Merge pull request #198 from rise0chen/master

adapt CMSIS-RTOS v2
This commit is contained in:
Supowang
2020-07-10 17:30:42 +08:00
committed by GitHub
3 changed files with 1753 additions and 0 deletions

883
osal/cmsis_os/cmsis_os2.c Normal file
View File

@@ -0,0 +1,883 @@
#include "cmsis_os2.h"
#include <string.h>
static k_prio_t priority_cmsis2knl(osPriority_t prio) {
if (prio == osPriorityError || prio == osPriorityISR ||
prio == osPriorityReserved) {
return K_TASK_PRIO_INVALID;
}
return (k_prio_t)(6 - prio / 8);
}
static osPriority_t priority_knl2cmsis(k_prio_t prio) {
return (osPriority_t)((6 - prio) * 8);
}
static osStatus_t errno_knl2cmsis(k_err_t err) {
osStatus_t state;
switch (err) {
case K_ERR_NONE:
state = osOK;
break;
case K_ERR_IN_IRQ:
state = osErrorISR;
break;
case K_ERR_OUT_OF_MEMORY:
state = osErrorNoMemory;
break;
case K_ERR_PEND_TIMEOUT:
state = osErrorTimeout;
break;
case K_ERR_PEND_DESTROY:
state = osErrorResource;
break;
default:
state = osError;
break;
}
return state;
}
/*---------------------------------------------------------------------------*/
osStatus_t osKernelInitialize(void) {
return errno_knl2cmsis(tos_knl_init());
}
osStatus_t osKernelGetInfo(osVersion_t* version,
char* id_buf,
uint32_t id_size) {
if (version != NULL) {
version->api = osCMSIS;
version->kernel = osCMSIS_KERNEL;
}
if ((id_buf != NULL) && (id_size != 0U)) {
if (id_size > sizeof(osKernelSystemId)) {
id_size = sizeof(osKernelSystemId);
}
memcpy(id_buf, osKernelSystemId, id_size);
}
return osOK;
}
osKernelState_t osKernelGetState(void) {
osKernelState_t state;
switch (k_knl_state) {
case KNL_STATE_RUNNING:
state = osKernelRunning;
break;
default:
state = osKernelInactive;
break;
}
return state;
}
osStatus_t osKernelStart(void) {
return errno_knl2cmsis(tos_knl_start());
}
int32_t osKernelLock(void) {
tos_knl_sched_lock();
if (knl_is_sched_locked()) {
return 1;
} else {
return 0;
}
}
int32_t osKernelUnlock(void) {
tos_knl_sched_unlock();
if (knl_is_sched_locked()) {
return 1;
} else {
return 0;
}
}
int32_t osKernelRestoreLock(int32_t lock) {
if (lock == 1) {
tos_knl_sched_lock();
} else if (lock == 0) {
tos_knl_sched_unlock();
} else {
return -1;
}
if (knl_is_sched_locked()) {
return 1;
} else {
return 0;
}
}
uint32_t osKernelSuspend(void) {
// todo
return 0;
}
void osKernelResume(uint32_t sleep_ticks) {
(void)sleep_ticks;
// todo
}
uint32_t osKernelGetTickCount(void) {
return (uint32_t)tos_systick_get();
}
uint32_t osKernelGetTickFreq(void) {
return TOS_CFG_CPU_TICK_PER_SECOND;
}
uint32_t osKernelGetSysTimerCount(void) {
k_tick_t ticks;
uint32_t val;
ticks = osKernelGetTickCount();
val = ticks * (TOS_CFG_CPU_CLOCK / TOS_CFG_CPU_TICK_PER_SECOND);
return val;
}
uint32_t osKernelGetSysTimerFreq(void) {
return TOS_CFG_CPU_CLOCK;
}
/*---------------------------------------------------------------------------*/
osThreadId_t osThreadNew(osThreadFunc_t func,
void* argument,
const osThreadAttr_t* attr) {
k_err_t err;
uint32_t stack_size = K_TASK_STK_SIZE_MIN;
k_task_t* taskId = NULL;
k_prio_t prio;
if (attr && func) {
if (attr->priority != osPriorityNone) {
prio = priority_cmsis2knl(attr->priority);
}
if (attr->stack_size > 0U) {
stack_size = attr->stack_size;
}
if (attr->stack_mem && attr->cb_mem) {
err = tos_task_create((k_task_t*)attr->cb_mem, (char*)attr->name,
(k_task_entry_t)func, argument, prio,
attr->stack_mem, stack_size, 0);
taskId = err == K_ERR_NONE ? attr->cb_mem : NULL;
} else {
#if TOS_CFG_TASK_DYNAMIC_CREATE_EN > 0u
k_task_t* task;
err = tos_task_create_dyn(&task, attr->name, (k_task_entry_t)func,
argument, prio, stack_size, 0);
taskId = err == K_ERR_NONE ? task : NULL;
#endif
}
}
return (osThreadId_t)taskId;
}
const char* osThreadGetName(osThreadId_t thread_id) {
k_task_t* taskId = (k_task_t*)thread_id;
const char* name;
if (taskId == NULL) {
name = NULL;
} else {
name = taskId->name;
}
return name;
}
osThreadId_t osThreadGetId(void) {
return (osThreadId_t)tos_task_curr_task_get();
}
osThreadState_t osThreadGetState(osThreadId_t thread_id) {
k_task_t* taskId = (k_task_t*)thread_id;
osThreadState_t state = osThreadError;
if (taskId != NULL) {
if (tos_task_curr_task_get() == taskId) {
state = osThreadRunning;
} else if (task_state_is_sleeping(taskId)) {
state = osThreadBlocked;
} else if (task_state_is_pending(taskId)) {
state = osThreadBlocked;
} else if (task_state_is_suspended(taskId)) {
state = osThreadBlocked;
} else if (task_state_is_ready(taskId)) {
state = osThreadReady;
} else if (taskId->state == K_TASK_STATE_DELETED) {
state = osThreadTerminated;
}
}
return state;
}
uint32_t osThreadGetStackSize(osThreadId_t thread_id) {
k_task_t* taskId = (k_task_t*)thread_id;
return taskId->stk_size;
}
uint32_t osThreadGetStackSpace(osThreadId_t thread_id) {
(void)thread_id;
// todo
return 0;
}
osStatus_t osThreadSetPriority(osThreadId_t thread_id, osPriority_t priority) {
k_task_t* taskId = (k_task_t*)thread_id;
k_prio_t prio = priority_cmsis2knl(priority);
osStatus_t state;
if (taskId == NULL || prio == K_TASK_PRIO_INVALID) {
state = osErrorParameter;
} else {
state = errno_knl2cmsis(tos_task_prio_change(taskId, prio));
}
return state;
}
osPriority_t osThreadGetPriority(osThreadId_t thread_id) {
k_task_t* taskId = (k_task_t*)thread_id;
osPriority_t prio;
if (taskId == NULL) {
prio = osPriorityError;
} else {
prio = priority_knl2cmsis(taskId->prio);
}
return prio;
}
osStatus_t osThreadYield(void) {
osStatus_t state;
if (knl_is_inirq()) {
state = osErrorISR;
} else {
tos_task_yield();
state = osOK;
}
return state;
}
osStatus_t osThreadSuspend(osThreadId_t thread_id) {
k_task_t* taskId = (k_task_t*)thread_id;
osStatus_t state;
if (taskId == NULL) {
state = osErrorParameter;
} else {
state = errno_knl2cmsis(tos_task_suspend(taskId));
}
return state;
}
osStatus_t osThreadResume(osThreadId_t thread_id) {
k_task_t* taskId = (k_task_t*)thread_id;
osStatus_t state;
if (taskId == NULL) {
state = osErrorParameter;
} else {
state = errno_knl2cmsis(tos_task_resume(taskId));
}
return state;
}
osStatus_t osThreadDetach(osThreadId_t thread_id) {
(void)thread_id;
