diff --git a/board/ALIENTEK_STM32F429/KEIL/fatfs/TencentOS_tiny.uvguix.yangq b/board/ALIENTEK_STM32F429/KEIL/fatfs/TencentOS_tiny.uvguix.yangq new file mode 100644 index 00000000..c05116a1 --- /dev/null +++ b/board/ALIENTEK_STM32F429/KEIL/fatfs/TencentOS_tiny.uvguix.yangq @@ -0,0 +1,1896 @@ + + + + -6.1 + +
### uVision Project, (C) Keil Software
+ + + G:\MyFile Master\1 MyProject\1 tensorflow_lite_micro\0 Project\TencentOS-tiny\board\ALIENTEK_STM32F429\KEIL\fatfs + + + + + + + 38003 + Registers + 140 90 + + + 346 + Code Coverage + 1010 160 + + + 204 + Performance Analyzer + 1170 + + + + + + 35141 + Event Statistics + + 200 50 700 + + + 1506 + Symbols + + 80 80 80 + + + 1936 + Watch 1 + + 200 133 133 + + + 1937 + Watch 2 + + 200 133 133 + + + 1935 + Call Stack + Locals + + 200 133 133 + + + 2506 + Trace Data + + 75 135 130 95 70 230 200 150 + + + 466 + Source Browser - *** Not Enabled *** + 500 + 300 + + + + + + + + 1 + 1 + 0 + 0 + -1 + + + + + + + 44 + 2 + 3 + + -32000 + -32000 + + + -1 + -1 + + + 120 + 1912 + 3538 + 630 + + + + 0 + + 602 + 0100000004000000010000000100000001000000010000000000000002000000000000000100000001000000000000002800000028000000010000000300000002000000010000006B473A5C4D7946696C65204D61737465725C31204D7950726F6A6563745C312074656E736F72666C6F775F6C6974655F6D6963726F5C302050726F6A6563745C54656E63656E744F532D74696E795C6578616D706C65735C66617466735C66617466735F73616D706C652E63000000000E66617466735F73616D706C652E6300000000C5D4F200FFFFFFFF78473A5C4D7946696C65204D61737465725C31204D7950726F6A6563745C312074656E736F72666C6F775F6C6974655F6D6963726F5C302050726F6A6563745C54656E63656E744F532D74696E795C706C6174666F726D5C68616C5C73745C73746D3332663478785C7372635C746F735F68616C5F73642E63000000000C746F735F68616C5F73642E6300000000FFDC7800FFFFFFFF75473A5C4D7946696C65204D61737465725C31204D7950726F6A6563745C312074656E736F72666C6F775F6C6974655F6D6963726F5C302050726F6A6563745C54656E63656E744F532D74696E795C626F6172645C414C49454E54454B5F53544D3332463432395C4253505C5372635C6D61696E2E6300000000066D61696E2E6300000000BECEA100FFFFFFFF0100000010000000C5D4F200FFDC7800BECEA100F0A0A100BCA8E1009CC1B600F7B88600D9ADC200A5C2D700B3A6BE00EAD6A300F6FA7D00B5E99D005FC3CF00C1838300CACAD500010000000000000002000000CB08000066000000000F000069030000 + + + + 0 + Build + + -1 + -1 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F40000004F00000090050000DF000000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 1005 + 1005 + 1 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000660000004401000039030000 + + + 16 + 24080000BB0000001409000086010000 + + + + 109 + 109 + 1 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000660000004401000039030000 + + + 16 + 24080000BB00000040090000FB020000 + + + + 1465 + 1465 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 000000002D02000090050000BD020000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 1466 + 1466 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 1467 + 1467 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 1468 + 1468 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 1506 + 1506 + 0 + 0 + 0 + 0 + 32767 + 0 + 16384 + 0 + + 16 + A3040000660000008D05000001010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 1913 + 1913 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F7000000660000008D050000C6000000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 1935 + 1935 + 0 + 0 + 0 + 0 + 32767 + 0 + 32768 + 0 + + 16 + 03000000300200008D050000A4020000 + + + 16 + 24080000BB0000001409000086010000 + + + + 1936 + 1936 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 24080000BB0000001409000086010000 + + + + 1937 + 1937 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 24080000BB0000001409000086010000 + + + + 1939 + 1939 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 1940 + 1940 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 1941 + 1941 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 1942 + 1942 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 195 + 195 + 1 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000660000004401000039030000 + + + 16 + 24080000BB00000040090000FB020000 + + + + 196 + 196 + 1 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000660000004401000039030000 + + + 16 + 24080000BB00000040090000FB020000 + + + + 197 + 197 + 1 + 0 + 0 + 0 + 32767 + 0 + 32768 + 0 + + 16 + 000000006A03000080070000E6030000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 198 + 198 + 0 + 0 + 0 + 0 + 32767 + 0 + 32768 + 0 + + 16 + 000000001902000090050000BD020000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 199 + 199 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 030000006D0300008D050000CD030000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 203 + 203 + 0 + 0 + 0 + 0 + 32767 + 0 + 8192 + 0 + + 16 + F40000006300000090050000DF000000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 204 + 204 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F7000000660000008D050000C6000000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 221 + 221 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 00000000000000000000000000000000 + + + 16 + 0A0000000A0000006E0000006E000000 + + + + 2506 + 2506 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A0040000630000009005000029020000 + + + 16 + 24080000BB0000001409000086010000 + + + + 2507 + 2507 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 000000002D02000090050000A9020000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 343 + 343 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F7000000660000008D050000C6000000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 346 + 346 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F7000000660000008D050000C6000000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 35141 + 35141 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F40000006300000090050000DF000000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35824 + 35824 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F7000000660000008D050000C6000000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 35885 + 35885 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35886 + 35886 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35887 + 35887 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35888 + 35888 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35889 + 35889 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35890 + 35890 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35891 + 35891 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35892 + 35892 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35893 + 35893 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35894 + 35894 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35895 + 35895 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35896 + 35896 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35897 + 35897 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35898 + 35898 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35899 + 35899 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35900 + 35900 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35901 + 35901 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35902 + 35902 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35903 + 35903 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35904 + 35904 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35905 + 35905 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 38003 + 38003 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 0300000066000000ED000000A4020000 + + + 16 + 24080000BB00000040090000FB020000 + + + + 38007 + 38007 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 000000006A03000090050000E6030000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 436 + 436 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 030000006D0300008D050000CD030000 + + + 16 + 24080000BB00000040090000FB020000 + + + + 437 + 437 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 24080000BB0000001409000086010000 + + + + 440 + 440 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 24080000BB0000001409000086010000 + + + + 463 + 463 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 030000006D0300008D050000CD030000 + + + 16 + 24080000BB00000040090000FB020000 + + + + 466 + 466 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 030000006D0300008D050000CD030000 + + + 16 + 24080000BB00000040090000FB020000 + + + + 470 + 470 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F7000000660000008D050000C6000000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 50000 + 50000 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50001 + 50001 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50002 + 50002 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50003 + 50003 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50004 + 50004 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50005 + 50005 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50006 + 50006 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50007 + 50007 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50008 + 50008 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50009 + 50009 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50010 + 50010 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50011 + 50011 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50012 + 50012 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50013 + 50013 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50014 + 50014 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50015 + 50015 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50016 + 50016 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50017 + 50017 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50018 + 50018 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50019 + 50019 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 59392 + 59392 + 1 + 0 + 0 + 0 + 32767 + 0 + 8192 + 0 + + 16 + 0000000000000000D10300001C000000 + + + 16 + 0A0000000A0000006E0000006E000000 + + + + 59393 + 0 + 1 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 00000000E603000080070000F9030000 + + + 16 + 0A0000000A0000006E0000006E000000 + + + + 59399 + 59399 + 1 + 0 + 0 + 0 + 32767 + 0 + 8192 + 1 + + 16 + 000000001C000000E701000038000000 + + + 16 + 0A0000000A0000006E0000006E000000 + + + + 59400 + 59400 + 0 + 0 + 0 + 0 + 32767 + 0 + 8192 + 2 + + 16 + 00000000380000006F02000054000000 + + + 16 + 0A0000000A0000006E0000006E000000 + + + + 824 + 824 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 24080000BB0000001409000086010000 + + + + 3334 + 000000000B000000000000000020000000000000FFFFFFFFFFFFFFFFF4000000DF00000090050000E3000000000000000100001004000000010000000000000000000000FFFFFFFF08000000CB00000057010000CC000000F08B00005A01000079070000D601000045890000FFFF02000B004354616262656450616E65002000000000000024080000BB000000EC0A00004B010000F40000004F00000090050000DF0000000000000040280046080000000B446973617373656D626C7900000000CB00000001000000FFFFFFFFFFFFFFFF14506572666F726D616E636520416E616C797A6572000000005701000001000000FFFFFFFFFFFFFFFF14506572666F726D616E636520416E616C797A657200000000CC00000001000000FFFFFFFFFFFFFFFF0E4C6F67696320416E616C797A657200000000F08B000001000000FFFFFFFFFFFFFFFF0D436F646520436F766572616765000000005A01000001000000FFFFFFFFFFFFFFFF11496E737472756374696F6E205472616365000000007907000001000000FFFFFFFFFFFFFFFF0F53797374656D20416E616C797A657200000000D601000001000000FFFFFFFFFFFFFFFF104576656E742053746174697374696373000000004589000001000000FFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000000000000000000000001000000FFFFFFFFCB00000001000000FFFFFFFFCB000000000000000040000000000000FFFFFFFFFFFFFFFF9C0400004F000000A004000029020000000000000200001004000000010000000000000000000000FFFFFFFF2B000000E2050000CA0900002D8C00002E8C00002F8C0000308C0000318C0000328C0000338C0000348C0000358C0000368C0000378C0000388C0000398C00003A8C00003B8C00003C8C00003D8C00003E8C00003F8C0000408C0000418C000050C3000051C3000052C3000053C3000054C3000055C3000056C3000057C3000058C3000059C300005AC300005BC300005CC300005DC300005EC300005FC3000060C3000061C3000062C3000063C300000180004000000000000024080000BB0000001409000086010000A00400004F000000900500002902000000000000404100462B0000000753796D626F6C7300000000E205000001000000FFFFFFFFFFFFFFFF0A5472616365204461746100000000CA09000001000000FFFFFFFFFFFFFFFF00000000002D8C000001000000FFFFFFFFFFFFFFFF00000000002E8C000001000000FFFFFFFFFFFFFFFF00000000002F8C000001000000FFFFFFFFFFFFFFFF0000000000308C000001000000FFFFFFFFFFFFFFFF0000000000318C000001000000FFFFFFFFFFFFFFFF0000000000328C000001000000FFFFFFFFFFFFFFFF0000000000338C000001000000FFFFFFFFFFFFFFFF0000000000348C000001000000FFFFFFFFFFFFFFFF0000000000358C000001000000FFFFFFFFFFFFFFFF0000000000368C000001000000FFFFFFFFFFFFFFFF0000000000378C000001000000FFFFFFFFFFFFFFFF0000000000388C000001000000FFFFFFFFFFFFFFFF0000000000398C000001000000FFFFFFFFFFFFFFFF00000000003A8C000001000000FFFFFFFFFFFFFFFF00000000003B8C000001000000FFFFFFFFFFFFFFFF00000000003C8C000001000000FFFFFFFFFFFFFFFF00000000003D8C000001000000FFFFFFFFFFFFFFFF00000000003E8C000001000000FFFFFFFFFFFFFFFF00000000003F8C000001000000FFFFFFFFFFFFFFFF0000000000408C000001000000FFFFFFFFFFFFFFFF0000000000418C000001000000FFFFFFFFFFFFFFFF000000000050C3000001000000FFFFFFFFFFFFFFFF000000000051C3000001000000FFFFFFFFFFFFFFFF000000000052C3000001000000FFFFFFFFFFFFFFFF000000000053C3000001000000FFFFFFFFFFFFFFFF000000000054C3000001000000FFFFFFFFFFFFFFFF000000000055C3000001000000FFFFFFFFFFFFFFFF000000000056C3000001000000FFFFFFFFFFFFFFFF000000000057C3000001000000FFFFFFFFFFFFFFFF000000000058C3000001000000FFFFFFFFFFFFFFFF000000000059C3000001000000FFFFFFFFFFFFFFFF00000000005AC3000001000000FFFFFFFFFFFFFFFF00000000005BC3000001000000FFFFFFFFFFFFFFFF00000000005CC3000001000000FFFFFFFFFFFFFFFF00000000005DC3000001000000FFFFFFFFFFFFFFFF00000000005EC3000001000000FFFFFFFFFFFFFFFF00000000005FC3000001000000FFFFFFFFFFFFFFFF000000000060C3000001000000FFFFFFFFFFFFFFFF000000000061C3000001000000FFFFFFFFFFFFFFFF000000000062C3000001000000FFFFFFFFFFFFFFFF000000000063C3000001000000FFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000000000000000000000001000000FFFFFFFFE205000001000000FFFFFFFFE2050000000000000010000001000000FFFFFFFFFFFFFFFF470100004F0000004B010000520300000100000002000010040000000100000012FFFFFF87060000FFFFFFFF05000000ED0300006D000000C3000000C4000000739400000180001000000100000024080000BB0000001409000086010000000000004F00000047010000520300000000000040410056050000000750726F6A65637401000000ED03000001000000FFFFFFFFFFFFFFFF05426F6F6B73010000006D00000001000000FFFFFFFFFFFFFFFF0946756E6374696F6E7301000000C300000001000000FFFFFFFFFFFFFFFF0954656D706C6174657301000000C400000001000000FFFFFFFFFFFFFFFF09526567697374657273000000007394000001000000FFFFFFFFFFFFFFFF00000000000000000000000000000000000000000000000001000000FFFFFFFFED03000001000000FFFFFFFFED030000000000000080000000000000FFFFFFFFFFFFFFFF0000000015020000900500001902000000000000010000100400000001000000000000000000000000000000000000000000000001000000C6000000FFFFFFFF0F0000008F070000930700009407000095070000960700009007000091070000B5010000B801000038030000B9050000BA050000BB050000BC050000CB0900000180008000000000000024080000BB0000001409000086010000000000001902000090050000BD02000000000000404100460F0000001343616C6C20537461636B202B204C6F63616C73000000008F07000001000000FFFFFFFFFFFFFFFF0755415254202331000000009307000001000000FFFFFFFFFFFFFFFF0755415254202332000000009407000001000000FFFFFFFFFFFFFFFF0755415254202333000000009507000001000000FFFFFFFFFFFFFFFF15446562756720287072696E74662920566965776572000000009607000001000000FFFFFFFFFFFFFFFF0757617463682031000000009007000001000000FFFFFFFFFFFFFFFF0757617463682032000000009107000001000000FFFFFFFFFFFFFFFF10547261636520457863657074696F6E7300000000B501000001000000FFFFFFFFFFFFFFFF0E4576656E7420436F756E7465727300000000B801000001000000FFFFFFFFFFFFFFFF09554C494E4B706C7573000000003803000001000000FFFFFFFFFFFFFFFF084D656D6F7279203100000000B905000001000000FFFFFFFFFFFFFFFF084D656D6F7279203200000000BA05000001000000FFFFFFFFFFFFFFFF084D656D6F7279203300000000BB05000001000000FFFFFFFFFFFFFFFF084D656D6F7279203400000000BC05000001000000FFFFFFFFFFFFFFFF105472616365204E617669676174696F6E00000000CB09000001000000FFFFFFFFFFFFFFFFFFFFFFFF0000000001000000000000000000000001000000FFFFFFFFC802000019020000CC020000BD02000000000000020000000400000000000000000000000000000000000000000000000000000002000000C6000000FFFFFFFF8F07000001000000FFFFFFFF8F07000001000000C6000000000000000080000001000000FFFFFFFFFFFFFFFF00000000520300008007000056030000010000000100001004000000010000000000000000000000FFFFFFFF06000000C5000000C7000000B4010000D2010000CF010000779400000180008000000100000024080000BB000000EC0A00004B010000000000005603000080070000E60300000000000040820056060000000C4275696C64204F757470757401000000C500000001000000FFFFFFFFFFFFFFFF0D46696E6420496E2046696C657300000000C700000001000000FFFFFFFFFFFFFFFF0A4572726F72204C69737400000000B401000001000000FFFFFFFFFFFFFFFF24536F757263652042726F77736572202D202A2A2A204E6F7420456E61626C6564202A2A2A00000000D201000001000000FFFFFFFFFFFFFFFF0E416C6C205265666572656E63657300000000CF01000001000000FFFFFFFFFFFFFFFF0742726F77736572000000007794000001000000FFFFFFFFFFFFFFFF00000000000000000000000000000000000000000000000001000000FFFFFFFFC500000001000000FFFFFFFFC5000000000000000000000000000000 + + + 59392 + File + + 2972 + 00200000010000002800FFFF01001100434D4643546F6F6C426172427574746F6E00E100000000000000000000000000000000000000000000000100000001000000018001E100000000000001000000000000000000000000000000000100000001000000018003E1000000000000020000000000000000000000000000000001000000010000000180CD7F0000000000000300000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018023E100000000040004000000000000000000000000000000000100000001000000018022E100000000040005000000000000000000000000000000000100000001000000018025E10000000000000600000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001802BE10000000004000700000000000000000000000000000000010000000100000001802CE10000000004000800000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001807A8A0000000000000900000000000000000000000000000000010000000100000001807B8A0000000004000A00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180D3B00000000000000B000000000000000000000000000000000100000001000000018015B10000000004000C0000000000000000000000000000000001000000010000000180F4B00000000004000D000000000000000000000000000000000100000001000000018036B10000000004000E00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180FF88000000000400460000000000000000000000000000000001000000010000000180FE880000000004004500000000000000000000000000000000010000000100000001800B810000000004001300000000000000000000000000000000010000000100000001800C810000000004001400000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180F0880000020000000F000000000000000000000000000000000100000001000000FFFF0100120043555646696E64436F6D626F427574746F6EE803000000000000000000000000000000000000000000000001000000010000009600000002002050000000000665787465726E960000000000000014000665787465726E1253797374656D436C6F636B5F436F6E666967046D61696E0466756E631754465F4C4954455F4D4943524F5F42454E43484D41524B0D675F706572736F6E5F646174611B54465F4C4954455F53545249505F4552524F525F535452494E47531347657443757272656E7454696D655469636B730B54465F4C4954455F414444124F56323634305F504958454C5F5749445448186F76323634305F737667615F696E69745F7265675F74626C0B4F56323634305F496E697418706572736F6E5F6465746563745F6D6F64656C5F64617461066C6F63616C651048414C5F5350495F5472616E736D69740D4445565F5350495F5752495445174C43445F32494E345F5772697465446174615F576F726408476574496D616765125072696E74416C6C6F636174696F6E7328292B5265636F7264696E674D6963726F416C6C6F6361746F723A3A5072696E74416C6C6F636174696F6E7328290000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000018024E10000000000001100000000000000000000000000000000010000000100000001800A810000000000001200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000FFFF01001500434D4643546F6F6C4261724D656E75427574746F6E2280000002000000150000002153746172742F53746F70202644656275672053657373696F6E094374726C2B46350000000000000000000000000100000001000000000000000000000001000000020021802280000000000000150000002153746172742F53746F70202644656275672053657373696F6E094374726C2B4635000000000000000000000000010000000100000000000000000000000100000000002180E0010000000000007500000021456E65726779204D6561737572656D656E742026776974686F75742044656275670000000000000000000000000100000001000000000000000000000001000000000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C488000000000000160000000000000000000000000000000001000000010000000180C988000000000400180000000000000000000000000000000001000000010000000180C788000000000000190000000000000000000000000000000001000000010000002180C8880000000000001700000027264B696C6C20416C6C20427265616B706F696E747320696E2043757272656E7420546172676574000000000000000000000000010000000100000000000000000000000100000003002180C8880000000000001700000027264B696C6C20416C6C20427265616B706F696E747320696E2043757272656E7420546172676574000000000000000000000000010000000100000000000000000000000100000000002180E50100000000000078000000264B696C6C20416C6C20427265616B706F696E747320696E204163746976652050726F6A656374000000000000000000000000010000000100000000000000000000000100000000002180E601000000000000790000002F4B696C6C20416C6C20427265616B706F696E747320696E204D756C74692D50726F6A65637420576F726B73706163650000000000000000000000000100000001000000000000000000000001000000000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000021804C010000020001001A0000000F2650726F6A6563742057696E646F77000000000000000000000000010000000100000000000000000000000100000008002180DD880000000000001A0000000750726F6A656374000000000000000000000000010000000100000000000000000000000100000000002180DC8B0000000000003A00000005426F6F6B73000000000000000000000000010000000100000000000000000000000100000000002180E18B0000000000003B0000000946756E6374696F6E73000000000000000000000000010000000100000000000000000000000100000000002180E28B000000000000400000000954656D706C6174657300000000000000000000000001000000010000000000000000000000010000000000218018890000000000003D0000000E536F757263652042726F777365720000000000000000000000000100000001000000000000000000000001000000000021800000000000000400FFFFFFFF00000000000000000000000000010000000100000000000000000000000100000000002180D988000000000000390000000C4275696C64204F7574707574000000000000000000000000010000000100000000000000000000000100000000002180E38B000000000000410000000B46696E64204F75747075740000000000000000000000000100000001000000000000000000000001000000000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180FB7F0000000000001B000000000000000000000000000000000100000001000000000000000446696C65FF7F0000 + + + 1423 + 2800FFFF01001100434D4643546F6F6C426172427574746F6E00E1000000000000FFFFFFFF000100000000000000010000000000000001000000018001E1000000000000FFFFFFFF000100000000000000010000000000000001000000018003E1000000000000FFFFFFFF0001000000000000000100000000000000010000000180CD7F000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF000000000000000000010000000000000001000000018023E1000000000000FFFFFFFF000100000000000000010000000000000001000000018022E1000000000000FFFFFFFF000100000000000000010000000000000001000000018025E1000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001802BE1000000000000FFFFFFFF00010000000000000001000000000000000100000001802CE1000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001807A8A000000000000FFFFFFFF00010000000000000001000000000000000100000001807B8A000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180D3B0000000000000FFFFFFFF000100000000000000010000000000000001000000018015B1000000000000FFFFFFFF0001000000000000000100000000000000010000000180F4B0000000000000FFFFFFFF000100000000000000010000000000000001000000018036B1000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180FF88000000000000FFFFFFFF0001000000000000000100000000000000010000000180FE88000000000000FFFFFFFF00010000000000000001000000000000000100000001800B81000000000000FFFFFFFF00010000000000000001000000000000000100000001800C81000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180F088000000000000FFFFFFFF0001000000000000000100000000000000010000000180EE7F000000000000FFFFFFFF000100000000000000010000000000000001000000018024E1000000000000FFFFFFFF00010000000000000001000000000000000100000001800A81000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001802280000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180C488000000000000FFFFFFFF0001000000000000000100000000000000010000000180C988000000000000FFFFFFFF0001000000000000000100000000000000010000000180C788000000000000FFFFFFFF0001000000000000000100000000000000010000000180C888000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180DD88000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180FB7F000000000000FFFFFFFF000100000000000000010000000000000001000000 + + + 1423 + 2800FFFF01001100434D4643546F6F6C426172427574746F6E00E100000000000000000000000000000000000000000000000100000001000000018001E100000000000001000000000000000000000000000000000100000001000000018003E1000000000000020000000000000000000000000000000001000000010000000180CD7F0000000000000300000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018023E100000000000004000000000000000000000000000000000100000001000000018022E100000000000005000000000000000000000000000000000100000001000000018025E10000000000000600000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001802BE10000000000000700000000000000000000000000000000010000000100000001802CE10000000000000800000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001807A8A0000000000000900000000000000000000000000000000010000000100000001807B8A0000000000000A00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180D3B00000000000000B000000000000000000000000000000000100000001000000018015B10000000000000C0000000000000000000000000000000001000000010000000180F4B00000000000000D000000000000000000000000000000000100000001000000018036B10000000000000E00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180FF880000000000000F0000000000000000000000000000000001000000010000000180FE880000000000001000000000000000000000000000000000010000000100000001800B810000000000001100000000000000000000000000000000010000000100000001800C810000000000001200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180F088000000000000130000000000000000000000000000000001000000010000000180EE7F00000000000014000000000000000000000000000000000100000001000000018024E10000000000001500000000000000000000000000000000010000000100000001800A810000000000001600000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018022800000000000001700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C488000000000000180000000000000000000000000000000001000000010000000180C988000000000000190000000000000000000000000000000001000000010000000180C7880000000000001A0000000000000000000000000000000001000000010000000180C8880000000000001B00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180DD880000000000001C00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180FB7F0000000000001D000000000000000000000000000000000100000001000000 + + + + 59399 + Build + + 988 + 00200000010000001000FFFF01001100434D4643546F6F6C426172427574746F6ECF7F0000000000001C0000000000000000000000000000000001000000010000000180D07F0000000000001D000000000000000000000000000000000100000001000000018030800000000000001E000000000000000000000000000000000100000001000000FFFF01001500434D4643546F6F6C4261724D656E75427574746F6EC7040000000000006A0000000C4261746368204275696C2664000000000000000000000000010000000100000000000000000000000100000004000580C7040000000000006A0000000C4261746368204275696C266400000000000000000000000001000000010000000000000000000000010000000000058046070000000000006B0000000D42617463682052656275696C640000000000000000000000000100000001000000000000000000000001000000000005804707000000000000FFFFFFFF0B426174636820436C65616E0100000000000000000000000100000001000000000000000000000001000000000005809E8A0000000000001F0000000F4261746326682053657475702E2E2E000000000000000000000000010000000100000000000000000000000100000000000180D17F0000000004002000000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001804C8A0000000000002100000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000FFFF01001900434D4643546F6F6C426172436F6D626F426F78427574746F6EBA00000000000000000000000000000000000000000000000001000000010000009600000003002050000000000E54656E63656E744F535F74696E79960000000000000001000E54656E63656E744F535F74696E79000000000180EB880000000000002200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C07F000000000000230000000000000000000000000000000001000000010000000180B08A000000000400240000000000000000000000000000000001000000010000000180A8010000000000004E00000000000000000000000000000000010000000100000001807202000000000000530000000000000000000000000000000001000000010000000180BE010000000000005000000000000000000000000000000000010000000100000000000000054275696C64FF7F0000 + + + 583 + 1000FFFF01001100434D4643546F6F6C426172427574746F6ECF7F000000000000FFFFFFFF0001000000000000000100000000000000010000000180D07F000000000000FFFFFFFF00010000000000000001000000000000000100000001803080000000000000FFFFFFFF00010000000000000001000000000000000100000001809E8A000000000000FFFFFFFF0001000000000000000100000000000000010000000180D17F000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001804C8A000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001806680000000000000FFFFFFFF0001000000000000000100000000000000010000000180EB88000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180C07F000000000000FFFFFFFF0001000000000000000100000000000000010000000180B08A000000000000FFFFFFFF0001000000000000000100000000000000010000000180A801000000000000FFFFFFFF00010000000000000001000000000000000100000001807202000000000000FFFFFFFF0001000000000000000100000000000000010000000180BE01000000000000FFFFFFFF000100000000000000010000000000000001000000 + + + 583 + 1000FFFF01001100434D4643546F6F6C426172427574746F6ECF7F000000000000000000000000000000000000000000000001000000010000000180D07F00000000000001000000000000000000000000000000000100000001000000018030800000000000000200000000000000000000000000000000010000000100000001809E8A000000000000030000000000000000000000000000000001000000010000000180D17F0000000000000400000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001804C8A0000000000000500000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001806680000000000000060000000000000000000000000000000001000000010000000180EB880000000000000700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C07F000000000000080000000000000000000000000000000001000000010000000180B08A000000000000090000000000000000000000000000000001000000010000000180A8010000000000000A000000000000000000000000000000000100000001000000018072020000000000000B0000000000000000000000000000000001000000010000000180BE010000000000000C000000000000000000000000000000000100000001000000 + + + + 59400 + Debug + + 2373 + 00200000000000001900FFFF01001100434D4643546F6F6C426172427574746F6ECC880000000000002500000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018017800000000000002600000000000000000000000000000000010000000100000001801D800000000000002700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001801A800000000000002800000000000000000000000000000000010000000100000001801B80000000000000290000000000000000000000000000000001000000010000000180E57F0000000000002A00000000000000000000000000000000010000000100000001801C800000000000002B00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018000890000000000002C00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180E48B0000000000002D0000000000000000000000000000000001000000010000000180F07F0000000000002E0000000000000000000000000000000001000000010000000180E8880000000000003700000000000000000000000000000000010000000100000001803B010000000000002F0000000000000000000000000000000001000000010000000180BB8A00000000000030000000000000000000000000000000000100000001000000FFFF01001500434D4643546F6F6C4261724D656E75427574746F6E0E01000000000000310000000D57617463682057696E646F7773000000000000000000000000010000000100000000000000000000000100000003001380D88B00000000000031000000085761746368202631000000000000000000000000010000000100000000000000000000000100000000001380D98B00000000000031000000085761746368202632000000000000000000000000010000000100000000000000000000000100000000001380CE01000000000000FFFFFFFF0C576174636820416E63686F720100000000000000000000000100000001000000000000000000000001000000000013800F01000000000000320000000E4D656D6F72792057696E646F7773000000000000000000000000010000000100000000000000000000000100000004001380D28B00000000000032000000094D656D6F7279202631000000000000000000000000010000000100000000000000000000000100000000001380D38B00000000000032000000094D656D6F7279202632000000000000000000000000010000000100000000000000000000000100000000001380D48B00000000000032000000094D656D6F7279202633000000000000000000000000010000000100000000000000000000000100000000001380D58B00000000000032000000094D656D6F72792026340000000000000000000000000100000001000000000000000000000001000000000013801001000000000000330000000E53657269616C2057696E646F77730000000000000000000000000100000001000000000000000000000001000000040013809307000000000000330000000855415254202326310000000000000000000000000100000001000000000000000000000001000000000013809407000000000000330000000855415254202326320000000000000000000000000100000001000000000000000000000001000000000013809507000000000000330000000855415254202326330000000000000000000000000100000001000000000000000000000001000000000013809607000000000000330000001626446562756720287072696E746629205669657765720000000000000000000000000100000001000000000000000000000001000000000013803C010000000000007200000010416E616C797369732057696E646F7773000000000000000000000000010000000100000000000000000000000100000004001380658A000000000000340000000F264C6F67696320416E616C797A6572000000000000000000000000010000000100000000000000000000000100000000001380DC7F0000000000003E0000001526506572666F726D616E636520416E616C797A6572000000000000000000000000010000000100000000000000000000000100000000001380E788000000000000380000000E26436F646520436F766572616765000000000000000000000000010000000100000000000000000000000100000000001380CD01000000000000FFFFFFFF0F416E616C7973697320416E63686F7201000000000000000000000001000000010000000000000000000000010000000000138053010000000000003F0000000D54726163652057696E646F77730000000000000000000000000100000001000000000000000000000001000000010013805401000000000000FFFFFFFF115472616365204D656E7520416E63686F720100000000000000000000000100000001000000000000000000000001000000000013802901000000000000350000001553797374656D205669657765722057696E646F77730000000000000000000000000100000001000000000000000000000001000000010013804B01000000000000FFFFFFFF1453797374656D2056696577657220416E63686F720100000000000000000000000100000001000000000000000000000001000000000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000013800189000000000000360000000F26546F6F6C626F782057696E646F7700000000000000000000000001000000010000000000000000000000010000000300138044C5000000000000FFFFFFFF0E5570646174652057696E646F77730100000000000000000000000100000001000000000000000000000001000000000013800000000000000400FFFFFFFF000000000000000000000000000100000001000000000000000000000001000000000013805B01000000000000FFFFFFFF12546F6F6C626F78204D656E75416E63686F720100000000000000000000000100000001000000000000000000000001000000000000000000054465627567FF7F0000 + + + 898 + 1900FFFF01001100434D4643546F6F6C426172427574746F6ECC88000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001801780000000000000FFFFFFFF00010000000000000001000000000000000100000001801D80000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001801A80000000000000FFFFFFFF00010000000000000001000000000000000100000001801B80000000000000FFFFFFFF0001000000000000000100000000000000010000000180E57F000000000000FFFFFFFF00010000000000000001000000000000000100000001801C80000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001800089000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180E48B000000000000FFFFFFFF0001000000000000000100000000000000010000000180F07F000000000000FFFFFFFF0001000000000000000100000000000000010000000180E888000000000000FFFFFFFF00010000000000000001000000000000000100000001803B01000000000000FFFFFFFF0001000000000000000100000000000000010000000180BB8A000000000000FFFFFFFF0001000000000000000100000000000000010000000180D88B000000000000FFFFFFFF0001000000000000000100000000000000010000000180D28B000000000000FFFFFFFF00010000000000000001000000000000000100000001809307000000000000FFFFFFFF0001000000000000000100000000000000010000000180658A000000000000FFFFFFFF0001000000000000000100000000000000010000000180C18A000000000000FFFFFFFF0001000000000000000100000000000000010000000180EE8B000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001800189000000000000FFFFFFFF000100000000000000010000000000000001000000 + + + 898 + 1900FFFF01001100434D4643546F6F6C426172427574746F6ECC880000000000000000000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018017800000000000000100000000000000000000000000000000010000000100000001801D800000000000000200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001801A800000000000000300000000000000000000000000000000010000000100000001801B80000000000000040000000000000000000000000000000001000000010000000180E57F0000000000000500000000000000000000000000000000010000000100000001801C800000000000000600000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018000890000000000000700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180E48B000000000000080000000000000000000000000000000001000000010000000180F07F000000000000090000000000000000000000000000000001000000010000000180E8880000000000000A00000000000000000000000000000000010000000100000001803B010000000000000B0000000000000000000000000000000001000000010000000180BB8A0000000000000C0000000000000000000000000000000001000000010000000180D88B0000000000000D0000000000000000000000000000000001000000010000000180D28B0000000000000E000000000000000000000000000000000100000001000000018093070000000000000F0000000000000000000000000000000001000000010000000180658A000000000000100000000000000000000000000000000001000000010000000180C18A000000000000110000000000000000000000000000000001000000010000000180EE8B0000000000001200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180018900000000000013000000000000000000000000000000000100000001000000 + + + + 0 + 1920 + 1080 + + + + + + 1 + 0 + + 100 + 2 + + ..\..\..\..\examples\fatfs\fatfs_sample.c + 22 + 34 + 7 + 1 + + 0 + + + ..\..\..\..\platform\hal\st\stm32f4xx\src\tos_hal_sd.c + 0 + 1 + 1 + 1 + + 0 + + + ..\..\BSP\Src\main.c + 1 + 1 + 14 + 1 + + 0 + + + + +
diff --git a/board/ALIENTEK_STM32F429/KEIL/tcp_server_base_lwip/TencentOS_tiny.uvguix.yangq b/board/ALIENTEK_STM32F429/KEIL/tcp_server_base_lwip/TencentOS_tiny.uvguix.yangq new file mode 100644 index 00000000..3dd73ba9 --- /dev/null +++ b/board/ALIENTEK_STM32F429/KEIL/tcp_server_base_lwip/TencentOS_tiny.uvguix.yangq @@ -0,0 +1,1860 @@ + + + + -6.1 + +
### uVision Project, (C) Keil Software
+ + + G:\MyFile Master\1 MyProject\1 tensorflow_lite_micro\0 Project\TencentOS-tiny\board\ALIENTEK_STM32F429\KEIL\tcp_server_base_lwip + + + + + + + 38003 + Registers + 140 90 + + + 346 + Code Coverage + 1010 160 + + + 204 + Performance Analyzer + 1170 + + + + + + 35141 + Event Statistics + + 200 50 700 + + + 1506 + Symbols + + 80 80 80 + + + 1936 + Watch 1 + + 200 133 133 + + + 1937 + Watch 2 + + 200 133 133 + + + 1935 + Call Stack + Locals + + 200 133 133 + + + 2506 + Trace Data + + 75 135 130 95 70 230 200 150 + + + 466 + Source Browser - *** Not Enabled *** + 500 + 300 + + + + + + + + 1 + 1 + 0 + 0 + -1 + + + + + + + 44 + 2 + 3 + + -1 + -1 + + + -1 + -1 + + + 120 + 1912 + 3538 + 630 + + + + 0 + + 60 + 010000000400000001000000010000000100000001000000000000000200000000000000010000000100000000000000280000002800000000000000 + + + + 0 + Build + + -1 + -1 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F40000004F00000090050000DF000000 + + + 16 + F007000087000000B80A000017010000 + + + + 1005 + 1005 + 1 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000660000002101000039030000 + + + 16 + F007000087000000E008000052010000 + + + + 109 + 109 + 1 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000660000002101000039030000 + + + 16 + F0070000870000000C090000C7020000 + + + + 1465 + 1465 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 000000002D02000090050000BD020000 + + + 16 + F007000087000000B80A000017010000 + + + + 1466 + 1466 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + F007000087000000B80A000017010000 + + + + 1467 + 1467 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + F007000087000000B80A000017010000 + + + + 1468 + 1468 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + F007000087000000B80A000017010000 + + + + 1506 + 1506 + 0 + 0 + 0 + 0 + 32767 + 0 + 16384 + 0 + + 16 + A3040000660000008D05000001010000 + + + 16 + F007000087000000E008000052010000 + + + + 1913 + 1913 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F7000000660000008D050000C6000000 + + + 16 + F007000087000000B80A000017010000 + + + + 1935 + 1935 + 0 + 0 + 0 + 0 + 32767 + 0 + 32768 + 0 + + 16 + 03000000300200008D050000A4020000 + + + 16 + F007000087000000E008000052010000 + + + + 1936 + 1936 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + F007000087000000E008000052010000 + + + + 1937 + 1937 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + F007000087000000E008000052010000 + + + + 1939 + 1939 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + F007000087000000B80A000017010000 + + + + 1940 + 1940 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + F007000087000000B80A000017010000 + + + + 1941 + 1941 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + F007000087000000B80A000017010000 + + + + 1942 + 1942 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + F007000087000000B80A000017010000 + + + + 195 + 195 + 1 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000660000002101000039030000 + + + 16 + F0070000870000000C090000C7020000 + + + + 196 + 196 + 1 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000660000002101000039030000 + + + 16 + F0070000870000000C090000C7020000 + + + + 197 + 197 + 1 + 0 + 0 + 0 + 32767 + 0 + 32768 + 0 + + 16 + 000000006A03000080070000E6030000 + + + 16 + F007000087000000B80A000017010000 + + + + 198 + 198 + 0 + 0 + 0 + 0 + 32767 + 0 + 32768 + 0 + + 16 + 000000001902000090050000BD020000 + + + 16 + F007000087000000B80A000017010000 + + + + 199 + 199 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 030000006D0300008D050000CD030000 + + + 16 + F007000087000000B80A000017010000 + + + + 203 + 203 + 0 + 0 + 0 + 0 + 32767 + 0 + 8192 + 0 + + 16 + F40000006300000090050000DF000000 + + + 16 + F007000087000000B80A000017010000 + + + + 204 + 204 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F7000000660000008D050000C6000000 + + + 16 + F007000087000000B80A000017010000 + + + + 221 + 221 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 00000000000000000000000000000000 + + + 16 + 0A0000000A0000006E0000006E000000 + + + + 2506 + 2506 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A0040000630000009005000029020000 + + + 16 + F007000087000000E008000052010000 + + + + 2507 + 2507 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 000000002D02000090050000A9020000 + + + 16 + F007000087000000B80A000017010000 + + + + 343 + 343 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F7000000660000008D050000C6000000 + + + 16 + F007000087000000B80A000017010000 + + + + 346 + 346 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F7000000660000008D050000C6000000 + + + 16 + F007000087000000B80A000017010000 + + + + 35141 + 35141 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F40000006300000090050000DF000000 + + + 16 + F007000087000000E008000052010000 + + + + 35824 + 35824 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F7000000660000008D050000C6000000 + + + 16 + F007000087000000B80A000017010000 + + + + 35885 + 35885 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 35886 + 35886 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 35887 + 35887 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 35888 + 35888 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 35889 + 35889 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 35890 + 35890 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 35891 + 35891 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 35892 + 35892 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 35893 + 35893 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 35894 + 35894 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 35895 + 35895 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 35896 + 35896 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 35897 + 35897 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 35898 + 35898 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 35899 + 35899 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 35900 + 35900 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 35901 + 35901 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 35902 + 35902 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 35903 + 35903 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 35904 + 35904 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 35905 + 35905 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 38003 + 38003 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 0300000066000000ED000000A4020000 + + + 16 + F0070000870000000C090000C7020000 + + + + 38007 + 38007 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 000000006A03000090050000E6030000 + + + 16 + F007000087000000B80A000017010000 + + + + 436 + 436 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 030000006D0300008D050000CD030000 + + + 16 + F0070000870000000C090000C7020000 + + + + 437 + 437 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + F007000087000000E008000052010000 + + + + 440 + 440 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + F007000087000000E008000052010000 + + + + 463 + 463 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 030000006D0300008D050000CD030000 + + + 16 + F0070000870000000C090000C7020000 + + + + 466 + 466 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 030000006D0300008D050000CD030000 + + + 16 + F0070000870000000C090000C7020000 + + + + 470 + 470 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F7000000660000008D050000C6000000 + + + 16 + F007000087000000B80A000017010000 + + + + 50000 + 50000 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 50001 + 50001 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 50002 + 50002 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 50003 + 50003 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 50004 + 50004 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 50005 + 50005 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 50006 + 50006 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 50007 + 50007 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 50008 + 50008 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 50009 + 50009 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 50010 + 50010 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 50011 + 50011 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 50012 + 50012 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 50013 + 50013 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 50014 + 50014 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 50015 + 50015 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 50016 + 50016 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 50017 + 50017 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 50018 + 50018 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 50019 + 50019 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + F007000087000000E008000052010000 + + + + 59392 + 59392 + 1 + 0 + 0 + 0 + 32767 + 0 + 8192 + 0 + + 16 + 0000000000000000D10300001C000000 + + + 16 + 0A0000000A0000006E0000006E000000 + + + + 59393 + 0 + 1 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 00000000E603000080070000F9030000 + + + 16 + 0A0000000A0000006E0000006E000000 + + + + 59399 + 59399 + 1 + 0 + 0 + 0 + 32767 + 0 + 8192 + 1 + + 16 + 000000001C000000E701000038000000 + + + 16 + 0A0000000A0000006E0000006E000000 + + + + 59400 + 59400 + 0 + 0 + 0 + 0 + 32767 + 0 + 8192 + 2 + + 16 + 00000000380000006F02000054000000 + + + 16 + 0A0000000A0000006E0000006E000000 + + + + 824 + 824 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + F007000087000000E008000052010000 + + + + 3334 + 000000000B000000000000000020000000000000FFFFFFFFFFFFFFFFF4000000DF00000090050000E3000000000000000100001004000000010000000000000000000000FFFFFFFF08000000CB00000057010000CC000000F08B00005A01000079070000D601000045890000FFFF02000B004354616262656450616E650020000000000000F007000087000000B80A000017010000F40000004F00000090050000DF0000000000000040280046080000000B446973617373656D626C7900000000CB00000001000000FFFFFFFFFFFFFFFF14506572666F726D616E636520416E616C797A6572000000005701000001000000FFFFFFFFFFFFFFFF14506572666F726D616E636520416E616C797A657200000000CC00000001000000FFFFFFFFFFFFFFFF0E4C6F67696320416E616C797A657200000000F08B000001000000FFFFFFFFFFFFFFFF0D436F646520436F766572616765000000005A01000001000000FFFFFFFFFFFFFFFF11496E737472756374696F6E205472616365000000007907000001000000FFFFFFFFFFFFFFFF0F53797374656D20416E616C797A657200000000D601000001000000FFFFFFFFFFFFFFFF104576656E742053746174697374696373000000004589000001000000FFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000000000000000000000001000000FFFFFFFFCB00000001000000FFFFFFFFCB000000000000000040000000000000FFFFFFFFFFFFFFFF9C0400004F000000A004000029020000000000000200001004000000010000000000000000000000FFFFFFFF2B000000E2050000CA0900002D8C00002E8C00002F8C0000308C0000318C0000328C0000338C0000348C0000358C0000368C0000378C0000388C0000398C00003A8C00003B8C00003C8C00003D8C00003E8C00003F8C0000408C0000418C000050C3000051C3000052C3000053C3000054C3000055C3000056C3000057C3000058C3000059C300005AC300005BC300005CC300005DC300005EC300005FC3000060C3000061C3000062C3000063C3000001800040000000000000F007000087000000E008000052010000A00400004F000000900500002902000000000000404100462B0000000753796D626F6C7300000000E205000001000000FFFFFFFFFFFFFFFF0A5472616365204461746100000000CA09000001000000FFFFFFFFFFFFFFFF00000000002D8C000001000000FFFFFFFFFFFFFFFF00000000002E8C000001000000FFFFFFFFFFFFFFFF00000000002F8C000001000000FFFFFFFFFFFFFFFF0000000000308C000001000000FFFFFFFFFFFFFFFF0000000000318C000001000000FFFFFFFFFFFFFFFF0000000000328C000001000000FFFFFFFFFFFFFFFF0000000000338C000001000000FFFFFFFFFFFFFFFF0000000000348C000001000000FFFFFFFFFFFFFFFF0000000000358C000001000000FFFFFFFFFFFFFFFF0000000000368C000001000000FFFFFFFFFFFFFFFF0000000000378C000001000000FFFFFFFFFFFFFFFF0000000000388C000001000000FFFFFFFFFFFFFFFF0000000000398C000001000000FFFFFFFFFFFFFFFF00000000003A8C000001000000FFFFFFFFFFFFFFFF00000000003B8C000001000000FFFFFFFFFFFFFFFF00000000003C8C000001000000FFFFFFFFFFFFFFFF00000000003D8C000001000000FFFFFFFFFFFFFFFF00000000003E8C000001000000FFFFFFFFFFFFFFFF00000000003F8C000001000000FFFFFFFFFFFFFFFF0000000000408C000001000000FFFFFFFFFFFFFFFF0000000000418C000001000000FFFFFFFFFFFFFFFF000000000050C3000001000000FFFFFFFFFFFFFFFF000000000051C3000001000000FFFFFFFFFFFFFFFF000000000052C3000001000000FFFFFFFFFFFFFFFF000000000053C3000001000000FFFFFFFFFFFFFFFF000000000054C3000001000000FFFFFFFFFFFFFFFF000000000055C3000001000000FFFFFFFFFFFFFFFF000000000056C3000001000000FFFFFFFFFFFFFFFF000000000057C3000001000000FFFFFFFFFFFFFFFF000000000058C3000001000000FFFFFFFFFFFFFFFF000000000059C3000001000000FFFFFFFFFFFFFFFF00000000005AC3000001000000FFFFFFFFFFFFFFFF00000000005BC3000001000000FFFFFFFFFFFFFFFF00000000005CC3000001000000FFFFFFFFFFFFFFFF00000000005DC3000001000000FFFFFFFFFFFFFFFF00000000005EC3000001000000FFFFFFFFFFFFFFFF00000000005FC3000001000000FFFFFFFFFFFFFFFF000000000060C3000001000000FFFFFFFFFFFFFFFF000000000061C3000001000000FFFFFFFFFFFFFFFF000000000062C3000001000000FFFFFFFFFFFFFFFF000000000063C3000001000000FFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000000000000000000000001000000FFFFFFFFE205000001000000FFFFFFFFE2050000000000000010000001000000FFFFFFFFFFFFFFFF240100004F00000028010000520300000100000002000010040000000100000079FEFFFFEE050000FFFFFFFF05000000ED0300006D000000C3000000C40000007394000001800010000001000000F007000087000000E008000052010000000000004F00000024010000520300000000000040410056050000000750726F6A65637401000000ED03000001000000FFFFFFFFFFFFFFFF05426F6F6B73010000006D00000001000000FFFFFFFFFFFFFFFF0946756E6374696F6E7301000000C300000001000000FFFFFFFFFFFFFFFF0954656D706C6174657301000000C400000001000000FFFFFFFFFFFFFFFF09526567697374657273000000007394000001000000FFFFFFFFFFFFFFFF00000000000000000000000000000000000000000000000001000000FFFFFFFFED03000001000000FFFFFFFFED030000000000000080000000000000FFFFFFFFFFFFFFFF0000000015020000900500001902000000000000010000100400000001000000000000000000000000000000000000000000000001000000C6000000FFFFFFFF0F0000008F070000930700009407000095070000960700009007000091070000B5010000B801000038030000B9050000BA050000BB050000BC050000CB09000001800080000000000000F007000087000000E008000052010000000000001902000090050000BD02000000000000404100460F0000001343616C6C20537461636B202B204C6F63616C73000000008F07000001000000FFFFFFFFFFFFFFFF0755415254202331000000009307000001000000FFFFFFFFFFFFFFFF0755415254202332000000009407000001000000FFFFFFFFFFFFFFFF0755415254202333000000009507000001000000FFFFFFFFFFFFFFFF15446562756720287072696E74662920566965776572000000009607000001000000FFFFFFFFFFFFFFFF0757617463682031000000009007000001000000FFFFFFFFFFFFFFFF0757617463682032000000009107000001000000FFFFFFFFFFFFFFFF10547261636520457863657074696F6E7300000000B501000001000000FFFFFFFFFFFFFFFF0E4576656E7420436F756E7465727300000000B801000001000000FFFFFFFFFFFFFFFF09554C494E4B706C7573000000003803000001000000FFFFFFFFFFFFFFFF084D656D6F7279203100000000B905000001000000FFFFFFFFFFFFFFFF084D656D6F7279203200000000BA05000001000000FFFFFFFFFFFFFFFF084D656D6F7279203300000000BB05000001000000FFFFFFFFFFFFFFFF084D656D6F7279203400000000BC05000001000000FFFFFFFFFFFFFFFF105472616365204E617669676174696F6E00000000CB09000001000000FFFFFFFFFFFFFFFFFFFFFFFF0000000001000000000000000000000001000000FFFFFFFFC802000019020000CC020000BD02000000000000020000000400000000000000000000000000000000000000000000000000000002000000C6000000FFFFFFFF8F07000001000000FFFFFFFF8F07000001000000C6000000000000000080000001000000FFFFFFFFFFFFFFFF00000000520300008007000056030000010000000100001004000000010000000000000000000000FFFFFFFF06000000C5000000C7000000B4010000D2010000CF0100007794000001800080000001000000F007000087000000B80A000017010000000000005603000080070000E60300000000000040820056060000000C4275696C64204F757470757401000000C500000001000000FFFFFFFFFFFFFFFF0D46696E6420496E2046696C657300000000C700000001000000FFFFFFFFFFFFFFFF0A4572726F72204C69737400000000B401000001000000FFFFFFFFFFFFFFFF24536F757263652042726F77736572202D202A2A2A204E6F7420456E61626C6564202A2A2A00000000D201000001000000FFFFFFFFFFFFFFFF0E416C6C205265666572656E63657300000000CF01000001000000FFFFFFFFFFFFFFFF0742726F77736572000000007794000001000000FFFFFFFFFFFFFFFF00000000000000000000000000000000000000000000000001000000FFFFFFFFC500000001000000FFFFFFFFC5000000000000000000000000000000 + + + 59392 + File + + 2972 + 00200000010000002800FFFF01001100434D4643546F6F6C426172427574746F6E00E100000000000000000000000000000000000000000000000100000001000000018001E100000000000001000000000000000000000000000000000100000001000000018003E1000000000400020000000000000000000000000000000001000000010000000180CD7F0000000000000300000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018023E100000000040004000000000000000000000000000000000100000001000000018022E100000000040005000000000000000000000000000000000100000001000000018025E10000000004000600000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001802BE10000000004000700000000000000000000000000000000010000000100000001802CE10000000004000800000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001807A8A0000000004000900000000000000000000000000000000010000000100000001807B8A0000000004000A00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180D3B00000000004000B000000000000000000000000000000000100000001000000018015B10000000004000C0000000000000000000000000000000001000000010000000180F4B00000000004000D000000000000000000000000000000000100000001000000018036B10000000004000E00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180FF88000000000400460000000000000000000000000000000001000000010000000180FE880000000004004500000000000000000000000000000000010000000100000001800B810000000004001300000000000000000000000000000000010000000100000001800C810000000004001400000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180F0880000020000000F000000000000000000000000000000000100000001000000FFFF0100120043555646696E64436F6D626F427574746F6EE803000000000400000000000000000000000000000000000001000000010000009600000002002050000000000665787465726E960000000000000014000665787465726E1253797374656D436C6F636B5F436F6E666967046D61696E0466756E631754465F4C4954455F4D4943524F5F42454E43484D41524B0D675F706572736F6E5F646174611B54465F4C4954455F53545249505F4552524F525F535452494E47531347657443757272656E7454696D655469636B730B54465F4C4954455F414444124F56323634305F504958454C5F5749445448186F76323634305F737667615F696E69745F7265675F74626C0B4F56323634305F496E697418706572736F6E5F6465746563745F6D6F64656C5F64617461066C6F63616C651048414C5F5350495F5472616E736D69740D4445565F5350495F5752495445174C43445F32494E345F5772697465446174615F576F726408476574496D616765125072696E74416C6C6F636174696F6E7328292B5265636F7264696E674D6963726F416C6C6F6361746F723A3A5072696E74416C6C6F636174696F6E7328290000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000018024E10000000000001100000000000000000000000000000000010000000100000001800A810000000004001200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000FFFF01001500434D4643546F6F6C4261724D656E75427574746F6E2280000002000000150000002153746172742F53746F70202644656275672053657373696F6E094374726C2B46350000000000000000000000000100000001000000000000000000000001000000020021802280000000000000150000002153746172742F53746F70202644656275672053657373696F6E094374726C2B4635000000000000000000000000010000000100000000000000000000000100000000002180E0010000000000007500000021456E65726779204D6561737572656D656E742026776974686F75742044656275670000000000000000000000000100000001000000000000000000000001000000000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C488000000000400160000000000000000000000000000000001000000010000000180C988000000000400180000000000000000000000000000000001000000010000000180C788000000000000190000000000000000000000000000000001000000010000002180C8880000000000001700000027264B696C6C20416C6C20427265616B706F696E747320696E2043757272656E7420546172676574000000000000000000000000010000000100000000000000000000000100000003002180C8880000000000001700000027264B696C6C20416C6C20427265616B706F696E747320696E2043757272656E7420546172676574000000000000000000000000010000000100000000000000000000000100000000002180E50100000000000078000000264B696C6C20416C6C20427265616B706F696E747320696E204163746976652050726F6A656374000000000000000000000000010000000100000000000000000000000100000000002180E601000000000000790000002F4B696C6C20416C6C20427265616B706F696E747320696E204D756C74692D50726F6A65637420576F726B73706163650000000000000000000000000100000001000000000000000000000001000000000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000021804C010000020001001A0000000F2650726F6A6563742057696E646F77000000000000000000000000010000000100000000000000000000000100000008002180DD880000000000001A0000000750726F6A656374000000000000000000000000010000000100000000000000000000000100000000002180DC8B0000000000003A00000005426F6F6B73000000000000000000000000010000000100000000000000000000000100000000002180E18B0000000000003B0000000946756E6374696F6E73000000000000000000000000010000000100000000000000000000000100000000002180E28B000000000000400000000954656D706C6174657300000000000000000000000001000000010000000000000000000000010000000000218018890000000000003D0000000E536F757263652042726F777365720000000000000000000000000100000001000000000000000000000001000000000021800000000000000400FFFFFFFF00000000000000000000000000010000000100000000000000000000000100000000002180D988000000000000390000000C4275696C64204F7574707574000000000000000000000000010000000100000000000000000000000100000000002180E38B000000000000410000000B46696E64204F75747075740000000000000000000000000100000001000000000000000000000001000000000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180FB7F0000000000001B000000000000000000000000000000000100000001000000000000000446696C65FF7F0000 + + + 1423 + 2800FFFF01001100434D4643546F6F6C426172427574746F6E00E1000000000000FFFFFFFF000100000000000000010000000000000001000000018001E1000000000000FFFFFFFF000100000000000000010000000000000001000000018003E1000000000000FFFFFFFF0001000000000000000100000000000000010000000180CD7F000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF000000000000000000010000000000000001000000018023E1000000000000FFFFFFFF000100000000000000010000000000000001000000018022E1000000000000FFFFFFFF000100000000000000010000000000000001000000018025E1000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001802BE1000000000000FFFFFFFF00010000000000000001000000000000000100000001802CE1000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001807A8A000000000000FFFFFFFF00010000000000000001000000000000000100000001807B8A000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180D3B0000000000000FFFFFFFF000100000000000000010000000000000001000000018015B1000000000000FFFFFFFF0001000000000000000100000000000000010000000180F4B0000000000000FFFFFFFF000100000000000000010000000000000001000000018036B1000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180FF88000000000000FFFFFFFF0001000000000000000100000000000000010000000180FE88000000000000FFFFFFFF00010000000000000001000000000000000100000001800B81000000000000FFFFFFFF00010000000000000001000000000000000100000001800C81000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180F088000000000000FFFFFFFF0001000000000000000100000000000000010000000180EE7F000000000000FFFFFFFF000100000000000000010000000000000001000000018024E1000000000000FFFFFFFF00010000000000000001000000000000000100000001800A81000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001802280000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180C488000000000000FFFFFFFF0001000000000000000100000000000000010000000180C988000000000000FFFFFFFF0001000000000000000100000000000000010000000180C788000000000000FFFFFFFF0001000000000000000100000000000000010000000180C888000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180DD88000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180FB7F000000000000FFFFFFFF000100000000000000010000000000000001000000 + + + 1423 + 2800FFFF01001100434D4643546F6F6C426172427574746F6E00E100000000000000000000000000000000000000000000000100000001000000018001E100000000000001000000000000000000000000000000000100000001000000018003E1000000000000020000000000000000000000000000000001000000010000000180CD7F0000000000000300000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018023E100000000000004000000000000000000000000000000000100000001000000018022E100000000000005000000000000000000000000000000000100000001000000018025E10000000000000600000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001802BE10000000000000700000000000000000000000000000000010000000100000001802CE10000000000000800000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001807A8A0000000000000900000000000000000000000000000000010000000100000001807B8A0000000000000A00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180D3B00000000000000B000000000000000000000000000000000100000001000000018015B10000000000000C0000000000000000000000000000000001000000010000000180F4B00000000000000D000000000000000000000000000000000100000001000000018036B10000000000000E00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180FF880000000000000F0000000000000000000000000000000001000000010000000180FE880000000000001000000000000000000000000000000000010000000100000001800B810000000000001100000000000000000000000000000000010000000100000001800C810000000000001200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180F088000000000000130000000000000000000000000000000001000000010000000180EE7F00000000000014000000000000000000000000000000000100000001000000018024E10000000000001500000000000000000000000000000000010000000100000001800A810000000000001600000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018022800000000000001700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C488000000000000180000000000000000000000000000000001000000010000000180C988000000000000190000000000000000000000000000000001000000010000000180C7880000000000001A0000000000000000000000000000000001000000010000000180C8880000000000001B00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180DD880000000000001C00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180FB7F0000000000001D000000000000000000000000000000000100000001000000 + + + + 59399 + Build + + 988 + 00200000010000001000FFFF01001100434D4643546F6F6C426172427574746F6ECF7F0000000004001C0000000000000000000000000000000001000000010000000180D07F0000000000001D000000000000000000000000000000000100000001000000018030800000000000001E000000000000000000000000000000000100000001000000FFFF01001500434D4643546F6F6C4261724D656E75427574746F6EC7040000000000006A0000000C4261746368204275696C2664000000000000000000000000010000000100000000000000000000000100000004000580C7040000000000006A0000000C4261746368204275696C266400000000000000000000000001000000010000000000000000000000010000000000058046070000000000006B0000000D42617463682052656275696C640000000000000000000000000100000001000000000000000000000001000000000005804707000000000000FFFFFFFF0B426174636820436C65616E0100000000000000000000000100000001000000000000000000000001000000000005809E8A0000000000001F0000000F4261746326682053657475702E2E2E000000000000000000000000010000000100000000000000000000000100000000000180D17F0000000004002000000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001804C8A0000000000002100000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000FFFF01001900434D4643546F6F6C426172436F6D626F426F78427574746F6EBA00000000000000000000000000000000000000000000000001000000010000009600000003002050000000000E54656E63656E744F535F74696E79960000000000000001000E54656E63656E744F535F74696E79000000000180EB880000000000002200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C07F000000000000230000000000000000000000000000000001000000010000000180B08A000000000400240000000000000000000000000000000001000000010000000180A8010000000000004E00000000000000000000000000000000010000000100000001807202000000000000530000000000000000000000000000000001000000010000000180BE010000000000005000000000000000000000000000000000010000000100000000000000054275696C64FF7F0000 + + + 583 + 1000FFFF01001100434D4643546F6F6C426172427574746F6ECF7F000000000000FFFFFFFF0001000000000000000100000000000000010000000180D07F000000000000FFFFFFFF00010000000000000001000000000000000100000001803080000000000000FFFFFFFF00010000000000000001000000000000000100000001809E8A000000000000FFFFFFFF0001000000000000000100000000000000010000000180D17F000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001804C8A000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001806680000000000000FFFFFFFF0001000000000000000100000000000000010000000180EB88000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180C07F000000000000FFFFFFFF0001000000000000000100000000000000010000000180B08A000000000000FFFFFFFF0001000000000000000100000000000000010000000180A801000000000000FFFFFFFF00010000000000000001000000000000000100000001807202000000000000FFFFFFFF0001000000000000000100000000000000010000000180BE01000000000000FFFFFFFF000100000000000000010000000000000001000000 + + + 583 + 1000FFFF01001100434D4643546F6F6C426172427574746F6ECF7F000000000000000000000000000000000000000000000001000000010000000180D07F00000000000001000000000000000000000000000000000100000001000000018030800000000000000200000000000000000000000000000000010000000100000001809E8A000000000000030000000000000000000000000000000001000000010000000180D17F0000000000000400000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001804C8A0000000000000500000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001806680000000000000060000000000000000000000000000000001000000010000000180EB880000000000000700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C07F000000000000080000000000000000000000000000000001000000010000000180B08A000000000000090000000000000000000000000000000001000000010000000180A8010000000000000A000000000000000000000000000000000100000001000000018072020000000000000B0000000000000000000000000000000001000000010000000180BE010000000000000C000000000000000000000000000000000100000001000000 + + + + 59400 + Debug + + 2373 + 00200000000000001900FFFF01001100434D4643546F6F6C426172427574746F6ECC880000000000002500000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018017800000000000002600000000000000000000000000000000010000000100000001801D800000000000002700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001801A800000000000002800000000000000000000000000000000010000000100000001801B80000000000000290000000000000000000000000000000001000000010000000180E57F0000000000002A00000000000000000000000000000000010000000100000001801C800000000000002B00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018000890000000000002C00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180E48B0000000000002D0000000000000000000000000000000001000000010000000180F07F0000000000002E0000000000000000000000000000000001000000010000000180E8880000000000003700000000000000000000000000000000010000000100000001803B010000000000002F0000000000000000000000000000000001000000010000000180BB8A00000000000030000000000000000000000000000000000100000001000000FFFF01001500434D4643546F6F6C4261724D656E75427574746F6E0E01000000000000310000000D57617463682057696E646F7773000000000000000000000000010000000100000000000000000000000100000003001380D88B00000000000031000000085761746368202631000000000000000000000000010000000100000000000000000000000100000000001380D98B00000000000031000000085761746368202632000000000000000000000000010000000100000000000000000000000100000000001380CE01000000000000FFFFFFFF0C576174636820416E63686F720100000000000000000000000100000001000000000000000000000001000000000013800F01000000000000320000000E4D656D6F72792057696E646F7773000000000000000000000000010000000100000000000000000000000100000004001380D28B00000000000032000000094D656D6F7279202631000000000000000000000000010000000100000000000000000000000100000000001380D38B00000000000032000000094D656D6F7279202632000000000000000000000000010000000100000000000000000000000100000000001380D48B00000000000032000000094D656D6F7279202633000000000000000000000000010000000100000000000000000000000100000000001380D58B00000000000032000000094D656D6F72792026340000000000000000000000000100000001000000000000000000000001000000000013801001000000000000330000000E53657269616C2057696E646F77730000000000000000000000000100000001000000000000000000000001000000040013809307000000000000330000000855415254202326310000000000000000000000000100000001000000000000000000000001000000000013809407000000000000330000000855415254202326320000000000000000000000000100000001000000000000000000000001000000000013809507000000000000330000000855415254202326330000000000000000000000000100000001000000000000000000000001000000000013809607000000000000330000001626446562756720287072696E746629205669657765720000000000000000000000000100000001000000000000000000000001000000000013803C010000000000007200000010416E616C797369732057696E646F7773000000000000000000000000010000000100000000000000000000000100000004001380658A000000000000340000000F264C6F67696320416E616C797A6572000000000000000000000000010000000100000000000000000000000100000000001380DC7F0000000000003E0000001526506572666F726D616E636520416E616C797A6572000000000000000000000000010000000100000000000000000000000100000000001380E788000000000000380000000E26436F646520436F766572616765000000000000000000000000010000000100000000000000000000000100000000001380CD01000000000000FFFFFFFF0F416E616C7973697320416E63686F7201000000000000000000000001000000010000000000000000000000010000000000138053010000000000003F0000000D54726163652057696E646F77730000000000000000000000000100000001000000000000000000000001000000010013805401000000000000FFFFFFFF115472616365204D656E7520416E63686F720100000000000000000000000100000001000000000000000000000001000000000013802901000000000000350000001553797374656D205669657765722057696E646F77730000000000000000000000000100000001000000000000000000000001000000010013804B01000000000000FFFFFFFF1453797374656D2056696577657220416E63686F720100000000000000000000000100000001000000000000000000000001000000000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000013800189000000000000360000000F26546F6F6C626F782057696E646F7700000000000000000000000001000000010000000000000000000000010000000300138044C5000000000000FFFFFFFF0E5570646174652057696E646F77730100000000000000000000000100000001000000000000000000000001000000000013800000000000000400FFFFFFFF000000000000000000000000000100000001000000000000000000000001000000000013805B01000000000000FFFFFFFF12546F6F6C626F78204D656E75416E63686F720100000000000000000000000100000001000000000000000000000001000000000000000000054465627567FF7F0000 + + + 898 + 1900FFFF01001100434D4643546F6F6C426172427574746F6ECC88000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001801780000000000000FFFFFFFF00010000000000000001000000000000000100000001801D80000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001801A80000000000000FFFFFFFF00010000000000000001000000000000000100000001801B80000000000000FFFFFFFF0001000000000000000100000000000000010000000180E57F000000000000FFFFFFFF00010000000000000001000000000000000100000001801C80000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001800089000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180E48B000000000000FFFFFFFF0001000000000000000100000000000000010000000180F07F000000000000FFFFFFFF0001000000000000000100000000000000010000000180E888000000000000FFFFFFFF00010000000000000001000000000000000100000001803B01000000000000FFFFFFFF0001000000000000000100000000000000010000000180BB8A000000000000FFFFFFFF0001000000000000000100000000000000010000000180D88B000000000000FFFFFFFF0001000000000000000100000000000000010000000180D28B000000000000FFFFFFFF00010000000000000001000000000000000100000001809307000000000000FFFFFFFF0001000000000000000100000000000000010000000180658A000000000000FFFFFFFF0001000000000000000100000000000000010000000180C18A000000000000FFFFFFFF0001000000000000000100000000000000010000000180EE8B000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001800189000000000000FFFFFFFF000100000000000000010000000000000001000000 + + + 898 + 1900FFFF01001100434D4643546F6F6C426172427574746F6ECC880000000000000000000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018017800000000000000100000000000000000000000000000000010000000100000001801D800000000000000200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001801A800000000000000300000000000000000000000000000000010000000100000001801B80000000000000040000000000000000000000000000000001000000010000000180E57F0000000000000500000000000000000000000000000000010000000100000001801C800000000000000600000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018000890000000000000700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180E48B000000000000080000000000000000000000000000000001000000010000000180F07F000000000000090000000000000000000000000000000001000000010000000180E8880000000000000A00000000000000000000000000000000010000000100000001803B010000000000000B0000000000000000000000000000000001000000010000000180BB8A0000000000000C0000000000000000000000000000000001000000010000000180D88B0000000000000D0000000000000000000000000000000001000000010000000180D28B0000000000000E000000000000000000000000000000000100000001000000018093070000000000000F0000000000000000000000000000000001000000010000000180658A000000000000100000000000000000000000000000000001000000010000000180C18A000000000000110000000000000000000000000000000001000000010000000180EE8B0000000000001200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180018900000000000013000000000000000000000000000000000100000001000000 + + + + 0 + 1920 + 1080 + + + + +
