin functions and exceptions are described here. They are also
|
||||
available via ``builtins`` module.
|
||||
|
||||
Functions and types
|
||||
-------------------
|
||||
|
||||
.. function:: abs()
|
||||
|
||||
.. function:: all()
|
||||
|
||||
.. function:: any()
|
||||
|
||||
.. function:: bin()
|
||||
|
||||
.. class:: bool()
|
||||
|
||||
.. class:: bytearray()
|
||||
|
||||
.. class:: bytes()
|
||||
|
||||
|see_cpython| `python:bytes`.
|
||||
|
||||
.. function:: callable()
|
||||
|
||||
.. function:: chr()
|
||||
|
||||
.. function:: classmethod()
|
||||
|
||||
.. function:: compile()
|
||||
|
||||
.. class:: complex()
|
||||
|
||||
.. function:: delattr(obj, name)
|
||||
|
||||
The argument *name* should be a string, and this function deletes the named
|
||||
attribute from the object given by *obj*.
|
||||
|
||||
.. class:: dict()
|
||||
|
||||
.. function:: dir()
|
||||
|
||||
.. function:: divmod()
|
||||
|
||||
.. function:: enumerate()
|
||||
|
||||
.. function:: eval()
|
||||
|
||||
.. function:: exec()
|
||||
|
||||
.. function:: filter()
|
||||
|
||||
.. class:: float()
|
||||
|
||||
.. class:: frozenset()
|
||||
|
||||
.. function:: getattr()
|
||||
|
||||
.. function:: globals()
|
||||
|
||||
.. function:: hasattr()
|
||||
|
||||
.. function:: hash()
|
||||
|
||||
.. function:: hex()
|
||||
|
||||
.. function:: id()
|
||||
|
||||
.. function:: input()
|
||||
|
||||
.. class:: int()
|
||||
|
||||
.. classmethod:: from_bytes(bytes, byteorder)
|
||||
|
||||
In MicroPython, `byteorder` parameter must be positional (this is
|
||||
compatible with CPython).
|
||||
|
||||
.. method:: to_bytes(size, byteorder)
|
||||
|
||||
In MicroPython, `byteorder` parameter must be positional (this is
|
||||
compatible with CPython).
|
||||
|
||||
.. function:: isinstance()
|
||||
|
||||
.. function:: issubclass()
|
||||
|
||||
.. function:: iter()
|
||||
|
||||
.. function:: len()
|
||||
|
||||
.. class:: list()
|
||||
|
||||
.. function:: locals()
|
||||
|
||||
.. function:: map()
|
||||
|
||||
.. function:: max()
|
||||
|
||||
.. class:: memoryview()
|
||||
|
||||
.. function:: min()
|
||||
|
||||
.. function:: next()
|
||||
|
||||
.. class:: object()
|
||||
|
||||
.. function:: oct()
|
||||
|
||||
.. function:: open()
|
||||
|
||||
.. function:: ord()
|
||||
|
||||
.. function:: pow()
|
||||
|
||||
.. function:: print()
|
||||
|
||||
.. function:: property()
|
||||
|
||||
.. function:: range()
|
||||
|
||||
.. function:: repr()
|
||||
|
||||
.. function:: reversed()
|
||||
|
||||
.. function:: round()
|
||||
|
||||
.. class:: set()
|
||||
|
||||
.. function:: setattr()
|
||||
|
||||
.. class:: slice()
|
||||
|
||||
The *slice* builtin is the type that slice objects have.
|
||||
|
||||
.. function:: sorted()
|
||||
|
||||
.. function:: staticmethod()
|
||||
|
||||
.. class:: str()
|
||||
|
||||
.. function:: sum()
|
||||
|
||||
.. function:: super()
|
||||
|
||||
.. class:: tuple()
|
||||
|
||||
.. function:: type()
|
||||
|
||||
.. function:: zip()
|
||||
|
||||
|
||||
Exceptions
|
||||
----------
|
||||
|
||||
.. exception:: AssertionError
|
||||
|
||||
.. exception:: AttributeError
|
||||
|
||||
.. exception:: Exception
|
||||
|
||||
.. exception:: ImportError
|
||||
|
||||
.. exception:: IndexError
|
||||
|
||||
.. exception:: KeyboardInterrupt
|
||||
|
||||
.. exception:: KeyError
|
||||
|
||||
.. exception:: MemoryError
|
||||
|
||||
.. exception:: NameError
|
||||
|
||||
.. exception:: NotImplementedError
|
||||
|
||||
.. exception:: OSError
|
||||
|
||||
.. exception:: RuntimeError
|
||||
|
||||
.. exception:: StopIteration
|
||||
|
||||
.. exception:: SyntaxError
|
||||
|
||||
.. exception:: SystemExit
|
||||
|
||||
|see_cpython| `python:SystemExit`.
|
||||
|
||||
.. exception:: TypeError
|
||||
|
||||
|see_cpython| `python:TypeError`.
|
||||
|
||||
.. exception:: ValueError
|
||||
|
||||
.. exception:: ZeroDivisionError
|
63
components/language/micropython/docs/library/cmath.rst
Normal file
63
components/language/micropython/docs/library/cmath.rst
Normal file
@@ -0,0 +1,63 @@
|
||||
:mod:`cmath` -- mathematical functions for complex numbers
|
||||
==========================================================
|
||||
|
||||
.. module:: cmath
|
||||
:synopsis: mathematical functions for complex numbers
|
||||
|
||||
|see_cpython_module| :mod:`python:cmath`.