// todo
return osError;
}
osStatus_t osThreadJoin(osThreadId_t thread_id) {
(void)thread_id;
// todo
return osError;
}
__NO_RETURN void osThreadExit(void) {
tos_task_destroy(k_curr_task);
while (1)
;
}
osStatus_t osThreadTerminate(osThreadId_t thread_id) {
k_task_t* taskId = (k_task_t*)thread_id;
osStatus_t state;
if (taskId == NULL) {
state = osErrorParameter;
} else {
if (taskId->state == K_TASK_STATE_DELETED) {
state = osErrorResource;
} else {
state = errno_knl2cmsis(tos_task_destroy(taskId));
}
}
return state;
}
uint32_t osThreadGetCount(void) {
uint32_t count = 0;
TOS_CPU_CPSR_ALLOC();
k_task_t* task;
TOS_CPU_INT_DISABLE();
TOS_LIST_FOR_EACH_ENTRY(task, k_task_t, stat_list, &k_stat_list) {
count += 1;
}
TOS_CPU_INT_ENABLE();
return count;
}
uint32_t osThreadEnumerate(osThreadId_t* thread_array, uint32_t array_items) {
uint32_t count = 0;
if ((thread_array != NULL) && (array_items != 0U)) {
TOS_CPU_CPSR_ALLOC();
k_task_t* task;
TOS_CPU_INT_DISABLE();
TOS_LIST_FOR_EACH_ENTRY(task, k_task_t, stat_list, &k_stat_list) {
while (count < array_items) {
thread_array[count] = (osThreadId_t)task;
count += 1;
}
}
TOS_CPU_INT_ENABLE();
}
return count;
}
uint32_t osThreadFlagsSet(osThreadId_t thread_id, uint32_t flags) {
uint32_t rflags = 0xFFFFFFFF;
// todo
return rflags;
}
uint32_t osThreadFlagsClear(uint32_t flags) {
uint32_t rflags = 0xFFFFFFFF;
// todo
return rflags;
}
uint32_t osThreadFlagsGet(void) {
uint32_t rflags = 0xFFFFFFFF;
// todo
return rflags;
}
uint32_t osThreadFlagsWait(uint32_t flags, uint32_t options, uint32_t timeout) {
uint32_t rflags = 0xFFFFFFFF;
// todo
return rflags;
}
osStatus_t osDelay(uint32_t ticks) {
k_tick_t delay;
if (ticks == osWaitForever) {
delay = TOS_TIME_FOREVER;
} else {
delay = (k_tick_t)ticks;
}
return errno_knl2cmsis(tos_task_delay(delay));
}
osStatus_t osDelayUntil(uint32_t ticks) {
k_tick_t delay;
if (ticks == osWaitForever) {
delay = TOS_TIME_FOREVER;
} else {
k_tick_t now = tos_systick_get();
if ((k_tick_t)ticks < now) {
return osErrorParameter;
}
delay = (k_tick_t)ticks - now;
}
return errno_knl2cmsis(tos_task_delay(delay));
}
/*---------------------------------------------------------------------------*/
osTimerId_t osTimerNew(osTimerFunc_t func,
osTimerType_t type,
void* argument,
const osTimerAttr_t* attr) {
k_err_t err;
k_opt_t opt = TOS_OPT_TIMER_ONESHOT;
k_timer_t* timerId = NULL;
if (attr && func) {
if (type == osTimerPeriodic) {
opt = TOS_OPT_TIMER_PERIODIC;
} else if (type == osTimerOnce) {
opt = TOS_OPT_TIMER_ONESHOT;
}
if (attr->cb_mem) {
err = tos_timer_create((k_timer_t*)attr->cb_mem, (k_tick_t)1000u,
(k_tick_t)1000u, (k_timer_callback_t)func,
argument, opt);
timerId = err == K_ERR_NONE ? attr->cb_mem : NULL;
}
}
return (osTimerId_t)timerId;
}
const char* osTimerGetName(osTimerId_t timer_id) {
(void)timer_id;
// todo
return NULL;
}
osStatus_t osTimerStart(osTimerId_t timer_id, uint32_t ticks) {
k_timer_t* timerId = (k_timer_t*)timer_id;
osStatus_t state;
if (timerId == NULL) {
state = osErrorParameter;
} else {
tos_timer_delay_change(timerId, ticks);
tos_timer_period_change(timerId, ticks);
state = errno_knl2cmsis(tos_timer_start(timerId));
}
return state;
}
osStatus_t osTimerStop(osTimerId_t timer_id) {
k_timer_t* timerId = (k_timer_t*)timer_id;
osStatus_t state;
if (timerId == NULL) {
state = osErrorParameter;
} else {
state = errno_knl2cmsis(tos_timer_stop(timerId));
}
return state;
}
uint32_t osTimerIsRunning(osTimerId_t timer_id) {
k_timer_t* timerId = (k_timer_t*)timer_id;
uint32_t running;
if (timerId == NULL) {
running = 0U;
} else {
running = timerId->state == TIMER_STATE_RUNNING;
}
return running;
}
osStatus_t osTimerDelete(osTimerId_t timer_id) {
k_timer_t* timerId = (k_timer_t*)timer_id;
return errno_knl2cmsis(tos_timer_destroy(timerId));
}
/*---------------------------------------------------------------------------*/
osEventFlagsId_t osEventFlagsNew(const osEventFlagsAttr_t* attr) {
k_err_t err;
k_event_t* eventId = NULL;
if (attr) {
if (attr->cb_mem) {
err = tos_event_create((k_event_t*)attr->cb_mem, 0);
eventId = err == K_ERR_NONE ? attr->cb_mem : NULL;
}
}
return (osEventFlagsId_t)eventId;
}
const char* osEventFlagsGetName(osEventFlagsId_t ef_id) {
(void)ef_id;
// todo
return NULL;
}
uint32_t osEventFlagsSet(osEventFlagsId_t ef_id, uint32_t flags) {
k_event_t* eventId = (k_event_t*)ef_id;
k_err_t err;
uint32_t rflags;
if (eventId == NULL) {
rflags = (uint32_t)osErrorParameter;
} else {
err = tos_event_post_keep(eventId, (k_event_flag_t)flags);
rflags = err == K_ERR_NONE ? (uint32_t)eventId->flag
: (uint32_t)errno_knl2cmsis(err);
}
return rflags;
}
uint32_t osEventFlagsClear(osEventFlagsId_t ef_id, uint32_t flags) {
k_event_t* eventId = (k_event_t*)ef_id;
k_err_t err;
uint32_t rflags;
if (eventId == NULL) {
rflags = (uint32_t)osErrorParameter;
} else {
flags = eventId->flag & (~flags);
err = tos_event_post(eventId, (k_event_flag_t)flags);
rflags = err == K_ERR_NONE ? (uint32_t)eventId->flag
: (uint32_t)errno_knl2cmsis(err);
}
return rflags;
}
uint32_t osEventFlagsGet(osEventFlagsId_t ef_id) {
k_event_t* eventId = (k_event_t*)ef_id;
uint32_t rflags;
if (ef_id == NULL) {
rflags = 0U;
} else {
rflags = (uint32_t)eventId->flag;
}
return rflags;
}
uint32_t osEventFlagsWait(osEventFlagsId_t ef_id,
uint32_t flags,
uint32_t options,
uint32_t timeout) {
k_event_t* eventId = (k_event_t*)ef_id;
k_err_t err;
uint32_t rflags;
if (ef_id == NULL) {
rflags = (uint32_t)osErrorParameter;
} else {
k_event_flag_t flag_match;
k_opt_t opt_pend = 0;
k_tick_t timeout =
(timeout == 0 || timeout == osWaitForever) ? TOS_TIME_FOREVER : timeout;
if (options & 0x01 == 0) {
opt_pend |= TOS_OPT_EVENT_PEND_ANY;
} else {
opt_pend |= TOS_OPT_EVENT_PEND_ALL;
}
if (options & 0x02 == 0) {
opt_pend |= TOS_OPT_EVENT_PEND_CLR;
}
err = tos_event_pend(eventId, (k_event_flag_t)flags, &flag_match, timeout,
opt_pend);
rflags = err == K_ERR_NONE ? (uint32_t)flag_match
: (uint32_t)errno_knl2cmsis(err);
}
return rflags;
}
osStatus_t osEventFlagsDelete(osEventFlagsId_t ef_id) {
k_event_t* eventId = (k_event_t*)ef_id;