diff --git a/board/NUCLEO_STM32L496ZG/BSP/Hardware/Inc/delay.h b/board/NUCLEO_STM32L496ZG/BSP/Hardware/Inc/delay.h new file mode 100644 index 00000000..d19e9e82 --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/BSP/Hardware/Inc/delay.h @@ -0,0 +1,23 @@ +#ifndef _DELAY_H +#define _DELAY_H +#include +////////////////////////////////////////////////////////////////////////////////// +//±¾³ÌÐòÖ»¹©Ñ§Ï°Ê¹Óã¬Î´¾­×÷ÕßÐí¿É£¬²»µÃÓÃÓÚÆäËüÈκÎÓÃ; +//ALIENTEK STM32F429¿ª·¢°å +//ʹÓÃSysTickµÄÆÕͨ¼ÆÊýģʽ¶ÔÑÓ³Ù½øÐйÜÀí(Ö§³Öucosii) +//°üÀ¨delay_us,delay_ms +//ÕýµãÔ­×Ó@ALIENTEK +//¼¼ÊõÂÛ̳:www.openedv.com +//´´½¨ÈÕÆÚ:2015/6/10 +//°æ±¾£ºV1.0 +//°æÈ¨ËùÓУ¬µÁ°æ±Ø¾¿¡£ +//Copyright(C) ¹ãÖÝÊÐÐÇÒíµç×ӿƼ¼ÓÐÏÞ¹«Ë¾ 2014-2024 +//All rights reserved +//******************************************************************************** +//ÐÞ¸Ä˵Ã÷ +////////////////////////////////////////////////////////////////////////////////// + +void delay_us(uint32_t nus); +void delay_ms(uint32_t time_ms); +#endif + diff --git a/board/NUCLEO_STM32L496ZG/BSP/Hardware/Inc/lcd_2inch4.h b/board/NUCLEO_STM32L496ZG/BSP/Hardware/Inc/lcd_2inch4.h new file mode 100644 index 00000000..b7a3cd3c --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/BSP/Hardware/Inc/lcd_2inch4.h @@ -0,0 +1,70 @@ +/***************************************************************************** +* | File : LCD_2IN4_Driver.h +* | Author : Waveshare team +* | Function : LCD driver +* | Info : +*---------------- +* | This version: V1.0 +* | Date : 2020-07-29 +* | Info : +# +# Permission is hereby granted, free of charge, to any person obtaining a copy +# of this software and associated documnetation files (the "Software"), to deal +# in the Software without restriction, including without limitation the rights +# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +# copies of the Software, and to permit persons to whom the Software is +# furished to do so, subject to the following conditions: +# +# The above copyright notice and this permission notice shall be included in +# all copies or substantial portions of the Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +# FITNESS OR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +# LIABILITY WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +# THE SOFTWARE. +# +******************************************************************************/ +#ifndef __LCD_2IN4_DRIVER_H +#define __LCD_2IN4_DRIVER_H + +#include "lcd_Config.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define LCD_2IN4_WIDTH 240 //LCD width +#define LCD_2IN4_HEIGHT 320 //LCD height + + +#define LCD_2IN4_CS_0 DEV_Digital_Write(DEV_CS_PIN, 0) +#define LCD_2IN4_CS_1 DEV_Digital_Write(DEV_CS_PIN, 1) + +#define LCD_2IN4_RST_0 DEV_Digital_Write(DEV_RST_PIN,0) +#define LCD_2IN4_RST_1 DEV_Digital_Write(DEV_RST_PIN,1) + +#define LCD_2IN4_DC_0 DEV_Digital_Write(DEV_DC_PIN, 0) +#define LCD_2IN4_DC_1 DEV_Digital_Write(DEV_DC_PIN, 1) + + +void LCD_2IN4_Init(void); +void LCD_2IN4_Clear(UWORD Color); +void LCD_2IN4_Display(UWORD *image,int width, int height); +void LCD_2IN4_DrawPaint(UWORD x, UWORD y, UWORD Color); +void LCD_2IN4_SetBackLight(UWORD Value); + +void LCD_2IN4_WriteData_Word(UWORD da); +void LCD_2IN4_SetCursor(UWORD X, UWORD Y); +void LCD_2IN4_SetWindow(UWORD Xstart, UWORD Ystart, UWORD Xend, UWORD Yend); +void LCD_2IN4_ClearWindow(UWORD Xstart, UWORD Ystart, UWORD Xend, UWORD Yend,UWORD color); + + +#ifdef __cplusplus +} +#endif + + +#endif diff --git a/board/NUCLEO_STM32L496ZG/BSP/Hardware/Inc/lcd_config.h b/board/NUCLEO_STM32L496ZG/BSP/Hardware/Inc/lcd_config.h new file mode 100644 index 00000000..a8de0a1b --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/BSP/Hardware/Inc/lcd_config.h @@ -0,0 +1,87 @@ +/***************************************************************************** +* | File : DEV_Config.h +* | Author : Waveshare team +* | Function : Hardware underlying interface +* | Info : +* Used to shield the underlying layers of each master +* and enhance portability +*---------------- +* | This version: V1.0 +* | Date : 2018-11-22 +* | Info : + +# Permission is hereby granted, free of charge, to any person obtaining a copy +# of this software and associated documnetation files (the "Software"), to deal +# in the Software without restriction, including without limitation the rights +# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +# copies of the Software, and to permit persons to whom the Software is +# furished to do so, subject to the following conditions: +# +# The above copyright notice and this permission notice shall be included in +# all copies or substantial portions of the Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +# FITNESS OR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +# LIABILITY WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +# THE SOFTWARE. +# +******************************************************************************/ +#ifndef _DEV_CONFIG_H_ +#define _DEV_CONFIG_H_ + +#include "stm32l4xx_hal.h" +#include +#include +#include "spi.h" +#include "tim.h" +#include "main.h" + +#define UBYTE uint8_t +#define UWORD uint16_t +#define UDOUBLE uint32_t + +/** + * GPIO config +**/ +#define DC_Pin GPIO_PIN_12 +#define DC_GPIO_Port GPIOB +#define RST_Pin GPIO_PIN_11 +#define RST_GPIO_Port GPIOA +#define CS_Pin GPIO_PIN_12 +#define CS_GPIO_Port GPIOA + +#define DEV_RST_PIN RST_GPIO_Port,RST_Pin //PA11 +#define DEV_DC_PIN DC_GPIO_Port,DC_Pin //PB12 +#define DEV_CS_PIN CS_GPIO_Port,CS_Pin //PA12 +#define DEV_BL_PIN TIM4->CCR1 //PB6 + +/** + * GPIO read and write +**/ +#define DEV_Digital_Write(_pin, _value) HAL_GPIO_WritePin(_pin, _value == 0? GPIO_PIN_RESET:GPIO_PIN_SET) +#define DEV_Digital_Read(_pin) HAL_GPIO_ReadPin(_pin) + +/** + * SPI +**/ +#define DEV_SPI_WRITE(_dat) DEV_SPI_WRite(_dat); + +/** + * delay x ms +**/ +#define DEV_Delay_ms(__xms) HAL_Delay(__xms) + +/** + * PWM_BL +**/ + +#define DEV_Set_PWM(_Value) DEV_BL_PIN= _Value + +/*-----------------------------------------------------------------------------*/ +void DEV_SPI_WRite(UBYTE _dat); +int DEV_Module_Init(void); +void DEV_Module_Exit(void); +#endif diff --git a/board/NUCLEO_STM32L496ZG/BSP/Hardware/Inc/ov2640.h b/board/NUCLEO_STM32L496ZG/BSP/Hardware/Inc/ov2640.h new file mode 100644 index 00000000..d04ddb76 --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/BSP/Hardware/Inc/ov2640.h @@ -0,0 +1,144 @@ +#ifndef _OV2640_H +#define _OV2640_H +#include "sys.h" +#include "sccb.h" + +/* +* picture size +*/ +#define OV2640_PIXEL_WIDTH ((uint16_t)96) +#define OV2640_PIXEL_HEIGHT ((uint16_t)96) + +//#define OV2640_PWDN PGout(9) //POWER DOWN¿ØÖÆÐźŠ+//#define OV2640_RST PGout(15) //¸´Î»¿ØÖÆÐźŠ+void OV2640_PWDN(uint8_t signal); +void OV2640_RST(uint8_t signal); +////////////////////////////////////////////////////////////////////////////////// +#define OV2640_MID 0X7FA2 +#define OV2640_PID 0X2642 + + +//µ±Ñ¡ÔñDSPµØÖ·(0XFF=0X00)ʱ,OV2640µÄDSP¼Ä´æÆ÷µØÖ·Ó³Éä±í +#define OV2640_DSP_R_BYPASS 0x05 +#define OV2640_DSP_Qs 0x44 +#define OV2640_DSP_CTRL 0x50 +#define OV2640_DSP_HSIZE1 0x51 +#define OV2640_DSP_VSIZE1 0x52 +#define OV2640_DSP_XOFFL 0x53 +#define OV2640_DSP_YOFFL 0x54 +#define OV2640_DSP_VHYX 0x55 +#define OV2640_DSP_DPRP 0x56 +#define OV2640_DSP_TEST 0x57 +#define OV2640_DSP_ZMOW 0x5A +#define OV2640_DSP_ZMOH 0x5B +#define OV2640_DSP_ZMHH 0x5C +#define OV2640_DSP_BPADDR 0x7C +#define OV2640_DSP_BPDATA 0x7D +#define OV2640_DSP_CTRL2 0x86 +#define OV2640_DSP_CTRL3 0x87 +#define OV2640_DSP_SIZEL 0x8C +#define OV2640_DSP_HSIZE2 0xC0 +#define OV2640_DSP_VSIZE2 0xC1 +#define OV2640_DSP_CTRL0 0xC2 +#define OV2640_DSP_CTRL1 0xC3 +#define OV2640_DSP_R_DVP_SP 0xD3 +#define OV2640_DSP_IMAGE_MODE 0xDA +#define OV2640_DSP_RESET 0xE0 +#define OV2640_DSP_MS_SP 0xF0 +#define OV2640_DSP_SS_ID 0x7F +#define OV2640_DSP_SS_CTRL 0xF8 +#define OV2640_DSP_MC_BIST 0xF9 +#define OV2640_DSP_MC_AL 0xFA +#define OV2640_DSP_MC_AH 0xFB +#define OV2640_DSP_MC_D 0xFC +#define OV2640_DSP_P_STATUS 0xFE +#define OV2640_DSP_RA_DLMT 0xFF + +//µ±Ñ¡Ôñ´«¸ÐÆ÷µØÖ·(0XFF=0X01)ʱ,OV2640µÄDSP¼Ä´æÆ÷µØÖ·Ó³Éä±í +#define OV2640_SENSOR_GAIN 0x00 +#define OV2640_SENSOR_COM1 0x03 +#define OV2640_SENSOR_REG04 0x04 +#define OV2640_SENSOR_REG08 0x08 +#define OV2640_SENSOR_COM2 0x09 +#define OV2640_SENSOR_PIDH 0x0A +#define OV2640_SENSOR_PIDL 0x0B +#define OV2640_SENSOR_COM3 0x0C +#define OV2640_SENSOR_COM4 0x0D +#define OV2640_SENSOR_AEC 0x10 +#define OV2640_SENSOR_CLKRC 0x11 +#define OV2640_SENSOR_COM7 0x12 +#define OV2640_SENSOR_COM8 0x13 +#define OV2640_SENSOR_COM9 0x14 +#define OV2640_SENSOR_COM10 0x15 +#define OV2640_SENSOR_HREFST 0x17 +#define OV2640_SENSOR_HREFEND 0x18 +#define OV2640_SENSOR_VSTART 0x19 +#define OV2640_SENSOR_VEND 0x1A +#define OV2640_SENSOR_MIDH 0x1C +#define OV2640_SENSOR_MIDL 0x1D +#define OV2640_SENSOR_AEW 0x24 +#define OV2640_SENSOR_AEB 0x25 +#define OV2640_SENSOR_W 0x26 +#define OV2640_SENSOR_REG2A 0x2A +#define OV2640_SENSOR_FRARL 0x2B +#define OV2640_SENSOR_ADDVSL 0x2D +#define OV2640_SENSOR_ADDVHS 0x2E +#define OV2640_SENSOR_YAVG 0x2F +#define OV2640_SENSOR_REG32 0x32 +#define OV2640_SENSOR_ARCOM2 0x34 +#define OV2640_SENSOR_REG45 0x45 +#define OV2640_SENSOR_FLL 0x46 +#define OV2640_SENSOR_FLH 0x47 +#define OV2640_SENSOR_COM19 0x48 +#define OV2640_SENSOR_ZOOMS 0x49 +#define OV2640_SENSOR_COM22 0x4B +#define OV2640_SENSOR_COM25 0x4E +#define OV2640_SENSOR_BD50 0x4F +#define OV2640_SENSOR_BD60 0x50 +#define OV2640_SENSOR_REG5D 0x5D +#define OV2640_SENSOR_REG5E 0x5E +#define OV2640_SENSOR_REG5F 0x5F +#define OV2640_SENSOR_REG60 0x60 +#define OV2640_SENSOR_HISTO_LOW 0x61 +#define OV2640_SENSOR_HISTO_HIGH 0x62 + + + + +uint8_t OV2640_Init(void); +void OV2640_JPEG_Mode(void); +void OV2640_RGB565_Mode(void); +void OV2640_Auto_Exposure(uint8_t level); +void OV2640_Light_Mode(uint8_t mode); +void OV2640_Color_Saturation(uint8_t sat); +void OV2640_Brightness(uint8_t bright); +void OV2640_Contrast(uint8_t contrast); +void OV2640_Special_Effects(uint8_t eft); +void OV2640_Color_Bar(uint8_t sw); +void OV2640_Window_Set(uint16_t sx,uint16_t sy,uint16_t width,uint16_t height); +uint8_t OV2640_OutSize_Set(uint16_t width,uint16_t height); +uint8_t OV2640_ImageWin_Set(uint16_t offx,uint16_t offy,uint16_t width,uint16_t height); +uint8_t OV2640_ImageSize_Set(uint16_t width,uint16_t height); + +#endif + + + + + + + + + + + + + + + + + + + + + diff --git a/board/NUCLEO_STM32L496ZG/BSP/Hardware/Inc/ov2640cfg.h b/board/NUCLEO_STM32L496ZG/BSP/Hardware/Inc/ov2640cfg.h new file mode 100644 index 00000000..8836b7aa --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/BSP/Hardware/Inc/ov2640cfg.h @@ -0,0 +1,492 @@ +#ifndef _OV2640CFG_H +#define _OV2640CFG_H +#include "ov2640.h" +////////////////////////////////////////////////////////////////////////////////// +//±¾³ÌÐòÖ»¹©Ñ§Ï°Ê¹Óã¬Î´¾­×÷ÕßÐí¿É£¬²»µÃÓÃÓÚÆäËüÈκÎÓÃ; +//ALIENTEK STM32F407¿ª·¢°å +//OV2640 Çý¶¯´úÂë +//ÕýµãÔ­×Ó@ALIENTEK +//¼¼ÊõÂÛ̳:www.openedv.com +//´´½¨ÈÕÆÚ:2014/5/14 +//°æ±¾£ºV1.0 +//°æÈ¨ËùÓУ¬µÁ°æ±Ø¾¿¡£ +//Copyright(C) ¹ãÖÝÊÐÐÇÒíµç×ӿƼ¼ÓÐÏÞ¹«Ë¾ 2014-2024 +//All rights reserved +////////////////////////////////////////////////////////////////////////////////// + +//OV2640 SXGA³õʼ»¯¼Ä´æÆ÷ÐòÁбí +//´ËģʽÏÂÖ¡ÂÊΪ15Ö¡ +//SXGA(1600*1200) +const uint8_t ov2640_sxga_init_reg_tbl[][2]= +{ + 0xff, 0x00, + 0x2c, 0xff, + 0x2e, 0xdf, + 0xff, 0x01, + 0x3c, 0x32, + // + 0x11, 0x00, + 0x09, 0x02, + 0x04, 0xD8,//ˮƽ¾µÏñ,´¹Ö±·­×ª + 0x13, 0xe5, + 0x14, 0x48, + 0x2c, 0x0c, + 0x33, 0x78, + 0x3a, 0x33, + 0x3b, 0xfB, + // + 0x3e, 0x00, + 0x43, 0x11, + 0x16, 0x10, + // + 0x39, 0x92, + // + 0x35, 0xda, + 0x22, 0x1a, + 0x37, 0xc3, + 0x23, 0x00, + 0x34, 0xc0, + 0x36, 0x1a, + 0x06, 0x88, + 0x07, 0xc0, + 0x0d, 0x87, + 0x0e, 0x41, + 0x4c, 0x00, + + 0x48, 0x00, + 0x5B, 0x00, + 0x42, 0x03, + // + 0x4a, 0x81, + 0x21, 0x99, + // + 0x24, 0x40, + 0x25, 0x38, + 0x26, 0x82, + 0x5c, 0x00, + 0x63, 0x00, + 0x46, 0x00, + 0x0c, 0x3c, + // + 0x61, 0x70, + 0x62, 0x80, + 0x7c, 0x05, + // + 0x20, 0x80, + 0x28, 0x30, + 0x6c, 0x00, + 0x6d, 0x80, + 0x6e, 0x00, + 0x70, 0x02, + 0x71, 0x94, + 0x73, 0xc1, + 0x3d, 0x34, + 0x5a, 0x57, + // + 0x12, 0x00,//UXGA 1600*1200 + + 0x17, 0x11, + 0x18, 0x75, + 0x19, 0x01, + 0x1a, 0x97, + 0x32, 0x36, + 0x03, 0x0f, + 0x37, 0x40, + // + 0x4f, 0xca, + 0x50, 0xa8, + 0x5a, 0x23, + 0x6d, 0x00, + 0x6d, 0x38, + // + 0xff, 0x00, + 0xe5, 0x7f, + 0xf9, 0xc0, + 0x41, 0x24, + 0xe0, 0x14, + 0x76, 0xff, + 0x33, 0xa0, + 0x42, 0x20, + 0x43, 0x18, + 0x4c, 0x00, + 0x87, 0xd5, + 0x88, 0x3f, + 0xd7, 0x03, + 0xd9, 0x10, + 0xd3, 0x82, + // + 0xc8, 0x08, + 0xc9, 0x80, + // + 0x7c, 0x00, + 0x7d, 0x00, + 0x7c, 0x03, + 0x7d, 0x48, + 0x7d, 0x48, + 0x7c, 0x08, + 0x7d, 0x20, + 0x7d, 0x10, + 0x7d, 0x0e, + // + 0x90, 0x00, + 0x91, 0x0e, + 0x91, 0x1a, + 0x91, 0x31, + 0x91, 0x5a, + 0x91, 0x69, + 0x91, 0x75, + 0x91, 0x7e, + 0x91, 0x88, + 0x91, 0x8f, + 0x91, 0x96, + 0x91, 0xa3, + 0x91, 0xaf, + 0x91, 0xc4, + 0x91, 0xd7, + 0x91, 0xe8, + 0x91, 0x20, + // + 0x92, 0x00, + 0x93, 0x06, + 0x93, 0xe3, + 0x93, 0x05, + 0x93, 0x05, + 0x93, 0x00, + 0x93, 0x04, + 0x93, 0x00, + 0x93, 0x00, + 0x93, 0x00, + 0x93, 0x00, + 0x93, 0x00, + 0x93, 0x00, + 0x93, 0x00, + // + 0x96, 0x00, + 0x97, 0x08, + 0x97, 0x19, + 0x97, 0x02, + 0x97, 0x0c, + 0x97, 0x24, + 0x97, 0x30, + 0x97, 0x28, + 0x97, 0x26, + 0x97, 0x02, + 0x97, 0x98, + 0x97, 0x80, + 0x97, 0x00, + 0x97, 0x00, + // + 0xc3, 0xef, + + 0xa4, 0x00, + 0xa8, 0x00, + 0xc5, 0x11, + 0xc6, 0x51, + 0xbf, 0x80, + 0xc7, 0x10, + 0xb6, 0x66, + 0xb8, 0xA5, + 0xb7, 0x64, + 0xb9, 0x7C, + 0xb3, 0xaf, + 0xb4, 0x97, + 0xb5, 0xFF, + 0xb0, 0xC5, + 0xb1, 0x94, + 0xb2, 0x0f, + 0xc4, 0x5c, + // + 0xc0, 0xc8, + 0xc1, 0x96, + 0x8c, 0x00, + 0x86, 0x3d, + 0x50, 0x00, + 0x51, 0x90, + 0x52, 0x2c, + 0x53, 0x00, + 0x54, 0x00, + 0x55, 0x88, + + 0x5a, 0x90, + 0x5b, 0x2C, + 0x5c, 0x05, + + 0xd3, 0x02,//autoÉèÖÃҪСÐÄ + // + 0xc3, 0xed, + 0x7f, 0x00, + + 0xda, 0x09, + + 0xe5, 0x1f, + 0xe1, 0x67, + 0xe0, 0x00, + 0xdd, 0x7f, + 0x05, 0x00, +}; +//OV2640 SVGA³õʼ»¯¼Ä´æÆ÷ÐòÁбí +//´ËģʽÏÂ,Ö¡ÂÊ¿ÉÒÔ´ïµ½30Ö¡ +//SVGA 800*600 +const uint8_t ov2640_svga_init_reg_tbl[][2]= +{ + 0xff, 0x00, + 0x2c, 0xff, + 0x2e, 0xdf, + 0xff, 0x01, + 0x3c, 0x32, + // + 0x11, 0x00, + 0x09, 0x02, + 0x04, 0xD8,//ˮƽ¾µÏñ,´¹Ö±·­×ª + 0x13, 0xe5, + 0x14, 0x48, + 0x2c, 0x0c, + 0x33, 0x78, + 0x3a, 0x33, + 0x3b, 0xfB, + // + 0x3e, 0x00, + 0x43, 0x11, + 0x16, 0x10, + // + 0x39, 0x92, + // + 0x35, 0xda, + 0x22, 0x1a, + 0x37, 0xc3, + 0x23, 0x00, + 0x34, 0xc0, + 0x36, 0x1a, + 0x06, 0x88, + 0x07, 0xc0, + 0x0d, 0x87, + 0x0e, 0x41, + 0x4c, 0x00, + 0x48, 0x00, + 0x5B, 0x00, + 0x42, 0x03, + // + 0x4a, 0x81, + 0x21, 0x99, + // + 0x24, 0x40, + 0x25, 0x38, + 0x26, 0x82, + 0x5c, 0x00, + 0x63, 0x00, + 0x46, 0x22, + 0x0c, 0x3c, + // + 0x61, 0x70, + 0x62, 0x80, + 0x7c, 0x05, + // + 0x20, 0x80, + 0x28, 0x30, + 0x6c, 0x00, + 0x6d, 0x80, + 0x6e, 0x00, + 0x70, 0x02, + 0x71, 0x94, + 0x73, 0xc1, + + 0x3d, 0x34, + 0x5a, 0x57, + //¸ù¾Ý·Ö±æÂʲ»Í¬¶øÉèÖà + 0x12, 0x40,//SVGA 800*600 + 0x17, 0x11, + 0x18, 0x43, + 0x19, 0x00, + 0x1a, 0x4b, + 0x32, 0x09, + 0x37, 0xc0, + // + 0x4f, 0xca, + 0x50, 0xa8, + 0x5a, 0x23, + 0x6d, 0x00, + 0x3d, 0x38, + // + 0xff, 0x00, + 0xe5, 0x7f, + 0xf9, 0xc0, + 0x41, 0x24, + 0xe0, 0x14, + 0x76, 0xff, + 0x33, 0xa0, + 0x42, 0x20, + 0x43, 0x18, + 0x4c, 0x00, + 0x87, 0xd5, + 0x88, 0x3f, + 0xd7, 0x03, + 0xd9, 0x10, + 0xd3, 0x82, + // + 0xc8, 0x08, + 0xc9, 0x80, + // + 0x7c, 0x00, + 0x7d, 0x00, + 0x7c, 0x03, + 0x7d, 0x48, + 0x7d, 0x48, + 0x7c, 0x08, + 0x7d, 0x20, + 0x7d, 0x10, + 0x7d, 0x0e, + // + 0x90, 0x00, + 0x91, 0x0e, + 0x91, 0x1a, + 0x91, 0x31, + 0x91, 0x5a, + 0x91, 0x69, + 0x91, 0x75, + 0x91, 0x7e, + 0x91, 0x88, + 0x91, 0x8f, + 0x91, 0x96, + 0x91, 0xa3, + 0x91, 0xaf, + 0x91, 0xc4, + 0x91, 0xd7, + 0x91, 0xe8, + 0x91, 0x20, + // + 0x92, 0x00, + 0x93, 0x06, + 0x93, 0xe3, + 0x93, 0x05, + 0x93, 0x05, + 0x93, 0x00, + 0x93, 0x04, + 0x93, 0x00, + 0x93, 0x00, + 0x93, 0x00, + 0x93, 0x00, + 0x93, 0x00, + 0x93, 0x00, + 0x93, 0x00, + // + 0x96, 0x00, + 0x97, 0x08, + 0x97, 0x19, + 0x97, 0x02, + 0x97, 0x0c, + 0x97, 0x24, + 0x97, 0x30, + 0x97, 0x28, + 0x97, 0x26, + 0x97, 0x02, + 0x97, 0x98, + 0x97, 0x80, + 0x97, 0x00, + 0x97, 0x00, + // + 0xc3, 0xed, + 0xa4, 0x00, + 0xa8, 0x00, + 0xc5, 0x11, + 0xc6, 0x51, + 0xbf, 0x80, + 0xc7, 0x10, + 0xb6, 0x66, + 0xb8, 0xA5, + 0xb7, 0x64, + 0xb9, 0x7C, + 0xb3, 0xaf, + 0xb4, 0x97, + 0xb5, 0xFF, + 0xb0, 0xC5, + 0xb1, 0x94, + 0xb2, 0x0f, + 0xc4, 0x5c, + //¸ù¾Ý·Ö±æÂʲ»Í¬¶øÉèÖà + 0xc0, 0x64, + 0xc1, 0x4B, + 0x8c, 0x00, + 0x86, 0x3D, + 0x50, 0x00, + 0x51, 0xC8, + 0x52, 0x96, + 0x53, 0x00, + 0x54, 0x00, + 0x55, 0x00, + 0x5a, 0xC8, + 0x5b, 0x96, + 0x5c, 0x00, + + 0xd3, 0x02,//autoÉèÖÃҪСÐÄ + // + 0xc3, 0xed, + 0x7f, 0x00, + + 0xda, 0x09, + + 0xe5, 0x1f, + 0xe1, 0x67, + 0xe0, 0x00, + 0xdd, 0x7f, + 0x05, 0x00, +}; +const uint8_t ov2640_jpeg_reg_tbl[][2]= +{ + 0xff, 0x01, + 0xe0, 0x14, + 0xe1, 0x77, + 0xe5, 0x1f, + 0xd7, 0x03, + 0xda, 0x10, + 0xe0, 0x00, +}; +const uint8_t ov2640_rgb565_reg_tbl[][2]= +{ + 0xFF, 0x00, + 0xDA, 0x09, + 0xD7, 0x03, + 0xDF, 0x02, + 0x33, 0xa0, + 0x3C, 0x00, + 0xe1, 0x67, + + 0xff, 0x01, + 0xe0, 0x00, + 0xe1, 0x00, + 0xe5, 0x00, + 0xd7, 0x00, + 0xda, 0x00, + 0xe0, 0x00, +}; +const uint8_t ov2640_yuv422_reg_tbl[][2]= +{ + 0xFF, 0x00, + 0xDA, 0x10, + 0xD7, 0x03, + 0xDF, 0x00, + 0x33, 0x80, + 0x3C, 0x40, + 0xe1, 0x77, + 0x00, 0x00, +}; + +#endif + + + + + + + + + + + + + + + + + + + diff --git a/board/NUCLEO_STM32L496ZG/BSP/Hardware/Inc/sccb.h b/board/NUCLEO_STM32L496ZG/BSP/Hardware/Inc/sccb.h new file mode 100644 index 00000000..2b64ace4 --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/BSP/Hardware/Inc/sccb.h @@ -0,0 +1,38 @@ +#ifndef __SCCB_H +#define __SCCB_H +#include "sys.h" +#include "gpio.h" + +//IO²Ù×÷º¯Êý +#define SCCB_SDA_IN() {GPIOB->MODER&=~(3<<(5*2));GPIOB->MODER|=0<<5*2;} //PD7 ÊäÈë +#define SCCB_SDA_OUT() {GPIOB->MODER&=~(3<<(5*2));GPIOB->MODER|=1<<5*2;} //PD7 Êä³ö +#define SCCB_ID 0X60 //OV2640µÄID + +//IO·½ÏòÉèÖà +#define SCCB_SDA_IN() {GPIOB->MODER&=~(3<<(5*2));GPIOB->MODER|=0<<5*2;} //PD7 ÊäÈë +#define SCCB_SDA_OUT() {GPIOB->MODER&=~(3<<(5*2));GPIOB->MODER|=1<<5*2;} //PD7 Êä³ö + +#define SCCB_ID 0X60 //OV2640µÄID + +void SCCB_Init(void); +void SCCB_Start(void); +void SCCB_Stop(void); +void SCCB_No_Ack(void); +uint8_t SCCB_WR_Byte(uint8_t dat); +uint8_t SCCB_RD_Byte(void); +uint8_t SCCB_WR_Reg(uint8_t reg,uint8_t data); +uint8_t SCCB_RD_Reg(uint8_t reg); + +void SCCB_SCL(uint8_t sccb_scl); +void SCCB_SDA(uint8_t sccb_sda); +uint8_t SCCB_READ_SDA(void); +#endif + + + + + + + + + diff --git a/board/NUCLEO_STM32L496ZG/BSP/Hardware/Src/delay.c b/board/NUCLEO_STM32L496ZG/BSP/Hardware/Src/delay.c new file mode 100644 index 00000000..89073f95 --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/BSP/Hardware/Src/delay.c @@ -0,0 +1,82 @@ +#include "delay.h" +#include "sys.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void delay_us(uint32_t time_us) { + uint32_t clk = 80; // CPU 80MHz + uint32_t ticks = time_us * clk; // time is us + uint32_t told = SysTick->VAL; + uint32_t tnow = told; + uint32_t tcnt = 0; + for(; tcntVAL) + { + if(tnow != told) { + if(tnow < told) { + tcnt += told - tnow; + } else { + tcnt += SysTick->LOAD-tnow + told; + } told = tnow; + } + } +} + +void delay_ms(uint32_t time_ms) { + uint32_t clk = 80; // CPU 80MHz + uint32_t ticks = time_ms * clk * 1000; // time is ms + uint32_t told = SysTick->VAL; + uint32_t tnow = told; + uint32_t tcnt = 0; + for(; tcntVAL) + { + if(tnow != told) { + if(tnow < told) { + tcnt += told - tnow; + } else { + tcnt += SysTick->LOAD-tnow + told; + } told = tnow; + } + } +} +#ifdef __cplusplus +} +#endif + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/board/NUCLEO_STM32L496ZG/BSP/Hardware/Src/lcd_2inch4.c b/board/NUCLEO_STM32L496ZG/BSP/Hardware/Src/lcd_2inch4.c new file mode 100644 index 00000000..03d8a1a8 --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/BSP/Hardware/Src/lcd_2inch4.c @@ -0,0 +1,278 @@ +#include "lcd_2inch4.h" +#include +/******************************************************************************* +function: + Hardware reset +*******************************************************************************/ +static void LCD_2IN4_Reset(void) +{ + LCD_2IN4_RST_1; + DEV_Delay_ms(100); + LCD_2IN4_RST_0; + DEV_Delay_ms(100); + LCD_2IN4_RST_1; + DEV_Delay_ms(100); +} + +/******************************************************************************* +function: + Write data and commands +*******************************************************************************/ +static void LCD_2IN4_Write_Command(UBYTE data) +{ + LCD_2IN4_CS_0; + LCD_2IN4_DC_0; + DEV_SPI_WRITE(data); +} + +static void LCD_2IN4_WriteData_Byte(UBYTE data) +{ + LCD_2IN4_CS_0; + LCD_2IN4_DC_1; + DEV_SPI_WRITE(data); + LCD_2IN4_CS_1; +} + +void LCD_2IN4_WriteData_Word(UWORD data) +{ + LCD_2IN4_CS_0; + LCD_2IN4_DC_1; + DEV_SPI_WRITE((data>>8) & 0xff); + DEV_SPI_WRITE(data); + LCD_2IN4_CS_1; +} + +/****************************************************************************** +function: + Common register initialization +******************************************************************************/ +void LCD_2IN4_Init(void) +{ + LCD_2IN4_Reset(); + + LCD_2IN4_SetBackLight(500);//´ò¿ª±³¹â + HAL_Delay(100); + + //************* Start Initial Sequence **********// + LCD_2IN4_Write_Command(0x11); //Sleep out + HAL_Delay(120); //Delay 120ms + //************* Start Initial Sequence **********// + LCD_2IN4_Write_Command(0xCF); + LCD_2IN4_WriteData_Byte(0x00); + LCD_2IN4_WriteData_Byte(0xC1); + LCD_2IN4_WriteData_Byte(0X30); + LCD_2IN4_Write_Command(0xED); + LCD_2IN4_WriteData_Byte(0x64); + LCD_2IN4_WriteData_Byte(0x03); + LCD_2IN4_WriteData_Byte(0X12); + LCD_2IN4_WriteData_Byte(0X81); + LCD_2IN4_Write_Command(0xE8); + LCD_2IN4_WriteData_Byte(0x85); + LCD_2IN4_WriteData_Byte(0x00); + LCD_2IN4_WriteData_Byte(0x79); + LCD_2IN4_Write_Command(0xCB); + LCD_2IN4_WriteData_Byte(0x39); + LCD_2IN4_WriteData_Byte(0x2C); + LCD_2IN4_WriteData_Byte(0x00); + LCD_2IN4_WriteData_Byte(0x34); + LCD_2IN4_WriteData_Byte(0x02); + LCD_2IN4_Write_Command(0xF7); + LCD_2IN4_WriteData_Byte(0x20); + LCD_2IN4_Write_Command(0xEA); + LCD_2IN4_WriteData_Byte(0x00); + LCD_2IN4_WriteData_Byte(0x00); + LCD_2IN4_Write_Command(0xC0); //Power control + LCD_2IN4_WriteData_Byte(0x1D); //VRH[5:0] + LCD_2IN4_Write_Command(0xC1); //Power control + LCD_2IN4_WriteData_Byte(0x12); //SAP[2:0];BT[3:0] + LCD_2IN4_Write_Command(0xC5); //VCM control + LCD_2IN4_WriteData_Byte(0x33); + LCD_2IN4_WriteData_Byte(0x3F); + LCD_2IN4_Write_Command(0xC7); //VCM control + LCD_2IN4_WriteData_Byte(0x92); + LCD_2IN4_Write_Command(0x3A); // Memory Access Control + LCD_2IN4_WriteData_Byte(0x55); + LCD_2IN4_Write_Command(0x36); // Memory Access Control + LCD_2IN4_WriteData_Byte(0x08); + LCD_2IN4_Write_Command(0xB1); + LCD_2IN4_WriteData_Byte(0x00); + LCD_2IN4_WriteData_Byte(0x12); + LCD_2IN4_Write_Command(0xB6); // Display Function Control + LCD_2IN4_WriteData_Byte(0x0A); + LCD_2IN4_WriteData_Byte(0xA2); + + LCD_2IN4_Write_Command(0x44); + LCD_2IN4_WriteData_Byte(0x02); + + LCD_2IN4_Write_Command(0xF2); // 3Gamma Function Disable + LCD_2IN4_WriteData_Byte(0x00); + LCD_2IN4_Write_Command(0x26); //Gamma curve selected + LCD_2IN4_WriteData_Byte(0x01); + LCD_2IN4_Write_Command(0xE0); //Set Gamma + LCD_2IN4_WriteData_Byte(0x0F); + LCD_2IN4_WriteData_Byte(0x22); + LCD_2IN4_WriteData_Byte(0x1C); + LCD_2IN4_WriteData_Byte(0x1B); + LCD_2IN4_WriteData_Byte(0x08); + LCD_2IN4_WriteData_Byte(0x0F); + LCD_2IN4_WriteData_Byte(0x48); + LCD_2IN4_WriteData_Byte(0xB8); + LCD_2IN4_WriteData_Byte(0x34); + LCD_2IN4_WriteData_Byte(0x05); + LCD_2IN4_WriteData_Byte(0x0C); + LCD_2IN4_WriteData_Byte(0x09); + LCD_2IN4_WriteData_Byte(0x0F); + LCD_2IN4_WriteData_Byte(0x07); + LCD_2IN4_WriteData_Byte(0x00); + LCD_2IN4_Write_Command(0XE1); //Set Gamma + LCD_2IN4_WriteData_Byte(0x00); + LCD_2IN4_WriteData_Byte(0x23); + LCD_2IN4_WriteData_Byte(0x24); + LCD_2IN4_WriteData_Byte(0x07); + LCD_2IN4_WriteData_Byte(0x10); + LCD_2IN4_WriteData_Byte(0x07); + LCD_2IN4_WriteData_Byte(0x38); + LCD_2IN4_WriteData_Byte(0x47); + LCD_2IN4_WriteData_Byte(0x4B); + LCD_2IN4_WriteData_Byte(0x0A); + LCD_2IN4_WriteData_Byte(0x13); + LCD_2IN4_WriteData_Byte(0x06); + LCD_2IN4_WriteData_Byte(0x30); + LCD_2IN4_WriteData_Byte(0x38); + LCD_2IN4_WriteData_Byte(0x0F); + LCD_2IN4_Write_Command(0x29); //Display on +} + + +/****************************************************************************** +function: Set the cursor position +parameter : + Xstart: Start UWORD x coordinate + Ystart: Start UWORD y coordinate + Xend : End UWORD coordinates + Yend : End UWORD coordinatesen +******************************************************************************/ +void LCD_2IN4_SetWindow(UWORD Xstart, UWORD Ystart, UWORD Xend, UWORD Yend) +{ + LCD_2IN4_Write_Command(0x2a); + LCD_2IN4_WriteData_Byte(Xstart >>8); + LCD_2IN4_WriteData_Byte(Xstart & 0xff); + LCD_2IN4_WriteData_Byte((Xend - 1) >> 8); + LCD_2IN4_WriteData_Byte((Xend - 1) & 0xff); + + LCD_2IN4_Write_Command(0x2b); + LCD_2IN4_WriteData_Byte(Ystart >>8); + LCD_2IN4_WriteData_Byte(Ystart & 0xff); + LCD_2IN4_WriteData_Byte((Yend - 1) >> 8); + LCD_2IN4_WriteData_Byte((Yend - 1) & 0xff); + + LCD_2IN4_Write_Command(0x2C); +} + +/****************************************************************************** +function: Settings window +parameter : + Xstart: Start UWORD x coordinate + Ystart: Start UWORD y coordinate + +******************************************************************************/ +void LCD_2IN4_SetCursor(UWORD X, UWORD Y) +{ + LCD_2IN4_Write_Command(0x2a); + LCD_2IN4_WriteData_Byte(X >> 8); + LCD_2IN4_WriteData_Byte(X); + LCD_2IN4_WriteData_Byte(X >> 8); + LCD_2IN4_WriteData_Byte(X); + + LCD_2IN4_Write_Command(0x2b); + LCD_2IN4_WriteData_Byte(Y >> 8); + LCD_2IN4_WriteData_Byte(Y); + LCD_2IN4_WriteData_Byte(Y >> 8); + LCD_2IN4_WriteData_Byte(Y); + + LCD_2IN4_Write_Command(0x2C); +} + +/****************************************************************************** +function: Clear screen function, refresh the screen to a certain color +parameter : + Color : The color you want to clear all the screen +******************************************************************************/ +void LCD_2IN4_Clear(UWORD Color) +{ + UWORD i,j; + LCD_2IN4_SetWindow(0, 0, LCD_2IN4_WIDTH, LCD_2IN4_HEIGHT); + + DEV_Digital_Write(DEV_DC_PIN, 1); + for(i = 0; i < LCD_2IN4_WIDTH; i++){ + for(j = 0; j < LCD_2IN4_HEIGHT; j++){ + LCD_2IN4_WriteData_Word(Color); + } + } +} + +/****************************************************************************** +function: Refresh a certain area to the same color +parameter : + Xstart: Start UWORD x coordinate + Ystart: Start UWORD y coordinate + Xend : End UWORD coordinates + Yend : End UWORD coordinates + color : Set the color +******************************************************************************/ +void LCD_2IN4_ClearWindow(UWORD Xstart, UWORD Ystart, UWORD Xend, UWORD Yend,UWORD color) +{ + UWORD i,j; + LCD_2IN4_SetWindow(Xstart, Ystart, Xend,Yend); + for(i = Ystart; i <= Yend; i++){ + for(j = Xstart; j <= Xend; j++){ + LCD_2IN4_WriteData_Word(color); + } + } +} + +/****************************************************************************** +function: Show a picture +parameter : + image: Picture buffer +******************************************************************************/ +void LCD_2IN4_Display(UWORD *image,int width, int height) +{ + UWORD i,j; + + if(width > LCD_2IN4_WIDTH || height > LCD_2IN4_HEIGHT){ + printf("Picture size out of range!\r\n"); + return; + } + + LCD_2IN4_SetWindow(0, 0, width, height); + DEV_Digital_Write(DEV_DC_PIN, 1); + for(i = 0; i < width; i++){ + for(j = 0; j < height; j++){ + LCD_2IN4_WriteData_Word(*(image+i*height+j)); + } + } +} + +/****************************************************************************** +function: Draw a point +parameter : + X : Set the X coordinate + Y : Set the Y coordinate + Color : Set the color +******************************************************************************/ +void LCD_2IN4_DrawPaint(UWORD x, UWORD y, UWORD Color) +{ + LCD_2IN4_SetCursor(x, y); + LCD_2IN4_WriteData_Word(Color); +} +/******************************************************************************* +function: + Setting backlight +parameter : + value : Range 0~1000 Duty cycle is value/1000 +*******************************************************************************/ +void LCD_2IN4_SetBackLight(UWORD Value) +{ + DEV_Set_PWM(Value); +} diff --git a/board/NUCLEO_STM32L496ZG/BSP/Hardware/Src/lcd_config.c b/board/NUCLEO_STM32L496ZG/BSP/Hardware/Src/lcd_config.c new file mode 100644 index 00000000..2bea8b89 --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/BSP/Hardware/Src/lcd_config.c @@ -0,0 +1,66 @@ +/***************************************************************************** +* | File : DEV_Config.c +* | Author : Waveshare team +* | Function : Hardware underlying interface +* | Info : +* Used to shield the underlying layers of each master +* and enhance portability +*---------------- +* | This version: V1.0 +* | Date : 2018-11-22 +* | Info : + +# Permission is hereby granted, free of charge, to any person obtaining a copy +# of this software and associated documnetation files (the "Software"), to deal +# in the Software without restriction, including without limitation the rights +# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +# copies of the Software, and to permit persons to whom the Software is +# furished to do so, subject to the following conditions: +# +# The above copyright notice and this permission notice shall be included in +# all copies or substantial portions of the Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +# FITNESS OR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +# LIABILITY WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +# THE SOFTWARE. +# +******************************************************************************/ +#include "lcd_config.h" + +/******************************************************************************** +function: Delay function +note: + Driver_Delay_ms(xms) : Delay x ms +********************************************************************************/ +void DEV_delay_ms(uint16_t xms ) +{ + HAL_Delay(xms); +} + + +void DEV_SPI_WRite(UBYTE _dat) +{ + HAL_SPI_Transmit(&hspi1, (uint8_t *)&_dat, 1, 500); +} + +int DEV_Module_Init(void) +{ + DEV_Digital_Write(DEV_DC_PIN, 1); + DEV_Digital_Write(DEV_CS_PIN, 1); + DEV_Digital_Write(DEV_RST_PIN, 1); + HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_1); + return 0; +} + +void DEV_Module_Exit(void) +{ + DEV_Digital_Write(DEV_DC_PIN, 0); + DEV_Digital_Write(DEV_CS_PIN, 0); + //close + DEV_Digital_Write(DEV_RST_PIN, 0); + HAL_TIM_PWM_Stop(&htim4,TIM_CHANNEL_1); +} diff --git a/board/NUCLEO_STM32L496ZG/BSP/Hardware/Src/ov2640.c b/board/NUCLEO_STM32L496ZG/BSP/Hardware/Src/ov2640.c new file mode 100644 index 00000000..c3cfef1d --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/BSP/Hardware/Src/ov2640.c @@ -0,0 +1,431 @@ +#include "sys.h" +#include "ov2640.h" +#include "ov2640cfg.h" +//#include "timer.h" +#include "delay.h" +#include "usart.h" +#include "sccb.h" +#include "stdio.h" + +//³õʼ»¯OV2640 +//ÅäÖÃÍêÒÔºó,ĬÈÏÊä³öÊÇ1600*1200³ß´çµÄͼƬ!! +//·µ»ØÖµ:0,³É¹¦ +// ÆäËû,´íÎó´úÂë +void OV2640_PWDN(uint8_t signal) +{ + HAL_GPIO_WritePin(GPIOB, GPIO_PIN_15, (GPIO_PinState)signal); +} + +void OV2640_RST(uint8_t signal) +{ + HAL_GPIO_WritePin(GPIOB, GPIO_PIN_13, (GPIO_PinState)signal); +} + +uint8_t OV2640_Init(void) +{ + uint16_t i=0; + uint16_t reg; + //ÉèÖÃIO + GPIO_InitTypeDef GPIO_InitStructure; + __HAL_RCC_GPIOG_CLK_ENABLE(); //ʹÄÜGPIOBʱÖÓ + HAL_GPIO_WritePin(GPIOB, GPIO_PIN_13|GPIO_PIN_15, GPIO_PIN_RESET); + //GPIOF9,F10³õʼ»¯ÉèÖà + GPIO_InitStructure.Pin = GPIO_PIN_13|GPIO_PIN_15; + GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP; + GPIO_InitStructure.Speed = GPIO_SPEED_FAST; + GPIO_InitStructure.Pull = GPIO_PULLUP;//ÉÏÀ­ + HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);//³õʼ» + + OV2640_PWDN(0); //POWER ON + delay_ms(10); + OV2640_RST(0); //¸´Î»OV2640 + delay_ms(10); + OV2640_RST(1); //½áÊø¸´Î» + SCCB_Init(); //³õʼ»¯SCCB µÄIO¿Ú + SCCB_WR_Reg(OV2640_DSP_RA_DLMT, 0x01); //²Ù×÷sensor¼Ä´æÆ÷ + SCCB_WR_Reg(OV2640_SENSOR_COM7, 0x80); //Èí¸´Î»OV2640 + delay_ms(50); + reg=SCCB_RD_Reg(OV2640_SENSOR_MIDH); //¶ÁÈ¡³§¼ÒID ¸ß°Ëλ + reg<<=8; + reg|=SCCB_RD_Reg(OV2640_SENSOR_MIDL); //¶ÁÈ¡³§¼ÒID µÍ°Ëλ + printf("OV2640_MID = %#X\n" , reg); + if(reg!=OV2640_MID) + { + printf("MID:%d\r\n",reg); + return 1; + } + reg=SCCB_RD_Reg(OV2640_SENSOR_PIDH); //¶ÁÈ¡³§¼ÒID ¸ß°Ëλ + reg<<=8; + reg|=SCCB_RD_Reg(OV2640_SENSOR_PIDL); //¶ÁÈ¡³§¼ÒID µÍ°Ëλ + if(reg!=OV2640_PID) + { + printf("HID:%d\r\n",reg); + return 2; + } + for(i=0;i>2); //ÉèÖÃVrefµÄstart¸ß8λ + SCCB_WR_Reg(0X1A,endy>>2); //ÉèÖÃVrefµÄendµÄ¸ß8λ + + temp=SCCB_RD_Reg(0X32); //¶ÁÈ¡Href֮ǰµÄÖµ + temp&=0XC0; + temp|=((endx&0X07)<<3)|(sx&0X07); + SCCB_WR_Reg(0X32,temp); //ÉèÖÃHrefµÄstartºÍendµÄ×îµÍ3λ + SCCB_WR_Reg(0X17,sx>>3); //ÉèÖÃHrefµÄstart¸ß8λ + SCCB_WR_Reg(0X18,endx>>3); //ÉèÖÃHrefµÄendµÄ¸ß8λ +} +//ÉèÖÃͼÏñÊä³ö´óС +//OV2640Êä³öͼÏñµÄ´óС(·Ö±æÂÊ),ÍêÈ«Óɸĺ¯ÊýÈ·¶¨ +//width,height:¿í¶È(¶ÔÓ¦:horizontal)ºÍ¸ß¶È(¶ÔÓ¦:vertical),widthºÍheight±ØÐëÊÇ4µÄ±¶Êý +//·µ»ØÖµ:0,ÉèÖóɹ¦ +// ÆäËû,ÉèÖÃʧ°Ü +uint8_t OV2640_OutSize_Set(uint16_t width,uint16_t height) +{ + uint16_t outh; + uint16_t outw; + uint8_t temp; + if(width%4)return 1; + if(height%4)return 2; + outw=width/4; + outh=height/4; + SCCB_WR_Reg(0XFF,0X00); + SCCB_WR_Reg(0XE0,0X04); + SCCB_WR_Reg(0X5A,outw&0XFF); //ÉèÖÃOUTWµÄµÍ°Ëλ + SCCB_WR_Reg(0X5B,outh&0XFF); //ÉèÖÃOUTHµÄµÍ°Ëλ + temp=(outw>>8)&0X03; + temp|=(outh>>6)&0X04; + SCCB_WR_Reg(0X5C,temp); //ÉèÖÃOUTH/OUTWµÄ¸ßλ + SCCB_WR_Reg(0XE0,0X00); + return 0; +} +//ÉèÖÃͼÏñ¿ª´°´óС +//ÓÉ:OV2640_ImageSize_SetÈ·¶¨´«¸ÐÆ÷Êä³ö·Ö±æÂÊ´Ó´óС. +//¸Ãº¯ÊýÔòÔÚÕâ¸ö·¶Î§ÉÏÃæ½øÐпª´°,ÓÃÓÚOV2640_OutSize_SetµÄÊä³ö +//×¢Òâ:±¾º¯ÊýµÄ¿í¶ÈºÍ¸ß¶È,±ØÐë´óÓÚµÈÓÚOV2640_OutSize_Setº¯ÊýµÄ¿í¶ÈºÍ¸ß¶È +// OV2640_OutSize_SetÉèÖõĿí¶ÈºÍ¸ß¶È,¸ù¾Ý±¾º¯ÊýÉèÖõĿí¶ÈºÍ¸ß¶È,ÓÉDSP +// ×Ô¶¯¼ÆËãËõ·Å±ÈÀý,Êä³ö¸øÍⲿÉ豸. +//width,height:¿í¶È(¶ÔÓ¦:horizontal)ºÍ¸ß¶È(¶ÔÓ¦:vertical),widthºÍheight±ØÐëÊÇ4µÄ±¶Êý +//·µ»ØÖµ:0,ÉèÖóɹ¦ +// ÆäËû,ÉèÖÃʧ°Ü +uint8_t OV2640_ImageWin_Set(uint16_t offx,uint16_t offy,uint16_t width,uint16_t height) +{ + uint16_t hsize; + uint16_t vsize; + uint8_t temp; + if(width%4)return 1; + if(height%4)return 2; + hsize=width/4; + vsize=height/4; + SCCB_WR_Reg(0XFF,0X00); + SCCB_WR_Reg(0XE0,0X04); + SCCB_WR_Reg(0X51,hsize&0XFF); //ÉèÖÃH_SIZEµÄµÍ°Ëλ + SCCB_WR_Reg(0X52,vsize&0XFF); //ÉèÖÃV_SIZEµÄµÍ°Ëλ + SCCB_WR_Reg(0X53,offx&0XFF); //ÉèÖÃoffxµÄµÍ°Ëλ + SCCB_WR_Reg(0X54,offy&0XFF); //ÉèÖÃoffyµÄµÍ°Ëλ + temp=(vsize>>1)&0X80; + temp|=(offy>>4)&0X70; + temp|=(hsize>>5)&0X08; + temp|=(offx>>8)&0X07; + SCCB_WR_Reg(0X55,temp); //ÉèÖÃH_SIZE/V_SIZE/OFFX,OFFYµÄ¸ßλ + SCCB_WR_Reg(0X57,(hsize>>2)&0X80); //ÉèÖÃH_SIZE/V_SIZE/OFFX,OFFYµÄ¸ßλ + SCCB_WR_Reg(0XE0,0X00); + return 0; +} +//¸Ãº¯ÊýÉèÖÃͼÏñ³ß´ç´óС,Ò²¾ÍÊÇËùÑ¡¸ñʽµÄÊä³ö·Ö±æÂÊ +//UXGA:1600*1200,SVGA:800*600,CIF:352*288 +//width,height:ͼÏñ¿í¶ÈºÍͼÏñ¸ß¶È +//·µ»ØÖµ:0,ÉèÖóɹ¦ +// ÆäËû,ÉèÖÃʧ°Ü +uint8_t OV2640_ImageSize_Set(uint16_t width,uint16_t height) +{ + uint8_t temp; + SCCB_WR_Reg(0XFF,0X00); + SCCB_WR_Reg(0XE0,0X04); + SCCB_WR_Reg(0XC0,(width)>>3&0XFF); //ÉèÖÃHSIZEµÄ10:3λ + SCCB_WR_Reg(0XC1,(height)>>3&0XFF); //ÉèÖÃVSIZEµÄ10:3λ + temp=(width&0X07)<<3; + temp|=height&0X07; + temp|=(width>>4)&0X80; + SCCB_WR_Reg(0X8C,temp); + SCCB_WR_Reg(0XE0,0X00); + return 0; +} + + + + + + + + + + + + + + + + + diff --git a/board/NUCLEO_STM32L496ZG/BSP/Hardware/Src/sccb.c b/board/NUCLEO_STM32L496ZG/BSP/Hardware/Src/sccb.c new file mode 100644 index 00000000..67925570 --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/BSP/Hardware/Src/sccb.c @@ -0,0 +1,167 @@ +#include "sys.h" +#include "sccb.h" +#include "stdio.h" +#include "delay.h" + +void SCCB_SCL(uint8_t sccb_scl) +{ + HAL_GPIO_WritePin(GPIOB, GPIO_PIN_4, (GPIO_PinState)sccb_scl); +} + +void SCCB_SDA(uint8_t sccb_sda) +{ + HAL_GPIO_WritePin(GPIOB, GPIO_PIN_5, (GPIO_PinState)sccb_sda); +} + +uint8_t SCCB_READ_SDA() +{ + uint8_t sccb_sda = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_5); + return sccb_sda; +} + +//³õʼ»¯SCCB½Ó¿Ú +void SCCB_Init(void) +{ + GPIO_InitTypeDef GPIO_InitStructure; + __HAL_RCC_GPIOB_CLK_ENABLE(); //ʹÄÜGPIOBʱÖÓ + //GPIOF9,F10³õʼ»¯ÉèÖà + GPIO_InitStructure.Pin = GPIO_PIN_4|GPIO_PIN_5;//PB4,5 ÍÆÍìÊä³ö + GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP; //PB4,5 ÍÆÍìÊä³ö + GPIO_InitStructure.Speed = GPIO_SPEED_FAST;//100MHz + GPIO_InitStructure.Pull = GPIO_PULLUP;//ÉÏÀ­ + HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);//³õʼ»¯ + SCCB_SDA_OUT(); +} + +//SCCBÆðʼÐźŠ+//µ±Ê±ÖÓΪ¸ßµÄʱºò,Êý¾ÝÏߵĸߵ½µÍ,ΪSCCBÆðʼÐźŠ+//ÔÚ¼¤»î״̬ÏÂ,SDAºÍSCL¾ùΪµÍµçƽ +void SCCB_Start(void) +{ + SCCB_SDA(1); //Êý¾ÝÏß¸ßµçÆ½ + SCCB_SCL(1); //ÔÚʱÖÓÏ߸ߵÄʱºòÊý¾ÝÏßÓɸßÖÁµÍ + delay_us(50); + SCCB_SDA(0); + delay_us(50); + SCCB_SCL(0); //Êý¾ÝÏ߻ָ´µÍµçƽ£¬µ¥²Ù×÷º¯Êý±ØÒª +} + +//SCCBÍ£Ö¹ÐźŠ+//µ±Ê±ÖÓΪ¸ßµÄʱºò,Êý¾ÝÏߵĵ͵½¸ß,ΪSCCBÍ£Ö¹ÐźŠ+//¿ÕÏÐ×´¿öÏÂ,SDA,SCL¾ùΪ¸ßµçƽ +void SCCB_Stop(void) +{ + SCCB_SDA(0); + delay_us(50); + SCCB_SCL(1); + delay_us(50); + SCCB_SDA(1); + delay_us(50); +} +//²úÉúNAÐźŠ+void SCCB_No_Ack(void) +{ + delay_us(50); + SCCB_SDA(1); + SCCB_SCL(1); + delay_us(50); + SCCB_SCL(0); + delay_us(50); + SCCB_SDA(0); + delay_us(50); +} +//SCCB,дÈëÒ»¸ö×Ö½Ú +//·µ»ØÖµ:0,³É¹¦;1,ʧ°Ü. +uint8_t SCCB_WR_Byte(uint8_t dat) +{ + uint8_t j,res; + for(j=0;j<8;j++) //Ñ­»·8´Î·¢ËÍÊý¾Ý + { + if(dat&0x80)SCCB_SDA(1); + else SCCB_SDA(0); + dat<<=1; + delay_us(50); + SCCB_SCL(1); + delay_us(50); + SCCB_SCL(0); + } + SCCB_SDA_IN(); //ÉèÖÃSDAΪÊäÈë + delay_us(50); + SCCB_SCL(1); //½ÓÊÕµÚ¾Åλ,ÒÔÅжÏÊÇ·ñ·¢Ëͳɹ¦ + delay_us(50); + if(SCCB_READ_SDA())res=1; //SDA=1·¢ËÍʧ°Ü£¬·µ»Ø1 + else res=0; //SDA=0·¢Ëͳɹ¦£¬·µ»Ø0 + SCCB_SCL(0); + SCCB_SDA_OUT(); //ÉèÖÃSDAΪÊä³ö + return res; +} +//SCCB ¶Áȡһ¸ö×Ö½Ú +//ÔÚSCLµÄÉÏÉýÑØ,Êý¾ÝËø´æ +//·µ»ØÖµ:¶Áµ½µÄÊý¾Ý +uint8_t SCCB_RD_Byte(void) +{ + uint8_t temp=0,j; + SCCB_SDA_IN(); //ÉèÖÃSDAΪÊäÈë + for(j=8;j>0;j--) //Ñ­»·8´Î½ÓÊÕÊý¾Ý + { + delay_us(50); + SCCB_SCL(1); + temp=temp<<1; + if(SCCB_READ_SDA())temp++; + delay_us(50); + SCCB_SCL(0); + } + SCCB_SDA_OUT(); //ÉèÖÃSDAΪÊä³ö + return temp; +} +//д¼Ä´æÆ÷ +//·µ»ØÖµ:0,³É¹¦;1,ʧ°Ü. +uint8_t SCCB_WR_Reg(uint8_t reg,uint8_t data) +{ + uint8_t res=0; + SCCB_Start(); //Æô¶¯SCCB´«Êä + if(SCCB_WR_Byte(SCCB_ID)){ + res=1; //дÆ÷¼þID + } + delay_us(100); + if(SCCB_WR_Byte(reg))res=1; //д¼Ä´æÆ÷µØÖ· + delay_us(100); + if(SCCB_WR_Byte(data))res=1; //дÊý¾Ý + SCCB_Stop(); + return res; +} +//¶Á¼Ä´æÆ÷ +//·µ»ØÖµ:¶Áµ½µÄ¼Ä´æÆ÷Öµ +uint8_t SCCB_RD_Reg(uint8_t reg) +{ + uint8_t val=0; + SCCB_Start(); //Æô¶¯SCCB´«Êä + SCCB_WR_Byte(SCCB_ID); //дÆ÷¼þID + delay_us(100); + SCCB_WR_Byte(reg); //д¼Ä´æÆ÷µØÖ· + delay_us(100); + SCCB_Stop(); + delay_us(100); + //ÉèÖüĴæÆ÷µØÖ·ºó£¬²ÅÊǶÁ + SCCB_Start(); + SCCB_WR_Byte(SCCB_ID|0X01); //·¢ËͶÁÃüÁî + delay_us(100); + val=SCCB_RD_Byte(); //¶ÁÈ¡Êý¾Ý + SCCB_No_Ack(); + SCCB_Stop(); + return val; +} + + + + + + + + + + + + + + diff --git a/board/NUCLEO_STM32L496ZG/BSP/Inc/dcmi.h b/board/NUCLEO_STM32L496ZG/BSP/Inc/dcmi.h new file mode 100644 index 00000000..86499cfa --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/BSP/Inc/dcmi.h @@ -0,0 +1,58 @@ +/** + ****************************************************************************** + * File Name : DCMI.h + * Description : This file provides code for the configuration + * of the DCMI instances. + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2020 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef __dcmi_H +#define __dcmi_H +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "main.h" + +/* USER CODE BEGIN Includes */ + +/* USER CODE END Includes */ + +extern DCMI_HandleTypeDef hdcmi; + +/* USER CODE BEGIN Private defines */ + +/* USER CODE END Private defines */ + +void MX_DCMI_Init(void); + +/* USER CODE BEGIN Prototypes */ + +/* USER CODE END Prototypes */ + +#ifdef __cplusplus +} +#endif +#endif /*__ dcmi_H */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/board/NUCLEO_STM32L496ZG/BSP/Inc/dma.h b/board/NUCLEO_STM32L496ZG/BSP/Inc/dma.h new file mode 100644 index 00000000..9e0bca14 --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/BSP/Inc/dma.h @@ -0,0 +1,56 @@ +/** + ****************************************************************************** + * File Name : dma.h + * Description : This file contains all the function prototypes for + * the dma.c file + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2020 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef __dma_H +#define __dma_H + +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "main.h" + +/* DMA memory to memory transfer handles -------------------------------------*/ + +/* USER CODE BEGIN Includes */ + +/* USER CODE END Includes */ + +/* USER CODE BEGIN Private defines */ + +/* USER CODE END Private defines */ + +void MX_DMA_Init(void); + +/* USER CODE BEGIN Prototypes */ + +/* USER CODE END Prototypes */ + +#ifdef __cplusplus +} +#endif + +#endif /* __dma_H */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/board/NUCLEO_STM32L496ZG/BSP/Inc/gpio.h b/board/NUCLEO_STM32L496ZG/BSP/Inc/gpio.h index 40490539..aad10e57 100644 --- a/board/NUCLEO_STM32L496ZG/BSP/Inc/gpio.h +++ b/board/NUCLEO_STM32L496ZG/BSP/Inc/gpio.h @@ -1,12 +1,12 @@ /** ****************************************************************************** * File Name : gpio.h - * Description : This file contains all the functions prototypes for - * the gpio + * Description : This file contains all the functions prototypes for + * the gpio ****************************************************************************** * @attention * - *

© Copyright (c) 2019 STMicroelectronics. + *

© Copyright (c) 2020 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, diff --git a/board/NUCLEO_STM32L496ZG/BSP/Inc/i2c.h b/board/NUCLEO_STM32L496ZG/BSP/Inc/i2c.h new file mode 100644 index 00000000..39f74aa0 --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/BSP/Inc/i2c.h @@ -0,0 +1,58 @@ +/** + ****************************************************************************** + * File Name : I2C.h + * Description : This file provides code for the configuration + * of the I2C instances. + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2020 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef __i2c_H +#define __i2c_H +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "main.h" + +/* USER CODE BEGIN Includes */ + +/* USER CODE END Includes */ + +extern I2C_HandleTypeDef hi2c1; + +/* USER CODE BEGIN Private defines */ + +/* USER CODE END Private defines */ + +void MX_I2C1_Init(void); + +/* USER CODE BEGIN Prototypes */ + +/* USER CODE END Prototypes */ + +#ifdef __cplusplus +} +#endif +#endif /*__ i2c_H */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/board/NUCLEO_STM32L496ZG/BSP/Inc/main.h b/board/NUCLEO_STM32L496ZG/BSP/Inc/main.h index 94c1a1af..87c67095 100644 --- a/board/NUCLEO_STM32L496ZG/BSP/Inc/main.h +++ b/board/NUCLEO_STM32L496ZG/BSP/Inc/main.h @@ -60,20 +60,34 @@ void Error_Handler(void); /* Private defines -----------------------------------------------------------*/ #define B1_Pin GPIO_PIN_13 #define B1_GPIO_Port GPIOC -#define LD3_Pin GPIO_PIN_14 -#define LD3_GPIO_Port GPIOB +#define LCD_CLK_Pin GPIO_PIN_5 +#define LCD_CLK_GPIO_Port GPIOA +#define LCD_DIN_Pin GPIO_PIN_7 +#define LCD_DIN_GPIO_Port GPIOA +#define LCD_DC_Pin GPIO_PIN_12 +#define LCD_DC_GPIO_Port GPIOB +#define LED_Pin GPIO_PIN_14 +#define LED_GPIO_Port GPIOB +#define USB_OverCurrent_Pin GPIO_PIN_5 +#define USB_OverCurrent_GPIO_Port GPIOG +#define USB_PowerSwitchOn_Pin GPIO_PIN_6 +#define USB_PowerSwitchOn_GPIO_Port GPIOG #define STLK_RX_Pin GPIO_PIN_7 #define STLK_RX_GPIO_Port GPIOG #define STLK_TX_Pin GPIO_PIN_8 #define STLK_TX_GPIO_Port GPIOG +#define LCD_RST_Pin GPIO_PIN_11 +#define LCD_RST_GPIO_Port GPIOA +#define LCD_CS_Pin GPIO_PIN_12 +#define LCD_CS_GPIO_Port GPIOA #define TMS_Pin GPIO_PIN_13 #define TMS_GPIO_Port GPIOA #define TCK_Pin GPIO_PIN_14 #define TCK_GPIO_Port GPIOA #define SWO_Pin GPIO_PIN_3 #define SWO_GPIO_Port GPIOB -#define LD2_Pin GPIO_PIN_7 -#define LD2_GPIO_Port GPIOB +#define LCD_BL_Pin GPIO_PIN_6 +#define LCD_BL_GPIO_Port GPIOB /* USER CODE BEGIN Private defines */ /* USER CODE END Private defines */ diff --git a/board/NUCLEO_STM32L496ZG/BSP/Inc/mcu_init.h b/board/NUCLEO_STM32L496ZG/BSP/Inc/mcu_init.h index ded9f4c0..0623a76c 100644 --- a/board/NUCLEO_STM32L496ZG/BSP/Inc/mcu_init.h +++ b/board/NUCLEO_STM32L496ZG/BSP/Inc/mcu_init.h @@ -8,8 +8,14 @@ #include "stm32l4xx_hal.h" #include "usart.h" #include "gpio.h" +#include "dcmi.h" +#include "dma.h" +#include "i2c.h" +#include "spi.h" +#include "tim.h" +#include "ov2640.h" +#include "lcd_2inch4.h" #include "tos_k.h" - void board_init(void); void SystemClock_Config(void); diff --git a/board/NUCLEO_STM32L496ZG/BSP/Inc/spi.h b/board/NUCLEO_STM32L496ZG/BSP/Inc/spi.h new file mode 100644 index 00000000..9493e6b5 --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/BSP/Inc/spi.h @@ -0,0 +1,58 @@ +/** + ****************************************************************************** + * File Name : SPI.h + * Description : This file provides code for the configuration + * of the SPI instances. + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2020 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef __spi_H +#define __spi_H +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "main.h" + +/* USER CODE BEGIN Includes */ + +/* USER CODE END Includes */ + +extern SPI_HandleTypeDef hspi1; + +/* USER CODE BEGIN Private defines */ + +/* USER CODE END Private defines */ + +void MX_SPI1_Init(void); + +/* USER CODE BEGIN Prototypes */ + +/* USER CODE END Prototypes */ + +#ifdef __cplusplus +} +#endif +#endif /*__ spi_H */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/board/NUCLEO_STM32L496ZG/BSP/Inc/stm32l4xx_hal_conf.h b/board/NUCLEO_STM32L496ZG/BSP/Inc/stm32l4xx_hal_conf.h index ad2b2456..2e09046e 100644 --- a/board/NUCLEO_STM32L496ZG/BSP/Inc/stm32l4xx_hal_conf.h +++ b/board/NUCLEO_STM32L496ZG/BSP/Inc/stm32l4xx_hal_conf.h @@ -1,11 +1,11 @@ /** ****************************************************************************** * @file stm32l4xx_hal_conf.h - * @brief HAL configuration file. + * @brief HAL configuration file. ****************************************************************************** * @attention * - *

© COPYRIGHT(c) 2019 STMicroelectronics

+ *

© COPYRIGHT(c) 2020 STMicroelectronics

* * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: @@ -30,7 +30,7 @@ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** - */ + */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32L4xx_HAL_CONF_H @@ -45,10 +45,10 @@ /* ########################## Module Selection ############################## */ /** - * @brief This is the list of modules to be used in the HAL driver + * @brief This is the list of modules to be used in the HAL driver */ -#define HAL_MODULE_ENABLED +#define HAL_MODULE_ENABLED /*#define HAL_ADC_MODULE_ENABLED */ /*#define HAL_CRYP_MODULE_ENABLED */ /*#define HAL_CAN_MODULE_ENABLED */ @@ -56,7 +56,7 @@ /*#define HAL_CRC_MODULE_ENABLED */ /*#define HAL_CRYP_MODULE_ENABLED */ /*#define HAL_DAC_MODULE_ENABLED */ -/*#define HAL_DCMI_MODULE_ENABLED */ +#define HAL_DCMI_MODULE_ENABLED /*#define HAL_DMA2D_MODULE_ENABLED */ /*#define HAL_DFSDM_MODULE_ENABLED */ /*#define HAL_DSI_MODULE_ENABLED */ @@ -85,17 +85,17 @@ /*#define HAL_SD_MODULE_ENABLED */ /*#define HAL_SMBUS_MODULE_ENABLED */ /*#define HAL_SMARTCARD_MODULE_ENABLED */ -/*#define HAL_SPI_MODULE_ENABLED */ +#define HAL_SPI_MODULE_ENABLED /*#define HAL_SRAM_MODULE_ENABLED */ /*#define HAL_SWPMI_MODULE_ENABLED */ -/*#define HAL_TIM_MODULE_ENABLED */ +#define HAL_TIM_MODULE_ENABLED /*#define HAL_TSC_MODULE_ENABLED */ #define HAL_UART_MODULE_ENABLED /*#define HAL_USART_MODULE_ENABLED */ /*#define HAL_WWDG_MODULE_ENABLED */ /*#define HAL_EXTI_MODULE_ENABLED */ #define HAL_GPIO_MODULE_ENABLED -#define HAL_EXTI_MODULE_ENABLED +#define HAL_EXTI_MODULE_ENABLED #define HAL_I2C_MODULE_ENABLED #define HAL_DMA_MODULE_ENABLED #define HAL_RCC_MODULE_ENABLED @@ -107,9 +107,9 @@ /** * @brief Adjust the value of External High Speed oscillator (HSE) used in your application. * This value is used by the RCC HAL module to compute the system frequency - * (when HSE is used as system clock source, directly or through the PLL). + * (when HSE is used as system clock source, directly or through the PLL). */ -#if !defined (HSE_VALUE) +#if !defined (HSE_VALUE) #define HSE_VALUE ((uint32_t)8000000U) /*!< Value of the External oscillator in Hz */ #endif /* HSE_VALUE */ @@ -127,7 +127,7 @@ /** * @brief Internal High Speed oscillator (HSI) value. * This value is used by the RCC HAL module to compute the system frequency - * (when HSI is used as system clock source, directly or through the PLL). + * (when HSI is used as system clock source, directly or through the PLL). */ #if !defined (HSI_VALUE) #define HSI_VALUE ((uint32_t)16000000U) /*!< Value of the Internal oscillator in Hz*/ @@ -140,7 +140,7 @@ * When the CRS is not used, the HSI48 RC oscillator runs on it default frequency * which is subject to manufacturing process variations. */ -#if !defined (HSI48_VALUE) +#if !defined (HSI48_VALUE) #define HSI48_VALUE ((uint32_t)48000000U) /*!< Value of the Internal High Speed oscillator for USB FS/SDMMC/RNG in Hz. The real value my vary depending on manufacturing process variations.*/ #endif /* HSI48_VALUE */ @@ -148,7 +148,7 @@ /** * @brief Internal Low Speed oscillator (LSI) value. */ -#if !defined (LSI_VALUE) +#if !defined (LSI_VALUE) #define LSI_VALUE ((uint32_t)32000U) /*!< LSI Typical Value in Hz*/ #endif /* LSI_VALUE */ /*!< Value of the Internal Low Speed oscillator in Hz The real value may vary depending on the variations @@ -168,7 +168,7 @@ /** * @brief External clock source for SAI1 peripheral - * This value is used by the RCC HAL module to compute the SAI1 & SAI2 clock source + * This value is used by the RCC HAL module to compute the SAI1 & SAI2 clock source * frequency. */ #if !defined (EXTERNAL_SAI1_CLOCK_VALUE) @@ -177,7 +177,7 @@ /** * @brief External clock source for SAI2 peripheral - * This value is used by the RCC HAL module to compute the SAI1 & SAI2 clock source + * This value is used by the RCC HAL module to compute the SAI1 & SAI2 clock source * frequency. */ #if !defined (EXTERNAL_SAI2_CLOCK_VALUE) @@ -190,18 +190,18 @@ /* ########################### System Configuration ######################### */ /** * @brief This is the HAL system configuration section - */ - -#define VDD_VALUE ((uint32_t)3300U) /*!< Value of VDD in mv */ -#define TICK_INT_PRIORITY ((uint32_t)0U) /*!< tick interrupt priority */ -#define USE_RTOS 0U + */ + +#define VDD_VALUE ((uint32_t)3300U) /*!< Value of VDD in mv */ +#define TICK_INT_PRIORITY ((uint32_t)0U) /*!< tick interrupt priority */ +#define USE_RTOS 0U #define PREFETCH_ENABLE 0U #define INSTRUCTION_CACHE_ENABLE 1U #define DATA_CACHE_ENABLE 1U /* ########################## Assert Selection ############################## */ /** - * @brief Uncomment the line below to expanse the "assert_param" macro in the + * @brief Uncomment the line below to expanse the "assert_param" macro in the * HAL drivers code */ /* #define USE_FULL_ASSERT 1U */ diff --git a/board/NUCLEO_STM32L496ZG/BSP/Inc/stm32l4xx_it.h b/board/NUCLEO_STM32L496ZG/BSP/Inc/stm32l4xx_it.h index 54934911..4cfddb96 100644 --- a/board/NUCLEO_STM32L496ZG/BSP/Inc/stm32l4xx_it.h +++ b/board/NUCLEO_STM32L496ZG/BSP/Inc/stm32l4xx_it.h @@ -24,7 +24,7 @@ #ifdef __cplusplus extern "C" { -#endif +#endif /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ @@ -56,6 +56,8 @@ void SVC_Handler(void); void DebugMon_Handler(void); void PendSV_Handler(void); void SysTick_Handler(void); +void DMA2_Channel6_IRQHandler(void); +void DCMI_IRQHandler(void); /* USER CODE BEGIN EFP */ /* USER CODE END EFP */ diff --git a/board/NUCLEO_STM32L496ZG/BSP/Inc/tim.h b/board/NUCLEO_STM32L496ZG/BSP/Inc/tim.h new file mode 100644 index 00000000..1179ea80 --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/BSP/Inc/tim.h @@ -0,0 +1,60 @@ +/** + ****************************************************************************** + * File Name : TIM.h + * Description : This file provides code for the configuration + * of the TIM instances. + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2020 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ +/* Define to prevent recursive inclusion -------------------------------------*/ +#ifndef __tim_H +#define __tim_H +#ifdef __cplusplus + extern "C" { +#endif + +/* Includes ------------------------------------------------------------------*/ +#include "main.h" + +/* USER CODE BEGIN Includes */ + +/* USER CODE END Includes */ + +extern TIM_HandleTypeDef htim4; + +/* USER CODE BEGIN Private defines */ + +/* USER CODE END Private defines */ + +void MX_TIM4_Init(void); + +void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim); + +/* USER CODE BEGIN Prototypes */ + +/* USER CODE END Prototypes */ + +#ifdef __cplusplus +} +#endif +#endif /*__ tim_H */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/board/NUCLEO_STM32L496ZG/BSP/Inc/usart.h b/board/NUCLEO_STM32L496ZG/BSP/Inc/usart.h index 0537a48e..747861e5 100644 --- a/board/NUCLEO_STM32L496ZG/BSP/Inc/usart.h +++ b/board/NUCLEO_STM32L496ZG/BSP/Inc/usart.h @@ -6,7 +6,7 @@ ****************************************************************************** * @attention * - *

© Copyright (c) 2019 STMicroelectronics. + *

© Copyright (c) 2020 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, @@ -44,6 +44,7 @@ void MX_USART1_UART_Init(void); void MX_USART2_UART_Init(void); void MX_USART3_UART_Init(void); + /* USER CODE BEGIN Prototypes */ /* USER CODE END Prototypes */ diff --git a/board/NUCLEO_STM32L496ZG/BSP/Src/dcmi.c b/board/NUCLEO_STM32L496ZG/BSP/Src/dcmi.c new file mode 100644 index 00000000..bc44b166 --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/BSP/Src/dcmi.c @@ -0,0 +1,208 @@ +/** + ****************************************************************************** + * File Name : DCMI.c + * Description : This file provides code for the configuration + * of the DCMI instances. + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2020 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "dcmi.h" + +/* USER CODE BEGIN 0 */ + +/* USER CODE END 0 */ + +DCMI_HandleTypeDef hdcmi; +DMA_HandleTypeDef hdma_dcmi; + +/* DCMI init function */ +void MX_DCMI_Init(void) +{ + + hdcmi.Instance = DCMI; + hdcmi.Init.SynchroMode = DCMI_SYNCHRO_HARDWARE; + hdcmi.Init.PCKPolarity = DCMI_PCKPOLARITY_RISING; + hdcmi.Init.VSPolarity = DCMI_VSPOLARITY_LOW; + hdcmi.Init.HSPolarity = DCMI_HSPOLARITY_LOW; + hdcmi.Init.CaptureRate = DCMI_CR_ALL_FRAME; + hdcmi.Init.ExtendedDataMode = DCMI_EXTEND_DATA_8B; + hdcmi.Init.JPEGMode = DCMI_JPEG_ENABLE; + hdcmi.Init.ByteSelectMode = DCMI_BSM_ALL; + hdcmi.Init.ByteSelectStart = DCMI_OEBS_ODD; + hdcmi.Init.LineSelectMode = DCMI_LSM_ALL; + hdcmi.Init.LineSelectStart = DCMI_OELS_ODD; + if (HAL_DCMI_Init(&hdcmi) != HAL_OK) + { + Error_Handler(); + } + +} + +void HAL_DCMI_MspInit(DCMI_HandleTypeDef* dcmiHandle) +{ + + GPIO_InitTypeDef GPIO_InitStruct = {0}; + if(dcmiHandle->Instance==DCMI) + { + /* USER CODE BEGIN DCMI_MspInit 0 */ + + /* USER CODE END DCMI_MspInit 0 */ + /* DCMI clock enable */ + __HAL_RCC_DCMI_CLK_ENABLE(); + + __HAL_RCC_GPIOE_CLK_ENABLE(); + __HAL_RCC_GPIOA_CLK_ENABLE(); + __HAL_RCC_GPIOD_CLK_ENABLE(); + __HAL_RCC_GPIOC_CLK_ENABLE(); + __HAL_RCC_GPIOB_CLK_ENABLE(); + /**DCMI GPIO Configuration + PE4 ------> DCMI_D4 + PE5 ------> DCMI_D6 + PE6 ------> DCMI_D7 + PA4 ------> DCMI_HSYNC + PD9 ------> DCMI_PIXCLK + PC6 ------> DCMI_D0 + PC7 ------> DCMI_D1 + PC8 ------> DCMI_D2 + PC9 ------> DCMI_D3 + PD3 ------> DCMI_D5 + PB7 ------> DCMI_VSYNC + */ + GPIO_InitStruct.Pin = GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6; + GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; + GPIO_InitStruct.Pull = GPIO_NOPULL; + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; + GPIO_InitStruct.Alternate = GPIO_AF10_DCMI; + HAL_GPIO_Init(GPIOE, &GPIO_InitStruct); + + GPIO_InitStruct.Pin = GPIO_PIN_4; + GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; + GPIO_InitStruct.Pull = GPIO_NOPULL; + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; + GPIO_InitStruct.Alternate = GPIO_AF10_DCMI; + HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); + + GPIO_InitStruct.Pin = GPIO_PIN_9; + GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; + GPIO_InitStruct.Pull = GPIO_NOPULL; + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; + GPIO_InitStruct.Alternate = GPIO_AF10_DCMI; + HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); + + GPIO_InitStruct.Pin = GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8; + GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; + GPIO_InitStruct.Pull = GPIO_NOPULL; + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; + GPIO_InitStruct.Alternate = GPIO_AF10_DCMI; + HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); + + GPIO_InitStruct.Pin = GPIO_PIN_9; + GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; + GPIO_InitStruct.Pull = GPIO_NOPULL; + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; + GPIO_InitStruct.Alternate = GPIO_AF4_DCMI; + HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); + + GPIO_InitStruct.Pin = GPIO_PIN_3; + GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; + GPIO_InitStruct.Pull = GPIO_NOPULL; + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; + GPIO_InitStruct.Alternate = GPIO_AF4_DCMI; + HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); + + GPIO_InitStruct.Pin = GPIO_PIN_7; + GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; + GPIO_InitStruct.Pull = GPIO_NOPULL; + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; + GPIO_InitStruct.Alternate = GPIO_AF10_DCMI; + HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); + + /* DCMI DMA Init */ + /* DCMI Init */ + hdma_dcmi.Instance = DMA2_Channel6; + hdma_dcmi.Init.Request = DMA_REQUEST_0; + hdma_dcmi.Init.Direction = DMA_PERIPH_TO_MEMORY; + hdma_dcmi.Init.PeriphInc = DMA_PINC_DISABLE; + hdma_dcmi.Init.MemInc = DMA_MINC_ENABLE; + hdma_dcmi.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD; + hdma_dcmi.Init.MemDataAlignment = DMA_MDATAALIGN_WORD; + hdma_dcmi.Init.Mode = DMA_CIRCULAR; + hdma_dcmi.Init.Priority = DMA_PRIORITY_HIGH; + if (HAL_DMA_Init(&hdma_dcmi) != HAL_OK) + { + Error_Handler(); + } + + __HAL_LINKDMA(dcmiHandle,DMA_Handle,hdma_dcmi); + + /* DCMI interrupt Init */ + HAL_NVIC_SetPriority(DCMI_IRQn, 0, 0); + HAL_NVIC_EnableIRQ(DCMI_IRQn); + /* USER CODE BEGIN DCMI_MspInit 1 */ + + /* USER CODE END DCMI_MspInit 1 */ + } +} + +void HAL_DCMI_MspDeInit(DCMI_HandleTypeDef* dcmiHandle) +{ + + if(dcmiHandle->Instance==DCMI) + { + /* USER CODE BEGIN DCMI_MspDeInit 0 */ + + /* USER CODE END DCMI_MspDeInit 0 */ + /* Peripheral clock disable */ + __HAL_RCC_DCMI_CLK_DISABLE(); + + /**DCMI GPIO Configuration + PE4 ------> DCMI_D4 + PE5 ------> DCMI_D6 + PE6 ------> DCMI_D7 + PA4 ------> DCMI_HSYNC + PD9 ------> DCMI_PIXCLK + PC6 ------> DCMI_D0 + PC7 ------> DCMI_D1 + PC8 ------> DCMI_D2 + PC9 ------> DCMI_D3 + PD3 ------> DCMI_D5 + PB7 ------> DCMI_VSYNC + */ + HAL_GPIO_DeInit(GPIOE, GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6); + + HAL_GPIO_DeInit(GPIOA, GPIO_PIN_4); + + HAL_GPIO_DeInit(GPIOD, GPIO_PIN_9|GPIO_PIN_3); + + HAL_GPIO_DeInit(GPIOC, GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9); + + HAL_GPIO_DeInit(GPIOB, GPIO_PIN_7); + + /* DCMI DMA DeInit */ + HAL_DMA_DeInit(dcmiHandle->DMA_Handle); + + /* DCMI interrupt Deinit */ + HAL_NVIC_DisableIRQ(DCMI_IRQn); + /* USER CODE BEGIN DCMI_MspDeInit 1 */ + + /* USER CODE END DCMI_MspDeInit 1 */ + } +} + +/* USER CODE BEGIN 1 */ + +/* USER CODE END 1 */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/board/NUCLEO_STM32L496ZG/BSP/Src/dma.c b/board/NUCLEO_STM32L496ZG/BSP/Src/dma.c new file mode 100644 index 00000000..035e3267 --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/BSP/Src/dma.c @@ -0,0 +1,63 @@ +/** + ****************************************************************************** + * File Name : dma.c + * Description : This file provides code for the configuration + * of all the requested memory to memory DMA transfers. + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2020 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "dma.h" + +/* USER CODE BEGIN 0 */ + +/* USER CODE END 0 */ + +/*----------------------------------------------------------------------------*/ +/* Configure DMA */ +/*----------------------------------------------------------------------------*/ + +/* USER CODE BEGIN 1 */ + +/* USER CODE END 1 */ + +/** + * Enable DMA controller clock + */ +void MX_DMA_Init(void) +{ + + /* DMA controller clock enable */ + __HAL_RCC_DMA2_CLK_ENABLE(); + + /* DMA interrupt init */ + /* DMA2_Channel6_IRQn interrupt configuration */ + HAL_NVIC_SetPriority(DMA2_Channel6_IRQn, 0, 0); + HAL_NVIC_EnableIRQ(DMA2_Channel6_IRQn); + +} + +/* USER CODE BEGIN 2 */ + +/* USER CODE END 2 */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/board/NUCLEO_STM32L496ZG/BSP/Src/gpio.c b/board/NUCLEO_STM32L496ZG/BSP/Src/gpio.c index 9dbaeef5..500536c3 100644 --- a/board/NUCLEO_STM32L496ZG/BSP/Src/gpio.c +++ b/board/NUCLEO_STM32L496ZG/BSP/Src/gpio.c @@ -6,7 +6,7 @@ ****************************************************************************** * @attention * - *

© Copyright (c) 2019 STMicroelectronics. + *

© Copyright (c) 2020 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, @@ -30,9 +30,9 @@ /* USER CODE END 1 */ -/** Configure pins as - * Analog - * Input +/** Configure pins as + * Analog + * Input * Output * EVENT_OUT * EXTI @@ -43,30 +43,33 @@ void MX_GPIO_Init(void) GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ + __HAL_RCC_GPIOE_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); - __HAL_RCC_GPIOH_CLK_ENABLE(); + __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); + __HAL_RCC_GPIOD_CLK_ENABLE(); __HAL_RCC_GPIOG_CLK_ENABLE(); HAL_PWREx_EnableVddIO2(); - __HAL_RCC_GPIOA_CLK_ENABLE(); - __HAL_RCC_GPIOD_CLK_ENABLE(); /*Configure GPIO pin Output Level */ - HAL_GPIO_WritePin(GPIOB, LD3_Pin|LD2_Pin, GPIO_PIN_RESET); + HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12|GPIO_PIN_14, GPIO_PIN_RESET); - /*Configure GPIO pin : PtPin */ - GPIO_InitStruct.Pin = B1_Pin; - GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING; - GPIO_InitStruct.Pull = GPIO_NOPULL; - HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct); + /*Configure GPIO pin Output Level */ + HAL_GPIO_WritePin(GPIOA, GPIO_PIN_11|GPIO_PIN_12, GPIO_PIN_RESET); - /*Configure GPIO pins : PBPin PBPin */ - GPIO_InitStruct.Pin = LD3_Pin|LD2_Pin; + /*Configure GPIO pins : PB12 PB14 */ + GPIO_InitStruct.Pin = GPIO_PIN_12|GPIO_PIN_14; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); + /*Configure GPIO pins : PA11 PA12 */ + GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_12; + GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; + GPIO_InitStruct.Pull = GPIO_NOPULL; + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; + HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); } diff --git a/board/NUCLEO_STM32L496ZG/BSP/Src/i2c.c b/board/NUCLEO_STM32L496ZG/BSP/Src/i2c.c new file mode 100644 index 00000000..c437e77e --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/BSP/Src/i2c.c @@ -0,0 +1,121 @@ +/** + ****************************************************************************** + * File Name : I2C.c + * Description : This file provides code for the configuration + * of the I2C instances. + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2020 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "i2c.h" + +/* USER CODE BEGIN 0 */ + +/* USER CODE END 0 */ + +I2C_HandleTypeDef hi2c1; + +/* I2C1 init function */ +void MX_I2C1_Init(void) +{ + + hi2c1.Instance = I2C1; + hi2c1.Init.Timing = 0x10909CEC; + hi2c1.Init.OwnAddress1 = 0; + hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; + hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; + hi2c1.Init.OwnAddress2 = 0; + hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK; + hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; + hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; + if (HAL_I2C_Init(&hi2c1) != HAL_OK) + { + Error_Handler(); + } + /** Configure Analogue filter + */ + if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK) + { + Error_Handler(); + } + /** Configure Digital filter + */ + if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK) + { + Error_Handler(); + } + +} + +void HAL_I2C_MspInit(I2C_HandleTypeDef* i2cHandle) +{ + + GPIO_InitTypeDef GPIO_InitStruct = {0}; + if(i2cHandle->Instance==I2C1) + { + /* USER CODE BEGIN I2C1_MspInit 0 */ + + /* USER CODE END I2C1_MspInit 0 */ + + __HAL_RCC_GPIOG_CLK_ENABLE(); + HAL_PWREx_EnableVddIO2(); + /**I2C1 GPIO Configuration + PG13 ------> I2C1_SDA + PG14 ------> I2C1_SCL + */ + GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14; + GPIO_InitStruct.Mode = GPIO_MODE_AF_OD; + GPIO_InitStruct.Pull = GPIO_PULLUP; + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; + GPIO_InitStruct.Alternate = GPIO_AF4_I2C1; + HAL_GPIO_Init(GPIOG, &GPIO_InitStruct); + + /* I2C1 clock enable */ + __HAL_RCC_I2C1_CLK_ENABLE(); + /* USER CODE BEGIN I2C1_MspInit 1 */ + + /* USER CODE END I2C1_MspInit 1 */ + } +} + +void HAL_I2C_MspDeInit(I2C_HandleTypeDef* i2cHandle) +{ + + if(i2cHandle->Instance==I2C1) + { + /* USER CODE BEGIN I2C1_MspDeInit 0 */ + + /* USER CODE END I2C1_MspDeInit 0 */ + /* Peripheral clock disable */ + __HAL_RCC_I2C1_CLK_DISABLE(); + + /**I2C1 GPIO Configuration + PG13 ------> I2C1_SDA + PG14 ------> I2C1_SCL + */ + HAL_GPIO_DeInit(GPIOG, GPIO_PIN_13); + + HAL_GPIO_DeInit(GPIOG, GPIO_PIN_14); + + /* USER CODE BEGIN I2C1_MspDeInit 1 */ + + /* USER CODE END I2C1_MspDeInit 1 */ + } +} + +/* USER CODE BEGIN 1 */ + +/* USER CODE END 1 */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/board/NUCLEO_STM32L496ZG/BSP/Src/main.c b/board/NUCLEO_STM32L496ZG/BSP/Src/main.c index 646bdf65..14ff70d0 100644 --- a/board/NUCLEO_STM32L496ZG/BSP/Src/main.c +++ b/board/NUCLEO_STM32L496ZG/BSP/Src/main.c @@ -22,4 +22,3 @@ int main(void) osThreadCreate(osThread(application_entry), NULL); // Create TOS Tiny task osKernelStart(); // Start TOS Tiny } - diff --git a/board/NUCLEO_STM32L496ZG/BSP/Src/mcu_init.c b/board/NUCLEO_STM32L496ZG/BSP/Src/mcu_init.c index 5fe3edf7..89f6c472 100644 --- a/board/NUCLEO_STM32L496ZG/BSP/Src/mcu_init.c +++ b/board/NUCLEO_STM32L496ZG/BSP/Src/mcu_init.c @@ -1,5 +1,12 @@ #include "mcu_init.h" +uint16_t camBuffer[OV2640_PIXEL_WIDTH*OV2640_PIXEL_HEIGHT]; +uint8_t frame_flag = 0; +uint8_t tensor_flag = 0; + +extern DCMI_HandleTypeDef hdcmi; + + int fputc(int ch, FILE *f) { if (ch == '\n') { @@ -29,9 +36,24 @@ void board_init(void) HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); + MX_DMA_Init(); MX_LPUART1_UART_Init(); - MX_USART2_UART_Init(); - MX_USART3_UART_Init(); + MX_DCMI_Init(); + MX_I2C1_Init(); + MX_SPI1_Init(); + MX_TIM4_Init(); + + LCD_2IN4_Init(); + OV2640_Init(); + OV2640_RGB565_Mode(); + OV2640_OutSize_Set(OV2640_PIXEL_WIDTH,OV2640_PIXEL_HEIGHT); + + __HAL_DCMI_DISABLE_IT(&hdcmi, DCMI_IT_LINE | DCMI_IT_VSYNC); + if (HAL_DCMI_Start_DMA(&hdcmi, DCMI_MODE_CONTINUOUS, (uint32_t)camBuffer , (OV2640_PIXEL_WIDTH*OV2640_PIXEL_HEIGHT)/2)) + { + Error_Handler(); + } + //setup(); //tensorflow init } /** @@ -44,7 +66,7 @@ void SystemClock_Config(void) RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = {0}; - /** Initializes the CPU, AHB and APB busses clocks + /** Initializes the CPU, AHB and APB busses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI; RCC_OscInitStruct.MSIState = RCC_MSI_ON; @@ -61,29 +83,29 @@ void SystemClock_Config(void) { Error_Handler(); } - /** Initializes the CPU, AHB and APB busses clocks + /** Initializes the CPU, AHB and APB busses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; - RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; + RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) { Error_Handler(); } - PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART2|RCC_PERIPHCLK_USART3 - |RCC_PERIPHCLK_LPUART1; - PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1; + PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_LPUART1|RCC_PERIPHCLK_USART2|RCC_PERIPHCLK_USART3|RCC_PERIPHCLK_I2C1; + PeriphClkInit.Lpuart1ClockSelection = RCC_LPUART1CLKSOURCE_PCLK1; + PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1; PeriphClkInit.Usart3ClockSelection = RCC_USART3CLKSOURCE_PCLK1; - PeriphClkInit.Lpuart1ClockSelection = RCC_LPUART1CLKSOURCE_PCLK1; + PeriphClkInit.I2c1ClockSelection = RCC_I2C1CLKSOURCE_PCLK1; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } - /** Configure the main internal regulator output voltage + /** Configure the main internal regulator output voltage */ if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK) { @@ -92,7 +114,12 @@ void SystemClock_Config(void) } /* USER CODE BEGIN 4 */ - +void HAL_DCMI_FrameEventCallback(DCMI_HandleTypeDef *hdcmi) +{ + if(hdcmi->State == 2 && frame_flag != 1){ + frame_flag = 1; + } +} /* USER CODE END 4 */ /** @@ -116,7 +143,7 @@ void Error_Handler(void) * @retval None */ void assert_failed(char *file, uint32_t line) -{ +{ /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ @@ -125,3 +152,4 @@ void assert_failed(char *file, uint32_t line) #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ + diff --git a/board/NUCLEO_STM32L496ZG/BSP/Src/spi.c b/board/NUCLEO_STM32L496ZG/BSP/Src/spi.c new file mode 100644 index 00000000..da86fb56 --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/BSP/Src/spi.c @@ -0,0 +1,113 @@ +/** + ****************************************************************************** + * File Name : SPI.c + * Description : This file provides code for the configuration + * of the SPI instances. + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2020 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "spi.h" + +/* USER CODE BEGIN 0 */ + +/* USER CODE END 0 */ + +SPI_HandleTypeDef hspi1; + +/* SPI1 init function */ +void MX_SPI1_Init(void) +{ + + hspi1.Instance = SPI1; + hspi1.Init.Mode = SPI_MODE_MASTER; + hspi1.Init.Direction = SPI_DIRECTION_2LINES; + hspi1.Init.DataSize = SPI_DATASIZE_8BIT; + hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; + hspi1.Init.CLKPhase = SPI_PHASE_1EDGE; + hspi1.Init.NSS = SPI_NSS_SOFT; + hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2; + hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; + hspi1.Init.TIMode = SPI_TIMODE_DISABLE; + hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; + hspi1.Init.CRCPolynomial = 7; + hspi1.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE; + hspi1.Init.NSSPMode = SPI_NSS_PULSE_ENABLE; + if (HAL_SPI_Init(&hspi1) != HAL_OK) + { + Error_Handler(); + } + +} + +void HAL_SPI_MspInit(SPI_HandleTypeDef* spiHandle) +{ + + GPIO_InitTypeDef GPIO_InitStruct = {0}; + if(spiHandle->Instance==SPI1) + { + /* USER CODE BEGIN SPI1_MspInit 0 */ + + /* USER CODE END SPI1_MspInit 0 */ + /* SPI1 clock enable */ + __HAL_RCC_SPI1_CLK_ENABLE(); + + __HAL_RCC_GPIOA_CLK_ENABLE(); + /**SPI1 GPIO Configuration + PA5 ------> SPI1_SCK + PA6 ------> SPI1_MISO + PA7 ------> SPI1_MOSI + */ + GPIO_InitStruct.Pin = GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7; + GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; + GPIO_InitStruct.Pull = GPIO_NOPULL; + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; + GPIO_InitStruct.Alternate = GPIO_AF5_SPI1; + HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); + + /* USER CODE BEGIN SPI1_MspInit 1 */ + + /* USER CODE END SPI1_MspInit 1 */ + } +} + +void HAL_SPI_MspDeInit(SPI_HandleTypeDef* spiHandle) +{ + + if(spiHandle->Instance==SPI1) + { + /* USER CODE BEGIN SPI1_MspDeInit 0 */ + + /* USER CODE END SPI1_MspDeInit 0 */ + /* Peripheral clock disable */ + __HAL_RCC_SPI1_CLK_DISABLE(); + + /**SPI1 GPIO Configuration + PA5 ------> SPI1_SCK + PA6 ------> SPI1_MISO + PA7 ------> SPI1_MOSI + */ + HAL_GPIO_DeInit(GPIOA, GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7); + + /* USER CODE BEGIN SPI1_MspDeInit 1 */ + + /* USER CODE END SPI1_MspDeInit 1 */ + } +} + +/* USER CODE BEGIN 1 */ + +/* USER CODE END 1 */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/board/NUCLEO_STM32L496ZG/BSP/Src/stm32l4xx_it.c b/board/NUCLEO_STM32L496ZG/BSP/Src/stm32l4xx_it.c index f096877a..98e5e018 100644 --- a/board/NUCLEO_STM32L496ZG/BSP/Src/stm32l4xx_it.c +++ b/board/NUCLEO_STM32L496ZG/BSP/Src/stm32l4xx_it.c @@ -22,7 +22,6 @@ #include "main.h" #include "stm32l4xx_it.h" #include "tos_k.h" -//#include "tos_at.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ @@ -58,6 +57,8 @@ /* USER CODE END 0 */ /* External variables --------------------------------------------------------*/ +extern DMA_HandleTypeDef hdma_dcmi; +extern DCMI_HandleTypeDef hdcmi; extern UART_HandleTypeDef hlpuart1; extern UART_HandleTypeDef huart2; extern UART_HandleTypeDef huart3; @@ -173,7 +174,7 @@ void DebugMon_Handler(void) __weak void PendSV_Handler(void) { /* USER CODE BEGIN PendSV_IRQn 0 */ - + /* USER CODE END PendSV_IRQn 0 */ /* USER CODE BEGIN PendSV_IRQn 1 */ @@ -189,15 +190,13 @@ void SysTick_Handler(void) /* USER CODE END SysTick_IRQn 0 */ HAL_IncTick(); - if (tos_knl_is_running()) - { - tos_knl_irq_enter(); - tos_tick_handler(); - tos_knl_irq_leave(); - } - //HAL_SYSTICK_IRQHandler(); /* USER CODE BEGIN SysTick_IRQn 1 */ - + if(tos_knl_is_running()) + { + tos_knl_irq_enter(); + tos_tick_handler(); + tos_knl_irq_leave(); + } /* USER CODE END SysTick_IRQn 1 */ } @@ -209,8 +208,33 @@ void SysTick_Handler(void) /******************************************************************************/ /** - * @brief This function handles USART2 global interrupt. + * @brief This function handles DMA2 channel6 global interrupt. */ +void DMA2_Channel6_IRQHandler(void) +{ + /* USER CODE BEGIN DMA2_Channel6_IRQn 0 */ + + /* USER CODE END DMA2_Channel6_IRQn 0 */ + HAL_DMA_IRQHandler(&hdma_dcmi); + /* USER CODE BEGIN DMA2_Channel6_IRQn 1 */ + + /* USER CODE END DMA2_Channel6_IRQn 1 */ +} + +/** + * @brief This function handles DCMI global interrupt. + */ +void DCMI_IRQHandler(void) +{ + /* USER CODE BEGIN DCMI_IRQn 0 */ + + /* USER CODE END DCMI_IRQn 0 */ + HAL_DCMI_IRQHandler(&hdcmi); + /* USER CODE BEGIN DCMI_IRQn 1 */ + + /* USER CODE END DCMI_IRQn 1 */ +} + void USART2_IRQHandler(void) { /* USER CODE BEGIN USART2_IRQn 0 */ @@ -242,13 +266,13 @@ void USART3_IRQHandler(void) void LPUART1_IRQHandler(void) { /* USER CODE BEGIN LPUART1_IRQn 0 */ - + tos_knl_irq_enter(); /* USER CODE END LPUART1_IRQn 0 */ - tos_knl_irq_enter(); + HAL_UART_IRQHandler(&hlpuart1); - tos_knl_irq_leave(); + /* USER CODE BEGIN LPUART1_IRQn 1 */ - + tos_knl_irq_leave(); /* USER CODE END LPUART1_IRQn 1 */ } diff --git a/board/NUCLEO_STM32L496ZG/BSP/Src/tim.c b/board/NUCLEO_STM32L496ZG/BSP/Src/tim.c new file mode 100644 index 00000000..8d937d7d --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/BSP/Src/tim.c @@ -0,0 +1,136 @@ +/** + ****************************************************************************** + * File Name : TIM.c + * Description : This file provides code for the configuration + * of the TIM instances. + ****************************************************************************** + * @attention + * + *

© Copyright (c) 2020 STMicroelectronics. + * All rights reserved.

+ * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "tim.h" + +/* USER CODE BEGIN 0 */ + +/* USER CODE END 0 */ + +TIM_HandleTypeDef htim4; + +/* TIM4 init function */ +void MX_TIM4_Init(void) +{ + TIM_ClockConfigTypeDef sClockSourceConfig = {0}; + TIM_MasterConfigTypeDef sMasterConfig = {0}; + TIM_OC_InitTypeDef sConfigOC = {0}; + + htim4.Instance = TIM4; + htim4.Init.Prescaler = 300; + htim4.Init.CounterMode = TIM_COUNTERMODE_UP; + htim4.Init.Period = 999; + htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; + htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; + if (HAL_TIM_Base_Init(&htim4) != HAL_OK) + { + Error_Handler(); + } + sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; + if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK) + { + Error_Handler(); + } + if (HAL_TIM_PWM_Init(&htim4) != HAL_OK) + { + Error_Handler(); + } + sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; + sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; + if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK) + { + Error_Handler(); + } + sConfigOC.OCMode = TIM_OCMODE_PWM1; + sConfigOC.Pulse = 0; + sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; + sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; + if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_1) != HAL_OK) + { + Error_Handler(); + } + HAL_TIM_MspPostInit(&htim4); + +} + +void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* tim_baseHandle) +{ + + if(tim_baseHandle->Instance==TIM4) + { + /* USER CODE BEGIN TIM4_MspInit 0 */ + + /* USER CODE END TIM4_MspInit 0 */ + /* TIM4 clock enable */ + __HAL_RCC_TIM4_CLK_ENABLE(); + /* USER CODE BEGIN TIM4_MspInit 1 */ + + /* USER CODE END TIM4_MspInit 1 */ + } +} +void HAL_TIM_MspPostInit(TIM_HandleTypeDef* timHandle) +{ + + GPIO_InitTypeDef GPIO_InitStruct = {0}; + if(timHandle->Instance==TIM4) + { + /* USER CODE BEGIN TIM4_MspPostInit 0 */ + + /* USER CODE END TIM4_MspPostInit 0 */ + + __HAL_RCC_GPIOB_CLK_ENABLE(); + /**TIM4 GPIO Configuration + PB6 ------> TIM4_CH1 + */ + GPIO_InitStruct.Pin = GPIO_PIN_6; + GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; + GPIO_InitStruct.Pull = GPIO_NOPULL; + GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; + GPIO_InitStruct.Alternate = GPIO_AF2_TIM4; + HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); + + /* USER CODE BEGIN TIM4_MspPostInit 1 */ + + /* USER CODE END TIM4_MspPostInit 1 */ + } + +} + +void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef* tim_baseHandle) +{ + + if(tim_baseHandle->Instance==TIM4) + { + /* USER CODE BEGIN TIM4_MspDeInit 0 */ + + /* USER CODE END TIM4_MspDeInit 0 */ + /* Peripheral clock disable */ + __HAL_RCC_TIM4_CLK_DISABLE(); + /* USER CODE BEGIN TIM4_MspDeInit 1 */ + + /* USER CODE END TIM4_MspDeInit 1 */ + } +} + +/* USER CODE BEGIN 1 */ + +/* USER CODE END 1 */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/board/NUCLEO_STM32L496ZG/BSP/Src/usart.c b/board/NUCLEO_STM32L496ZG/BSP/Src/usart.c index 288b7db2..c7c87494 100644 --- a/board/NUCLEO_STM32L496ZG/BSP/Src/usart.c +++ b/board/NUCLEO_STM32L496ZG/BSP/Src/usart.c @@ -131,7 +131,7 @@ void HAL_UART_MspInit(UART_HandleTypeDef* uartHandle) PG7 ------> LPUART1_TX PG8 ------> LPUART1_RX */ - GPIO_InitStruct.Pin = STLK_RX_Pin|STLK_TX_Pin; + GPIO_InitStruct.Pin = GPIO_PIN_7|GPIO_PIN_8; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; @@ -240,7 +240,7 @@ void HAL_UART_MspDeInit(UART_HandleTypeDef* uartHandle) PG7 ------> LPUART1_TX PG8 ------> LPUART1_RX */ - HAL_GPIO_DeInit(GPIOG, STLK_RX_Pin|STLK_TX_Pin); + HAL_GPIO_DeInit(GPIOG, GPIO_PIN_7|GPIO_PIN_7); /* LPUART1 interrupt Deinit */ HAL_NVIC_DisableIRQ(LPUART1_IRQn); diff --git a/board/NUCLEO_STM32L496ZG/BSP/TencentOS_tiny.ioc b/board/NUCLEO_STM32L496ZG/BSP/TencentOS_tiny.ioc index 84a38242..ad9d84ff 100644 --- a/board/NUCLEO_STM32L496ZG/BSP/TencentOS_tiny.ioc +++ b/board/NUCLEO_STM32L496ZG/BSP/TencentOS_tiny.ioc @@ -1,139 +1,248 @@ #MicroXplorer Configuration settings - do not modify -File.Version=6 -KeepUserPlacement=false -LPUART1.BaudRate=115200 -LPUART1.IPParameters=WordLength,BaudRate -LPUART1.WordLength=UART_WORDLENGTH_8B Mcu.Family=STM32L4 -Mcu.IP0=LPUART1 -Mcu.IP1=NVIC -Mcu.IP2=RCC -Mcu.IP3=SYS -Mcu.IPNb=4 -Mcu.Name=STM32L496Z(E-G)Tx -Mcu.Package=LQFP144 -Mcu.Pin0=PC14-OSC32_IN (PC14) -Mcu.Pin1=PC15-OSC32_OUT (PC15) -Mcu.Pin2=PG7 -Mcu.Pin3=PG8 -Mcu.Pin4=VP_SYS_VS_Systick -Mcu.PinsNb=5 -Mcu.ThirdPartyNb=0 -Mcu.UserConstants= -Mcu.UserName=STM32L496ZGTx -MxCube.Version=5.4.0 -MxDb.Version=DB.5.0.40 -NVIC.BusFault_IRQn=true\:0\:0\:false\:false\:true\:false\:false -NVIC.DebugMonitor_IRQn=true\:0\:0\:false\:false\:true\:false\:false -NVIC.ForceEnableDMAVector=true -NVIC.HardFault_IRQn=true\:0\:0\:false\:false\:true\:false\:false -NVIC.MemoryManagement_IRQn=true\:0\:0\:false\:false\:true\:false\:false -NVIC.NonMaskableInt_IRQn=true\:0\:0\:false\:false\:true\:false\:false -NVIC.PendSV_IRQn=true\:0\:0\:false\:false\:true\:false\:false -NVIC.PriorityGroup=NVIC_PRIORITYGROUP_4 -NVIC.SVCall_IRQn=true\:0\:0\:false\:false\:true\:false\:false -NVIC.SysTick_IRQn=true\:0\:0\:false\:false\:true\:false\:true -NVIC.UsageFault_IRQn=true\:0\:0\:false\:false\:true\:false\:false -PC14-OSC32_IN\ (PC14).Mode=LSE-External-Oscillator -PC14-OSC32_IN\ (PC14).Signal=RCC_OSC32_IN -PC15-OSC32_OUT\ (PC15).Mode=LSE-External-Oscillator -PC15-OSC32_OUT\ (PC15).Signal=RCC_OSC32_OUT -PCC.Checker=true -PCC.Line=STM32L4x6 -PCC.MCU=STM32L496Z(E-G)Tx -PCC.PartNumber=STM32L496ZGTx -PCC.Seq0=0 -PCC.Series=STM32L4 -PCC.Temperature=25 -PCC.Vdd=3.0 -PG7.Locked=true -PG7.Mode=Asynchronous -PG7.Signal=LPUART1_TX -PG8.Locked=true -PG8.Mode=Asynchronous -PG8.Signal=LPUART1_RX -PinOutPanel.RotationAngle=0 -ProjectManager.AskForMigrate=true -ProjectManager.BackupPrevious=false -ProjectManager.CompilerOptimize=6 -ProjectManager.ComputerToolchain=false -ProjectManager.CoupleFile=true -ProjectManager.CustomerFirmwarePackage= -ProjectManager.DefaultFWLocation=true -ProjectManager.DeletePrevious=true -ProjectManager.DeviceId=STM32L496ZGTx -ProjectManager.FirmwarePackage=STM32Cube FW_L4 V1.14.0 -ProjectManager.FreePins=false -ProjectManager.HalAssertFull=false -ProjectManager.HeapSize=0x200 -ProjectManager.KeepUserCode=true -ProjectManager.LastFirmware=true -ProjectManager.LibraryCopy=0 ProjectManager.MainLocation=Src -ProjectManager.NoMain=false -ProjectManager.PreviousToolchain= -ProjectManager.ProjectBuild=false -ProjectManager.ProjectFileName=TencentOS_tiny.ioc -ProjectManager.ProjectName=TencentOS_tiny -ProjectManager.StackSize=0x400 -ProjectManager.TargetToolchain=EWARM V8 -ProjectManager.ToolChainLocation= -ProjectManager.UnderRoot=false -ProjectManager.functionlistsort=1-SystemClock_Config-RCC-false-HAL-false,2-MX_GPIO_Init-GPIO-false-HAL-true,3-MX_LPUART1_UART_Init-LPUART1-false-HAL-true -RCC.ADCFreq_Value=64000000 -RCC.AHBFreq_Value=80000000 -RCC.APB1Freq_Value=80000000 -RCC.APB1TimFreq_Value=80000000 -RCC.APB2Freq_Value=80000000 -RCC.APB2TimFreq_Value=80000000 -RCC.CortexFreq_Value=80000000 -RCC.DFSDMFreq_Value=80000000 -RCC.FCLKCortexFreq_Value=80000000 -RCC.FamilyName=M -RCC.HCLKFreq_Value=80000000 -RCC.HSE_VALUE=8000000 -RCC.HSI48_VALUE=48000000 -RCC.HSI_VALUE=16000000 -RCC.I2C1Freq_Value=80000000 -RCC.I2C2Freq_Value=80000000 -RCC.I2C3Freq_Value=80000000 -RCC.I2C4Freq_Value=80000000 -RCC.IPParameters=ADCFreq_Value,AHBFreq_Value,APB1Freq_Value,APB1TimFreq_Value,APB2Freq_Value,APB2TimFreq_Value,CortexFreq_Value,DFSDMFreq_Value,FCLKCortexFreq_Value,FamilyName,HCLKFreq_Value,HSE_VALUE,HSI48_VALUE,HSI_VALUE,I2C1Freq_Value,I2C2Freq_Value,I2C3Freq_Value,I2C4Freq_Value,LPTIM1Freq_Value,LPTIM2Freq_Value,LPUART1Freq_Value,LSCOPinFreq_Value,LSI_VALUE,MCO1PinFreq_Value,MSI_VALUE,PLLN,PLLPoutputFreq_Value,PLLQoutputFreq_Value,PLLRCLKFreq_Value,PLLSAI1PoutputFreq_Value,PLLSAI1QoutputFreq_Value,PLLSAI1RoutputFreq_Value,PLLSAI2PoutputFreq_Value,PLLSAI2RoutputFreq_Value,PLLSourceVirtual,PWRFreq_Value,RNGFreq_Value,SAI1Freq_Value,SAI2Freq_Value,SDMMCFreq_Value,SWPMI1Freq_Value,SYSCLKFreq_VALUE,SYSCLKSource,UART4Freq_Value,UART5Freq_Value,USART1Freq_Value,USART2Freq_Value,USART3Freq_Value,USBFreq_Value,VCOInputFreq_Value,VCOOutputFreq_Value,VCOSAI1OutputFreq_Value,VCOSAI2OutputFreq_Value -RCC.LPTIM1Freq_Value=80000000 -RCC.LPTIM2Freq_Value=80000000 -RCC.LPUART1Freq_Value=80000000 -RCC.LSCOPinFreq_Value=32000 -RCC.LSI_VALUE=32000 -RCC.MCO1PinFreq_Value=80000000 -RCC.MSI_VALUE=4000000 -RCC.PLLN=10 -RCC.PLLPoutputFreq_Value=80000000 -RCC.PLLQoutputFreq_Value=80000000 -RCC.PLLRCLKFreq_Value=80000000 -RCC.PLLSAI1PoutputFreq_Value=64000000 -RCC.PLLSAI1QoutputFreq_Value=64000000 -RCC.PLLSAI1RoutputFreq_Value=64000000 -RCC.PLLSAI2PoutputFreq_Value=64000000 -RCC.PLLSAI2RoutputFreq_Value=64000000 -RCC.PLLSourceVirtual=RCC_PLLSOURCE_HSI -RCC.PWRFreq_Value=80000000 -RCC.RNGFreq_Value=64000000 -RCC.SAI1Freq_Value=64000000 -RCC.SAI2Freq_Value=64000000 -RCC.SDMMCFreq_Value=64000000 -RCC.SWPMI1Freq_Value=80000000 -RCC.SYSCLKFreq_VALUE=80000000 -RCC.SYSCLKSource=RCC_SYSCLKSOURCE_PLLCLK -RCC.UART4Freq_Value=80000000 -RCC.UART5Freq_Value=80000000 +PG8.Mode=Asynchronous +PA6.Mode=Full_Duplex_Master RCC.USART1Freq_Value=80000000 +RCC.SAI1Freq_Value=64000000 +RCC.CortexFreq_Value=80000000 +ProjectManager.KeepUserCode=true +Mcu.UserName=STM32L496ZGTx +SPI1.VirtualType=VM_MASTER +PG8.Signal=LPUART1_RX +PG8.Locked=true +RCC.PLLSAI1RoutputFreq_Value=64000000 +ProjectManager.functionlistsort=1-MX_GPIO_Init-GPIO-false-HAL-true,2-SystemClock_Config-RCC-false-HAL-false,3-MX_DMA_Init-DMA-false-HAL-true,4-MX_LPUART1_UART_Init-LPUART1-false-HAL-true,5-MX_DCMI_Init-DCMI-false-HAL-true,6-MX_I2C1_Init-I2C1-false-HAL-true,7-MX_SPI1_Init-SPI1-false-HAL-true,8-MX_TIM4_Init-TIM4-false-HAL-true +LPUART1.WordLength=UART_WORDLENGTH_8B RCC.USART2Freq_Value=80000000 -RCC.USART3Freq_Value=80000000 -RCC.USBFreq_Value=64000000 -RCC.VCOInputFreq_Value=16000000 -RCC.VCOOutputFreq_Value=160000000 +PA15\ (JTDI).Signal=SYS_JTDI +PC15-OSC32_OUT\ (PC15).Mode=LSE-External-Oscillator +PG13.Signal=I2C1_SDA +PD9.Mode=Slave_8_bits_External_Synchro +PinOutPanel.RotationAngle=0 +RCC.MCO1PinFreq_Value=80000000 +RCC.SYSCLKSource=RCC_SYSCLKSOURCE_PLLCLK +ProjectManager.StackSize=0x400 +PC14-OSC32_IN\ (PC14).Mode=LSE-External-Oscillator +Dma.DCMI.0.MemDataAlignment=DMA_MDATAALIGN_WORD +RCC.I2C3Freq_Value=80000000 +RCC.LPTIM1Freq_Value=80000000 +Mcu.IP4=NVIC +Mcu.IP5=RCC +RCC.FCLKCortexFreq_Value=80000000 +Mcu.IP2=I2C1 +NVIC.SVCall_IRQn=true\:0\:0\:false\:false\:true\:false\:false +Mcu.IP3=LPUART1 +Mcu.IP0=DCMI +PA12.Locked=true +PA14\ (JTCK/SWCLK).Signal=SYS_JTCK-SWCLK +PA15\ (JTDI).Mode=JTAG_4_pins +Mcu.IP1=DMA +Dma.DCMI.0.MemInc=DMA_MINC_ENABLE +PA12.Signal=GPIO_Output +Mcu.UserConstants= RCC.VCOSAI1OutputFreq_Value=128000000 -RCC.VCOSAI2OutputFreq_Value=128000000 -VP_SYS_VS_Systick.Mode=SysTick +PA4.Mode=Slave_8_bits_External_Synchro +Dma.DCMI.0.PeriphDataAlignment=DMA_PDATAALIGN_WORD +RCC.SDMMCFreq_Value=64000000 +Mcu.ThirdPartyNb=0 +SPI1.Direction=SPI_DIRECTION_2LINES +RCC.HCLKFreq_Value=80000000 +RCC.I2C4Freq_Value=80000000 +Mcu.IPNb=9 +ProjectManager.PreviousToolchain= +RCC.APB2TimFreq_Value=80000000 +PB6.Signal=S_TIM4_CH1 +PC7.Signal=DCMI_D1 +SPI1.CalculateBaudRate=40.0 MBits/s +Mcu.Pin6=PA5 +RCC.SAI2Freq_Value=64000000 +Mcu.Pin7=PA6 +PE5.Signal=DCMI_D6 +Mcu.Pin8=PA7 +Mcu.Pin9=PB12 +RCC.AHBFreq_Value=80000000 +Mcu.Pin0=PE4 +Mcu.Pin1=PE5 +GPIO.groupedBy=Group By Peripherals +Mcu.Pin2=PE6 +Mcu.Pin3=PC14-OSC32_IN (PC14) +RCC.USART3Freq_Value=80000000 +Mcu.Pin4=PC15-OSC32_OUT (PC15) +Mcu.Pin5=PA4 +ProjectManager.ProjectBuild=false +RCC.HSE_VALUE=8000000 +NVIC.UsageFault_IRQn=true\:0\:0\:false\:false\:true\:false\:false +NVIC.DebugMonitor_IRQn=true\:0\:0\:false\:false\:true\:false\:false +NVIC.SysTick_IRQn=true\:0\:0\:false\:false\:true\:false\:true +DCMI.PCKPolarity=DCMI_PCKPOLARITY_RISING +PG14.Mode=I2C +ProjectManager.FirmwarePackage=STM32Cube FW_L4 V1.14.0 +MxDb.Version=DB.5.0.40 +ProjectManager.BackupPrevious=false +RCC.VCOInputFreq_Value=16000000 +SPI1.DataSize=SPI_DATASIZE_8BIT +File.Version=6 +PC9.Mode=Slave_8_bits_External_Synchro +PB7.Signal=DCMI_VSYNC +PA14\ (JTCK/SWCLK).Mode=JTAG_4_pins +RCC.PLLRCLKFreq_Value=80000000 +PG13.Mode=I2C +PB6.Locked=true +NVIC.PendSV_IRQn=true\:0\:0\:false\:false\:true\:false\:false +PE4.Mode=Slave_8_bits_External_Synchro +TIM4.Period=999 +PA13\ (JTMS/SWDIO).Locked=true +PD3.Mode=Slave_8_bits_External_Synchro +PE4.Signal=DCMI_D4 +Dma.RequestsNb=1 +ProjectManager.HalAssertFull=false +ProjectManager.ProjectName=TencentOS_tiny +Mcu.Package=LQFP144 +PA6.Signal=SPI1_MISO +Dma.DCMI.0.RequestParameters=Instance,Direction,PeriphInc,MemInc,PeriphDataAlignment,MemDataAlignment,Mode,Priority +PA5.Locked=true +Dma.DCMI.0.Direction=DMA_PERIPH_TO_MEMORY +ProjectManager.ToolChainLocation= +PA14\ (JTCK/SWCLK).Locked=true +RCC.LSI_VALUE=32000 VP_SYS_VS_Systick.Signal=SYS_VS_Systick +RCC.LSCOPinFreq_Value=32000 +RCC.DFSDMFreq_Value=80000000 +RCC.PLLPoutputFreq_Value=80000000 +SH.S_TIM4_CH1.0=TIM4_CH1,PWM Generation1 CH1 +RCC.APB1TimFreq_Value=80000000 +NVIC.BusFault_IRQn=true\:0\:0\:false\:false\:true\:false\:false +RCC.LPUART1Freq_Value=80000000 +Dma.Request0=DCMI +ProjectManager.CustomerFirmwarePackage= +RCC.HSI48_VALUE=48000000 +PA5.Mode=Full_Duplex_Master +RCC.MSI_VALUE=4000000 +RCC.PLLSourceVirtual=RCC_PLLSOURCE_HSI +TIM4.Channel-PWM\ Generation1\ CH1=TIM_CHANNEL_1 +SH.S_TIM4_CH1.ConfNb=1 +RCC.PLLQoutputFreq_Value=80000000 +ProjectManager.ProjectFileName=TencentOS_tiny.ioc +PG7.Locked=true +PA7.Mode=Full_Duplex_Master +PG7.Signal=LPUART1_TX +PA13\ (JTMS/SWDIO).Mode=JTAG_4_pins +Mcu.PinsNb=31 +ProjectManager.NoMain=false +SPI1.IPParameters=VirtualType,Mode,Direction,CalculateBaudRate,DataSize +RCC.SWPMI1Freq_Value=80000000 +PD3.Signal=DCMI_D5 +PC8.Signal=DCMI_D2 +PC6.Signal=DCMI_D0 +ProjectManager.DefaultFWLocation=true +PC15-OSC32_OUT\ (PC15).Signal=RCC_OSC32_OUT +PD9.Signal=DCMI_PIXCLK +PB12.Locked=true +ProjectManager.DeletePrevious=true +PB14.Locked=true +RCC.VCOSAI2OutputFreq_Value=128000000 +LPUART1.IPParameters=WordLength,BaudRate +RCC.FamilyName=M +PA11.Locked=true +PB3\ (JTDO/TRACESWO).Locked=true +PB3\ (JTDO/TRACESWO).Signal=SYS_JTDO-SWO +VP_TIM4_VS_ClockSourceINT.Signal=TIM4_VS_ClockSourceINT +ProjectManager.TargetToolchain=EWARM V8 +TIM4.IPParameters=Channel-PWM Generation1 CH1,Prescaler,Period +PC6.Mode=Slave_8_bits_External_Synchro +Dma.DCMI.0.Instance=DMA2_Channel6 +Dma.DCMI.0.Mode=DMA_CIRCULAR +ProjectManager.RegisterCallBack= +RCC.USBFreq_Value=64000000 +TIM4.Prescaler=300 +PG7.Mode=Asynchronous +RCC.PLLSAI1PoutputFreq_Value=64000000 +DCMI.JPEGMode=DCMI_JPEG_ENABLE +PB14.Signal=GPIO_Output +RCC.PLLSAI2RoutputFreq_Value=64000000 +PA5.Signal=SPI1_SCK +PG14.Signal=I2C1_SCL +DCMI.IPParameters=JPEGMode,PCKPolarity board=custom +RCC.VCOOutputFreq_Value=160000000 +ProjectManager.LastFirmware=true +RCC.APB2Freq_Value=80000000 +RCC.UART4Freq_Value=80000000 +PE6.Mode=Slave_8_bits_External_Synchro +MxCube.Version=5.4.0 +RCC.I2C1Freq_Value=80000000 +SPI1.Mode=SPI_MODE_MASTER +RCC.RNGFreq_Value=64000000 +PE5.Mode=Slave_8_bits_External_Synchro +RCC.PLLSAI1QoutputFreq_Value=64000000 +Mcu.Pin30=VP_TIM4_VS_ClockSourceINT +RCC.ADCFreq_Value=64000000 +VP_SYS_VS_Systick.Mode=SysTick +NVIC.NonMaskableInt_IRQn=true\:0\:0\:false\:false\:true\:false\:false +NVIC.DMA2_Channel6_IRQn=true\:0\:0\:false\:false\:true\:false\:true +PE6.Signal=DCMI_D7 +RCC.UART5Freq_Value=80000000 +ProjectManager.FreePins=false +RCC.IPParameters=ADCFreq_Value,AHBFreq_Value,APB1Freq_Value,APB1TimFreq_Value,APB2Freq_Value,APB2TimFreq_Value,CortexFreq_Value,DFSDMFreq_Value,FCLKCortexFreq_Value,FamilyName,HCLKFreq_Value,HSE_VALUE,HSI48_VALUE,HSI_VALUE,I2C1Freq_Value,I2C2Freq_Value,I2C3Freq_Value,I2C4Freq_Value,LPTIM1Freq_Value,LPTIM2Freq_Value,LPUART1Freq_Value,LSCOPinFreq_Value,LSI_VALUE,MCO1PinFreq_Value,MSI_VALUE,PLLN,PLLPoutputFreq_Value,PLLQoutputFreq_Value,PLLRCLKFreq_Value,PLLSAI1PoutputFreq_Value,PLLSAI1QoutputFreq_Value,PLLSAI1RoutputFreq_Value,PLLSAI2PoutputFreq_Value,PLLSAI2RoutputFreq_Value,PLLSourceVirtual,PWRFreq_Value,RNGFreq_Value,SAI1Freq_Value,SAI2Freq_Value,SDMMCFreq_Value,SWPMI1Freq_Value,SYSCLKFreq_VALUE,SYSCLKSource,UART4Freq_Value,UART5Freq_Value,USART1Freq_Value,USART2Freq_Value,USART3Freq_Value,USBFreq_Value,VCOInputFreq_Value,VCOOutputFreq_Value,VCOSAI1OutputFreq_Value,VCOSAI2OutputFreq_Value +ProjectManager.AskForMigrate=false +Mcu.Name=STM32L496Z(E-G)Tx +RCC.LPTIM2Freq_Value=80000000 +Mcu.Pin26=PB3 (JTDO/TRACESWO) +Mcu.Pin27=PB6 +LPUART1.BaudRate=115200 +Mcu.Pin24=PG13 +ProjectManager.UnderRoot=false +Mcu.Pin25=PG14 +Mcu.IP8=TIM4 +Mcu.Pin28=PB7 +Mcu.IP6=SPI1 +PC8.Mode=Slave_8_bits_External_Synchro +Mcu.Pin29=VP_SYS_VS_Systick +Mcu.IP7=SYS +ProjectManager.CoupleFile=true +PA4.Signal=DCMI_HSYNC +RCC.SYSCLKFreq_VALUE=80000000 +Mcu.Pin22=PA15 (JTDI) +Mcu.Pin23=PD3 +Mcu.Pin20=PA13 (JTMS/SWDIO) +Mcu.Pin21=PA14 (JTCK/SWCLK) +NVIC.ForceEnableDMAVector=true +RCC.PLLSAI2PoutputFreq_Value=64000000 +KeepUserPlacement=false +PC14-OSC32_IN\ (PC14).Signal=RCC_OSC32_IN +NVIC.MemoryManagement_IRQn=true\:0\:0\:false\:false\:true\:false\:false +ProjectManager.CompilerOptimize=6 +PB7.Mode=Slave_8_bits_External_Synchro +PA11.Signal=GPIO_Output +ProjectManager.HeapSize=0x200 +Mcu.Pin15=PC7 +NVIC.HardFault_IRQn=true\:0\:0\:false\:false\:true\:false\:false +Mcu.Pin16=PC8 +Mcu.Pin13=PG8 +Mcu.Pin14=PC6 +Mcu.Pin19=PA12 +ProjectManager.ComputerToolchain=false +Mcu.Pin17=PC9 +RCC.HSI_VALUE=16000000 +Mcu.Pin18=PA11 +VP_TIM4_VS_ClockSourceINT.Mode=Internal +NVIC.PriorityGroup=NVIC_PRIORITYGROUP_4 +Mcu.Pin11=PD9 +Mcu.Pin12=PG7 +RCC.PLLN=10 +PB3\ (JTDO/TRACESWO).Mode=JTAG_4_pins +Mcu.Pin10=PB14 +RCC.PWRFreq_Value=80000000 +Dma.DCMI.0.PeriphInc=DMA_PINC_DISABLE +PC9.Signal=DCMI_D3 +NVIC.DCMI_IRQn=true\:0\:0\:false\:false\:true\:true\:true +PC7.Mode=Slave_8_bits_External_Synchro +RCC.I2C2Freq_Value=80000000 +RCC.APB1Freq_Value=80000000 +ProjectManager.DeviceId=STM32L496ZGTx +PB12.Signal=GPIO_Output +ProjectManager.LibraryCopy=0 +PA13\ (JTMS/SWDIO).Signal=SYS_JTMS-SWDIO +Dma.DCMI.0.Priority=DMA_PRIORITY_HIGH +PA7.Signal=SPI1_MOSI diff --git a/board/NUCLEO_STM32L496ZG/KEIL/tflitemicro_person_detection/TencentOS-tiny Person Detection Demo.md b/board/NUCLEO_STM32L496ZG/KEIL/tflitemicro_person_detection/TencentOS-tiny Person Detection Demo.md new file mode 100644 index 00000000..bba3b2dd --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/KEIL/tflitemicro_person_detection/TencentOS-tiny Person Detection Demo.md @@ -0,0 +1,20 @@ +## TencentOS-tiny_Person_Detection_Demo + +### 1. 目录结构: + +- TencentOS-tiny\board\NUCLEO_STM32L496ZG\BSP\Hardware : **外设驱动代ç ** +- TencentOS-tiny\examples\tflitemicro_person_detection : **Demo任务函数** +- TencentOS-tiny\board\NUCLEO_STM32L496ZG\KEIL\tflitemicro_person_detection : **keil工程** +- TencentOS-tiny\components\tflite_micro\tensorflow : **tflite_micro代ç ** + +### 2. 完æˆçš„工作: + +- 使用STM32CubeMX,选择与TOSåŒç‰ˆæœ¬çš„å›ºä»¶åº“é‡æ–°ç”Ÿæˆå¤–设åˆå§‹åŒ–代ç ï¼› +- TOSã€æ‘„åƒå¤´å’ŒLCD工作都正常工作; + +### 3. 未完æˆçš„工作: + +- tflite_micro 以component的形å¼åŠ åˆ°å·¥ç¨‹ +- 串å£é‡å®šå‘用了TOS的方法,retarget.c还没有引入工程 +- å˜é‡åã€å‡½æ•°å还没有按照TOS的风格完全统一 + diff --git a/board/NUCLEO_STM32L496ZG/KEIL/tflitemicro_person_detection/TencentOS_tiny.uvoptx b/board/NUCLEO_STM32L496ZG/KEIL/tflitemicro_person_detection/TencentOS_tiny.uvoptx new file mode 100644 index 00000000..32621b59 --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/KEIL/tflitemicro_person_detection/TencentOS_tiny.uvoptx @@ -0,0 +1,1148 @@ + + + + 1.0 + +
### uVision Project, (C) Keil Software
+ + + *.c + *.s*; *.src; *.a* + *.obj; *.o + *.lib + *.txt; *.h; *.inc + *.plm + *.cpp + 0 + + + + 0 + 0 + + + + TencentOS_tiny + 0x4 + ARM-ADS + + 80000000 + + 1 + 1 + 0 + 1 + 0 + + + 1 + 65535 + 0 + 0 + 0 + + + 79 + 66 + 8 + + + + 1 + 1 + 1 + 0 + 1 + 1 + 0 + 1 + 0 + 0 + 0 + 0 + + + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 0 + 0 + + + 1 + 0 + 1 + + 18 + + 0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 0 + 0 + 1 + 0 + 0 + 6 + + + + + + + + + + + STLink\ST-LINKIII-KEIL_SWO.dll + + + + 0 + ARMRTXEVENTFLAGS + -L70 -Z18 -C0 -M0 -T1 + + + 0 + DLGTARM + (1010=-1,-1,-1,-1,0)(1007=-1,-1,-1,-1,0)(1008=-1,-1,-1,-1,0)(1009=-1,-1,-1,-1,0)(1012=-1,-1,-1,-1,0) + + + 0 + ARMDBGFLAGS + + + + 0 + DLGUARM + (105=-1,-1,-1,-1,0) + + + 0 + UL2CM3 + UL2CM3(-S0 -C0 -P0 -FD20000000 -FC1000 -FN1 -FF0STM32L4xx_1024 -FS08000000 -FL0100000 -FP0($$Device:STM32L496ZGTx$CMSIS\Flash\STM32L4xx_1024.FLM)) + + + 0 + ST-LINKIII-KEIL_SWO + -U0674FF525750877267153432 -O2254 -SF10000 -C0 -A0 -I0 -HNlocalhost -HP7184 -P1 -N00("ARM CoreSight SW-DP (ARM Core") -D00(2BA01477) -L00(0) -TO131090 -TC10000000 -TT10000000 -TP21 -TDS8007 -TDT0 -TDC1F -TIEFFFFFFFF -TIP8 -FO15 -FD20000000 -FC1000 -FN1 -FF0STM32L4xx_1024.FLM -FS08000000 -FL0100000 -FP0($$Device:STM32L496ZGTx$CMSIS\Flash\STM32L4xx_1024.FLM) + + + + + 0 + 0 + 573 + 1 +
134235804
+ 0 + 0 + 0 + 0 + 0 + 1 + ..\..\..\..\kernel\core\tos_mmheap.c + + \\TencentOS_tiny\../../../../kernel/core/tos_mmheap.c\573 +
+
+ + + 0 + 1 + k_mmheap_default_pool + + + + 0 + + + 0 + 1 + 1 + 0 + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + + + + 0 + 0 + 0 + + + + + + + + + + 1 + 0 + 0 + 2 + 10000000 + +
+
+ + + Application/MDK-ARM + 1 + 0 + 0 + 0 + + 1 + 1 + 2 + 0 + 0 + 0 + startup_stm32l496xx.s + startup_stm32l496xx.s + 0 + 0 + + + + + Application/User + 1 + 0 + 0 + 0 + + 2 + 2 + 1 + 0 + 0 + 0 + ..\..\BSP\Src\main.c + main.c + 0 + 0 + + + 2 + 3 + 1 + 0 + 0 + 0 + ..\..\BSP\Src\gpio.c + gpio.c + 0 + 0 + + + 2 + 4 + 1 + 0 + 0 + 0 + ..\..\BSP\Src\stm32l4xx_hal_msp.c + stm32l4xx_hal_msp.c + 0 + 0 + + + 2 + 5 + 1 + 0 + 0 + 0 + ..\..\BSP\Src\stm32l4xx_it.c + stm32l4xx_it.c + 0 + 0 + + + 2 + 6 + 1 + 0 + 0 + 0 + ..\..\BSP\Src\sys.c + sys.c + 0 + 0 + + + 2 + 7 + 1 + 0 + 0 + 0 + ..\..\BSP\Src\usart.c + usart.c + 0 + 0 + + + 2 + 8 + 1 + 0 + 0 + 0 + ..\..\BSP\Src\mcu_init.c + mcu_init.c + 0 + 0 + + + 2 + 9 + 1 + 0 + 0 + 0 + ..\..\BSP\Src\dcmi.c + dcmi.c + 0 + 0 + + + 2 + 10 + 1 + 0 + 0 + 0 + ..\..\BSP\Src\dma.c + dma.c + 0 + 0 + + + 2 + 11 + 1 + 0 + 0 + 0 + ..\..\BSP\Src\i2c.c + i2c.c + 0 + 0 + + + 2 + 12 + 1 + 0 + 0 + 0 + ..\..\BSP\Src\spi.c + spi.c + 0 + 0 + + + 2 + 13 + 1 + 0 + 0 + 0 + ..\..\BSP\Src\tim.c + tim.c + 0 + 0 + + + + + Drivers/STM32L4xx_HAL_Driver + 1 + 0 + 0 + 0 + + 3 + 14 + 1 + 0 + 0 + 0 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_uart.c + stm32l4xx_hal_uart.c + 0 + 0 + + + 3 + 15 + 1 + 0 + 0 + 0 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_uart_ex.c + stm32l4xx_hal_uart_ex.c + 0 + 0 + + + 3 + 16 + 1 + 0 + 0 + 0 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal.c + stm32l4xx_hal.c + 0 + 0 + + + 3 + 17 + 1 + 0 + 0 + 0 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_i2c.c + stm32l4xx_hal_i2c.c + 0 + 0 + + + 3 + 18 + 1 + 0 + 0 + 0 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_i2c_ex.c + stm32l4xx_hal_i2c_ex.c + 0 + 0 + + + 3 + 19 + 1 + 0 + 0 + 0 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_rcc.c + stm32l4xx_hal_rcc.c + 0 + 0 + + + 3 + 20 + 1 + 0 + 0 + 0 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_rcc_ex.c + stm32l4xx_hal_rcc_ex.c + 0 + 0 + + + 3 + 21 + 1 + 0 + 0 + 0 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_flash.c + stm32l4xx_hal_flash.c + 0 + 0 + + + 3 + 22 + 1 + 0 + 0 + 0 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_flash_ex.c + stm32l4xx_hal_flash_ex.c + 0 + 0 + + + 3 + 23 + 1 + 0 + 0 + 0 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_flash_ramfunc.c + stm32l4xx_hal_flash_ramfunc.c + 0 + 0 + + + 3 + 24 + 1 + 0 + 0 + 0 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_gpio.c + stm32l4xx_hal_gpio.c + 0 + 0 + + + 3 + 25 + 1 + 0 + 0 + 0 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_dma.c + stm32l4xx_hal_dma.c + 0 + 0 + + + 3 + 26 + 1 + 0 + 0 + 0 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_dma_ex.c + stm32l4xx_hal_dma_ex.c + 0 + 0 + + + 3 + 27 + 1 + 0 + 0 + 0 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_pwr.c + stm32l4xx_hal_pwr.c + 0 + 0 + + + 3 + 28 + 1 + 0 + 0 + 0 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_pwr_ex.c + stm32l4xx_hal_pwr_ex.c + 0 + 0 + + + 3 + 29 + 1 + 0 + 0 + 0 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_cortex.c + stm32l4xx_hal_cortex.c + 0 + 0 + + + 3 + 30 + 1 + 0 + 0 + 0 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_exti.c + stm32l4xx_hal_exti.c + 0 + 0 + + + 3 + 31 + 1 + 0 + 0 + 0 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_tim.c + stm32l4xx_hal_tim.c + 0 + 0 + + + 3 + 32 + 1 + 0 + 0 + 0 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_tim_ex.c + stm32l4xx_hal_tim_ex.c + 0 + 0 + + + 3 + 33 + 1 + 0 + 0 + 0 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_dcmi.c + stm32l4xx_hal_dcmi.c + 0 + 0 + + + 3 + 34 + 1 + 0 + 0 + 0 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_spi.c + stm32l4xx_hal_spi.c + 0 + 0 + + + 3 + 35 + 1 + 0 + 0 + 0 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_spi_ex.c + stm32l4xx_hal_spi_ex.c + 0 + 0 + + + + + Drivers/CMSIS + 0 + 0 + 0 + 0 + + 4 + 36 + 1 + 0 + 0 + 0 + ..\..\BSP\Src\system_stm32l4xx.c + system_stm32l4xx.c + 0 + 0 + + + + + tos/arch + 0 + 0 + 0 + 0 + + 5 + 37 + 1 + 0 + 0 + 0 + ..\..\..\..\arch\arm\arm-v7m\common\tos_cpu.c + tos_cpu.c + 0 + 0 + + + 5 + 38 + 1 + 0 + 0 + 0 + ..\..\..\..\arch\arm\arm-v7m\cortex-m4\armcc\port_c.c + port_c.c + 0 + 0 + + + 5 + 39 + 2 + 0 + 0 + 0 + ..\..\..\..\arch\arm\arm-v7m\cortex-m4\armcc\port_s.S + port_s.S + 0 + 0 + + + + + tos/kernel + 0 + 0 + 0 + 0 + + 6 + 40 + 1 + 0 + 0 + 0 + ..\..\..\..\kernel\core\tos_binary_heap.c + tos_binary_heap.c + 0 + 0 + + + 6 + 41 + 1 + 0 + 0 + 0 + ..\..\..\..\kernel\core\tos_char_fifo.c + tos_char_fifo.c + 0 + 0 + + + 6 + 42 + 1 + 0 + 0 + 0 + ..\..\..\..\kernel\core\tos_completion.c + tos_completion.c + 0 + 0 + + + 6 + 43 + 1 + 0 + 0 + 0 + ..\..\..\..\kernel\core\tos_countdownlatch.c + tos_countdownlatch.c + 0 + 0 + + + 6 + 44 + 1 + 0 + 0 + 0 + ..\..\..\..\kernel\core\tos_event.c + tos_event.c + 0 + 0 + + + 6 + 45 + 1 + 0 + 0 + 0 + ..\..\..\..\kernel\core\tos_global.c + tos_global.c + 0 + 0 + + + 6 + 46 + 1 + 0 + 0 + 0 + ..\..\..\..\kernel\core\tos_mail_queue.c + tos_mail_queue.c + 0 + 0 + + + 6 + 47 + 1 + 0 + 0 + 0 + ..\..\..\..\kernel\core\tos_message_queue.c + tos_message_queue.c + 0 + 0 + + + 6 + 48 + 1 + 0 + 0 + 0 + ..\..\..\..\kernel\core\tos_mmblk.c + tos_mmblk.c + 0 + 0 + + + 6 + 49 + 1 + 0 + 0 + 0 + ..\..\..\..\kernel\core\tos_mmheap.c + tos_mmheap.c + 0 + 0 + + + 6 + 50 + 1 + 0 + 0 + 0 + ..\..\..\..\kernel\core\tos_mutex.c + tos_mutex.c + 0 + 0 + + + 6 + 51 + 1 + 0 + 0 + 0 + ..\..\..\..\kernel\core\tos_pend.c + tos_pend.c + 0 + 0 + + + 6 + 52 + 1 + 0 + 0 + 0 + ..\..\..\..\kernel\core\tos_priority_mail_queue.c + tos_priority_mail_queue.c + 0 + 0 + + + 6 + 53 + 1 + 0 + 0 + 0 + ..\..\..\..\kernel\core\tos_priority_message_queue.c + tos_priority_message_queue.c + 0 + 0 + + + 6 + 54 + 1 + 0 + 0 + 0 + ..\..\..\..\kernel\core\tos_priority_queue.c + tos_priority_queue.c + 0 + 0 + + + 6 + 55 + 1 + 0 + 0 + 0 + ..\..\..\..\kernel\core\tos_ring_queue.c + tos_ring_queue.c + 0 + 0 + + + 6 + 56 + 1 + 0 + 0 + 0 + ..\..\..\..\kernel\core\tos_robin.c + tos_robin.c + 0 + 0 + + + 6 + 57 + 1 + 0 + 0 + 0 + ..\..\..\..\kernel\core\tos_sched.c + tos_sched.c + 0 + 0 + + + 6 + 58 + 1 + 0 + 0 + 0 + ..\..\..\..\kernel\core\tos_sem.c + tos_sem.c + 0 + 0 + + + 6 + 59 + 1 + 0 + 0 + 0 + ..\..\..\..\kernel\core\tos_sys.c + tos_sys.c + 0 + 0 + + + 6 + 60 + 1 + 0 + 0 + 0 + ..\..\..\..\kernel\core\tos_task.c + tos_task.c + 0 + 0 + + + 6 + 61 + 1 + 0 + 0 + 0 + ..\..\..\..\kernel\core\tos_tick.c + tos_tick.c + 0 + 0 + + + 6 + 62 + 1 + 0 + 0 + 0 + ..\..\..\..\kernel\core\tos_time.c + tos_time.c + 0 + 0 + + + 6 + 63 + 1 + 0 + 0 + 0 + ..\..\..\..\kernel\core\tos_timer.c + tos_timer.c + 0 + 0 + + + + + tos/cmsis_os + 0 + 0 + 0 + 0 + + 7 + 64 + 1 + 0 + 0 + 0 + ..\..\..\..\osal\cmsis_os\cmsis_os.c + cmsis_os.c + 0 + 0 + + + + + hal + 1 + 0 + 0 + 0 + + 8 + 65 + 1 + 0 + 0 + 0 + ..\..\BSP\Hardware\Src\lcd_config.c + lcd_config.c + 0 + 0 + + + 8 + 66 + 1 + 0 + 0 + 0 + ..\..\BSP\Hardware\Src\lcd_2inch4.c + lcd_2inch4.c + 0 + 0 + + + 8 + 67 + 1 + 0 + 0 + 0 + ..\..\BSP\Hardware\Src\ov2640.c + ov2640.c + 0 + 0 + + + 8 + 68 + 1 + 0 + 0 + 0 + ..\..\BSP\Hardware\Src\sccb.c + sccb.c + 0 + 0 + + + 8 + 69 + 1 + 0 + 0 + 0 + ..\..\BSP\Hardware\Src\delay.c + delay.c + 0 + 0 + + + + + examples + 1 + 0 + 0 + 0 + + 9 + 70 + 1 + 0 + 0 + 0 + ..\..\..\..\examples\tflitemicro_person_detection\tflitemicro_person_detection.c + tflitemicro_person_detection.c + 0 + 0 + + + + + ::CMSIS + 0 + 0 + 0 + 1 + + +
diff --git a/board/NUCLEO_STM32L496ZG/KEIL/tflitemicro_person_detection/TencentOS_tiny.uvprojx b/board/NUCLEO_STM32L496ZG/KEIL/tflitemicro_person_detection/TencentOS_tiny.uvprojx new file mode 100644 index 00000000..33da2977 --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/KEIL/tflitemicro_person_detection/TencentOS_tiny.uvprojx @@ -0,0 +1,813 @@ + + + + 2.1 + +
### uVision Project, (C) Keil Software
+ + + + TencentOS_tiny + 0x4 + ARM-ADS + 5060750::V5.06 update 6 (build 750)::.\ARMCC + 0 + + + STM32L496ZGTx + STMicroelectronics + Keil.STM32L4xx_DFP.2.4.0 + http://www.keil.com/pack/ + IRAM(0x20000000-0x2004FFFF) IROM(0x8000000-0x80FFFFF) CLOCK(8000000) FPU2 CPUTYPE("Cortex-M4") + + + + + + + + + + + + + + + $$Device:STM32L496ZGTx$CMSIS\SVD\STM32L4x6.svd + 0 + 0 + + + + + + + 0 + 0 + 0 + 0 + 1 + + TencentOS_tiny\ + TencentOS_tiny + 1 + 0 + 1 + 1 + 1 + + 1 + 0 + 0 + + 0 + 0 + + + 0 + 0 + 0 + 0 + + + 0 + 0 + + + 0 + 0 + 0 + 0 + + + 0 + 0 + + + 0 + 0 + 0 + 0 + + 0 + + + + 0 + 0 + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 0 + 3 + + + 0 + + + SARMCM3.DLL + -REMAP -MPU + DCM.DLL + -pCM4 + SARMCM3.DLL + -MPU + TCM.DLL + -pCM4 + + + + 1 + 0 + 0 + 0 + 16 + + + + + 1 + 0 + 0 + 1 + 1 + 4107 + + 1 + STLink\ST-LINKIII-KEIL_SWO.dll + + + + + + 0 + + + + 0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 0 + 1 + 1 + 0 + 1 + 1 + 0 + 0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 0 + 0 + "Cortex-M4" + + 0 + 0 + 0 + 1 + 1 + 0 + 0 + 2 + 0 + 0 + 0 + 0 + 8 + 1 + 0 + 0 + 0 + 3 + 3 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 0 + 1 + 0 + + + 0 + 0x0 + 0x0 + + + 0 + 0x0 + 0x0 + + + 0 + 0x0 + 0x0 + + + 0 + 0x0 + 0x0 + + + 0 + 0x0 + 0x0 + + + 0 + 0x0 + 0x0 + + + 0 + 0x20000000 + 0x50000 + + + 1 + 0x8000000 + 0x100000 + + + 0 + 0x0 + 0x0 + + + 1 + 0x0 + 0x0 + + + 1 + 0x0 + 0x0 + + + 1 + 0x0 + 0x0 + + + 1 + 0x8000000 + 0x100000 + + + 1 + 0x0 + 0x0 + + + 0 + 0x0 + 0x0 + + + 0 + 0x0 + 0x0 + + + 0 + 0x0 + 0x0 + + + 0 + 0x20000000 + 0x50000 + + + 0 + 0x0 + 0x0 + + + + + + 1 + 4 + 0 + 0 + 1 + 0 + 0 + 0 + 0 + 0 + 2 + 0 + 0 + 1 + 0 + 0 + 1 + 1 + 1 + 1 + 0 + 0 + 0 + + + USE_HAL_DRIVER,STM32L496xx + + ..\..\BSP\Inc;..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Inc;..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Inc\Legacy;..\..\..\..\platform\vendor_bsp\st\CMSIS\Device\ST\STM32L4xx\Include;..\..\..\..\platform\vendor_bsp\st\CMSIS\Include;..\..\..\..\arch\arm\arm-v7m\common\include;..\..\..\..\arch\arm\arm-v7m\cortex-m4\armcc;..\..\..\..\kernel\core\include;..\..\..\..\kernel\pm\include;..\..\..\..\osal\cmsis_os;..\..\..\..\examples\hello_world;..\..\TOS_CONFIG;..\..\..\..\net\at\include;..\..\..\..\kernel\hal\include;..\..\BSP\Hardware\Inc + + + + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 4 + + + + + + + + + 1 + 0 + 0 + 0 + 1 + 0 + 0x08000000 + 0x20000000 + + + + + + + + + + + + + Application/MDK-ARM + + + startup_stm32l496xx.s + 2 + startup_stm32l496xx.s + + + + + Application/User + + + main.c + 1 + ..\..\BSP\Src\main.c + + + gpio.c + 1 + ..\..\BSP\Src\gpio.c + + + stm32l4xx_hal_msp.c + 1 + ..\..\BSP\Src\stm32l4xx_hal_msp.c + + + stm32l4xx_it.c + 1 + ..\..\BSP\Src\stm32l4xx_it.c + + + sys.c + 1 + ..\..\BSP\Src\sys.c + + + usart.c + 1 + ..\..\BSP\Src\usart.c + + + mcu_init.c + 1 + ..\..\BSP\Src\mcu_init.c + + + dcmi.c + 1 + ..\..\BSP\Src\dcmi.c + + + dma.c + 1 + ..\..\BSP\Src\dma.c + + + i2c.c + 1 + ..\..\BSP\Src\i2c.c + + + spi.c + 1 + ..\..\BSP\Src\spi.c + + + tim.c + 1 + ..\..\BSP\Src\tim.c + + + + + Drivers/STM32L4xx_HAL_Driver + + + stm32l4xx_hal_uart.c + 1 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_uart.c + + + stm32l4xx_hal_uart_ex.c + 1 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_uart_ex.c + + + stm32l4xx_hal.c + 1 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal.c + + + stm32l4xx_hal_i2c.c + 1 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_i2c.c + + + stm32l4xx_hal_i2c_ex.c + 1 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_i2c_ex.c + + + stm32l4xx_hal_rcc.c + 1 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_rcc.c + + + stm32l4xx_hal_rcc_ex.c + 1 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_rcc_ex.c + + + stm32l4xx_hal_flash.c + 1 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_flash.c + + + stm32l4xx_hal_flash_ex.c + 1 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_flash_ex.c + + + stm32l4xx_hal_flash_ramfunc.c + 1 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_flash_ramfunc.c + + + stm32l4xx_hal_gpio.c + 1 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_gpio.c + + + stm32l4xx_hal_dma.c + 1 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_dma.c + + + stm32l4xx_hal_dma_ex.c + 1 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_dma_ex.c + + + stm32l4xx_hal_pwr.c + 1 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_pwr.c + + + stm32l4xx_hal_pwr_ex.c + 1 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_pwr_ex.c + + + stm32l4xx_hal_cortex.c + 1 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_cortex.c + + + stm32l4xx_hal_exti.c + 1 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_exti.c + + + stm32l4xx_hal_tim.c + 1 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_tim.c + + + stm32l4xx_hal_tim_ex.c + 1 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_tim_ex.c + + + stm32l4xx_hal_dcmi.c + 1 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_dcmi.c + + + stm32l4xx_hal_spi.c + 1 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_spi.c + + + stm32l4xx_hal_spi_ex.c + 1 + ..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Src\stm32l4xx_hal_spi_ex.c + + + + + Drivers/CMSIS + + + system_stm32l4xx.c + 1 + ..\..\BSP\Src\system_stm32l4xx.c + + + + + tos/arch + + + tos_cpu.c + 1 + ..\..\..\..\arch\arm\arm-v7m\common\tos_cpu.c + + + port_c.c + 1 + ..\..\..\..\arch\arm\arm-v7m\cortex-m4\armcc\port_c.c + + + port_s.S + 2 + ..\..\..\..\arch\arm\arm-v7m\cortex-m4\armcc\port_s.S + + + + + tos/kernel + + + tos_binary_heap.c + 1 + ..\..\..\..\kernel\core\tos_binary_heap.c + + + tos_char_fifo.c + 1 + ..\..\..\..\kernel\core\tos_char_fifo.c + + + tos_completion.c + 1 + ..\..\..\..\kernel\core\tos_completion.c + + + tos_countdownlatch.c + 1 + ..\..\..\..\kernel\core\tos_countdownlatch.c + + + tos_event.c + 1 + ..\..\..\..\kernel\core\tos_event.c + + + tos_global.c + 1 + ..\..\..\..\kernel\core\tos_global.c + + + tos_mail_queue.c + 1 + ..\..\..\..\kernel\core\tos_mail_queue.c + + + tos_message_queue.c + 1 + ..\..\..\..\kernel\core\tos_message_queue.c + + + tos_mmblk.c + 1 + ..\..\..\..\kernel\core\tos_mmblk.c + + + tos_mmheap.c + 1 + ..\..\..\..\kernel\core\tos_mmheap.c + + + tos_mutex.c + 1 + ..\..\..\..\kernel\core\tos_mutex.c + + + tos_pend.c + 1 + ..\..\..\..\kernel\core\tos_pend.c + + + tos_priority_mail_queue.c + 1 + ..\..\..\..\kernel\core\tos_priority_mail_queue.c + + + tos_priority_message_queue.c + 1 + ..\..\..\..\kernel\core\tos_priority_message_queue.c + + + tos_priority_queue.c + 1 + ..\..\..\..\kernel\core\tos_priority_queue.c + + + tos_ring_queue.c + 1 + ..\..\..\..\kernel\core\tos_ring_queue.c + + + tos_robin.c + 1 + ..\..\..\..\kernel\core\tos_robin.c + + + tos_sched.c + 1 + ..\..\..\..\kernel\core\tos_sched.c + + + tos_sem.c + 1 + ..\..\..\..\kernel\core\tos_sem.c + + + tos_sys.c + 1 + ..\..\..\..\kernel\core\tos_sys.c + + + tos_task.c + 1 + ..\..\..\..\kernel\core\tos_task.c + + + tos_tick.c + 1 + ..\..\..\..\kernel\core\tos_tick.c + + + tos_time.c + 1 + ..\..\..\..\kernel\core\tos_time.c + + + tos_timer.c + 1 + ..\..\..\..\kernel\core\tos_timer.c + + + + + tos/cmsis_os + + + cmsis_os.c + 1 + ..\..\..\..\osal\cmsis_os\cmsis_os.c + + + + + hal + + + lcd_config.c + 1 + ..\..\BSP\Hardware\Src\lcd_config.c + + + lcd_2inch4.c + 1 + ..\..\BSP\Hardware\Src\lcd_2inch4.c + + + ov2640.c + 1 + ..\..\BSP\Hardware\Src\ov2640.c + + + sccb.c + 1 + ..\..\BSP\Hardware\Src\sccb.c + + + delay.c + 1 + ..\..\BSP\Hardware\Src\delay.c + + + + + examples + + + tflitemicro_person_detection.c + 1 + ..\..\..\..\examples\tflitemicro_person_detection\tflitemicro_person_detection.c + + + + + ::CMSIS + + + + + + + + + + + + + + + + + + + + + + <Project Info> + + + + + + 0 + 1 + + + + +
diff --git a/board/NUCLEO_STM32L496ZG/KEIL/tflitemicro_person_detection/startup_stm32l496xx.s b/board/NUCLEO_STM32L496ZG/KEIL/tflitemicro_person_detection/startup_stm32l496xx.s new file mode 100644 index 00000000..3ebfcc32 --- /dev/null +++ b/board/NUCLEO_STM32L496ZG/KEIL/tflitemicro_person_detection/startup_stm32l496xx.s @@ -0,0 +1,450 @@ +;******************************************************************************* +;* File Name : startup_stm32l496xx.s +;* Author : MCD Application Team +;* Description : STM32L496xx Ultra Low Power devices vector table for MDK-ARM toolchain. +;* This module performs: +;* - Set the initial SP +;* - Set the initial PC == Reset_Handler +;* - Set the vector table entries with the exceptions ISR address +;* - Branches to __main in the C library (which eventually +;* calls main()). +;* After Reset the Cortex-M4 processor is in Thread mode, +;* priority is Privileged, and the Stack is set to Main. +;* <<< Use Configuration Wizard in Context Menu >>> +;******************************************************************************* +;* +;*

© Copyright (c) 2017 STMicroelectronics. +;* All rights reserved.