|
||||
|
||||
The ``cmath`` module provides some basic mathematical functions for
|
||||
working with complex numbers.
|
||||
|
||||
Availability: not available on WiPy and ESP8266. Floating point support
|
||||
required for this module.
|
||||
|
||||
Functions
|
||||
---------
|
||||
|
||||
.. function:: cos(z)
|
||||
|
||||
Return the cosine of ``z``.
|
||||
|
||||
.. function:: exp(z)
|
||||
|
||||
Return the exponential of ``z``.
|
||||
|
||||
.. function:: log(z)
|
||||
|
||||
Return the natural logarithm of ``z``. The branch cut is along the negative real axis.
|
||||
|
||||
.. function:: log10(z)
|
||||
|
||||
Return the base-10 logarithm of ``z``. The branch cut is along the negative real axis.
|
||||
|
||||
.. function:: phase(z)
|
||||
|
||||
Returns the phase of the number ``z``, in the range (-pi, +pi].
|
||||
|
||||
.. function:: polar(z)
|
||||
|
||||
Returns, as a tuple, the polar form of ``z``.
|
||||
|
||||
.. function:: rect(r, phi)
|
||||
|
||||
Returns the complex number with modulus ``r`` and phase ``phi``.
|
||||
|
||||
.. function:: sin(z)
|
||||
|
||||
Return the sine of ``z``.
|
||||
|
||||
.. function:: sqrt(z)
|
||||
|
||||
Return the square-root of ``z``.
|
||||
|
||||
Constants
|
||||
---------
|
||||
|
||||
.. data:: e
|
||||
|
||||
base of the natural logarithm
|
||||
|
||||
.. data:: pi
|
||||
|
||||
the ratio of a circle's circumference to its diameter
|
82
components/language/micropython/docs/library/collections.rst
Normal file
82
components/language/micropython/docs/library/collections.rst
Normal file
@@ -0,0 +1,82 @@
|
||||
:mod:`collections` -- collection and container types
|
||||
====================================================
|
||||
|
||||
.. module:: collections
|
||||
:synopsis: collection and container types
|
||||
|
||||
|see_cpython_module| :mod:`python:collections`.
|
||||
|
||||
This module implements advanced collection and container types to
|
||||
hold/accumulate various objects.
|
||||
|
||||
Classes
|
||||
-------
|
||||
|
||||
.. class:: deque(iterable, maxlen[, flags])
|
||||
|
||||
Deques (double-ended queues) are a list-like container that support O(1)
|
||||
appends and pops from either side of the deque. New deques are created
|
||||
using the following arguments:
|
||||
|
||||
- *iterable* must be the empty tuple, and the new deque is created empty.
|
||||
|
||||
- *maxlen* must be specified and the deque will be bounded to this
|
||||
maximum length. Once the deque is full, any new items added will
|
||||
discard items from the opposite end.
|
||||
|
||||
- The optional *flags* can be 1 to check for overflow when adding items.
|
||||
|
||||
As well as supporting `bool` and `len`, deque objects have the following
|
||||
methods:
|
||||
|
||||
.. method:: deque.append(x)
|
||||
|
||||
Add *x* to the right side of the deque.
|
||||
Raises IndexError if overflow checking is enabled and there is no more room left.
|
||||
|
||||
.. method:: deque.popleft()
|
||||
|
||||
Remove and return an item from the left side of the deque.
|
||||
Raises IndexError if no items are present.
|
||||
|
||||
.. function:: namedtuple(name, fields)
|
||||
|
||||
This is factory function to create a new namedtuple type with a specific
|
||||
name and set of fields. A namedtuple is a subclass of tuple which allows
|
||||
to access its fields not just by numeric index, but also with an attribute
|
||||
access syntax using symbolic field names. Fields is a sequence of strings
|
||||
specifying field names. For compatibility with CPython it can also be a
|
||||
a string with space-separated field named (but this is less efficient).
|
||||
Example of use::
|
||||
|
||||
from collections import namedtuple
|
||||
|
||||
MyTuple = namedtuple("MyTuple", ("id", "name"))
|
||||
t1 = MyTuple(1, "foo")
|
||||
t2 = MyTuple(2, "bar")
|
||||
print(t1.name)
|
||||
assert t2.name == t2[1]
|
||||
|
||||
.. class:: OrderedDict(...)
|
||||
|
||||
``dict`` type subclass which remembers and preserves the order of keys
|
||||
added. When ordered dict is iterated over, keys/items are returned in
|
||||
the order they were added::
|
||||
|
||||
from collections import OrderedDict
|
||||
|
||||
# To make benefit of ordered keys, OrderedDict should be initialized
|
||||
# from sequence of (key, value) pairs.
|
||||
d = OrderedDict([("z", 1), ("a", 2)])
|
||||
# More items can be added as usual
|
||||
d["w"] = 5
|
||||
d["b"] = 3
|
||||
for k, v in d.items():
|
||||
print(k, v)
|
||||
|
||||
Output::
|
||||
|
||||
z 1
|
||||
a 2
|
||||
w 5
|
||||
b 3
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user