return errno_knl2cmsis(tos_event_destroy(eventId));
}
/*---------------------------------------------------------------------------*/
osMutexId_t osMutexNew(const osMutexAttr_t* attr) {
k_err_t err;
k_mutex_t* mutexId = NULL;
if (attr) {
if (attr->cb_mem) {
err = tos_mutex_create((k_mutex_t*)attr->cb_mem);
mutexId = err == K_ERR_NONE ? attr->cb_mem : NULL;
}
}
return (osEventFlagsId_t)mutexId;
}
const char* osMutexGetName(osMutexId_t mutex_id) {
(void)mutex_id;
// todo
return NULL;
}
osStatus_t osMutexAcquire(osMutexId_t mutex_id, uint32_t timeout) {
k_mutex_t* mutexId = (k_mutex_t*)mutex_id;
return errno_knl2cmsis(tos_mutex_pend_timed(mutexId, timeout));
}
osStatus_t osMutexRelease(osMutexId_t mutex_id) {
k_mutex_t* mutexId = (k_mutex_t*)mutex_id;
return errno_knl2cmsis(tos_mutex_post(mutexId));
}
osThreadId_t osMutexGetOwner(osMutexId_t mutex_id) {
k_mutex_t* mutexId = (k_mutex_t*)mutex_id;
return (osThreadId_t)mutexId->owner;
}
osStatus_t osMutexDelete(osMutexId_t mutex_id) {
k_mutex_t* mutexId = (k_mutex_t*)mutex_id;
return errno_knl2cmsis(tos_mutex_destroy(mutexId));
}
/*---------------------------------------------------------------------------*/
osSemaphoreId_t osSemaphoreNew(uint32_t max_count,
uint32_t initial_count,
const osSemaphoreAttr_t* attr) {
k_err_t err;
k_sem_t* semId = NULL;
if (attr) {
if (attr->cb_mem) {
err =
tos_sem_create_max((k_sem_t*)attr->cb_mem, (k_sem_cnt_t)initial_count,
(k_sem_cnt_t)max_count);
semId = err == K_ERR_NONE ? attr->cb_mem : NULL;
}
}
return (osEventFlagsId_t)semId;
}
const char* osSemaphoreGetName(osSemaphoreId_t semaphore_id) {
(void)semaphore_id;
// todo
return NULL;
}
osStatus_t osSemaphoreAcquire(osSemaphoreId_t semaphore_id, uint32_t timeout) {
k_sem_t* semId = (k_sem_t*)semaphore_id;
return errno_knl2cmsis(tos_sem_pend(semId, timeout));
}
osStatus_t osSemaphoreRelease(osSemaphoreId_t semaphore_id) {
k_sem_t* semId = (k_sem_t*)semaphore_id;
return errno_knl2cmsis(tos_sem_post(semId));
}
uint32_t osSemaphoreGetCount(osSemaphoreId_t semaphore_id) {
k_sem_t* semId = (k_sem_t*)semaphore_id;
return (uint32_t)semId->count;
}
osStatus_t osSemaphoreDelete(osSemaphoreId_t semaphore_id) {
k_sem_t* semId = (k_sem_t*)semaphore_id;
return errno_knl2cmsis(tos_sem_destroy(semId));
}
/*---------------------------------------------------------------------------*/
osMemoryPoolId_t osMemoryPoolNew(uint32_t block_count,
uint32_t block_size,
const osMemoryPoolAttr_t* attr) {
k_err_t err;
k_mmblk_pool_t* mpId = NULL;
if (attr) {
if (attr->cb_mem) {
err = tos_mmblk_pool_create((k_mmblk_pool_t*)attr->cb_mem, attr->mp_mem,
block_count, block_size);
mpId = err == K_ERR_NONE ? attr->cb_mem : NULL;
}
}
return (osMemoryPoolId_t)mpId;
}
const char* osMemoryPoolGetName(osMemoryPoolId_t mp_id) {
(void)mp_id;
// todo
return NULL;
}
void* osMemoryPoolAlloc(osMemoryPoolId_t mp_id, uint32_t timeout) {
k_mmblk_pool_t* mpId = (k_mmblk_pool_t*)mp_id;
k_err_t err;
void* blk = NULL;
err = tos_mmblk_alloc(mpId, &blk);
return err == K_ERR_NONE ? blk : NULL;
}
osStatus_t osMemoryPoolFree(osMemoryPoolId_t mp_id, void* block) {
k_mmblk_pool_t* mpId = (k_mmblk_pool_t*)mp_id;
return errno_knl2cmsis(tos_mmblk_free(mpId, block));
}
uint32_t osMemoryPoolGetCapacity(osMemoryPoolId_t mp_id) {
k_mmblk_pool_t* mpId = (k_mmblk_pool_t*)mp_id;
return mpId->blk_max;
}
uint32_t osMemoryPoolGetBlockSize(osMemoryPoolId_t mp_id) {
k_mmblk_pool_t* mpId = (k_mmblk_pool_t*)mp_id;
return mpId->blk_size;
}
uint32_t osMemoryPoolGetCount(osMemoryPoolId_t mp_id) {
k_mmblk_pool_t* mpId = (k_mmblk_pool_t*)mp_id;
return mpId->blk_max - mpId->blk_free;
}
uint32_t osMemoryPoolGetSpace(osMemoryPoolId_t mp_id) {
k_mmblk_pool_t* mpId = (k_mmblk_pool_t*)mp_id;
return mpId->blk_free;
}
osStatus_t osMemoryPoolDelete(osMemoryPoolId_t mp_id) {
k_mmblk_pool_t* mpId = (k_mmblk_pool_t*)mp_id;
return errno_knl2cmsis(tos_mmblk_pool_destroy(mpId));
}
/*---------------------------------------------------------------------------*/
#if TOS_CFG_MESSAGE_QUEUE_EN > 0u
osMessageQueueId_t osMessageQueueNew(uint32_t msg_count,
uint32_t msg_size,
const osMessageQueueAttr_t* attr) {
k_err_t err;
k_msg_q_t* mqId = NULL;
if (attr) {
if (attr->mq_mem && msg_size == sizeof(void*)) {
err = tos_msg_q_create((k_msg_q_t*)attr->cb_mem, attr->mq_mem, msg_count);
mqId = err == K_ERR_NONE ? attr->cb_mem : NULL;
}
}
return mqId;
}
const char* osMessageQueueGetName(osMessageQueueId_t mq_id) {
(void)mq_id;
// todo
return NULL;
}
osStatus_t osMessageQueuePut(osMessageQueueId_t mq_id,
const void* msg_ptr,
uint8_t msg_prio,
uint32_t timeout) {
k_msg_q_t* mqId = (k_msg_q_t*)mq_id;
return errno_knl2cmsis(tos_msg_q_post(mqId, (void*)msg_ptr));
}
osStatus_t osMessageQueueGet(osMessageQueueId_t mq_id,
void* msg_ptr,
uint8_t* msg_prio,
uint32_t timeout) {
k_msg_q_t* mqId = (k_msg_q_t*)mq_id;
return errno_knl2cmsis(tos_msg_q_pend(mqId, &msg_ptr, timeout));
}
uint32_t osMessageQueueGetCapacity(osMessageQueueId_t mq_id) {
k_msg_q_t* mqId = (k_msg_q_t*)mq_id;
uint32_t capacity;
if (mqId == NULL) {
capacity = 0U;
} else {
capacity = mqId->ring_q.item_cnt;
}
return capacity;
}
uint32_t osMessageQueueGetMsgSize(osMessageQueueId_t mq_id) {
k_msg_q_t* mqId = (k_msg_q_t*)mq_id;
uint32_t size;
if (mqId == NULL) {
size = 0U;
} else {
size = mqId->ring_q.item_size;
}
return size;
}
uint32_t osMessageQueueGetCount(osMessageQueueId_t mq_id) {
k_msg_q_t* mqId = (k_msg_q_t*)mq_id;
uint32_t count;
if (mqId == NULL) {
count = 0U;
} else {
count = mqId->ring_q.total;
}
return count;
}
uint32_t osMessageQueueGetSpace(osMessageQueueId_t mq_id) {
k_msg_q_t* mqId = (k_msg_q_t*)mq_id;
uint32_t space;
if (mqId == NULL) {
space = 0U;
} else {
space = mqId->ring_q.item_cnt - mqId->ring_q.total;
}
return space;
}
osStatus_t osMessageQueueReset(osMessageQueueId_t mq_id) {
k_msg_q_t* mqId = (k_msg_q_t*)mq_id;
return errno_knl2cmsis(tos_msg_q_flush(mqId));
}
osStatus_t osMessageQueueDelete(osMessageQueueId_t mq_id) {
k_msg_q_t* mqId = (k_msg_q_t*)mq_id;
return errno_knl2cmsis(tos_msg_q_destroy(mqId));
}
#endif