+;* +;* This software component is licensed by ST under BSD 3-Clause license, +;* the "License"; You may not use this file except in compliance with the +;* License. You may obtain a copy of the License at: +;* opensource.org/licenses/BSD-3-Clause +;* +;******************************************************************************* +; +; Amount of memory (in bytes) allocated for Stack +; Tailor this value to your application needs +; Stack Configuration +; Stack Size (in Bytes) <0x0-0xFFFFFFFF:8> +; + +Stack_Size EQU 0x400 + + AREA STACK, NOINIT, READWRITE, ALIGN=3 +Stack_Mem SPACE Stack_Size +__initial_sp + + +; Heap Configuration +; Heap Size (in Bytes) <0x0-0xFFFFFFFF:8> +; + +Heap_Size EQU 0x200 + + AREA HEAP, NOINIT, READWRITE, ALIGN=3 +__heap_base +Heap_Mem SPACE Heap_Size +__heap_limit + + PRESERVE8 + THUMB + + +; Vector Table Mapped to Address 0 at Reset + AREA RESET, DATA, READONLY + EXPORT __Vectors + EXPORT __Vectors_End + EXPORT __Vectors_Size + +__Vectors DCD __initial_sp ; Top of Stack + DCD Reset_Handler ; Reset Handler + DCD NMI_Handler ; NMI Handler + DCD HardFault_Handler ; Hard Fault Handler + DCD MemManage_Handler ; MPU Fault Handler + DCD BusFault_Handler ; Bus Fault Handler + DCD UsageFault_Handler ; Usage Fault Handler + DCD 0 ; Reserved + DCD 0 ; Reserved + DCD 0 ; Reserved + DCD 0 ; Reserved + DCD SVC_Handler ; SVCall Handler + DCD DebugMon_Handler ; Debug Monitor Handler + DCD 0 ; Reserved + DCD PendSV_Handler ; PendSV Handler + DCD SysTick_Handler ; SysTick Handler + + ; External Interrupts + DCD WWDG_IRQHandler ; Window WatchDog + DCD PVD_PVM_IRQHandler ; PVD/PVM1/PVM2/PVM3/PVM4 through EXTI Line detection + DCD TAMP_STAMP_IRQHandler ; Tamper and TimeStamps through the EXTI line + DCD RTC_WKUP_IRQHandler ; RTC Wakeup through the EXTI line + DCD FLASH_IRQHandler ; FLASH + DCD RCC_IRQHandler ; RCC + DCD EXTI0_IRQHandler ; EXTI Line0 + DCD EXTI1_IRQHandler ; EXTI Line1 + DCD EXTI2_IRQHandler ; EXTI Line2 + DCD EXTI3_IRQHandler ; EXTI Line3 + DCD EXTI4_IRQHandler ; EXTI Line4 + DCD DMA1_Channel1_IRQHandler ; DMA1 Channel 1 + DCD DMA1_Channel2_IRQHandler ; DMA1 Channel 2 + DCD DMA1_Channel3_IRQHandler ; DMA1 Channel 3 + DCD DMA1_Channel4_IRQHandler ; DMA1 Channel 4 + DCD DMA1_Channel5_IRQHandler ; DMA1 Channel 5 + DCD DMA1_Channel6_IRQHandler ; DMA1 Channel 6 + DCD DMA1_Channel7_IRQHandler ; DMA1 Channel 7 + DCD ADC1_2_IRQHandler ; ADC1, ADC2 + DCD CAN1_TX_IRQHandler ; CAN1 TX + DCD CAN1_RX0_IRQHandler ; CAN1 RX0 + DCD CAN1_RX1_IRQHandler ; CAN1 RX1 + DCD CAN1_SCE_IRQHandler ; CAN1 SCE + DCD EXTI9_5_IRQHandler ; External Line[9:5]s + DCD TIM1_BRK_TIM15_IRQHandler ; TIM1 Break and TIM15 + DCD TIM1_UP_TIM16_IRQHandler ; TIM1 Update and TIM16 + DCD TIM1_TRG_COM_TIM17_IRQHandler ; TIM1 Trigger and Commutation and TIM17 + DCD TIM1_CC_IRQHandler ; TIM1 Capture Compare + DCD TIM2_IRQHandler ; TIM2 + DCD TIM3_IRQHandler ; TIM3 + DCD TIM4_IRQHandler ; TIM4 + DCD I2C1_EV_IRQHandler ; I2C1 Event + DCD I2C1_ER_IRQHandler ; I2C1 Error + DCD I2C2_EV_IRQHandler ; I2C2 Event + DCD I2C2_ER_IRQHandler ; I2C2 Error + DCD SPI1_IRQHandler ; SPI1 + DCD SPI2_IRQHandler ; SPI2 + DCD USART1_IRQHandler ; USART1 + DCD USART2_IRQHandler ; USART2 + DCD USART3_IRQHandler ; USART3 + DCD EXTI15_10_IRQHandler ; External Line[15:10] + DCD RTC_Alarm_IRQHandler ; RTC Alarm (A and B) through EXTI Line + DCD DFSDM1_FLT3_IRQHandler ; DFSDM1 Filter 3 global Interrupt + DCD TIM8_BRK_IRQHandler ; TIM8 Break Interrupt + DCD TIM8_UP_IRQHandler ; TIM8 Update Interrupt + DCD TIM8_TRG_COM_IRQHandler ; TIM8 Trigger and Commutation Interrupt + DCD TIM8_CC_IRQHandler ; TIM8 Capture Compare Interrupt + DCD ADC3_IRQHandler ; ADC3 global Interrupt + DCD FMC_IRQHandler ; FMC + DCD SDMMC1_IRQHandler ; SDMMC1 + DCD TIM5_IRQHandler ; TIM5 + DCD SPI3_IRQHandler ; SPI3 + DCD UART4_IRQHandler ; UART4 + DCD UART5_IRQHandler ; UART5 + DCD TIM6_DAC_IRQHandler ; TIM6 and DAC1&2 underrun errors + DCD TIM7_IRQHandler ; TIM7 + DCD DMA2_Channel1_IRQHandler ; DMA2 Channel 1 + DCD DMA2_Channel2_IRQHandler ; DMA2 Channel 2 + DCD DMA2_Channel3_IRQHandler ; DMA2 Channel 3 + DCD DMA2_Channel4_IRQHandler ; DMA2 Channel 4 + DCD DMA2_Channel5_IRQHandler ; DMA2 Channel 5 + DCD DFSDM1_FLT0_IRQHandler ; DFSDM1 Filter 0 global Interrupt + DCD DFSDM1_FLT1_IRQHandler ; DFSDM1 Filter 1 global Interrupt + DCD DFSDM1_FLT2_IRQHandler ; DFSDM1 Filter 2 global Interrupt + DCD COMP_IRQHandler ; COMP Interrupt + DCD LPTIM1_IRQHandler ; LP TIM1 interrupt + DCD LPTIM2_IRQHandler ; LP TIM2 interrupt + DCD OTG_FS_IRQHandler ; USB OTG FS + DCD DMA2_Channel6_IRQHandler ; DMA2 Channel 6 + DCD DMA2_Channel7_IRQHandler ; DMA2 Channel 7 + DCD LPUART1_IRQHandler ; LP UART1 interrupt + DCD QUADSPI_IRQHandler ; Quad SPI global interrupt + DCD I2C3_EV_IRQHandler ; I2C3 event + DCD I2C3_ER_IRQHandler ; I2C3 error + DCD SAI1_IRQHandler ; Serial Audio Interface 1 global interrupt + DCD SAI2_IRQHandler ; Serial Audio Interface 2 global interrupt + DCD SWPMI1_IRQHandler ; Serial Wire Interface 1 global interrupt + DCD TSC_IRQHandler ; Touch Sense Controller global interrupt + DCD LCD_IRQHandler ; LCD global interrupt + DCD 0 ; Reserved + DCD RNG_IRQHandler ; RNG global interrupt + DCD FPU_IRQHandler ; FPU + DCD CRS_IRQHandler ; CRS error + DCD I2C4_EV_IRQHandler ; I2C4 event + DCD I2C4_ER_IRQHandler ; I2C4 error + DCD DCMI_IRQHandler ; DCMI global interrupt + DCD CAN2_TX_IRQHandler ; CAN2 TX + DCD CAN2_RX0_IRQHandler ; CAN2 RX0 + DCD CAN2_RX1_IRQHandler ; CAN2 RX1 + DCD CAN2_SCE_IRQHandler ; CAN2 SCE + DCD DMA2D_IRQHandler ; DMA2D global interrupt + +__Vectors_End + +__Vectors_Size EQU __Vectors_End - __Vectors + + AREA |.text|, CODE, READONLY + +; Reset handler +Reset_Handler PROC + EXPORT Reset_Handler [WEAK] + IMPORT SystemInit + IMPORT __main + + LDR R0, =SystemInit + BLX R0 + LDR R0, =__main + BX R0 + ENDP + +; Dummy Exception Handlers (infinite loops which can be modified) + +NMI_Handler PROC + EXPORT NMI_Handler [WEAK] + B . + ENDP +HardFault_Handler\ + PROC + EXPORT HardFault_Handler [WEAK] + B . + ENDP +MemManage_Handler\ + PROC + EXPORT MemManage_Handler [WEAK] + B . + ENDP +BusFault_Handler\ + PROC + EXPORT BusFault_Handler [WEAK] + B . + ENDP +UsageFault_Handler\ + PROC + EXPORT UsageFault_Handler [WEAK] + B . + ENDP +SVC_Handler PROC + EXPORT SVC_Handler [WEAK] + B . + ENDP +DebugMon_Handler\ + PROC + EXPORT DebugMon_Handler [WEAK] + B . + ENDP +PendSV_Handler PROC + EXPORT PendSV_Handler [WEAK] + B . + ENDP +SysTick_Handler PROC + EXPORT SysTick_Handler [WEAK] + B . + ENDP + +Default_Handler PROC + + EXPORT WWDG_IRQHandler [WEAK] + EXPORT PVD_PVM_IRQHandler [WEAK] + EXPORT TAMP_STAMP_IRQHandler [WEAK] + EXPORT RTC_WKUP_IRQHandler [WEAK] + EXPORT FLASH_IRQHandler [WEAK] + EXPORT RCC_IRQHandler [WEAK] + EXPORT EXTI0_IRQHandler [WEAK] + EXPORT EXTI1_IRQHandler [WEAK] + EXPORT EXTI2_IRQHandler [WEAK] + EXPORT EXTI3_IRQHandler [WEAK] + EXPORT EXTI4_IRQHandler [WEAK] + EXPORT DMA1_Channel1_IRQHandler [WEAK] + EXPORT DMA1_Channel2_IRQHandler [WEAK] + EXPORT DMA1_Channel3_IRQHandler [WEAK] + EXPORT DMA1_Channel4_IRQHandler [WEAK] + EXPORT DMA1_Channel5_IRQHandler [WEAK] + EXPORT DMA1_Channel6_IRQHandler [WEAK] + EXPORT DMA1_Channel7_IRQHandler [WEAK] + EXPORT ADC1_2_IRQHandler [WEAK] + EXPORT CAN1_TX_IRQHandler [WEAK] + EXPORT CAN1_RX0_IRQHandler [WEAK] + EXPORT CAN1_RX1_IRQHandler [WEAK] + EXPORT CAN1_SCE_IRQHandler [WEAK] + EXPORT EXTI9_5_IRQHandler [WEAK] + EXPORT TIM1_BRK_TIM15_IRQHandler [WEAK] + EXPORT TIM1_UP_TIM16_IRQHandler [WEAK] + EXPORT TIM1_TRG_COM_TIM17_IRQHandler [WEAK] + EXPORT TIM1_CC_IRQHandler [WEAK] + EXPORT TIM2_IRQHandler [WEAK] + EXPORT TIM3_IRQHandler [WEAK] + EXPORT TIM4_IRQHandler [WEAK] + EXPORT I2C1_EV_IRQHandler [WEAK] + EXPORT I2C1_ER_IRQHandler [WEAK] + EXPORT I2C2_EV_IRQHandler [WEAK] + EXPORT I2C2_ER_IRQHandler [WEAK] + EXPORT SPI1_IRQHandler [WEAK] + EXPORT SPI2_IRQHandler [WEAK] + EXPORT USART1_IRQHandler [WEAK] + EXPORT USART2_IRQHandler [WEAK] + EXPORT USART3_IRQHandler [WEAK] + EXPORT EXTI15_10_IRQHandler [WEAK] + EXPORT RTC_Alarm_IRQHandler [WEAK] + EXPORT DFSDM1_FLT3_IRQHandler [WEAK] + EXPORT TIM8_BRK_IRQHandler [WEAK] + EXPORT TIM8_UP_IRQHandler [WEAK] + EXPORT TIM8_TRG_COM_IRQHandler [WEAK] + EXPORT TIM8_CC_IRQHandler [WEAK] + EXPORT ADC3_IRQHandler [WEAK] + EXPORT FMC_IRQHandler [WEAK] + EXPORT SDMMC1_IRQHandler [WEAK] + EXPORT TIM5_IRQHandler [WEAK] + EXPORT SPI3_IRQHandler [WEAK] + EXPORT UART4_IRQHandler [WEAK] + EXPORT UART5_IRQHandler [WEAK] + EXPORT TIM6_DAC_IRQHandler [WEAK] + EXPORT TIM7_IRQHandler [WEAK] + EXPORT DMA2_Channel1_IRQHandler [WEAK] + EXPORT DMA2_Channel2_IRQHandler [WEAK] + EXPORT DMA2_Channel3_IRQHandler [WEAK] + EXPORT DMA2_Channel4_IRQHandler [WEAK] + EXPORT DMA2_Channel5_IRQHandler [WEAK] + EXPORT DFSDM1_FLT0_IRQHandler [WEAK] + EXPORT DFSDM1_FLT1_IRQHandler [WEAK] + EXPORT DFSDM1_FLT2_IRQHandler [WEAK] + EXPORT COMP_IRQHandler [WEAK] + EXPORT LPTIM1_IRQHandler [WEAK] + EXPORT LPTIM2_IRQHandler [WEAK] + EXPORT OTG_FS_IRQHandler [WEAK] + EXPORT DMA2_Channel6_IRQHandler [WEAK] + EXPORT DMA2_Channel7_IRQHandler [WEAK] + EXPORT LPUART1_IRQHandler [WEAK] + EXPORT QUADSPI_IRQHandler [WEAK] + EXPORT I2C3_EV_IRQHandler [WEAK] + EXPORT I2C3_ER_IRQHandler [WEAK] + EXPORT SAI1_IRQHandler [WEAK] + EXPORT SAI2_IRQHandler [WEAK] + EXPORT SWPMI1_IRQHandler [WEAK] + EXPORT TSC_IRQHandler [WEAK] + EXPORT LCD_IRQHandler [WEAK] + EXPORT RNG_IRQHandler [WEAK] + EXPORT FPU_IRQHandler [WEAK] + EXPORT CRS_IRQHandler [WEAK] + EXPORT I2C4_EV_IRQHandler [WEAK] + EXPORT I2C4_ER_IRQHandler [WEAK] + EXPORT DCMI_IRQHandler [WEAK] + EXPORT CAN2_TX_IRQHandler [WEAK] + EXPORT CAN2_RX0_IRQHandler [WEAK] + EXPORT CAN2_RX1_IRQHandler [WEAK] + EXPORT CAN2_SCE_IRQHandler [WEAK] + EXPORT DMA2D_IRQHandler [WEAK] + +WWDG_IRQHandler +PVD_PVM_IRQHandler +TAMP_STAMP_IRQHandler +RTC_WKUP_IRQHandler +FLASH_IRQHandler +RCC_IRQHandler +EXTI0_IRQHandler +EXTI1_IRQHandler +EXTI2_IRQHandler +EXTI3_IRQHandler +EXTI4_IRQHandler +DMA1_Channel1_IRQHandler +DMA1_Channel2_IRQHandler +DMA1_Channel3_IRQHandler +DMA1_Channel4_IRQHandler +DMA1_Channel5_IRQHandler +DMA1_Channel6_IRQHandler +DMA1_Channel7_IRQHandler +ADC1_2_IRQHandler +CAN1_TX_IRQHandler +CAN1_RX0_IRQHandler +CAN1_RX1_IRQHandler +CAN1_SCE_IRQHandler +EXTI9_5_IRQHandler +TIM1_BRK_TIM15_IRQHandler +TIM1_UP_TIM16_IRQHandler +TIM1_TRG_COM_TIM17_IRQHandler +TIM1_CC_IRQHandler +TIM2_IRQHandler +TIM3_IRQHandler +TIM4_IRQHandler +I2C1_EV_IRQHandler +I2C1_ER_IRQHandler +I2C2_EV_IRQHandler +I2C2_ER_IRQHandler +SPI1_IRQHandler +SPI2_IRQHandler +USART1_IRQHandler +USART2_IRQHandler +USART3_IRQHandler +EXTI15_10_IRQHandler +RTC_Alarm_IRQHandler +DFSDM1_FLT3_IRQHandler +TIM8_BRK_IRQHandler +TIM8_UP_IRQHandler +TIM8_TRG_COM_IRQHandler +TIM8_CC_IRQHandler +ADC3_IRQHandler +FMC_IRQHandler +SDMMC1_IRQHandler +TIM5_IRQHandler +SPI3_IRQHandler +UART4_IRQHandler +UART5_IRQHandler +TIM6_DAC_IRQHandler +TIM7_IRQHandler +DMA2_Channel1_IRQHandler +DMA2_Channel2_IRQHandler +DMA2_Channel3_IRQHandler +DMA2_Channel4_IRQHandler +DMA2_Channel5_IRQHandler +DFSDM1_FLT0_IRQHandler +DFSDM1_FLT1_IRQHandler +DFSDM1_FLT2_IRQHandler +COMP_IRQHandler +LPTIM1_IRQHandler +LPTIM2_IRQHandler +OTG_FS_IRQHandler +DMA2_Channel6_IRQHandler +DMA2_Channel7_IRQHandler +LPUART1_IRQHandler +QUADSPI_IRQHandler +I2C3_EV_IRQHandler +I2C3_ER_IRQHandler +SAI1_IRQHandler +SAI2_IRQHandler +SWPMI1_IRQHandler +TSC_IRQHandler +LCD_IRQHandler +RNG_IRQHandler +FPU_IRQHandler +CRS_IRQHandler +I2C4_EV_IRQHandler +I2C4_ER_IRQHandler +DCMI_IRQHandler +CAN2_TX_IRQHandler +CAN2_RX0_IRQHandler +CAN2_RX1_IRQHandler +CAN2_SCE_IRQHandler +DMA2D_IRQHandler + + B . + + ENDP + + ALIGN + +;******************************************************************************* +; User Stack and Heap initialization +;******************************************************************************* + IF :DEF:__MICROLIB + + EXPORT __initial_sp + EXPORT __heap_base + EXPORT __heap_limit + + ELSE + + IMPORT __use_two_region_memory + EXPORT __user_initial_stackheap + +__user_initial_stackheap + + LDR R0, = Heap_Mem + LDR R1, =(Stack_Mem + Stack_Size) + LDR R2, = (Heap_Mem + Heap_Size) + LDR R3, = Stack_Mem + BX LR + + ALIGN + + ENDIF + + END + +;************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE***** diff --git a/board/TencentOS_tiny_EVB_MX_Plus/KEIL/fatfs_through_vfs/DebugConfig/TencentOS_tiny_STM32L431RCTx.dbgconf b/board/TencentOS_tiny_EVB_MX_Plus/KEIL/fatfs_through_vfs/DebugConfig/TencentOS_tiny_STM32L431RCTx.dbgconf new file mode 100644 index 00000000..713c198e --- /dev/null +++ b/board/TencentOS_tiny_EVB_MX_Plus/KEIL/fatfs_through_vfs/DebugConfig/TencentOS_tiny_STM32L431RCTx.dbgconf @@ -0,0 +1,70 @@ +// File: STM32L43x_44x_45x_46x.dbgconf +// Version: 1.0.0 +// Note: refer to STM32L43xxx STM32L44xxx STM32L45xxx STM32L46xxx Reference manual (RM0394) +// refer to STM32L431xx STM32L432xx STM32L433xx STM32L442xx STM32L443xx STM32L451xx STM32L452xx STM32L462xx datasheets + +// <<< Use Configuration Wizard in Context Menu >>> + +// Debug MCU configuration register (DBGMCU_CR) +// DBG_STANDBY Debug Standby mode +// DBG_STOP Debug Stop mode +// DBG_SLEEP Debug Sleep mode +// +DbgMCU_CR = 0x00000007; + +// Debug MCU APB1 freeze register1 (DBGMCU_APB1FZR1) +// Reserved bits must be kept at reset value +// DBG_LPTIM1_STOP LPTIM1 counter stopped when core is halted +// DBG_CAN1_STOP bxCAN1 stopped when core is halted +// DBG_I2C3_STOP I2C3 SMBUS timeout counter stopped when core is halted +// DBG_I2C2_STOP I2C2 SMBUS timeout counter stopped when core is halted +// DBG_I2C1_STOP I2C1 SMBUS timeout counter stopped when core is halted +// DBG_IWDG_STOP Independent watchdog counter stopped when core is halted +// DBG_WWDG_STOP Window watchdog counter stopped when core is halted +// DBG_RTC_STOP RTC counter stopped when core is halted +// DBG_TIM7_STOP TIM7 counter stopped when core is halted +// DBG_TIM6_STOP TIM6 counter stopped when core is halted +// DBG_TIM2_STOP TIM2 counter stopped when core is halted +// +DbgMCU_APB1_Fz1 = 0x00000000; + +// Debug MCU APB1 freeze register 2 (DBGMCU_APB1FZR2) +// Reserved bits must be kept at reset value +// DBG_LPTIM2_STOP LPTIM2 counter stopped when core is halted +// +DbgMCU_APB1_Fz2 = 0x00000000; + +// Debug MCU APB2 freeze register (DBGMCU_APB2FZR) +// Reserved bits must be kept at reset value +// DBG_TIM16_STOP TIM16 counter stopped when core is halted +// DBG_TIM15_STOP TIM15 counter stopped when core is halted +// DBG_TIM1_STOP TIM1 counter stopped when core is halted +// +DbgMCU_APB2_Fz = 0x00000000; + +// TPIU Pin Routing (TRACECLK fixed on Pin PE2) +// TRACECLK: Pin PE2 +// TRACED0 +// ETM Trace Data 0 +// <0x00040003=> Pin PE3 +// <0x00020001=> Pin PC1 +// TRACED1 +// ETM Trace Data 1 +// <0x00040004=> Pin PE4 +// <0x0002000A=> Pin PC10 +// TRACED2 +// ETM Trace Data 2 +// <0x00040005=> Pin PE5 +// <0x00030002=> Pin PD2 +// TRACED3 +// ETM Trace Data 3 +// <0x00040006=> Pin PE6 +// <0x0002000C=> Pin PC12 +// +TraceClk_Pin = 0x00040002; +TraceD0_Pin = 0x00040003; +TraceD1_Pin = 0x00040004; +TraceD2_Pin = 0x00040005; +TraceD3_Pin = 0x00040006; + +// <<< end of configuration section >>> diff --git a/board/TencentOS_tiny_EVB_MX_Plus/KEIL/fatfs_through_vfs/RTE/_TencentOS_tiny/RTE_Components.h b/board/TencentOS_tiny_EVB_MX_Plus/KEIL/fatfs_through_vfs/RTE/_TencentOS_tiny/RTE_Components.h new file mode 100644 index 00000000..248f644f --- /dev/null +++ b/board/TencentOS_tiny_EVB_MX_Plus/KEIL/fatfs_through_vfs/RTE/_TencentOS_tiny/RTE_Components.h @@ -0,0 +1,21 @@ + +/* + * Auto generated Run-Time-Environment Configuration File + * *** Do not modify ! *** + * + * Project: 'TencentOS_tiny' + * Target: 'TencentOS_tiny' + */ + +#ifndef RTE_COMPONENTS_H +#define RTE_COMPONENTS_H + + +/* + * Define the Device Header File: + */ +#define CMSIS_device_header "stm32l4xx.h" + + + +#endif /* RTE_COMPONENTS_H */ diff --git a/board/TencentOS_tiny_EVB_MX_Plus/KEIL/fatfs_through_vfs/TencentOS_tiny.uvguix.yangq b/board/TencentOS_tiny_EVB_MX_Plus/KEIL/fatfs_through_vfs/TencentOS_tiny.uvguix.yangq new file mode 100644 index 00000000..26b671b4 --- /dev/null +++ b/board/TencentOS_tiny_EVB_MX_Plus/KEIL/fatfs_through_vfs/TencentOS_tiny.uvguix.yangq @@ -0,0 +1,1860 @@ + + + + -6.1 + +
### uVision Project, (C) Keil Software
+ + + G:\MyFile Master\1 MyProject\1 tensorflow_lite_micro\0 Project\TencentOS-tiny\board\TencentOS_tiny_EVB_MX_Plus\KEIL\fatfs_through_vfs + + + + + + + 38003 + Registers + 140 90 + + + 346 + Code Coverage + 1010 160 + + + 204 + Performance Analyzer + 1170 + + + + + + 35141 + Event Statistics + + 200 50 700 + + + 1506 + Symbols + + 80 80 80 + + + 1936 + Watch 1 + + 200 133 133 + + + 1937 + Watch 2 + + 200 133 133 + + + 1935 + Call Stack + Locals + + 200 133 133 + + + 2506 + Trace Data + + 75 135 130 95 70 230 200 150 + + + 466 + Source Browser - *** Not Enabled *** + 500 + 300 + + + + + + + + 1 + 1 + 0 + 0 + -1 + + + + + + + 44 + 2 + 3 + + -32000 + -32000 + + + -1 + -1 + + + 120 + -8 + 1618 + 630 + + + + 0 + + 60 + 010000000400000001000000010000000100000001000000000000000200000000000000010000000100000000000000280000002800000000000000 + + + + 0 + Build + + -1 + -1 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F40000004F00000090050000DF000000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 1005 + 1005 + 1 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000660000006001000039030000 + + + 16 + 24080000BB0000001409000086010000 + + + + 109 + 109 + 1 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000660000006001000039030000 + + + 16 + 24080000BB00000040090000FB020000 + + + + 1465 + 1465 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 000000002D02000090050000BD020000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 1466 + 1466 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 1467 + 1467 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 1468 + 1468 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 1506 + 1506 + 0 + 0 + 0 + 0 + 32767 + 0 + 16384 + 0 + + 16 + A3040000660000008D05000001010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 1913 + 1913 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F7000000660000008D050000C6000000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 1935 + 1935 + 0 + 0 + 0 + 0 + 32767 + 0 + 32768 + 0 + + 16 + 03000000300200008D050000A4020000 + + + 16 + 24080000BB0000001409000086010000 + + + + 1936 + 1936 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 24080000BB0000001409000086010000 + + + + 1937 + 1937 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 24080000BB0000001409000086010000 + + + + 1939 + 1939 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 1940 + 1940 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 1941 + 1941 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 1942 + 1942 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 195 + 195 + 1 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000660000006001000039030000 + + + 16 + 24080000BB00000040090000FB020000 + + + + 196 + 196 + 1 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000660000006001000039030000 + + + 16 + 24080000BB00000040090000FB020000 + + + + 197 + 197 + 1 + 0 + 0 + 0 + 32767 + 0 + 32768 + 0 + + 16 + 000000006A03000080070000E6030000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 198 + 198 + 0 + 0 + 0 + 0 + 32767 + 0 + 32768 + 0 + + 16 + 000000001902000090050000BD020000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 199 + 199 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 030000006D0300008D050000CD030000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 203 + 203 + 0 + 0 + 0 + 0 + 32767 + 0 + 8192 + 0 + + 16 + F40000006300000090050000DF000000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 204 + 204 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F7000000660000008D050000C6000000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 221 + 221 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 00000000000000000000000000000000 + + + 16 + 0A0000000A0000006E0000006E000000 + + + + 2506 + 2506 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A0040000630000009005000029020000 + + + 16 + 24080000BB0000001409000086010000 + + + + 2507 + 2507 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 000000002D02000090050000A9020000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 343 + 343 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F7000000660000008D050000C6000000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 346 + 346 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F7000000660000008D050000C6000000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 35141 + 35141 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F40000006300000090050000DF000000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35824 + 35824 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F7000000660000008D050000C6000000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 35885 + 35885 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35886 + 35886 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35887 + 35887 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35888 + 35888 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35889 + 35889 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35890 + 35890 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35891 + 35891 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35892 + 35892 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35893 + 35893 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35894 + 35894 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35895 + 35895 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35896 + 35896 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35897 + 35897 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35898 + 35898 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35899 + 35899 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35900 + 35900 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35901 + 35901 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35902 + 35902 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35903 + 35903 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35904 + 35904 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 35905 + 35905 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 38003 + 38003 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 0300000066000000ED000000A4020000 + + + 16 + 24080000BB00000040090000FB020000 + + + + 38007 + 38007 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 000000006A03000090050000E6030000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 436 + 436 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 030000006D0300008D050000CD030000 + + + 16 + 24080000BB00000040090000FB020000 + + + + 437 + 437 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 24080000BB0000001409000086010000 + + + + 440 + 440 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 24080000BB0000001409000086010000 + + + + 463 + 463 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 030000006D0300008D050000CD030000 + + + 16 + 24080000BB00000040090000FB020000 + + + + 466 + 466 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 030000006D0300008D050000CD030000 + + + 16 + 24080000BB00000040090000FB020000 + + + + 470 + 470 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F7000000660000008D050000C6000000 + + + 16 + 24080000BB000000EC0A00004B010000 + + + + 50000 + 50000 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50001 + 50001 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50002 + 50002 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50003 + 50003 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50004 + 50004 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50005 + 50005 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50006 + 50006 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50007 + 50007 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50008 + 50008 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50009 + 50009 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50010 + 50010 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50011 + 50011 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50012 + 50012 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50013 + 50013 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50014 + 50014 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50015 + 50015 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50016 + 50016 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50017 + 50017 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50018 + 50018 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 50019 + 50019 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 24080000BB0000001409000086010000 + + + + 59392 + 59392 + 1 + 0 + 0 + 0 + 32767 + 0 + 8192 + 0 + + 16 + 0000000000000000D10300001C000000 + + + 16 + 0A0000000A0000006E0000006E000000 + + + + 59393 + 0 + 1 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 00000000E603000080070000F9030000 + + + 16 + 0A0000000A0000006E0000006E000000 + + + + 59399 + 59399 + 1 + 0 + 0 + 0 + 32767 + 0 + 8192 + 1 + + 16 + 000000001C000000E701000038000000 + + + 16 + 0A0000000A0000006E0000006E000000 + + + + 59400 + 59400 + 0 + 0 + 0 + 0 + 32767 + 0 + 8192 + 2 + + 16 + 00000000380000006F02000054000000 + + + 16 + 0A0000000A0000006E0000006E000000 + + + + 824 + 824 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 24080000BB0000001409000086010000 + + + + 3334 + 000000000B000000000000000020000000000000FFFFFFFFFFFFFFFFF4000000DF00000090050000E3000000000000000100001004000000010000000000000000000000FFFFFFFF08000000CB00000057010000CC000000F08B00005A01000079070000D601000045890000FFFF02000B004354616262656450616E65002000000000000024080000BB000000EC0A00004B010000F40000004F00000090050000DF0000000000000040280046080000000B446973617373656D626C7900000000CB00000001000000FFFFFFFFFFFFFFFF14506572666F726D616E636520416E616C797A6572000000005701000001000000FFFFFFFFFFFFFFFF14506572666F726D616E636520416E616C797A657200000000CC00000001000000FFFFFFFFFFFFFFFF0E4C6F67696320416E616C797A657200000000F08B000001000000FFFFFFFFFFFFFFFF0D436F646520436F766572616765000000005A01000001000000FFFFFFFFFFFFFFFF11496E737472756374696F6E205472616365000000007907000001000000FFFFFFFFFFFFFFFF0F53797374656D20416E616C797A657200000000D601000001000000FFFFFFFFFFFFFFFF104576656E742053746174697374696373000000004589000001000000FFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000000000000000000000001000000FFFFFFFFCB00000001000000FFFFFFFFCB000000000000000040000000000000FFFFFFFFFFFFFFFF9C0400004F000000A004000029020000000000000200001004000000010000000000000000000000FFFFFFFF2B000000E2050000CA0900002D8C00002E8C00002F8C0000308C0000318C0000328C0000338C0000348C0000358C0000368C0000378C0000388C0000398C00003A8C00003B8C00003C8C00003D8C00003E8C00003F8C0000408C0000418C000050C3000051C3000052C3000053C3000054C3000055C3000056C3000057C3000058C3000059C300005AC300005BC300005CC300005DC300005EC300005FC3000060C3000061C3000062C3000063C300000180004000000000000024080000BB0000001409000086010000A00400004F000000900500002902000000000000404100462B0000000753796D626F6C7300000000E205000001000000FFFFFFFFFFFFFFFF0A5472616365204461746100000000CA09000001000000FFFFFFFFFFFFFFFF00000000002D8C000001000000FFFFFFFFFFFFFFFF00000000002E8C000001000000FFFFFFFFFFFFFFFF00000000002F8C000001000000FFFFFFFFFFFFFFFF0000000000308C000001000000FFFFFFFFFFFFFFFF0000000000318C000001000000FFFFFFFFFFFFFFFF0000000000328C000001000000FFFFFFFFFFFFFFFF0000000000338C000001000000FFFFFFFFFFFFFFFF0000000000348C000001000000FFFFFFFFFFFFFFFF0000000000358C000001000000FFFFFFFFFFFFFFFF0000000000368C000001000000FFFFFFFFFFFFFFFF0000000000378C000001000000FFFFFFFFFFFFFFFF0000000000388C000001000000FFFFFFFFFFFFFFFF0000000000398C000001000000FFFFFFFFFFFFFFFF00000000003A8C000001000000FFFFFFFFFFFFFFFF00000000003B8C000001000000FFFFFFFFFFFFFFFF00000000003C8C000001000000FFFFFFFFFFFFFFFF00000000003D8C000001000000FFFFFFFFFFFFFFFF00000000003E8C000001000000FFFFFFFFFFFFFFFF00000000003F8C000001000000FFFFFFFFFFFFFFFF0000000000408C000001000000FFFFFFFFFFFFFFFF0000000000418C000001000000FFFFFFFFFFFFFFFF000000000050C3000001000000FFFFFFFFFFFFFFFF000000000051C3000001000000FFFFFFFFFFFFFFFF000000000052C3000001000000FFFFFFFFFFFFFFFF000000000053C3000001000000FFFFFFFFFFFFFFFF000000000054C3000001000000FFFFFFFFFFFFFFFF000000000055C3000001000000FFFFFFFFFFFFFFFF000000000056C3000001000000FFFFFFFFFFFFFFFF000000000057C3000001000000FFFFFFFFFFFFFFFF000000000058C3000001000000FFFFFFFFFFFFFFFF000000000059C3000001000000FFFFFFFFFFFFFFFF00000000005AC3000001000000FFFFFFFFFFFFFFFF00000000005BC3000001000000FFFFFFFFFFFFFFFF00000000005CC3000001000000FFFFFFFFFFFFFFFF00000000005DC3000001000000FFFFFFFFFFFFFFFF00000000005EC3000001000000FFFFFFFFFFFFFFFF00000000005FC3000001000000FFFFFFFFFFFFFFFF000000000060C3000001000000FFFFFFFFFFFFFFFF000000000061C3000001000000FFFFFFFFFFFFFFFF000000000062C3000001000000FFFFFFFFFFFFFFFF000000000063C3000001000000FFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000000000000000000000001000000FFFFFFFFE205000001000000FFFFFFFFE2050000000000000010000001000000FFFFFFFFFFFFFFFF630100004F00000067010000520300000100000002000010040000000100000012FFFFFF87060000FFFFFFFF05000000ED0300006D000000C3000000C4000000739400000180001000000100000024080000BB0000001409000086010000000000004F00000063010000520300000000000040410056050000000750726F6A65637401000000ED03000001000000FFFFFFFFFFFFFFFF05426F6F6B73010000006D00000001000000FFFFFFFFFFFFFFFF0946756E6374696F6E7301000000C300000001000000FFFFFFFFFFFFFFFF0954656D706C6174657301000000C400000001000000FFFFFFFFFFFFFFFF09526567697374657273000000007394000001000000FFFFFFFFFFFFFFFF00000000000000000000000000000000000000000000000001000000FFFFFFFFED03000001000000FFFFFFFFED030000000000000080000000000000FFFFFFFFFFFFFFFF0000000015020000900500001902000000000000010000100400000001000000000000000000000000000000000000000000000001000000C6000000FFFFFFFF0F0000008F070000930700009407000095070000960700009007000091070000B5010000B801000038030000B9050000BA050000BB050000BC050000CB0900000180008000000000000024080000BB0000001409000086010000000000001902000090050000BD02000000000000404100460F0000001343616C6C20537461636B202B204C6F63616C73000000008F07000001000000FFFFFFFFFFFFFFFF0755415254202331000000009307000001000000FFFFFFFFFFFFFFFF0755415254202332000000009407000001000000FFFFFFFFFFFFFFFF0755415254202333000000009507000001000000FFFFFFFFFFFFFFFF15446562756720287072696E74662920566965776572000000009607000001000000FFFFFFFFFFFFFFFF0757617463682031000000009007000001000000FFFFFFFFFFFFFFFF0757617463682032000000009107000001000000FFFFFFFFFFFFFFFF10547261636520457863657074696F6E7300000000B501000001000000FFFFFFFFFFFFFFFF0E4576656E7420436F756E7465727300000000B801000001000000FFFFFFFFFFFFFFFF09554C494E4B706C7573000000003803000001000000FFFFFFFFFFFFFFFF084D656D6F7279203100000000B905000001000000FFFFFFFFFFFFFFFF084D656D6F7279203200000000BA05000001000000FFFFFFFFFFFFFFFF084D656D6F7279203300000000BB05000001000000FFFFFFFFFFFFFFFF084D656D6F7279203400000000BC05000001000000FFFFFFFFFFFFFFFF105472616365204E617669676174696F6E00000000CB09000001000000FFFFFFFFFFFFFFFFFFFFFFFF0000000001000000000000000000000001000000FFFFFFFFC802000019020000CC020000BD02000000000000020000000400000000000000000000000000000000000000000000000000000002000000C6000000FFFFFFFF8F07000001000000FFFFFFFF8F07000001000000C6000000000000000080000001000000FFFFFFFFFFFFFFFF00000000520300008007000056030000010000000100001004000000010000000000000000000000FFFFFFFF06000000C5000000C7000000B4010000D2010000CF010000779400000180008000000100000024080000BB000000EC0A00004B010000000000005603000080070000E60300000000000040820056060000000C4275696C64204F757470757401000000C500000001000000FFFFFFFFFFFFFFFF0D46696E6420496E2046696C657300000000C700000001000000FFFFFFFFFFFFFFFF0A4572726F72204C69737400000000B401000001000000FFFFFFFFFFFFFFFF24536F757263652042726F77736572202D202A2A2A204E6F7420456E61626C6564202A2A2A00000000D201000001000000FFFFFFFFFFFFFFFF0E416C6C205265666572656E63657300000000CF01000001000000FFFFFFFFFFFFFFFF0742726F77736572000000007794000001000000FFFFFFFFFFFFFFFF00000000000000000000000000000000000000000000000001000000FFFFFFFFC500000001000000FFFFFFFFC5000000000000000000000000000000 + + + 59392 + File + + 2972 + 00200000010000002800FFFF01001100434D4643546F6F6C426172427574746F6E00E100000000000000000000000000000000000000000000000100000001000000018001E100000000000001000000000000000000000000000000000100000001000000018003E1000000000400020000000000000000000000000000000001000000010000000180CD7F0000000000000300000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018023E100000000040004000000000000000000000000000000000100000001000000018022E100000000040005000000000000000000000000000000000100000001000000018025E10000000004000600000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001802BE10000000004000700000000000000000000000000000000010000000100000001802CE10000000004000800000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001807A8A0000000004000900000000000000000000000000000000010000000100000001807B8A0000000004000A00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180D3B00000000004000B000000000000000000000000000000000100000001000000018015B10000000004000C0000000000000000000000000000000001000000010000000180F4B00000000004000D000000000000000000000000000000000100000001000000018036B10000000004000E00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180FF88000000000400460000000000000000000000000000000001000000010000000180FE880000000004004500000000000000000000000000000000010000000100000001800B810000000004001300000000000000000000000000000000010000000100000001800C810000000004001400000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180F0880000020000000F000000000000000000000000000000000100000001000000FFFF0100120043555646696E64436F6D626F427574746F6EE803000000000400000000000000000000000000000000000001000000010000009600000002002050000000000665787465726E960000000000000014000665787465726E1253797374656D436C6F636B5F436F6E666967046D61696E0466756E631754465F4C4954455F4D4943524F5F42454E43484D41524B0D675F706572736F6E5F646174611B54465F4C4954455F53545249505F4552524F525F535452494E47531347657443757272656E7454696D655469636B730B54465F4C4954455F414444124F56323634305F504958454C5F5749445448186F76323634305F737667615F696E69745F7265675F74626C0B4F56323634305F496E697418706572736F6E5F6465746563745F6D6F64656C5F64617461066C6F63616C651048414C5F5350495F5472616E736D69740D4445565F5350495F5752495445174C43445F32494E345F5772697465446174615F576F726408476574496D616765125072696E74416C6C6F636174696F6E7328292B5265636F7264696E674D6963726F416C6C6F6361746F723A3A5072696E74416C6C6F636174696F6E7328290000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000018024E10000000000001100000000000000000000000000000000010000000100000001800A810000000004001200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000FFFF01001500434D4643546F6F6C4261724D656E75427574746F6E2280000002000000150000002153746172742F53746F70202644656275672053657373696F6E094374726C2B46350000000000000000000000000100000001000000000000000000000001000000020021802280000000000000150000002153746172742F53746F70202644656275672053657373696F6E094374726C2B4635000000000000000000000000010000000100000000000000000000000100000000002180E0010000000000007500000021456E65726779204D6561737572656D656E742026776974686F75742044656275670000000000000000000000000100000001000000000000000000000001000000000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C488000000000400160000000000000000000000000000000001000000010000000180C988000000000400180000000000000000000000000000000001000000010000000180C788000000000000190000000000000000000000000000000001000000010000002180C8880000000000001700000027264B696C6C20416C6C20427265616B706F696E747320696E2043757272656E7420546172676574000000000000000000000000010000000100000000000000000000000100000003002180C8880000000000001700000027264B696C6C20416C6C20427265616B706F696E747320696E2043757272656E7420546172676574000000000000000000000000010000000100000000000000000000000100000000002180E50100000000000078000000264B696C6C20416C6C20427265616B706F696E747320696E204163746976652050726F6A656374000000000000000000000000010000000100000000000000000000000100000000002180E601000000000000790000002F4B696C6C20416C6C20427265616B706F696E747320696E204D756C74692D50726F6A65637420576F726B73706163650000000000000000000000000100000001000000000000000000000001000000000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000021804C010000020001001A0000000F2650726F6A6563742057696E646F77000000000000000000000000010000000100000000000000000000000100000008002180DD880000000000001A0000000750726F6A656374000000000000000000000000010000000100000000000000000000000100000000002180DC8B0000000000003A00000005426F6F6B73000000000000000000000000010000000100000000000000000000000100000000002180E18B0000000000003B0000000946756E6374696F6E73000000000000000000000000010000000100000000000000000000000100000000002180E28B000000000000400000000954656D706C6174657300000000000000000000000001000000010000000000000000000000010000000000218018890000000000003D0000000E536F757263652042726F777365720000000000000000000000000100000001000000000000000000000001000000000021800000000000000400FFFFFFFF00000000000000000000000000010000000100000000000000000000000100000000002180D988000000000000390000000C4275696C64204F7574707574000000000000000000000000010000000100000000000000000000000100000000002180E38B000000000000410000000B46696E64204F75747075740000000000000000000000000100000001000000000000000000000001000000000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180FB7F0000000000001B000000000000000000000000000000000100000001000000000000000446696C65FF7F0000 + + + 1423 + 2800FFFF01001100434D4643546F6F6C426172427574746F6E00E1000000000000FFFFFFFF000100000000000000010000000000000001000000018001E1000000000000FFFFFFFF000100000000000000010000000000000001000000018003E1000000000000FFFFFFFF0001000000000000000100000000000000010000000180CD7F000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF000000000000000000010000000000000001000000018023E1000000000000FFFFFFFF000100000000000000010000000000000001000000018022E1000000000000FFFFFFFF000100000000000000010000000000000001000000018025E1000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001802BE1000000000000FFFFFFFF00010000000000000001000000000000000100000001802CE1000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001807A8A000000000000FFFFFFFF00010000000000000001000000000000000100000001807B8A000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180D3B0000000000000FFFFFFFF000100000000000000010000000000000001000000018015B1000000000000FFFFFFFF0001000000000000000100000000000000010000000180F4B0000000000000FFFFFFFF000100000000000000010000000000000001000000018036B1000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180FF88000000000000FFFFFFFF0001000000000000000100000000000000010000000180FE88000000000000FFFFFFFF00010000000000000001000000000000000100000001800B81000000000000FFFFFFFF00010000000000000001000000000000000100000001800C81000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180F088000000000000FFFFFFFF0001000000000000000100000000000000010000000180EE7F000000000000FFFFFFFF000100000000000000010000000000000001000000018024E1000000000000FFFFFFFF00010000000000000001000000000000000100000001800A81000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001802280000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180C488000000000000FFFFFFFF0001000000000000000100000000000000010000000180C988000000000000FFFFFFFF0001000000000000000100000000000000010000000180C788000000000000FFFFFFFF0001000000000000000100000000000000010000000180C888000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180DD88000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180FB7F000000000000FFFFFFFF000100000000000000010000000000000001000000 + + + 1423 + 2800FFFF01001100434D4643546F6F6C426172427574746F6E00E100000000000000000000000000000000000000000000000100000001000000018001E100000000000001000000000000000000000000000000000100000001000000018003E1000000000000020000000000000000000000000000000001000000010000000180CD7F0000000000000300000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018023E100000000000004000000000000000000000000000000000100000001000000018022E100000000000005000000000000000000000000000000000100000001000000018025E10000000000000600000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001802BE10000000000000700000000000000000000000000000000010000000100000001802CE10000000000000800000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001807A8A0000000000000900000000000000000000000000000000010000000100000001807B8A0000000000000A00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180D3B00000000000000B000000000000000000000000000000000100000001000000018015B10000000000000C0000000000000000000000000000000001000000010000000180F4B00000000000000D000000000000000000000000000000000100000001000000018036B10000000000000E00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180FF880000000000000F0000000000000000000000000000000001000000010000000180FE880000000000001000000000000000000000000000000000010000000100000001800B810000000000001100000000000000000000000000000000010000000100000001800C810000000000001200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180F088000000000000130000000000000000000000000000000001000000010000000180EE7F00000000000014000000000000000000000000000000000100000001000000018024E10000000000001500000000000000000000000000000000010000000100000001800A810000000000001600000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018022800000000000001700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C488000000000000180000000000000000000000000000000001000000010000000180C988000000000000190000000000000000000000000000000001000000010000000180C7880000000000001A0000000000000000000000000000000001000000010000000180C8880000000000001B00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180DD880000000000001C00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180FB7F0000000000001D000000000000000000000000000000000100000001000000 + + + + 59399 + Build + + 988 + 00200000010000001000FFFF01001100434D4643546F6F6C426172427574746F6ECF7F0000000004001C0000000000000000000000000000000001000000010000000180D07F0000000000001D000000000000000000000000000000000100000001000000018030800000000000001E000000000000000000000000000000000100000001000000FFFF01001500434D4643546F6F6C4261724D656E75427574746F6EC7040000000000006A0000000C4261746368204275696C2664000000000000000000000000010000000100000000000000000000000100000004000580C7040000000000006A0000000C4261746368204275696C266400000000000000000000000001000000010000000000000000000000010000000000058046070000000000006B0000000D42617463682052656275696C640000000000000000000000000100000001000000000000000000000001000000000005804707000000000000FFFFFFFF0B426174636820436C65616E0100000000000000000000000100000001000000000000000000000001000000000005809E8A0000000000001F0000000F4261746326682053657475702E2E2E000000000000000000000000010000000100000000000000000000000100000000000180D17F0000000004002000000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001804C8A0000000000002100000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000FFFF01001900434D4643546F6F6C426172436F6D626F426F78427574746F6EBA00000000000000000000000000000000000000000000000001000000010000009600000003002050000000000E54656E63656E744F535F74696E79960000000000000001000E54656E63656E744F535F74696E79000000000180EB880000000000002200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C07F000000000000230000000000000000000000000000000001000000010000000180B08A000000000400240000000000000000000000000000000001000000010000000180A8010000000000004E00000000000000000000000000000000010000000100000001807202000000000000530000000000000000000000000000000001000000010000000180BE010000000000005000000000000000000000000000000000010000000100000000000000054275696C64FF7F0000 + + + 583 + 1000FFFF01001100434D4643546F6F6C426172427574746F6ECF7F000000000000FFFFFFFF0001000000000000000100000000000000010000000180D07F000000000000FFFFFFFF00010000000000000001000000000000000100000001803080000000000000FFFFFFFF00010000000000000001000000000000000100000001809E8A000000000000FFFFFFFF0001000000000000000100000000000000010000000180D17F000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001804C8A000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001806680000000000000FFFFFFFF0001000000000000000100000000000000010000000180EB88000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180C07F000000000000FFFFFFFF0001000000000000000100000000000000010000000180B08A000000000000FFFFFFFF0001000000000000000100000000000000010000000180A801000000000000FFFFFFFF00010000000000000001000000000000000100000001807202000000000000FFFFFFFF0001000000000000000100000000000000010000000180BE01000000000000FFFFFFFF000100000000000000010000000000000001000000 + + + 583 + 1000FFFF01001100434D4643546F6F6C426172427574746F6ECF7F000000000000000000000000000000000000000000000001000000010000000180D07F00000000000001000000000000000000000000000000000100000001000000018030800000000000000200000000000000000000000000000000010000000100000001809E8A000000000000030000000000000000000000000000000001000000010000000180D17F0000000000000400000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001804C8A0000000000000500000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001806680000000000000060000000000000000000000000000000001000000010000000180EB880000000000000700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C07F000000000000080000000000000000000000000000000001000000010000000180B08A000000000000090000000000000000000000000000000001000000010000000180A8010000000000000A000000000000000000000000000000000100000001000000018072020000000000000B0000000000000000000000000000000001000000010000000180BE010000000000000C000000000000000000000000000000000100000001000000 + + + + 59400 + Debug + + 2373 + 00200000000000001900FFFF01001100434D4643546F6F6C426172427574746F6ECC880000000000002500000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018017800000000000002600000000000000000000000000000000010000000100000001801D800000000000002700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001801A800000000000002800000000000000000000000000000000010000000100000001801B80000000000000290000000000000000000000000000000001000000010000000180E57F0000000000002A00000000000000000000000000000000010000000100000001801C800000000000002B00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018000890000000000002C00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180E48B0000000000002D0000000000000000000000000000000001000000010000000180F07F0000000000002E0000000000000000000000000000000001000000010000000180E8880000000000003700000000000000000000000000000000010000000100000001803B010000000000002F0000000000000000000000000000000001000000010000000180BB8A00000000000030000000000000000000000000000000000100000001000000FFFF01001500434D4643546F6F6C4261724D656E75427574746F6E0E01000000000000310000000D57617463682057696E646F7773000000000000000000000000010000000100000000000000000000000100000003001380D88B00000000000031000000085761746368202631000000000000000000000000010000000100000000000000000000000100000000001380D98B00000000000031000000085761746368202632000000000000000000000000010000000100000000000000000000000100000000001380CE01000000000000FFFFFFFF0C576174636820416E63686F720100000000000000000000000100000001000000000000000000000001000000000013800F01000000000000320000000E4D656D6F72792057696E646F7773000000000000000000000000010000000100000000000000000000000100000004001380D28B00000000000032000000094D656D6F7279202631000000000000000000000000010000000100000000000000000000000100000000001380D38B00000000000032000000094D656D6F7279202632000000000000000000000000010000000100000000000000000000000100000000001380D48B00000000000032000000094D656D6F7279202633000000000000000000000000010000000100000000000000000000000100000000001380D58B00000000000032000000094D656D6F72792026340000000000000000000000000100000001000000000000000000000001000000000013801001000000000000330000000E53657269616C2057696E646F77730000000000000000000000000100000001000000000000000000000001000000040013809307000000000000330000000855415254202326310000000000000000000000000100000001000000000000000000000001000000000013809407000000000000330000000855415254202326320000000000000000000000000100000001000000000000000000000001000000000013809507000000000000330000000855415254202326330000000000000000000000000100000001000000000000000000000001000000000013809607000000000000330000001626446562756720287072696E746629205669657765720000000000000000000000000100000001000000000000000000000001000000000013803C010000000000007200000010416E616C797369732057696E646F7773000000000000000000000000010000000100000000000000000000000100000004001380658A000000000000340000000F264C6F67696320416E616C797A6572000000000000000000000000010000000100000000000000000000000100000000001380DC7F0000000000003E0000001526506572666F726D616E636520416E616C797A6572000000000000000000000000010000000100000000000000000000000100000000001380E788000000000000380000000E26436F646520436F766572616765000000000000000000000000010000000100000000000000000000000100000000001380CD01000000000000FFFFFFFF0F416E616C7973697320416E63686F7201000000000000000000000001000000010000000000000000000000010000000000138053010000000000003F0000000D54726163652057696E646F77730000000000000000000000000100000001000000000000000000000001000000010013805401000000000000FFFFFFFF115472616365204D656E7520416E63686F720100000000000000000000000100000001000000000000000000000001000000000013802901000000000000350000001553797374656D205669657765722057696E646F77730000000000000000000000000100000001000000000000000000000001000000010013804B01000000000000FFFFFFFF1453797374656D2056696577657220416E63686F720100000000000000000000000100000001000000000000000000000001000000000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000013800189000000000000360000000F26546F6F6C626F782057696E646F7700000000000000000000000001000000010000000000000000000000010000000300138044C5000000000000FFFFFFFF0E5570646174652057696E646F77730100000000000000000000000100000001000000000000000000000001000000000013800000000000000400FFFFFFFF000000000000000000000000000100000001000000000000000000000001000000000013805B01000000000000FFFFFFFF12546F6F6C626F78204D656E75416E63686F720100000000000000000000000100000001000000000000000000000001000000000000000000054465627567FF7F0000 + + + 898 + 1900FFFF01001100434D4643546F6F6C426172427574746F6ECC88000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001801780000000000000FFFFFFFF00010000000000000001000000000000000100000001801D80000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001801A80000000000000FFFFFFFF00010000000000000001000000000000000100000001801B80000000000000FFFFFFFF0001000000000000000100000000000000010000000180E57F000000000000FFFFFFFF00010000000000000001000000000000000100000001801C80000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001800089000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180E48B000000000000FFFFFFFF0001000000000000000100000000000000010000000180F07F000000000000FFFFFFFF0001000000000000000100000000000000010000000180E888000000000000FFFFFFFF00010000000000000001000000000000000100000001803B01000000000000FFFFFFFF0001000000000000000100000000000000010000000180BB8A000000000000FFFFFFFF0001000000000000000100000000000000010000000180D88B000000000000FFFFFFFF0001000000000000000100000000000000010000000180D28B000000000000FFFFFFFF00010000000000000001000000000000000100000001809307000000000000FFFFFFFF0001000000000000000100000000000000010000000180658A000000000000FFFFFFFF0001000000000000000100000000000000010000000180C18A000000000000FFFFFFFF0001000000000000000100000000000000010000000180EE8B000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001800189000000000000FFFFFFFF000100000000000000010000000000000001000000 + + + 898 + 1900FFFF01001100434D4643546F6F6C426172427574746F6ECC880000000000000000000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018017800000000000000100000000000000000000000000000000010000000100000001801D800000000000000200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001801A800000000000000300000000000000000000000000000000010000000100000001801B80000000000000040000000000000000000000000000000001000000010000000180E57F0000000000000500000000000000000000000000000000010000000100000001801C800000000000000600000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018000890000000000000700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180E48B000000000000080000000000000000000000000000000001000000010000000180F07F000000000000090000000000000000000000000000000001000000010000000180E8880000000000000A00000000000000000000000000000000010000000100000001803B010000000000000B0000000000000000000000000000000001000000010000000180BB8A0000000000000C0000000000000000000000000000000001000000010000000180D88B0000000000000D0000000000000000000000000000000001000000010000000180D28B0000000000000E000000000000000000000000000000000100000001000000018093070000000000000F0000000000000000000000000000000001000000010000000180658A000000000000100000000000000000000000000000000001000000010000000180C18A000000000000110000000000000000000000000000000001000000010000000180EE8B0000000000001200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180018900000000000013000000000000000000000000000000000100000001000000 + + + + 0 + 1920 + 1080 + + + + +
diff --git a/board/TencentOS_tiny_EVB_MX_Plus/KEIL/ota/ota_bootloader_recovery/MDK-ARM/DebugConfig/TencentOS_tiny_STM32L431RCTx.dbgconf b/board/TencentOS_tiny_EVB_MX_Plus/KEIL/ota/ota_bootloader_recovery/MDK-ARM/DebugConfig/TencentOS_tiny_STM32L431RCTx.dbgconf new file mode 100644 index 00000000..713c198e --- /dev/null +++ b/board/TencentOS_tiny_EVB_MX_Plus/KEIL/ota/ota_bootloader_recovery/MDK-ARM/DebugConfig/TencentOS_tiny_STM32L431RCTx.dbgconf @@ -0,0 +1,70 @@ +// File: STM32L43x_44x_45x_46x.dbgconf +// Version: 1.0.0 +// Note: refer to STM32L43xxx STM32L44xxx STM32L45xxx STM32L46xxx Reference manual (RM0394) +// refer to STM32L431xx STM32L432xx STM32L433xx STM32L442xx STM32L443xx STM32L451xx STM32L452xx STM32L462xx datasheets + +// <<< Use Configuration Wizard in Context Menu >>> + +// Debug MCU configuration register (DBGMCU_CR) +// DBG_STANDBY Debug Standby mode +// DBG_STOP Debug Stop mode +// DBG_SLEEP Debug Sleep mode +// +DbgMCU_CR = 0x00000007; + +// Debug MCU APB1 freeze register1 (DBGMCU_APB1FZR1) +// Reserved bits must be kept at reset value +// DBG_LPTIM1_STOP LPTIM1 counter stopped when core is halted +// DBG_CAN1_STOP bxCAN1 stopped when core is halted +// DBG_I2C3_STOP I2C3 SMBUS timeout counter stopped when core is halted +// DBG_I2C2_STOP I2C2 SMBUS timeout counter stopped when core is halted +// DBG_I2C1_STOP I2C1 SMBUS timeout counter stopped when core is halted +// DBG_IWDG_STOP Independent watchdog counter stopped when core is halted +// DBG_WWDG_STOP Window watchdog counter stopped when core is halted +// DBG_RTC_STOP RTC counter stopped when core is halted +// DBG_TIM7_STOP TIM7 counter stopped when core is halted +// DBG_TIM6_STOP TIM6 counter stopped when core is halted +// DBG_TIM2_STOP TIM2 counter stopped when core is halted +// +DbgMCU_APB1_Fz1 = 0x00000000; + +// Debug MCU APB1 freeze register 2 (DBGMCU_APB1FZR2) +// Reserved bits must be kept at reset value +// DBG_LPTIM2_STOP LPTIM2 counter stopped when core is halted +// +DbgMCU_APB1_Fz2 = 0x00000000; + +// Debug MCU APB2 freeze register (DBGMCU_APB2FZR) +// Reserved bits must be kept at reset value +// DBG_TIM16_STOP TIM16 counter stopped when core is halted +// DBG_TIM15_STOP TIM15 counter stopped when core is halted +// DBG_TIM1_STOP TIM1 counter stopped when core is halted +// +DbgMCU_APB2_Fz = 0x00000000; + +// TPIU Pin Routing (TRACECLK fixed on Pin PE2) +// TRACECLK: Pin PE2 +// TRACED0 +// ETM Trace Data 0 +// <0x00040003=> Pin PE3 +// <0x00020001=> Pin PC1 +// TRACED1 +// ETM Trace Data 1 +// <0x00040004=> Pin PE4 +// <0x0002000A=> Pin PC10 +// TRACED2 +// ETM Trace Data 2 +// <0x00040005=> Pin PE5 +// <0x00030002=> Pin PD2 +// TRACED3 +// ETM Trace Data 3 +// <0x00040006=> Pin PE6 +// <0x0002000C=> Pin PC12 +// +TraceClk_Pin = 0x00040002; +TraceD0_Pin = 0x00040003; +TraceD1_Pin = 0x00040004; +TraceD2_Pin = 0x00040005; +TraceD3_Pin = 0x00040006; + +// <<< end of configuration section >>> diff --git a/board/TencentOS_tiny_EVB_MX_Plus/KEIL/ota/ota_bootloader_recovery/MDK-ARM/RTE/_TencentOS_tiny/RTE_Components.h b/board/TencentOS_tiny_EVB_MX_Plus/KEIL/ota/ota_bootloader_recovery/MDK-ARM/RTE/_TencentOS_tiny/RTE_Components.h new file mode 100644 index 00000000..248f644f --- /dev/null +++ b/board/TencentOS_tiny_EVB_MX_Plus/KEIL/ota/ota_bootloader_recovery/MDK-ARM/RTE/_TencentOS_tiny/RTE_Components.h @@ -0,0 +1,21 @@ + +/* + * Auto generated Run-Time-Environment Configuration File + * *** Do not modify ! *** + * + * Project: 'TencentOS_tiny' + * Target: 'TencentOS_tiny' + */ + +#ifndef RTE_COMPONENTS_H +#define RTE_COMPONENTS_H + + +/* + * Define the Device Header File: + */ +#define CMSIS_device_header "stm32l4xx.h" + + + +#endif /* RTE_COMPONENTS_H */ diff --git a/board/TencentOS_tiny_EVB_MX_Plus/KEIL/ota/ota_bootloader_recovery/MDK-ARM/TencentOS_tiny.uvguix.yangq b/board/TencentOS_tiny_EVB_MX_Plus/KEIL/ota/ota_bootloader_recovery/MDK-ARM/TencentOS_tiny.uvguix.yangq new file mode 100644 index 00000000..3434f86c --- /dev/null +++ b/board/TencentOS_tiny_EVB_MX_Plus/KEIL/ota/ota_bootloader_recovery/MDK-ARM/TencentOS_tiny.uvguix.yangq @@ -0,0 +1,1860 @@ + + + + -6.1 + +
### uVision Project, (C) Keil Software
+ + + + + + + + + + 38003 + Registers + 140 90 + + + 346 + Code Coverage + 1010 160 + + + 204 + Performance Analyzer + 1170 + + + + + + 35141 + Event Statistics + + 200 50 700 + + + 1506 + Symbols + + 80 80 80 + + + 1936 + Watch 1 + + 200 133 133 + + + 1937 + Watch 2 + + 200 133 133 + + + 1935 + Call Stack + Locals + + 200 133 133 + + + 2506 + Trace Data + + 75 135 130 95 70 230 200 150 + + + 466 + Source Browser - *** Not Enabled *** + 500 + 300 + + + + + + + + 1 + 1 + 0 + 0 + -1 + + + + + + + 44 + 2 + 3 + + -1 + -1 + + + -1 + -1 + + + 120 + 1912 + 3538 + 630 + + + + 0 + + 60 + 010000000400000001000000010000000100000001000000000000000200000000000000010000000100000000000000280000002800000000000000 + + + + 0 + Build + + -1 + -1 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F40000004F00000090050000DF000000 + + + 16 + 0A080000A1000000D20A000031010000 + + + + 1005 + 1005 + 1 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 0300000066000000D601000039030000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 109 + 109 + 1 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 0300000066000000D601000039030000 + + + 16 + 0A080000A100000026090000E1020000 + + + + 1465 + 1465 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 000000002D02000090050000BD020000 + + + 16 + 0A080000A1000000D20A000031010000 + + + + 1466 + 1466 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 0A080000A1000000D20A000031010000 + + + + 1467 + 1467 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 0A080000A1000000D20A000031010000 + + + + 1468 + 1468 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 0A080000A1000000D20A000031010000 + + + + 1506 + 1506 + 0 + 0 + 0 + 0 + 32767 + 0 + 16384 + 0 + + 16 + A3040000660000008D05000001010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 1913 + 1913 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F7000000660000008D050000C6000000 + + + 16 + 0A080000A1000000D20A000031010000 + + + + 1935 + 1935 + 0 + 0 + 0 + 0 + 32767 + 0 + 32768 + 0 + + 16 + 03000000300200008D050000A4020000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 1936 + 1936 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 1937 + 1937 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 1939 + 1939 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 0A080000A1000000D20A000031010000 + + + + 1940 + 1940 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 0A080000A1000000D20A000031010000 + + + + 1941 + 1941 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 0A080000A1000000D20A000031010000 + + + + 1942 + 1942 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 0A080000A1000000D20A000031010000 + + + + 195 + 195 + 1 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 0300000066000000D601000039030000 + + + 16 + 0A080000A100000026090000E1020000 + + + + 196 + 196 + 1 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 0300000066000000D601000039030000 + + + 16 + 0A080000A100000026090000E1020000 + + + + 197 + 197 + 1 + 0 + 0 + 0 + 32767 + 0 + 32768 + 0 + + 16 + 000000006A03000080070000E6030000 + + + 16 + 0A080000A1000000D20A000031010000 + + + + 198 + 198 + 0 + 0 + 0 + 0 + 32767 + 0 + 32768 + 0 + + 16 + 000000001902000090050000BD020000 + + + 16 + 0A080000A1000000D20A000031010000 + + + + 199 + 199 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 030000006D0300008D050000CD030000 + + + 16 + 0A080000A1000000D20A000031010000 + + + + 203 + 203 + 0 + 0 + 0 + 0 + 32767 + 0 + 8192 + 0 + + 16 + F40000006300000090050000DF000000 + + + 16 + 0A080000A1000000D20A000031010000 + + + + 204 + 204 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F7000000660000008D050000C6000000 + + + 16 + 0A080000A1000000D20A000031010000 + + + + 221 + 221 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 00000000000000000000000000000000 + + + 16 + 0A0000000A0000006E0000006E000000 + + + + 2506 + 2506 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A0040000630000009005000029020000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 2507 + 2507 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 000000002D02000090050000A9020000 + + + 16 + 0A080000A1000000D20A000031010000 + + + + 343 + 343 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F7000000660000008D050000C6000000 + + + 16 + 0A080000A1000000D20A000031010000 + + + + 346 + 346 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F7000000660000008D050000C6000000 + + + 16 + 0A080000A1000000D20A000031010000 + + + + 35141 + 35141 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F40000006300000090050000DF000000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 35824 + 35824 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F7000000660000008D050000C6000000 + + + 16 + 0A080000A1000000D20A000031010000 + + + + 35885 + 35885 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 35886 + 35886 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 35887 + 35887 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 35888 + 35888 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 35889 + 35889 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 35890 + 35890 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 35891 + 35891 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 35892 + 35892 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 35893 + 35893 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 35894 + 35894 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 35895 + 35895 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 35896 + 35896 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 35897 + 35897 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 35898 + 35898 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 35899 + 35899 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 35900 + 35900 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 35901 + 35901 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 35902 + 35902 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 35903 + 35903 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 35904 + 35904 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 35905 + 35905 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 38003 + 38003 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 0300000066000000ED000000A4020000 + + + 16 + 0A080000A100000026090000E1020000 + + + + 38007 + 38007 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 000000006A03000090050000E6030000 + + + 16 + 0A080000A1000000D20A000031010000 + + + + 436 + 436 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 030000006D0300008D050000CD030000 + + + 16 + 0A080000A100000026090000E1020000 + + + + 437 + 437 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 440 + 440 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 463 + 463 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 030000006D0300008D050000CD030000 + + + 16 + 0A080000A100000026090000E1020000 + + + + 466 + 466 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 030000006D0300008D050000CD030000 + + + 16 + 0A080000A100000026090000E1020000 + + + + 470 + 470 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + F7000000660000008D050000C6000000 + + + 16 + 0A080000A1000000D20A000031010000 + + + + 50000 + 50000 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 50001 + 50001 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 50002 + 50002 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 50003 + 50003 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 50004 + 50004 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 50005 + 50005 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 50006 + 50006 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 50007 + 50007 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 50008 + 50008 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 50009 + 50009 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 50010 + 50010 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 50011 + 50011 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 50012 + 50012 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 50013 + 50013 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 50014 + 50014 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 50015 + 50015 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 50016 + 50016 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 50017 + 50017 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 50018 + 50018 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 50019 + 50019 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + A3040000660000008D0500007C010000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 59392 + 59392 + 1 + 0 + 0 + 0 + 32767 + 0 + 8192 + 0 + + 16 + 0000000000000000D10300001C000000 + + + 16 + 0A0000000A0000006E0000006E000000 + + + + 59393 + 0 + 1 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 00000000E603000080070000F9030000 + + + 16 + 0A0000000A0000006E0000006E000000 + + + + 59399 + 59399 + 1 + 0 + 0 + 0 + 32767 + 0 + 8192 + 1 + + 16 + 000000001C000000E701000038000000 + + + 16 + 0A0000000A0000006E0000006E000000 + + + + 59400 + 59400 + 0 + 0 + 0 + 0 + 32767 + 0 + 8192 + 2 + + 16 + 00000000380000006F02000054000000 + + + 16 + 0A0000000A0000006E0000006E000000 + + + + 824 + 824 + 0 + 0 + 0 + 0 + 32767 + 0 + 4096 + 0 + + 16 + 03000000300200008D05000090020000 + + + 16 + 0A080000A1000000FA0800006C010000 + + + + 3334 + 000000000B000000000000000020000000000000FFFFFFFFFFFFFFFFF4000000DF00000090050000E3000000000000000100001004000000010000000000000000000000FFFFFFFF08000000CB00000057010000CC000000F08B00005A01000079070000D601000045890000FFFF02000B004354616262656450616E6500200000000000000A080000A1000000D20A000031010000F40000004F00000090050000DF0000000000000040280046080000000B446973617373656D626C7900000000CB00000001000000FFFFFFFFFFFFFFFF14506572666F726D616E636520416E616C797A6572000000005701000001000000FFFFFFFFFFFFFFFF14506572666F726D616E636520416E616C797A657200000000CC00000001000000FFFFFFFFFFFFFFFF0E4C6F67696320416E616C797A657200000000F08B000001000000FFFFFFFFFFFFFFFF0D436F646520436F766572616765000000005A01000001000000FFFFFFFFFFFFFFFF11496E737472756374696F6E205472616365000000007907000001000000FFFFFFFFFFFFFFFF0F53797374656D20416E616C797A657200000000D601000001000000FFFFFFFFFFFFFFFF104576656E742053746174697374696373000000004589000001000000FFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000000000000000000000001000000FFFFFFFFCB00000001000000FFFFFFFFCB000000000000000040000000000000FFFFFFFFFFFFFFFF9C0400004F000000A004000029020000000000000200001004000000010000000000000000000000FFFFFFFF2B000000E2050000CA0900002D8C00002E8C00002F8C0000308C0000318C0000328C0000338C0000348C0000358C0000368C0000378C0000388C0000398C00003A8C00003B8C00003C8C00003D8C00003E8C00003F8C0000408C0000418C000050C3000051C3000052C3000053C3000054C3000055C3000056C3000057C3000058C3000059C300005AC300005BC300005CC300005DC300005EC300005FC3000060C3000061C3000062C3000063C30000018000400000000000000A080000A1000000FA0800006C010000A00400004F000000900500002902000000000000404100462B0000000753796D626F6C7300000000E205000001000000FFFFFFFFFFFFFFFF0A5472616365204461746100000000CA09000001000000FFFFFFFFFFFFFFFF00000000002D8C000001000000FFFFFFFFFFFFFFFF00000000002E8C000001000000FFFFFFFFFFFFFFFF00000000002F8C000001000000FFFFFFFFFFFFFFFF0000000000308C000001000000FFFFFFFFFFFFFFFF0000000000318C000001000000FFFFFFFFFFFFFFFF0000000000328C000001000000FFFFFFFFFFFFFFFF0000000000338C000001000000FFFFFFFFFFFFFFFF0000000000348C000001000000FFFFFFFFFFFFFFFF0000000000358C000001000000FFFFFFFFFFFFFFFF0000000000368C000001000000FFFFFFFFFFFFFFFF0000000000378C000001000000FFFFFFFFFFFFFFFF0000000000388C000001000000FFFFFFFFFFFFFFFF0000000000398C000001000000FFFFFFFFFFFFFFFF00000000003A8C000001000000FFFFFFFFFFFFFFFF00000000003B8C000001000000FFFFFFFFFFFFFFFF00000000003C8C000001000000FFFFFFFFFFFFFFFF00000000003D8C000001000000FFFFFFFFFFFFFFFF00000000003E8C000001000000FFFFFFFFFFFFFFFF00000000003F8C000001000000FFFFFFFFFFFFFFFF0000000000408C000001000000FFFFFFFFFFFFFFFF0000000000418C000001000000FFFFFFFFFFFFFFFF000000000050C3000001000000FFFFFFFFFFFFFFFF000000000051C3000001000000FFFFFFFFFFFFFFFF000000000052C3000001000000FFFFFFFFFFFFFFFF000000000053C3000001000000FFFFFFFFFFFFFFFF000000000054C3000001000000FFFFFFFFFFFFFFFF000000000055C3000001000000FFFFFFFFFFFFFFFF000000000056C3000001000000FFFFFFFFFFFFFFFF000000000057C3000001000000FFFFFFFFFFFFFFFF000000000058C3000001000000FFFFFFFFFFFFFFFF000000000059C3000001000000FFFFFFFFFFFFFFFF00000000005AC3000001000000FFFFFFFFFFFFFFFF00000000005BC3000001000000FFFFFFFFFFFFFFFF00000000005CC3000001000000FFFFFFFFFFFFFFFF00000000005DC3000001000000FFFFFFFFFFFFFFFF00000000005EC3000001000000FFFFFFFFFFFFFFFF00000000005FC3000001000000FFFFFFFFFFFFFFFF000000000060C3000001000000FFFFFFFFFFFFFFFF000000000061C3000001000000FFFFFFFFFFFFFFFF000000000062C3000001000000FFFFFFFFFFFFFFFF000000000063C3000001000000FFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000000000000000000000001000000FFFFFFFFE205000001000000FFFFFFFFE2050000000000000010000001000000FFFFFFFFFFFFFFFFD90100004F000000DD010000520300000100000002000010040000000100000012FFFFFF87060000FFFFFFFF05000000ED0300006D000000C3000000C400000073940000018000100000010000000A080000A1000000FA0800006C010000000000004F000000D9010000520300000000000040410056050000000750726F6A65637401000000ED03000001000000FFFFFFFFFFFFFFFF05426F6F6B73010000006D00000001000000FFFFFFFFFFFFFFFF0946756E6374696F6E7301000000C300000001000000FFFFFFFFFFFFFFFF0954656D706C6174657301000000C400000001000000FFFFFFFFFFFFFFFF09526567697374657273000000007394000001000000FFFFFFFFFFFFFFFF00000000000000000000000000000000000000000000000001000000FFFFFFFFED03000001000000FFFFFFFFED030000000000000080000000000000FFFFFFFFFFFFFFFF0000000015020000900500001902000000000000010000100400000001000000000000000000000000000000000000000000000001000000C6000000FFFFFFFF0F0000008F070000930700009407000095070000960700009007000091070000B5010000B801000038030000B9050000BA050000BB050000BC050000CB090000018000800000000000000A080000A1000000FA0800006C010000000000001902000090050000BD02000000000000404100460F0000001343616C6C20537461636B202B204C6F63616C73000000008F07000001000000FFFFFFFFFFFFFFFF0755415254202331000000009307000001000000FFFFFFFFFFFFFFFF0755415254202332000000009407000001000000FFFFFFFFFFFFFFFF0755415254202333000000009507000001000000FFFFFFFFFFFFFFFF15446562756720287072696E74662920566965776572000000009607000001000000FFFFFFFFFFFFFFFF0757617463682031000000009007000001000000FFFFFFFFFFFFFFFF0757617463682032000000009107000001000000FFFFFFFFFFFFFFFF10547261636520457863657074696F6E7300000000B501000001000000FFFFFFFFFFFFFFFF0E4576656E7420436F756E7465727300000000B801000001000000FFFFFFFFFFFFFFFF09554C494E4B706C7573000000003803000001000000FFFFFFFFFFFFFFFF084D656D6F7279203100000000B905000001000000FFFFFFFFFFFFFFFF084D656D6F7279203200000000BA05000001000000FFFFFFFFFFFFFFFF084D656D6F7279203300000000BB05000001000000FFFFFFFFFFFFFFFF084D656D6F7279203400000000BC05000001000000FFFFFFFFFFFFFFFF105472616365204E617669676174696F6E00000000CB09000001000000FFFFFFFFFFFFFFFFFFFFFFFF0000000001000000000000000000000001000000FFFFFFFFC802000019020000CC020000BD02000000000000020000000400000000000000000000000000000000000000000000000000000002000000C6000000FFFFFFFF8F07000001000000FFFFFFFF8F07000001000000C6000000000000000080000001000000FFFFFFFFFFFFFFFF00000000520300008007000056030000010000000100001004000000010000000000000000000000FFFFFFFF06000000C5000000C7000000B4010000D2010000CF01000077940000018000800000010000000A080000A1000000D20A000031010000000000005603000080070000E60300000000000040820056060000000C4275696C64204F757470757401000000C500000001000000FFFFFFFFFFFFFFFF0D46696E6420496E2046696C657300000000C700000001000000FFFFFFFFFFFFFFFF0A4572726F72204C69737400000000B401000001000000FFFFFFFFFFFFFFFF24536F757263652042726F77736572202D202A2A2A204E6F7420456E61626C6564202A2A2A00000000D201000001000000FFFFFFFFFFFFFFFF0E416C6C205265666572656E63657300000000CF01000001000000FFFFFFFFFFFFFFFF0742726F77736572000000007794000001000000FFFFFFFFFFFFFFFF00000000000000000000000000000000000000000000000001000000FFFFFFFFC500000001000000FFFFFFFFC5000000000000000000000000000000 + + + 59392 + File + + 2972 + 00200000010000002800FFFF01001100434D4643546F6F6C426172427574746F6E00E100000000000000000000000000000000000000000000000100000001000000018001E100000000000001000000000000000000000000000000000100000001000000018003E1000000000400020000000000000000000000000000000001000000010000000180CD7F0000000000000300000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018023E100000000040004000000000000000000000000000000000100000001000000018022E100000000040005000000000000000000000000000000000100000001000000018025E10000000004000600000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001802BE10000000004000700000000000000000000000000000000010000000100000001802CE10000000004000800000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001807A8A0000000004000900000000000000000000000000000000010000000100000001807B8A0000000004000A00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180D3B00000000004000B000000000000000000000000000000000100000001000000018015B10000000004000C0000000000000000000000000000000001000000010000000180F4B00000000004000D000000000000000000000000000000000100000001000000018036B10000000004000E00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180FF88000000000400460000000000000000000000000000000001000000010000000180FE880000000004004500000000000000000000000000000000010000000100000001800B810000000004001300000000000000000000000000000000010000000100000001800C810000000004001400000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180F0880000020000000F000000000000000000000000000000000100000001000000FFFF0100120043555646696E64436F6D626F427574746F6EE803000000000400000000000000000000000000000000000001000000010000009600000002002050000000000665787465726E960000000000000014000665787465726E1253797374656D436C6F636B5F436F6E666967046D61696E0466756E631754465F4C4954455F4D4943524F5F42454E43484D41524B0D675F706572736F6E5F646174611B54465F4C4954455F53545249505F4552524F525F535452494E47531347657443757272656E7454696D655469636B730B54465F4C4954455F414444124F56323634305F504958454C5F5749445448186F76323634305F737667615F696E69745F7265675F74626C0B4F56323634305F496E697418706572736F6E5F6465746563745F6D6F64656C5F64617461066C6F63616C651048414C5F5350495F5472616E736D69740D4445565F5350495F5752495445174C43445F32494E345F5772697465446174615F576F726408476574496D616765125072696E74416C6C6F636174696F6E7328292B5265636F7264696E674D6963726F416C6C6F6361746F723A3A5072696E74416C6C6F636174696F6E7328290000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000018024E10000000000001100000000000000000000000000000000010000000100000001800A810000000004001200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000FFFF01001500434D4643546F6F6C4261724D656E75427574746F6E2280000002000000150000002153746172742F53746F70202644656275672053657373696F6E094374726C2B46350000000000000000000000000100000001000000000000000000000001000000020021802280000000000000150000002153746172742F53746F70202644656275672053657373696F6E094374726C2B4635000000000000000000000000010000000100000000000000000000000100000000002180E0010000000000007500000021456E65726779204D6561737572656D656E742026776974686F75742044656275670000000000000000000000000100000001000000000000000000000001000000000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C488000000000400160000000000000000000000000000000001000000010000000180C988000000000400180000000000000000000000000000000001000000010000000180C788000000000000190000000000000000000000000000000001000000010000002180C8880000000000001700000027264B696C6C20416C6C20427265616B706F696E747320696E2043757272656E7420546172676574000000000000000000000000010000000100000000000000000000000100000003002180C8880000000000001700000027264B696C6C20416C6C20427265616B706F696E747320696E2043757272656E7420546172676574000000000000000000000000010000000100000000000000000000000100000000002180E50100000000000078000000264B696C6C20416C6C20427265616B706F696E747320696E204163746976652050726F6A656374000000000000000000000000010000000100000000000000000000000100000000002180E601000000000000790000002F4B696C6C20416C6C20427265616B706F696E747320696E204D756C74692D50726F6A65637420576F726B73706163650000000000000000000000000100000001000000000000000000000001000000000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000021804C010000020001001A0000000F2650726F6A6563742057696E646F77000000000000000000000000010000000100000000000000000000000100000008002180DD880000000000001A0000000750726F6A656374000000000000000000000000010000000100000000000000000000000100000000002180DC8B0000000000003A00000005426F6F6B73000000000000000000000000010000000100000000000000000000000100000000002180E18B0000000000003B0000000946756E6374696F6E73000000000000000000000000010000000100000000000000000000000100000000002180E28B000000000000400000000954656D706C6174657300000000000000000000000001000000010000000000000000000000010000000000218018890000000000003D0000000E536F757263652042726F777365720000000000000000000000000100000001000000000000000000000001000000000021800000000000000400FFFFFFFF00000000000000000000000000010000000100000000000000000000000100000000002180D988000000000000390000000C4275696C64204F7574707574000000000000000000000000010000000100000000000000000000000100000000002180E38B000000000000410000000B46696E64204F75747075740000000000000000000000000100000001000000000000000000000001000000000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180FB7F0000000000001B000000000000000000000000000000000100000001000000000000000446696C65FF7F0000 + + + 1423 + 2800FFFF01001100434D4643546F6F6C426172427574746F6E00E1000000000000FFFFFFFF000100000000000000010000000000000001000000018001E1000000000000FFFFFFFF000100000000000000010000000000000001000000018003E1000000000000FFFFFFFF0001000000000000000100000000000000010000000180CD7F000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF000000000000000000010000000000000001000000018023E1000000000000FFFFFFFF000100000000000000010000000000000001000000018022E1000000000000FFFFFFFF000100000000000000010000000000000001000000018025E1000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001802BE1000000000000FFFFFFFF00010000000000000001000000000000000100000001802CE1000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001807A8A000000000000FFFFFFFF00010000000000000001000000000000000100000001807B8A000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180D3B0000000000000FFFFFFFF000100000000000000010000000000000001000000018015B1000000000000FFFFFFFF0001000000000000000100000000000000010000000180F4B0000000000000FFFFFFFF000100000000000000010000000000000001000000018036B1000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180FF88000000000000FFFFFFFF0001000000000000000100000000000000010000000180FE88000000000000FFFFFFFF00010000000000000001000000000000000100000001800B81000000000000FFFFFFFF00010000000000000001000000000000000100000001800C81000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180F088000000000000FFFFFFFF0001000000000000000100000000000000010000000180EE7F000000000000FFFFFFFF000100000000000000010000000000000001000000018024E1000000000000FFFFFFFF00010000000000000001000000000000000100000001800A81000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001802280000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180C488000000000000FFFFFFFF0001000000000000000100000000000000010000000180C988000000000000FFFFFFFF0001000000000000000100000000000000010000000180C788000000000000FFFFFFFF0001000000000000000100000000000000010000000180C888000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180DD88000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180FB7F000000000000FFFFFFFF000100000000000000010000000000000001000000 + + + 1423 + 2800FFFF01001100434D4643546F6F6C426172427574746F6E00E100000000000000000000000000000000000000000000000100000001000000018001E100000000000001000000000000000000000000000000000100000001000000018003E1000000000000020000000000000000000000000000000001000000010000000180CD7F0000000000000300000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018023E100000000000004000000000000000000000000000000000100000001000000018022E100000000000005000000000000000000000000000000000100000001000000018025E10000000000000600000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001802BE10000000000000700000000000000000000000000000000010000000100000001802CE10000000000000800000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001807A8A0000000000000900000000000000000000000000000000010000000100000001807B8A0000000000000A00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180D3B00000000000000B000000000000000000000000000000000100000001000000018015B10000000000000C0000000000000000000000000000000001000000010000000180F4B00000000000000D000000000000000000000000000000000100000001000000018036B10000000000000E00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180FF880000000000000F0000000000000000000000000000000001000000010000000180FE880000000000001000000000000000000000000000000000010000000100000001800B810000000000001100000000000000000000000000000000010000000100000001800C810000000000001200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180F088000000000000130000000000000000000000000000000001000000010000000180EE7F00000000000014000000000000000000000000000000000100000001000000018024E10000000000001500000000000000000000000000000000010000000100000001800A810000000000001600000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018022800000000000001700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C488000000000000180000000000000000000000000000000001000000010000000180C988000000000000190000000000000000000000000000000001000000010000000180C7880000000000001A0000000000000000000000000000000001000000010000000180C8880000000000001B00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180DD880000000000001C00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180FB7F0000000000001D000000000000000000000000000000000100000001000000 + + + + 59399 + Build + + 988 + 00200000010000001000FFFF01001100434D4643546F6F6C426172427574746F6ECF7F0000000004001C0000000000000000000000000000000001000000010000000180D07F0000000000001D000000000000000000000000000000000100000001000000018030800000000000001E000000000000000000000000000000000100000001000000FFFF01001500434D4643546F6F6C4261724D656E75427574746F6EC7040000000000006A0000000C4261746368204275696C2664000000000000000000000000010000000100000000000000000000000100000004000580C7040000000000006A0000000C4261746368204275696C266400000000000000000000000001000000010000000000000000000000010000000000058046070000000000006B0000000D42617463682052656275696C640000000000000000000000000100000001000000000000000000000001000000000005804707000000000000FFFFFFFF0B426174636820436C65616E0100000000000000000000000100000001000000000000000000000001000000000005809E8A0000000000001F0000000F4261746326682053657475702E2E2E000000000000000000000000010000000100000000000000000000000100000000000180D17F0000000004002000000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001804C8A0000000000002100000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000FFFF01001900434D4643546F6F6C426172436F6D626F426F78427574746F6EBA00000000000000000000000000000000000000000000000001000000010000009600000003002050000000000E54656E63656E744F535F74696E79960000000000000001000E54656E63656E744F535F74696E79000000000180EB880000000000002200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C07F000000000000230000000000000000000000000000000001000000010000000180B08A000000000400240000000000000000000000000000000001000000010000000180A8010000000000004E00000000000000000000000000000000010000000100000001807202000000000000530000000000000000000000000000000001000000010000000180BE010000000000005000000000000000000000000000000000010000000100000000000000054275696C64FF7F0000 + + + 583 + 1000FFFF01001100434D4643546F6F6C426172427574746F6ECF7F000000000000FFFFFFFF0001000000000000000100000000000000010000000180D07F000000000000FFFFFFFF00010000000000000001000000000000000100000001803080000000000000FFFFFFFF00010000000000000001000000000000000100000001809E8A000000000000FFFFFFFF0001000000000000000100000000000000010000000180D17F000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001804C8A000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001806680000000000000FFFFFFFF0001000000000000000100000000000000010000000180EB88000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180C07F000000000000FFFFFFFF0001000000000000000100000000000000010000000180B08A000000000000FFFFFFFF0001000000000000000100000000000000010000000180A801000000000000FFFFFFFF00010000000000000001000000000000000100000001807202000000000000FFFFFFFF0001000000000000000100000000000000010000000180BE01000000000000FFFFFFFF000100000000000000010000000000000001000000 + + + 583 + 1000FFFF01001100434D4643546F6F6C426172427574746F6ECF7F000000000000000000000000000000000000000000000001000000010000000180D07F00000000000001000000000000000000000000000000000100000001000000018030800000000000000200000000000000000000000000000000010000000100000001809E8A000000000000030000000000000000000000000000000001000000010000000180D17F0000000000000400000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001804C8A0000000000000500000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001806680000000000000060000000000000000000000000000000001000000010000000180EB880000000000000700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C07F000000000000080000000000000000000000000000000001000000010000000180B08A000000000000090000000000000000000000000000000001000000010000000180A8010000000000000A000000000000000000000000000000000100000001000000018072020000000000000B0000000000000000000000000000000001000000010000000180BE010000000000000C000000000000000000000000000000000100000001000000 + + + + 59400 + Debug + + 2373 + 00200000000000001900FFFF01001100434D4643546F6F6C426172427574746F6ECC880000000000002500000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018017800000000000002600000000000000000000000000000000010000000100000001801D800000000000002700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001801A800000000000002800000000000000000000000000000000010000000100000001801B80000000000000290000000000000000000000000000000001000000010000000180E57F0000000000002A00000000000000000000000000000000010000000100000001801C800000000000002B00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018000890000000000002C00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180E48B0000000000002D0000000000000000000000000000000001000000010000000180F07F0000000000002E0000000000000000000000000000000001000000010000000180E8880000000000003700000000000000000000000000000000010000000100000001803B010000000000002F0000000000000000000000000000000001000000010000000180BB8A00000000000030000000000000000000000000000000000100000001000000FFFF01001500434D4643546F6F6C4261724D656E75427574746F6E0E01000000000000310000000D57617463682057696E646F7773000000000000000000000000010000000100000000000000000000000100000003001380D88B00000000000031000000085761746368202631000000000000000000000000010000000100000000000000000000000100000000001380D98B00000000000031000000085761746368202632000000000000000000000000010000000100000000000000000000000100000000001380CE01000000000000FFFFFFFF0C576174636820416E63686F720100000000000000000000000100000001000000000000000000000001000000000013800F01000000000000320000000E4D656D6F72792057696E646F7773000000000000000000000000010000000100000000000000000000000100000004001380D28B00000000000032000000094D656D6F7279202631000000000000000000000000010000000100000000000000000000000100000000001380D38B00000000000032000000094D656D6F7279202632000000000000000000000000010000000100000000000000000000000100000000001380D48B00000000000032000000094D656D6F7279202633000000000000000000000000010000000100000000000000000000000100000000001380D58B00000000000032000000094D656D6F72792026340000000000000000000000000100000001000000000000000000000001000000000013801001000000000000330000000E53657269616C2057696E646F77730000000000000000000000000100000001000000000000000000000001000000040013809307000000000000330000000855415254202326310000000000000000000000000100000001000000000000000000000001000000000013809407000000000000330000000855415254202326320000000000000000000000000100000001000000000000000000000001000000000013809507000000000000330000000855415254202326330000000000000000000000000100000001000000000000000000000001000000000013809607000000000000330000001626446562756720287072696E746629205669657765720000000000000000000000000100000001000000000000000000000001000000000013803C010000000000007200000010416E616C797369732057696E646F7773000000000000000000000000010000000100000000000000000000000100000004001380658A000000000000340000000F264C6F67696320416E616C797A6572000000000000000000000000010000000100000000000000000000000100000000001380DC7F0000000000003E0000001526506572666F726D616E636520416E616C797A6572000000000000000000000000010000000100000000000000000000000100000000001380E788000000000000380000000E26436F646520436F766572616765000000000000000000000000010000000100000000000000000000000100000000001380CD01000000000000FFFFFFFF0F416E616C7973697320416E63686F7201000000000000000000000001000000010000000000000000000000010000000000138053010000000000003F0000000D54726163652057696E646F77730000000000000000000000000100000001000000000000000000000001000000010013805401000000000000FFFFFFFF115472616365204D656E7520416E63686F720100000000000000000000000100000001000000000000000000000001000000000013802901000000000000350000001553797374656D205669657765722057696E646F77730000000000000000000000000100000001000000000000000000000001000000010013804B01000000000000FFFFFFFF1453797374656D2056696577657220416E63686F720100000000000000000000000100000001000000000000000000000001000000000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000013800189000000000000360000000F26546F6F6C626F782057696E646F7700000000000000000000000001000000010000000000000000000000010000000300138044C5000000000000FFFFFFFF0E5570646174652057696E646F77730100000000000000000000000100000001000000000000000000000001000000000013800000000000000400FFFFFFFF000000000000000000000000000100000001000000000000000000000001000000000013805B01000000000000FFFFFFFF12546F6F6C626F78204D656E75416E63686F720100000000000000000000000100000001000000000000000000000001000000000000000000054465627567FF7F0000 + + + 898 + 1900FFFF01001100434D4643546F6F6C426172427574746F6ECC88000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001801780000000000000FFFFFFFF00010000000000000001000000000000000100000001801D80000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001801A80000000000000FFFFFFFF00010000000000000001000000000000000100000001801B80000000000000FFFFFFFF0001000000000000000100000000000000010000000180E57F000000000000FFFFFFFF00010000000000000001000000000000000100000001801C80000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001800089000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180E48B000000000000FFFFFFFF0001000000000000000100000000000000010000000180F07F000000000000FFFFFFFF0001000000000000000100000000000000010000000180E888000000000000FFFFFFFF00010000000000000001000000000000000100000001803B01000000000000FFFFFFFF0001000000000000000100000000000000010000000180BB8A000000000000FFFFFFFF0001000000000000000100000000000000010000000180D88B000000000000FFFFFFFF0001000000000000000100000000000000010000000180D28B000000000000FFFFFFFF00010000000000000001000000000000000100000001809307000000000000FFFFFFFF0001000000000000000100000000000000010000000180658A000000000000FFFFFFFF0001000000000000000100000000000000010000000180C18A000000000000FFFFFFFF0001000000000000000100000000000000010000000180EE8B000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001800189000000000000FFFFFFFF000100000000000000010000000000000001000000 + + + 898 + 1900FFFF01001100434D4643546F6F6C426172427574746F6ECC880000000000000000000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018017800000000000000100000000000000000000000000000000010000000100000001801D800000000000000200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001801A800000000000000300000000000000000000000000000000010000000100000001801B80000000000000040000000000000000000000000000000001000000010000000180E57F0000000000000500000000000000000000000000000000010000000100000001801C800000000000000600000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018000890000000000000700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180E48B000000000000080000000000000000000000000000000001000000010000000180F07F000000000000090000000000000000000000000000000001000000010000000180E8880000000000000A00000000000000000000000000000000010000000100000001803B010000000000000B0000000000000000000000000000000001000000010000000180BB8A0000000000000C0000000000000000000000000000000001000000010000000180D88B0000000000000D0000000000000000000000000000000001000000010000000180D28B0000000000000E000000000000000000000000000000000100000001000000018093070000000000000F0000000000000000000000000000000001000000010000000180658A000000000000100000000000000000000000000000000001000000010000000180C18A000000000000110000000000000000000000000000000001000000010000000180EE8B0000000000001200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180018900000000000013000000000000000000000000000000000100000001000000 + + + + 0 + 1920 + 1080 + + + + +
diff --git a/components/tflite_micro/tensorflow/core/public/version.h b/components/tflite_micro/tensorflow/core/public/version.h new file mode 100644 index 00000000..431784a5 --- /dev/null +++ b/components/tflite_micro/tensorflow/core/public/version.h @@ -0,0 +1,139 @@ +/* Copyright 2015 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_CORE_PUBLIC_VERSION_H_ +#define TENSORFLOW_CORE_PUBLIC_VERSION_H_ + +// TensorFlow uses semantic versioning, see http://semver.org/. + +// Also update tensorflow/tensorflow.bzl and +// tensorflow/tools/pip_package/setup.py +#define TF_MAJOR_VERSION 2 +#define TF_MINOR_VERSION 4 +#define TF_PATCH_VERSION 0 + +// TF_VERSION_SUFFIX is non-empty for pre-releases (e.g. "-alpha", "-alpha.1", +// "-beta", "-rc", "-rc.1") +#define TF_VERSION_SUFFIX "" + +#define TF_STR_HELPER(x) #x +#define TF_STR(x) TF_STR_HELPER(x) + +// e.g. "0.5.0" or "0.6.0-alpha". +#define TF_VERSION_STRING \ + (TF_STR(TF_MAJOR_VERSION) "." TF_STR(TF_MINOR_VERSION) "." TF_STR( \ + TF_PATCH_VERSION) TF_VERSION_SUFFIX) + +// GraphDef compatibility versions (the versions field in graph.proto). +// +// Each graph has producer and min_consumer versions, and each +// consumer has its own version and a min_producer. In addition, graphs can +// mark specific consumer versions as bad (to prevent bugs from executing). +// A consumer will execute a graph if the consumer's version is at least the +// graph's min_consumer, the graph's producer version is at least the consumer's +// min_producer, and the consumer version isn't specifically disallowed by the +// graph. +// +// By default, newly created graphs have producer version TF_GRAPH_DEF_VERSION +// min_consumer TF_GRAPH_DEF_MIN_CONSUMER, and no other bad consumer versions. +// +// Version history: +// +// 0. Graphs created before GraphDef versioning +// 1. First real version (2dec2015) +// 2. adjust_contrast only takes float, doesn't perform clamping (11dec2015) +// 3. Remove TileGrad, since it was equivalent to reduce_sum (30dec2015) +// 4. When support for this version is removed, we can safely make AttrValue +// parsing more strict with respect to empty list values (see +// 111635679, 7jan2016). +// 5. Graphs are wholly-validated during Session::Create() (7jan2016). +// 6. TensorFlow is scalar strict within Google (27jan2016). +// 7. Remove TopK in favor of TopKV2 (5feb2016). +// 8. Replace RandomCrop from C++ with pure Python (5feb2016). +// 9. Deprecate batch_norm_with_global_normalization (16feb2016). +// 10. Deprecate conv3d_backprop_{filter,input} (10jun2016). +// 11. Deprecate {batch}_self_adjoint_eig (3aug2016). +// 12. Graph consumers understand the node_def field of FunctionDef (22aug2016). +// 13. Deprecate multiple batch linear algebra ops (9sep2016). +// 14. Deprecate batch_matrix_* ops. (10sep2016). +// 15. Deprecate batch_fft_* ops. (14sep2016). +// 16. Deprecate tensor_array (v1) ops in favor of v2 (10nov2016). +// 17. Deprecate inv (11nov2016). +// 17. Expose reverse_v2 (10nov2016) +// 18. Add VariableV2 (30nov2016) +// 19. Deprecated ops created by models moved out of core SkipGram, NegTrain. +// (08dec2016) +// 20. Catch all version 1.0 changes to Python API generation. SplitV is now +// used for tf.split, ReverseV2 is now used by tf.reverse, ConcatV2 is +// now used by tf.concat. Graphs use flooring +// division and mod semantics. TensorArrayV3. (12dec2016) +// Also considered the version for when it is required for reduction +// ops' indices to be scalar or vector, and not higher rank. +// Some earlier graph def versions allowed this. +// 21. Dropped FunctionDef.Node support, switched to node_def introduced +// in version 12. (11jan2017) +// 22. Placeholder now can specify and enforce scalar and partial +// shapes, particularly when restoring a graph from GraphDef +// produced at version 22 or later. (04/10/2016) +// 23. Remove NonMaxSuppression in favor of NonMaxSuppressionV2. +// 24. Deprecate lookup ops (v1) ops in favor of v2 (30may2017) +// 25. Deprecate stack (v1) ops in favor of v2 (2017/6/15). +// 25. Deprecate RandomPoisson (v1) ops in favor of v2 (2017/10/25). +// 26. Add a bool 'stripped_default_attrs' to MetaInfoDef indicating +// whether default-valued attrs have been stripped from the nodes in the +// GraphDef. (7dec2017) +// 27. Deprecate TensorArray ops v2 in favor of v3 and deprecated io_ops +// deprecated in favor of V2 ops. (2018/01/23) +// 28. Deprecate MatrixExponential op in favor of Python implementation. +// (2018/08/21). +// (2019/02/15). Added `control_ret` field to FunctionDef proto, and +// `control_output` field to OpDef proto. +// 29. Deprecate StatefulStandardNormal op in favor of StatefulStandardNormalV2. +// (2019/03/25). +// (2019/04/17). Added `arg_attr` field to FunctionDefProto. +// 30. (2019/05/09) First date based GraphDef version. GraphDef +// versions advance by 1 each day after this point. + +#define TF_GRAPH_DEF_VERSION_MIN_PRODUCER 0 +#define TF_GRAPH_DEF_VERSION_MIN_CONSUMER 0 +#define TF_GRAPH_DEF_VERSION 485 // Updated: 2020/8/6 + +// Checkpoint compatibility versions (the versions field in SavedSliceMeta). +// +// The checkpoint versions have the same semantics as GraphDef versions, but the +// numbering scheme is separate. We have no plans to ever deprecate checkpoint +// versions, but it's good to have this in place in case we ever need to. +// +// Version history: +// +// 0. Checkpoints saved before checkpoint versioning. +// 1. First real version (10feb2015). +#define TF_CHECKPOINT_VERSION_MIN_PRODUCER 0 +#define TF_CHECKPOINT_VERSION_MIN_CONSUMER 0 +#define TF_CHECKPOINT_VERSION 1 + +/// Version query functions (defined in generated version_info.cc) + +// Host compiler version (declared elsewhere to be __VERSION__) +extern const char* tf_compiler_version(); +// The git commit designator when tensorflow was built +// If no git repository, this will be "internal". +extern const char* tf_git_version(); +// Value of the _GLIBCXX_USE_CXX11_ABI flag, or 0 if it's not set. +extern int tf_cxx11_abi_flag(); +// Returns 1 if build is monolithic, or 0 otherwise. +extern int tf_monolithic_build(); + +#endif // TENSORFLOW_CORE_PUBLIC_VERSION_H_ diff --git a/components/tflite_micro/tensorflow/lite/c/builtin_op_data.h b/components/tflite_micro/tensorflow/lite/c/builtin_op_data.h new file mode 100644 index 00000000..e205f075 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/c/builtin_op_data.h @@ -0,0 +1,472 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_C_BUILTIN_OP_DATA_H_ +#define TENSORFLOW_LITE_C_BUILTIN_OP_DATA_H_ + +#include + +#include "tensorflow/lite/c/common.h" + +#ifdef __cplusplus +extern "C" { +#endif // __cplusplus + +// TfLiteReshapeParams can't have dynamic data so we fix the maximum possible +// number of dimensions. +#define TFLITE_RESHAPE_PARAMS_MAX_DIMENSION_COUNT 8 + +// TODO(aselle): Consider using "if this then that" for testing. + +// Useful placeholder to put in otherwise empty structs to avoid size warnings. +typedef struct { + char dummy; +} EmptyStructPlaceholder; + +// IMPORTANT: All new members of structs must be added at the end to ensure +// backwards compatibility. + +// Possible padding types (for convolutions) +typedef enum { + kTfLitePaddingUnknown = 0, + kTfLitePaddingSame, + kTfLitePaddingValid, +} TfLitePadding; + +typedef enum { + kTfLiteMirrorPaddingUnknown = 0, + kTfLiteMirrorPaddingReflect, + kTfLiteMirrorPaddingSymmetric, +} TfLiteMirrorPaddingMode; + +// TODO(b/130259536): We should move this out of builtin_op_data. +typedef struct { + int width; + int height; + int width_offset; + int height_offset; +} TfLitePaddingValues; + +typedef struct { + TfLiteMirrorPaddingMode mode; +} TfLiteMirrorPaddingParams; + +// Possible fused activation functions. +// TODO(aselle): rename to TfLiteActivation +typedef enum { + kTfLiteActNone = 0, + kTfLiteActRelu, + kTfLiteActReluN1To1, // min(max(-1, x), 1) + kTfLiteActRelu1 = kTfLiteActReluN1To1, // kTfLiteActRelu1 will be deprecated. + kTfLiteActRelu6, // min(max(0, x), 6) + kTfLiteActTanh, + kTfLiteActSignBit, + kTfLiteActSigmoid, +} TfLiteFusedActivation; + +typedef struct { + // Parameters for CONV_2D version 1. + TfLitePadding padding; + int stride_width; + int stride_height; + TfLiteFusedActivation activation; + + // Parameters for CONV_2D version 2. + // Note: Version 2 supports dilation values not equal to 1. + int dilation_width_factor; + int dilation_height_factor; +} TfLiteConvParams; + +typedef struct { + TfLitePadding padding; + int stride_width; + int stride_height; + int filter_width; + int filter_height; + TfLiteFusedActivation activation; + struct { + TfLitePaddingValues padding; + } computed; +} TfLitePoolParams; + +typedef struct { + // Parameters for DepthwiseConv version 1 or above. + TfLitePadding padding; + int stride_width; + int stride_height; + // `depth_multiplier` is redundant. It's used by CPU kernels in + // TensorFlow 2.0 or below, but ignored in versions above. + // + // The information can be deduced from the shape of input and the shape of + // weights. Since the TFLiteConverter toolchain doesn't support partially + // specified shapes, relying on `depth_multiplier` stops us from supporting + // graphs with dynamic shape tensors. + // + // Note: Some of the delegates (e.g. NNAPI, GPU) are still relying on this + // field. + int depth_multiplier; + TfLiteFusedActivation activation; + // Parameters for DepthwiseConv version 2 or above. + int dilation_width_factor; + int dilation_height_factor; +} TfLiteDepthwiseConvParams; + +typedef struct { + int rank; + TfLiteFusedActivation activation; + + // Parameter for SVDF version 4. + bool asymmetric_quantize_inputs; +} TfLiteSVDFParams; + +typedef struct { + TfLiteFusedActivation activation; + + // Parameter for RNN version 3. + bool asymmetric_quantize_inputs; +} TfLiteRNNParams; + +typedef struct { + bool time_major; + TfLiteFusedActivation activation; + + // Parameter for Sequence RNN version 3. + bool asymmetric_quantize_inputs; +} TfLiteSequenceRNNParams; + +typedef struct { + bool time_major; + TfLiteFusedActivation activation; + bool merge_outputs; + + // Parameter for Bidirectional RNN verison 3. + bool asymmetric_quantize_inputs; +} TfLiteBidirectionalSequenceRNNParams; + +typedef enum { + kTfLiteFullyConnectedWeightsFormatDefault = 0, + kTfLiteFullyConnectedWeightsFormatShuffled4x16Int8 = 1, +} TfLiteFullyConnectedWeightsFormat; + +typedef struct { + // Parameters for FullyConnected version 1 or above. + TfLiteFusedActivation activation; + + // Parameters for FullyConnected version 2 or above. + TfLiteFullyConnectedWeightsFormat weights_format; + + // Parameters for FullyConnected version 5 or above. + // If set to true, then the number of dimensions in the input and the output + // tensors are the same. Furthermore, all but the last dimension of the input + // and output shapes will be equal. + bool keep_num_dims; + + // Parameters for FullyConnected version 7 or above. + // If set to true and the weights are quantized, then non constant inputs + // are quantized at evaluation time with asymmetric quantization. + bool asymmetric_quantize_inputs; +} TfLiteFullyConnectedParams; + +typedef enum { + kTfLiteLshProjectionUnknown = 0, + kTfLiteLshProjectionSparse = 1, + kTfLiteLshProjectionDense = 2, +} TfLiteLSHProjectionType; + +typedef struct { + TfLiteLSHProjectionType type; +} TfLiteLSHProjectionParams; + +typedef struct { + float beta; +} TfLiteSoftmaxParams; + +typedef struct { + int axis; + TfLiteFusedActivation activation; +} TfLiteConcatenationParams; + +typedef struct { + TfLiteFusedActivation activation; + // Parameter added for the version 4. + bool pot_scale_int16; +} TfLiteAddParams; + +typedef struct { + EmptyStructPlaceholder placeholder; +} TfLiteSpaceToBatchNDParams; + +typedef struct { + EmptyStructPlaceholder placeholder; +} TfLiteBatchToSpaceNDParams; + +typedef struct { + bool adj_x; + bool adj_y; +} TfLiteBatchMatMulParams; + +typedef struct { + TfLiteFusedActivation activation; +} TfLiteMulParams; + +typedef struct { + TfLiteFusedActivation activation; + // Parameter added for the version 5. + bool pot_scale_int16; +} TfLiteSubParams; + +typedef struct { + TfLiteFusedActivation activation; +} TfLiteDivParams; + +typedef struct { + TfLiteFusedActivation activation; +} TfLiteL2NormParams; + +typedef struct { + int radius; + float bias; + float alpha; + float beta; +} TfLiteLocalResponseNormParams; + +typedef enum { + kTfLiteLSTMFullKernel = 0, + kTfLiteLSTMBasicKernel +} TfLiteLSTMKernelType; + +typedef struct { + // Parameters for LSTM version 1. + TfLiteFusedActivation activation; + float cell_clip; + float proj_clip; + + // Parameters for LSTM version 2. + // kTfLiteLSTMBasicKernel is only supported in version 2 or above. + TfLiteLSTMKernelType kernel_type; + + // Parameters for LSTM version 4. + bool asymmetric_quantize_inputs; +} TfLiteLSTMParams; + +typedef struct { + // Parameters needed for the underlying LSTM. + TfLiteFusedActivation activation; + float cell_clip; + float proj_clip; + + // If set to true then the first dimension is time, otherwise batch. + bool time_major; + + // Parameter for unidirectional sequence RNN version 3. + bool asymmetric_quantize_inputs; +} TfLiteUnidirectionalSequenceLSTMParams; + +typedef struct { + // Parameters supported by version 1: + // Parameters inherited for the LSTM kernel. + TfLiteFusedActivation activation; + float cell_clip; + float proj_clip; + + // If true, store the outputs of both directions in the first output. + bool merge_outputs; + + // Parameters supported by version 2: + // If set to true then the first dimension is time, otherwise batch. + bool time_major; + + // Parameters supported by version 4: + // If set to true, then hybrid ops use asymmetric quantization for inputs. + bool asymmetric_quantize_inputs; +} TfLiteBidirectionalSequenceLSTMParams; + +typedef struct { + bool align_corners; + // half_pixel_centers assumes pixels are of half the actual dimensions, and + // yields more accurate resizes. Corresponds to the same argument for the + // original TensorFlow op in TF2.0. + bool half_pixel_centers; +} TfLiteResizeBilinearParams; + +typedef struct { + bool align_corners; + bool half_pixel_centers; +} TfLiteResizeNearestNeighborParams; + +typedef struct { + EmptyStructPlaceholder placeholder; +} TfLitePadParams; + +typedef struct { + EmptyStructPlaceholder placeholder; +} TfLitePadV2Params; + +typedef struct { + // TODO(ahentz): We can't have dynamic data in this struct, at least not yet. + // For now we will fix the maximum possible number of dimensions. + int shape[TFLITE_RESHAPE_PARAMS_MAX_DIMENSION_COUNT]; + int num_dimensions; +} TfLiteReshapeParams; + +typedef struct { + int ngram_size; + int max_skip_size; + bool include_all_ngrams; +} TfLiteSkipGramParams; + +typedef struct { + int block_size; +} TfLiteSpaceToDepthParams; + +typedef struct { + int block_size; +} TfLiteDepthToSpaceParams; + +typedef struct { + TfLiteType in_data_type; + TfLiteType out_data_type; +} TfLiteCastParams; + +typedef enum { + kTfLiteCombinerTypeSum = 0, + kTfLiteCombinerTypeMean = 1, + kTfLiteCombinerTypeSqrtn = 2, +} TfLiteCombinerType; + +typedef struct { + TfLiteCombinerType combiner; +} TfLiteEmbeddingLookupSparseParams; + +typedef struct { + int axis; +} TfLiteGatherParams; + +typedef struct { + EmptyStructPlaceholder placeholder; +} TfLiteTransposeParams; + +typedef struct { + bool keep_dims; +} TfLiteReducerParams; + +typedef struct { + int num_splits; +} TfLiteSplitParams; + +typedef struct { + int num_splits; +} TfLiteSplitVParams; + +typedef struct { + // TODO(ahentz): We can't have dynamic data in this struct, at least not yet. + // For now we will fix the maximum possible number of dimensions. + int squeeze_dims[8]; + int num_squeeze_dims; +} TfLiteSqueezeParams; + +typedef struct { + int begin_mask; + int end_mask; + int ellipsis_mask; + int new_axis_mask; + int shrink_axis_mask; +} TfLiteStridedSliceParams; + +typedef struct { + TfLiteType output_type; +} TfLiteArgMaxParams; + +typedef struct { + TfLiteType output_type; +} TfLiteArgMinParams; + +typedef struct { + TfLitePadding padding; + int stride_width; + int stride_height; +} TfLiteTransposeConvParams; + +typedef struct { + bool validate_indices; +} TfLiteSparseToDenseParams; + +typedef struct { + TfLiteType out_type; +} TfLiteShapeParams; + +typedef struct { + EmptyStructPlaceholder placeholder; +} TfLiteRankParams; + +typedef struct { + // Parameters supported by version 1: + float min; + float max; + int num_bits; + + // Parameters supported by version 2: + bool narrow_range; +} TfLiteFakeQuantParams; + +typedef struct { + int values_count; + int axis; +} TfLitePackParams; + +typedef struct { + int axis; +} TfLiteOneHotParams; + +typedef struct { + int num; + int axis; +} TfLiteUnpackParams; + +typedef struct { + float alpha; +} TfLiteLeakyReluParams; + +typedef struct { + TfLiteType index_out_type; +} TfLiteUniqueParams; + +typedef struct { + int seq_dim; + int batch_dim; +} TfLiteReverseSequenceParams; + +typedef struct { + EmptyStructPlaceholder placeholder; +} TfLiteMatrixDiagParams; + +typedef struct { + EmptyStructPlaceholder placeholder; +} TfLiteMatrixSetDiagParams; + +typedef struct { + int then_subgraph_index; + int else_subgraph_index; +} TfLiteIfParams; + +typedef struct { + int cond_subgraph_index; + int body_subgraph_index; +} TfLiteWhileParams; + +#ifdef __cplusplus +} // extern "C" +#endif // __cplusplus + +#endif // TENSORFLOW_LITE_C_BUILTIN_OP_DATA_H_ diff --git a/components/tflite_micro/tensorflow/lite/c/common.c b/components/tflite_micro/tensorflow/lite/c/common.c new file mode 100644 index 00000000..0264f420 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/c/common.c @@ -0,0 +1,232 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/c/common.h" +#ifndef TF_LITE_STATIC_MEMORY +#include +#include +#endif // TF_LITE_STATIC_MEMORY + +int TfLiteIntArrayGetSizeInBytes(int size) { + static TfLiteIntArray dummy; + return sizeof(dummy) + sizeof(dummy.data[0]) * size; +} + +int TfLiteIntArrayEqual(const TfLiteIntArray* a, const TfLiteIntArray* b) { + if (a == b) return 1; + if (a == NULL || b == NULL) return 0; + return TfLiteIntArrayEqualsArray(a, b->size, b->data); +} + +int TfLiteIntArrayEqualsArray(const TfLiteIntArray* a, int b_size, + const int b_data[]) { + if (a == NULL) return (b_size == 0); + if (a->size != b_size) return 0; + int i = 0; + for (; i < a->size; i++) + if (a->data[i] != b_data[i]) return 0; + return 1; +} + +#ifndef TF_LITE_STATIC_MEMORY + +TfLiteIntArray* TfLiteIntArrayCreate(int size) { + TfLiteIntArray* ret = + (TfLiteIntArray*)malloc(TfLiteIntArrayGetSizeInBytes(size)); + ret->size = size; + return ret; +} + +TfLiteIntArray* TfLiteIntArrayCopy(const TfLiteIntArray* src) { + if (!src) return NULL; + TfLiteIntArray* ret = TfLiteIntArrayCreate(src->size); + if (ret) { + memcpy(ret->data, src->data, src->size * sizeof(int)); + } + return ret; +} + +void TfLiteIntArrayFree(TfLiteIntArray* a) { free(a); } + +#endif // TF_LITE_STATIC_MEMORY + +int TfLiteFloatArrayGetSizeInBytes(int size) { + static TfLiteFloatArray dummy; + return sizeof(dummy) + sizeof(dummy.data[0]) * size; +} + +#ifndef TF_LITE_STATIC_MEMORY + +TfLiteFloatArray* TfLiteFloatArrayCreate(int size) { + TfLiteFloatArray* ret = + (TfLiteFloatArray*)malloc(TfLiteFloatArrayGetSizeInBytes(size)); + ret->size = size; + return ret; +} + +void TfLiteFloatArrayFree(TfLiteFloatArray* a) { free(a); } + +void TfLiteTensorDataFree(TfLiteTensor* t) { + if (t->allocation_type == kTfLiteDynamic || + t->allocation_type == kTfLitePersistentRo) { + free(t->data.raw); + } + t->data.raw = NULL; +} + +void TfLiteQuantizationFree(TfLiteQuantization* quantization) { + if (quantization->type == kTfLiteAffineQuantization) { + TfLiteAffineQuantization* q_params = + (TfLiteAffineQuantization*)(quantization->params); + if (q_params->scale) { + TfLiteFloatArrayFree(q_params->scale); + q_params->scale = NULL; + } + if (q_params->zero_point) { + TfLiteIntArrayFree(q_params->zero_point); + q_params->zero_point = NULL; + } + free(q_params); + } + quantization->params = NULL; + quantization->type = kTfLiteNoQuantization; +} + +void TfLiteSparsityFree(TfLiteSparsity* sparsity) { + if (sparsity == NULL) { + return; + } + + if (sparsity->traversal_order) { + TfLiteIntArrayFree(sparsity->traversal_order); + sparsity->traversal_order = NULL; + } + + if (sparsity->block_map) { + TfLiteIntArrayFree(sparsity->block_map); + sparsity->block_map = NULL; + } + + if (sparsity->dim_metadata) { + int i = 0; + for (; i < sparsity->dim_metadata_size; i++) { + TfLiteDimensionMetadata metadata = sparsity->dim_metadata[i]; + if (metadata.format == kTfLiteDimSparseCSR) { + TfLiteIntArrayFree(metadata.array_segments); + metadata.array_segments = NULL; + TfLiteIntArrayFree(metadata.array_indices); + metadata.array_indices = NULL; + } + } + free(sparsity->dim_metadata); + sparsity->dim_metadata = NULL; + } + + free(sparsity); +} + +void TfLiteTensorFree(TfLiteTensor* t) { + TfLiteTensorDataFree(t); + if (t->dims) TfLiteIntArrayFree(t->dims); + t->dims = NULL; + + if (t->dims_signature) { + TfLiteIntArrayFree((TfLiteIntArray *) t->dims_signature); + } + t->dims_signature = NULL; + + TfLiteQuantizationFree(&t->quantization); + TfLiteSparsityFree(t->sparsity); + t->sparsity = NULL; +} + +void TfLiteTensorReset(TfLiteType type, const char* name, TfLiteIntArray* dims, + TfLiteQuantizationParams quantization, char* buffer, + size_t size, TfLiteAllocationType allocation_type, + const void* allocation, bool is_variable, + TfLiteTensor* tensor) { + TfLiteTensorFree(tensor); + tensor->type = type; + tensor->name = name; + tensor->dims = dims; + tensor->params = quantization; + tensor->data.raw = buffer; + tensor->bytes = size; + tensor->allocation_type = allocation_type; + tensor->allocation = allocation; + tensor->is_variable = is_variable; + + tensor->quantization.type = kTfLiteNoQuantization; + tensor->quantization.params = NULL; +} + +void TfLiteTensorRealloc(size_t num_bytes, TfLiteTensor* tensor) { + if (tensor->allocation_type != kTfLiteDynamic && + tensor->allocation_type != kTfLitePersistentRo) { + return; + } + // TODO(b/145340303): Tensor data should be aligned. + if (!tensor->data.raw) { + tensor->data.raw = malloc(num_bytes); + } else if (num_bytes > tensor->bytes) { + tensor->data.raw = realloc(tensor->data.raw, num_bytes); + } + tensor->bytes = num_bytes; +} +#endif // TF_LITE_STATIC_MEMORY + +const char* TfLiteTypeGetName(TfLiteType type) { + switch (type) { + case kTfLiteNoType: + return "NOTYPE"; + case kTfLiteFloat32: + return "FLOAT32"; + case kTfLiteInt16: + return "INT16"; + case kTfLiteInt32: + return "INT32"; + case kTfLiteUInt8: + return "UINT8"; + case kTfLiteInt8: + return "INT8"; + case kTfLiteInt64: + return "INT64"; + case kTfLiteBool: + return "BOOL"; + case kTfLiteComplex64: + return "COMPLEX64"; + case kTfLiteComplex128: + return "COMPLEX128"; + case kTfLiteString: + return "STRING"; + case kTfLiteFloat16: + return "FLOAT16"; + case kTfLiteFloat64: + return "FLOAT64"; + } + return "Unknown type"; +} + +TfLiteDelegate TfLiteDelegateCreate() { + TfLiteDelegate d = { + .data_ = NULL, + .Prepare = NULL, + .CopyFromBufferHandle = NULL, + .CopyToBufferHandle = NULL, + .FreeBufferHandle = NULL, + .flags = kTfLiteDelegateFlagsNone, + }; + return d; +} diff --git a/components/tflite_micro/tensorflow/lite/c/common.h b/components/tflite_micro/tensorflow/lite/c/common.h new file mode 100644 index 00000000..7ef173c7 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/c/common.h @@ -0,0 +1,936 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +// This file defines common C types and APIs for implementing operations, +// delegates and other constructs in TensorFlow Lite. The actual operations and +// delegates can be defined using C++, but the interface between the interpreter +// and the operations are C. +// +// Summary of abstractions +// TF_LITE_ENSURE - Self-sufficient error checking +// TfLiteStatus - Status reporting +// TfLiteIntArray - stores tensor shapes (dims), +// TfLiteContext - allows an op to access the tensors +// TfLiteTensor - tensor (a multidimensional array) +// TfLiteNode - a single node or operation +// TfLiteRegistration - the implementation of a conceptual operation. +// TfLiteDelegate - allows delegation of nodes to alternative backends. +// +// Some abstractions in this file are created and managed by Interpreter. +// +// NOTE: The order of values in these structs are "semi-ABI stable". New values +// should be added only to the end of structs and never reordered. + +#ifndef TENSORFLOW_LITE_C_COMMON_H_ +#define TENSORFLOW_LITE_C_COMMON_H_ + +#include +#include +#include + +#ifdef __cplusplus +extern "C" { +#endif // __cplusplus + +typedef enum TfLiteStatus { + kTfLiteOk = 0, + kTfLiteError = 1, + kTfLiteDelegateError = 2 +} TfLiteStatus; + +// The list of external context types known to TF Lite. This list exists solely +// to avoid conflicts and to ensure ops can share the external contexts they +// need. Access to the external contexts is controlled by one of the +// corresponding support files. +typedef enum TfLiteExternalContextType { + kTfLiteEigenContext = 0, // include eigen_support.h to use. + kTfLiteGemmLowpContext = 1, // include gemm_support.h to use. + kTfLiteEdgeTpuContext = 2, // Placeholder for Edge TPU support. + kTfLiteCpuBackendContext = 3, // include cpu_backend_context.h to use. + kTfLiteMaxExternalContexts = 4 +} TfLiteExternalContextType; + +// Forward declare so dependent structs and methods can reference these types +// prior to the struct definitions. +struct TfLiteContext; +struct TfLiteDelegate; +struct TfLiteRegistration; + +// An external context is a collection of information unrelated to the TF Lite +// framework, but useful to a subset of the ops. TF Lite knows very little +// about about the actual contexts, but it keeps a list of them, and is able to +// refresh them if configurations like the number of recommended threads +// change. +typedef struct TfLiteExternalContext { + TfLiteExternalContextType type; + TfLiteStatus (*Refresh)(struct TfLiteContext* context); +} TfLiteExternalContext; + +#define kTfLiteOptionalTensor (-1) + +// Fixed size list of integers. Used for dimensions and inputs/outputs tensor +// indices +typedef struct TfLiteIntArray { + int size; +// gcc 6.1+ have a bug where flexible members aren't properly handled +// https://github.com/google/re2/commit/b94b7cd42e9f02673cd748c1ac1d16db4052514c +#if (!defined(__clang__) && defined(__GNUC__) && __GNUC__ == 6 && \ + __GNUC_MINOR__ >= 1) || \ + defined(HEXAGON) + int data[0]; +#else + int data[]; +#endif +} TfLiteIntArray; + +// Given the size (number of elements) in a TfLiteIntArray, calculate its size +// in bytes. +int TfLiteIntArrayGetSizeInBytes(int size); + +#ifndef TF_LITE_STATIC_MEMORY +// Create a array of a given `size` (uninitialized entries). +// This returns a pointer, that you must free using TfLiteIntArrayFree(). +TfLiteIntArray* TfLiteIntArrayCreate(int size); +#endif + +// Check if two intarrays are equal. Returns 1 if they are equal, 0 otherwise. +int TfLiteIntArrayEqual(const TfLiteIntArray* a, const TfLiteIntArray* b); + +// Check if an intarray equals an array. Returns 1 if equals, 0 otherwise. +int TfLiteIntArrayEqualsArray(const TfLiteIntArray* a, int b_size, + const int b_data[]); + +#ifndef TF_LITE_STATIC_MEMORY +// Create a copy of an array passed as `src`. +// You are expected to free memory with TfLiteIntArrayFree +TfLiteIntArray* TfLiteIntArrayCopy(const TfLiteIntArray* src); + +// Free memory of array `a`. +void TfLiteIntArrayFree(TfLiteIntArray* a); +#endif // TF_LITE_STATIC_MEMORY + +// Fixed size list of floats. Used for per-channel quantization. +typedef struct TfLiteFloatArray { + int size; +// gcc 6.1+ have a bug where flexible members aren't properly handled +// https://github.com/google/re2/commit/b94b7cd42e9f02673cd748c1ac1d16db4052514c +// This also applies to the toolchain used for Qualcomm Hexagon DSPs. +#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 6 && \ + __GNUC_MINOR__ >= 1 + float data[0]; +#else + float data[]; +#endif +} TfLiteFloatArray; + +// Given the size (number of elements) in a TfLiteFloatArray, calculate its size +// in bytes. +int TfLiteFloatArrayGetSizeInBytes(int size); + +#ifndef TF_LITE_STATIC_MEMORY +// Create a array of a given `size` (uninitialized entries). +// This returns a pointer, that you must free using TfLiteFloatArrayFree(). +TfLiteFloatArray* TfLiteFloatArrayCreate(int size); + +// Free memory of array `a`. +void TfLiteFloatArrayFree(TfLiteFloatArray* a); +#endif // TF_LITE_STATIC_MEMORY + +// Since we must not depend on any libraries, define a minimal subset of +// error macros while avoiding names that have pre-conceived meanings like +// assert and check. + +// Try to make all reporting calls through TF_LITE_KERNEL_LOG rather than +// calling the context->ReportError function directly, so that message strings +// can be stripped out if the binary size needs to be severely optimized. +#ifndef TF_LITE_STRIP_ERROR_STRINGS +#define TF_LITE_KERNEL_LOG(context, ...) \ + do { \ + (context)->ReportError((context), __VA_ARGS__); \ + } while (false) + +#define TF_LITE_MAYBE_KERNEL_LOG(context, ...) \ + do { \ + if ((context) != nullptr) { \ + (context)->ReportError((context), __VA_ARGS__); \ + } \ + } while (false) +#else // TF_LITE_STRIP_ERROR_STRINGS +#define TF_LITE_KERNEL_LOG(context, ...) +#define TF_LITE_MAYBE_KERNEL_LOG(context, ...) +#endif // TF_LITE_STRIP_ERROR_STRINGS + +// Check whether value is true, and if not return kTfLiteError from +// the current function (and report the error string msg). +#define TF_LITE_ENSURE_MSG(context, value, msg) \ + do { \ + if (!(value)) { \ + TF_LITE_KERNEL_LOG((context), __FILE__ " " msg); \ + return kTfLiteError; \ + } \ + } while (0) + +// Check whether the value `a` is true, and if not return kTfLiteError from +// the current function, while also reporting the location of the error. +#define TF_LITE_ENSURE(context, a) \ + do { \ + if (!(a)) { \ + TF_LITE_KERNEL_LOG((context), "%s:%d %s was not true.", __FILE__, \ + __LINE__, #a); \ + return kTfLiteError; \ + } \ + } while (0) + +#define TF_LITE_ENSURE_STATUS(a) \ + do { \ + const TfLiteStatus s = (a); \ + if (s != kTfLiteOk) { \ + return s; \ + } \ + } while (0) + +// Check whether the value `a == b` is true, and if not return kTfLiteError from +// the current function, while also reporting the location of the error. +// `a` and `b` may be evaluated more than once, so no side effects or +// extremely expensive computations should be done. +// NOTE: Use TF_LITE_ENSURE_TYPES_EQ if comparing TfLiteTypes. +#define TF_LITE_ENSURE_EQ(context, a, b) \ + do { \ + if ((a) != (b)) { \ + TF_LITE_KERNEL_LOG((context), "%s:%d %s != %s (%d != %d)", __FILE__, \ + __LINE__, #a, #b, (a), (b)); \ + return kTfLiteError; \ + } \ + } while (0) + +#define TF_LITE_ENSURE_TYPES_EQ(context, a, b) \ + do { \ + if ((a) != (b)) { \ + TF_LITE_KERNEL_LOG((context), "%s:%d %s != %s (%s != %s)", __FILE__, \ + __LINE__, #a, #b, TfLiteTypeGetName(a), \ + TfLiteTypeGetName(b)); \ + return kTfLiteError; \ + } \ + } while (0) + +#define TF_LITE_ENSURE_OK(context, status) \ + do { \ + const TfLiteStatus s = (status); \ + if ((s) != kTfLiteOk) { \ + return s; \ + } \ + } while (0) + +// Define TFL_CAPI_EXPORT macro to export a function properly with a shared +// library. +#ifdef SWIG +#define TFL_CAPI_EXPORT +#else +#if defined(_WIN32) +#ifdef TFL_COMPILE_LIBRARY +#define TFL_CAPI_EXPORT __declspec(dllexport) +#else +#define TFL_CAPI_EXPORT __declspec(dllimport) +#endif // TFL_COMPILE_LIBRARY +#else +#define TFL_CAPI_EXPORT __attribute__((visibility("default"))) +#endif // _WIN32 +#endif // SWIG + +// Single-precision complex data type compatible with the C99 definition. +typedef struct TfLiteComplex64 { + float re, im; // real and imaginary parts, respectively. +} TfLiteComplex64; + +// Double-precision complex data type compatible with the C99 definition. +typedef struct TfLiteComplex128 { + double re, im; // real and imaginary parts, respectively. +} TfLiteComplex128; + +// Half precision data type compatible with the C99 definition. +typedef struct TfLiteFloat16 { + uint16_t data; +} TfLiteFloat16; + +// Types supported by tensor +typedef enum { + kTfLiteNoType = 0, + kTfLiteFloat32 = 1, + kTfLiteInt32 = 2, + kTfLiteUInt8 = 3, + kTfLiteInt64 = 4, + kTfLiteString = 5, + kTfLiteBool = 6, + kTfLiteInt16 = 7, + kTfLiteComplex64 = 8, + kTfLiteInt8 = 9, + kTfLiteFloat16 = 10, + kTfLiteFloat64 = 11, + kTfLiteComplex128 = 12, +} TfLiteType; + +// Return the name of a given type, for error reporting purposes. +const char* TfLiteTypeGetName(TfLiteType type); + +// SupportedQuantizationTypes. +typedef enum TfLiteQuantizationType { + // No quantization. + kTfLiteNoQuantization = 0, + // Affine quantization (with support for per-channel quantization). + // Corresponds to TfLiteAffineQuantization. + kTfLiteAffineQuantization = 1, +} TfLiteQuantizationType; + +// Structure specifying the quantization used by the tensor, if-any. +typedef struct TfLiteQuantization { + // The type of quantization held by params. + TfLiteQuantizationType type; + // Holds a reference to one of the quantization param structures specified + // below. + void* params; +} TfLiteQuantization; + +// Legacy. Will be deprecated in favor of TfLiteAffineQuantization. +// If per-layer quantization is specified this field will still be populated in +// addition to TfLiteAffineQuantization. +// Parameters for asymmetric quantization. Quantized values can be converted +// back to float using: +// real_value = scale * (quantized_value - zero_point) +typedef struct TfLiteQuantizationParams { + float scale; + int32_t zero_point; +} TfLiteQuantizationParams; + +// Parameters for asymmetric quantization across a dimension (i.e per output +// channel quantization). +// quantized_dimension specifies which dimension the scales and zero_points +// correspond to. +// For a particular value in quantized_dimension, quantized values can be +// converted back to float using: +// real_value = scale * (quantized_value - zero_point) +typedef struct TfLiteAffineQuantization { + TfLiteFloatArray* scale; + TfLiteIntArray* zero_point; + int32_t quantized_dimension; +} TfLiteAffineQuantization; + +/* A union of pointers that points to memory for a given tensor. */ +typedef union TfLitePtrUnion { + /* Do not access these members directly, if possible, use + * GetTensorData(tensor) instead, otherwise only access .data, as other + * members are deprecated. */ + int32_t* i32; + int64_t* i64; + float* f; + TfLiteFloat16* f16; + double* f64; + char* raw; + const char* raw_const; + uint8_t* uint8; + bool* b; + int16_t* i16; + TfLiteComplex64* c64; + TfLiteComplex128* c128; + int8_t* int8; + /* Only use this member. */ + void* data; +} TfLitePtrUnion; + +// Memory allocation strategies. +// * kTfLiteMmapRo: Read-only memory-mapped data, or data externally allocated. +// * kTfLiteArenaRw: Arena allocated with no guarantees about persistence, +// and available during eval. +// * kTfLiteArenaRwPersistent: Arena allocated but persistent across eval, and +// only available during eval. +// * kTfLiteDynamic: Allocated during eval, or for string tensors. +// * kTfLitePersistentRo: Allocated and populated during prepare. This is +// useful for tensors that can be computed during prepare and treated +// as constant inputs for downstream ops (also in prepare). +typedef enum TfLiteAllocationType { + kTfLiteMemNone = 0, + kTfLiteMmapRo, + kTfLiteArenaRw, + kTfLiteArenaRwPersistent, + kTfLiteDynamic, + kTfLitePersistentRo, +} TfLiteAllocationType; + +// The delegates should use zero or positive integers to represent handles. +// -1 is reserved from unallocated status. +typedef int TfLiteBufferHandle; +enum { + kTfLiteNullBufferHandle = -1, +}; + +// Storage format of each dimension in a sparse tensor. +typedef enum TfLiteDimensionType { + kTfLiteDimDense = 0, + kTfLiteDimSparseCSR, +} TfLiteDimensionType; + +// Metadata to encode each dimension in a sparse tensor. +typedef struct TfLiteDimensionMetadata { + TfLiteDimensionType format; + int dense_size; + TfLiteIntArray* array_segments; + TfLiteIntArray* array_indices; +} TfLiteDimensionMetadata; + +// Parameters used to encode a sparse tensor. For detailed explanation of each +// field please refer to lite/schema/schema.fbs. +typedef struct TfLiteSparsity { + TfLiteIntArray* traversal_order; + TfLiteIntArray* block_map; + TfLiteDimensionMetadata* dim_metadata; + int dim_metadata_size; +} TfLiteSparsity; + +// An tensor in the interpreter system which is a wrapper around a buffer of +// data including a dimensionality (or NULL if not currently defined). +#ifndef TF_LITE_STATIC_MEMORY +typedef struct TfLiteTensor { + // The data type specification for data stored in `data`. This affects + // what member of `data` union should be used. + TfLiteType type; + // A union of data pointers. The appropriate type should be used for a typed + // tensor based on `type`. + TfLitePtrUnion data; + // A pointer to a structure representing the dimensionality interpretation + // that the buffer should have. NOTE: the product of elements of `dims` + // and the element datatype size should be equal to `bytes` below. + TfLiteIntArray* dims; + // Quantization information. + TfLiteQuantizationParams params; + // How memory is mapped + // kTfLiteMmapRo: Memory mapped read only. + // i.e. weights + // kTfLiteArenaRw: Arena allocated read write memory + // (i.e. temporaries, outputs). + TfLiteAllocationType allocation_type; + // The number of bytes required to store the data of this Tensor. I.e. + // (bytes of each element) * dims[0] * ... * dims[n-1]. For example, if + // type is kTfLiteFloat32 and dims = {3, 2} then + // bytes = sizeof(float) * 3 * 2 = 4 * 3 * 2 = 24. + size_t bytes; + + // An opaque pointer to a tflite::MMapAllocation + const void* allocation; + + // Null-terminated name of this tensor. + const char* name; + + // The delegate which knows how to handle `buffer_handle`. + // WARNING: This is an experimental interface that is subject to change. + struct TfLiteDelegate* delegate; + + // An integer buffer handle that can be handled by `delegate`. + // The value is valid only when delegate is not null. + // WARNING: This is an experimental interface that is subject to change. + TfLiteBufferHandle buffer_handle; + + // If the delegate uses its own buffer (e.g. GPU memory), the delegate is + // responsible to set data_is_stale to true. + // `delegate->CopyFromBufferHandle` can be called to copy the data from + // delegate buffer. + // WARNING: This is an // experimental interface that is subject to change. + bool data_is_stale; + + // True if the tensor is a variable. + bool is_variable; + + // Quantization information. Replaces params field above. + TfLiteQuantization quantization; + + // Parameters used to encode a sparse tensor. + // This is optional. The field is NULL if a tensor is dense. + // WARNING: This is an experimental interface that is subject to change. + TfLiteSparsity* sparsity; + + // Optional. Encodes shapes with unknown dimensions with -1. This field is + // only populated when unknown dimensions exist in a read-write tensor (i.e. + // an input or output tensor). (e.g. `dims` contains [1, 1, 1, 3] and + // `dims_signature` contains [1, -1, -1, 3]). + const TfLiteIntArray* dims_signature; +} TfLiteTensor; + +// A structure representing an instance of a node. +// This structure only exhibits the inputs, outputs and user defined data, not +// other features like the type. +typedef struct TfLiteNode { + // Inputs to this node expressed as indices into the simulator's tensors. + TfLiteIntArray* inputs; + + // Outputs to this node expressed as indices into the simulator's tensors. + TfLiteIntArray* outputs; + + // intermediate tensors to this node expressed as indices into the simulator's + // tensors. + TfLiteIntArray* intermediates; + + // Temporary tensors uses during the computations. This usually contains no + // tensors, but ops are allowed to change that if they need scratch space of + // any sort. + TfLiteIntArray* temporaries; + + // Opaque data provided by the node implementer through `Registration.init`. + void* user_data; + + // Opaque data provided to the node if the node is a builtin. This is usually + // a structure defined in builtin_op_data.h + void* builtin_data; + + // Custom initial data. This is the opaque data provided in the flatbuffer. + // WARNING: This is an experimental interface that is subject to change. + const void* custom_initial_data; + int custom_initial_data_size; + + // The pointer to the delegate. This is non-null only when the node is + // created by calling `interpreter.ModifyGraphWithDelegate`. + // WARNING: This is an experimental interface that is subject to change. + struct TfLiteDelegate* delegate; +} TfLiteNode; +#else // defined(TF_LITE_STATIC_MEMORY)? +// NOTE: This flag is opt-in only at compile time. +// +// Specific reduced TfLiteTensor struct for TF Micro runtime. This struct +// contains only the minimum fields required to initialize and prepare a micro +// inference graph. The fields in this struct have been ordered from +// largest-to-smallest for optimal struct sizeof. +// +// This struct does not use: +// - allocation +// - buffer_handle +// - data_is_stale +// - delegate +// - dims_signature +// - name +// - sparsity +typedef struct TfLiteTensor { + // TODO(b/155784997): Consider consolidating these quantization fields: + // Quantization information. Replaces params field above. + TfLiteQuantization quantization; + + // Quantization information. + TfLiteQuantizationParams params; + + // A union of data pointers. The appropriate type should be used for a typed + // tensor based on `type`. + TfLitePtrUnion data; + + // A pointer to a structure representing the dimensionality interpretation + // that the buffer should have. NOTE: the product of elements of `dims` + // and the element datatype size should be equal to `bytes` below. + TfLiteIntArray* dims; + + // The number of bytes required to store the data of this Tensor. I.e. + // (bytes of each element) * dims[0] * ... * dims[n-1]. For example, if + // type is kTfLiteFloat32 and dims = {3, 2} then + // bytes = sizeof(float) * 3 * 2 = 4 * 3 * 2 = 24. + size_t bytes; + + // The data type specification for data stored in `data`. This affects + // what member of `data` union should be used. + TfLiteType type; + + // How memory is mapped + // kTfLiteMmapRo: Memory mapped read only. + // i.e. weights + // kTfLiteArenaRw: Arena allocated read write memory + // (i.e. temporaries, outputs). + TfLiteAllocationType allocation_type; + + // True if the tensor is a variable. + bool is_variable; +} TfLiteTensor; + +// Specific reduced TfLiteNode struct for TF Micro runtime. This struct contains +// only the minimum fields required to represent a node. +// +// This struct does not use: +// - delegate +// - intermediates +// - temporaries +typedef struct TfLiteNode { + // Inputs to this node expressed as indices into the simulator's tensors. + TfLiteIntArray* inputs; + + // Outputs to this node expressed as indices into the simulator's tensors. + TfLiteIntArray* outputs; + + // Opaque data provided by the node implementer through `Registration.init`. + void* user_data; + + // Opaque data provided to the node if the node is a builtin. This is usually + // a structure defined in builtin_op_data.h + void* builtin_data; + + // Custom initial data. This is the opaque data provided in the flatbuffer. + // WARNING: This is an experimental interface that is subject to change. + const void* custom_initial_data; + int custom_initial_data_size; +} TfLiteNode; +#endif // TF_LITE_STATIC_MEMORY + +// Light-weight tensor struct for TF Micro runtime. Provides the minimal amount +// of information required for a kernel to run during TfLiteRegistration::Eval. +// TODO(b/160955687): Move this field into TF_LITE_STATIC_MEMORY when TFLM +// builds with this flag by default internally. +typedef struct TfLiteEvalTensor { + // A union of data pointers. The appropriate type should be used for a typed + // tensor based on `type`. + TfLitePtrUnion data; + + // A pointer to a structure representing the dimensionality interpretation + // that the buffer should have. + TfLiteIntArray* dims; + + // The data type specification for data stored in `data`. This affects + // what member of `data` union should be used. + TfLiteType type; +} TfLiteEvalTensor; + +#ifndef TF_LITE_STATIC_MEMORY +// Free data memory of tensor `t`. +void TfLiteTensorDataFree(TfLiteTensor* t); + +// Free quantization data. +void TfLiteQuantizationFree(TfLiteQuantization* quantization); + +// Free sparsity parameters. +void TfLiteSparsityFree(TfLiteSparsity* sparsity); + +// Free memory of tensor `t`. +void TfLiteTensorFree(TfLiteTensor* t); + +// Set all of a tensor's fields (and free any previously allocated data). +void TfLiteTensorReset(TfLiteType type, const char* name, TfLiteIntArray* dims, + TfLiteQuantizationParams quantization, char* buffer, + size_t size, TfLiteAllocationType allocation_type, + const void* allocation, bool is_variable, + TfLiteTensor* tensor); + +// Resize the allocated data of a (dynamic) tensor. Tensors with allocation +// types other than kTfLiteDynamic will be ignored. +void TfLiteTensorRealloc(size_t num_bytes, TfLiteTensor* tensor); +#endif // TF_LITE_STATIC_MEMORY + +// WARNING: This is an experimental interface that is subject to change. +// +// Currently, TfLiteDelegateParams has to be allocated in a way that it's +// trivially destructable. It will be stored as `builtin_data` field in +// `TfLiteNode` of the delegate node. +// +// See also the `CreateDelegateParams` function in `interpreter.cc` details. +typedef struct TfLiteDelegateParams { + struct TfLiteDelegate* delegate; + TfLiteIntArray* nodes_to_replace; + TfLiteIntArray* input_tensors; + TfLiteIntArray* output_tensors; +} TfLiteDelegateParams; + +typedef struct TfLiteContext { + // Number of tensors in the context. + size_t tensors_size; + + // The execution plan contains a list of the node indices in execution + // order. execution_plan->size is the current number of nodes. And, + // execution_plan->data[0] is the first node that needs to be run. + // TfLiteDelegates can traverse the current execution plan by iterating + // through each member of this array and using GetNodeAndRegistration() to + // access details about a node. i.e. + // TfLiteIntArray* execution_plan; + // TF_LITE_ENSURE_STATUS(context->GetExecutionPlan(context, &execution_plan)); + // for (int exec_index = 0; exec_index < execution_plan->size; exec_index++) { + // int node_index = execution_plan->data[exec_index]; + // TfLiteNode* node; + // TfLiteRegistration* reg; + // context->GetNodeAndRegistration(context, node_index, &node, ®); + // } + // WARNING: This is an experimental interface that is subject to change. + TfLiteStatus (*GetExecutionPlan)(struct TfLiteContext* context, + TfLiteIntArray** execution_plan); + + // An array of tensors in the interpreter context (of length `tensors_size`) + TfLiteTensor* tensors; + + // opaque full context ptr (an opaque c++ data structure) + void* impl_; + + // Request memory pointer be resized. Updates dimensions on the tensor. + // NOTE: ResizeTensor takes ownership of newSize. + TfLiteStatus (*ResizeTensor)(struct TfLiteContext*, TfLiteTensor* tensor, + TfLiteIntArray* new_size); + // Request that an error be reported with format string msg. + void (*ReportError)(struct TfLiteContext*, const char* msg, ...); + + // Add `tensors_to_add` tensors, preserving pre-existing Tensor entries. If + // non-null, the value pointed to by `first_new_tensor_index` will be set to + // the index of the first new tensor. + TfLiteStatus (*AddTensors)(struct TfLiteContext*, int tensors_to_add, + int* first_new_tensor_index); + + // Get a Tensor node by node_index. + // WARNING: This is an experimental interface that is subject to change. + TfLiteStatus (*GetNodeAndRegistration)( + struct TfLiteContext*, int node_index, TfLiteNode** node, + struct TfLiteRegistration** registration); + + // Replace ops with one or more stub delegate operations. This function + // does not take ownership of `nodes_to_replace`. + TfLiteStatus (*ReplaceNodeSubsetsWithDelegateKernels)( + struct TfLiteContext*, struct TfLiteRegistration registration, + const TfLiteIntArray* nodes_to_replace, struct TfLiteDelegate* delegate); + + // Number of threads that are recommended to subsystems like gemmlowp and + // eigen. + int recommended_num_threads; + + // Access external contexts by type. + // WARNING: This is an experimental interface that is subject to change. + TfLiteExternalContext* (*GetExternalContext)(struct TfLiteContext*, + TfLiteExternalContextType); + // Set the value of a external context. Does not take ownership of the + // pointer. + // WARNING: This is an experimental interface that is subject to change. + void (*SetExternalContext)(struct TfLiteContext*, TfLiteExternalContextType, + TfLiteExternalContext*); + + // Flag for allowing float16 precision for FP32 calculation. + // default: false. + // WARNING: This is an experimental API and subject to change. + bool allow_fp32_relax_to_fp16; + + // Pointer to the op-level profiler, if set; nullptr otherwise. + void* profiler; + + // Allocate persistent buffer which has the same life time as the interpreter. + // Returns nullptr on failure. + // The memory is allocated from heap for TFL, and from tail in TFLM. + // This method is only available in Init or Prepare stage. + // WARNING: This is an experimental interface that is subject to change. + void* (*AllocatePersistentBuffer)(struct TfLiteContext* ctx, size_t bytes); + + // Allocate a buffer which will be deallocated right after invoke phase. + // The memory is allocated from heap in TFL, and from volatile arena in TFLM. + // This method is only available in invoke stage. + // NOTE: If possible use RequestScratchBufferInArena method to avoid memory + // allocation during inference time. + // WARNING: This is an experimental interface that is subject to change. + TfLiteStatus (*AllocateBufferForEval)(struct TfLiteContext* ctx, size_t bytes, + void** ptr); + + // Request a scratch buffer in the arena through static memory planning. + // This method is only available in Prepare stage and the buffer is allocated + // by the interpreter between Prepare and Eval stage. In Eval stage, + // GetScratchBuffer API can be used to fetch the address. + // WARNING: This is an experimental interface that is subject to change. + TfLiteStatus (*RequestScratchBufferInArena)(struct TfLiteContext* ctx, + size_t bytes, int* buffer_idx); + + // Get the scratch buffer pointer. + // This method is only available in Eval stage. + // WARNING: This is an experimental interface that is subject to change. + void* (*GetScratchBuffer)(struct TfLiteContext* ctx, int buffer_idx); + + // Resize the memory pointer of the `tensor`. This method behaves the same as + // `ResizeTensor`, except that it makes a copy of the shape array internally + // so the shape array could be deallocated right afterwards. + // WARNING: This is an experimental interface that is subject to change. + TfLiteStatus (*ResizeTensorExplicit)(struct TfLiteContext* ctx, + TfLiteTensor* tensor, int dims, + const int* shape); + + // This method provides a preview of post-delegation partitioning. Each + // TfLiteDelegateParams in the referenced array corresponds to one instance of + // the delegate kernel. + // Example usage: + // + // TfLiteIntArray* nodes_to_replace = ...; + // TfLiteDelegateParams* params_array; + // int num_partitions = 0; + // TF_LITE_ENSURE_STATUS(context->PreviewDelegatePartitioning( + // context, delegate, nodes_to_replace, ¶ms_array, &num_partitions)); + // for (int idx = 0; idx < num_partitions; idx++) { + // const auto& partition_params = params_array[idx]; + // ... + // } + // + // NOTE: The context owns the memory referenced by partition_params_array. It + // will be cleared with another call to PreviewDelegateParitioning, or after + // TfLiteDelegateParams::Prepare returns. + // + // WARNING: This is an experimental interface that is subject to change. + TfLiteStatus (*PreviewDelegatePartitioning)( + struct TfLiteContext* context, const TfLiteIntArray* nodes_to_replace, + TfLiteDelegateParams** partition_params_array, int* num_partitions); + + // Returns a TfLiteTensor struct for a given index. + // WARNING: This is an experimental interface that is subject to change. + // WARNING: This method may not be available on all platforms. + TfLiteTensor* (*GetTensor)(const struct TfLiteContext* context, + int tensor_idx); + + // Returns a TfLiteEvalTensor struct for a given index. + // WARNING: This is an experimental interface that is subject to change. + // WARNING: This method may not be available on all platforms. + TfLiteEvalTensor* (*GetEvalTensor)(const struct TfLiteContext* context, + int tensor_idx); +} TfLiteContext; + +typedef struct TfLiteRegistration { + // Initializes the op from serialized data. + // If a built-in op: + // `buffer` is the op's params data (TfLiteLSTMParams*). + // `length` is zero. + // If custom op: + // `buffer` is the op's `custom_options`. + // `length` is the size of the buffer. + // + // Returns a type-punned (i.e. void*) opaque data (e.g. a primitive pointer + // or an instance of a struct). + // + // The returned pointer will be stored with the node in the `user_data` field, + // accessible within prepare and invoke functions below. + // NOTE: if the data is already in the desired format, simply implement this + // function to return `nullptr` and implement the free function to be a no-op. + void* (*init)(TfLiteContext* context, const char* buffer, size_t length); + + // The pointer `buffer` is the data previously returned by an init invocation. + void (*free)(TfLiteContext* context, void* buffer); + + // prepare is called when the inputs this node depends on have been resized. + // context->ResizeTensor() can be called to request output tensors to be + // resized. + // + // Returns kTfLiteOk on success. + TfLiteStatus (*prepare)(TfLiteContext* context, TfLiteNode* node); + + // Execute the node (should read node->inputs and output to node->outputs). + // Returns kTfLiteOk on success. + TfLiteStatus (*invoke)(TfLiteContext* context, TfLiteNode* node); + + // profiling_string is called during summarization of profiling information + // in order to group executions together. Providing a value here will cause a + // given op to appear multiple times is the profiling report. This is + // particularly useful for custom ops that can perform significantly + // different calculations depending on their `user-data`. + const char* (*profiling_string)(const TfLiteContext* context, + const TfLiteNode* node); + + // Builtin codes. If this kernel refers to a builtin this is the code + // of the builtin. This is so we can do marshaling to other frameworks like + // NN API. + // Note: It is the responsibility of the registration binder to set this + // properly. + int32_t builtin_code; + + // Custom op name. If the op is a builtin, this will be null. + // Note: It is the responsibility of the registration binder to set this + // properly. + // WARNING: This is an experimental interface that is subject to change. + const char* custom_name; + + // The version of the op. + // Note: It is the responsibility of the registration binder to set this + // properly. + int version; +} TfLiteRegistration; + +// The flags used in `TfLiteDelegate`. Note that this is a bitmask, so the +// values should be 1, 2, 4, 8, ...etc. +typedef enum TfLiteDelegateFlags { + kTfLiteDelegateFlagsNone = 0, + // The flag is set if the delegate can handle dynamic sized tensors. + // For example, the output shape of a `Resize` op with non-constant shape + // can only be inferred when the op is invoked. + // In this case, the Delegate is responsible for calling + // `SetTensorToDynamic` to mark the tensor as a dynamic tensor, and calling + // `ResizeTensor` when invoking the op. + // + // If the delegate isn't capable to handle dynamic tensors, this flag need + // to be set to false. + kTfLiteDelegateFlagsAllowDynamicTensors = 1, + + // This flag can be used by delegates (that allow dynamic tensors) to ensure + // applicable tensor shapes are automatically propagated in the case of tensor + // resizing. + // This means that non-dynamic (allocation_type != kTfLiteDynamic) I/O tensors + // of a delegate kernel will have correct shapes before its Prepare() method + // is called. The runtime leverages TFLite builtin ops in the original + // execution plan to propagate shapes. + // + // A few points to note: + // 1. This requires kTfLiteDelegateFlagsAllowDynamicTensors. If that flag is + // false, this one is redundant since the delegate kernels are re-initialized + // every time tensors are resized. + // 2. Enabling this flag adds some overhead to AllocateTensors(), since extra + // work is required to prepare the original execution plan. + // 3. This flag requires that the original execution plan only have ops with + // valid registrations (and not 'dummy' custom ops like with Flex). + // WARNING: This feature is experimental and subject to change. + kTfLiteDelegateFlagsRequirePropagatedShapes = 2 +} TfLiteDelegateFlags; + +// WARNING: This is an experimental interface that is subject to change. +typedef struct TfLiteDelegate { + // Data that delegate needs to identify itself. This data is owned by the + // delegate. The delegate is owned in the user code, so the delegate is + // responsible for doing this when it is destroyed. + void* data_; + + // Invoked by ModifyGraphWithDelegate. This prepare is called, giving the + // delegate a view of the current graph through TfLiteContext*. It typically + // will look at the nodes and call ReplaceNodeSubsetsWithDelegateKernels() + // to ask the TensorFlow lite runtime to create macro-nodes to represent + // delegated subgraphs of the original graph. + TfLiteStatus (*Prepare)(TfLiteContext* context, + struct TfLiteDelegate* delegate); + + // Copy the data from delegate buffer handle into raw memory of the given + // 'tensor'. Note that the delegate is allowed to allocate the raw bytes as + // long as it follows the rules for kTfLiteDynamic tensors, in which case this + // cannot be null. + TfLiteStatus (*CopyFromBufferHandle)(TfLiteContext* context, + struct TfLiteDelegate* delegate, + TfLiteBufferHandle buffer_handle, + TfLiteTensor* tensor); + + // Copy the data from raw memory of the given 'tensor' to delegate buffer + // handle. This can be null if the delegate doesn't use its own buffer. + TfLiteStatus (*CopyToBufferHandle)(TfLiteContext* context, + struct TfLiteDelegate* delegate, + TfLiteBufferHandle buffer_handle, + TfLiteTensor* tensor); + + // Free the Delegate Buffer Handle. Note: This only frees the handle, but + // this doesn't release the underlying resource (e.g. textures). The + // resources are either owned by application layer or the delegate. + // This can be null if the delegate doesn't use its own buffer. + void (*FreeBufferHandle)(TfLiteContext* context, + struct TfLiteDelegate* delegate, + TfLiteBufferHandle* handle); + + // Bitmask flags. See the comments in `TfLiteDelegateFlags`. + int64_t flags; +} TfLiteDelegate; + +// Build a 'null' delegate, with all the fields properly set to their default +// values. +TfLiteDelegate TfLiteDelegateCreate(); + +#ifdef __cplusplus +} // extern "C" +#endif // __cplusplus +#endif // TENSORFLOW_LITE_C_COMMON_H_ diff --git a/components/tflite_micro/tensorflow/lite/core/api/error_reporter.cc b/components/tflite_micro/tensorflow/lite/core/api/error_reporter.cc new file mode 100644 index 00000000..7070eaa5 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/core/api/error_reporter.cc @@ -0,0 +1,38 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#include "tensorflow/lite/core/api/error_reporter.h" +#include + +namespace tflite { + +int ErrorReporter::Report(const char* format, ...) { + va_list args; + va_start(args, format); + int code = Report(format, args); + va_end(args); + return code; +} + +// TODO(aselle): Make the name of ReportError on context the same, so +// we can use the ensure functions w/o a context and w/ a reporter. +int ErrorReporter::ReportError(void*, const char* format, ...) { + va_list args; + va_start(args, format); + int code = Report(format, args); + va_end(args); + return code; +} + +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/core/api/error_reporter.h b/components/tflite_micro/tensorflow/lite/core/api/error_reporter.h new file mode 100644 index 00000000..05839a61 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/core/api/error_reporter.h @@ -0,0 +1,59 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_CORE_API_ERROR_REPORTER_H_ +#define TENSORFLOW_LITE_CORE_API_ERROR_REPORTER_H_ + +#include + +namespace tflite { + +/// A functor that reports error to supporting system. Invoked similar to +/// printf. +/// +/// Usage: +/// ErrorReporter foo; +/// foo.Report("test %d", 5); +/// or +/// va_list args; +/// foo.Report("test %d", args); // where args is va_list +/// +/// Subclass ErrorReporter to provide another reporting destination. +/// For example, if you have a GUI program, you might redirect to a buffer +/// that drives a GUI error log box. +class ErrorReporter { + public: + virtual ~ErrorReporter() {} + virtual int Report(const char* format, va_list args) = 0; + int Report(const char* format, ...); + int ReportError(void*, const char* format, ...); +}; + +} // namespace tflite + +// You should not make bare calls to the error reporter, instead use the +// TF_LITE_REPORT_ERROR macro, since this allows message strings to be +// stripped when the binary size has to be optimized. If you are looking to +// reduce binary size, define TF_LITE_STRIP_ERROR_STRINGS when compiling and +// every call will be stubbed out, taking no memory. +#ifndef TF_LITE_STRIP_ERROR_STRINGS +#define TF_LITE_REPORT_ERROR(reporter, ...) \ + do { \ + static_cast(reporter)->Report(__VA_ARGS__); \ + } while (false) +#else // TF_LITE_STRIP_ERROR_STRINGS +#define TF_LITE_REPORT_ERROR(reporter, ...) +#endif // TF_LITE_STRIP_ERROR_STRINGS + +#endif // TENSORFLOW_LITE_CORE_API_ERROR_REPORTER_H_ diff --git a/components/tflite_micro/tensorflow/lite/core/api/flatbuffer_conversions.cc b/components/tflite_micro/tensorflow/lite/core/api/flatbuffer_conversions.cc new file mode 100644 index 00000000..7fb04f5b --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/core/api/flatbuffer_conversions.cc @@ -0,0 +1,1739 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/core/api/flatbuffer_conversions.h" + +#include +#include +#include + +#include "flatbuffers/flatbuffers.h" // from @flatbuffers +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/core/api/error_reporter.h" +#include "tensorflow/lite/kernels/internal/compatibility.h" +#include "tensorflow/lite/schema/schema_generated.h" + +namespace tflite { + +namespace { + +// Utility class for safely allocating POD data. This is useful for avoiding +// leaks in cases where op params are allocated but fail to propagate to the +// parsed op data (e.g., when model parameters are invalid). +class SafeBuiltinDataAllocator { + public: + class BuiltinDataDeleter { + public: + explicit BuiltinDataDeleter(BuiltinDataAllocator* allocator) + : allocator_(allocator) {} + + void operator()(void* data) { allocator_->Deallocate(data); } + + private: + BuiltinDataAllocator* allocator_; + }; + + template + using BuiltinDataPtr = std::unique_ptr; + + explicit SafeBuiltinDataAllocator(BuiltinDataAllocator* allocator) + : allocator_(allocator) {} + + template + BuiltinDataPtr Allocate() { + return BuiltinDataPtr(allocator_->AllocatePOD(), + BuiltinDataDeleter(allocator_)); + } + + private: + BuiltinDataAllocator* allocator_; +}; + +// All the Parse functions take some pointers as params and this function has +// the common DCHECKs to catch if any of those are nullptr. +void CheckParsePointerParams(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data) { + TFLITE_DCHECK(op != nullptr); + TFLITE_DCHECK(error_reporter != nullptr); + TFLITE_DCHECK(allocator != nullptr); + TFLITE_DCHECK(builtin_data != nullptr); +} + +// Copies the contents from the flatbuffer int vector `flatbuffer` into the +// int array `buffer`. `flat_vector` and `buffer` represent the same +// configuration operation for a given operation. +TfLiteStatus FlatBufferIntVectorToArray( + int max_size_of_buffer, const flatbuffers::Vector* flat_vector, + int* buffer, ErrorReporter* error_reporter, const char* op_name) { + if (!flat_vector) { + TF_LITE_REPORT_ERROR(error_reporter, + "Input array not provided for operation '%s'.\n", + op_name); + return kTfLiteError; + } else { + size_t num_dimensions = flat_vector->size(); + if (num_dimensions > max_size_of_buffer / sizeof(int)) { + TF_LITE_REPORT_ERROR( + error_reporter, + "Found too many dimensions in the input array of operation '%s'.\n", + op_name); + return kTfLiteError; + } else { + for (size_t i = 0; i < num_dimensions; ++i) { + buffer[i] = flat_vector->Get(i); + } + } + } + return kTfLiteOk; +} + +// Converts the flatbuffer activation to what is used at runtime. +TfLiteFusedActivation ConvertActivation(ActivationFunctionType activation) { + switch (activation) { + case ActivationFunctionType_NONE: + return kTfLiteActNone; + case ActivationFunctionType_RELU: + return kTfLiteActRelu; + case ActivationFunctionType_RELU_N1_TO_1: + return kTfLiteActReluN1To1; + case ActivationFunctionType_RELU6: + return kTfLiteActRelu6; + case ActivationFunctionType_TANH: + return kTfLiteActTanh; + case ActivationFunctionType_SIGN_BIT: + return kTfLiteActSignBit; + } + return kTfLiteActNone; +} + +// Converts the flatbuffer padding enum to what is used at runtime. +TfLitePadding ConvertPadding(Padding padding) { + switch (padding) { + case Padding_SAME: + return kTfLitePaddingSame; + case Padding_VALID: + return kTfLitePaddingValid; + } + return kTfLitePaddingUnknown; +} + +#ifndef TF_LITE_STATIC_MEMORY +TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type, + ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data) { + auto parseLSHProjectionType = [](LSHProjectionType type) { + switch (type) { + case LSHProjectionType_SPARSE: + return kTfLiteLshProjectionSparse; + case LSHProjectionType_DENSE: + return kTfLiteLshProjectionDense; + default: + return kTfLiteLshProjectionUnknown; + } + }; + auto parseCombinerType = [](CombinerType type) { + switch (type) { + case CombinerType_MEAN: + return kTfLiteCombinerTypeMean; + case CombinerType_SQRTN: + return kTfLiteCombinerTypeSqrtn; + case CombinerType_SUM: + default: + return kTfLiteCombinerTypeSum; + } + }; + + SafeBuiltinDataAllocator safe_allocator(allocator); + *builtin_data = nullptr; + switch (op_type) { + case BuiltinOperator_ABS: { + return ParseAbs(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_ADD: { + return ParseAdd(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_ARG_MAX: { + return ParseArgMax(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_ARG_MIN: { + return ParseArgMin(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_AVERAGE_POOL_2D: { + return ParsePool(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_CEIL: { + return ParseCeil(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_CONCATENATION: { + return ParseConcatenation(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_CONV_2D: { + return ParseConv2D(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_DEPTHWISE_CONV_2D: { + return ParseDepthwiseConv2D(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_DEQUANTIZE: { + return ParseDequantize(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_FLOOR: { + return ParseFloor(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_FULLY_CONNECTED: { + return ParseFullyConnected(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_GREATER: { + return ParseGreater(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_GREATER_EQUAL: { + return ParseGreaterEqual(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_HARD_SWISH: { + return ParseHardSwish(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_L2_NORMALIZATION: { + return ParseL2Normalization(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_L2_POOL_2D: { + return ParsePool(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_LESS: { + return ParseLess(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_LESS_EQUAL: { + return ParseLessEqual(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_LOG: { + return ParseLog(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_LOGICAL_AND: { + return ParseLogicalAnd(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_LOGICAL_NOT: { + return ParseLogicalNot(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_LOGICAL_OR: { + return ParseLogicalOr(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_LOGISTIC: { + return ParseLogistic(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_MAXIMUM: { + return ParseMaximum(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_MAX_POOL_2D: { + return ParsePool(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_MEAN: { + return ParseReducer(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_MINIMUM: { + return ParseMinimum(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_MUL: { + return ParseMul(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_NEG: { + return ParseNeg(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_NOT_EQUAL: { + return ParseNotEqual(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_PACK: { + return ParsePack(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_PAD: { + return ParsePad(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_PADV2: { + return ParsePadV2(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_PRELU: { + return ParsePrelu(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_QUANTIZE: { + return ParseQuantize(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_REDUCE_ANY: { + return ParseReducer(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_REDUCE_MAX: { + return ParseReducer(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_REDUCE_MIN: { + return ParseReducer(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_REDUCE_PROD: { + return ParseReducer(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_RELU: { + return ParseRelu(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_RELU6: { + return ParseRelu6(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_RESHAPE: { + return ParseReshape(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_RESIZE_NEAREST_NEIGHBOR: { + return ParseResizeNearestNeighbor(op, error_reporter, allocator, + builtin_data); + } + + case BuiltinOperator_ROUND: { + return ParseRound(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_RSQRT: { + return ParseRsqrt(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_SIN: { + return ParseSin(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_SOFTMAX: { + return ParseSoftmax(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_SPLIT: { + return ParseSplit(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_SQRT: { + return ParseSqrt(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_SQUARE: { + return ParseSquare(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_STRIDED_SLICE: { + return ParseStridedSlice(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_SUB: { + return ParseSub(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_SUM: { + return ParseReducer(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_SVDF: { + return ParseSvdf(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_TANH: { + return ParseTanh(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_UNPACK: { + return ParseUnpack(op, error_reporter, allocator, builtin_data); + } + + case BuiltinOperator_CAST: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* schema_params = op->builtin_options_as_CastOptions()) { + TF_LITE_ENSURE_STATUS(ConvertTensorType(schema_params->in_data_type(), + ¶ms->in_data_type, + error_reporter)); + TF_LITE_ENSURE_STATUS(ConvertTensorType(schema_params->out_data_type(), + ¶ms->out_data_type, + error_reporter)); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_LSH_PROJECTION: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* lshParams = + op->builtin_options_as_LSHProjectionOptions()) { + params->type = parseLSHProjectionType(lshParams->type()); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_RNN: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* sequence_rnn_params = + op->builtin_options_as_SequenceRNNOptions()) { + params->activation = + ConvertActivation(sequence_rnn_params->fused_activation_function()); + params->time_major = sequence_rnn_params->time_major(); + params->asymmetric_quantize_inputs = + sequence_rnn_params->asymmetric_quantize_inputs(); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_BIDIRECTIONAL_SEQUENCE_RNN: { + auto params = + safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* bidi_sequence_rnn_params = + op->builtin_options_as_BidirectionalSequenceRNNOptions()) { + params->activation = ConvertActivation( + bidi_sequence_rnn_params->fused_activation_function()); + params->time_major = bidi_sequence_rnn_params->time_major(); + params->merge_outputs = bidi_sequence_rnn_params->merge_outputs(); + params->asymmetric_quantize_inputs = + bidi_sequence_rnn_params->asymmetric_quantize_inputs(); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_RNN: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* rnn_params = op->builtin_options_as_RNNOptions()) { + params->activation = + ConvertActivation(rnn_params->fused_activation_function()); + params->asymmetric_quantize_inputs = + rnn_params->asymmetric_quantize_inputs(); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_EMBEDDING_LOOKUP_SPARSE: { + auto params = + safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* embedding_params = + op->builtin_options_as_EmbeddingLookupSparseOptions()) { + params->combiner = parseCombinerType(embedding_params->combiner()); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + + case BuiltinOperator_HASHTABLE_LOOKUP: + // no-op. + return kTfLiteOk; + case BuiltinOperator_DIV: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* schema_params = op->builtin_options_as_DivOptions()) { + params->activation = + ConvertActivation(schema_params->fused_activation_function()); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_LOCAL_RESPONSE_NORMALIZATION: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* schema_params = + op->builtin_options_as_LocalResponseNormalizationOptions()) { + params->radius = schema_params->radius(); + params->bias = schema_params->bias(); + params->alpha = schema_params->alpha(); + params->beta = schema_params->beta(); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_LSTM: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* lstm_params = op->builtin_options_as_LSTMOptions()) { + params->activation = + ConvertActivation(lstm_params->fused_activation_function()); + params->cell_clip = lstm_params->cell_clip(); + params->proj_clip = lstm_params->proj_clip(); + switch (lstm_params->kernel_type()) { + case LSTMKernelType_FULL: + params->kernel_type = kTfLiteLSTMFullKernel; + break; + case LSTMKernelType_BASIC: + params->kernel_type = kTfLiteLSTMBasicKernel; + break; + default: + TF_LITE_REPORT_ERROR(error_reporter, + "Unhandled LSTM kernel type: %d", + lstm_params->kernel_type()); + return kTfLiteError; + } + params->asymmetric_quantize_inputs = + lstm_params->asymmetric_quantize_inputs(); + } else { + TF_LITE_REPORT_ERROR(error_reporter, + "No valid LSTM builtin options exist"); + return kTfLiteError; + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM: { + auto params = + safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* seq_lstm_params = + op->builtin_options_as_UnidirectionalSequenceLSTMOptions()) { + params->activation = + ConvertActivation(seq_lstm_params->fused_activation_function()); + params->cell_clip = seq_lstm_params->cell_clip(); + params->proj_clip = seq_lstm_params->proj_clip(); + params->time_major = seq_lstm_params->time_major(); + params->asymmetric_quantize_inputs = + seq_lstm_params->asymmetric_quantize_inputs(); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_BIDIRECTIONAL_SEQUENCE_LSTM: { + auto params = + safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* bidi_lstm_params = + op->builtin_options_as_BidirectionalSequenceLSTMOptions()) { + params->activation = + ConvertActivation(bidi_lstm_params->fused_activation_function()); + params->cell_clip = bidi_lstm_params->cell_clip(); + params->proj_clip = bidi_lstm_params->proj_clip(); + params->merge_outputs = bidi_lstm_params->merge_outputs(); + params->time_major = bidi_lstm_params->time_major(); + params->asymmetric_quantize_inputs = + bidi_lstm_params->asymmetric_quantize_inputs(); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_RESIZE_BILINEAR: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* schema_params = + op->builtin_options_as_ResizeBilinearOptions()) { + params->align_corners = schema_params->align_corners(); + params->half_pixel_centers = schema_params->half_pixel_centers(); + } else { + // Some older models did not populate the ResizeBilinearOptions field in + // the flatbuffer, so ensure it's set to a sensible default. + params->align_corners = false; + params->half_pixel_centers = false; + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_SKIP_GRAM: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* skip_gram_params = + op->builtin_options_as_SkipGramOptions()) { + params->ngram_size = skip_gram_params->ngram_size(); + params->max_skip_size = skip_gram_params->max_skip_size(); + params->include_all_ngrams = skip_gram_params->include_all_ngrams(); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_SPACE_TO_DEPTH: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* schema_params = + op->builtin_options_as_SpaceToDepthOptions()) { + params->block_size = schema_params->block_size(); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_DEPTH_TO_SPACE: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* schema_params = + op->builtin_options_as_DepthToSpaceOptions()) { + params->block_size = schema_params->block_size(); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_GATHER: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + params->axis = 0; + if (const auto* gather_params = op->builtin_options_as_GatherOptions()) { + params->axis = gather_params->axis(); + } + + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_SPLIT_V: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* schema_params = op->builtin_options_as_SplitVOptions()) { + params->num_splits = schema_params->num_splits(); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_SQUEEZE: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* schema_params = op->builtin_options_as_SqueezeOptions()) { + const auto* squeeze_dims = schema_params->squeeze_dims(); + TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray( + sizeof(params->squeeze_dims), squeeze_dims, params->squeeze_dims, + error_reporter, "squeeze")); + params->num_squeeze_dims = squeeze_dims->size(); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_TRANSPOSE_CONV: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* transpose_conv_params = + op->builtin_options_as_TransposeConvOptions()) { + params->padding = ConvertPadding(transpose_conv_params->padding()); + params->stride_width = transpose_conv_params->stride_w(); + params->stride_height = transpose_conv_params->stride_h(); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_SPARSE_TO_DENSE: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* sparse_to_dense_params = + op->builtin_options_as_SparseToDenseOptions()) { + params->validate_indices = sparse_to_dense_params->validate_indices(); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_SHAPE: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* schema_params = op->builtin_options_as_ShapeOptions()) { + TF_LITE_ENSURE_STATUS(ConvertTensorType( + schema_params->out_type(), ¶ms->out_type, error_reporter)); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_DELEGATE: { + // TODO(ycling): Revisit when supporting saving delegated models. + TF_LITE_REPORT_ERROR(error_reporter, + "DELEGATE op shouldn't exist in model."); + return kTfLiteError; + } + case BuiltinOperator_FAKE_QUANT: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* schema_params = + op->builtin_options_as_FakeQuantOptions()) { + params->min = schema_params->min(); + params->max = schema_params->max(); + params->num_bits = schema_params->num_bits(); + params->narrow_range = schema_params->narrow_range(); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_ONE_HOT: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* schema_params = op->builtin_options_as_OneHotOptions()) { + params->axis = schema_params->axis(); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_LEAKY_RELU: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* leaky_relu_params = + op->builtin_options_as_LeakyReluOptions()) { + params->alpha = leaky_relu_params->alpha(); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_MIRROR_PAD: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + const auto* mirror_pad_params = op->builtin_options_as_MirrorPadOptions(); + if (mirror_pad_params != nullptr) { + params->mode = + mirror_pad_params->mode() == tflite::MirrorPadMode_REFLECT + ? TfLiteMirrorPaddingMode::kTfLiteMirrorPaddingReflect + : TfLiteMirrorPaddingMode::kTfLiteMirrorPaddingSymmetric; + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_UNIQUE: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + const auto* unique_params = op->builtin_options_as_UniqueOptions(); + if (unique_params != nullptr) { + params->index_out_type = + unique_params->idx_out_type() == tflite::TensorType_INT64 + ? TfLiteType::kTfLiteInt64 + : TfLiteType::kTfLiteInt32; + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_REVERSE_SEQUENCE: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* reverse_seq_params = + op->builtin_options_as_ReverseSequenceOptions()) { + params->seq_dim = reverse_seq_params->seq_dim(); + params->batch_dim = reverse_seq_params->batch_dim(); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_IF: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* if_params = op->builtin_options_as_IfOptions()) { + params->then_subgraph_index = if_params->then_subgraph_index(); + params->else_subgraph_index = if_params->else_subgraph_index(); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_WHILE: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* while_params = op->builtin_options_as_WhileOptions()) { + params->cond_subgraph_index = while_params->cond_subgraph_index(); + params->body_subgraph_index = while_params->body_subgraph_index(); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + case BuiltinOperator_BATCH_MATMUL: { + auto params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + if (const auto* bmm_params = + op->builtin_options_as_BatchMatMulOptions()) { + params->adj_x = bmm_params->adj_x(); + params->adj_y = bmm_params->adj_y(); + } + *builtin_data = params.release(); + return kTfLiteOk; + } + // Below are the ops with no builtin_data structure. + case BuiltinOperator_BATCH_TO_SPACE_ND: + // TODO(aselle): Implement call in BuiltinOptions, but nullptrs are + // ok for now, since there is no call implementation either. + case BuiltinOperator_CALL: + case BuiltinOperator_CONCAT_EMBEDDINGS: + case BuiltinOperator_COS: + case BuiltinOperator_CUSTOM: + case BuiltinOperator_ELU: + case BuiltinOperator_EMBEDDING_LOOKUP: + case BuiltinOperator_EQUAL: + case BuiltinOperator_EXP: + case BuiltinOperator_EXPAND_DIMS: + case BuiltinOperator_LOG_SOFTMAX: + case BuiltinOperator_MATRIX_DIAG: + case BuiltinOperator_MATRIX_SET_DIAG: + case BuiltinOperator_RELU_N1_TO_1: + case BuiltinOperator_SELECT: + case BuiltinOperator_SELECT_V2: + case BuiltinOperator_SLICE: + case BuiltinOperator_SPACE_TO_BATCH_ND: + case BuiltinOperator_TILE: + case BuiltinOperator_TOPK_V2: + case BuiltinOperator_TRANSPOSE: + case BuiltinOperator_POW: + case BuiltinOperator_FLOOR_DIV: + case BuiltinOperator_ZEROS_LIKE: + case BuiltinOperator_FILL: + case BuiltinOperator_FLOOR_MOD: + case BuiltinOperator_RANGE: + case BuiltinOperator_SQUARED_DIFFERENCE: + case BuiltinOperator_REVERSE_V2: + case BuiltinOperator_ADD_N: + case BuiltinOperator_GATHER_ND: + case BuiltinOperator_WHERE: + case BuiltinOperator_RANK: + case BuiltinOperator_NON_MAX_SUPPRESSION_V4: + case BuiltinOperator_NON_MAX_SUPPRESSION_V5: + case BuiltinOperator_SCATTER_ND: + case BuiltinOperator_DENSIFY: + case BuiltinOperator_SEGMENT_SUM: + return kTfLiteOk; + } + return kTfLiteError; +} // NOLINT[readability/fn_size] +#endif // !defined(TF_LITE_STATIC_MEMORY) +} // namespace + +TfLiteStatus ConvertTensorType(TensorType tensor_type, TfLiteType* type, + ErrorReporter* error_reporter) { + switch (tensor_type) { + case TensorType_FLOAT16: + *type = kTfLiteFloat16; + return kTfLiteOk; + case TensorType_FLOAT32: + *type = kTfLiteFloat32; + return kTfLiteOk; + case TensorType_FLOAT64: + *type = kTfLiteFloat64; + return kTfLiteOk; + case TensorType_INT16: + *type = kTfLiteInt16; + return kTfLiteOk; + case TensorType_INT32: + *type = kTfLiteInt32; + return kTfLiteOk; + case TensorType_UINT8: + *type = kTfLiteUInt8; + return kTfLiteOk; + case TensorType_INT8: + *type = kTfLiteInt8; + return kTfLiteOk; + case TensorType_INT64: + *type = kTfLiteInt64; + return kTfLiteOk; + case TensorType_STRING: + *type = kTfLiteString; + return kTfLiteOk; + case TensorType_BOOL: + *type = kTfLiteBool; + return kTfLiteOk; + case TensorType_COMPLEX64: + *type = kTfLiteComplex64; + return kTfLiteOk; + case TensorType_COMPLEX128: + *type = kTfLiteComplex128; + return kTfLiteOk; + default: + *type = kTfLiteNoType; + TF_LITE_REPORT_ERROR(error_reporter, + "Unsupported data type %d in tensor\n", tensor_type); + return kTfLiteError; + } +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseAbs(const Operator*, ErrorReporter*, BuiltinDataAllocator*, + void**) { + return kTfLiteOk; +} + +TfLiteStatus ParseAdd(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data) { + CheckParsePointerParams(op, error_reporter, allocator, builtin_data); + + SafeBuiltinDataAllocator safe_allocator(allocator); + std::unique_ptr + params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + + const AddOptions* schema_params = op->builtin_options_as_AddOptions(); + + if (schema_params != nullptr) { + params->activation = + ConvertActivation(schema_params->fused_activation_function()); + params->pot_scale_int16 = schema_params->pot_scale_int16(); + } else { + // TODO(b/157480169): We should either return kTfLiteError or fill in some + // reasonable defaults in the params struct. We are not doing so until we + // better undertand the ramifications of changing the legacy behavior. + } + + *builtin_data = params.release(); + return kTfLiteOk; +} + +TfLiteStatus ParseArgMax(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data) { + CheckParsePointerParams(op, error_reporter, allocator, builtin_data); + + SafeBuiltinDataAllocator safe_allocator(allocator); + std::unique_ptr + params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + + const ArgMaxOptions* schema_params = op->builtin_options_as_ArgMaxOptions(); + + if (schema_params != nullptr) { + TF_LITE_ENSURE_STATUS(ConvertTensorType( + schema_params->output_type(), ¶ms->output_type, error_reporter)); + } else { + // TODO(b/157480169): We should either return kTfLiteError or fill in some + // reasonable defaults in the params struct. We are not doing so until we + // better undertand the ramifications of changing the legacy behavior. + } + + *builtin_data = params.release(); + return kTfLiteOk; +} + +TfLiteStatus ParseArgMin(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data) { + CheckParsePointerParams(op, error_reporter, allocator, builtin_data); + + SafeBuiltinDataAllocator safe_allocator(allocator); + std::unique_ptr + params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + + const ArgMinOptions* schema_params = op->builtin_options_as_ArgMinOptions(); + + if (schema_params != nullptr) { + TF_LITE_ENSURE_STATUS(ConvertTensorType( + schema_params->output_type(), ¶ms->output_type, error_reporter)); + } else { + // TODO(b/157480169): We should either return kTfLiteError or fill in some + // reasonable defaults in the params struct. We are not doing so until we + // better undertand the ramifications of changing the legacy behavior. + } + + *builtin_data = params.release(); + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseCeil(const Operator*, ErrorReporter*, BuiltinDataAllocator*, + void**) { + return kTfLiteOk; +} + +TfLiteStatus ParseConcatenation(const Operator* op, + ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data) { + CheckParsePointerParams(op, error_reporter, allocator, builtin_data); + + SafeBuiltinDataAllocator safe_allocator(allocator); + std::unique_ptr + params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + + const ConcatenationOptions* schema_params = + op->builtin_options_as_ConcatenationOptions(); + + if (schema_params != nullptr) { + params->activation = + ConvertActivation(schema_params->fused_activation_function()); + params->axis = schema_params->axis(); + } else { + // TODO(b/157480169): We should either return kTfLiteError or fill in some + // reasonable defaults in the params struct. We are not doing so until we + // better undertand the ramifications of changing the legacy behavior. + } + + *builtin_data = params.release(); + return kTfLiteOk; +} + +TfLiteStatus ParseConv2D(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data) { + CheckParsePointerParams(op, error_reporter, allocator, builtin_data); + + SafeBuiltinDataAllocator safe_allocator(allocator); + std::unique_ptr + params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + + const Conv2DOptions* schema_params = op->builtin_options_as_Conv2DOptions(); + + if (schema_params != nullptr) { + params->padding = ConvertPadding(schema_params->padding()); + params->stride_width = schema_params->stride_w(); + params->stride_height = schema_params->stride_h(); + params->activation = + ConvertActivation(schema_params->fused_activation_function()); + + params->dilation_width_factor = schema_params->dilation_w_factor(); + params->dilation_height_factor = schema_params->dilation_h_factor(); + } else { + // TODO(b/157480169): We should either return kTfLiteError or fill in some + // reasonable defaults in the params struct. We are not doing so until we + // better undertand the ramifications of changing the legacy behavior. + } + + *builtin_data = params.release(); + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseCos(const Operator*, ErrorReporter*, BuiltinDataAllocator*, + void**) { + return kTfLiteOk; +} + +TfLiteStatus ParseDepthwiseConv2D(const Operator* op, + ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data) { + CheckParsePointerParams(op, error_reporter, allocator, builtin_data); + + SafeBuiltinDataAllocator safe_allocator(allocator); + + std::unique_ptr + params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + + const DepthwiseConv2DOptions* schema_params = + op->builtin_options_as_DepthwiseConv2DOptions(); + + if (schema_params != nullptr) { + params->padding = ConvertPadding(schema_params->padding()); + params->stride_width = schema_params->stride_w(); + params->stride_height = schema_params->stride_h(); + params->depth_multiplier = schema_params->depth_multiplier(); + params->activation = + ConvertActivation(schema_params->fused_activation_function()); + + params->dilation_width_factor = schema_params->dilation_w_factor(); + params->dilation_height_factor = schema_params->dilation_h_factor(); + } else { + // TODO(b/157480169): We should either return kTfLiteError or fill in some + // reasonable defaults in the params struct. We are not doing so until we + // better undertand the ramifications of changing the legacy behavior. + } + + *builtin_data = params.release(); + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseDequantize(const Operator*, ErrorReporter*, + BuiltinDataAllocator*, void**) { + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseEqual(const Operator*, ErrorReporter*, BuiltinDataAllocator*, + void**) { + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseFloor(const Operator*, ErrorReporter*, BuiltinDataAllocator*, + void**) { + return kTfLiteOk; +} + +TfLiteStatus ParseFullyConnected(const Operator* op, + ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data) { + CheckParsePointerParams(op, error_reporter, allocator, builtin_data); + + SafeBuiltinDataAllocator safe_allocator(allocator); + + std::unique_ptr + params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + + const FullyConnectedOptions* schema_params = + op->builtin_options_as_FullyConnectedOptions(); + + if (schema_params != nullptr) { + params->activation = + ConvertActivation(schema_params->fused_activation_function()); + params->keep_num_dims = schema_params->keep_num_dims(); + params->asymmetric_quantize_inputs = + schema_params->asymmetric_quantize_inputs(); + + switch (schema_params->weights_format()) { + case FullyConnectedOptionsWeightsFormat_DEFAULT: + params->weights_format = kTfLiteFullyConnectedWeightsFormatDefault; + break; + case FullyConnectedOptionsWeightsFormat_SHUFFLED4x16INT8: + params->weights_format = + kTfLiteFullyConnectedWeightsFormatShuffled4x16Int8; + break; + default: + TF_LITE_REPORT_ERROR(error_reporter, + "Unhandled fully-connected weights format."); + return kTfLiteError; + } + } else { + // TODO(b/157480169): We should either return kTfLiteError or fill in some + // reasonable defaults in the params struct. We are not doing so until we + // better undertand the ramifications of changing the legacy behavior. + } + + *builtin_data = params.release(); + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseGreater(const Operator*, ErrorReporter*, + BuiltinDataAllocator*, void**) { + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseGreaterEqual(const Operator*, ErrorReporter*, + BuiltinDataAllocator*, void**) { + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseHardSwish(const Operator*, ErrorReporter*, + BuiltinDataAllocator*, void**) { + return kTfLiteOk; +} + +TfLiteStatus ParseL2Normalization(const Operator* op, + ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data) { + CheckParsePointerParams(op, error_reporter, allocator, builtin_data); + + SafeBuiltinDataAllocator safe_allocator(allocator); + std::unique_ptr + params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + + const L2NormOptions* schema_params = op->builtin_options_as_L2NormOptions(); + + if (schema_params != nullptr) { + params->activation = + ConvertActivation(schema_params->fused_activation_function()); + } else { + // TODO(b/157480169): We should either return kTfLiteError or fill in some + // reasonable defaults in the params struct. We are not doing so until we + // better undertand the ramifications of changing the legacy behavior. + } + + *builtin_data = params.release(); + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseLess(const Operator*, ErrorReporter*, BuiltinDataAllocator*, + void**) { + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseLessEqual(const Operator*, ErrorReporter*, + BuiltinDataAllocator*, void**) { + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseLog(const Operator*, ErrorReporter*, BuiltinDataAllocator*, + void**) { + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseLogicalAnd(const Operator*, ErrorReporter*, + BuiltinDataAllocator*, void**) { + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseLogicalNot(const Operator*, ErrorReporter*, + BuiltinDataAllocator*, void**) { + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseLogicalOr(const Operator*, ErrorReporter*, + BuiltinDataAllocator*, void**) { + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseLogistic(const Operator*, ErrorReporter*, + BuiltinDataAllocator*, void**) { + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseMaximum(const Operator*, ErrorReporter*, + BuiltinDataAllocator*, void**) { + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseMinimum(const Operator*, ErrorReporter*, + BuiltinDataAllocator*, void**) { + return kTfLiteOk; +} + +TfLiteStatus ParseMul(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data) { + CheckParsePointerParams(op, error_reporter, allocator, builtin_data); + + SafeBuiltinDataAllocator safe_allocator(allocator); + std::unique_ptr + params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + + const MulOptions* schema_params = op->builtin_options_as_MulOptions(); + + if (schema_params != nullptr) { + params->activation = + ConvertActivation(schema_params->fused_activation_function()); + } else { + // TODO(b/157480169): We should either return kTfLiteError or fill in some + // reasonable defaults in the params struct. We are not doing so until we + // better undertand the ramifications of changing the legacy behavior. + } + + *builtin_data = params.release(); + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseNeg(const Operator*, ErrorReporter*, BuiltinDataAllocator*, + void**) { + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseNotEqual(const Operator*, ErrorReporter*, + BuiltinDataAllocator*, void**) { + return kTfLiteOk; +} + +TfLiteStatus ParsePack(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data) { + CheckParsePointerParams(op, error_reporter, allocator, builtin_data); + + SafeBuiltinDataAllocator safe_allocator(allocator); + std::unique_ptr + params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + + const PackOptions* schema_params = op->builtin_options_as_PackOptions(); + + if (schema_params != nullptr) { + params->values_count = schema_params->values_count(); + params->axis = schema_params->axis(); + } else { + // TODO(b/157480169): We should either return kTfLiteError or fill in some + // reasonable defaults in the params struct. We are not doing so until we + // better undertand the ramifications of changing the legacy behavior. + } + + *builtin_data = params.release(); + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParsePad(const Operator*, ErrorReporter*, BuiltinDataAllocator*, + void**) { + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParsePadV2(const Operator*, ErrorReporter*, BuiltinDataAllocator*, + void**) { + return kTfLiteOk; +} + +TfLiteStatus ParsePool(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data) { + CheckParsePointerParams(op, error_reporter, allocator, builtin_data); + + SafeBuiltinDataAllocator safe_allocator(allocator); + std::unique_ptr + params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + + const Pool2DOptions* schema_params = op->builtin_options_as_Pool2DOptions(); + + if (schema_params != nullptr) { + params->padding = ConvertPadding(schema_params->padding()); + params->stride_width = schema_params->stride_w(); + params->stride_height = schema_params->stride_h(); + params->filter_width = schema_params->filter_width(); + params->filter_height = schema_params->filter_height(); + params->activation = + ConvertActivation(schema_params->fused_activation_function()); + } else { + // TODO(b/157480169): We should either return kTfLiteError or fill in some + // reasonable defaults in the params struct. We are not doing so until we + // better undertand the ramifications of changing the legacy behavior. + } + + *builtin_data = params.release(); + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParsePrelu(const Operator*, ErrorReporter*, BuiltinDataAllocator*, + void**) { + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseQuantize(const Operator*, ErrorReporter*, + BuiltinDataAllocator*, void**) { + return kTfLiteOk; +} + +TfLiteStatus ParseReducer(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data) { + CheckParsePointerParams(op, error_reporter, allocator, builtin_data); + + SafeBuiltinDataAllocator safe_allocator(allocator); + + std::unique_ptr + params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + + const ReducerOptions* schema_params = op->builtin_options_as_ReducerOptions(); + + if (schema_params != nullptr) { + params->keep_dims = schema_params->keep_dims(); + } else { + // TODO(b/157480169): We should either return kTfLiteError or fill in some + // reasonable defaults in the params struct. We are not doing so until we + // better undertand the ramifications of changing the legacy behavior. + } + + *builtin_data = params.release(); + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseRelu(const Operator*, ErrorReporter*, BuiltinDataAllocator*, + void**) { + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseRelu6(const Operator*, ErrorReporter*, BuiltinDataAllocator*, + void**) { + return kTfLiteOk; +} + +TfLiteStatus ParseReshape(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data) { + CheckParsePointerParams(op, error_reporter, allocator, builtin_data); + + SafeBuiltinDataAllocator safe_allocator(allocator); + + std::unique_ptr + params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + + const ReshapeOptions* schema_params = op->builtin_options_as_ReshapeOptions(); + + if (schema_params != nullptr) { + const flatbuffers::Vector* new_shape = schema_params->new_shape(); + // TODO(b/147203660): We need to figure out when dynamic reshape + // (new_shape is a tensor) happens, why the option is not a nullptr. + // But nonethless, we should only copy when new_shape is not a nullptr. + if (new_shape != nullptr) { + TF_LITE_ENSURE_STATUS( + FlatBufferIntVectorToArray(sizeof(params->shape), new_shape, + params->shape, error_reporter, "reshape")); + params->num_dimensions = new_shape->size(); + } else { + // TODO(b/157480169) TODO(b/147203660): We should either return + // kTfLiteError or fill in some reasonable defaults in the params struct. + // We are not doing so until we better undertand the ramifications of + // changing the legacy behavior. + } + } else { + // TODO(b/157480169): We should either return kTfLiteError or fill in some + // reasonable defaults in the params struct. We are not doing so until we + // better undertand the ramifications of changing the legacy behavior. + } + + *builtin_data = params.release(); + return kTfLiteOk; +} + +TfLiteStatus ParseResizeNearestNeighbor(const Operator* op, + ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data) { + CheckParsePointerParams(op, error_reporter, allocator, builtin_data); + + SafeBuiltinDataAllocator safe_allocator(allocator); + std::unique_ptr + params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + + const ResizeNearestNeighborOptions* schema_params = + op->builtin_options_as_ResizeNearestNeighborOptions(); + + if (schema_params != nullptr) { + params->align_corners = schema_params->align_corners(); + params->half_pixel_centers = schema_params->half_pixel_centers(); + } else { + params->align_corners = false; + params->half_pixel_centers = false; + } + + *builtin_data = params.release(); + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseRound(const Operator*, ErrorReporter*, BuiltinDataAllocator*, + void**) { + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseRsqrt(const Operator*, ErrorReporter*, BuiltinDataAllocator*, + void**) { + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseSin(const Operator*, ErrorReporter*, BuiltinDataAllocator*, + void**) { + return kTfLiteOk; +} + +TfLiteStatus ParseSoftmax(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data) { + CheckParsePointerParams(op, error_reporter, allocator, builtin_data); + + SafeBuiltinDataAllocator safe_allocator(allocator); + std::unique_ptr + params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + + const SoftmaxOptions* schema_params = op->builtin_options_as_SoftmaxOptions(); + + if (schema_params != nullptr) { + params->beta = schema_params->beta(); + } else { + // TODO(b/157480169): We should either return kTfLiteError or fill in some + // reasonable defaults in the params struct. We are not doing so until we + // better undertand the ramifications of changing the legacy behavior. + } + + *builtin_data = params.release(); + return kTfLiteOk; +} + +TfLiteStatus ParseSplit(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data) { + CheckParsePointerParams(op, error_reporter, allocator, builtin_data); + + SafeBuiltinDataAllocator safe_allocator(allocator); + std::unique_ptr + params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + + const SplitOptions* schema_params = op->builtin_options_as_SplitOptions(); + + if (schema_params != nullptr) { + params->num_splits = schema_params->num_splits(); + } else { + // TODO(b/157480169): We should either return kTfLiteError or fill in some + // reasonable defaults in the params struct. We are not doing so until we + // better undertand the ramifications of changing the legacy behavior. + } + + *builtin_data = params.release(); + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseSqrt(const Operator*, ErrorReporter*, BuiltinDataAllocator*, + void**) { + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseSquare(const Operator*, ErrorReporter*, BuiltinDataAllocator*, + void**) { + return kTfLiteOk; +} + +TfLiteStatus ParseStridedSlice(const Operator* op, + ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data) { + CheckParsePointerParams(op, error_reporter, allocator, builtin_data); + + SafeBuiltinDataAllocator safe_allocator(allocator); + std::unique_ptr + params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + + const StridedSliceOptions* schema_params = + op->builtin_options_as_StridedSliceOptions(); + + if (schema_params != nullptr) { + params->begin_mask = schema_params->begin_mask(); + params->end_mask = schema_params->end_mask(); + params->ellipsis_mask = schema_params->ellipsis_mask(); + params->new_axis_mask = schema_params->new_axis_mask(); + params->shrink_axis_mask = schema_params->shrink_axis_mask(); + } else { + // TODO(b/157480169): We should either return kTfLiteError or fill in some + // reasonable defaults in the params struct. We are not doing so until we + // better undertand the ramifications of changing the legacy behavior. + } + + *builtin_data = params.release(); + return kTfLiteOk; +} + +TfLiteStatus ParseSub(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data) { + CheckParsePointerParams(op, error_reporter, allocator, builtin_data); + + SafeBuiltinDataAllocator safe_allocator(allocator); + std::unique_ptr + params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + + const SubOptions* schema_params = op->builtin_options_as_SubOptions(); + + if (schema_params != nullptr) { + params->activation = + ConvertActivation(schema_params->fused_activation_function()); + params->pot_scale_int16 = schema_params->pot_scale_int16(); + } else { + // TODO(b/157480169): We should either return kTfLiteError or fill in some + // reasonable defaults in the params struct. We are not doing so until we + // better undertand the ramifications of changing the legacy behavior. + } + + *builtin_data = params.release(); + return kTfLiteOk; +} + +TfLiteStatus ParseSvdf(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data) { + CheckParsePointerParams(op, error_reporter, allocator, builtin_data); + + SafeBuiltinDataAllocator safe_allocator(allocator); + std::unique_ptr + params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + + const SVDFOptions* schema_params = op->builtin_options_as_SVDFOptions(); + if (schema_params != nullptr) { + params->rank = schema_params->rank(); + params->activation = + ConvertActivation(schema_params->fused_activation_function()); + params->asymmetric_quantize_inputs = + schema_params->asymmetric_quantize_inputs(); + } else { + // TODO(b/157480169): We should either return kTfLiteError or fill in some + // reasonable defaults in the params struct. We are not doing so until we + // better undertand the ramifications of changing the legacy behavior. + } + + *builtin_data = params.release(); + return kTfLiteOk; +} + +// We have this parse function instead of directly returning kTfLiteOk from the +// switch-case in ParseOpData because this function is used as part of the +// selective registration for the OpResolver implementation in micro. +TfLiteStatus ParseTanh(const Operator*, ErrorReporter*, BuiltinDataAllocator*, + void**) { + return kTfLiteOk; +} + +TfLiteStatus ParseUnpack(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data) { + CheckParsePointerParams(op, error_reporter, allocator, builtin_data); + + SafeBuiltinDataAllocator safe_allocator(allocator); + std::unique_ptr + params = safe_allocator.Allocate(); + TF_LITE_ENSURE(error_reporter, params != nullptr); + + const UnpackOptions* schema_params = op->builtin_options_as_UnpackOptions(); + + if (schema_params != nullptr) { + params->num = schema_params->num(); + params->axis = schema_params->axis(); + } else { + // TODO(b/157480169): We should either return kTfLiteError or fill in some + // reasonable defaults in the params struct. We are not doing so until we + // better undertand the ramifications of changing the legacy behavior. + } + + *builtin_data = params.release(); + return kTfLiteOk; +} + +TfLiteStatus ParseOpData(const Operator* op, BuiltinOperator op_type, + ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data) { +// TODO(b/145762662): It would be preferable to have the build graph for TF Lite +// Micro not have the ParseOpData function at all. This would require splitting +// the current file into two separate files, one of which defines the +// ParseOpData function and the other that defines the operator specific parse +// functions (e.g. ParseAdd). +// +// Such a split was attempted but was not worth the effort at the time because +// of the following reasons: +// * We could either duplicate the functions and the SafeBuiltinDataAllocator +// class in the anonymous namespace of this file, or attempt to make a common +// library with these helper functions and class. +// * Making a common library with a separate build target was not feasible as +// it introduced circular dependencies due to the ErrorReporter and a common +// .cc and .h within the same api build target the also cause circular +// dependencies due to the BuiltinDataAllocator class. +// * If all the builtin operators were to have their own parse functions, or we +// were ok with some amount of code duplication, then this split of the .cc +// files would be a lot more feasible. +#ifdef TF_LITE_STATIC_MEMORY + TF_LITE_REPORT_ERROR( + error_reporter, + "ParseOpData is unsupported on TfLiteMicro, please use the operator " + "specific parse functions (e.g. ParseAdd etc.).\n"); + return kTfLiteError; +#else + return ParseOpDataTfLite(op, op_type, error_reporter, allocator, + builtin_data); +#endif +} + +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/core/api/flatbuffer_conversions.h b/components/tflite_micro/tensorflow/lite/core/api/flatbuffer_conversions.h new file mode 100644 index 00000000..aaeb98c0 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/core/api/flatbuffer_conversions.h @@ -0,0 +1,253 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_CORE_API_FLATBUFFER_CONVERSIONS_H_ +#define TENSORFLOW_LITE_CORE_API_FLATBUFFER_CONVERSIONS_H_ + +// These functions transform codes and data structures that are defined in the +// flatbuffer serialization format into in-memory values that are used by the +// runtime API and interpreter. + +#include +#include +#include + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/core/api/error_reporter.h" +#include "tensorflow/lite/schema/schema_generated.h" + +namespace tflite { + +// Interface class for builtin data allocations. +class BuiltinDataAllocator { + public: + virtual void* Allocate(size_t size, size_t alignment_hint) = 0; + virtual void Deallocate(void* data) = 0; + + // Allocate a structure, but make sure it is a POD structure that doesn't + // require constructors to run. The reason we do this, is that Interpreter's C + // extension part will take ownership so destructors will not be run during + // deallocation. + template + T* AllocatePOD() { + // TODO(b/154346074): Change this to is_trivially_destructible when all + // platform targets support that properly. + static_assert(std::is_pod::value, "Builtin data structure must be POD."); + void* allocated_memory = this->Allocate(sizeof(T), alignof(T)); + return new (allocated_memory) T; + } + + virtual ~BuiltinDataAllocator() {} +}; + +// Parse the appropriate data out of the op. +// +// This handles builtin data explicitly as there are flatbuffer schemas. +// If it returns kTfLiteOk, it passes the data out with `builtin_data`. The +// calling function has to pass in an allocator object, and this allocator +// will be called to reserve space for the output data. If the calling +// function's allocator reserves memory on the heap, then it's the calling +// function's responsibility to free it. +// If it returns kTfLiteError, `builtin_data` will be `nullptr`. +TfLiteStatus ParseOpData(const Operator* op, BuiltinOperator op_type, + ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +// Converts the tensor data type used in the flat buffer to the representation +// used by the runtime. +TfLiteStatus ConvertTensorType(TensorType tensor_type, TfLiteType* type, + ErrorReporter* error_reporter); + +TfLiteStatus ParseAbs(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseAdd(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseArgMax(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseArgMin(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseCeil(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseConcatenation(const Operator* op, + ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data); + +TfLiteStatus ParseConv2D(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseCos(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseDepthwiseConv2D(const Operator* op, + ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data); + +TfLiteStatus ParseDequantize(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data); + +TfLiteStatus ParseEqual(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseFloor(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseFullyConnected(const Operator* op, + ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data); + +TfLiteStatus ParseGreater(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseGreaterEqual(const Operator* op, + ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data); + +TfLiteStatus ParseHardSwish(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data); + +TfLiteStatus ParseL2Normalization(const Operator* op, + ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data); + +TfLiteStatus ParseLess(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseLessEqual(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data); + +TfLiteStatus ParseLog(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseLogicalAnd(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data); + +TfLiteStatus ParseLogicalNot(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data); + +TfLiteStatus ParseLogicalOr(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data); + +TfLiteStatus ParseLogistic(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data); + +TfLiteStatus ParseMaximum(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseMinimum(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseMul(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseNeg(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseNotEqual(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data); + +TfLiteStatus ParsePack(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParsePad(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParsePadV2(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParsePool(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParsePrelu(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseQuantize(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data); + +TfLiteStatus ParseReducer(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseRelu(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseRelu6(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseReshape(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseResizeNearestNeighbor(const Operator* op, + ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data); + +TfLiteStatus ParseRound(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseRsqrt(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseSin(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseSoftmax(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseSplit(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseSqrt(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseSquare(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseStridedSlice(const Operator* op, + ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data); + +TfLiteStatus ParseSub(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseSvdf(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseTanh(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +TfLiteStatus ParseUnpack(const Operator* op, ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, void** builtin_data); + +} // namespace tflite + +#endif // TENSORFLOW_LITE_CORE_API_FLATBUFFER_CONVERSIONS_H_ diff --git a/components/tflite_micro/tensorflow/lite/core/api/op_resolver.cc b/components/tflite_micro/tensorflow/lite/core/api/op_resolver.cc new file mode 100644 index 00000000..c239d9ed --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/core/api/op_resolver.cc @@ -0,0 +1,66 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/core/api/op_resolver.h" + +#include "flatbuffers/flatbuffers.h" // from @flatbuffers +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/core/api/error_reporter.h" + +namespace tflite { + +TfLiteStatus GetRegistrationFromOpCode( + const OperatorCode* opcode, const OpResolver& op_resolver, + ErrorReporter* error_reporter, const TfLiteRegistration** registration) { + TfLiteStatus status = kTfLiteOk; + *registration = nullptr; + auto builtin_code = opcode->builtin_code(); + int version = opcode->version(); + + if (builtin_code > BuiltinOperator_MAX || + builtin_code < BuiltinOperator_MIN) { + TF_LITE_REPORT_ERROR( + error_reporter, + "Op builtin_code out of range: %d. Are you using old TFLite binary " + "with newer model?", + builtin_code); + status = kTfLiteError; + } else if (builtin_code != BuiltinOperator_CUSTOM) { + *registration = op_resolver.FindOp(builtin_code, version); + if (*registration == nullptr) { + TF_LITE_REPORT_ERROR( + error_reporter, + "Didn't find op for builtin opcode '%s' version '%d'\n", + EnumNameBuiltinOperator(builtin_code), version); + status = kTfLiteError; + } + } else if (!opcode->custom_code()) { + TF_LITE_REPORT_ERROR( + error_reporter, + "Operator with CUSTOM builtin_code has no custom_code.\n"); + status = kTfLiteError; + } else { + const char* name = opcode->custom_code()->c_str(); + *registration = op_resolver.FindOp(name, version); + if (*registration == nullptr) { + // Do not report error for unresolved custom op, we do the final check + // while preparing ops. + status = kTfLiteError; + } + } + return status; +} + +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/core/api/op_resolver.h b/components/tflite_micro/tensorflow/lite/core/api/op_resolver.h new file mode 100644 index 00000000..1294b7b8 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/core/api/op_resolver.h @@ -0,0 +1,48 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_CORE_API_OP_RESOLVER_H_ +#define TENSORFLOW_LITE_CORE_API_OP_RESOLVER_H_ + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/core/api/error_reporter.h" +#include "tensorflow/lite/schema/schema_generated.h" + +namespace tflite { + +/// Abstract interface that returns TfLiteRegistrations given op codes or custom +/// op names. This is the mechanism that ops being referenced in the flatbuffer +/// model are mapped to executable function pointers (TfLiteRegistrations). +class OpResolver { + public: + /// Finds the op registration for a builtin operator by enum code. + virtual const TfLiteRegistration* FindOp(tflite::BuiltinOperator op, + int version) const = 0; + /// Finds the op registration of a custom operator by op name. + virtual const TfLiteRegistration* FindOp(const char* op, + int version) const = 0; + virtual ~OpResolver() {} +}; + +// Handles the logic for converting between an OperatorCode structure extracted +// from a flatbuffer and information about a registered operator +// implementation. +TfLiteStatus GetRegistrationFromOpCode(const OperatorCode* opcode, + const OpResolver& op_resolver, + ErrorReporter* error_reporter, + const TfLiteRegistration** registration); + +} // namespace tflite + +#endif // TENSORFLOW_LITE_CORE_API_OP_RESOLVER_H_ diff --git a/components/tflite_micro/tensorflow/lite/core/api/profiler.h b/components/tflite_micro/tensorflow/lite/core/api/profiler.h new file mode 100644 index 00000000..897efbe1 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/core/api/profiler.h @@ -0,0 +1,194 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_CORE_API_PROFILER_H_ +#define TENSORFLOW_LITE_CORE_API_PROFILER_H_ + +#include + +namespace tflite { + +// A simple utility for enabling profiled event tracing in TensorFlow Lite. +class Profiler { + public: + // As certain Profiler instance might be only interested in certain event + // types, we define each event type value to allow a Profiler to use + // bitmasking bitwise operations to determine whether an event should be + // recorded or not. + enum class EventType { + // Default event type, the metadata field has no special significance. + DEFAULT = 1, + + // The event is an operator invocation and the event_metadata field is the + // index of operator node. + OPERATOR_INVOKE_EVENT = 2, + + // The event is an invocation for an internal operator of a TFLite delegate. + // The event_metadata field is the index of operator node that's specific to + // the delegate. + DELEGATE_OPERATOR_INVOKE_EVENT = 4, + + // The event is a recording of runtime instrumentation such as the overall + // TFLite runtime status, the TFLite delegate status (if a delegate + // is applied), and the overall model inference latency etc. + // Note, the delegate status and overall status are stored as separate + // event_metadata fields. In particular, the delegate status is encoded + // as DelegateStatus::full_status(). + GENERAL_RUNTIME_INSTRUMENTATION_EVENT = 8, + }; + + virtual ~Profiler() {} + + // Signals the beginning of an event and returns a handle to the profile + // event. The `event_metadata1` and `event_metadata2` have different + // interpretations based on the actual Profiler instance and the `event_type`. + // For example, as for the 'SubgraphAwareProfiler' defined in + // lite/core/subgraph.h, when the event_type is OPERATOR_INVOKE_EVENT, + // `event_metadata1` represents the index of a TFLite node, and + // `event_metadata2` represents the index of the subgraph that this event + // comes from. + virtual uint32_t BeginEvent(const char* tag, EventType event_type, + int64_t event_metadata1, + int64_t event_metadata2) = 0; + // Similar w/ the above, but `event_metadata2` defaults to 0. + uint32_t BeginEvent(const char* tag, EventType event_type, + int64_t event_metadata) { + return BeginEvent(tag, event_type, event_metadata, /*event_metadata2*/ 0); + } + + // Signals an end to the specified profile event with 'event_metadata's, This + // is useful when 'event_metadata's are not available when the event begins + // or when one wants to overwrite the 'event_metadata's set at the beginning. + virtual void EndEvent(uint32_t event_handle, int64_t event_metadata1, + int64_t event_metadata2) {} + // Signals an end to the specified profile event. + virtual void EndEvent(uint32_t event_handle) = 0; + + // Appends an event of type 'event_type' with 'tag' and 'event_metadata' + // which started at 'start' and ended at 'end' + // Note: + // In cases were ProfileSimmarizer and tensorflow::StatsCalculator are used + // they assume the value is in "usec", if in any case subclasses + // didn't put usec, then the values are not meaningful. + // TODO karimnosseir: Revisit and make the function more clear. + void AddEvent(const char* tag, EventType event_type, uint64_t start, + uint64_t end, int64_t event_metadata) { + AddEvent(tag, event_type, start, end, event_metadata, + /*event_metadata2*/ 0); + } + + virtual void AddEvent(const char* tag, EventType event_type, uint64_t start, + uint64_t end, int64_t event_metadata1, + int64_t event_metadata2) {} + + protected: + friend class ScopedProfile; +}; + +// Adds a profile event to `profiler` that begins with the construction +// of the object and ends when the object goes out of scope. +// The lifetime of tag should be at least the lifetime of `profiler`. +// `profiler` may be null, in which case nothing is profiled. +class ScopedProfile { + public: + ScopedProfile(Profiler* profiler, const char* tag, + Profiler::EventType event_type = Profiler::EventType::DEFAULT, + int64_t event_metadata = 0) + : profiler_(profiler), event_handle_(0) { + if (profiler) { + event_handle_ = profiler_->BeginEvent(tag, event_type, event_metadata); + } + } + + ~ScopedProfile() { + if (profiler_) { + profiler_->EndEvent(event_handle_); + } + } + + protected: + Profiler* profiler_; + uint32_t event_handle_; +}; + +class ScopedOperatorProfile : public ScopedProfile { + public: + ScopedOperatorProfile(Profiler* profiler, const char* tag, int node_index) + : ScopedProfile(profiler, tag, Profiler::EventType::OPERATOR_INVOKE_EVENT, + static_cast(node_index)) {} +}; + +class ScopedDelegateOperatorProfile : public ScopedProfile { + public: + ScopedDelegateOperatorProfile(Profiler* profiler, const char* tag, + int node_index) + : ScopedProfile(profiler, tag, + Profiler::EventType::DELEGATE_OPERATOR_INVOKE_EVENT, + static_cast(node_index)) {} +}; + +class ScopedRuntimeInstrumentationProfile : public ScopedProfile { + public: + ScopedRuntimeInstrumentationProfile(Profiler* profiler, const char* tag) + : ScopedProfile( + profiler, tag, + Profiler::EventType::GENERAL_RUNTIME_INSTRUMENTATION_EVENT, -1) {} + + void set_runtime_status(int64_t delegate_status, int64_t interpreter_status) { + if (profiler_) { + delegate_status_ = delegate_status; + interpreter_status_ = interpreter_status; + } + } + + ~ScopedRuntimeInstrumentationProfile() { + if (profiler_) { + profiler_->EndEvent(event_handle_, delegate_status_, interpreter_status_); + } + } + + private: + int64_t delegate_status_; + int64_t interpreter_status_; +}; + +} // namespace tflite + +#define TFLITE_VARNAME_UNIQ_IMPL(name, ctr) name##ctr +#define TFLITE_VARNAME_UNIQ(name, ctr) TFLITE_VARNAME_UNIQ_IMPL(name, ctr) + +#define TFLITE_SCOPED_TAGGED_DEFAULT_PROFILE(profiler, tag) \ + tflite::ScopedProfile TFLITE_VARNAME_UNIQ(_profile_, __COUNTER__)( \ + (profiler), (tag)) + +#define TFLITE_SCOPED_TAGGED_OPERATOR_PROFILE(profiler, tag, node_index) \ + tflite::ScopedOperatorProfile TFLITE_VARNAME_UNIQ(_profile_, __COUNTER__)( \ + (profiler), (tag), (node_index)) + +#define TFLITE_SCOPED_DELEGATE_OPERATOR_PROFILE(profiler, tag, node_index) \ + tflite::ScopedDelegateOperatorProfile TFLITE_VARNAME_UNIQ( \ + _profile_, __COUNTER__)((profiler), (tag), (node_index)) + +#define TFLITE_ADD_RUNTIME_INSTRUMENTATION_EVENT( \ + profiler, tag, delegate_status, interpreter_status) \ + do { \ + if (!profiler) { \ + const auto handle = profiler->BeginEvent( \ + tag, Profiler::EventType::GENERAL_RUNTIME_INSTRUMENTATION_EVENT, \ + delegate_status, interpreter_status); \ + profiler->EndEvent(handle); \ + } \ + } while (false); + +#endif // TENSORFLOW_LITE_CORE_API_PROFILER_H_ diff --git a/components/tflite_micro/tensorflow/lite/core/api/tensor_utils.cc b/components/tflite_micro/tensorflow/lite/core/api/tensor_utils.cc new file mode 100644 index 00000000..3aac16b6 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/core/api/tensor_utils.cc @@ -0,0 +1,50 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/core/api/tensor_utils.h" + +#include + +#include "tensorflow/lite/c/common.h" + +namespace tflite { + +TfLiteStatus ResetVariableTensor(TfLiteTensor* tensor) { + if (!tensor->is_variable) { + return kTfLiteOk; + } + // TODO(b/115961645): Implement - If a variable tensor has a buffer, reset it + // to the value of the buffer. + int value = 0; + if (tensor->type == kTfLiteInt8) { + value = tensor->params.zero_point; + } + // TODO(b/139446230): Provide a platform header to better handle these + // specific scenarios. +#if __ANDROID__ || defined(__x86_64__) || defined(__i386__) || \ + defined(__i386) || defined(__x86__) || defined(__X86__) || \ + defined(_X86_) || defined(_M_IX86) || defined(_M_X64) + memset(tensor->data.raw, value, tensor->bytes); +#else + char* raw_ptr = tensor->data.raw; + for (size_t i = 0; i < tensor->bytes; ++i) { + *raw_ptr = value; + raw_ptr++; + } +#endif + return kTfLiteOk; +} + +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/core/api/tensor_utils.h b/components/tflite_micro/tensorflow/lite/core/api/tensor_utils.h new file mode 100644 index 00000000..9f1cf94a --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/core/api/tensor_utils.h @@ -0,0 +1,28 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_LITE_CORE_API_TENSOR_UTILS_H_ +#define TENSORFLOW_LITE_CORE_API_TENSOR_UTILS_H_ + +#include "tensorflow/lite/c/common.h" + +namespace tflite { + +// Resets a variable tensor to the default value. +TfLiteStatus ResetVariableTensor(TfLiteTensor* tensor); + +} // namespace tflite + +#endif // TENSORFLOW_LITE_CORE_API_TENSOR_UTILS_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/common.h b/components/tflite_micro/tensorflow/lite/kernels/internal/common.h new file mode 100644 index 00000000..66a2d977 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/common.h @@ -0,0 +1,956 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_COMMON_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_COMMON_H_ + +#ifndef ALLOW_SLOW_GENERIC_DEPTHWISECONV_FALLBACK +#ifdef GEMMLOWP_ALLOW_SLOW_SCALAR_FALLBACK +#define ALLOW_SLOW_GENERIC_DEPTHWISECONV_FALLBACK +#endif +#endif + +#include + +#include "fixedpoint/fixedpoint.h" +#include "tensorflow/lite/kernels/internal/cppmath.h" +#include "tensorflow/lite/kernels/internal/optimized/neon_check.h" +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { + +constexpr int kReverseShift = -1; + +inline void GetActivationMinMax(FusedActivationFunctionType ac, + float* output_activation_min, + float* output_activation_max) { + switch (ac) { + case FusedActivationFunctionType::kNone: + *output_activation_min = std::numeric_limits::lowest(); + *output_activation_max = std::numeric_limits::max(); + break; + case FusedActivationFunctionType::kRelu: + *output_activation_min = 0.f; + *output_activation_max = std::numeric_limits::max(); + break; + case FusedActivationFunctionType::kRelu1: + *output_activation_min = -1.f; + *output_activation_max = 1.f; + break; + case FusedActivationFunctionType::kRelu6: + *output_activation_min = 0.f; + *output_activation_max = 6.f; + break; + } +} + +template +inline T ActivationFunctionWithMinMax(T x, T output_activation_min, + T output_activation_max) { + using std::max; + using std::min; + return min(max(x, output_activation_min), output_activation_max); +} + +// Legacy function, left for compatibility only. +template +float ActivationFunction(float x) { + float output_activation_min, output_activation_max; + GetActivationMinMax(Ac, &output_activation_min, &output_activation_max); + return ActivationFunctionWithMinMax(x, output_activation_min, + output_activation_max); +} + +inline void BiasAndClamp(float clamp_min, float clamp_max, int bias_size, + const float* bias_data, int array_size, + float* array_data) { + // Note: see b/132215220: in May 2019 we thought it would be OK to replace + // this with the Eigen one-liner: + // return (array.colwise() + bias).cwiseMin(clamp_max).cwiseMin(clamp_max). + // This turned out to severely regress performance: +4ms (i.e. 8%) on + // MobileNet v2 / 1.0 / 224. So we keep custom NEON code for now. + TFLITE_DCHECK_EQ((array_size % bias_size), 0); +#ifdef USE_NEON + float* array_ptr = array_data; + float* array_end_ptr = array_ptr + array_size; + const auto clamp_min_vec = vdupq_n_f32(clamp_min); + const auto clamp_max_vec = vdupq_n_f32(clamp_max); + for (; array_ptr != array_end_ptr; array_ptr += bias_size) { + int i = 0; + for (; i <= bias_size - 16; i += 16) { + auto b0 = vld1q_f32(bias_data + i); + auto b1 = vld1q_f32(bias_data + i + 4); + auto b2 = vld1q_f32(bias_data + i + 8); + auto b3 = vld1q_f32(bias_data + i + 12); + auto a0 = vld1q_f32(array_ptr + i); + auto a1 = vld1q_f32(array_ptr + i + 4); + auto a2 = vld1q_f32(array_ptr + i + 8); + auto a3 = vld1q_f32(array_ptr + i + 12); + auto x0 = vaddq_f32(a0, b0); + auto x1 = vaddq_f32(a1, b1); + auto x2 = vaddq_f32(a2, b2); + auto x3 = vaddq_f32(a3, b3); + x0 = vmaxq_f32(clamp_min_vec, x0); + x1 = vmaxq_f32(clamp_min_vec, x1); + x2 = vmaxq_f32(clamp_min_vec, x2); + x3 = vmaxq_f32(clamp_min_vec, x3); + x0 = vminq_f32(clamp_max_vec, x0); + x1 = vminq_f32(clamp_max_vec, x1); + x2 = vminq_f32(clamp_max_vec, x2); + x3 = vminq_f32(clamp_max_vec, x3); + vst1q_f32(array_ptr + i, x0); + vst1q_f32(array_ptr + i + 4, x1); + vst1q_f32(array_ptr + i + 8, x2); + vst1q_f32(array_ptr + i + 12, x3); + } + for (; i <= bias_size - 4; i += 4) { + auto b = vld1q_f32(bias_data + i); + auto a = vld1q_f32(array_ptr + i); + auto x = vaddq_f32(a, b); + x = vmaxq_f32(clamp_min_vec, x); + x = vminq_f32(clamp_max_vec, x); + vst1q_f32(array_ptr + i, x); + } + for (; i < bias_size; i++) { + array_ptr[i] = ActivationFunctionWithMinMax(array_ptr[i] + bias_data[i], + clamp_min, clamp_max); + } + } +#else // not NEON + for (int array_offset = 0; array_offset < array_size; + array_offset += bias_size) { + for (int i = 0; i < bias_size; i++) { + array_data[array_offset + i] = ActivationFunctionWithMinMax( + array_data[array_offset + i] + bias_data[i], clamp_min, clamp_max); + } + } +#endif +} + +inline int32_t MultiplyByQuantizedMultiplierSmallerThanOneExp( + int32_t x, int32_t quantized_multiplier, int left_shift) { + using gemmlowp::RoundingDivideByPOT; + using gemmlowp::SaturatingRoundingDoublingHighMul; + return RoundingDivideByPOT( + SaturatingRoundingDoublingHighMul(x, quantized_multiplier), -left_shift); +} + +inline int32_t MultiplyByQuantizedMultiplierGreaterThanOne( + int32_t x, int32_t quantized_multiplier, int left_shift) { + using gemmlowp::SaturatingRoundingDoublingHighMul; + return SaturatingRoundingDoublingHighMul(x * (1 << left_shift), + quantized_multiplier); +} + +inline int32_t MultiplyByQuantizedMultiplier(int32_t x, + int32_t quantized_multiplier, + int shift) { + using gemmlowp::RoundingDivideByPOT; + using gemmlowp::SaturatingRoundingDoublingHighMul; + int left_shift = shift > 0 ? shift : 0; + int right_shift = shift > 0 ? 0 : -shift; + return RoundingDivideByPOT(SaturatingRoundingDoublingHighMul( + x * (1 << left_shift), quantized_multiplier), + right_shift); +} + +inline int32_t MultiplyByQuantizedMultiplier(int64_t x, + int32_t quantized_multiplier, + int shift) { + // Inputs: + // - quantized_multiplier has fixed point at bit 31 + // - shift is -31 to +7 (negative for right shift) + // + // Assumptions: The following input ranges are assumed + // - quantize_scale>=0 (the usual range is (1<<30) to (1>>31)-1) + // - scaling is chosen so final scaled result fits in int32_t + // - input x is in the range -(1<<47) <= x < (1<<47) + assert(quantized_multiplier >= 0); + assert(shift >= -31 && shift < 8); + + int32_t reduced_multiplier = (quantized_multiplier + (1 << 15)) >> 16; + int total_shift = 15 - shift; + x = (x * (int64_t)reduced_multiplier) + ((int64_t)1 << (total_shift - 1)); + int32_t result = x >> total_shift; + return result; +} + +template +int CountLeadingZeros(T integer_input) { + static_assert(std::is_unsigned::value, + "Only unsigned integer types handled."); +#if defined(__GNUC__) + return integer_input ? __builtin_clz(integer_input) + : std::numeric_limits::digits; +#else + if (integer_input == 0) { + return std::numeric_limits::digits; + } + + const T one_in_leading_positive = static_cast(1) + << (std::numeric_limits::digits - 1); + int leading_zeros = 0; + while (integer_input < one_in_leading_positive) { + integer_input <<= 1; + ++leading_zeros; + } + return leading_zeros; +#endif +} + +template +inline int CountLeadingSignBits(T integer_input) { + static_assert(std::is_signed::value, "Only signed integer types handled."); +#if defined(__GNUC__) && !defined(__clang__) + return integer_input ? __builtin_clrsb(integer_input) + : std::numeric_limits::digits; +#else + using U = typename std::make_unsigned::type; + return integer_input >= 0 + ? CountLeadingZeros(static_cast(integer_input)) - 1 + : integer_input != std::numeric_limits::min() + ? CountLeadingZeros(2 * static_cast(-integer_input) - 1) + : 0; +#endif +} + +// Use "count leading zeros" helper functions to do a fast Floor(log_2(x)). +template +inline Integer FloorLog2(Integer n) { + static_assert(std::is_integral::value, ""); + static_assert(std::is_signed::value, ""); + static_assert(sizeof(Integer) == 4 || sizeof(Integer) == 8, ""); + TFLITE_CHECK_GT(n, 0); + if (sizeof(Integer) == 4) { + return 30 - CountLeadingSignBits(n); + } else { + return 62 - CountLeadingSignBits(n); + } +} + +// generate INT16 LUT for function(), e.g., table exp(x) and 1/(1+x) used in +// softmax +inline void gen_lut(const std::function& func, double min, + double max, int16_t* table, const int num) { + // size of table should equal to num + 1 + // last element only for slope calculation + double step = (max - min) / (num - 1); + double half_step = step / 2.0; + for (int i = 0; i < num - 1; i++) { + double sample_val = TfLiteRound(func(min + i * step) * 32768.0); + double midpoint_interp_val = + TfLiteRound((func(min + (i + 1) * step) * 32768.0 + + TfLiteRound(func(min + i * step) * 32768.0)) / + 2.0); + double midpoint_val = + TfLiteRound(func(min + i * step + half_step) * 32768.0); + double midpoint_err = midpoint_interp_val - midpoint_val; + double bias = TfLiteRound(midpoint_err / 2.0); + table[i] = std::min(std::max(sample_val - bias, -32768.0), 32767.0); + } + table[num - 1] = + std::min(std::max(TfLiteRound(func(max) * 32768.0), -32768.0), 32767.0); +} + +// int16_t func table lookup, e.g., lookup exp() and 1/(1+x) used in softmax +inline int16_t generic_int16_table_lookup(int16_t value, const int16_t* lut) { + // 512 base value, lut[513] only for calculate slope + uint16_t index = static_cast(256 + (value >> 7)); + assert(index < 512 && "LUT index out of range."); + int16_t offset = value & 0x7f; + + // base and slope are Q0.15 + int16_t base = lut[index]; + int16_t slope = lut[index + 1] - lut[index]; + + // Q0.15 * Q0.7 = Q0.22 + // Round and convert from Q0.22 to Q0.15 + int32_t delta = (static_cast(slope) * offset + 64) >> 7; + + // Q0.15 + Q0.15 + return base + delta; +} + +// Table of sigmoid(i/24) at 0.16 format - 256 elements. + +// We use combined sigmoid and tanh look-up table, since +// tanh(x) = 2*sigmoid(2*x) -1. +// Both functions are symmetric, so the LUT table is only needed +// for the absolute value of the input. +static const uint16_t sigmoid_table_uint16[256] = { + 32768, 33451, 34133, 34813, 35493, 36169, 36843, 37513, 38180, 38841, 39498, + 40149, 40794, 41432, 42064, 42688, 43304, 43912, 44511, 45102, 45683, 46255, + 46817, 47369, 47911, 48443, 48964, 49475, 49975, 50464, 50942, 51409, 51865, + 52311, 52745, 53169, 53581, 53983, 54374, 54755, 55125, 55485, 55834, 56174, + 56503, 56823, 57133, 57433, 57724, 58007, 58280, 58544, 58800, 59048, 59288, + 59519, 59743, 59959, 60168, 60370, 60565, 60753, 60935, 61110, 61279, 61441, + 61599, 61750, 61896, 62036, 62172, 62302, 62428, 62549, 62666, 62778, 62886, + 62990, 63090, 63186, 63279, 63368, 63454, 63536, 63615, 63691, 63765, 63835, + 63903, 63968, 64030, 64090, 64148, 64204, 64257, 64308, 64357, 64405, 64450, + 64494, 64536, 64576, 64614, 64652, 64687, 64721, 64754, 64786, 64816, 64845, + 64873, 64900, 64926, 64950, 64974, 64997, 65019, 65039, 65060, 65079, 65097, + 65115, 65132, 65149, 65164, 65179, 65194, 65208, 65221, 65234, 65246, 65258, + 65269, 65280, 65291, 65301, 65310, 65319, 65328, 65337, 65345, 65352, 65360, + 65367, 65374, 65381, 65387, 65393, 65399, 65404, 65410, 65415, 65420, 65425, + 65429, 65433, 65438, 65442, 65445, 65449, 65453, 65456, 65459, 65462, 65465, + 65468, 65471, 65474, 65476, 65479, 65481, 65483, 65485, 65488, 65489, 65491, + 65493, 65495, 65497, 65498, 65500, 65501, 65503, 65504, 65505, 65507, 65508, + 65509, 65510, 65511, 65512, 65513, 65514, 65515, 65516, 65517, 65517, 65518, + 65519, 65520, 65520, 65521, 65522, 65522, 65523, 65523, 65524, 65524, 65525, + 65525, 65526, 65526, 65526, 65527, 65527, 65528, 65528, 65528, 65529, 65529, + 65529, 65529, 65530, 65530, 65530, 65530, 65531, 65531, 65531, 65531, 65531, + 65532, 65532, 65532, 65532, 65532, 65532, 65533, 65533, 65533, 65533, 65533, + 65533, 65533, 65533, 65534, 65534, 65534, 65534, 65534, 65534, 65534, 65534, + 65534, 65534, 65535}; + +// TODO(b/77858996): Add these to gemmlowp. +template +IntegerType SaturatingAddNonGemmlowp(IntegerType a, IntegerType b) { + static_assert(std::is_same::value, "unimplemented"); + return a; +} + +template <> +inline std::int32_t SaturatingAddNonGemmlowp(std::int32_t a, std::int32_t b) { + std::int64_t a64 = a; + std::int64_t b64 = b; + std::int64_t sum = a64 + b64; + return static_cast(std::min( + static_cast(std::numeric_limits::max()), + std::max( + static_cast(std::numeric_limits::min()), + sum))); +} + +template +gemmlowp::FixedPoint SaturatingAddNonGemmlowp( + gemmlowp::FixedPoint a, + gemmlowp::FixedPoint b) { + return gemmlowp::FixedPoint::FromRaw( + SaturatingAddNonGemmlowp(a.raw(), b.raw())); +} + +template +IntegerType SaturatingSub(IntegerType a, IntegerType b) { + static_assert(std::is_same::value, "unimplemented"); + return a; +} + +template <> +inline std::int16_t SaturatingSub(std::int16_t a, std::int16_t b) { + std::int32_t a32 = a; + std::int32_t b32 = b; + std::int32_t diff = a32 - b32; + return static_cast( + std::min(static_cast(32767), + std::max(static_cast(-32768), diff))); +} + +template <> +inline std::int32_t SaturatingSub(std::int32_t a, std::int32_t b) { + std::int64_t a64 = a; + std::int64_t b64 = b; + std::int64_t diff = a64 - b64; + return static_cast(std::min( + static_cast(std::numeric_limits::max()), + std::max( + static_cast(std::numeric_limits::min()), + diff))); +} + +template +gemmlowp::FixedPoint SaturatingSub( + gemmlowp::FixedPoint a, + gemmlowp::FixedPoint b) { + return gemmlowp::FixedPoint::FromRaw( + SaturatingSub(a.raw(), b.raw())); +} +// End section to be moved to gemmlowp. + +template +IntegerType SaturatingRoundingMultiplyByPOTParam(IntegerType x, int exponent) { + if (exponent == 0) { + return x; + } + using ScalarIntegerType = + typename gemmlowp::FixedPointRawTypeTraits::ScalarRawType; + const IntegerType min = + gemmlowp::Dup(std::numeric_limits::min()); + const IntegerType max = + gemmlowp::Dup(std::numeric_limits::max()); + const int ScalarIntegerTypeBits = 8 * sizeof(ScalarIntegerType); + + const std::int32_t threshold = + ((1 << (ScalarIntegerTypeBits - 1 - exponent)) - 1); + const IntegerType positive_mask = + gemmlowp::MaskIfGreaterThan(x, gemmlowp::Dup(threshold)); + const IntegerType negative_mask = + gemmlowp::MaskIfLessThan(x, gemmlowp::Dup(-threshold)); + + IntegerType result = gemmlowp::ShiftLeft(x, exponent); + result = gemmlowp::SelectUsingMask(positive_mask, max, result); + result = gemmlowp::SelectUsingMask(negative_mask, min, result); + return result; +} + +// If we want to leave IntegerBits fixed, then multiplication +// by a power of two has to be saturating/rounding, not exact anymore. +template +gemmlowp::FixedPoint +SaturatingRoundingMultiplyByPOTParam( + gemmlowp::FixedPoint a, int exponent) { + return gemmlowp::FixedPoint::FromRaw( + SaturatingRoundingMultiplyByPOTParam(a.raw(), exponent)); +} + +// Convert int32_t multiplier to int16_t with rounding. +inline void DownScaleInt32ToInt16Multiplier(int32_t multiplier_int32_t, + int16_t* multiplier_int16_t) { + TFLITE_DCHECK_GE(multiplier_int32_t, 0); + static constexpr int32_t kRoundingOffset = 1 << 15; + if (multiplier_int32_t >= + std::numeric_limits::max() - kRoundingOffset) { + *multiplier_int16_t = std::numeric_limits::max(); + return; + } + const int32_t result = (multiplier_int32_t + kRoundingOffset) >> 16; + TFLITE_DCHECK_LE(result << 16, multiplier_int32_t + kRoundingOffset); + TFLITE_DCHECK_GT(result << 16, multiplier_int32_t - kRoundingOffset); + *multiplier_int16_t = result; + TFLITE_DCHECK_EQ(*multiplier_int16_t, result); +} + +// Minimum output bits to accommodate log of maximum input range. It actually +// does not matter if one considers, say, [-64,64] or [-64,64). +// +// For example, run this through Octave: +// [0:127; ... +// ceil(log(abs( log(2.^(0:127))+1 ))/log(2)); ... +// ceil(log(abs( log(2.^(0:127))+1 ))/log(2))] +constexpr int min_log_x_output_bits(int input_bits) { + return input_bits > 90 ? 7 + : input_bits > 44 ? 6 + : input_bits > 21 ? 5 + : input_bits > 10 ? 4 + : input_bits > 4 ? 3 + : input_bits > 1 ? 2 + : 1; +} + +// Although currently the name of this function says that it cannot handle +// values less than 1, in practice it can handle as low as 1/x_max, where +// x_max is the largest representable input. In other words, the output range +// is symmetric. +template +inline gemmlowp::FixedPoint +log_x_for_x_greater_than_or_equal_to_1_impl( + gemmlowp::FixedPoint input_val) { + // assert(__builtin_clz(0u) >= std::numeric_limits::digits - 1); + // assert(__builtin_clz(0u) <= std::numeric_limits::digits); + using FixedPoint0 = gemmlowp::FixedPoint; + // The reason for accumulating the result with an extra bit of headroom is + // that z_pow_2_adj * log_2 might be saturated, and adding num_scaled * + // recip_denom will otherwise introduce an error. + static constexpr int kAccumIntegerBits = OutputIntegerBits + 1; + using FixedPointAccum = gemmlowp::FixedPoint; + + const FixedPoint0 log_2 = GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT( + FixedPoint0, 1488522236, std::log(2.0)); + const FixedPoint0 sqrt_sqrt_half = GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT( + FixedPoint0, 1805811301, std::sqrt(std::sqrt(0.5))); + const FixedPoint0 sqrt_half = GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT( + FixedPoint0, 1518500250, std::sqrt(0.5)); + const FixedPoint0 one_quarter = + GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(FixedPoint0, 536870912, 1.0 / 4.0); + + const FixedPoint0 alpha_n = GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT( + FixedPoint0, 117049297, 11.0 / 240.0 * std::sqrt(std::sqrt(2.0))); + const FixedPoint0 alpha_d = GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT( + FixedPoint0, 127690142, 1.0 / 20.0 * std::sqrt(std::sqrt(2.0))); + const FixedPoint0 alpha_i = GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT( + FixedPoint0, 1057819769, + 2.0 / std::sqrt(std::sqrt(2.0)) - std::sqrt(std::sqrt(2.0))); + const FixedPoint0 alpha_f = GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT( + FixedPoint0, 638450708, 1.0 / 4.0 * std::sqrt(std::sqrt(2.0))); + + const FixedPointAccum shifted_quarter = + gemmlowp::Rescale(one_quarter); + + // Reinterpret the input value as Q0.31, because we will figure out the + // required shift "ourselves" instead of using, say, Rescale. + FixedPoint0 z_a = FixedPoint0::FromRaw(input_val.raw()); + // z_a_pow_2 = input_integer_bits - z_a_headroom; + int z_a_headroom_plus_1 = CountLeadingZeros(static_cast(z_a.raw())); + FixedPoint0 r_a_tmp = + SaturatingRoundingMultiplyByPOTParam(z_a, (z_a_headroom_plus_1 - 1)); + const int32_t r_a_raw = + SaturatingRoundingMultiplyByPOTParam((r_a_tmp * sqrt_half).raw(), 1); + // z_pow_2_adj = max(z_pow_2_a - 0.75, z_pow_2_b - 0.25); + // z_pow_2_adj = max(InputIntegerBits - z_a_headroom_plus_1 + 0.25, + // InputIntegerBits - z_b_headroom - 0.25); + const FixedPointAccum z_a_pow_2_adj = SaturatingAddNonGemmlowp( + FixedPointAccum::FromRaw(SaturatingRoundingMultiplyByPOTParam( + InputIntegerBits - z_a_headroom_plus_1, 31 - kAccumIntegerBits)), + shifted_quarter); + + // z_b is treated like z_a, but premultiplying by sqrt(0.5). + FixedPoint0 z_b = z_a * sqrt_half; + int z_b_headroom = CountLeadingZeros(static_cast(z_b.raw())) - 1; + const int32_t r_b_raw = + SaturatingRoundingMultiplyByPOTParam(z_a.raw(), z_b_headroom); + const FixedPointAccum z_b_pow_2_adj = SaturatingSub( + FixedPointAccum::FromRaw(SaturatingRoundingMultiplyByPOTParam( + InputIntegerBits - z_b_headroom, 31 - kAccumIntegerBits)), + shifted_quarter); + + const FixedPoint0 r = FixedPoint0::FromRaw(std::min(r_a_raw, r_b_raw)); + const FixedPointAccum z_pow_2_adj = FixedPointAccum::FromRaw( + std::max(z_a_pow_2_adj.raw(), z_b_pow_2_adj.raw())); + + const FixedPoint0 p = gemmlowp::RoundingHalfSum(r, sqrt_sqrt_half); + FixedPoint0 q = r - sqrt_sqrt_half; + q = q + q; + + const FixedPoint0 common_sq = q * q; + const FixedPoint0 num = q * r + q * common_sq * alpha_n; + const FixedPoint0 denom_minus_one_0 = + p * (alpha_i + q + alpha_d * common_sq) + alpha_f * q; + const FixedPoint0 recip_denom = + one_over_one_plus_x_for_x_in_0_1(denom_minus_one_0); + + const FixedPointAccum num_scaled = gemmlowp::Rescale(num); + return gemmlowp::Rescale(z_pow_2_adj * log_2 + + num_scaled * recip_denom); +} + +template +inline gemmlowp::FixedPoint +log_x_for_x_greater_than_or_equal_to_1( + gemmlowp::FixedPoint input_val) { + static_assert( + OutputIntegerBits >= min_log_x_output_bits(InputIntegerBits), + "Output integer bits must be sufficient to accommodate logs of inputs."); + return log_x_for_x_greater_than_or_equal_to_1_impl( + input_val); +} + +inline int32_t GetReciprocal(int32_t x, int x_integer_digits, + int* num_bits_over_unit) { + int headroom_plus_one = CountLeadingZeros(static_cast(x)); + // This is the number of bits to the left of the binary point above 1.0. + // Consider x=1.25. In that case shifted_scale=0.8 and + // no later adjustment will be needed. + *num_bits_over_unit = x_integer_digits - headroom_plus_one; + const int32_t shifted_sum_minus_one = + static_cast((static_cast(x) << headroom_plus_one) - + (static_cast(1) << 31)); + + gemmlowp::FixedPoint shifted_scale = + gemmlowp::one_over_one_plus_x_for_x_in_0_1( + gemmlowp::FixedPoint::FromRaw(shifted_sum_minus_one)); + return shifted_scale.raw(); +} + +inline void GetInvSqrtQuantizedMultiplierExp(int32_t input, int reverse_shift, + int32_t* output_inv_sqrt, + int* output_shift) { + TFLITE_DCHECK_GE(input, 0); + if (input <= 1) { + // Handle the input value 1 separately to avoid overflow in that case + // in the general computation below (b/143972021). Also handle 0 as if it + // were a 1. 0 is an invalid input here (divide by zero) and 1 is a valid + // but rare/unrealistic input value. We can expect both to occur in some + // incompletely trained models, but probably not in fully trained models. + *output_inv_sqrt = std::numeric_limits::max(); + *output_shift = 0; + return; + } + TFLITE_DCHECK_GT(input, 1); + *output_shift = 11; + while (input >= (1 << 29)) { + input /= 4; + ++*output_shift; + } + const unsigned max_left_shift_bits = + CountLeadingZeros(static_cast(input)) - 1; + const unsigned max_left_shift_bit_pairs = max_left_shift_bits / 2; + const unsigned left_shift_bit_pairs = max_left_shift_bit_pairs - 1; + *output_shift -= left_shift_bit_pairs; + input <<= 2 * left_shift_bit_pairs; + TFLITE_DCHECK_GE(input, (1 << 27)); + TFLITE_DCHECK_LT(input, (1 << 29)); + using gemmlowp::FixedPoint; + using gemmlowp::Rescale; + using gemmlowp::SaturatingRoundingMultiplyByPOT; + // Using 3 integer bits gives us enough room for the internal arithmetic in + // this Newton-Raphson iteration. + using F3 = FixedPoint; + using F0 = FixedPoint; + const F3 fixedpoint_input = F3::FromRaw(input >> 1); + const F3 fixedpoint_half_input = + SaturatingRoundingMultiplyByPOT<-1>(fixedpoint_input); + const F3 fixedpoint_half_three = + GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F3, (1 << 28) + (1 << 27), 1.5); + // Newton-Raphson iteration + // Naive unoptimized starting guess: x = 1 + F3 x = F3::One(); + // Naive unoptimized number of iterations: 5 + for (int i = 0; i < 5; i++) { + const F3 x3 = Rescale<3>(x * x * x); + x = Rescale<3>(fixedpoint_half_three * x - fixedpoint_half_input * x3); + } + const F0 fixedpoint_half_sqrt_2 = + GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F0, 1518500250, std::sqrt(2.) / 2.); + x = x * fixedpoint_half_sqrt_2; + *output_inv_sqrt = x.raw(); + if (*output_shift < 0) { + *output_inv_sqrt <<= -*output_shift; + *output_shift = 0; + } + // Convert right shift (right is positive) to left shift. + *output_shift *= reverse_shift; +} + +// DO NOT USE THIS STRUCT FOR NEW FUNCTIONALITY BEYOND IMPLEMENTING +// BROADCASTING. +// +// NdArrayDesc describes the shape and memory layout of an N-dimensional +// rectangular array of numbers. +// +// NdArrayDesc is basically identical to Dims defined in types.h. +// However, as Dims is to be deprecated, this class exists as an adaptor +// to enable simple unoptimized implementations of element-wise broadcasting +// operations. +template +struct NdArrayDesc { + // The "extent" of each dimension. Indices along dimension d must be in the + // half-open interval [0, extents[d]). + int extents[N]; + + // The number of *elements* (not bytes) between consecutive indices of each + // dimension. + int strides[N]; +}; + +// DO NOT USE THIS FUNCTION FOR NEW FUNCTIONALITY BEYOND IMPLEMENTING +// BROADCASTING. +// +// Same as Offset(), except takes as NdArrayDesc instead of Dims. +inline int SubscriptToIndex(const NdArrayDesc<4>& desc, int i0, int i1, int i2, + int i3) { + TFLITE_DCHECK(i0 >= 0 && i0 < desc.extents[0]); + TFLITE_DCHECK(i1 >= 0 && i1 < desc.extents[1]); + TFLITE_DCHECK(i2 >= 0 && i2 < desc.extents[2]); + TFLITE_DCHECK(i3 >= 0 && i3 < desc.extents[3]); + return i0 * desc.strides[0] + i1 * desc.strides[1] + i2 * desc.strides[2] + + i3 * desc.strides[3]; +} + +inline int SubscriptToIndex(const NdArrayDesc<5>& desc, int indexes[5]) { + return indexes[0] * desc.strides[0] + indexes[1] * desc.strides[1] + + indexes[2] * desc.strides[2] + indexes[3] * desc.strides[3] + + indexes[4] * desc.strides[4]; +} + +// Given the dimensions of the operands for an element-wise binary broadcast, +// adjusts them so that they can be directly iterated over with simple loops. +// Returns the adjusted dims as instances of NdArrayDesc in 'desc0_out' and +// 'desc1_out'. 'desc0_out' and 'desc1_out' cannot be nullptr. +// +// This function assumes that the two input shapes are compatible up to +// broadcasting and the shorter one has already been prepended with 1s to be the +// same length. E.g., if shape0 is (1, 16, 16, 64) and shape1 is (1, 64), +// shape1 must already have been prepended to be (1, 1, 1, 64). Recall that +// Dims refer to shapes in reverse order. In this case, input0_dims will be +// (64, 16, 16, 1) and input1_dims will be (64, 1, 1, 1). +// +// When two shapes are compatible up to broadcasting, for each dimension d, +// the input extents are either equal, or one of them is 1. +// +// This function performs the following for each dimension d: +// - If the extents are equal, then do nothing since the loop that walks over +// both of the input arrays is correct. +// - Otherwise, one (and only one) of the extents must be 1. Say extent0 is 1 +// and extent1 is e1. Then set extent0 to e1 and stride0 *to 0*. This allows +// array0 to be referenced *at any index* in dimension d and still access the +// same slice. +template +inline void NdArrayDescsForElementwiseBroadcast(const Dims& input0_dims, + const Dims& input1_dims, + NdArrayDesc* desc0_out, + NdArrayDesc* desc1_out) { + TFLITE_DCHECK(desc0_out != nullptr); + TFLITE_DCHECK(desc1_out != nullptr); + + // Copy dims to desc. + for (int i = 0; i < N; ++i) { + desc0_out->extents[i] = input0_dims.sizes[i]; + desc0_out->strides[i] = input0_dims.strides[i]; + desc1_out->extents[i] = input1_dims.sizes[i]; + desc1_out->strides[i] = input1_dims.strides[i]; + } + + // Walk over each dimension. If the extents are equal do nothing. + // Otherwise, set the desc with extent 1 to have extent equal to the other and + // stride 0. + for (int i = 0; i < N; ++i) { + const int extent0 = ArraySize(input0_dims, i); + const int extent1 = ArraySize(input1_dims, i); + if (extent0 != extent1) { + if (extent0 == 1) { + desc0_out->strides[i] = 0; + desc0_out->extents[i] = extent1; + } else { + TFLITE_DCHECK_EQ(extent1, 1); + desc1_out->strides[i] = 0; + desc1_out->extents[i] = extent0; + } + } + } +} + +// Copies dims to desc, calculating strides. +template +inline void CopyDimsToDesc(const RuntimeShape& input_shape, + NdArrayDesc* desc_out) { + int desc_stride = 1; + for (int i = N - 1; i >= 0; --i) { + desc_out->extents[i] = input_shape.Dims(i); + desc_out->strides[i] = desc_stride; + desc_stride *= input_shape.Dims(i); + } +} + +template +inline void NdArrayDescsForElementwiseBroadcast( + const RuntimeShape& input0_shape, const RuntimeShape& input1_shape, + NdArrayDesc* desc0_out, NdArrayDesc* desc1_out) { + TFLITE_DCHECK(desc0_out != nullptr); + TFLITE_DCHECK(desc1_out != nullptr); + + auto extended_input0_shape = RuntimeShape::ExtendedShape(N, input0_shape); + auto extended_input1_shape = RuntimeShape::ExtendedShape(N, input1_shape); + + // Copy dims to desc, calculating strides. + CopyDimsToDesc(extended_input0_shape, desc0_out); + CopyDimsToDesc(extended_input1_shape, desc1_out); + + // Walk over each dimension. If the extents are equal do nothing. + // Otherwise, set the desc with extent 1 to have extent equal to the other and + // stride 0. + for (int i = 0; i < N; ++i) { + const int extent0 = extended_input0_shape.Dims(i); + const int extent1 = extended_input1_shape.Dims(i); + if (extent0 != extent1) { + if (extent0 == 1) { + desc0_out->strides[i] = 0; + desc0_out->extents[i] = extent1; + } else { + TFLITE_DCHECK_EQ(extent1, 1); + desc1_out->strides[i] = 0; + desc1_out->extents[i] = extent0; + } + } + } +} + +template +inline void NdArrayDescsForElementwiseBroadcast( + const RuntimeShape& input0_shape, const RuntimeShape& input1_shape, + const RuntimeShape& input2_shape, NdArrayDesc* desc0_out, + NdArrayDesc* desc1_out, NdArrayDesc* desc2_out) { + TFLITE_DCHECK(desc0_out != nullptr); + TFLITE_DCHECK(desc1_out != nullptr); + TFLITE_DCHECK(desc2_out != nullptr); + + auto extended_input0_shape = RuntimeShape::ExtendedShape(N, input0_shape); + auto extended_input1_shape = RuntimeShape::ExtendedShape(N, input1_shape); + auto extended_input2_shape = RuntimeShape::ExtendedShape(N, input2_shape); + + // Copy dims to desc, calculating strides. + CopyDimsToDesc(extended_input0_shape, desc0_out); + CopyDimsToDesc(extended_input1_shape, desc1_out); + CopyDimsToDesc(extended_input2_shape, desc2_out); + + // Walk over each dimension. If the extents are equal do nothing. + // Otherwise, set the desc with extent 1 to have extent equal to the other and + // stride 0. + for (int i = 0; i < N; ++i) { + const int extent0 = extended_input0_shape.Dims(i); + const int extent1 = extended_input1_shape.Dims(i); + const int extent2 = extended_input2_shape.Dims(i); + + int extent = extent0; + if (extent1 != 1) extent = extent1; + if (extent2 != 1) extent = extent2; + + TFLITE_DCHECK(extent0 == 1 || extent0 == extent); + TFLITE_DCHECK(extent1 == 1 || extent1 == extent); + TFLITE_DCHECK(extent2 == 1 || extent2 == extent); + + if (!(extent0 == extent1 && extent1 == extent2)) { + if (extent0 == 1) { + desc0_out->strides[i] = 0; + desc0_out->extents[i] = extent; + } + if (extent1 == 1) { + desc1_out->strides[i] = 0; + desc1_out->extents[i] = extent; + } + if (extent2 == 1) { + desc2_out->strides[i] = 0; + desc2_out->extents[i] = extent; + } + } + } +} + +// Detailed implementation of NDOpsHelper, the indexes must be a zero array. +// This implementation is equivalent to N nested loops. Ex, if N=4, it can be +// re-writen as: +// for (int b = 0; b < output.extents[0]; ++b) { +// for (int y = 0; y < output.extents[1]; ++y) { +// for (int x = 0; x < output.extents[2]; ++x) { +// for (int c = 0; c < output.extents[3]; ++c) { +// calc({b,y,x,c}); +// } +// } +// } +// } +template +typename std::enable_if::type NDOpsHelperImpl( + const NdArrayDesc& output, const Calc& calc, int indexes[N]) { + for (indexes[DIM] = 0; indexes[DIM] < output.extents[DIM]; ++indexes[DIM]) { + NDOpsHelperImpl(output, calc, indexes); + } +} + +template +typename std::enable_if::type NDOpsHelperImpl( + const NdArrayDesc& output, const Calc& calc, int indexes[N]) { + for (indexes[DIM] = 0; indexes[DIM] < output.extents[DIM]; ++indexes[DIM]) { + calc(indexes); + } +} + +// Execute the calc function in the innermost iteration based on the shape of +// the output. The calc function should take a single argument of type int[N]. +template +inline void NDOpsHelper(const NdArrayDesc& output, const Calc& calc) { + int indexes[N] = {0}; + NDOpsHelperImpl(output, calc, indexes); +} +// Copied from gemmlowp::RoundDown when we dropped direct dependency on +// gemmlowp. +// +// Returns the runtime argument rounded down to the nearest multiple of +// the fixed Modulus. +template +Integer RoundDown(Integer i) { + return i - (i % Modulus); +} + +// Copied from gemmlowp::RoundUp when we dropped direct dependency on +// gemmlowp. +// +// Returns the runtime argument rounded up to the nearest multiple of +// the fixed Modulus. +template +Integer RoundUp(Integer i) { + return RoundDown(i + Modulus - 1); +} + +// Copied from gemmlowp::CeilQuotient when we dropped direct dependency on +// gemmlowp. +// +// Returns the quotient a / b rounded up ('ceil') to the nearest integer. +template +Integer CeilQuotient(Integer a, Integer b) { + return (a + b - 1) / b; +} + +// This function is a copy of gemmlowp::HowManyThreads, copied when we dropped +// the direct dependency of internal/optimized/ on gemmlowp. +// +// It computes a reasonable number of threads to use for a GEMM of shape +// (rows, cols, depth). +// +// TODO(b/131910176): get rid of this function by switching each call site +// to its own more sensible logic for its own workload. +template +inline int LegacyHowManyThreads(int max_num_threads, int rows, int cols, + int depth) { + // Early-exit in the default case where multi-threading is disabled. + if (max_num_threads == 1) { + return 1; + } + + // Ensure that each thread has KernelRows rows to process, if at all possible. + int thread_count = std::min(max_num_threads, rows / KernelRows); + + // Limit the number of threads according to the overall size of the problem. + if (thread_count > 1) { + // Empirically determined value. + static constexpr std::uint64_t min_cubic_size_per_thread = 64 * 1024; + + // We can only multiply two out of three sizes without risking overflow + const std::uint64_t cubic_size = + std::uint64_t(rows) * std::uint64_t(cols) * std::uint64_t(depth); + + thread_count = std::min( + thread_count, static_cast(cubic_size / min_cubic_size_per_thread)); + } + + if (thread_count < 1) { + thread_count = 1; + } + + assert(thread_count > 0 && thread_count <= max_num_threads); + return thread_count; +} + +template +void optimized_ops_preload_l1_stream(const T* ptr) { +#ifdef __GNUC__ + // builtin offered by GCC-compatible compilers including clang + __builtin_prefetch(ptr, /* 0 means read */ 0, /* 0 means no locality */ 0); +#else + (void)ptr; +#endif +} + +template +void optimized_ops_preload_l1_keep(const T* ptr) { +#ifdef __GNUC__ + // builtin offered by GCC-compatible compilers including clang + __builtin_prefetch(ptr, /* 0 means read */ 0, /* 3 means high locality */ 3); +#else + (void)ptr; +#endif +} + +template +void optimized_ops_prefetch_write_l1_keep(const T* ptr) { +#ifdef __GNUC__ + // builtin offered by GCC-compatible compilers including clang + __builtin_prefetch(ptr, /* 1 means write */ 1, /* 3 means high locality */ 3); +#else + (void)ptr; +#endif +} + +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_COMMON_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/compatibility.h b/components/tflite_micro/tensorflow/lite/kernels/internal/compatibility.h new file mode 100644 index 00000000..61becad3 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/compatibility.h @@ -0,0 +1,112 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_COMPATIBILITY_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_COMPATIBILITY_H_ + +#include + +#include "tensorflow/lite/kernels/op_macros.h" + +#ifndef TFLITE_DCHECK +#define TFLITE_DCHECK(condition) (condition) ? (void)0 : TFLITE_ASSERT_FALSE +#endif + +#ifndef TFLITE_DCHECK_EQ +#define TFLITE_DCHECK_EQ(x, y) ((x) == (y)) ? (void)0 : TFLITE_ASSERT_FALSE +#endif + +#ifndef TFLITE_DCHECK_NE +#define TFLITE_DCHECK_NE(x, y) ((x) != (y)) ? (void)0 : TFLITE_ASSERT_FALSE +#endif + +#ifndef TFLITE_DCHECK_GE +#define TFLITE_DCHECK_GE(x, y) ((x) >= (y)) ? (void)0 : TFLITE_ASSERT_FALSE +#endif + +#ifndef TFLITE_DCHECK_GT +#define TFLITE_DCHECK_GT(x, y) ((x) > (y)) ? (void)0 : TFLITE_ASSERT_FALSE +#endif + +#ifndef TFLITE_DCHECK_LE +#define TFLITE_DCHECK_LE(x, y) ((x) <= (y)) ? (void)0 : TFLITE_ASSERT_FALSE +#endif + +#ifndef TFLITE_DCHECK_LT +#define TFLITE_DCHECK_LT(x, y) ((x) < (y)) ? (void)0 : TFLITE_ASSERT_FALSE +#endif + +// TODO(ahentz): Clean up: We should stick to the DCHECK versions. +#ifndef TFLITE_CHECK +#define TFLITE_CHECK(condition) (condition) ? (void)0 : TFLITE_ABORT +#endif + +#ifndef TFLITE_CHECK_EQ +#define TFLITE_CHECK_EQ(x, y) ((x) == (y)) ? (void)0 : TFLITE_ABORT +#endif + +#ifndef TFLITE_CHECK_NE +#define TFLITE_CHECK_NE(x, y) ((x) != (y)) ? (void)0 : TFLITE_ABORT +#endif + +#ifndef TFLITE_CHECK_GE +#define TFLITE_CHECK_GE(x, y) ((x) >= (y)) ? (void)0 : TFLITE_ABORT +#endif + +#ifndef TFLITE_CHECK_GT +#define TFLITE_CHECK_GT(x, y) ((x) > (y)) ? (void)0 : TFLITE_ABORT +#endif + +#ifndef TFLITE_CHECK_LE +#define TFLITE_CHECK_LE(x, y) ((x) <= (y)) ? (void)0 : TFLITE_ABORT +#endif + +#ifndef TFLITE_CHECK_LT +#define TFLITE_CHECK_LT(x, y) ((x) < (y)) ? (void)0 : TFLITE_ABORT +#endif + +#ifndef TF_LITE_STATIC_MEMORY +// TODO(b/162019032): Consider removing these type-aliases. +using int8 = std::int8_t; +using uint8 = std::uint8_t; +using int16 = std::int16_t; +using uint16 = std::uint16_t; +using int32 = std::int32_t; +using uint32 = std::uint32_t; +#endif // !defined(TF_LITE_STATIC_MEMORY) + +// TFLITE_DEPRECATED() +// +// Duplicated from absl/base/macros.h to avoid pulling in that library. +// Marks a deprecated class, struct, enum, function, method and variable +// declarations. The macro argument is used as a custom diagnostic message (e.g. +// suggestion of a better alternative). +// +// Example: +// +// class TFLITE_DEPRECATED("Use Bar instead") Foo {...}; +// TFLITE_DEPRECATED("Use Baz instead") void Bar() {...