/*---------------------------------------------------------------------------*/

799
osal/cmsis_os/cmsis_os2.h Normal file
View File

@@ -0,0 +1,799 @@
/*
* Copyright (c) 2013-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ----------------------------------------------------------------------
*
* $Date: 18. June 2018
* $Revision: V2.1.3
*
* Project: CMSIS-RTOS2 API
* Title: cmsis_os2.h header file
*
* Version 2.1.3
* Additional functions allowed to be called from Interrupt Service Routines:
* - osThreadGetId
* Version 2.1.2
* Additional functions allowed to be called from Interrupt Service Routines:
* - osKernelGetInfo, osKernelGetState
* Version 2.1.1
* Additional functions allowed to be called from Interrupt Service Routines:
* - osKernelGetTickCount, osKernelGetTickFreq
* Changed Kernel Tick type to uint32_t:
* - updated: osKernelGetTickCount, osDelayUntil
* Version 2.1.0
* Support for critical and uncritical sections (nesting safe):
* - updated: osKernelLock, osKernelUnlock
* - added: osKernelRestoreLock
* Updated Thread and Event Flags:
* - changed flags parameter and return type from int32_t to uint32_t
* Version 2.0.0
* Initial Release
*---------------------------------------------------------------------------*/
#ifndef CMSIS_OS2_H_
#define CMSIS_OS2_H_
/* Kernel version and identification string definition */
#define osCMSIS 0x20001U ///< API version (main[31:16].sub[15:0])
/// \note CAN BE CHANGED: \b osCMSIS_KERNEL identifies the underlying RTOS kernel and version number.
#define osCMSIS_KERNEL 0x10000U ///< RTOS identification and version (main[31:16].sub[15:0])
/// \note CAN BE CHANGED: \b osKernelSystemId identifies the underlying RTOS kernel.
#define osKernelSystemId "TencentOS tiny V1.00" ///< RTOS identification string
#ifndef __NO_RETURN
#if defined(__CC_ARM)
#define __NO_RETURN __declspec(noreturn)
#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
#define __NO_RETURN __attribute__((__noreturn__))
#elif defined(__GNUC__)
#define __NO_RETURN __attribute__((__noreturn__))
#elif defined(__ICCARM__)
#define __NO_RETURN __noreturn
#else
#define __NO_RETURN
#endif
#endif
#include <stdint.h>
#include <stddef.h>
#include "tos_k.h"
#ifdef __cplusplus
extern "C"
{
#endif
// ==== Enumerations, structures, defines ====
/// Version information.
typedef struct {
uint32_t api; ///< API version (major.minor.rev: mmnnnrrrr dec).
uint32_t kernel; ///< Kernel version (major.minor.rev: mmnnnrrrr dec).
} osVersion_t;
/// Kernel state.
typedef enum {
osKernelInactive = 0, ///< Inactive.
osKernelReady = 1, ///< Ready.
osKernelRunning = 2, ///< Running.
osKernelLocked = 3, ///< Locked.
osKernelSuspended = 4, ///< Suspended.
osKernelError = -1, ///< Error.
osKernelReserved = 0x7FFFFFFFU ///< Prevents enum down-size compiler optimization.
} osKernelState_t;
/// Thread state.
typedef enum {
osThreadInactive = 0, ///< Inactive.
osThreadReady = 1, ///< Ready.
osThreadRunning = 2, ///< Running.
osThreadBlocked = 3, ///< Blocked.
osThreadTerminated = 4, ///< Terminated.
osThreadError = -1, ///< Error.
osThreadReserved = 0x7FFFFFFF ///< Prevents enum down-size compiler optimization.
} osThreadState_t;
/// Priority values.
typedef enum {
osPriorityNone = 0, ///< No priority (not initialized).
osPriorityIdle = 1, ///< Reserved for Idle thread.
osPriorityLow = 8, ///< Priority: low
osPriorityLow1 = 8+1, ///< Priority: low + 1
osPriorityLow2 = 8+2, ///< Priority: low + 2
osPriorityLow3 = 8+3, ///< Priority: low + 3
osPriorityLow4 = 8+4, ///< Priority: low + 4
osPriorityLow5 = 8+5, ///< Priority: low + 5
osPriorityLow6 = 8+6, ///< Priority: low + 6
osPriorityLow7 = 8+7, ///< Priority: low + 7
osPriorityBelowNormal = 16, ///< Priority: below normal
osPriorityBelowNormal1 = 16+1, ///< Priority: below normal + 1
osPriorityBelowNormal2 = 16+2, ///< Priority: below normal + 2
osPriorityBelowNormal3 = 16+3, ///< Priority: below normal + 3
osPriorityBelowNormal4 = 16+4, ///< Priority: below normal + 4
osPriorityBelowNormal5 = 16+5, ///< Priority: below normal + 5
osPriorityBelowNormal6 = 16+6, ///< Priority: below normal + 6
osPriorityBelowNormal7 = 16+7, ///< Priority: below normal + 7
osPriorityNormal = 24, ///< Priority: normal
osPriorityNormal1 = 24+1, ///< Priority: normal + 1
osPriorityNormal2 = 24+2, ///< Priority: normal + 2
osPriorityNormal3 = 24+3, ///< Priority: normal + 3
osPriorityNormal4 = 24+4, ///< Priority: normal + 4
osPriorityNormal5 = 24+5, ///< Priority: normal + 5
osPriorityNormal6 = 24+6, ///< Priority: normal + 6
osPriorityNormal7 = 24+7, ///< Priority: normal + 7
osPriorityAboveNormal = 32, ///< Priority: above normal
osPriorityAboveNormal1 = 32+1, ///< Priority: above normal + 1
osPriorityAboveNormal2 = 32+2, ///< Priority: above normal + 2
osPriorityAboveNormal3 = 32+3, ///< Priority: above normal + 3
osPriorityAboveNormal4 = 32+4, ///< Priority: above normal + 4
osPriorityAboveNormal5 = 32+5, ///< Priority: above normal + 5
osPriorityAboveNormal6 = 32+6, ///< Priority: above normal + 6
osPriorityAboveNormal7 = 32+7, ///< Priority: above normal + 7
osPriorityHigh = 40, ///< Priority: high
osPriorityHigh1 = 40+1, ///< Priority: high + 1
osPriorityHigh2 = 40+2, ///< Priority: high + 2
osPriorityHigh3 = 40+3, ///< Priority: high + 3
osPriorityHigh4 = 40+4, ///< Priority: high + 4
osPriorityHigh5 = 40+5, ///< Priority: high + 5
osPriorityHigh6 = 40+6, ///< Priority: high + 6
osPriorityHigh7 = 40+7, ///< Priority: high + 7
osPriorityRealtime = 48, ///< Priority: realtime
osPriorityRealtime1 = 48+1, ///< Priority: realtime + 1
osPriorityRealtime2 = 48+2, ///< Priority: realtime + 2
osPriorityRealtime3 = 48+3, ///< Priority: realtime + 3
osPriorityRealtime4 = 48+4, ///< Priority: realtime + 4
osPriorityRealtime5 = 48+5, ///< Priority: realtime + 5
osPriorityRealtime6 = 48+6, ///< Priority: realtime + 6
osPriorityRealtime7 = 48+7, ///< Priority: realtime + 7
osPriorityISR = 56, ///< Reserved for ISR deferred thread.
osPriorityError = -1, ///< System cannot determine priority or illegal priority.
osPriorityReserved = 0x7FFFFFFF ///< Prevents enum down-size compiler optimization.