} +// +// Every usage of a deprecated entity will trigger a warning when compiled with +// clang's `-Wdeprecated-declarations` option. This option is turned off by +// default, but the warnings will be reported by clang-tidy. +#if defined(__clang__) && __cplusplus >= 201103L +#define TFLITE_DEPRECATED(message) __attribute__((deprecated(message))) +#endif + +#ifndef TFLITE_DEPRECATED +#define TFLITE_DEPRECATED(message) +#endif + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_COMPATIBILITY_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/cppmath.h b/components/tflite_micro/tensorflow/lite/kernels/internal/cppmath.h new file mode 100644 index 00000000..24a3aec8 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/cppmath.h @@ -0,0 +1,40 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_CPPMATH_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_CPPMATH_H_ + +#include + +namespace tflite { + +#if defined(TF_LITE_USE_GLOBAL_CMATH_FUNCTIONS) || \ + (defined(__ANDROID__) && !defined(__NDK_MAJOR__)) || defined(ARDUINO) || \ + defined(__ZEPHYR__) +#define TF_LITE_GLOBAL_STD_PREFIX +#else +#define TF_LITE_GLOBAL_STD_PREFIX std +#endif + +#define DECLARE_STD_GLOBAL_SWITCH1(tf_name, std_name) \ + template \ + inline T tf_name(const T x) { \ + return TF_LITE_GLOBAL_STD_PREFIX::std_name(x); \ + } + +DECLARE_STD_GLOBAL_SWITCH1(TfLiteRound, round); + +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_CPPMATH_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/max.h b/components/tflite_micro/tensorflow/lite/kernels/internal/max.h new file mode 100644 index 00000000..c1810027 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/max.h @@ -0,0 +1,35 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_MAX_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_MAX_H_ + +#include + +namespace tflite { + +#if defined(TF_LITE_USE_GLOBAL_MAX) || defined(__ZEPHYR__) +inline float TfLiteMax(const float& x, const float& y) { + return std::max(x, y); +} +#else +template +inline T TfLiteMax(const T& x, const T& y) { + return std::fmax(x, y); +} +#endif + +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_MAX_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/min.h b/components/tflite_micro/tensorflow/lite/kernels/internal/min.h new file mode 100644 index 00000000..62035dcc --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/min.h @@ -0,0 +1,35 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_MIN_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_MIN_H_ + +#include + +namespace tflite { + +#if defined(TF_LITE_USE_GLOBAL_MIN) || defined(__ZEPHYR__) +inline float TfLiteMin(const float& x, const float& y) { + return std::min(x, y); +} +#else +template +inline T TfLiteMin(const T& x, const T& y) { + return std::fmin(x, y); +} +#endif + +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_MIN_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/optimized/neon_check.h b/components/tflite_micro/tensorflow/lite/kernels/internal/optimized/neon_check.h new file mode 100644 index 00000000..bbf745ce --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/optimized/neon_check.h @@ -0,0 +1,40 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_OPTIMIZED_NEON_CHECK_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_OPTIMIZED_NEON_CHECK_H_ + +#if defined(__ARM_NEON__) || defined(__ARM_NEON) +#define USE_NEON +#include +#endif + +#if defined __GNUC__ && defined __SSE4_1__ && !defined TF_LITE_DISABLE_X86_NEON +#define USE_NEON +#include "NEON_2_SSE.h" +#endif + +// NEON_OR_PORTABLE(SomeFunc, args) calls NeonSomeFunc(args) if USE_NEON is +// defined, PortableSomeFunc(args) otherwise. +#ifdef USE_NEON +// Always use Neon code +#define NEON_OR_PORTABLE(funcname, ...) Neon##funcname(__VA_ARGS__) + +#else +// No NEON available: Use Portable code +#define NEON_OR_PORTABLE(funcname, ...) Portable##funcname(__VA_ARGS__) + +#endif // defined(USE_NEON) + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_OPTIMIZED_NEON_CHECK_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/quantization_util.cc b/components/tflite_micro/tensorflow/lite/kernels/internal/quantization_util.cc new file mode 100644 index 00000000..cf431cff --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/quantization_util.cc @@ -0,0 +1,395 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/quantization_util.h" + +#include +#include +#include + +#include "tensorflow/lite/kernels/internal/compatibility.h" +#include "tensorflow/lite/kernels/internal/cppmath.h" + +namespace tflite { + +namespace { +// These constants are used to manipulate the binary representation of doubles. +// Double-precision binary64 floating point format is: +// Bit | 63 | 62-52 | 51-0 | +// | Sign | Exponent | Fraction | +// To avoid 64-bit integers as much as possible, I break this into high and +// low 32-bit chunks. High is: +// Bit | 31 | 30-20 | 19-0 | +// | Sign | Exponent | High Fraction | +// Low is: +// Bit | 31-0 | +// | Low Fraction | +// We then access the components through logical bit-wise operations to +// extract the parts needed, with the positions and masks derived from the +// layout shown above. +constexpr uint64_t kSignMask = 0x8000000000000000LL; +constexpr uint64_t kExponentMask = 0x7ff0000000000000LL; +constexpr int32_t kExponentShift = 52; +constexpr int32_t kExponentBias = 1023; +constexpr uint32_t kExponentIsBadNum = 0x7ff; +constexpr uint64_t kFractionMask = 0x000fffffffc00000LL; +constexpr uint32_t kFractionShift = 22; +constexpr uint32_t kFractionRoundingMask = 0x003fffff; +constexpr uint32_t kFractionRoundingThreshold = 0x00200000; +} // namespace + +void QuantizeMultiplier(double double_multiplier, int32_t* quantized_multiplier, + int* shift) { + if (double_multiplier == 0.) { + *quantized_multiplier = 0; + *shift = 0; + return; + } +#ifdef TFLITE_EMULATE_FLOAT + // If we're trying to avoid the use of floating-point instructions (for + // example on microcontrollers) then use an alternative implementation + // that only requires integer and bitwise operations. To enable this, you + // need to set the define during the build process for your platform. + int64_t q_fixed = IntegerFrExp(double_multiplier, shift); +#else // TFLITE_EMULATE_FLOAT + const double q = std::frexp(double_multiplier, shift); + auto q_fixed = static_cast(TfLiteRound(q * (1ll << 31))); +#endif // TFLITE_EMULATE_FLOAT + TFLITE_CHECK(q_fixed <= (1ll << 31)); + if (q_fixed == (1ll << 31)) { + q_fixed /= 2; + ++*shift; + } + TFLITE_CHECK_LE(q_fixed, std::numeric_limits::max()); + // A shift amount smaller than -31 would cause all bits to be shifted out + // and thus all results would be zero. We implement that instead with + // q_fixed==0, so as to avoid hitting issues with right-shift + // operations with shift amounts greater than 31. Note that this happens + // roughly when abs(double_multiplier) < 2^-31 and the present handling means + // that we're effectively flushing tiny double_multiplier's to zero. + // We could conceivably handle values in the range (roughly) [32, 63] + // as 'denormals' i.e. (shift==0, q_fixed < 2^30). In that point of view + // the present handling is just doing 'flush denormals to zero'. We could + // reconsider and actually generate nonzero denormals if a need arises. + if (*shift < -31) { + *shift = 0; + q_fixed = 0; + } + *quantized_multiplier = static_cast(q_fixed); +} + +void QuantizeMultiplierGreaterThanOne(double double_multiplier, + int32_t* quantized_multiplier, + int* left_shift) { + TFLITE_CHECK_GT(double_multiplier, 1.); + QuantizeMultiplier(double_multiplier, quantized_multiplier, left_shift); + TFLITE_CHECK_GE(*left_shift, 0); +} + +void QuantizeMultiplierSmallerThanOneExp(double double_multiplier, + int32_t* quantized_multiplier, + int* left_shift) { + TFLITE_CHECK_LT(double_multiplier, 1.); + TFLITE_CHECK_GT(double_multiplier, 0.); + int shift; + QuantizeMultiplier(double_multiplier, quantized_multiplier, &shift); + TFLITE_CHECK_LE(shift, 0); + *left_shift = shift; +} + +int64_t IntegerFrExp(double input, int* shift) { + // Make sure our assumptions about the double layout hold. + TFLITE_CHECK_EQ(8, sizeof(double)); + + // We want to access the bits of the input double value directly, which is + // tricky to do safely, so use a union to handle the casting. + union { + double double_value; + uint64_t double_as_uint; + } cast_union; + cast_union.double_value = input; + const uint64_t u = cast_union.double_as_uint; + + // If the bitfield is all zeros apart from the sign bit, this is a normalized + // zero value, so return standard values for this special case. + if ((u & ~kSignMask) == 0) { + *shift = 0; + return 0; + } + + // Deal with NaNs and Infs, which are always indicated with a fixed pattern in + // the exponent, and distinguished by whether the fractions are zero or + // non-zero. + const uint32_t exponent_part = ((u & kExponentMask) >> kExponentShift); + if (exponent_part == kExponentIsBadNum) { + *shift = std::numeric_limits::max(); + if (u & kFractionMask) { + // NaN, so just return zero (with the exponent set to INT_MAX). + return 0; + } else { + // Infinity, so return +/- INT_MAX. + if (u & kSignMask) { + return std::numeric_limits::min(); + } else { + return std::numeric_limits::max(); + } + } + } + + // The shift is fairly easy to extract from the high bits of the double value, + // just by masking it out and applying a bias. The std::frexp() implementation + // always returns values between 0.5 and 1.0 though, whereas the exponent + // assumes 1.0 to 2.0 is the standard range, so I add on one to match that + // interface. + *shift = (exponent_part - kExponentBias) + 1; + + // There's an implicit high bit in the double format definition, so make sure + // we include that at the top, and then reconstruct the rest of the fractional + // value from the remaining fragments. + int64_t fraction = 0x40000000 + ((u & kFractionMask) >> kFractionShift); + + // We're cutting off some bits at the bottom, so to exactly match the standard + // frexp implementation here we'll apply rounding by adding one to the least + // significant bit of the result if the discarded portion is over half of the + // maximum. + if ((u & kFractionRoundingMask) > kFractionRoundingThreshold) { + fraction += 1; + } + // Negate the fraction if the sign bit was set. + if (u & kSignMask) { + fraction *= -1; + } + + return fraction; +} + +double DoubleFromFractionAndShift(int64_t fraction, int shift) { + union { + double double_value; + uint64_t double_as_uint; + } result; + + // Detect NaNs and infinities. + if (shift == std::numeric_limits::max()) { + if (fraction == 0) { + return std::numeric_limits::quiet_NaN(); + } else if (fraction > 0) { + return std::numeric_limits::infinity(); + } else { + return -std::numeric_limits::infinity(); + } + } + + // Return a normalized zero for a zero fraction. + if (fraction == 0) { + result.double_as_uint = 0; + return result.double_value; + } + + bool is_negative = (fraction < 0); + int64_t encoded_fraction = is_negative ? -fraction : fraction; + int64_t encoded_shift = (shift - 1); + while (encoded_fraction < 0x40000000) { + encoded_fraction *= 2; + encoded_shift -= 1; + } + while (encoded_fraction > 0x80000000) { + encoded_fraction /= 2; + encoded_shift += 1; + } + encoded_fraction -= 0x40000000; + if (encoded_shift < -1022) { + encoded_shift = -1023; + } else if (encoded_shift > 1022) { + encoded_shift = 1023; + } + encoded_shift += kExponentBias; + uint64_t encoded_sign = is_negative ? kSignMask : 0; + result.double_as_uint = encoded_sign | (encoded_shift << kExponentShift) | + (encoded_fraction << kFractionShift); + return result.double_value; +} + +double IntegerDoubleMultiply(double a, double b) { + int a_shift; + const int64_t a_fraction = IntegerFrExp(a, &a_shift); + int b_shift; + const int64_t b_fraction = IntegerFrExp(b, &b_shift); + // Detect NaNs and infinities. + if (a_shift == std::numeric_limits::max() || + (b_shift == std::numeric_limits::max())) { + return std::numeric_limits::quiet_NaN(); + } + const int result_shift = a_shift + b_shift + 1; + const int64_t result_fraction = (a_fraction * b_fraction) >> 32; + return DoubleFromFractionAndShift(result_fraction, result_shift); +} + +int IntegerDoubleCompare(double a, double b) { + int a_shift; + const int64_t a_fraction = IntegerFrExp(a, &a_shift); + int b_shift; + const int64_t b_fraction = IntegerFrExp(b, &b_shift); + + // Detect NaNs and infinities. + if (a_shift == std::numeric_limits::max() || + (b_shift == std::numeric_limits::max())) { + return 1; + } + + if ((a_fraction == 0) && (b_fraction < 0)) { + return 1; + } else if ((a_fraction < 0) && (b_fraction == 0)) { + return -1; + } else if (a_shift < b_shift) { + return -1; + } else if (a_shift > b_shift) { + return 1; + } else if (a_fraction < b_fraction) { + return -1; + } else if (a_fraction > b_fraction) { + return 1; + } else { + return 0; + } +} + +void PreprocessSoftmaxScaling(double beta, double input_scale, + int input_integer_bits, + int32_t* quantized_multiplier, int* left_shift) { + // If the overall multiplier (input and beta) is large, then exp() of an + // input difference of 1 scaled by this will be large. In other words, we + // can cap the multiplier and know that, when it is used, the output will be + // (round to) zero wherever the input is not at the maximum value. + + // If the overall scale is less than one, and input_integer_bits=0, then the + // result is double equivalent of Q0.31 (actually with more precision). Thus + // this generates a Q(input_integer_bits).(31-input_integer_bits) + // representation. +#ifdef TFLITE_EMULATE_FLOAT + const double input_beta = IntegerDoubleMultiply(beta, input_scale); + int shift; + int64_t fraction = IntegerFrExp(input_beta, &shift); + shift += (31 - input_integer_bits); + double input_beta_real_multiplier = + DoubleFromFractionAndShift(fraction, shift); + if (IntegerDoubleCompare(input_beta_real_multiplier, (1ll << 31) - 1.0) > 0) { + input_beta_real_multiplier = (1ll << 31) - 1.0; + } +#else // TFLITE_EMULATE_FLOAT + const double input_beta_real_multiplier = std::min( + beta * input_scale * (1 << (31 - input_integer_bits)), (1ll << 31) - 1.0); +#endif // TFLITE_EMULATE_FLOAT + + QuantizeMultiplierGreaterThanOne(input_beta_real_multiplier, + quantized_multiplier, left_shift); +} + +void PreprocessLogSoftmaxScalingExp(double beta, double input_scale, + int input_integer_bits, + int32_t* quantized_multiplier, + int* left_shift, + int32_t* reverse_scaling_divisor, + int* reverse_scaling_left_shift) { + PreprocessSoftmaxScaling(beta, input_scale, input_integer_bits, + quantized_multiplier, left_shift); + + // Also calculate what amounts to the inverse scaling factor for the input. + const double real_reverse_scaling_divisor = + (1 << (31 - *left_shift)) / static_cast(*quantized_multiplier); + tflite::QuantizeMultiplierSmallerThanOneExp(real_reverse_scaling_divisor, + reverse_scaling_divisor, + reverse_scaling_left_shift); +} + +int CalculateInputRadius(int input_integer_bits, int input_left_shift, + int total_signed_bits) { +#ifdef TFLITE_EMULATE_FLOAT + int64_t result = (1 << input_integer_bits) - 1; + result <<= (total_signed_bits - input_integer_bits); + result >>= input_left_shift; + return result; +#else // TFLITE_EMULATE_FLOAT + const double max_input_rescaled = + 1.0 * ((1 << input_integer_bits) - 1) * + (1ll << (total_signed_bits - input_integer_bits)) / + (1ll << input_left_shift); + // Tighten bound using floor. Suppose that we could use the exact value. + // After scaling the difference, the result would be at the maximum. Thus we + // must ensure that our value has lower magnitude. + return static_cast(std::floor(max_input_rescaled)); +#endif // TFLITE_EMULATE_FLOAT +} + +void NudgeQuantizationRange(const float min, const float max, + const int quant_min, const int quant_max, + float* nudged_min, float* nudged_max, + float* nudged_scale) { + // This code originates from tensorflow/core/kernels/fake_quant_ops_functor.h. + const float quant_min_float = static_cast(quant_min); + const float quant_max_float = static_cast(quant_max); + *nudged_scale = (max - min) / (quant_max_float - quant_min_float); + const float zero_point_from_min = quant_min_float - min / *nudged_scale; + uint16_t nudged_zero_point; + if (zero_point_from_min < quant_min_float) { + nudged_zero_point = static_cast(quant_min); + } else if (zero_point_from_min > quant_max_float) { + nudged_zero_point = static_cast(quant_max); + } else { + nudged_zero_point = static_cast(TfLiteRound(zero_point_from_min)); + } + *nudged_min = (quant_min_float - nudged_zero_point) * (*nudged_scale); + *nudged_max = (quant_max_float - nudged_zero_point) * (*nudged_scale); +} + +void FakeQuantizeArray(const float nudged_scale, const float nudged_min, + const float nudged_max, const float* input_data, + float* output_data, const float size) { + // This code originates from tensorflow/core/kernels/fake_quant_ops_functor.h. + const float inv_nudged_scale = 1.0f / nudged_scale; + + for (int i = 0; i < size; i++) { + const float src_val = input_data[i]; + const float clamped = std::min(nudged_max, std::max(nudged_min, src_val)); + const float clamped_shifted = clamped - nudged_min; + const float dst_val = + TfLiteRound(clamped_shifted * inv_nudged_scale) * nudged_scale + + nudged_min; + output_data[i] = dst_val; + } +} + +bool CheckedLog2(const float x, int* log2_result) { + // Using TfLiteRound instead of std::round and std::log instead of + // std::log2 to work around these functions being missing in a toolchain + // used in some TensorFlow tests as of May 2018. + const float x_log2 = std::log(x) * (1.0f / std::log(2.0f)); + const float x_log2_rounded = TfLiteRound(x_log2); + const float x_log2_fracpart = x_log2 - x_log2_rounded; + + *log2_result = static_cast(x_log2_rounded); + return std::abs(x_log2_fracpart) < 1e-3f; +} + +void QuantizeMultiplierArray(const double* effective_scales, size_t size, + int32_t* effective_scale_significand, + int* effective_shift) { + for (size_t i = 0; i < size; ++i) { + QuantizeMultiplier(effective_scales[i], &effective_scale_significand[i], + &effective_shift[i]); + } +} + +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/quantization_util.h b/components/tflite_micro/tensorflow/lite/kernels/internal/quantization_util.h new file mode 100644 index 00000000..0ee914b0 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/quantization_util.h @@ -0,0 +1,292 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_QUANTIZATION_UTIL_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_QUANTIZATION_UTIL_H_ + +#include +#include +#include + +#include "tensorflow/lite/kernels/internal/compatibility.h" +#include "tensorflow/lite/kernels/internal/cppmath.h" +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { + +// Given the min and max values of a float array, return +// reasonable quantization parameters to use for this array. +template +QuantizationParams ChooseQuantizationParams(double rmin, double rmax, + bool narrow_range) { + const T qmin = std::numeric_limits::min() + (narrow_range ? 1 : 0); + const T qmax = std::numeric_limits::max(); + const double qmin_double = qmin; + const double qmax_double = qmax; + // 0 should always be a representable value. Let's assume that the initial + // min,max range contains 0. + TFLITE_CHECK_LE(rmin, 0.); + TFLITE_CHECK_GE(rmax, 0.); + if (rmin == rmax) { + // Special case where the min,max range is a point. Should be {0}. + TFLITE_CHECK_EQ(rmin, 0.); + TFLITE_CHECK_EQ(rmax, 0.); + QuantizationParams quantization_params; + quantization_params.zero_point = 0; + quantization_params.scale = 0.; + return quantization_params; + } + + // General case. + // + // First determine the scale. + const double scale = (rmax - rmin) / (qmax_double - qmin_double); + + // Zero-point computation. + // First the initial floating-point computation. The zero-point can be + // determined from solving an affine equation for any known pair + // (real value, corresponding quantized value). + // We know two such pairs: (rmin, qmin) and (rmax, qmax). + // The arithmetic error on the zero point computed from either pair + // will be roughly machine_epsilon * (sum of absolute values of terms) + // so we want to use the variant that adds the smaller terms. + const double zero_point_from_min = qmin_double - rmin / scale; + const double zero_point_from_max = qmax_double - rmax / scale; + const double zero_point_from_min_error = + std::abs(qmin_double) + std::abs(rmin / scale); + const double zero_point_from_max_error = + std::abs(qmax_double) + std::abs(rmax / scale); + + const double zero_point_double = + zero_point_from_min_error < zero_point_from_max_error + ? zero_point_from_min + : zero_point_from_max; + + // Now we need to nudge the zero point to be an integer + // (our zero points are integer, and this is motivated by the requirement + // to be able to represent the real value "0" exactly as a quantized value, + // which is required in multiple places, for example in Im2col with SAME + // padding). + T nudged_zero_point = 0; + if (zero_point_double < qmin_double) { + nudged_zero_point = qmin; + } else if (zero_point_double > qmax_double) { + nudged_zero_point = qmax; + } else { + nudged_zero_point = static_cast(round(zero_point_double)); + } + // The zero point should always be in the range of quantized value, + // [qmin, qmax]. + TFLITE_CHECK_GE(nudged_zero_point, qmin); + TFLITE_CHECK_LE(nudged_zero_point, qmax); + + // Finally, store the result nudged quantization params. + QuantizationParams quantization_params; + quantization_params.zero_point = nudged_zero_point; + quantization_params.scale = scale; + return quantization_params; +} + +template +QuantizationParams ChooseQuantizationParams(double rmin, double rmax) { + return ChooseQuantizationParams(rmin, rmax, false); +} + +// Converts a floating-point number to an integer. For all inputs x where +// static_cast(x) is legal according to the C++ standard, the result +// is identical to that cast (i.e. the result is x with its fractional part +// truncated whenever that is representable as IntOut). +// +// static_cast would cause undefined behavior for the following cases, which +// have well-defined behavior for this function: +// +// 1. If x is NaN, the result is zero. +// +// 2. If the truncated form of x is above the representable range of IntOut, +// the result is std::numeric_limits::max(). +// +// 3. If the truncated form of x is below the representable range of IntOut, +// the result is std::numeric_limits::min(). +// +// Note that cases #2 and #3 cover infinities as well as finite numbers. +// +// The range of FloatIn must include the range of IntOut, otherwise +// the results are undefined. +// TODO(sfeuz): Replace by absl::SafeCast once available. +template +IntOut SafeCast(FloatIn x) { + static_assert(!std::numeric_limits::is_integer, + "FloatIn is integer"); + static_assert(std::numeric_limits::is_integer, + "IntOut is not integer"); + static_assert(std::numeric_limits::radix == 2, "IntOut is base 2"); + + // Special case NaN, for which the logic below doesn't work. + if (std::isnan(x)) { + return 0; + } + + // Negative values all clip to zero for unsigned results. + if (!std::numeric_limits::is_signed && x < 0) { + return 0; + } + + // Handle infinities. + if (std::isinf(x)) { + return x < 0 ? std::numeric_limits::min() + : std::numeric_limits::max(); + } + + // Set exp such that x == f * 2^exp for some f with |f| in [0.5, 1.0), + // unless x is zero in which case exp == 0. Note that this implies that the + // magnitude of x is strictly less than 2^exp. + int exp = 0; + std::frexp(x, &exp); + + // Let N be the number of non-sign bits in the representation of IntOut. If + // the magnitude of x is strictly less than 2^N, the truncated version of x + // is representable as IntOut. The only representable integer for which this + // is not the case is kMin for signed types (i.e. -2^N), but that is covered + // by the fall-through below. + if (exp <= std::numeric_limits::digits) { + return x; + } + + // Handle numbers with magnitude >= 2^N. + return x < 0 ? std::numeric_limits::min() + : std::numeric_limits::max(); +} + +// Decompose a double multiplier into a Q0.31 int32 representation of its +// significand, and shift representation of NEGATIVE its exponent --- +// this is intended as a RIGHT-shift. +// +// Restricted to the case where the multiplier < 1 (and non-negative). +void QuantizeMultiplierSmallerThanOneExp(double double_multiplier, + int32_t* quantized_multiplier, + int* left_shift); + +// Decompose a double multiplier into a Q0.31 int32 representation of its +// significand, and shift representation of its exponent. +// +// Restricted to the case where the multiplier > 1. +void QuantizeMultiplierGreaterThanOne(double double_multiplier, + int32_t* quantized_multiplier, + int* left_shift); + +// Decompose a double multiplier into a Q0.31 int32 representation of its +// significand, and shift representation of its exponent. +// +// Handles an arbitrary positive multiplier. The 'shift' output-value is +// basically the 'floating-point exponent' of the multiplier: +// Negative for a right-shift (when the multiplier is <1), positive for a +// left-shift (when the multiplier is >1) +void QuantizeMultiplier(double double_multiplier, int32_t* quantized_multiplier, + int* shift); + +// Splits a double input value into a returned fraction, and a shift value from +// the exponent, using only bitwise and integer operations to support +// microcontrollers and other environments without floating-point support. +// +// This is designed to be a replacement for how std::frexp() is used within the +// QuantizeMultiplier() function, and so has a different signature than the +// standard version, returning a 64-bit integer rather than a double. This +// result has a maximum value of 1<<31, with the fraction expressed as a +// proportion of that maximum. +// +// std::frexp() returns NaNs and infinities unmodified, but since we're +// returning integers that can't represent those values, instead we return +// a shift of std::numeric_limits::max() for all bad numbers, with an int64 +// result of 0 for NaNs, std:numeric_limits::max() for +INFINITY, and +// std::numeric_limits::min() for -INFINITY. Denormalized inputs will +// result in return values that end up truncating some bits at the end, +// reflecting the loss of precision inherent in denormalization. +int64_t IntegerFrExp(double input, int* shift); + +// Converts an integer fraction in the format produced by IntegerFrExp (where +// 0x40000000 is 1.0) and an exponent shift (between -1022 and +1022) into an +// IEEE binary64 double format result. The implementation uses only integer and +// bitwise operators, so no floating point hardware support or emulation is +// needed. This is here so quantized operations can run non-time-critical +// preparation calculations on microcontrollers and other platforms without +// float support. +double DoubleFromFractionAndShift(int64_t fraction, int shift); + +// Performs a multiplication of two numbers in double format, using only integer +// and bitwise instructions. This is aimed at supporting housekeeping functions +// for quantized operations on microcontrollers without floating-point hardware. +double IntegerDoubleMultiply(double a, double b); + +// Returns -1 if a is less than b, 0 if a and b are equal, and +1 if a is +// greater than b. It is implemented using only integer and logical instructions +// so that it can be easily run on microcontrollers for quantized operations. +int IntegerDoubleCompare(double a, double b); + +// This first creates a multiplier in a double equivalent of +// Q(input_integer_bits).(31-input_integer_bits) representation, with extra +// precision in the double's fractional bits. It then splits the result into +// significand and exponent. +void PreprocessSoftmaxScaling(double beta, double input_scale, + int input_integer_bits, + int32_t* quantized_multiplier, int* left_shift); +// Like PreprocessSoftmaxScaling, but inverse scaling factors also calculated. +void PreprocessLogSoftmaxScalingExp(double beta, double input_scale, + int input_integer_bits, + int32_t* quantized_multiplier, + int* left_shift, + int32_t* reverse_scaling_divisor, + int* reverse_scaling_left_shift); +// Calculate the largest input that will result in a within-bounds intermediate +// result within MultiplyByQuantizedMultiplierGreaterThanOne. In other words, +// it must not overflow before we reduce the value by multiplication by the +// input multiplier. The negative radius is used as the minimum difference in +// Softmax. +int CalculateInputRadius(int input_integer_bits, int input_left_shift, + int total_signed_bits = 31); + +// Nudges a min/max quantization range to ensure zero is zero. +// Gymnastics with nudged zero point is to ensure that real zero maps to +// an integer, which is required for e.g. zero-padding in convolutional layers. +// Outputs nudged_min, nudged_max, nudged_scale. +void NudgeQuantizationRange(const float min, const float max, + const int quant_min, const int quant_max, + float* nudged_min, float* nudged_max, + float* nudged_scale); + +// Fake quantizes (quantizes and dequantizes) input_data using the scale, +// nudged_min, and nudged_max from NudgeQuantizationRange. This matches the code +// in TensorFlow's FakeQuantizeWithMinMaxVarsFunctor. +void FakeQuantizeArray(const float nudged_scale, const float nudged_min, + const float nudged_max, const float* input_data, + float* output_data, const float size); + +// If x is approximately a power of two (with any positive or negative +// exponent), stores that exponent (i.e. log2(x)) in *log2_result, otherwise +// returns false. +bool CheckedLog2(const float x, int* log2_result); + +// Decomposes an array of double multipliers into a Q0.31 int32 representation +// of its significand, and shift representation of its exponent. +// +// Handles an arbitrary multiplier. The 'shift' output-value is +// basically the 'floating-point exponent' of the multiplier: +// Negative for a right-shift (when the multiplier is <1), positive for a +// left-shift (when the multiplier is >1) +void QuantizeMultiplierArray(const double* effective_scales, size_t size, + int32_t* effective_scale_significand, + int* effective_shift); + +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_QUANTIZATION_UTIL_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/add.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/add.h new file mode 100644 index 00000000..5be7ab4d --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/add.h @@ -0,0 +1,454 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ADD_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ADD_H_ + +#include "fixedpoint/fixedpoint.h" +#include "tensorflow/lite/kernels/internal/common.h" + +namespace tflite { + +namespace reference_ops { + +template +inline void Add(const ArithmeticParams& params, + const RuntimeShape& input1_shape, const T* input1_data, + const RuntimeShape& input2_shape, const T* input2_data, + const RuntimeShape& output_shape, T* output_data) { + const int flat_size = + MatchingElementsSize(input1_shape, input2_shape, output_shape); + for (int i = 0; i < flat_size; ++i) { + output_data[i] = ActivationFunctionWithMinMax( + input1_data[i] + input2_data[i], params.quantized_activation_min, + params.quantized_activation_max); + } +} + +inline void Add(const ArithmeticParams& params, + const RuntimeShape& input1_shape, const float* input1_data, + const RuntimeShape& input2_shape, const float* input2_data, + const RuntimeShape& output_shape, float* output_data) { + const int flat_size = + MatchingElementsSize(input1_shape, input2_shape, output_shape); + for (int i = 0; i < flat_size; i++) { + auto x = input1_data[i] + input2_data[i]; + output_data[i] = ActivationFunctionWithMinMax( + x, params.float_activation_min, params.float_activation_max); + } +} + +// Element-wise add that can often be used for inner loop of broadcast add as +// well as the non-broadcast add. + +// This function is used for 8-bit as well as for 16-bit, but the accumulator +// is 32-bit for both cases. The overflow does not happen due to the +// choice of the shift (20 or 15, accordingly - see add.cc for more comments). +template +inline void AddElementwise(int size, const ArithmeticParams& params, + const T* input1_data, const T* input2_data, + T* output_data) { + TFLITE_DCHECK_GT(params.input1_offset, -std::numeric_limits::max()); + TFLITE_DCHECK_GT(params.input2_offset, -std::numeric_limits::max()); + TFLITE_DCHECK_LT(params.input1_offset, std::numeric_limits::max()); + TFLITE_DCHECK_LT(params.input2_offset, std::numeric_limits::max()); + + for (int i = 0; i < size; ++i) { + const int32_t input1_val = params.input1_offset + input1_data[i]; + const int32_t input2_val = params.input2_offset + input2_data[i]; + const int32_t shifted_input1_val = input1_val * (1 << params.left_shift); + const int32_t shifted_input2_val = input2_val * (1 << params.left_shift); + const int32_t scaled_input1_val = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + shifted_input1_val, params.input1_multiplier, params.input1_shift); + const int32_t scaled_input2_val = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + shifted_input2_val, params.input2_multiplier, params.input2_shift); + const int32_t raw_sum = scaled_input1_val + scaled_input2_val; + const int32_t raw_output = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + raw_sum, params.output_multiplier, params.output_shift) + + params.output_offset; + const int32_t clamped_output = + std::min(params.quantized_activation_max, + std::max(params.quantized_activation_min, raw_output)); + output_data[i] = static_cast(clamped_output); + } +} + +// Scalar-broadcast add that can be used for inner loop of more general +// broadcast add, so that, for example, scalar-broadcast with batch will still +// be fast. +inline void AddScalarBroadcast(int size, const ArithmeticParams& params, + uint8_t input1_data, const uint8_t* input2_data, + uint8_t* output_data) { + TFLITE_DCHECK_GT(params.input1_offset, -256); + TFLITE_DCHECK_GT(params.input2_offset, -256); + TFLITE_DCHECK_LT(params.input1_offset, 256); + TFLITE_DCHECK_LT(params.input2_offset, 256); + + const int32_t input1_val = params.input1_offset + input1_data; + const int32_t shifted_input1_val = input1_val * (1 << params.left_shift); + const int32_t scaled_input1_val = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + shifted_input1_val, params.input1_multiplier, params.input1_shift); + for (int i = 0; i < size; ++i) { + const int32_t input2_val = params.input2_offset + input2_data[i]; + const int32_t shifted_input2_val = input2_val * (1 << params.left_shift); + const int32_t scaled_input2_val = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + shifted_input2_val, params.input2_multiplier, params.input2_shift); + const int32_t raw_sum = scaled_input1_val + scaled_input2_val; + const int32_t raw_output = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + raw_sum, params.output_multiplier, params.output_shift) + + params.output_offset; + const int32_t clamped_output = + std::min(params.quantized_activation_max, + std::max(params.quantized_activation_min, raw_output)); + output_data[i] = static_cast(clamped_output); + } +} + +inline void Add(const ArithmeticParams& params, + const RuntimeShape& input1_shape, const uint8_t* input1_data, + const RuntimeShape& input2_shape, const uint8_t* input2_data, + const RuntimeShape& output_shape, uint8_t* output_data) { + TFLITE_DCHECK_LE(params.quantized_activation_min, + params.quantized_activation_max); + const int flat_size = + MatchingElementsSize(input1_shape, input2_shape, output_shape); + + TFLITE_DCHECK_GT(params.input1_offset, -256); + TFLITE_DCHECK_GT(params.input2_offset, -256); + TFLITE_DCHECK_LT(params.input1_offset, 256); + TFLITE_DCHECK_LT(params.input2_offset, 256); + AddElementwise(flat_size, params, input1_data, input2_data, output_data); +} + +inline void AddGeneralParamScale(const ArithmeticParams& params, + const RuntimeShape& input1_shape, + const int16_t* input1_data, + const RuntimeShape& input2_shape, + const int16_t* input2_data, + const RuntimeShape& output_shape, + int16_t* output_data) { + TFLITE_DCHECK_LE(params.quantized_activation_min, + params.quantized_activation_max); + const int flat_size = + MatchingElementsSize(input1_shape, input2_shape, output_shape); + + int max_value = std::numeric_limits::max(); + + TFLITE_DCHECK_GT(params.input1_offset, -max_value); + TFLITE_DCHECK_GT(params.input2_offset, -max_value); + TFLITE_DCHECK_LT(params.input1_offset, max_value); + TFLITE_DCHECK_LT(params.input2_offset, max_value); + AddElementwise(flat_size, params, input1_data, input2_data, output_data); +} + +inline void Add(const ArithmeticParams& params, + const RuntimeShape& input1_shape, const int16_t* input1_data, + const RuntimeShape& input2_shape, const int16_t* input2_data, + const RuntimeShape& output_shape, int16_t* output_data, + bool pot_scale = true) { + if (!pot_scale) { + AddGeneralParamScale(params, input1_shape, input1_data, input2_shape, + input2_data, output_shape, output_data); + return; + } + + TFLITE_DCHECK_LE(params.quantized_activation_min, + params.quantized_activation_max); + + const int input1_shift = params.input1_shift; + const int flat_size = + MatchingElementsSize(input1_shape, input2_shape, output_shape); + const int16_t output_activation_min = params.quantized_activation_min; + const int16_t output_activation_max = params.quantized_activation_max; + + TFLITE_DCHECK(input1_shift == 0 || params.input2_shift == 0); + TFLITE_DCHECK_LE(input1_shift, 0); + TFLITE_DCHECK_LE(params.input2_shift, 0); + const int16_t* not_shift_input = + input1_shift == 0 ? input1_data : input2_data; + const int16_t* shift_input = input1_shift == 0 ? input2_data : input1_data; + const int input_right_shift = + input1_shift == 0 ? -params.input2_shift : -input1_shift; + + for (int i = 0; i < flat_size; i++) { + // F0 uses 0 integer bits, range [-1, 1]. + using F0 = gemmlowp::FixedPoint; + + F0 input_ready_scaled = F0::FromRaw(not_shift_input[i]); + F0 scaled_input = F0::FromRaw( + gemmlowp::RoundingDivideByPOT(shift_input[i], input_right_shift)); + F0 result = gemmlowp::SaturatingAdd(scaled_input, input_ready_scaled); + const int16_t raw_output = result.raw(); + const int16_t clamped_output = std::min( + output_activation_max, std::max(output_activation_min, raw_output)); + output_data[i] = clamped_output; + } +} + +// TODO(jiawen): We can implement BroadcastAdd on buffers of arbitrary +// dimensionality if the runtime code does a single loop over one dimension +// that handles broadcasting as the base case. The code generator would then +// generate max(D1, D2) nested for loops. +// TODO(benoitjacob): BroadcastAdd is intentionally duplicated from +// reference_ops.h. Once an optimized version is implemented and NdArrayDesc +// is no longer referenced in this file, move NdArrayDesc from types.h to +// reference_ops.h. +inline void BroadcastAdd4DSlow(const ArithmeticParams& params, + const RuntimeShape& input1_shape, + const float* input1_data, + const RuntimeShape& input2_shape, + const float* input2_data, + const RuntimeShape& output_shape, + float* output_data) { + NdArrayDesc<4> desc1; + NdArrayDesc<4> desc2; + NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1, + &desc2); + const RuntimeShape extended_output_shape = + RuntimeShape::ExtendedShape(4, output_shape); + + // In Tensorflow, the dimensions are canonically named (batch_number, row, + // col, channel), with extents (batches, height, width, depth), with the + // trailing dimension changing most rapidly (channels has the smallest stride, + // typically 1 element). + // + // In generated C code, we store arrays with the dimensions reversed. The + // first dimension has smallest stride. + // + // We name our variables by their Tensorflow convention, but generate C code + // nesting loops such that the innermost loop has the smallest stride for the + // best cache behavior. + for (int b = 0; b < extended_output_shape.Dims(0); ++b) { + for (int y = 0; y < extended_output_shape.Dims(1); ++y) { + for (int x = 0; x < extended_output_shape.Dims(2); ++x) { + for (int c = 0; c < extended_output_shape.Dims(3); ++c) { + output_data[Offset(extended_output_shape, b, y, x, c)] = + ActivationFunctionWithMinMax( + input1_data[SubscriptToIndex(desc1, b, y, x, c)] + + input2_data[SubscriptToIndex(desc2, b, y, x, c)], + params.float_activation_min, params.float_activation_max); + } + } + } + } +} + +inline void BroadcastAdd4DSlow(const ArithmeticParams& params, + const RuntimeShape& input1_shape, + const int32_t* input1_data, + const RuntimeShape& input2_shape, + const int32_t* input2_data, + const RuntimeShape& output_shape, + int32_t* output_data) { + NdArrayDesc<4> desc1; + NdArrayDesc<4> desc2; + NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1, + &desc2); + const RuntimeShape extended_output_shape = + RuntimeShape::ExtendedShape(4, output_shape); + + // In Tensorflow, the dimensions are canonically named (batch_number, row, + // col, channel), with extents (batches, height, width, depth), with the + // trailing dimension changing most rapidly (channels has the smallest stride, + // typically 1 element). + // + // In generated C code, we store arrays with the dimensions reversed. The + // first dimension has smallest stride. + // + // We name our variables by their Tensorflow convention, but generate C code + // nesting loops such that the innermost loop has the smallest stride for the + // best cache behavior. + for (int b = 0; b < extended_output_shape.Dims(0); ++b) { + for (int y = 0; y < extended_output_shape.Dims(1); ++y) { + for (int x = 0; x < extended_output_shape.Dims(2); ++x) { + for (int c = 0; c < extended_output_shape.Dims(3); ++c) { + output_data[Offset(extended_output_shape, b, y, x, c)] = + ActivationFunctionWithMinMax( + input1_data[SubscriptToIndex(desc1, b, y, x, c)] + + input2_data[SubscriptToIndex(desc2, b, y, x, c)], + params.quantized_activation_min, + params.quantized_activation_max); + } + } + } + } +} + +// This function is used for 8-bit as well as for 16-bit, but the accumulator +// is 32-bit for both cases. The overflow does not happen due to the +// choice of the shift (20 or 15, accordingly - see add.cc for more comments). +template +inline void BroadcastAdd4DSlow( + const ArithmeticParams& params, const RuntimeShape& input1_shape, + const T* input1_data, const RuntimeShape& input2_shape, + const T* input2_data, const RuntimeShape& output_shape, T* output_data) { + NdArrayDesc<4> desc1; + NdArrayDesc<4> desc2; + NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1, + &desc2); + const RuntimeShape extended_output_shape = + RuntimeShape::ExtendedShape(4, output_shape); + + // In Tensorflow, the dimensions are canonically named (batch_number, row, + // col, channel), with extents (batches, height, width, depth), with the + // trailing dimension changing most rapidly (channels has the smallest stride, + // typically 1 element). + // + // In generated C code, we store arrays with the dimensions reversed. The + // first dimension has smallest stride. + // + // We name our variables by their Tensorflow convention, but generate C code + // nesting loops such that the innermost loop has the smallest stride for the + // best cache behavior. + for (int b = 0; b < extended_output_shape.Dims(0); ++b) { + for (int y = 0; y < extended_output_shape.Dims(1); ++y) { + for (int x = 0; x < extended_output_shape.Dims(2); ++x) { + for (int c = 0; c < extended_output_shape.Dims(3); ++c) { + const int32_t input1_val = + params.input1_offset + + input1_data[SubscriptToIndex(desc1, b, y, x, c)]; + const int32_t input2_val = + params.input2_offset + + input2_data[SubscriptToIndex(desc2, b, y, x, c)]; + const int32_t shifted_input1_val = + input1_val * (1 << params.left_shift); + const int32_t shifted_input2_val = + input2_val * (1 << params.left_shift); + const int32_t scaled_input1_val = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + shifted_input1_val, params.input1_multiplier, + params.input1_shift); + const int32_t scaled_input2_val = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + shifted_input2_val, params.input2_multiplier, + params.input2_shift); + const int32_t raw_sum = scaled_input1_val + scaled_input2_val; + const int32_t raw_output = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + raw_sum, params.output_multiplier, params.output_shift) + + params.output_offset; + const int32_t clamped_output = + std::min(params.quantized_activation_max, + std::max(params.quantized_activation_min, raw_output)); + output_data[Offset(extended_output_shape, b, y, x, c)] = + static_cast(clamped_output); + } + } + } + } +} + +inline void BroadcastAddFivefold(const ArithmeticParams& unswitched_params, + const RuntimeShape& unswitched_input1_shape, + const uint8_t* unswitched_input1_data, + const RuntimeShape& unswitched_input2_shape, + const uint8_t* unswitched_input2_data, + const RuntimeShape& output_shape, + uint8_t* output_data) { + ArithmeticParams switched_params = unswitched_params; + switched_params.input1_offset = unswitched_params.input2_offset; + switched_params.input1_multiplier = unswitched_params.input2_multiplier; + switched_params.input1_shift = unswitched_params.input2_shift; + switched_params.input2_offset = unswitched_params.input1_offset; + switched_params.input2_multiplier = unswitched_params.input1_multiplier; + switched_params.input2_shift = unswitched_params.input1_shift; + + const bool use_unswitched = + unswitched_params.broadcast_category == + tflite::BroadcastableOpCategory::kFirstInputBroadcastsFast; + + const ArithmeticParams& params = + use_unswitched ? unswitched_params : switched_params; + const uint8_t* input1_data = + use_unswitched ? unswitched_input1_data : unswitched_input2_data; + const uint8_t* input2_data = + use_unswitched ? unswitched_input2_data : unswitched_input1_data; + + // Fivefold nested loops. The second input resets its position for each + // iteration of the second loop. The first input resets its position at the + // beginning of the fourth loop. The innermost loop is an elementwise add of + // sections of the arrays. + uint8_t* output_data_ptr = output_data; + const uint8_t* input1_data_ptr = input1_data; + const uint8_t* input2_data_reset = input2_data; + // In the fivefold pattern, y0, y2 and y4 are not broadcast, and so shared + // between input shapes. y3 for input 1 is always broadcast, and so the + // dimension there is 1, whereas optionally y1 might be broadcast for input 2. + // Put another way, + // input1.shape.FlatSize = y0 * y1 * y2 * y4, + // input2.shape.FlatSize = y0 * y2 * y3 * y4. + int y0 = params.broadcast_shape[0]; + int y1 = params.broadcast_shape[1]; + int y2 = params.broadcast_shape[2]; + int y3 = params.broadcast_shape[3]; + int y4 = params.broadcast_shape[4]; + if (y4 > 1) { + // General fivefold pattern, with y4 > 1 so there is a non-broadcast inner + // dimension. + for (int i0 = 0; i0 < y0; ++i0) { + const uint8_t* input2_data_ptr; + for (int i1 = 0; i1 < y1; ++i1) { + input2_data_ptr = input2_data_reset; + for (int i2 = 0; i2 < y2; ++i2) { + for (int i3 = 0; i3 < y3; ++i3) { + AddElementwise(y4, params, input1_data_ptr, input2_data_ptr, + output_data_ptr); + input2_data_ptr += y4; + output_data_ptr += y4; + } + // We have broadcast y4 of input1 data y3 times, and now move on. + input1_data_ptr += y4; + } + } + // We have broadcast y2*y3*y4 of input2 data y1 times, and now move on. + input2_data_reset = input2_data_ptr; + } + } else { + // Special case of y4 == 1, in which the innermost loop is a single element + // and can be combined with the next (y3) as an inner broadcast. + // + // Note that this handles the case of pure scalar broadcast when + // y0 == y1 == y2 == 1. With low overhead it handles cases such as scalar + // broadcast with batch (as y2 > 1). + // + // NOTE The process is the same as the above general case except simplified + // for y4 == 1 and the loop over y3 is contained within the + // AddScalarBroadcast function. + for (int i0 = 0; i0 < y0; ++i0) { + const uint8_t* input2_data_ptr; + for (int i1 = 0; i1 < y1; ++i1) { + input2_data_ptr = input2_data_reset; + for (int i2 = 0; i2 < y2; ++i2) { + AddScalarBroadcast(y3, params, *input1_data_ptr, input2_data_ptr, + output_data_ptr); + input2_data_ptr += y3; + output_data_ptr += y3; + input1_data_ptr += 1; + } + } + input2_data_reset = input2_data_ptr; + } + } +} + +} // namespace reference_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ADD_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/arg_min_max.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/arg_min_max.h new file mode 100644 index 00000000..e6f34fd7 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/arg_min_max.h @@ -0,0 +1,68 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ARG_MIN_MAX_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ARG_MIN_MAX_H_ + +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { + +namespace reference_ops { + +template +void ArgMinMax(const RuntimeShape& input1_shape, const T1* input1_data, + const T3* input2_data, const RuntimeShape& output_shape, + T2* output_data, const Cmp& cmp) { + TFLITE_DCHECK_GT(input1_shape.DimensionsCount(), 0); + TFLITE_DCHECK_EQ(input1_shape.DimensionsCount() - 1, + output_shape.DimensionsCount()); + int axis = input2_data[0]; + if (axis < 0) { + axis += input1_shape.DimensionsCount(); + } + const int axis_size = input1_shape.Dims(axis); + + int outer_size = 1; + for (int i = 0; i < axis; ++i) { + TFLITE_DCHECK_EQ(input1_shape.Dims(i), output_shape.Dims(i)); + outer_size *= input1_shape.Dims(i); + } + + int inner_size = 1; + const int dims_count = input1_shape.DimensionsCount(); + for (int i = axis + 1; i < dims_count; ++i) { + TFLITE_DCHECK_EQ(input1_shape.Dims(i), output_shape.Dims(i - 1)); + inner_size *= input1_shape.Dims(i); + } + for (int outer = 0; outer < outer_size; ++outer) { + for (int inner = 0; inner < inner_size; ++inner) { + auto min_max_value = input1_data[outer * axis_size * inner_size + inner]; + T2 min_max_index = 0; + for (int i = 1; i < axis_size; ++i) { + const auto& curr_value = + input1_data[(outer * axis_size + i) * inner_size + inner]; + if (cmp(curr_value, min_max_value)) { + min_max_value = curr_value; + min_max_index = static_cast(i); + } + } + output_data[outer * inner_size + inner] = min_max_index; + } + } +} +} // namespace reference_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ARG_MIN_MAX_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/binary_function.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/binary_function.h new file mode 100644 index 00000000..51d9e2b7 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/binary_function.h @@ -0,0 +1,84 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BINARY_FUNCTION_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BINARY_FUNCTION_H_ + +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/compatibility.h" +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { + +namespace reference_ops { + +// TODO(ycling): Refactoring. Remove BroadcastLogical and use the more +// generalized and efficient BroadcastBinaryFunction. +// +// Also appears to duplicate MinimumMaximum. +// +// R: Result type. T1: Input 1 type. T2: Input 2 type. +template +inline void BroadcastBinaryFunction4DSlow( + const RuntimeShape& unextended_input1_shape, const T1* input1_data, + const RuntimeShape& unextended_input2_shape, const T2* input2_data, + const RuntimeShape& unextended_output_shape, R* output_data, + R (*func)(T1, T2)) { + TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), 4); + TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), 4); + TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4); + const RuntimeShape output_shape = + RuntimeShape::ExtendedShape(4, unextended_output_shape); + + NdArrayDesc<4> desc1; + NdArrayDesc<4> desc2; + NdArrayDescsForElementwiseBroadcast(unextended_input1_shape, + unextended_input2_shape, &desc1, &desc2); + + for (int b = 0; b < output_shape.Dims(0); ++b) { + for (int y = 0; y < output_shape.Dims(1); ++y) { + for (int x = 0; x < output_shape.Dims(2); ++x) { + for (int c = 0; c < output_shape.Dims(3); ++c) { + auto out_idx = Offset(output_shape, b, y, x, c); + auto in1_idx = SubscriptToIndex(desc1, b, y, x, c); + auto in2_idx = SubscriptToIndex(desc2, b, y, x, c); + auto in1_val = input1_data[in1_idx]; + auto in2_val = input2_data[in2_idx]; + output_data[out_idx] = func(in1_val, in2_val); + } + } + } + } +} + +// R: Result type. T1: Input 1 type. T2: Input 2 type. +// TODO(renjieliu): Refactor other binary functions to use this one. +template +inline void BinaryFunction(const RuntimeShape& input1_shape, + const T1* input1_data, + const RuntimeShape& input2_shape, + const T2* input2_data, + const RuntimeShape& output_shape, R* output_data, + R (*func)(T1, T2)) { + const int flat_size = + MatchingFlatSize(input1_shape, input2_shape, output_shape); + for (int i = 0; i < flat_size; ++i) { + output_data[i] = func(input1_data[i], input2_data[i]); + } +} + +} // namespace reference_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BINARY_FUNCTION_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/ceil.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/ceil.h new file mode 100644 index 00000000..66d1dc35 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/ceil.h @@ -0,0 +1,37 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CEIL_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CEIL_H_ + +#include + +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { + +namespace reference_ops { + +inline void Ceil(const RuntimeShape& input_shape, const float* input_data, + const RuntimeShape& output_shape, float* output_data) { + const int flat_size = MatchingFlatSize(input_shape, output_shape); + + for (int i = 0; i < flat_size; ++i) { + output_data[i] = std::ceil(input_data[i]); + } +} + +} // namespace reference_ops +} // namespace tflite +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CEIL_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/comparisons.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/comparisons.h new file mode 100644 index 00000000..49844ab1 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/comparisons.h @@ -0,0 +1,334 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_COMPARISONS_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_COMPARISONS_H_ + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/types.h" +#include "tensorflow/lite/string_util.h" + +namespace tflite { + +namespace reference_ops { + +template +inline bool EqualFn(T lhs, T rhs) { + return lhs == rhs; +} + +template +inline bool NotEqualFn(T lhs, T rhs) { + return lhs != rhs; +} + +template +inline bool GreaterFn(T lhs, T rhs) { + return lhs > rhs; +} +template +inline bool GreaterEqualFn(T lhs, T rhs) { + return lhs >= rhs; +} +template +inline bool LessFn(T lhs, T rhs) { + return lhs < rhs; +} +template +inline bool LessEqualFn(T lhs, T rhs) { + return lhs <= rhs; +} + +inline bool StringRefEqualFn(const StringRef& lhs, const StringRef& rhs) { + if (lhs.len != rhs.len) return false; + for (int i = 0; i < lhs.len; ++i) { + if (lhs.str[i] != rhs.str[i]) return false; + } + return true; +} + +inline bool StringRefNotEqualFn(const StringRef& lhs, const StringRef& rhs) { + return !StringRefEqualFn(lhs, rhs); +} + +template +using ComparisonFn = bool (*)(T, T); + +template F> +inline void ComparisonImpl( + const ComparisonParams& op_params, const RuntimeShape& input1_shape, + const T* input1_data, const RuntimeShape& input2_shape, + const T* input2_data, const RuntimeShape& output_shape, bool* output_data) { + const int64_t flatsize = + MatchingFlatSize(input1_shape, input2_shape, output_shape); + for (int64_t i = 0; i < flatsize; ++i) { + output_data[i] = F(input1_data[i], input2_data[i]); + } +} + +inline void ComparisonStringImpl(bool (*F)(const StringRef&, const StringRef&), + const RuntimeShape& input1_shape, + const TfLiteTensor* input1, + const RuntimeShape& input2_shape, + const TfLiteTensor* input2, + const RuntimeShape& output_shape, + bool* output_data) { + const int64_t flatsize = + MatchingFlatSize(input1_shape, input2_shape, output_shape); + for (int64_t i = 0; i < flatsize; ++i) { + const auto lhs = GetString(input1, i); + const auto rhs = GetString(input2, i); + output_data[i] = F(lhs, rhs); + } +} + +template F> +inline void Comparison(const ComparisonParams& op_params, + const RuntimeShape& input1_shape, + const float* input1_data, + const RuntimeShape& input2_shape, + const float* input2_data, + const RuntimeShape& output_shape, bool* output_data) { + ComparisonImpl(op_params, input1_shape, input1_data, input2_shape, + input2_data, output_shape, output_data); +} + +template F> +inline void ComparisonWithScaling( + const ComparisonParams& op_params, const RuntimeShape& input1_shape, + const T* input1_data, const RuntimeShape& input2_shape, + const T* input2_data, const RuntimeShape& output_shape, bool* output_data) { + int left_shift = op_params.left_shift; + int32_t input1_offset = op_params.input1_offset; + int32_t input1_multiplier = op_params.input1_multiplier; + int input1_shift = op_params.input1_shift; + int32_t input2_offset = op_params.input2_offset; + int32_t input2_multiplier = op_params.input2_multiplier; + int input2_shift = op_params.input2_shift; + + const int64_t flatsize = + MatchingFlatSize(input1_shape, input2_shape, output_shape); + for (int64_t i = 0; i < flatsize; ++i) { + const int32_t input1_val = input1_offset + input1_data[i]; + const int32_t input2_val = input2_offset + input2_data[i]; + const int32_t shifted_input1_val = input1_val * (1 << left_shift); + const int32_t shifted_input2_val = input2_val * (1 << left_shift); + const int32_t scaled_input1_val = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + shifted_input1_val, input1_multiplier, input1_shift); + const int32_t scaled_input2_val = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + shifted_input2_val, input2_multiplier, input2_shift); + output_data[i] = F(scaled_input1_val, scaled_input2_val); + } +} + +struct BroadcastComparison4DSlowCommon { + const RuntimeShape output_shape; + NdArrayDesc<4> desc1; + NdArrayDesc<4> desc2; +}; + +inline BroadcastComparison4DSlowCommon BroadcastComparison4DSlowPreprocess( + const RuntimeShape& unextended_input1_shape, + const RuntimeShape& unextended_input2_shape, + const RuntimeShape& unextended_output_shape) { + TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), 4); + TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), 4); + TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4); + NdArrayDesc<4> desc1; + NdArrayDesc<4> desc2; + NdArrayDescsForElementwiseBroadcast(unextended_input1_shape, + unextended_input2_shape, &desc1, &desc2); + return {RuntimeShape::ExtendedShape(4, unextended_output_shape), desc1, + desc2}; +} + +template F> +inline void BroadcastComparison4DSlowImpl( + const ComparisonParams& op_params, + const RuntimeShape& unextended_input1_shape, const T* input1_data, + const RuntimeShape& unextended_input2_shape, const T* input2_data, + const RuntimeShape& unextended_output_shape, bool* output_data) { + const BroadcastComparison4DSlowCommon dims = + BroadcastComparison4DSlowPreprocess(unextended_input1_shape, + unextended_input2_shape, + unextended_output_shape); + + for (int b = 0; b < dims.output_shape.Dims(0); ++b) { + for (int y = 0; y < dims.output_shape.Dims(1); ++y) { + for (int x = 0; x < dims.output_shape.Dims(2); ++x) { + for (int c = 0; c < dims.output_shape.Dims(3); ++c) { + output_data[Offset(dims.output_shape, b, y, x, c)] = + F(input1_data[SubscriptToIndex(dims.desc1, b, y, x, c)], + input2_data[SubscriptToIndex(dims.desc2, b, y, x, c)]); + } + } + } + } +} + +inline void BroadcastComparison4DSlowStringImpl( + bool (*F)(const StringRef&, const StringRef&), + const RuntimeShape& unextended_input1_shape, const TfLiteTensor* input1, + const RuntimeShape& unextended_input2_shape, const TfLiteTensor* input2, + const RuntimeShape& unextended_output_shape, bool* output_data) { + const BroadcastComparison4DSlowCommon dims = + BroadcastComparison4DSlowPreprocess(unextended_input1_shape, + unextended_input2_shape, + unextended_output_shape); + + for (int b = 0; b < dims.output_shape.Dims(0); ++b) { + for (int y = 0; y < dims.output_shape.Dims(1); ++y) { + for (int x = 0; x < dims.output_shape.Dims(2); ++x) { + for (int c = 0; c < dims.output_shape.Dims(3); ++c) { + const auto lhs = + GetString(input1, SubscriptToIndex(dims.desc1, b, y, x, c)); + const auto rhs = + GetString(input2, SubscriptToIndex(dims.desc2, b, y, x, c)); + output_data[Offset(dims.output_shape, b, y, x, c)] = F(lhs, rhs); + } + } + } + } +} + +template F> +inline void BroadcastComparison4DSlow(const ComparisonParams& op_params, + const RuntimeShape& input1_shape, + const float* input1_data, + const RuntimeShape& input2_shape, + const float* input2_data, + const RuntimeShape& output_shape, + bool* output_data) { + BroadcastComparison4DSlowImpl(op_params, input1_shape, input1_data, + input2_shape, input2_data, + output_shape, output_data); +} + +template F> +inline void BroadcastComparison4DSlowWithScaling( + const ComparisonParams& op_params, + const RuntimeShape& unextended_input1_shape, const T* input1_data, + const RuntimeShape& unextended_input2_shape, const T* input2_data, + const RuntimeShape& unextended_output_shape, bool* output_data) { + const BroadcastComparison4DSlowCommon dims = + BroadcastComparison4DSlowPreprocess(unextended_input1_shape, + unextended_input2_shape, + unextended_output_shape); + + int left_shift = op_params.left_shift; + int32_t input1_offset = op_params.input1_offset; + int32_t input1_multiplier = op_params.input1_multiplier; + int input1_shift = op_params.input1_shift; + int32_t input2_offset = op_params.input2_offset; + int32_t input2_multiplier = op_params.input2_multiplier; + int input2_shift = op_params.input2_shift; + + for (int b = 0; b < dims.output_shape.Dims(0); ++b) { + for (int y = 0; y < dims.output_shape.Dims(1); ++y) { + for (int x = 0; x < dims.output_shape.Dims(2); ++x) { + for (int c = 0; c < dims.output_shape.Dims(3); ++c) { + const int32_t input1_val = + input1_offset + + input1_data[SubscriptToIndex(dims.desc1, b, y, x, c)]; + const int32_t input2_val = + input2_offset + + input2_data[SubscriptToIndex(dims.desc2, b, y, x, c)]; + const int32_t shifted_input1_val = input1_val * (1 << left_shift); + const int32_t shifted_input2_val = input2_val * (1 << left_shift); + const int32_t scaled_input1_val = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + shifted_input1_val, input1_multiplier, input1_shift); + const int32_t scaled_input2_val = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + shifted_input2_val, input2_multiplier, input2_shift); + output_data[Offset(dims.output_shape, b, y, x, c)] = + F(scaled_input1_val, scaled_input2_val); + } + } + } + } +} + +#define TFLITE_COMPARISON_OP(name) \ + inline void name(const ComparisonParams& op_params, \ + const RuntimeShape& input1_shape, const float* input1_data, \ + const RuntimeShape& input2_shape, const float* input2_data, \ + const RuntimeShape& output_shape, bool* output_data) { \ + Comparison(op_params, input1_shape, input1_data, input2_shape, \ + input2_data, output_shape, output_data); \ + } \ + template \ + inline void name##NoScaling( \ + const ComparisonParams& op_params, const RuntimeShape& input1_shape, \ + const T* input1_data, const RuntimeShape& input2_shape, \ + const T* input2_data, const RuntimeShape& output_shape, \ + bool* output_data) { \ + ComparisonImpl(op_params, input1_shape, input1_data, \ + input2_shape, input2_data, output_shape, \ + output_data); \ + } \ + template \ + inline void name##WithScaling( \ + const ComparisonParams& op_params, const RuntimeShape& input1_shape, \ + const T* input1_data, const RuntimeShape& input2_shape, \ + const T* input2_data, const RuntimeShape& output_shape, \ + bool* output_data) { \ + ComparisonWithScaling(op_params, input1_shape, input1_data, \ + input2_shape, input2_data, \ + output_shape, output_data); \ + } \ + template \ + inline void Broadcast4DSlow##name##NoScaling( \ + const ComparisonParams& op_params, const RuntimeShape& input1_shape, \ + const T* input1_data, const RuntimeShape& input2_shape, \ + const T* input2_data, const RuntimeShape& output_shape, \ + bool* output_data) { \ + BroadcastComparison4DSlowImpl( \ + op_params, input1_shape, input1_data, input2_shape, input2_data, \ + output_shape, output_data); \ + } \ + inline void Broadcast4DSlow##name( \ + const ComparisonParams& op_params, const RuntimeShape& input1_shape, \ + const float* input1_data, const RuntimeShape& input2_shape, \ + const float* input2_data, const RuntimeShape& output_shape, \ + bool* output_data) { \ + BroadcastComparison4DSlow(op_params, input1_shape, input1_data, \ + input2_shape, input2_data, \ + output_shape, output_data); \ + } \ + template \ + inline void Broadcast4DSlow##name##WithScaling( \ + const ComparisonParams& op_params, const RuntimeShape& input1_shape, \ + const T* input1_data, const RuntimeShape& input2_shape, \ + const T* input2_data, const RuntimeShape& output_shape, \ + bool* output_data) { \ + BroadcastComparison4DSlowWithScaling( \ + op_params, input1_shape, input1_data, input2_shape, input2_data, \ + output_shape, output_data); \ + } +TFLITE_COMPARISON_OP(Equal); +TFLITE_COMPARISON_OP(NotEqual); +TFLITE_COMPARISON_OP(Greater); +TFLITE_COMPARISON_OP(GreaterEqual); +TFLITE_COMPARISON_OP(Less); +TFLITE_COMPARISON_OP(LessEqual); +#undef TFLITE_COMPARISON_OP + +} // namespace reference_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_COMPARISONS_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/concatenation.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/concatenation.h new file mode 100644 index 00000000..25959793 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/concatenation.h @@ -0,0 +1,140 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONCATENATION_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONCATENATION_H_ + +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/compatibility.h" +#include "tensorflow/lite/kernels/internal/cppmath.h" +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { +namespace reference_ops { + +template +inline void Concatenation(const ConcatenationParams& params, + const RuntimeShape* const* input_shapes, + const Scalar* const* input_data, + const RuntimeShape& output_shape, + Scalar* output_data) { + int axis = params.axis; + int inputs_count = params.inputs_count; + const int concat_dimensions = output_shape.DimensionsCount(); + TFLITE_DCHECK_LT(axis, concat_dimensions); + + int64_t concat_size = 0; + for (int i = 0; i < inputs_count; i++) { + TFLITE_DCHECK_EQ(input_shapes[i]->DimensionsCount(), concat_dimensions); + for (int j = 0; j < concat_dimensions; j++) { + if (j != axis) { + MatchingDim(*input_shapes[i], j, output_shape, j); + } + } + concat_size += input_shapes[i]->Dims(axis); + } + TFLITE_DCHECK_EQ(concat_size, output_shape.Dims(axis)); + int64_t outer_size = 1; + for (int i = 0; i < axis; ++i) { + outer_size *= output_shape.Dims(i); + } + // For all input arrays, + // FlatSize() = outer_size * Dims(axis) * base_inner_size; + int64_t base_inner_size = 1; + for (int i = axis + 1; i < concat_dimensions; ++i) { + base_inner_size *= output_shape.Dims(i); + } + + Scalar* output_ptr = output_data; + for (int k = 0; k < outer_size; k++) { + for (int i = 0; i < inputs_count; ++i) { + const int copy_size = input_shapes[i]->Dims(axis) * base_inner_size; + const Scalar* input_ptr = input_data[i] + k * copy_size; + memcpy(output_ptr, input_ptr, copy_size * sizeof(Scalar)); + output_ptr += copy_size; + } + } +} + +// TODO(prabhumk): This is the same as the optimized implementation. +// TODO(prabhumk): The quantized implementation of concatentation isn't fully +// quantized as it takes scale as a floating point value. This should be fixed +// when optimizng this routine further. +inline void ConcatenationWithScaling(const ConcatenationParams& params, + const RuntimeShape* const* input_shapes, + const uint8_t* const* input_data, + const RuntimeShape& output_shape, + uint8_t* output_data) { + int axis = params.axis; + const int32_t* input_zeropoint = params.input_zeropoint; + const float* input_scale = params.input_scale; + int inputs_count = params.inputs_count; + const int32_t output_zeropoint = params.output_zeropoint; + const float output_scale = params.output_scale; + + const int concat_dimensions = output_shape.DimensionsCount(); + TFLITE_DCHECK_LT(axis, concat_dimensions); + + int64_t concat_size = 0; + for (int i = 0; i < inputs_count; i++) { + TFLITE_DCHECK_EQ(input_shapes[i]->DimensionsCount(), concat_dimensions); + for (int j = 0; j < concat_dimensions; j++) { + if (j != axis) { + MatchingDim(*input_shapes[i], j, output_shape, j); + } + } + concat_size += input_shapes[i]->Dims(axis); + } + TFLITE_DCHECK_EQ(concat_size, output_shape.Dims(axis)); + int64_t outer_size = 1; + for (int i = 0; i < axis; ++i) { + outer_size *= output_shape.Dims(i); + } + // For all input arrays, + // FlatSize() = outer_size * Dims(axis) * base_inner_size; + int64_t base_inner_size = 1; + for (int i = axis + 1; i < concat_dimensions; ++i) { + base_inner_size *= output_shape.Dims(i); + } + + const float inverse_output_scale = 1.f / output_scale; + uint8_t* output_ptr = output_data; + for (int k = 0; k < outer_size; k++) { + for (int i = 0; i < inputs_count; ++i) { + const int copy_size = input_shapes[i]->Dims(axis) * base_inner_size; + const uint8_t* input_ptr = input_data[i] + k * copy_size; + if (input_zeropoint[i] == output_zeropoint && + input_scale[i] == output_scale) { + memcpy(output_ptr, input_ptr, copy_size); + } else { + const float scale = input_scale[i] * inverse_output_scale; + const float bias = -input_zeropoint[i] * scale; + for (int j = 0; j < copy_size; ++j) { + const int32_t value = static_cast(tflite::TfLiteRound( + input_ptr[j] * scale + bias)) + + output_zeropoint; + output_ptr[j] = static_cast( + std::max(std::min(255, value), 0)); + } + } + output_ptr += copy_size; + } + } +} + +} // namespace reference_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONCATENATION_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/conv.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/conv.h new file mode 100644 index 00000000..d4bf46a8 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/conv.h @@ -0,0 +1,262 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONV_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONV_H_ + +#include "tensorflow/lite/kernels/internal/types.h" +#include "tensorflow/lite/kernels/internal/common.h" + + + +namespace tflite { + +namespace reference_ops { + + +inline void Conv(const ConvParams& params, const RuntimeShape& input_shape, + const float* input_data, const RuntimeShape& filter_shape, + const float* filter_data, const RuntimeShape& bias_shape, + const float* bias_data, const RuntimeShape& output_shape, + float* output_data, const RuntimeShape& im2col_shape, + float* im2col_data) { + const int stride_width = params.stride_width; + const int stride_height = params.stride_height; + const int dilation_width_factor = params.dilation_width_factor; + const int dilation_height_factor = params.dilation_height_factor; + const int pad_width = params.padding_values.width; + const int pad_height = params.padding_values.height; + const float output_activation_min = params.float_activation_min; + const float output_activation_max = params.float_activation_max; + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + + (void)im2col_data; // only used in optimized code. + (void)im2col_shape; // only used in optimized code. + const int batches = MatchingDim(input_shape, 0, output_shape, 0); + const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3); + const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3); + if (bias_data) { + TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth); + } + const int input_height = input_shape.Dims(1); + const int input_width = input_shape.Dims(2); + const int filter_height = filter_shape.Dims(1); + const int filter_width = filter_shape.Dims(2); + const int output_height = output_shape.Dims(1); + const int output_width = output_shape.Dims(2); + for (int batch = 0; batch < batches; ++batch) { + for (int out_y = 0; out_y < output_height; ++out_y) { + for (int out_x = 0; out_x < output_width; ++out_x) { + for (int out_channel = 0; out_channel < output_depth; ++out_channel) { + const int in_x_origin = (out_x * stride_width) - pad_width; + const int in_y_origin = (out_y * stride_height) - pad_height; + float total = 0.f; + for (int filter_y = 0; filter_y < filter_height; ++filter_y) { + for (int filter_x = 0; filter_x < filter_width; ++filter_x) { + for (int in_channel = 0; in_channel < input_depth; ++in_channel) { + const int in_x = in_x_origin + dilation_width_factor * filter_x; + const int in_y = + in_y_origin + dilation_height_factor * filter_y; + // If the location is outside the bounds of the input image, + // use zero as a default value. + if ((in_x >= 0) && (in_x < input_width) && (in_y >= 0) && + (in_y < input_height)) { + float input_value = input_data[Offset( + input_shape, batch, in_y, in_x, in_channel)]; + float filter_value = + filter_data[Offset(filter_shape, out_channel, filter_y, + filter_x, in_channel)]; + total += (input_value * filter_value); + } + } + } + } + float bias_value = 0.0f; + if (bias_data) { + bias_value = bias_data[out_channel]; + } + output_data[Offset(output_shape, batch, out_y, out_x, out_channel)] = + ActivationFunctionWithMinMax(total + bias_value, + output_activation_min, + output_activation_max); + } + } + } + } +} + +inline void Conv(const ConvParams& params, const RuntimeShape& input_shape, + const uint8_t* input_data, const RuntimeShape& filter_shape, + const uint8_t* filter_data, const RuntimeShape& bias_shape, + const int32_t* bias_data, const RuntimeShape& output_shape, + uint8_t* output_data, const RuntimeShape& im2col_shape, + uint8_t* im2col_data, void* cpu_backend_context) { + (void)cpu_backend_context; // only used in optimized code. + (void)im2col_data; // only used in optimized code. + (void)im2col_shape; // only used in optimized code. + const int stride_width = params.stride_width; + const int stride_height = params.stride_height; + const int dilation_width_factor = params.dilation_width_factor; + const int dilation_height_factor = params.dilation_height_factor; + const int pad_width = params.padding_values.width; + const int pad_height = params.padding_values.height; + const int32_t input_offset = params.input_offset; + const int32_t filter_offset = params.weights_offset; + const int32_t output_offset = params.output_offset; + const int32_t output_multiplier = params.output_multiplier; + const int output_shift = params.output_shift; + const int32_t output_activation_min = params.quantized_activation_min; + const int32_t output_activation_max = params.quantized_activation_max; + TFLITE_DCHECK_LE(output_activation_min, output_activation_max); + + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + const int batches = MatchingDim(input_shape, 0, output_shape, 0); + const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3); + const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3); + if (bias_data) { + TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth); + } + const int input_height = input_shape.Dims(1); + const int input_width = input_shape.Dims(2); + const int filter_height = filter_shape.Dims(1); + const int filter_width = filter_shape.Dims(2); + const int output_height = output_shape.Dims(1); + const int output_width = output_shape.Dims(2); + for (int batch = 0; batch < batches; ++batch) { + for (int out_y = 0; out_y < output_height; ++out_y) { + for (int out_x = 0; out_x < output_width; ++out_x) { + for (int out_channel = 0; out_channel < output_depth; ++out_channel) { + const int in_x_origin = (out_x * stride_width) - pad_width; + const int in_y_origin = (out_y * stride_height) - pad_height; + int32_t acc = 0; + for (int filter_y = 0; filter_y < filter_height; ++filter_y) { + for (int filter_x = 0; filter_x < filter_width; ++filter_x) { + for (int in_channel = 0; in_channel < input_depth; ++in_channel) { + const int in_x = in_x_origin + dilation_width_factor * filter_x; + const int in_y = + in_y_origin + dilation_height_factor * filter_y; + // If the location is outside the bounds of the input image, + // use zero as a default value. + if ((in_x >= 0) && (in_x < input_width) && (in_y >= 0) && + (in_y < input_height)) { + int32_t input_val = input_data[Offset( + input_shape, batch, in_y, in_x, in_channel)]; + int32_t filter_val = + filter_data[Offset(filter_shape, out_channel, filter_y, + filter_x, in_channel)]; + acc += + (filter_val + filter_offset) * (input_val + input_offset); + } + } + } + } + if (bias_data) { + acc += bias_data[out_channel]; + } + acc = MultiplyByQuantizedMultiplier(acc, output_multiplier, + output_shift); + acc += output_offset; + acc = std::max(acc, output_activation_min); + acc = std::min(acc, output_activation_max); + output_data[Offset(output_shape, batch, out_y, out_x, out_channel)] = + static_cast(acc); + } + } + } + } +} + +inline void HybridConvPerChannel( + const ConvParams& params, float* scaling_factors_ptr, + const RuntimeShape& input_shape, const int8_t* input_data, + const RuntimeShape& filter_shape, const int8_t* filter_data, + const RuntimeShape& bias_shape, const float* bias_data, + const RuntimeShape& output_shape, float* output_data, + const RuntimeShape& im2col_shape, int8_t* im2col_data, + const float* per_channel_scale, int32_t* input_offset) { + (void)im2col_data; // only used in optimized code. + (void)im2col_shape; // only used in optimized code. + const int stride_width = params.stride_width; + const int stride_height = params.stride_height; + const int dilation_width_factor = params.dilation_width_factor; + const int dilation_height_factor = params.dilation_height_factor; + const int pad_width = params.padding_values.width; + const int pad_height = params.padding_values.height; + const float output_activation_min = params.float_activation_min; + const float output_activation_max = params.float_activation_max; + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + const int batches = MatchingDim(input_shape, 0, output_shape, 0); + const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3); + const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3); + if (bias_data) { + TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth); + } + const int input_height = input_shape.Dims(1); + const int input_width = input_shape.Dims(2); + const int filter_height = filter_shape.Dims(1); + const int filter_width = filter_shape.Dims(2); + const int output_height = output_shape.Dims(1); + const int output_width = output_shape.Dims(2); + for (int batch = 0; batch < batches; ++batch) { + for (int out_y = 0; out_y < output_height; ++out_y) { + for (int out_x = 0; out_x < output_width; ++out_x) { + for (int out_channel = 0; out_channel < output_depth; ++out_channel) { + const int in_x_origin = (out_x * stride_width) - pad_width; + const int in_y_origin = (out_y * stride_height) - pad_height; + int32_t acc = 0; + for (int filter_y = 0; filter_y < filter_height; ++filter_y) { + for (int filter_x = 0; filter_x < filter_width; ++filter_x) { + for (int in_channel = 0; in_channel < input_depth; ++in_channel) { + const int in_x = in_x_origin + dilation_width_factor * filter_x; + const int in_y = + in_y_origin + dilation_height_factor * filter_y; + // If the location is outside the bounds of the input image, + // use zero as a default value. + if ((in_x >= 0) && (in_x < input_width) && (in_y >= 0) && + (in_y < input_height)) { + int32_t input_val = input_data[Offset( + input_shape, batch, in_y, in_x, in_channel)]; + int32_t filter_val = + filter_data[Offset(filter_shape, out_channel, filter_y, + filter_x, in_channel)]; + acc += filter_val * (input_val - input_offset[batch]); + } + } + } + } + float acc_float = + acc * per_channel_scale[out_channel] * scaling_factors_ptr[batch]; + if (bias_data) { + acc_float += bias_data[out_channel]; + } + output_data[Offset(output_shape, batch, out_y, out_x, out_channel)] = + ActivationFunctionWithMinMax(acc_float, output_activation_min, + output_activation_max); + } + } + } + } +} + +} // namespace reference_ops +} // namespace tflite + + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONV_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/depthwiseconv_float.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/depthwiseconv_float.h new file mode 100644 index 00000000..0cecb16b --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/depthwiseconv_float.h @@ -0,0 +1,100 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTHWISECONV_FLOAT_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTHWISECONV_FLOAT_H_ + +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/compatibility.h" +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { +namespace reference_ops { + +inline void DepthwiseConv( + const DepthwiseParams& params, const RuntimeShape& input_shape, + const float* input_data, const RuntimeShape& filter_shape, + const float* filter_data, const RuntimeShape& bias_shape, + const float* bias_data, const RuntimeShape& output_shape, + float* output_data) { + const int stride_width = params.stride_width; + const int stride_height = params.stride_height; + const int dilation_width_factor = params.dilation_width_factor; + const int dilation_height_factor = params.dilation_height_factor; + const int pad_width = params.padding_values.width; + const int pad_height = params.padding_values.height; + const int depth_multiplier = params.depth_multiplier; + const float output_activation_min = params.float_activation_min; + const float output_activation_max = params.float_activation_max; + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + + const int batches = MatchingDim(input_shape, 0, output_shape, 0); + const int output_depth = MatchingDim(filter_shape, 3, output_shape, 3); + const int input_height = input_shape.Dims(1); + const int input_width = input_shape.Dims(2); + const int input_depth = input_shape.Dims(3); + const int filter_height = filter_shape.Dims(1); + const int filter_width = filter_shape.Dims(2); + const int output_height = output_shape.Dims(1); + const int output_width = output_shape.Dims(2); + TFLITE_DCHECK_EQ(output_depth, input_depth * depth_multiplier); + TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth); + + for (int b = 0; b < batches; ++b) { + for (int out_y = 0; out_y < output_height; ++out_y) { + for (int out_x = 0; out_x < output_width; ++out_x) { + for (int ic = 0; ic < input_depth; ++ic) { + for (int m = 0; m < depth_multiplier; m++) { + const int oc = m + ic * depth_multiplier; + const int in_x_origin = (out_x * stride_width) - pad_width; + const int in_y_origin = (out_y * stride_height) - pad_height; + float total = 0.f; + for (int filter_y = 0; filter_y < filter_height; ++filter_y) { + for (int filter_x = 0; filter_x < filter_width; ++filter_x) { + const int in_x = in_x_origin + dilation_width_factor * filter_x; + const int in_y = + in_y_origin + dilation_height_factor * filter_y; + // If the location is outside the bounds of the input image, + // use zero as a default value. + if ((in_x >= 0) && (in_x < input_width) && (in_y >= 0) && + (in_y < input_height)) { + float input_value = + input_data[Offset(input_shape, b, in_y, in_x, ic)]; + float filter_value = filter_data[Offset( + filter_shape, 0, filter_y, filter_x, oc)]; + total += (input_value * filter_value); + } + } + } + float bias_value = 0.0f; + if (bias_data) { + bias_value = bias_data[oc]; + } + output_data[Offset(output_shape, b, out_y, out_x, oc)] = + ActivationFunctionWithMinMax(total + bias_value, + output_activation_min, + output_activation_max); + } + } + } + } + } +} + +} // end namespace reference_ops +} // end namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTHWISECONV_FLOAT_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/depthwiseconv_uint8.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/depthwiseconv_uint8.h new file mode 100644 index 00000000..20bf83df --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/depthwiseconv_uint8.h @@ -0,0 +1,297 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTHWISECONV_UINT8_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTHWISECONV_UINT8_H_ + +#include + +#include "fixedpoint/fixedpoint.h" +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/compatibility.h" +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { + +// Used in tests and template parameters to control which version of depthwise +// convolution is called. Primarily for reference code, and specializations +// forced in tests. +enum class DepthwiseConvImplementation { + // Run all tests against kUseStandardEntry even if also testing another + // kernel, since we need to be sure that the main DepthwiseConv() function in + // optimized_ops.h dispatches to a correctly-executing kernel. + kNone = 0, // The "default" option: use the normal + // DepthwiseConv kernel (entry) function. + kUseGenericKernel, // Forced use of generic kernel. + kUseNeon3x3, // 3x3 kernel that uses NEON when available. + kUseNeon3x3DotProduct, // 3x3 kernel that uses dot-product enabled NEON + // when available. + kUseCModel3x3DotProduct, // 3x3 kernel, reference C model that is intended + // to match overall design NEON code. + kUseUnwound3x3DotProduct, // 3x3 kernel, reference C model with unwound loops + // and some arrays. + kUseIntrinsics3x3DotProduct, // 3x3 kernel using NEON intrinsics. +}; + +// Category of depthwise convolution output rounding. +enum class DepthwiseConvOutputRounding { + kNone = 0, // Invalid: specific method must be specified. + kAwayFromZero, // Original method: exact halves rounded away from zero. + kUpward, // Halves towards +infinity: adds 0.5 before truncate. + // This is where a future kNearestEven would be placed. +}; + +// Category of depthwise convolution depth multiplication. +enum class DepthwiseConvDepthMultiplication { + kNoMultiplication = 0, // Depth multiplier = 1. + kUnitInputDepth, // Input depth = 1, output depth = depth multiplier. +}; + +namespace reference_ops { +namespace depthwise_conv { + +template +inline int32_t DepthwiseConvRound(int32_t x, int32_t quantized_multiplier, + int shift) { + TFLITE_DCHECK_NE(output_rounding, DepthwiseConvOutputRounding::kNone); + return MultiplyByQuantizedMultiplier(x, quantized_multiplier, shift); +} + +template <> +inline int32_t DepthwiseConvRound( + int32_t x, int32_t quantized_multiplier, int shift) { + return MultiplyByQuantizedMultiplier(x, quantized_multiplier, shift); +} + +template <> +inline int32_t DepthwiseConvRound( + int32_t x, int32_t quantized_multiplier, int shift) { + using gemmlowp::SaturatingRoundingDoublingHighMul; + const int left_shift = shift > 0 ? shift : 0; + const int right_shift = shift > 0 ? 0 : -shift; + const int rounding_offset = right_shift > 0 ? 