} osPriority_t;
/// Entry point of a thread.
typedef void (*osThreadFunc_t) (void *argument);
/// Timer callback function.
typedef void (*osTimerFunc_t) (void *argument);
/// Timer type.
typedef enum {
osTimerOnce = 0, ///< One-shot timer.
osTimerPeriodic = 1 ///< Repeating timer.
} osTimerType_t;
// Timeout value.
#define osWaitForever 0xFFFFFFFFU ///< Wait forever timeout value.
// Flags options (\ref osThreadFlagsWait and \ref osEventFlagsWait).
#define osFlagsWaitAny 0x00000000U ///< Wait for any flag (default).
#define osFlagsWaitAll 0x00000001U ///< Wait for all flags.
#define osFlagsNoClear 0x00000002U ///< Do not clear flags which have been specified to wait for.
// Flags errors (returned by osThreadFlagsXxxx and osEventFlagsXxxx).
#define osFlagsError 0x80000000U ///< Error indicator.
#define osFlagsErrorUnknown 0xFFFFFFFFU ///< osError (-1).
#define osFlagsErrorTimeout 0xFFFFFFFEU ///< osErrorTimeout (-2).
#define osFlagsErrorResource 0xFFFFFFFDU ///< osErrorResource (-3).
#define osFlagsErrorParameter 0xFFFFFFFCU ///< osErrorParameter (-4).
#define osFlagsErrorISR 0xFFFFFFFAU ///< osErrorISR (-6).
// Thread attributes (attr_bits in \ref osThreadAttr_t).
#define osThreadDetached 0x00000000U ///< Thread created in detached mode (default)
#define osThreadJoinable 0x00000001U ///< Thread created in joinable mode
// Mutex attributes (attr_bits in \ref osMutexAttr_t).
#define osMutexRecursive 0x00000001U ///< Recursive mutex.
#define osMutexPrioInherit 0x00000002U ///< Priority inherit protocol.
#define osMutexRobust 0x00000008U ///< Robust mutex.
/// Status code values returned by CMSIS-RTOS functions.
typedef enum {
osOK = 0, ///< Operation completed successfully.
osError = -1, ///< Unspecified RTOS error: run-time error but no other error message fits.
osErrorTimeout = -2, ///< Operation not completed within the timeout period.
osErrorResource = -3, ///< Resource not available.
osErrorParameter = -4, ///< Parameter error.
osErrorNoMemory = -5, ///< System is out of memory: it was impossible to allocate or reserve memory for the operation.
osErrorISR = -6, ///< Not allowed in ISR context: the function cannot be called from interrupt service routines.
osStatusReserved = 0x7FFFFFFF ///< Prevents enum down-size compiler optimization.
} osStatus_t;
/// \details Thread ID identifies the thread.
typedef void *osThreadId_t;
/// \details Timer ID identifies the timer.
typedef void *osTimerId_t;
/// \details Event Flags ID identifies the event flags.
typedef void *osEventFlagsId_t;
/// \details Mutex ID identifies the mutex.
typedef void *osMutexId_t;
/// \details Semaphore ID identifies the semaphore.
typedef void *osSemaphoreId_t;
/// \details Memory Pool ID identifies the memory pool.
typedef void *osMemoryPoolId_t;
/// \details Message Queue ID identifies the message queue.
typedef void *osMessageQueueId_t;
#ifndef TZ_MODULEID_T
#define TZ_MODULEID_T
/// \details Data type that identifies secure software modules called by a process.
typedef uint32_t TZ_ModuleId_t;
#endif
/// Attributes structure for thread.
typedef struct {
const char *name; ///< name of the thread
uint32_t attr_bits; ///< attribute bits
void *cb_mem; ///< memory for control block
uint32_t cb_size; ///< size of provided memory for control block
void *stack_mem; ///< memory for stack
uint32_t stack_size; ///< size of stack
osPriority_t priority; ///< initial thread priority (default: osPriorityNormal)
TZ_ModuleId_t tz_module; ///< TrustZone module identifier
uint32_t reserved; ///< reserved (must be 0)
} osThreadAttr_t;
/// Attributes structure for timer.
typedef struct {
const char *name; ///< name of the timer
uint32_t attr_bits; ///< attribute bits
void *cb_mem; ///< memory for control block
uint32_t cb_size; ///< size of provided memory for control block
} osTimerAttr_t;
/// Attributes structure for event flags.
typedef struct {
const char *name; ///< name of the event flags
uint32_t attr_bits; ///< attribute bits
void *cb_mem; ///< memory for control block
uint32_t cb_size; ///< size of provided memory for control block
} osEventFlagsAttr_t;
/// Attributes structure for mutex.
typedef struct {
const char *name; ///< name of the mutex
uint32_t attr_bits; ///< attribute bits
void *cb_mem; ///< memory for control block
uint32_t cb_size; ///< size of provided memory for control block
} osMutexAttr_t;
/// Attributes structure for semaphore.
typedef struct {
const char *name; ///< name of the semaphore
uint32_t attr_bits; ///< attribute bits
void *cb_mem; ///< memory for control block
uint32_t cb_size; ///< size of provided memory for control block
} osSemaphoreAttr_t;
/// Attributes structure for memory pool.
typedef struct {
const char *name; ///< name of the memory pool
uint32_t attr_bits; ///< attribute bits
void *cb_mem; ///< memory for control block
uint32_t cb_size; ///< size of provided memory for control block
void *mp_mem; ///< memory for data storage
uint32_t mp_size; ///< size of provided memory for data storage
} osMemoryPoolAttr_t;
/// Attributes structure for message queue.
typedef struct {
const char *name; ///< name of the message queue
uint32_t attr_bits; ///< attribute bits
void *cb_mem; ///< memory for control block
uint32_t cb_size; ///< size of provided memory for control block
void *mq_mem; ///< memory for data storage
uint32_t mq_size; ///< size of provided memory for data storage
} osMessageQueueAttr_t;
// ==== Kernel Management Functions ====
/// Initialize the RTOS Kernel.
/// \return status code that indicates the execution status of the function.
osStatus_t osKernelInitialize (void);
/// Get RTOS Kernel Information.
/// \param[out] version pointer to buffer for retrieving version information.
/// \param[out] id_buf pointer to buffer for retrieving kernel identification string.
/// \param[in] id_size size of buffer for kernel identification string.
/// \return status code that indicates the execution status of the function.
osStatus_t osKernelGetInfo (osVersion_t *version, char *id_buf, uint32_t id_size);
/// Get the current RTOS Kernel state.
/// \return current RTOS Kernel state.
osKernelState_t osKernelGetState (void);
/// Start the RTOS Kernel scheduler.
/// \return status code that indicates the execution status of the function.
osStatus_t osKernelStart (void);
/// Lock the RTOS Kernel scheduler.
/// \return previous lock state (1 - locked, 0 - not locked, error code if negative).
int32_t osKernelLock (void);
/// Unlock the RTOS Kernel scheduler.
/// \return previous lock state (1 - locked, 0 - not locked, error code if negative).
int32_t osKernelUnlock (void);
/// Restore the RTOS Kernel scheduler lock state.
/// \param[in] lock lock state obtained by \ref osKernelLock or \ref osKernelUnlock.
/// \return new lock state (1 - locked, 0 - not locked, error code if negative).
int32_t osKernelRestoreLock (int32_t lock);
/// Suspend the RTOS Kernel scheduler.
/// \return time in ticks, for how long the system can sleep or power-down.
uint32_t osKernelSuspend (void);
/// Resume the RTOS Kernel scheduler.
/// \param[in] sleep_ticks time in ticks for how long the system was in sleep or power-down mode.
void osKernelResume (uint32_t sleep_ticks);
/// Get the RTOS kernel tick count.
/// \return RTOS kernel current tick count.
uint32_t osKernelGetTickCount (void);
/// Get the RTOS kernel tick frequency.
/// \return frequency of the kernel tick in hertz, i.e. kernel ticks per second.
uint32_t osKernelGetTickFreq (void);
/// Get the RTOS kernel system timer count.
/// \return RTOS kernel current system timer count as 32-bit value.
uint32_t osKernelGetSysTimerCount (void);
/// Get the RTOS kernel system timer frequency.
/// \return frequency of the system timer in hertz, i.e. timer ticks per second.
uint32_t osKernelGetSysTimerFreq (void);
// ==== Thread Management Functions ====
/// Create a Thread Definition with function, priority, and stack requirements.
/// \param name name of the thread function.
/// \param priority initial priority of the thread function.
/// \param instances number of possible thread instances.
/// \param stacksz stack size (in bytes) requirements for the thread function.
/// \note CAN BE CHANGED: The parameters to \b osThreadDef shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#if defined (osObjectsExternal) // object is external
#define osThreadDef(name, priority, instances, stacksz) \
extern const osThreadAttr_t os_thread_def_##name
#else // define the object
#define osThreadDef(name, priority, instances, stacksz) \
k_task_t task_handler_##name; \
k_stack_t task_stack_##name[(stacksz)]; \
const osThreadAttr_t os_thread_def_##name = \
{ #name, 0, (&(task_handler_##name)), sizeof(k_task_t), (&((task_stack_##name)[0])), (stacksz), (osPriority_t)(priority) }
#if (TOS_CFG_TASK_DYNAMIC_CREATE_EN > 0u)
#define osThreadDynamicDef(name, priority, instances, stacksz) \
const osThreadAttr_t os_thread_def_##name = \
{ #name, 0, (K_NULL), sizeof(k_task_t), (K_NULL), (stacksz), (osPriority_t)(priority) }
#endif
#endif
/// Access a Thread definition.
/// \param name name of the thread definition object.
/// \note CAN BE CHANGED: The parameter to \b osThread shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#define osThread(name) \
&os_thread_def_##name
/// Create a thread and add it to Active Threads.
/// \param[in] func thread function.
/// \param[in] argument pointer that is passed to the thread function as start argument.
/// \param[in] attr thread attributes; NULL: default values.
/// \return thread ID for reference by other functions or NULL in case of error.
osThreadId_t osThreadNew (osThreadFunc_t func, void *argument, const osThreadAttr_t *attr);
/// Get name of a thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadNew or \ref osThreadGetId.
/// \return name as null-terminated string.
const char *osThreadGetName (osThreadId_t thread_id);
/// Return the thread ID of the current running thread.
/// \return thread ID for reference by other functions or NULL in case of error.
osThreadId_t osThreadGetId (void);
/// Get current thread state of a thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadNew or \ref osThreadGetId.
/// \return current thread state of the specified thread.
osThreadState_t osThreadGetState (osThreadId_t thread_id);
/// Get stack size of a thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadNew or \ref osThreadGetId.
/// \return stack size in bytes.
uint32_t osThreadGetStackSize (osThreadId_t thread_id);
/// Get available stack space of a thread based on stack watermark recording during execution.
/// \param[in] thread_id thread ID obtained by \ref osThreadNew or \ref osThreadGetId.
/// \return remaining stack space in bytes.
uint32_t osThreadGetStackSpace (osThreadId_t thread_id);
/// Change priority of a thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadNew or \ref osThreadGetId.
/// \param[in] priority new priority value for the thread function.
/// \return status code that indicates the execution status of the function.
osStatus_t osThreadSetPriority (osThreadId_t thread_id, osPriority_t priority);
/// Get current priority of a thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadNew or \ref osThreadGetId.
/// \return current priority value of the specified thread.
osPriority_t osThreadGetPriority (osThreadId_t thread_id);
/// Pass control to next thread that is in state \b READY.
/// \return status code that indicates the execution status of the function.
osStatus_t osThreadYield (void);
/// Suspend execution of a thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadNew or \ref osThreadGetId.
/// \return status code that indicates the execution status of the function.
osStatus_t osThreadSuspend (osThreadId_t thread_id);
/// Resume execution of a thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadNew or \ref osThreadGetId.
/// \return status code that indicates the execution status of the function.
osStatus_t osThreadResume (osThreadId_t thread_id);
/// Detach a thread (thread storage can be reclaimed when thread terminates).
/// \param[in] thread_id thread ID obtained by \ref osThreadNew or \ref osThreadGetId.
/// \return status code that indicates the execution status of the function.
osStatus_t osThreadDetach (osThreadId_t thread_id);
/// Wait for specified thread to terminate.
/// \param[in] thread_id thread ID obtained by \ref osThreadNew or \ref osThreadGetId.
/// \return status code that indicates the execution status of the function.
osStatus_t osThreadJoin (osThreadId_t thread_id);
/// Terminate execution of current running thread.
__NO_RETURN void osThreadExit (void);
/// Terminate execution of a thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadNew or \ref osThreadGetId.
/// \return status code that indicates the execution status of the function.
osStatus_t osThreadTerminate (osThreadId_t thread_id);
/// Get number of active threads.
/// \return number of active threads.
uint32_t osThreadGetCount (void);
/// Enumerate active threads.
/// \param[out] thread_array pointer to array for retrieving thread IDs.
/// \param[in] array_items maximum number of items in array for retrieving thread IDs.
/// \return number of enumerated threads.
uint32_t osThreadEnumerate (osThreadId_t *thread_array, uint32_t array_items);
// ==== Thread Flags Functions ====
/// Set the specified Thread Flags of a thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadNew or \ref osThreadGetId.
/// \param[in] flags specifies the flags of the thread that shall be set.
/// \return thread flags after setting or error code if highest bit set.
uint32_t osThreadFlagsSet (osThreadId_t thread_id, uint32_t flags);
/// Clear the specified Thread Flags of current running thread.
/// \param[in] flags specifies the flags of the thread that shall be cleared.
/// \return thread flags before clearing or error code if highest bit set.
uint32_t osThreadFlagsClear (uint32_t flags);
/// Get the current Thread Flags of current running thread.
/// \return current thread flags.
uint32_t osThreadFlagsGet (void);
/// Wait for one or more Thread Flags of the current running thread to become signaled.
/// \param[in] flags specifies the flags to wait for.
/// \param[in] options specifies flags options (osFlagsXxxx).
/// \param[in] timeout \ref CMSIS_RTOS_TimeOutValue or 0 in case of no time-out.
/// \return thread flags before clearing or error code if highest bit set.
uint32_t osThreadFlagsWait (uint32_t flags, uint32_t options, uint32_t timeout);
// ==== Generic Wait Functions ====
/// Wait for Timeout (Time Delay).
/// \param[in] ticks \ref CMSIS_RTOS_TimeOutValue "time ticks" value
/// \return status code that indicates the execution status of the function.
osStatus_t osDelay (uint32_t ticks);
/// Wait until specified time.
/// \param[in] ticks absolute time in ticks
/// \return status code that indicates the execution status of the function.
osStatus_t osDelayUntil (uint32_t ticks);
// ==== Timer Management Functions ====
/// Create and Initialize a timer.
/// \param[in] func function pointer to callback function.
/// \param[in] type \ref osTimerOnce for one-shot or \ref osTimerPeriodic for periodic behavior.
/// \param[in] argument argument to the timer callback function.
/// \param[in] attr timer attributes; NULL: default values.
/// \return timer ID for reference by other functions or NULL in case of error.
osTimerId_t osTimerNew (osTimerFunc_t func, osTimerType_t type, void *argument, const osTimerAttr_t *attr);
/// Get name of a timer.
/// \param[in] timer_id timer ID obtained by \ref osTimerNew.
/// \return name as null-terminated string.
const char *osTimerGetName (osTimerId_t timer_id);
/// Start or restart a timer.
/// \param[in] timer_id timer ID obtained by \ref osTimerNew.
/// \param[in] ticks \ref CMSIS_RTOS_TimeOutValue "time ticks" value of the timer.
/// \return status code that indicates the execution status of the function.
osStatus_t osTimerStart (osTimerId_t timer_id, uint32_t ticks);
/// Stop a timer.
/// \param[in] timer_id timer ID obtained by \ref osTimerNew.
/// \return status code that indicates the execution status of the function.
osStatus_t osTimerStop (osTimerId_t timer_id);
/// Check if a timer is running.
/// \param[in] timer_id timer ID obtained by \ref osTimerNew.
/// \return 0 not running, 1 running.
uint32_t osTimerIsRunning (osTimerId_t timer_id);
/// Delete a timer.
/// \param[in] timer_id timer ID obtained by \ref osTimerNew.
/// \return status code that indicates the execution status of the function.
osStatus_t osTimerDelete (osTimerId_t timer_id);
// ==== Event Flags Management Functions ====
/// Create and Initialize an Event Flags object.
/// \param[in] attr event flags attributes; NULL: default values.
/// \return event flags ID for reference by other functions or NULL in case of error.
osEventFlagsId_t osEventFlagsNew (const osEventFlagsAttr_t *attr);
/// Get name of an Event Flags object.
/// \param[in] ef_id event flags ID obtained by \ref osEventFlagsNew.
/// \return name as null-terminated string.
const char *osEventFlagsGetName (osEventFlagsId_t ef_id);
/// Set the specified Event Flags.
/// \param[in] ef_id event flags ID obtained by \ref osEventFlagsNew.
/// \param[in] flags specifies the flags that shall be set.
/// \return event flags after setting or error code if highest bit set.
uint32_t osEventFlagsSet (osEventFlagsId_t ef_id, uint32_t flags);
/// Clear the specified Event Flags.
/// \param[in] ef_id event flags ID obtained by \ref osEventFlagsNew.
/// \param[in] flags specifies the flags that shall be cleared.
/// \return event flags before clearing or error code if highest bit set.
uint32_t osEventFlagsClear (osEventFlagsId_t ef_id, uint32_t flags);
/// Get the current Event Flags.
/// \param[in] ef_id event flags ID obtained by \ref osEventFlagsNew.
/// \return current event flags.
uint32_t osEventFlagsGet (osEventFlagsId_t ef_id);
/// Wait for one or more Event Flags to become signaled.
/// \param[in] ef_id event flags ID obtained by \ref osEventFlagsNew.
/// \param[in] flags specifies the flags to wait for.
/// \param[in] options specifies flags options (osFlagsXxxx).
/// \param[in] timeout \ref CMSIS_RTOS_TimeOutValue or 0 in case of no time-out.
/// \return event flags before clearing or error code if highest bit set.
uint32_t osEventFlagsWait (osEventFlagsId_t ef_id, uint32_t flags, uint32_t options, uint32_t timeout);
/// Delete an Event Flags object.
/// \param[in] ef_id event flags ID obtained by \ref osEventFlagsNew.
/// \return status code that indicates the execution status of the function.
osStatus_t osEventFlagsDelete (osEventFlagsId_t ef_id);
// ==== Mutex Management Functions ====
/// Create and Initialize a Mutex object.
/// \param[in] attr mutex attributes; NULL: default values.
/// \return mutex ID for reference by other functions or NULL in case of error.
osMutexId_t osMutexNew (const osMutexAttr_t *attr);
/// Get name of a Mutex object.
/// \param[in] mutex_id mutex ID obtained by \ref osMutexNew.
/// \return name as null-terminated string.
const char *osMutexGetName (osMutexId_t mutex_id);
/// Acquire a Mutex or timeout if it is locked.
/// \param[in] mutex_id mutex ID obtained by \ref osMutexNew.
/// \param[in] timeout \ref CMSIS_RTOS_TimeOutValue or 0 in case of no time-out.
/// \return status code that indicates the execution status of the function.
osStatus_t osMutexAcquire (osMutexId_t mutex_id, uint32_t timeout);
/// Release a Mutex that was acquired by \ref osMutexAcquire.
/// \param[in] mutex_id mutex ID obtained by \ref osMutexNew.
/// \return status code that indicates the execution status of the function.
osStatus_t osMutexRelease (osMutexId_t mutex_id);
/// Get Thread which owns a Mutex object.
/// \param[in] mutex_id mutex ID obtained by \ref osMutexNew.
/// \return thread ID of owner thread or NULL when mutex was not acquired.
osThreadId_t osMutexGetOwner (osMutexId_t mutex_id);
/// Delete a Mutex object.
/// \param[in] mutex_id mutex ID obtained by \ref osMutexNew.
/// \return status code that indicates the execution status of the function.
osStatus_t osMutexDelete (osMutexId_t mutex_id);
// ==== Semaphore Management Functions ====
/// Create and Initialize a Semaphore object.
/// \param[in] max_count maximum number of available tokens.
/// \param[in] initial_count initial number of available tokens.
/// \param[in] attr semaphore attributes; NULL: default values.
/// \return semaphore ID for reference by other functions or NULL in case of error.
osSemaphoreId_t osSemaphoreNew (uint32_t max_count, uint32_t initial_count, const osSemaphoreAttr_t *attr);
/// Get name of a Semaphore object.
/// \param[in] semaphore_id semaphore ID obtained by \ref osSemaphoreNew.
/// \return name as null-terminated string.
const char *osSemaphoreGetName (osSemaphoreId_t semaphore_id);
/// Acquire a Semaphore token or timeout if no tokens are available.
/// \param[in] semaphore_id semaphore ID obtained by \ref osSemaphoreNew.
/// \param[in] timeout \ref CMSIS_RTOS_TimeOutValue or 0 in case of no time-out.
/// \return status code that indicates the execution status of the function.
osStatus_t osSemaphoreAcquire (osSemaphoreId_t semaphore_id, uint32_t timeout);
/// Release a Semaphore token up to the initial maximum count.
/// \param[in] semaphore_id semaphore ID obtained by \ref osSemaphoreNew.
/// \return status code that indicates the execution status of the function.
osStatus_t osSemaphoreRelease (osSemaphoreId_t semaphore_id);
/// Get current Semaphore token count.
/// \param[in] semaphore_id semaphore ID obtained by \ref osSemaphoreNew.
/// \return number of tokens available.
uint32_t osSemaphoreGetCount (osSemaphoreId_t semaphore_id);
/// Delete a Semaphore object.
/// \param[in] semaphore_id semaphore ID obtained by \ref osSemaphoreNew.
/// \return status code that indicates the execution status of the function.
osStatus_t osSemaphoreDelete (osSemaphoreId_t semaphore_id);
// ==== Memory Pool Management Functions ====
/// Create and Initialize a Memory Pool object.
/// \param[in] block_count maximum number of memory blocks in memory pool.
/// \param[in] block_size memory block size in bytes.
/// \param[in] attr memory pool attributes; NULL: default values.
/// \return memory pool ID for reference by other functions or NULL in case of error.
osMemoryPoolId_t osMemoryPoolNew (uint32_t block_count, uint32_t block_size, const osMemoryPoolAttr_t *attr);
/// Get name of a Memory Pool object.
/// \param[in] mp_id memory pool ID obtained by \ref osMemoryPoolNew.
/// \return name as null-terminated string.
const char *osMemoryPoolGetName (osMemoryPoolId_t mp_id);
/// Allocate a memory block from a Memory Pool.
/// \param[in] mp_id memory pool ID obtained by \ref osMemoryPoolNew.
/// \param[in] timeout \ref CMSIS_RTOS_TimeOutValue or 0 in case of no time-out.
/// \return address of the allocated memory block or NULL in case of no memory is available.
void *osMemoryPoolAlloc (osMemoryPoolId_t mp_id, uint32_t timeout);
/// Return an allocated memory block back to a Memory Pool.
/// \param[in] mp_id memory pool ID obtained by \ref osMemoryPoolNew.
/// \param[in] block address of the allocated memory block to be returned to the memory pool.
/// \return status code that indicates the execution status of the function.
osStatus_t osMemoryPoolFree (osMemoryPoolId_t mp_id, void *block);
/// Get maximum number of memory blocks in a Memory Pool.
/// \param[in] mp_id memory pool ID obtained by \ref osMemoryPoolNew.
/// \return maximum number of memory blocks.
uint32_t osMemoryPoolGetCapacity (osMemoryPoolId_t mp_id);
/// Get memory block size in a Memory Pool.
/// \param[in] mp_id memory pool ID obtained by \ref osMemoryPoolNew.
/// \return memory block size in bytes.
uint32_t osMemoryPoolGetBlockSize (osMemoryPoolId_t mp_id);
/// Get number of memory blocks used in a Memory Pool.
/// \param[in] mp_id memory pool ID obtained by \ref osMemoryPoolNew.
/// \return number of memory blocks used.
uint32_t osMemoryPoolGetCount (osMemoryPoolId_t mp_id);
/// Get number of memory blocks available in a Memory Pool.
/// \param[in] mp_id memory pool ID obtained by \ref osMemoryPoolNew.
/// \return number of memory blocks available.
uint32_t osMemoryPoolGetSpace (osMemoryPoolId_t mp_id);
/// Delete a Memory Pool object.
/// \param[in] mp_id memory pool ID obtained by \ref osMemoryPoolNew.
/// \return status code that indicates the execution status of the function.
osStatus_t osMemoryPoolDelete (osMemoryPoolId_t mp_id);
// ==== Message Queue Management Functions ====
/// Create and Initialize a Message Queue object.
/// \param[in] msg_count maximum number of messages in queue.
/// \param[in] msg_size maximum message size in bytes.
/// \param[in] attr message queue attributes; NULL: default values.
/// \return message queue ID for reference by other functions or NULL in case of error.
osMessageQueueId_t osMessageQueueNew (uint32_t msg_count, uint32_t msg_size, const osMessageQueueAttr_t *attr);
/// Get name of a Message Queue object.
/// \param[in] mq_id message queue ID obtained by \ref osMessageQueueNew.
/// \return name as null-terminated string.
const char *osMessageQueueGetName (osMessageQueueId_t mq_id);
/// Put a Message into a Queue or timeout if Queue is full.
/// \param[in] mq_id message queue ID obtained by \ref osMessageQueueNew.
/// \param[in] msg_ptr pointer to buffer with message to put into a queue.
/// \param[in] msg_prio message priority.
/// \param[in] timeout \ref CMSIS_RTOS_TimeOutValue or 0 in case of no time-out.
/// \return status code that indicates the execution status of the function.
osStatus_t osMessageQueuePut (osMessageQueueId_t mq_id, const void *msg_ptr, uint8_t msg_prio, uint32_t timeout);
/// Get a Message from a Queue or timeout if Queue is empty.
/// \param[in] mq_id message queue ID obtained by \ref osMessageQueueNew.
/// \param[out] msg_ptr pointer to buffer for message to get from a queue.
/// \param[out] msg_prio pointer to buffer for message priority or NULL.
/// \param[in] timeout \ref CMSIS_RTOS_TimeOutValue or 0 in case of no time-out.
/// \return status code that indicates the execution status of the function.
osStatus_t osMessageQueueGet (osMessageQueueId_t mq_id, void *msg_ptr, uint8_t *msg_prio, uint32_t timeout);
/// Get maximum number of messages in a Message Queue.
/// \param[in] mq_id message queue ID obtained by \ref osMessageQueueNew.
/// \return maximum number of messages.
uint32_t osMessageQueueGetCapacity (osMessageQueueId_t mq_id);
/// Get maximum message size in a Memory Pool.
/// \param[in] mq_id message queue ID obtained by \ref osMessageQueueNew.
/// \return maximum message size in bytes.
uint32_t osMessageQueueGetMsgSize (osMessageQueueId_t mq_id);
/// Get number of queued messages in a Message Queue.
/// \param[in] mq_id message queue ID obtained by \ref osMessageQueueNew.
/// \return number of queued messages.
uint32_t osMessageQueueGetCount (osMessageQueueId_t mq_id);
/// Get number of available slots for messages in a Message Queue.
/// \param[in] mq_id message queue ID obtained by \ref osMessageQueueNew.
/// \return number of available slots for messages.
uint32_t osMessageQueueGetSpace (osMessageQueueId_t mq_id);
/// Reset a Message Queue to initial empty state.
/// \param[in] mq_id message queue ID obtained by \ref osMessageQueueNew.
/// \return status code that indicates the execution status of the function.
osStatus_t osMessageQueueReset (osMessageQueueId_t mq_id);
/// Delete a Message Queue object.
/// \param[in] mq_id message queue ID obtained by \ref osMessageQueueNew.
/// \return status code that indicates the execution status of the function.
osStatus_t osMessageQueueDelete (osMessageQueueId_t mq_id);
#ifdef __cplusplus
}
#endif
#endif // CMSIS_OS2_H_

71
osal/cmsis_os/os_tick.h Normal file
View File

@@ -0,0 +1,71 @@
/**************************************************************************//**
* @file os_tick.h
* @brief CMSIS OS Tick header file
* @version V1.0.1
* @date 24. November 2017
******************************************************************************/
/*
* Copyright (c) 2017-2017 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef OS_TICK_H
#define OS_TICK_H
#include <stdint.h>
/// IRQ Handler.
#ifndef IRQHANDLER_T
#define IRQHANDLER_T
typedef void (*IRQHandler_t) (void);
#endif
/// Setup OS Tick timer to generate periodic RTOS Kernel Ticks
/// \param[in] freq tick frequency in Hz
/// \param[in] handler tick IRQ handler
/// \return 0 on success, -1 on error.
int32_t OS_Tick_Setup (uint32_t freq, IRQHandler_t handler);
/// Enable OS Tick timer interrupt
void OS_Tick_Enable (void);
/// Disable OS Tick timer interrupt
void OS_Tick_Disable (void);
/// Acknowledge execution of OS Tick timer interrupt
void OS_Tick_AcknowledgeIRQ (void);
/// Get OS Tick timer IRQ number
/// \return OS Tick IRQ number
int32_t OS_Tick_GetIRQn (void);
/// Get OS Tick timer clock frequency
/// \return OS Tick timer clock frequency in Hz
uint32_t OS_Tick_GetClock (void);
/// Get OS Tick timer interval reload value
/// \return OS Tick timer interval reload value
uint32_t OS_Tick_GetInterval (void);
/// Get OS Tick timer counter value
/// \return OS Tick timer counter value
uint32_t OS_Tick_GetCount (void);
/// Get OS Tick timer overflow status
/// \return OS Tick overflow status (1 - overflow, 0 - no overflow).
uint32_t OS_Tick_GetOverflow (void);
#endif /* OS_TICK_H */