1 << (right_shift - 1) : 0; + return (SaturatingRoundingDoublingHighMul(x * (1 << left_shift), + quantized_multiplier) + + rounding_offset) >> + right_shift; +} + +template +struct DepthwiseConvBasicKernel { + static inline void Run( + const DepthwiseParams& params, const RuntimeShape& input_shape, + const uint8_t* input_data, const RuntimeShape& filter_shape, + const uint8_t* filter_data, const RuntimeShape& bias_shape, + const int32_t* bias_data, const RuntimeShape& output_shape, + uint8_t* output_data) { + const int stride_width = params.stride_width; + const int stride_height = params.stride_height; + const int dilation_width_factor = params.dilation_width_factor; + const int dilation_height_factor = params.dilation_height_factor; + const int pad_width = params.padding_values.width; + const int pad_height = params.padding_values.height; + const int depth_multiplier = params.depth_multiplier; + const int32_t output_activation_min = params.quantized_activation_min; + const int32_t output_activation_max = params.quantized_activation_max; + const int32_t input_offset = params.input_offset; + const int32_t filter_offset = params.weights_offset; + const int32_t output_offset = params.output_offset; + const int32_t output_multiplier = params.output_multiplier; + const int output_shift = params.output_shift; + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + + TFLITE_DCHECK_LE(output_activation_min, output_activation_max); + const int batches = MatchingDim(input_shape, 0, output_shape, 0); + const int output_depth = MatchingDim(filter_shape, 3, output_shape, 3); + const int input_height = input_shape.Dims(1); + const int input_width = input_shape.Dims(2); + const int input_depth = input_shape.Dims(3); + const int filter_height = filter_shape.Dims(1); + const int filter_width = filter_shape.Dims(2); + const int output_height = output_shape.Dims(1); + const int output_width = output_shape.Dims(2); + TFLITE_DCHECK_EQ(output_depth, input_depth * depth_multiplier); + TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth); + + for (int b = 0; b < batches; ++b) { + for (int out_y = 0; out_y < output_height; ++out_y) { + for (int out_x = 0; out_x < output_width; ++out_x) { + for (int ic = 0; ic < input_depth; ++ic) { + for (int m = 0; m < depth_multiplier; m++) { + const int oc = m + ic * depth_multiplier; + const int in_x_origin = (out_x * stride_width) - pad_width; + const int in_y_origin = (out_y * stride_height) - pad_height; + int32_t acc = 0; + for (int filter_y = 0; filter_y < filter_height; ++filter_y) { + for (int filter_x = 0; filter_x < filter_width; ++filter_x) { + const int in_x = + in_x_origin + dilation_width_factor * filter_x; + const int in_y = + in_y_origin + dilation_height_factor * filter_y; + // If the location is outside the bounds of the input image, + // use zero as a default value. + if ((in_x >= 0) && (in_x < input_width) && (in_y >= 0) && + (in_y < input_height)) { + int32_t input_val = + input_data[Offset(input_shape, b, in_y, in_x, ic)]; + int32_t filter_val = filter_data[Offset( + filter_shape, 0, filter_y, filter_x, oc)]; + acc += (filter_val + filter_offset) * + (input_val + input_offset); + } + } + } + if (bias_data) { + acc += bias_data[oc]; + } + acc = DepthwiseConvRound(acc, output_multiplier, + output_shift); + acc += output_offset; + acc = std::max(acc, output_activation_min); + acc = std::min(acc, output_activation_max); + output_data[Offset(output_shape, b, out_y, out_x, oc)] = + static_cast(acc); + } + } + } + } + } + } + + // TODO(b/148596273): Reconcile reference versions, perhaps with common + // MultiplyByQuantizedMultiplier or DepthwiseConvRound function. + static inline void RunPerChannel( + const DepthwiseParams& params, const RuntimeShape& input_shape, + const int8_t* input_data, const RuntimeShape& filter_shape, + const int8_t* filter_data, const RuntimeShape& bias_shape, + const int32_t* bias_data, const RuntimeShape& output_shape, + int8_t* output_data) { + // Get parameters. + // TODO(b/141565753): Re-introduce ScopedProfilingLabel on Micro. + const int stride_width = params.stride_width; + const int stride_height = params.stride_height; + const int dilation_width_factor = params.dilation_width_factor; + const int dilation_height_factor = params.dilation_height_factor; + const int pad_width = params.padding_values.width; + const int pad_height = params.padding_values.height; + const int depth_multiplier = params.depth_multiplier; + const int32_t input_offset = params.input_offset; + const int32_t output_offset = params.output_offset; + const int32_t output_activation_min = params.quantized_activation_min; + const int32_t output_activation_max = params.quantized_activation_max; + const int32_t* output_multiplier = params.output_multiplier_per_channel; + const int32_t* output_shift = params.output_shift_per_channel; + + // Check dimensions of the tensors. + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + + TFLITE_DCHECK_LE(output_activation_min, output_activation_max); + const int batches = MatchingDim(input_shape, 0, output_shape, 0); + const int output_depth = MatchingDim(filter_shape, 3, output_shape, 3); + const int input_height = input_shape.Dims(1); + const int input_width = input_shape.Dims(2); + const int input_depth = input_shape.Dims(3); + const int filter_height = filter_shape.Dims(1); + const int filter_width = filter_shape.Dims(2); + const int output_height = output_shape.Dims(1); + const int output_width = output_shape.Dims(2); + TFLITE_DCHECK_EQ(output_depth, input_depth * depth_multiplier); + TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth); + + for (int batch = 0; batch < batches; ++batch) { + for (int out_y = 0; out_y < output_height; ++out_y) { + for (int out_x = 0; out_x < output_width; ++out_x) { + for (int in_channel = 0; in_channel < input_depth; ++in_channel) { + for (int m = 0; m < depth_multiplier; ++m) { + const int output_channel = m + in_channel * depth_multiplier; + const int in_x_origin = (out_x * stride_width) - pad_width; + const int in_y_origin = (out_y * stride_height) - pad_height; + int32_t acc = 0; + for (int filter_y = 0; filter_y < filter_height; ++filter_y) { + for (int filter_x = 0; filter_x < filter_width; ++filter_x) { + const int in_x = + in_x_origin + dilation_width_factor * filter_x; + const int in_y = + in_y_origin + dilation_height_factor * filter_y; + // Zero padding by omitting the areas outside the image. + const bool is_point_inside_image = + (in_x >= 0) && (in_x < input_width) && (in_y >= 0) && + (in_y < input_height); + if (is_point_inside_image) { + int32_t input_val = input_data[Offset( + input_shape, batch, in_y, in_x, in_channel)]; + int32_t filter_val = filter_data[Offset( + filter_shape, 0, filter_y, filter_x, output_channel)]; + // Accumulate with 32 bits accumulator. + // In the nudging process during model quantization, we + // force real value of 0.0 be represented by a quantized + // value. This guarantees that the input_offset is a int8_t, + // even though it is represented using int32_t. int32_t += + // int8_t + // * (int8_t - int8_t) so the highest value we can get from + // each accumulation is [-127, 127] * ([-128, 127] - + // [-128, 127]), which is [-32512, 32512]. log2(32512) + // = 14.98, which means we can accumulate at least 2^16 + // multiplications without overflow. The accumulator is + // applied to a filter so the accumulation logic will hold + // as long as the filter size (filter_y * filter_x * + // in_channel) does not exceed 2^16, which is the case in + // all the models we have seen so far. + acc += filter_val * (input_val + input_offset); + } + } + } + if (bias_data) { + acc += bias_data[output_channel]; + } + acc = DepthwiseConvRound( + acc, output_multiplier[output_channel], + output_shift[output_channel]); + acc += output_offset; + acc = std::max(acc, output_activation_min); + acc = std::min(acc, output_activation_max); + output_data[Offset(output_shape, batch, out_y, out_x, + output_channel)] = static_cast(acc); + } + } + } + } + } + } +}; + +} // namespace depthwise_conv + +inline void DepthwiseConv( + const DepthwiseParams& params, const RuntimeShape& input_shape, + const uint8_t* input_data, const RuntimeShape& filter_shape, + const uint8_t* filter_data, const RuntimeShape& bias_shape, + const int32_t* bias_data, const RuntimeShape& output_shape, + uint8_t* output_data) { + return depthwise_conv::DepthwiseConvBasicKernel< + DepthwiseConvOutputRounding::kAwayFromZero>::Run(params, input_shape, + input_data, filter_shape, + filter_data, bias_shape, + bias_data, output_shape, + output_data); +} + +} // namespace reference_ops +} // end namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTHWISECONV_UINT8_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/dequantize.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/dequantize.h new file mode 100644 index 00000000..b90951f9 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/dequantize.h @@ -0,0 +1,78 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEQUANTIZE_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEQUANTIZE_H_ + +#include + +#include + +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { + +namespace reference_ops { + +// Dequantizes into a float without rounding. +template +inline void Dequantize(const tflite::DequantizationParams& op_params, + const RuntimeShape& input_shape, + const InputT* input_data, + const RuntimeShape& output_shape, OutputT* output_data) { + int32_t zero_point = op_params.zero_point; + const double scale = op_params.scale; + const int flat_size = MatchingFlatSize(input_shape, output_shape); + + for (int i = 0; i < flat_size; i++) { + const int32_t val = input_data[i]; + const OutputT result = static_cast(scale * (val - zero_point)); + output_data[i] = result; + } +} + +// Dequantizes per-channel quantized tensor to float. +template +inline void PerChannelDequantize( + const tflite::PerChannelDequantizationParams& op_params, + const RuntimeShape& input_shape, const T* input_data, + const RuntimeShape& output_shape, float* output_data) { + // Ensure flat size is same. + MatchingFlatSize(input_shape, output_shape); + + const int32_t* zero_point = op_params.zero_point; + const float* scale = op_params.scale; + const int32_t quantized_dimension = op_params.quantized_dimension; + const int32_t num_dims = input_shape.DimensionsCount(); + const int32_t* dims_data = input_shape.DimsData(); + std::vector current_dim(num_dims, 0); + + do { + size_t offset = + ReducedOutputOffset(num_dims, reinterpret_cast(dims_data), + current_dim.data(), 0, nullptr); + const int channel = current_dim[quantized_dimension]; + const int32_t val = input_data[offset]; + const float result = + static_cast(scale[channel] * (val - zero_point[channel])); + output_data[offset] = result; + } while (NextIndex(num_dims, reinterpret_cast(dims_data), + current_dim.data())); +} + +} // namespace reference_ops + +} // namespace tflite +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEQUANTIZE_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/floor.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/floor.h new file mode 100644 index 00000000..0693fd42 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/floor.h @@ -0,0 +1,39 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FLOOR_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FLOOR_H_ + +#include + +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { + +namespace reference_ops { + +inline void Floor(const RuntimeShape& input_shape, const float* input_data, + const RuntimeShape& output_shape, float* output_data) { + const int flat_size = MatchingFlatSize(input_shape, output_shape); + + for (int i = 0; i < flat_size; i++) { + int offset = i; + output_data[offset] = std::floor(input_data[offset]); + } +} + +} // namespace reference_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FLOOR_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/fully_connected.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/fully_connected.h new file mode 100644 index 00000000..39a9cd02 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/fully_connected.h @@ -0,0 +1,320 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FULLY_CONNECTED_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FULLY_CONNECTED_H_ + +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/cppmath.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { +namespace reference_ops { + +inline void FullyConnected( + const FullyConnectedParams& params, const RuntimeShape& input_shape, + const float* input_data, const RuntimeShape& weights_shape, + const float* weights_data, const RuntimeShape& bias_shape, + const float* bias_data, const RuntimeShape& output_shape, + float* output_data) { + const float output_activation_min = params.float_activation_min; + const float output_activation_max = params.float_activation_max; + // TODO(benoitjacob): This really should be: + // const int batches = ArraySize(output_dims, 1); + // but the current --variable_batch hack consists in overwriting the 3rd + // dimension with the runtime batch size, as we don't keep track for each + // array of which dimension is the batch dimension in it. + const int output_dims_count = output_shape.DimensionsCount(); + const int weights_dims_count = weights_shape.DimensionsCount(); + const int batches = FlatSizeSkipDim(output_shape, output_dims_count - 1); + const int output_depth = MatchingDim(weights_shape, weights_dims_count - 2, + output_shape, output_dims_count - 1); + const int accum_depth = weights_shape.Dims(weights_dims_count - 1); + for (int b = 0; b < batches; ++b) { + for (int out_c = 0; out_c < output_depth; ++out_c) { + float total = 0.f; + for (int d = 0; d < accum_depth; ++d) { + total += input_data[b * accum_depth + d] * + weights_data[out_c * accum_depth + d]; + } + float bias_value = 0.0f; + if (bias_data) { + bias_value = bias_data[out_c]; + } + output_data[out_c + output_depth * b] = ActivationFunctionWithMinMax( + total + bias_value, output_activation_min, output_activation_max); + } + } +} + +inline void FullyConnected( + const FullyConnectedParams& params, const RuntimeShape& input_shape, + const uint8_t* input_data, const RuntimeShape& filter_shape, + const uint8_t* filter_data, const RuntimeShape& bias_shape, + const int32_t* bias_data, const RuntimeShape& output_shape, + uint8_t* output_data) { + const int32_t input_offset = params.input_offset; + const int32_t filter_offset = params.weights_offset; + const int32_t output_offset = params.output_offset; + const int32_t output_multiplier = params.output_multiplier; + const int output_shift = params.output_shift; + const int32_t output_activation_min = params.quantized_activation_min; + const int32_t output_activation_max = params.quantized_activation_max; + TFLITE_DCHECK_GE(filter_shape.DimensionsCount(), 2); + TFLITE_DCHECK_GE(output_shape.DimensionsCount(), 1); + + TFLITE_DCHECK_LE(output_activation_min, output_activation_max); + // TODO(benoitjacob): This really should be: + // const int batches = ArraySize(output_dims, 1); + // but the current --variable_batch hack consists in overwriting the 3rd + // dimension with the runtime batch size, as we don't keep track for each + // array of which dimension is the batch dimension in it. + const int output_dim_count = output_shape.DimensionsCount(); + const int filter_dim_count = filter_shape.DimensionsCount(); + const int batches = FlatSizeSkipDim(output_shape, output_dim_count - 1); + const int output_depth = MatchingDim(filter_shape, filter_dim_count - 2, + output_shape, output_dim_count - 1); + const int accum_depth = filter_shape.Dims(filter_dim_count - 1); + for (int b = 0; b < batches; ++b) { + for (int out_c = 0; out_c < output_depth; ++out_c) { + int32_t acc = 0; + for (int d = 0; d < accum_depth; ++d) { + int32_t input_val = input_data[b * accum_depth + d]; + int32_t filter_val = filter_data[out_c * accum_depth + d]; + acc += (filter_val + filter_offset) * (input_val + input_offset); + } + if (bias_data) { + acc += bias_data[out_c]; + } + acc = MultiplyByQuantizedMultiplier(acc, output_multiplier, output_shift); + acc += output_offset; + acc = std::max(acc, output_activation_min); + acc = std::min(acc, output_activation_max); + output_data[out_c + output_depth * b] = static_cast(acc); + } + } +} + +inline void FullyConnected( + const FullyConnectedParams& params, const RuntimeShape& input_shape, + const uint8_t* input_data, const RuntimeShape& filter_shape, + const uint8_t* filter_data, const RuntimeShape& bias_shape, + const int32_t* bias_data, const RuntimeShape& output_shape, + int16_t* output_data) { + const int32_t input_offset = params.input_offset; + const int32_t filter_offset = params.weights_offset; + const int32_t output_offset = params.output_offset; + const int32_t output_multiplier = params.output_multiplier; + const int output_shift = params.output_shift; + const int32_t output_activation_min = params.quantized_activation_min; + const int32_t output_activation_max = params.quantized_activation_max; + + TFLITE_DCHECK_LE(output_activation_min, output_activation_max); + TFLITE_DCHECK_EQ(output_offset, 0); + // TODO(benoitjacob): This really should be: + // const int batches = ArraySize(output_dims, 1); + // but the current --variable_batch hack consists in overwriting the 3rd + // dimension with the runtime batch size, as we don't keep track for each + // array of which dimension is the batch dimension in it. + const int output_dim_count = output_shape.DimensionsCount(); + const int filter_dim_count = filter_shape.DimensionsCount(); + const int batches = FlatSizeSkipDim(output_shape, output_dim_count - 1); + const int output_depth = MatchingDim(filter_shape, filter_dim_count - 2, + output_shape, output_dim_count - 1); + const int accum_depth = filter_shape.Dims(filter_dim_count - 1); + for (int b = 0; b < batches; ++b) { + for (int out_c = 0; out_c < output_depth; ++out_c) { + // Internal accumulation. + // Initialize accumulator with the bias-value. + int32_t accum = bias_data[out_c]; + // Accumulation loop. + for (int d = 0; d < accum_depth; ++d) { + int16_t input_val = input_data[b * accum_depth + d] + input_offset; + int16_t filter_val = + filter_data[out_c * accum_depth + d] + filter_offset; + accum += filter_val * input_val; + } + // Down-scale the final int32_t accumulator to the scale used by our + // (16-bit, typically 3 integer bits) fixed-point format. The quantized + // multiplier and shift here have been pre-computed offline + // (e.g. by toco). + accum = + MultiplyByQuantizedMultiplier(accum, output_multiplier, output_shift); + // Saturate, cast to int16_t, and store to output array. + accum = std::max(accum, output_activation_min - output_offset); + accum = std::min(accum, output_activation_max - output_offset); + accum += output_offset; + output_data[out_c + output_depth * b] = accum; + } + } +} + +inline void ShuffledFullyConnected( + const FullyConnectedParams& params, const RuntimeShape& input_shape, + const uint8_t* input_data, const RuntimeShape& weights_shape, + const uint8_t* shuffled_weights_data, const RuntimeShape& bias_shape, + const int32_t* bias_data, const RuntimeShape& output_shape, + int16_t* output_data, uint8_t* shuffled_input_workspace_data) { + const int32_t output_multiplier = params.output_multiplier; + const int output_shift = params.output_shift; + const int32_t output_activation_min = params.quantized_activation_min; + const int32_t output_activation_max = params.quantized_activation_max; + TFLITE_DCHECK_LE(output_activation_min, output_activation_max); + + TFLITE_DCHECK_GE(input_shape.DimensionsCount(), 1); + TFLITE_DCHECK_GE(weights_shape.DimensionsCount(), 2); + TFLITE_DCHECK_GE(output_shape.DimensionsCount(), 1); + // TODO(benoitjacob): This really should be: + // const int batches = ArraySize(output_dims, 1); + // but the current --variable_batch hack consists in overwriting the 3rd + // dimension with the runtime batch size, as we don't keep track for each + // array of which dimension is the batch dimension in it. + const int output_dim_count = output_shape.DimensionsCount(); + const int weights_dim_count = weights_shape.DimensionsCount(); + const int batches = FlatSizeSkipDim(output_shape, output_dim_count - 1); + const int output_depth = MatchingDim(weights_shape, weights_dim_count - 2, + output_shape, output_dim_count - 1); + const int accum_depth = weights_shape.Dims(weights_dim_count - 1); + TFLITE_DCHECK((accum_depth % 16) == 0); + TFLITE_DCHECK((output_depth % 4) == 0); + + // Shuffling and xoring of input activations into the workspace buffer + uint8_t* shuffled_input_workspace_ptr = shuffled_input_workspace_data; + if (batches == 1) { + for (int i = 0; i < accum_depth; i++) { + shuffled_input_workspace_data[i] = input_data[i] ^ 0x80; + } + } else if (batches == 4) { + for (int c = 0; c < accum_depth; c += 16) { + for (int b = 0; b < 4; b++) { + const uint8_t* src_data_ptr = input_data + b * accum_depth + c; + for (int j = 0; j < 16; j++) { + uint8_t src_val = *src_data_ptr++; + // Flip the sign bit, so that the kernel will only need to + // reinterpret these uint8_t values as int8_t, getting for free the + // subtraction of the zero_point value 128. + uint8_t dst_val = src_val ^ 0x80; + *shuffled_input_workspace_ptr++ = dst_val; + } + } + } + } else { + TFLITE_DCHECK(false); + return; + } + + // Actual computation + if (batches == 1) { + int16_t* output_ptr = output_data; + // Shuffled weights have had their sign bit (0x80) pre-flipped (xor'd) + // so that just reinterpreting them as int8_t values is equivalent to + // subtracting 128 from them, thus implementing for free the subtraction of + // the zero_point value 128. + const int8_t* shuffled_weights_ptr = + reinterpret_cast(shuffled_weights_data); + // Likewise, we preshuffled and pre-xored the input data above. + const int8_t* shuffled_input_data = + reinterpret_cast(shuffled_input_workspace_data); + for (int c = 0; c < output_depth; c += 4) { + // Internal accumulation. + // Initialize accumulator with the bias-value. + int32_t accum[4] = {0}; + // Accumulation loop. + for (int d = 0; d < accum_depth; d += 16) { + for (int i = 0; i < 4; i++) { + for (int j = 0; j < 16; j++) { + int8_t input_val = shuffled_input_data[d + j]; + int8_t weights_val = *shuffled_weights_ptr++; + accum[i] += weights_val * input_val; + } + } + } + for (int i = 0; i < 4; i++) { + // Add bias value + int32_t acc = accum[i] + bias_data[c + i]; + // Down-scale the final int32_t accumulator to the scale used by our + // (16-bit, typically 3 integer bits) fixed-point format. The quantized + // multiplier and shift here have been pre-computed offline + // (e.g. by toco). + acc = + MultiplyByQuantizedMultiplier(acc, output_multiplier, output_shift); + // Saturate, cast to int16_t, and store to output array. + acc = std::max(acc, output_activation_min); + acc = std::min(acc, output_activation_max); + output_ptr[c + i] = acc; + } + } + } else if (batches == 4) { + int16_t* output_ptr = output_data; + // Shuffled weights have had their sign bit (0x80) pre-flipped (xor'd) + // so that just reinterpreting them as int8_t values is equivalent to + // subtracting 128 from them, thus implementing for free the subtraction of + // the zero_point value 128. + const int8_t* shuffled_weights_ptr = + reinterpret_cast(shuffled_weights_data); + // Likewise, we preshuffled and pre-xored the input data above. + const int8_t* shuffled_input_data = + reinterpret_cast(shuffled_input_workspace_data); + for (int c = 0; c < output_depth; c += 4) { + const int8_t* shuffled_input_ptr = shuffled_input_data; + // Accumulation loop. + // Internal accumulation. + // Initialize accumulator with the bias-value. + int32_t accum[4][4]; + for (int i = 0; i < 4; i++) { + for (int b = 0; b < 4; b++) { + accum[i][b] = 0; + } + } + for (int d = 0; d < accum_depth; d += 16) { + for (int i = 0; i < 4; i++) { + for (int b = 0; b < 4; b++) { + for (int j = 0; j < 16; j++) { + int8_t input_val = shuffled_input_ptr[16 * b + j]; + int8_t weights_val = shuffled_weights_ptr[16 * i + j]; + accum[i][b] += weights_val * input_val; + } + } + } + shuffled_input_ptr += 64; + shuffled_weights_ptr += 64; + } + for (int i = 0; i < 4; i++) { + for (int b = 0; b < 4; b++) { + // Add bias value + int32_t acc = accum[i][b] + bias_data[c + i]; + // Down-scale the final int32_t accumulator to the scale used by our + // (16-bit, typically 3 integer bits) fixed-point format. The + // quantized multiplier and shift here have been pre-computed offline + // (e.g. by toco). + acc = MultiplyByQuantizedMultiplier(acc, output_multiplier, + output_shift); + // Saturate, cast to int16_t, and store to output array. + acc = std::max(acc, output_activation_min); + acc = std::min(acc, output_activation_max); + output_ptr[b * output_depth + c + i] = acc; + } + } + } + } else { + TFLITE_DCHECK(false); + return; + } +} + +} // namespace reference_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FULLY_CONNECTED_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/hard_swish.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/hard_swish.h new file mode 100644 index 00000000..cda1b5cf --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/hard_swish.h @@ -0,0 +1,166 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ACTIVATIONS_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ACTIVATIONS_H_ + +#include "ruy/profiler/instrumentation.h" // from @ruy +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { +namespace reference_ops { + +inline int16_t SaturatingLeftShift(int16_t value, int amount) { + int32_t result = static_cast(value) * (1 << amount); + result = std::min(result, std::numeric_limits::max()); + result = std::max(result, std::numeric_limits::min()); + return result; +} + +// Similar to ARM instruction SQDMULH. +// Similar to gemmlowp::SaturatingRoundingDoublingHighMul except +// rounding to zero instead of to nearest (SQRDMULH). +inline std::int16_t SaturatingDoublingHighMul(std::int16_t a, std::int16_t b) { + bool overflow = a == b && a == std::numeric_limits::min(); + std::int32_t a_32(a); + std::int32_t b_32(b); + std::int32_t ab_32 = a_32 * b_32; + std::int16_t ab_x2_high16 = static_cast((ab_32) / (1 << 15)); + return overflow ? std::numeric_limits::max() : ab_x2_high16; +} + +template +inline void HardSwish(const RuntimeShape& input_shape, const T* input_data, + const RuntimeShape& output_shape, T* output_data) { + ruy::profiler::ScopeLabel label("ReferenceHardSwish/Float"); + auto matching_size = MatchingFlatSize(input_shape, output_shape); + const T* in_end = input_data + matching_size; + for (; input_data < in_end; input_data++, output_data++) { + const float in = *input_data; + *output_data = + in * std::min(static_cast(6), std::max(static_cast(0), in + 3)) / + 6; + } +} + +template +inline void HardSwish(const HardSwishParams& params, + const RuntimeShape& input_shape, const T* input_data, + const RuntimeShape& output_shape, T* output_data) { + ruy::profiler::ScopeLabel label("ReferenceHardSwish/Quantized"); + + const int flat_size = MatchingFlatSize(input_shape, output_shape); + + for (int i = 0; i < flat_size; i++) { + const int16_t input_value = input_data[i] - params.input_zero_point; + // Left-shift as much as we can without overflow/saturation to put + // significant bits in the high bits of our 16-bit fixedpoint values, so + // that fixed-point approximate computations below are as accurate as + // possible. + const int16_t input_value_on_hires_input_scale = input_value * (1 << 7); + // Compute the input value on essentially the output scale, just not + // right-shifted yet. This is the value that we'll use in the (x >= +3) + // case, and that in the general case we'll multiply against the "relu-ish" + // fixed-point multiplier in [0, 1]. + const int16_t input_value_on_preshift_output_scale = + gemmlowp::SaturatingRoundingDoublingHighMul( + input_value_on_hires_input_scale, + params.output_multiplier_fixedpoint_int16); + // Now compute the "relu-ish multiplier". In the (-3 <= x <= +3) case, that + // is just an affine rescaling of x from [-3, 3] to [0, 1]. In the general + // case, it is just that plus saturation at the boundaries of [-3, 3]. + // First, we rescale from [-3, 3] to [-1, 1], saturating. + // That is done by rescaling the input value with a fixed-point multiplier + // (reluish_multiplier_fixedpoint) and bit-shift such that we represent + // that input value on the scale where the real value 3.0f is represented + // by the quantized value 32768. (+32768 is actually not representable as + // int16_t, so this saturates at +32767, and that is seen empirically to be + // a negligible contribution to numerical error/bias). + // + // This code is careful to correctly implement any magnitude of multiplier, + // involving either a right shift or a left shift, with correct saturation + // behavior in the left-shift case. This forces this code to be more + // complicated, but is necessary for real applications: a partially + // trained quantized MobileNet v3-small model that motivated this code + // exhibits some large [min, max] range boundaries, of the order of + // magnitude of 10 or 100 depending on layers. + // + // The next few lines are basically just an ordinary + // MultiplyByQuantizedMultiplier, except that we are more careful here + // about the fine details of saturation when left-shifting, because here + // overflow in left-shift is a common case, not an anomaly as + // MultiplyByQuantizedMultiplier assumes. + int16_t reluish_value = input_value_on_hires_input_scale; + // Shift left, saturating, as much as we can while ensuring that this + // saturation will not contribute to the result. That is, left shift amount + // reduced by 1. + if (params.reluish_multiplier_exponent > 0) { + reluish_value = SaturatingLeftShift( + reluish_value, params.reluish_multiplier_exponent - 1); + } + // Apply the fixed-point multiplier, dividing the value by a divisor + // ranging in [1, 2]. + reluish_value = gemmlowp::SaturatingRoundingDoublingHighMul( + reluish_value, params.reluish_multiplier_fixedpoint_int16); + // Apply the last bit of left-shift. Thus, in the left-shifting case, if + // any saturation affects the result, it is happening here --- any + // saturation having occurred above is overwritten here, not affecting the + // result. + if (params.reluish_multiplier_exponent > 0) { + reluish_value = SaturatingLeftShift(reluish_value, 1); + } + // Shift right, in the right-shifting case. + if (params.reluish_multiplier_exponent < 0) { + reluish_value = gemmlowp::RoundingDivideByPOT( + reluish_value, -params.reluish_multiplier_exponent); + } + // At this point we have rescaled the value into a 16bit fixedpoint + // reluish_value in [-1, 1]. + // We now convert that to a 16bit fixedpoint value in [0, 1]. + reluish_value = (reluish_value + (1 << 15)) >> 1; + // Use of SaturatingDoublingHighMul here is important to cancel the biases + // from the above SaturatingRoundingDoublingHighMul. + // + // On a partially trained MobileNet-v3-small, + // + // | bias on | ImageNet + // | quantized | Top-1 + // Operation used here | values | accuracy (50k) + // --------------------------------------+------------+----------- + // SaturatingDoublingHighMul | -0.0024 | 58.920 + // SaturatingRoundingDoublingHighMul | -0.0067 | 58.064 + // + // In activations_test, this is covered by this testcase: + // QuantizedActivationsOpTest.HardSwishBias + // + const int16_t preshift_output_value = SaturatingDoublingHighMul( + reluish_value, input_value_on_preshift_output_scale); + // We were so far operating on the pre-shift output scale. Now we finally + // apply that output shift, arriving at the final output scale. + int16_t output_value = gemmlowp::RoundingDivideByPOT( + preshift_output_value, -params.output_multiplier_exponent); + output_value += params.output_zero_point; + output_value = + std::min(output_value, std::numeric_limits::max()); + output_value = + std::max(output_value, std::numeric_limits::min()); + output_data[i] = output_value; + } +} + +} // namespace reference_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONV_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/add.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/add.h new file mode 100644 index 00000000..2af6f373 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/add.h @@ -0,0 +1,145 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_ADD_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_ADD_H_ + +#include + +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { +namespace reference_integer_ops { + +inline void CheckArithmeticParams(const ArithmeticParams& params) { + TFLITE_DCHECK_LE(params.quantized_activation_min, + params.quantized_activation_max); + // Input offset is negative input zero point. Activation tensors are + // asymmetric quantized so they span the full int8 range. + TFLITE_DCHECK_GE(-params.input1_offset, std::numeric_limits::min()); + TFLITE_DCHECK_GE(-params.input2_offset, std::numeric_limits::min()); + TFLITE_DCHECK_LE(-params.input1_offset, std::numeric_limits::max()); + TFLITE_DCHECK_LE(-params.input2_offset, std::numeric_limits::max()); +} + +// Element-wise add that can often be used for inner loop of broadcast add as +// well as the non-broadcast add. +inline void AddElementwise(int size, const ArithmeticParams& params, + const int8_t* input1_data, const int8_t* input2_data, + int8_t* output_data) { + CheckArithmeticParams(params); + + for (int i = 0; i < size; ++i) { + const int32_t input1_val = params.input1_offset + input1_data[i]; + const int32_t input2_val = params.input2_offset + input2_data[i]; + const int32_t shifted_input1_val = input1_val * (1 << params.left_shift); + const int32_t shifted_input2_val = input2_val * (1 << params.left_shift); + const int32_t scaled_input1_val = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + shifted_input1_val, params.input1_multiplier, params.input1_shift); + const int32_t scaled_input2_val = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + shifted_input2_val, params.input2_multiplier, params.input2_shift); + const int32_t raw_sum = scaled_input1_val + scaled_input2_val; + const int32_t raw_output = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + raw_sum, params.output_multiplier, params.output_shift) + + params.output_offset; + const int32_t clamped_output = + std::min(params.quantized_activation_max, + std::max(params.quantized_activation_min, raw_output)); + output_data[i] = static_cast(clamped_output); + } +} + +inline void Add(const ArithmeticParams& params, + const RuntimeShape& input1_shape, const int8_t* input1_data, + const RuntimeShape& input2_shape, const int8_t* input2_data, + const RuntimeShape& output_shape, int8_t* output_data) { + CheckArithmeticParams(params); + + const int flat_size = + MatchingElementsSize(input1_shape, input2_shape, output_shape); + + AddElementwise(flat_size, params, input1_data, input2_data, output_data); +} + +inline void BroadcastAdd4DSlow(const ArithmeticParams& params, + const RuntimeShape& input1_shape, + const int8_t* input1_data, + const RuntimeShape& input2_shape, + const int8_t* input2_data, + const RuntimeShape& output_shape, + int8_t* output_data) { + NdArrayDesc<4> desc1; + NdArrayDesc<4> desc2; + NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1, + &desc2); + const RuntimeShape extended_output_shape = + RuntimeShape::ExtendedShape(4, output_shape); + + // In Tensorflow, the dimensions are canonically named (batch_number, row, + // col, channel), with extents (batches, height, width, depth), with the + // trailing dimension changing most rapidly (channels has the smallest stride, + // typically 1 element). + // + // In generated C code, we store arrays with the dimensions reversed. The + // first dimension has smallest stride. + // + // We name our variables by their Tensorflow convention, but generate C code + // nesting loops such that the innermost loop has the smallest stride for the + // best cache behavior. + for (int b = 0; b < extended_output_shape.Dims(0); ++b) { + for (int y = 0; y < extended_output_shape.Dims(1); ++y) { + for (int x = 0; x < extended_output_shape.Dims(2); ++x) { + for (int c = 0; c < extended_output_shape.Dims(3); ++c) { + const int32_t input1_val = + params.input1_offset + + input1_data[SubscriptToIndex(desc1, b, y, x, c)]; + const int32_t input2_val = + params.input2_offset + + input2_data[SubscriptToIndex(desc2, b, y, x, c)]; + const int32_t shifted_input1_val = + input1_val * (1 << params.left_shift); + const int32_t shifted_input2_val = + input2_val * (1 << params.left_shift); + const int32_t scaled_input1_val = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + shifted_input1_val, params.input1_multiplier, + params.input1_shift); + const int32_t scaled_input2_val = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + shifted_input2_val, params.input2_multiplier, + params.input2_shift); + const int32_t raw_sum = scaled_input1_val + scaled_input2_val; + const int32_t raw_output = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + raw_sum, params.output_multiplier, params.output_shift) + + params.output_offset; + const int32_t clamped_output = + std::min(params.quantized_activation_max, + std::max(params.quantized_activation_min, raw_output)); + output_data[Offset(extended_output_shape, b, y, x, c)] = + static_cast(clamped_output); + } + } + } + } +} + +} // namespace reference_integer_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_ADD_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/conv.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/conv.h new file mode 100644 index 00000000..f4bcb2bd --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/conv.h @@ -0,0 +1,217 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_CONV_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_CONV_H_ + +#include "tensorflow/lite/kernels/internal/common.h" + +namespace tflite { +namespace reference_integer_ops { + +// Fixed-point per-channel-quantization convolution reference kernel. +inline void ConvPerChannel( + const ConvParams& params, const int32_t* output_multiplier, + const int32_t* output_shift, const RuntimeShape& input_shape, + const int8_t* input_data, const RuntimeShape& filter_shape, + const int8_t* filter_data, const RuntimeShape& bias_shape, + const int32_t* bias_data, const RuntimeShape& output_shape, + int8_t* output_data) { + // Get parameters. + const int32_t input_offset = params.input_offset; // r = s(q - Z) + const int stride_width = params.stride_width; + const int stride_height = params.stride_height; + const int dilation_width_factor = params.dilation_width_factor; + const int dilation_height_factor = params.dilation_height_factor; + const int pad_width = params.padding_values.width; + const int pad_height = params.padding_values.height; + const int32_t output_offset = params.output_offset; + + // Set min and max value of the output. + const int32_t output_activation_min = params.quantized_activation_min; + const int32_t output_activation_max = params.quantized_activation_max; + + // Consistency check. + TFLITE_DCHECK_LE(output_activation_min, output_activation_max); + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + const int batches = MatchingDim(input_shape, 0, output_shape, 0); + const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3); + const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3); + if (bias_data) { + TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth); + } + + // Check dimensions of the tensors. + const int input_height = input_shape.Dims(1); + const int input_width = input_shape.Dims(2); + const int filter_height = filter_shape.Dims(1); + const int filter_width = filter_shape.Dims(2); + const int output_height = output_shape.Dims(1); + const int output_width = output_shape.Dims(2); + for (int batch = 0; batch < batches; ++batch) { + for (int out_y = 0; out_y < output_height; ++out_y) { + for (int out_x = 0; out_x < output_width; ++out_x) { + for (int out_channel = 0; out_channel < output_depth; ++out_channel) { + const int in_x_origin = (out_x * stride_width) - pad_width; + const int in_y_origin = (out_y * stride_height) - pad_height; + int32_t acc = 0; + for (int filter_y = 0; filter_y < filter_height; ++filter_y) { + for (int filter_x = 0; filter_x < filter_width; ++filter_x) { + for (int in_channel = 0; in_channel < input_depth; ++in_channel) { + const int in_x = in_x_origin + dilation_width_factor * filter_x; + const int in_y = + in_y_origin + dilation_height_factor * filter_y; + // Zero padding by omitting the areas outside the image. + const bool is_point_inside_image = + (in_x >= 0) && (in_x < input_width) && (in_y >= 0) && + (in_y < input_height); + if (is_point_inside_image) { + int32_t input_val = input_data[Offset( + input_shape, batch, in_y, in_x, in_channel)]; + int32_t filter_val = + filter_data[Offset(filter_shape, out_channel, filter_y, + filter_x, in_channel)]; + // Accumulate with 32 bits accumulator. + // In the nudging process during model quantization, we force + // real value of 0.0 be represented by a quantized value. This + // guarantees that the input_offset is a int8_t, even though + // it is represented using int32_t. int32_t += int8_t * + // (int8_t - int8_t) so the highest value we can get from each + // accumulation is [-127, 127] * ([-128, 127] - + // [-128, 127]), which is [-32512, 32512]. log2(32512) + // = 14.98, which means we can accumulate at least 2^16 + // multiplications without overflow. The accumulator is + // applied to a filter so the accumulation logic will hold as + // long as the filter size (filter_y * filter_x * in_channel) + // does not exceed 2^16, which is the case in all the models + // we have seen so far. + // TODO(jianlijianli): Add a check to make sure the + // accumulator depth is smaller than 2^16. + acc += filter_val * (input_val + input_offset); + } + } + } + } + + if (bias_data) { + acc += bias_data[out_channel]; + } + acc = MultiplyByQuantizedMultiplier( + acc, output_multiplier[out_channel], output_shift[out_channel]); + acc += output_offset; + acc = std::max(acc, output_activation_min); + acc = std::min(acc, output_activation_max); + output_data[Offset(output_shape, batch, out_y, out_x, out_channel)] = + static_cast(acc); + } + } + } + } +} + +// Fixed-point per-channel-quantization convolution reference kernel. +// 16-bit data and 8-bit filter +inline void ConvPerChannel( + const ConvParams& params, const int32_t* output_multiplier, + const int32_t* output_shift, const RuntimeShape& input_shape, + const int16_t* input_data, const RuntimeShape& filter_shape, + const int8_t* filter_data, const RuntimeShape& bias_shape, + const std::int64_t* bias_data, const RuntimeShape& output_shape, + int16_t* output_data) { + // Get parameters. + const int stride_width = params.stride_width; + const int stride_height = params.stride_height; + const int dilation_width_factor = params.dilation_width_factor; + const int dilation_height_factor = params.dilation_height_factor; + const int pad_width = params.padding_values.width; + const int pad_height = params.padding_values.height; + + // Set min and max value of the output. + const int32_t output_activation_min = params.quantized_activation_min; + const int32_t output_activation_max = params.quantized_activation_max; + + // Consistency check. + TFLITE_DCHECK_LE(output_activation_min, output_activation_max); + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + const int batches = MatchingDim(input_shape, 0, output_shape, 0); + const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3); + const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3); + if (bias_data) { + TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth); + } + + // Check dimensions of the tensors. + const int input_height = input_shape.Dims(1); + const int input_width = input_shape.Dims(2); + const int filter_height = filter_shape.Dims(1); + const int filter_width = filter_shape.Dims(2); + const int output_height = output_shape.Dims(1); + const int output_width = output_shape.Dims(2); + for (int batch = 0; batch < batches; ++batch) { + for (int out_y = 0; out_y < output_height; ++out_y) { + for (int out_x = 0; out_x < output_width; ++out_x) { + for (int out_channel = 0; out_channel < output_depth; ++out_channel) { + const int in_x_origin = (out_x * stride_width) - pad_width; + const int in_y_origin = (out_y * stride_height) - pad_height; + std::int64_t acc = 0; + for (int filter_y = 0; filter_y < filter_height; ++filter_y) { + for (int filter_x = 0; filter_x < filter_width; ++filter_x) { + for (int in_channel = 0; in_channel < input_depth; ++in_channel) { + const int in_x = in_x_origin + dilation_width_factor * filter_x; + const int in_y = + in_y_origin + dilation_height_factor * filter_y; + // Zero padding by omitting the areas outside the image. + const bool is_point_inside_image = + (in_x >= 0) && (in_x < input_width) && (in_y >= 0) && + (in_y < input_height); + if (is_point_inside_image) { + int32_t input_val = input_data[Offset( + input_shape, batch, in_y, in_x, in_channel)]; + int32_t filter_val = + filter_data[Offset(filter_shape, out_channel, filter_y, + filter_x, in_channel)]; + // Accumulate with 64 bits accumulator. + // int64_t += int8_t * int16_t so the highest value we can + // get from each accumulation is [-127, 127] * ([-32768, + // 32767] - + // [-32768, 32767]), which is [-8322945, 8322945]. + // log2(8322945) = 22.99. + acc += filter_val * input_val; + } + } + } + } + if (bias_data) { + acc += bias_data[out_channel]; + } + int32_t scaled_acc = MultiplyByQuantizedMultiplier( + acc, output_multiplier[out_channel], output_shift[out_channel]); + scaled_acc = std::max(scaled_acc, output_activation_min); + scaled_acc = std::min(scaled_acc, output_activation_max); + output_data[Offset(output_shape, batch, out_y, out_x, out_channel)] = + static_cast(scaled_acc); + } + } + } + } +} + +} // namespace reference_integer_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_CONV_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/depthwise_conv.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/depthwise_conv.h new file mode 100644 index 00000000..6f54e47f --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/depthwise_conv.h @@ -0,0 +1,289 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_DEPTHWISE_CONV_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_DEPTHWISE_CONV_H_ + +#include "tensorflow/lite/kernels/internal/common.h" + +namespace tflite { +namespace reference_integer_ops { +inline void DepthwiseConvPerChannel( + const DepthwiseParams& params, const int32_t* output_multiplier, + const int32_t* output_shift, const RuntimeShape& input_shape, + const int8_t* input_data, const RuntimeShape& filter_shape, + const int8_t* filter_data, const RuntimeShape& bias_shape, + const int32_t* bias_data, const RuntimeShape& output_shape, + int8_t* output_data) { + // Get parameters. + // TODO(b/141565753): Re-introduce ScopedProfilingLabel on Micro. + const int stride_width = params.stride_width; + const int stride_height = params.stride_height; + const int dilation_width_factor = params.dilation_width_factor; + const int dilation_height_factor = params.dilation_height_factor; + const int pad_width = params.padding_values.width; + const int pad_height = params.padding_values.height; + const int depth_multiplier = params.depth_multiplier; + const int32_t input_offset = params.input_offset; + const int32_t output_offset = params.output_offset; + const int32_t output_activation_min = params.quantized_activation_min; + const int32_t output_activation_max = params.quantized_activation_max; + + // Check dimensions of the tensors. + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + + TFLITE_DCHECK_LE(output_activation_min, output_activation_max); + const int batches = MatchingDim(input_shape, 0, output_shape, 0); + const int output_depth = MatchingDim(filter_shape, 3, output_shape, 3); + const int input_height = input_shape.Dims(1); + const int input_width = input_shape.Dims(2); + const int input_depth = input_shape.Dims(3); + const int filter_height = filter_shape.Dims(1); + const int filter_width = filter_shape.Dims(2); + const int output_height = output_shape.Dims(1); + const int output_width = output_shape.Dims(2); + TFLITE_DCHECK_EQ(output_depth, input_depth * depth_multiplier); + TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth); + + for (int batch = 0; batch < batches; ++batch) { + for (int out_y = 0; out_y < output_height; ++out_y) { + for (int out_x = 0; out_x < output_width; ++out_x) { + for (int in_channel = 0; in_channel < input_depth; ++in_channel) { + for (int m = 0; m < depth_multiplier; ++m) { + const int output_channel = m + in_channel * depth_multiplier; + const int in_x_origin = (out_x * stride_width) - pad_width; + const int in_y_origin = (out_y * stride_height) - pad_height; + int32_t acc = 0; + for (int filter_y = 0; filter_y < filter_height; ++filter_y) { + for (int filter_x = 0; filter_x < filter_width; ++filter_x) { + const int in_x = in_x_origin + dilation_width_factor * filter_x; + const int in_y = + in_y_origin + dilation_height_factor * filter_y; + // Zero padding by omitting the areas outside the image. + const bool is_point_inside_image = + (in_x >= 0) && (in_x < input_width) && (in_y >= 0) && + (in_y < input_height); + if (is_point_inside_image) { + int32_t input_val = input_data[Offset( + input_shape, batch, in_y, in_x, in_channel)]; + int32_t filter_val = filter_data[Offset( + filter_shape, 0, filter_y, filter_x, output_channel)]; + // Accumulate with 32 bits accumulator. + // In the nudging process during model quantization, we force + // real value of 0.0 be represented by a quantized value. This + // guarantees that the input_offset is a int8_t, even though + // it is represented using int32_t. int32_t += int8_t * + // (int8_t - int8_t) so the highest value we can get from each + // accumulation is [-127, 127] * ([-128, 127] - + // [-128, 127]), which is [-32512, 32512]. log2(32512) + // = 14.98, which means we can accumulate at least 2^16 + // multiplications without overflow. The accumulator is + // applied to a filter so the accumulation logic will hold as + // long as the filter size (filter_y * filter_x * in_channel) + // does not exceed 2^16, which is the case in all the models + // we have seen so far. + // TODO(jianlijianli): Add a check to make sure the + // accumulator depth is smaller than 2^16. + acc += filter_val * (input_val + input_offset); + } + } + } + if (bias_data) { + acc += bias_data[output_channel]; + } + acc = MultiplyByQuantizedMultiplier( + acc, output_multiplier[output_channel], + output_shift[output_channel]); + acc += output_offset; + acc = std::max(acc, output_activation_min); + acc = std::min(acc, output_activation_max); + output_data[Offset(output_shape, batch, out_y, out_x, + output_channel)] = static_cast(acc); + } + } + } + } + } +} + +inline void DepthwiseConvPerChannel( + const DepthwiseParams& params, const int32_t* output_multiplier, + const int32_t* output_shift, const RuntimeShape& input_shape, + const int16_t* input_data, const RuntimeShape& filter_shape, + const int8_t* filter_data, const RuntimeShape& bias_shape, + const std::int64_t* bias_data, const RuntimeShape& output_shape, + int16_t* output_data) { + // Get parameters. + const int stride_width = params.stride_width; + const int stride_height = params.stride_height; + const int dilation_width_factor = params.dilation_width_factor; + const int dilation_height_factor = params.dilation_height_factor; + const int pad_width = params.padding_values.width; + const int pad_height = params.padding_values.height; + const int depth_multiplier = params.depth_multiplier; + const int32_t output_activation_min = params.quantized_activation_min; + const int32_t output_activation_max = params.quantized_activation_max; + + // Check dimensions of the tensors. + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + + TFLITE_DCHECK_LE(output_activation_min, output_activation_max); + const int batches = MatchingDim(input_shape, 0, output_shape, 0); + const int output_depth = MatchingDim(filter_shape, 3, output_shape, 3); + const int input_height = input_shape.Dims(1); + const int input_width = input_shape.Dims(2); + const int input_depth = input_shape.Dims(3); + const int filter_height = filter_shape.Dims(1); + const int filter_width = filter_shape.Dims(2); + const int output_height = output_shape.Dims(1); + const int output_width = output_shape.Dims(2); + TFLITE_DCHECK_EQ(output_depth, input_depth * depth_multiplier); + TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth); + + for (int batch = 0; batch < batches; ++batch) { + for (int out_y = 0; out_y < output_height; ++out_y) { + for (int out_x = 0; out_x < output_width; ++out_x) { + for (int in_channel = 0; in_channel < input_depth; ++in_channel) { + for (int m = 0; m < depth_multiplier; ++m) { + const int output_channel = m + in_channel * depth_multiplier; + const int in_x_origin = (out_x * stride_width) - pad_width; + const int in_y_origin = (out_y * stride_height) - pad_height; + std::int64_t acc = 0; + for (int filter_y = 0; filter_y < filter_height; ++filter_y) { + for (int filter_x = 0; filter_x < filter_width; ++filter_x) { + const int in_x = in_x_origin + dilation_width_factor * filter_x; + const int in_y = + in_y_origin + dilation_height_factor * filter_y; + // Zero padding by omitting the areas outside the image. + const bool is_point_inside_image = + (in_x >= 0) && (in_x < input_width) && (in_y >= 0) && + (in_y < input_height); + if (is_point_inside_image) { + int32_t input_val = input_data[Offset( + input_shape, batch, in_y, in_x, in_channel)]; + int32_t filter_val = filter_data[Offset( + filter_shape, 0, filter_y, filter_x, output_channel)]; + // Accumulate with 64 bits accumulator. + // We assume maximum of 2^16 accumulations as with the 8-bit + // case so actually the value in the accumulator should not + // exceed 40 bits + acc += static_cast(filter_val) * + static_cast(input_val); + } + } + } + if (bias_data) { + acc += bias_data[output_channel]; + } + int32_t scaled_acc = MultiplyByQuantizedMultiplier( + acc, output_multiplier[output_channel], + output_shift[output_channel]); + scaled_acc = std::max(scaled_acc, output_activation_min); + scaled_acc = std::min(scaled_acc, output_activation_max); + output_data[Offset(output_shape, batch, out_y, out_x, + output_channel)] = + static_cast(scaled_acc); + } + } + } + } + } +} + +inline void DepthwiseConvHybridPerChannel( + const DepthwiseParams& params, float* scaling_factors_ptr, + const RuntimeShape& input_shape, const int8_t* input_data, + const RuntimeShape& filter_shape, const int8_t* filter_data, + const RuntimeShape& bias_shape, const float* bias_data, + const RuntimeShape& output_shape, float* output_data, + const float* per_channel_scale, int32_t* input_offset) { + const int stride_width = params.stride_width; + const int stride_height = params.stride_height; + const int dilation_width_factor = params.dilation_width_factor; + const int dilation_height_factor = params.dilation_height_factor; + const int pad_width = params.padding_values.width; + const int pad_height = params.padding_values.height; + const int depth_multiplier = params.depth_multiplier; + const float output_activation_min = params.float_activation_min; + const float output_activation_max = params.float_activation_max; + // Check dimensions of the tensors. + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + + const int batches = MatchingDim(input_shape, 0, output_shape, 0); + const int output_depth = MatchingDim(filter_shape, 3, output_shape, 3); + const int input_height = input_shape.Dims(1); + const int input_width = input_shape.Dims(2); + const int input_depth = input_shape.Dims(3); + const int filter_height = filter_shape.Dims(1); + const int filter_width = filter_shape.Dims(2); + const int output_height = output_shape.Dims(1); + const int output_width = output_shape.Dims(2); + const int bias_depth = bias_shape.FlatSize(); + TFLITE_DCHECK_EQ(output_depth, input_depth * depth_multiplier); + TFLITE_DCHECK_EQ(bias_depth, output_depth); + + for (int batch = 0; batch < batches; ++batch) { + for (int out_y = 0; out_y < output_height; ++out_y) { + for (int out_x = 0; out_x < output_width; ++out_x) { + for (int in_channel = 0; in_channel < input_depth; ++in_channel) { + for (int m = 0; m < depth_multiplier; ++m) { + const int output_channel = m + in_channel * depth_multiplier; + const int in_x_origin = (out_x * stride_width) - pad_width; + const int in_y_origin = (out_y * stride_height) - pad_height; + int32_t acc = 0; + for (int filter_y = 0; filter_y < filter_height; ++filter_y) { + for (int filter_x = 0; filter_x < filter_width; ++filter_x) { + const int in_x = in_x_origin + dilation_width_factor * filter_x; + const int in_y = + in_y_origin + dilation_height_factor * filter_y; + // Zero padding by omitting the areas outside the image. + const bool is_point_inside_image = + (in_x >= 0) && (in_x < input_width) && (in_y >= 0) && + (in_y < input_height); + if (is_point_inside_image) { + int32_t input_val = input_data[Offset( + input_shape, batch, in_y, in_x, in_channel)]; + int32_t filter_val = filter_data[Offset( + filter_shape, 0, filter_y, filter_x, output_channel)]; + acc += filter_val * (input_val - input_offset[batch]); + } + } + } + float acc_float = static_cast(acc); + acc_float *= + per_channel_scale[output_channel] * scaling_factors_ptr[batch]; + if (bias_data && output_channel < bias_depth) { + acc_float += bias_data[output_channel]; + } + output_data[Offset(output_shape, batch, out_y, out_x, + output_channel)] = + ActivationFunctionWithMinMax(acc_float, output_activation_min, + output_activation_max); + } + } + } + } + } +} + +} // namespace reference_integer_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_DEPTHWISE_CONV_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/fully_connected.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/fully_connected.h new file mode 100644 index 00000000..2bc3e794 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/fully_connected.h @@ -0,0 +1,108 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_FULLY_CONNECTED_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_FULLY_CONNECTED_H_ + +#include "tensorflow/lite/kernels/internal/common.h" + +namespace tflite { +namespace reference_integer_ops { + +inline void FullyConnected( + const FullyConnectedParams& params, const RuntimeShape& input_shape, + const int8_t* input_data, const RuntimeShape& filter_shape, + const int8_t* filter_data, const RuntimeShape& bias_shape, + const int32_t* bias_data, const RuntimeShape& output_shape, + int8_t* output_data) { + const int32_t input_offset = params.input_offset; + const int32_t filter_offset = params.weights_offset; + const int32_t output_offset = params.output_offset; + const int32_t output_multiplier = params.output_multiplier; + const int output_shift = params.output_shift; + const int32_t output_activation_min = params.quantized_activation_min; + const int32_t output_activation_max = params.quantized_activation_max; + TFLITE_DCHECK_GE(filter_shape.DimensionsCount(), 2); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 2); + + TFLITE_DCHECK_LE(output_activation_min, output_activation_max); + const int filter_dim_count = filter_shape.DimensionsCount(); + const int batches = output_shape.Dims(0); + const int output_depth = output_shape.Dims(1); + TFLITE_DCHECK_LE(output_depth, filter_shape.Dims(filter_dim_count - 2)); + const int accum_depth = filter_shape.Dims(filter_dim_count - 1); + for (int b = 0; b < batches; ++b) { + for (int out_c = 0; out_c < output_depth; ++out_c) { + int32_t acc = 0; + for (int d = 0; d < accum_depth; ++d) { + int32_t input_val = input_data[b * accum_depth + d]; + int32_t filter_val = filter_data[out_c * accum_depth + d]; + acc += (filter_val + filter_offset) * (input_val + input_offset); + } + if (bias_data) { + acc += bias_data[out_c]; + } + acc = MultiplyByQuantizedMultiplier(acc, output_multiplier, output_shift); + acc += output_offset; + acc = std::max(acc, output_activation_min); + acc = std::min(acc, output_activation_max); + output_data[out_c + output_depth * b] = static_cast(acc); + } + } +} + +inline void FullyConnected( + const FullyConnectedParams& params, const RuntimeShape& input_shape, + const int16_t* input_data, const RuntimeShape& filter_shape, + const int8_t* filter_data, const RuntimeShape& bias_shape, + const int64_t* bias_data, const RuntimeShape& output_shape, + int16_t* output_data) { + const int32_t filter_offset = params.weights_offset; + const int32_t output_multiplier = params.output_multiplier; + const int output_shift = params.output_shift; + const int32_t output_activation_min = params.quantized_activation_min; + const int32_t output_activation_max = params.quantized_activation_max; + TFLITE_DCHECK_GE(filter_shape.DimensionsCount(), 2); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 2); + + TFLITE_DCHECK_LE(output_activation_min, output_activation_max); + const int filter_dim_count = filter_shape.DimensionsCount(); + const int batches = output_shape.Dims(0); + const int output_depth = output_shape.Dims(1); + TFLITE_DCHECK_LE(output_depth, filter_shape.Dims(filter_dim_count - 2)); + const int accum_depth = filter_shape.Dims(filter_dim_count - 1); + for (int b = 0; b < batches; ++b) { + for (int out_c = 0; out_c < output_depth; ++out_c) { + int64_t acc = 0; + for (int d = 0; d < accum_depth; ++d) { + int32_t input_val = input_data[b * accum_depth + d]; + int32_t filter_val = filter_data[out_c * accum_depth + d]; + acc += (filter_val + filter_offset) * input_val; + } + if (bias_data) { + acc += bias_data[out_c]; + } + int32_t acc_scaled = + MultiplyByQuantizedMultiplier(acc, output_multiplier, output_shift); + acc_scaled = std::max(acc_scaled, output_activation_min); + acc_scaled = std::min(acc_scaled, output_activation_max); + output_data[out_c + output_depth * b] = static_cast(acc_scaled); + } + } +} + +} // namespace reference_integer_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_FULLY_CONNECTED_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/l2normalization.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/l2normalization.h new file mode 100644 index 00000000..31f2de98 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/l2normalization.h @@ -0,0 +1,65 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_L2NORMALIZATION_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_L2NORMALIZATION_H_ + +#include "tensorflow/lite/kernels/internal/common.h" + +namespace tflite { +namespace reference_integer_ops { + +inline void L2Normalization(int32_t input_zero_point, int32_t outer_size, + int32_t depth, const int8_t* input_data, + int8_t* output_data) { + static constexpr int8_t kMinInt8 = std::numeric_limits::min(); + static constexpr int8_t kMaxInt8 = std::numeric_limits::max(); + // The output scale must be in sync with Prepare(). + // Output is in 1/128 scale so the actual output range is nudged from [-1, 1] + // to [-1, 127/128]. + static constexpr int32_t kOutputScale = 7; + for (int outer_index = 0; outer_index < outer_size; ++outer_index) { + // int32_t = (int8_t - int8_t) ^ 2. + // ([-128, 127] - [-128, 127]) ^ 2 = [0, (2^8 - 1)^2] so the accumulator is + // safe from overflowing in at least 2^16 steps. + int32_t acc = 0; + for (int inner_index = 0; inner_index < depth; ++inner_index) { + int32_t input = + input_data[depth * outer_index + inner_index] - input_zero_point; + acc += input * input; + } + int32_t inv_l2norm_multiplier; + int inv_l2norm_shift; + GetInvSqrtQuantizedMultiplierExp(acc, kReverseShift, &inv_l2norm_multiplier, + &inv_l2norm_shift); + + for (int inner_index = 0; inner_index < depth; ++inner_index) { + int32_t input = + input_data[depth * outer_index + inner_index] - input_zero_point; + + // Rescale and downcast. Rescale is folded into the division. + int32_t output_in_q24 = MultiplyByQuantizedMultiplier( + input, inv_l2norm_multiplier, inv_l2norm_shift + kOutputScale); + output_in_q24 = + std::min(static_cast(kMaxInt8), + std::max(static_cast(kMinInt8), output_in_q24)); + output_data[depth * outer_index + inner_index] = + static_cast(output_in_q24); + } + } +} +} // namespace reference_integer_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_L2NORMALIZATION_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/logistic.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/logistic.h new file mode 100644 index 00000000..e315683c --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/logistic.h @@ -0,0 +1,99 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_LOGISTIC_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_LOGISTIC_H_ + +#include +#include "tensorflow/lite/kernels/internal/common.h" + +namespace tflite { +namespace reference_integer_ops { + +inline void Logistic(int32_t input_zero_point, int32_t input_range_radius, + int32_t input_multiplier, int32_t input_left_shift, + int32_t input_size, const int8_t* input_data, + int8_t* output_data) { + // Integer bits must be in sync with Prepare() function. + static constexpr int32_t kInputIntegerBits = 4; + static constexpr int32_t kOutputIntegerBits = 8; + static constexpr int8_t kMinInt8 = std::numeric_limits::min(); + static constexpr int8_t kMaxInt8 = std::numeric_limits::max(); + static constexpr int32_t kOutputZeroPoint = -128; + + for (int i = 0; i < input_size; ++i) { + const int32_t input = + static_cast(input_data[i]) - input_zero_point; + if (input <= -input_range_radius) { + output_data[i] = kMinInt8; + } else if (input >= input_range_radius) { + output_data[i] = kMaxInt8; + } else { + const int32_t input_in_q4 = MultiplyByQuantizedMultiplier( + input, input_multiplier, input_left_shift); + using FixedPoint4 = gemmlowp::FixedPoint; + const int32_t output_in_q0 = + gemmlowp::logistic(FixedPoint4::FromRaw(input_in_q4)).raw(); + + // Rescale and downcast. + using gemmlowp::RoundingDivideByPOT; + int32_t output_in_q23 = + RoundingDivideByPOT(output_in_q0, 31 - kOutputIntegerBits); + output_in_q23 = std::min(std::max(output_in_q23 + kOutputZeroPoint, + static_cast(kMinInt8)), + static_cast(kMaxInt8)); + output_data[i] = static_cast(output_in_q23); + } + } +} + +inline void Logistic(int32_t input_multiplier, int32_t input_size, + const int16_t* ptr_input_data, int16_t* ptr_output_data) { + // We use the LUT for sigmoid and take into account, that + // tanh(x) = 2*sigmoid(2*x) - 1 + + int32_t input_data_mul = (input_multiplier > 0) ? input_multiplier : 1; + + for (int i = 0; i < input_size; ++i, ptr_input_data++, ptr_output_data++) { + int32_t input_data = (*ptr_input_data) * input_data_mul; + + // Scale by 3/4 to expand range [-8,8]->[-10.7,10.7] and + // we do interpolation on unsigned values. + uint32_t abs_input_data = 3 * abs(input_data); + + // We divide by 2 power of 9, because + // we need to divide by 2 in power of 7 for + // the input conversion + 1/4 from the scale above. + uint8_t uh = abs_input_data >> 9; + uint32_t ua = sigmoid_table_uint16[uh]; + uint32_t ub = sigmoid_table_uint16[uh + 1]; + uint32_t ut = abs_input_data & 0x1ff; + + // Interpolation is done using the fractional bit. + uint32_t result = (ua << 9) + ut * (ub - ua); + + result = (input_data >= 0) ? (result + (1 << 9)) + : ((1 << (16 + 9)) - result + (1 << 9) - 1); + + // Back to 16-bit. + result >>= 10; + + *ptr_output_data = result; + } +} + +} // namespace reference_integer_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_LOGISTIC_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/mul.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/mul.h new file mode 100644 index 00000000..b80838aa --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/mul.h @@ -0,0 +1,131 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_MUL_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_MUL_H_ + +#include "fixedpoint/fixedpoint.h" +#include "ruy/profiler/instrumentation.h" // from @ruy +#include "tensorflow/lite/kernels/internal/common.h" + +namespace tflite { +namespace reference_integer_ops { + +template +inline void MulElementwise(int size, const ArithmeticParams& params, + const T* input1_data, const T* input2_data, + T* output_data) { + for (int i = 0; i < size; ++i) { + const int32_t input1_val = params.input1_offset + input1_data[i]; + const int32_t input2_val = params.input2_offset + input2_data[i]; + const int32_t unclamped_result = + params.output_offset + + MultiplyByQuantizedMultiplier(input1_val * input2_val, + params.output_multiplier, + params.output_shift); + const int32_t clamped_output = + std::min(params.quantized_activation_max, + std::max(params.quantized_activation_min, unclamped_result)); + output_data[i] = static_cast(clamped_output); + } +} + +template +inline void Mul(const ArithmeticParams& params, + const RuntimeShape& input1_shape, const T* input1_data, + const RuntimeShape& input2_shape, const T* input2_data, + const RuntimeShape& output_shape, T* output_data) { + TFLITE_DCHECK_LE(params.quantized_activation_min, + params.quantized_activation_max); + ruy::profiler::ScopeLabel label("Mul/8bit"); + const int flat_size = + MatchingElementsSize(input1_shape, input2_shape, output_shape); + + MulElementwise(flat_size, params, input1_data, input2_data, output_data); +} + +// Mul with 16 bit inputs and int8_t outputs. +inline void Mul(const ArithmeticParams& params, + const RuntimeShape& input1_shape, const int16_t* input1_data, + const RuntimeShape& input2_shape, const int16_t* input2_data, + const RuntimeShape& output_shape, int8_t* output_data) { + ruy::profiler::ScopeLabel label("Mul/Int16Int8"); + int32_t output_offset = params.output_offset; + int32_t output_activation_min = params.quantized_activation_min; + int32_t output_activation_max = params.quantized_activation_max; + TFLITE_DCHECK_LE(output_activation_min, output_activation_max); + + const int flat_size = + MatchingElementsSize(input1_shape, input2_shape, output_shape); + + for (int i = 0; i < flat_size; i++) { + // F0 uses 0 integer bits, range [-1, 1]. + using F0 = gemmlowp::FixedPoint; + + F0 unclamped_result = + F0::FromRaw(input1_data[i]) * F0::FromRaw(input2_data[i]); + int16_t rescaled_result = + gemmlowp::RoundingDivideByPOT(unclamped_result.raw(), 8); + int16_t clamped_result = std::min( + output_activation_max - output_offset, rescaled_result); + clamped_result = std::max(output_activation_min - output_offset, + clamped_result); + output_data[i] = output_offset + clamped_result; + } +} + +template +inline void BroadcastMul4DSlow( + const ArithmeticParams& params, const RuntimeShape& input1_shape, + const T* input1_data, const RuntimeShape& input2_shape, + const T* input2_data, const RuntimeShape& output_shape, T* output_data) { + ruy::profiler::ScopeLabel label("BroadcastMul4DSlow"); + + NdArrayDesc<4> desc1; + NdArrayDesc<4> desc2; + // The input shapes are extended as part of NdArrayDesc initialization. + NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1, + &desc2); + const RuntimeShape extended_output_shape = + RuntimeShape::ExtendedShape(4, output_shape); + + for (int b = 0; b < extended_output_shape.Dims(0); ++b) { + for (int y = 0; y < extended_output_shape.Dims(1); ++y) { + for (int x = 0; x < extended_output_shape.Dims(2); ++x) { + for (int c = 0; c < extended_output_shape.Dims(3); ++c) { + const int32_t input1_val = + params.input1_offset + + input1_data[SubscriptToIndex(desc1, b, y, x, c)]; + const int32_t input2_val = + params.input2_offset + + input2_data[SubscriptToIndex(desc2, b, y, x, c)]; + const int32_t unclamped_result = + params.output_offset + + MultiplyByQuantizedMultiplier(input1_val * input2_val, + params.output_multiplier, + params.output_shift); + const int32_t clamped_output = std::min( + params.quantized_activation_max, + std::max(params.quantized_activation_min, unclamped_result)); + output_data[Offset(extended_output_shape, b, y, x, c)] = + static_cast(clamped_output); + } + } + } + } +} + +} // namespace reference_integer_ops +} // namespace tflite +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_MUL_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/pooling.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/pooling.h new file mode 100644 index 00000000..17944bc4 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/pooling.h @@ -0,0 +1,258 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_POOLING_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_POOLING_H_ + +#include +#include "tensorflow/lite/kernels/internal/common.h" + +namespace tflite { +namespace reference_integer_ops { + +inline void AveragePool(const PoolParams& params, + const RuntimeShape& input_shape, + const int8_t* input_data, + const RuntimeShape& output_shape, int8_t* output_data) { + TFLITE_DCHECK_LE(params.quantized_activation_min, + params.quantized_activation_max); + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + const int batches = MatchingDim(input_shape, 0, output_shape, 0); + const int depth = MatchingDim(input_shape, 3, output_shape, 3); + const int input_height = input_shape.Dims(1); + const int input_width = input_shape.Dims(2); + const int output_height = output_shape.Dims(1); + const int output_width = output_shape.Dims(2); + const int stride_height = params.stride_height; + const int stride_width = params.stride_width; + for (int batch = 0; batch < batches; ++batch) { + for (int out_y = 0; out_y < output_height; ++out_y) { + for (int out_x = 0; out_x < output_width; ++out_x) { + for (int channel = 0; channel < depth; ++channel) { + const int in_x_origin = + (out_x * stride_width) - params.padding_values.width; + const int in_y_origin = + (out_y * stride_height) - params.padding_values.height; + // Compute the boundaries of the filter region clamped so as to + // ensure that the filter window fits in the input array. + const int filter_x_start = std::max(0, -in_x_origin); + const int filter_x_end = + std::min(params.filter_width, input_width - in_x_origin); + const int filter_y_start = std::max(0, -in_y_origin); + const int filter_y_end = + std::min(params.filter_height, input_height - in_y_origin); + int32_t acc = 0; + int filter_count = 0; + for (int filter_y = filter_y_start; filter_y < filter_y_end; + ++filter_y) { + for (int filter_x = filter_x_start; filter_x < filter_x_end; + ++filter_x) { + const int in_x = in_x_origin + filter_x; + const int in_y = in_y_origin + filter_y; + acc += + input_data[Offset(input_shape, batch, in_y, in_x, channel)]; + filter_count++; + } + } + // Round to the closest integer value. + acc = acc > 0 ? (acc + filter_count / 2) / filter_count + : (acc - filter_count / 2) / filter_count; + acc = std::max(acc, params.quantized_activation_min); + acc = std::min(acc, params.quantized_activation_max); + output_data[Offset(output_shape, batch, out_y, out_x, channel)] = + static_cast(acc); + } + } + } + } +} + +inline void MaxPool(const PoolParams& params, const RuntimeShape& input_shape, + const int8_t* input_data, const RuntimeShape& output_shape, + int8_t* output_data) { + TFLITE_DCHECK_LE(params.quantized_activation_min, + params.quantized_activation_max); + TFLITE_DCHECK_GE(params.quantized_activation_min, + std::numeric_limits::min()); + TFLITE_DCHECK_LE(params.quantized_activation_max, + std::numeric_limits::max()); + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + const int batches = MatchingDim(input_shape, 0, output_shape, 0); + const int depth = MatchingDim(input_shape, 3, output_shape, 3); + const int input_height = input_shape.Dims(1); + const int input_width = input_shape.Dims(2); + const int output_height = output_shape.Dims(1); + const int output_width = output_shape.Dims(2); + const int stride_height = params.stride_height; + const int stride_width = params.stride_width; + for (int batch = 0; batch < batches; ++batch) { + for (int out_y = 0; out_y < output_height; ++out_y) { + for (int out_x = 0; out_x < output_width; ++out_x) { + for (int channel = 0; channel < depth; ++channel) { + const int in_x_origin = + (out_x * stride_width) - params.padding_values.width; + const int in_y_origin = + (out_y * stride_height) - params.padding_values.height; + // Compute the boundaries of the filter region clamped so as to + // ensure that the filter window fits in the input array. + const int filter_x_start = std::max(0, -in_x_origin); + const int filter_x_end = + std::min(params.filter_width, input_width - in_x_origin); + const int filter_y_start = std::max(0, -in_y_origin); + const int filter_y_end = + std::min(params.filter_height, input_height - in_y_origin); + int8_t max = std::numeric_limits::lowest(); + for (int filter_y = filter_y_start; filter_y < filter_y_end; + ++filter_y) { + for (int filter_x = filter_x_start; filter_x < filter_x_end; + ++filter_x) { + const int in_x = in_x_origin + filter_x; + const int in_y = in_y_origin + filter_y; + max = std::max( + max, + input_data[Offset(input_shape, batch, in_y, in_x, channel)]); + } + } + max = std::max(max, params.quantized_activation_min); + max = std::min(max, params.quantized_activation_max); + output_data[Offset(output_shape, batch, out_y, out_x, channel)] = + static_cast(max); + } + } + } + } +} + +inline void AveragePool(const PoolParams& params, + const RuntimeShape& input_shape, + const int16_t* input_data, + const RuntimeShape& output_shape, + int16_t* output_data) { + TFLITE_DCHECK_LE(params.quantized_activation_min, + params.quantized_activation_max); + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + const int batches = MatchingDim(input_shape, 0, output_shape, 0); + const int depth = MatchingDim(input_shape, 3, output_shape, 3); + const int input_height = input_shape.Dims(1); + const int input_width = input_shape.Dims(2); + const int output_height = output_shape.Dims(1); + const int output_width = output_shape.Dims(2); + const int stride_height = params.stride_height; + const int stride_width = params.stride_width; + for (int batch = 0; batch < batches; ++batch) { + for (int out_y = 0; out_y < output_height; ++out_y) { + for (int out_x = 0; out_x < output_width; ++out_x) { + for (int channel = 0; channel < depth; ++channel) { + const int in_x_origin = + (out_x * stride_width) - params.padding_values.width; + const int in_y_origin = + (out_y * stride_height) - params.padding_values.height; + // Compute the boundaries of the filter region clamped so as to + // ensure that the filter window fits in the input array. + const int filter_x_start = std::max(0, -in_x_origin); + const int filter_x_end = + std::min(params.filter_width, input_width - in_x_origin); + const int filter_y_start = std::max(0, -in_y_origin); + const int filter_y_end = + std::min(params.filter_height, input_height - in_y_origin); + int32_t acc = 0; + int filter_count = 0; + for (int filter_y = filter_y_start; filter_y < filter_y_end; + ++filter_y) { + for (int filter_x = filter_x_start; filter_x < filter_x_end; + ++filter_x) { + const int in_x = in_x_origin + filter_x; + const int in_y = in_y_origin + filter_y; + acc += + input_data[Offset(input_shape, batch, in_y, in_x, channel)]; + filter_count++; + } + } + // Round to the closest integer value. + acc = acc > 0 ? (acc + filter_count / 2) / filter_count + : (acc - filter_count / 2) / filter_count; + acc = std::max(acc, params.quantized_activation_min); + acc = std::min(acc, params.quantized_activation_max); + output_data[Offset(output_shape, batch, out_y, out_x, channel)] = + static_cast(acc); + } + } + } + } +} + +inline void MaxPool(const PoolParams& params, const RuntimeShape& input_shape, + const int16_t* input_data, const RuntimeShape& output_shape, + int16_t* output_data) { + TFLITE_DCHECK_LE(params.quantized_activation_min, + params.quantized_activation_max); + TFLITE_DCHECK_GE(params.quantized_activation_min, + std::numeric_limits::min()); + TFLITE_DCHECK_LE(params.quantized_activation_max, + std::numeric_limits::max()); + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + const int batches = MatchingDim(input_shape, 0, output_shape, 0); + const int depth = MatchingDim(input_shape, 3, output_shape, 3); + const int input_height = input_shape.Dims(1); + const int input_width = input_shape.Dims(2); + const int output_height = output_shape.Dims(1); + const int output_width = output_shape.Dims(2); + const int stride_height = params.stride_height; + const int stride_width = params.stride_width; + for (int batch = 0; batch < batches; ++batch) { + for (int out_y = 0; out_y < output_height; ++out_y) { + for (int out_x = 0; out_x < output_width; ++out_x) { + for (int channel = 0; channel < depth; ++channel) { + const int in_x_origin = + (out_x * stride_width) - params.padding_values.width; + const int in_y_origin = + (out_y * stride_height) - params.padding_values.height; + // Compute the boundaries of the filter region clamped so as to + // ensure that the filter window fits in the input array. + const int filter_x_start = std::max(0, -in_x_origin); + const int filter_x_end = + std::min(params.filter_width, input_width - in_x_origin); + const int filter_y_start = std::max(0, -in_y_origin); + const int filter_y_end = + std::min(params.filter_height, input_height - in_y_origin); + int16_t max = std::numeric_limits::lowest(); + for (int filter_y = filter_y_start; filter_y < filter_y_end; + ++filter_y) { + for (int filter_x = filter_x_start; filter_x < filter_x_end; + ++filter_x) { + const int in_x = in_x_origin + filter_x; + const int in_y = in_y_origin + filter_y; + max = std::max( + max, + input_data[Offset(input_shape, batch, in_y, in_x, channel)]); + } + } + max = std::max(max, params.quantized_activation_min); + max = std::min(max, params.quantized_activation_max); + output_data[Offset(output_shape, batch, out_y, out_x, channel)] = + static_cast(max); + } + } + } + } +} + +} // namespace reference_integer_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_POOLING_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/tanh.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/tanh.h new file mode 100644 index 00000000..baae65ab --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/integer_ops/tanh.h @@ -0,0 +1,106 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_TANH_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_TANH_H_ + +#include + +#include "fixedpoint/fixedpoint.h" +#include "tensorflow/lite/kernels/internal/common.h" + +namespace tflite { +namespace reference_integer_ops { + +inline void Tanh(int32_t input_zero_point, int32_t input_range_radius, + int32_t input_multiplier, int32_t input_shift, + int32_t input_size, const int8_t* input_data, + int8_t* output_data) { + // Integer bits must be in sync with Prepare() function. + static constexpr int32_t kInputIntegerBits = 4; + static constexpr int32_t kOutputScale = 7; + static constexpr int32_t kMinInt8 = std::numeric_limits::min(); + static constexpr int32_t kMaxInt8 = std::numeric_limits::max(); + using F4 = gemmlowp::FixedPoint; + + for (int i = 0; i < input_size; ++i) { + const int32_t input = + static_cast(input_data[i]) - input_zero_point; + if (input <= -input_range_radius) { + output_data[i] = kMinInt8; + } else if (input >= input_range_radius) { + output_data[i] = kMaxInt8; + } else { + const int32_t input_in_q4 = + MultiplyByQuantizedMultiplier(input, input_multiplier, input_shift); + const int32_t output_in_q0 = + gemmlowp::tanh(F4::FromRaw(input_in_q4)).raw(); + + // Rescale and downcast. + using gemmlowp::RoundingDivideByPOT; + int32_t output_in_q24 = + RoundingDivideByPOT(output_in_q0, 31 - kOutputScale); + output_in_q24 = std::min(std::max(output_in_q24, kMinInt8), kMaxInt8); + output_data[i] = static_cast(output_in_q24); + } + } +} + +inline void Tanh(int32_t input_multiplier, int32_t input_left_shift, + int32_t input_size, const int16_t* ptr_input_data, + int16_t* ptr_output_data) { + // We use the LUT for sigmoid and take into account, that + // tanh(x) = 2*sigmoid(2*x) - 1 + + int32_t input_data_mul = (input_multiplier > 0) ? input_multiplier : 1; + + for (int i = 0; i < input_size; ++i, ptr_input_data++, ptr_output_data++) { + int32_t input_data = (*ptr_input_data) * input_data_mul; + + if (input_left_shift == 1) { + input_data <<= 1; + } + + // Scale by 3/4 to expand range [-8,8]->[-10.7,10.7]. + uint32_t abs_input_data = 3 * abs(input_data); + uint32_t uh = abs_input_data >> 8; + int32_t result; + + if (uh >= 255) { + // Saturate to maximum. + result = 0xFFFF << 8; + } else { + uint32_t ua = sigmoid_table_uint16[uh]; + uint32_t ub = sigmoid_table_uint16[uh + 1]; + + uint8_t ut = abs_input_data & 0xFF; + + result = (ua << 8) + ut * (ub - ua); + } + + result = (input_data >= 0) + ? (result - (1 << (14 + 9)) + (1 << (9 - 2))) + : (-result + (1 << (14 + 9)) + (1 << (9 - 2)) - 1); + + // Convert back to 16-bit. + result >>= (9 - 1); + + *ptr_output_data = result; + } +} + +} // namespace reference_integer_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_TANH_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/l2normalization.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/l2normalization.h new file mode 100644 index 00000000..7587d2b5 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/l2normalization.h @@ -0,0 +1,90 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_L2NORMALIZATION_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_L2NORMALIZATION_H_ + +#include +#include + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { + +namespace reference_ops { + +inline void L2Normalization(const tflite::L2NormalizationParams& op_params, + const RuntimeShape& input_shape, + const float* input_data, + const RuntimeShape& output_shape, + float* output_data, float epsilon = 1e-6) { + const int trailing_dim = input_shape.DimensionsCount() - 1; + const int outer_size = + MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape); + const int depth = + MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim); + for (int i = 0; i < outer_size; ++i) { + float squared_l2_norm = 0; + for (int c = 0; c < depth; ++c) { + const float val = input_data[depth * i + c]; + squared_l2_norm += val * val; + } + float l2_norm = std::sqrt(squared_l2_norm); + l2_norm = std::max(l2_norm, epsilon); + for (int c = 0; c < depth; ++c) { + output_data[depth * i + c] = input_data[depth * i + c] / l2_norm; + } + } +} + +inline void L2Normalization(const tflite::L2NormalizationParams& op_params, + const RuntimeShape& input_shape, + const uint8_t* input_data, + const RuntimeShape& output_shape, + uint8_t* output_data) { + const int trailing_dim = input_shape.DimensionsCount() - 1; + const int depth = + MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim); + const int outer_size = + MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape); + const int32_t input_zero_point = op_params.input_zero_point; + + for (int i = 0; i < outer_size; ++i) { + int32_t square_l2_norm = 0; + for (int c = 0; c < depth; c++) { + int32_t diff = input_data[depth * i + c] - input_zero_point; + square_l2_norm += diff * diff; + } + int32_t inv_l2norm_multiplier; + int inv_l2norm_shift; + GetInvSqrtQuantizedMultiplierExp(square_l2_norm, kReverseShift, + &inv_l2norm_multiplier, &inv_l2norm_shift); + for (int c = 0; c < depth; c++) { + int32_t diff = input_data[depth * i + c] - input_zero_point; + int32_t rescaled_diff = MultiplyByQuantizedMultiplierSmallerThanOneExp( + 128 * diff, inv_l2norm_multiplier, inv_l2norm_shift); + int32_t unclamped_output_val = 128 + rescaled_diff; + int32_t output_val = + std::min(static_cast(255), + std::max(static_cast(0), unclamped_output_val)); + output_data[depth * i + c] = static_cast(output_val); + } + } +} + +} // namespace reference_ops +} // namespace tflite +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_L2NORMALIZATION_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/logistic.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/logistic.h new file mode 100644 index 00000000..64b7133b --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/logistic.h @@ -0,0 +1,132 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_LOGISTIC_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_LOGISTIC_H_ + +#include + +#include "fixedpoint/fixedpoint.h" +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/cppmath.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/types.h" +#include "tensorflow/lite/kernels/op_macros.h" + +namespace tflite { +namespace reference_ops { + +inline void Logistic(const RuntimeShape& input_shape, const float* input_data, + const RuntimeShape& output_shape, float* output_data) { + const float cutoff_upper = 16.619047164916992188f; + const float cutoff_lower = -9.f; + + const int flat_size = MatchingFlatSize(input_shape, output_shape); + + // Rational for using approximation in reference kernel. + // 0. This approximation gives enough precision for float. + // 1. This works around an issue on an embedded chipset where exp() does not + // return correctly as expected - exp(x) should return inf when overflown + // not 1.701417 IEEE 754 defines representation for inf. + // 2. This will speed up calculation and is matching the behavior in the + // optimized kernels. (check the definition of scalar_logistic_op) + + for (int i = 0; i < flat_size; i++) { + float val = input_data[i]; + float result; + if (val > cutoff_upper) { + result = 1.0f; + } else if (val < cutoff_lower) { + result = std::exp(val); + } else { + result = 1.f / (1.f + std::exp(-val)); + } + output_data[i] = result; + } +} + +// Convenience version that allows, for example, generated-code calls to be +// uniform between data types. +inline void Logistic(const LogisticParams&, const RuntimeShape& input_shape, + const float* input_data, const RuntimeShape& output_shape, + float* output_data) { + // Drop params: not needed. + Logistic(input_shape, input_data, output_shape, output_data); +} + +inline void Logistic(const LogisticParams& params, + const RuntimeShape& input_shape, const int16_t* input_data, + const RuntimeShape& output_shape, int16_t* output_data) { + const int flat_size = MatchingFlatSize(input_shape, output_shape); + + for (int i = 0; i < flat_size; i++) { + // F0 uses 0 integer bits, range [-1, 1]. + // This is the return type of math functions such as tanh, logistic, + // whose range is in [-1, 1]. + using F0 = gemmlowp::FixedPoint; + // F3 uses 3 integer bits, range [-8, 8], the input range expected here. + using F3 = gemmlowp::FixedPoint; + + const F3 input = F3::FromRaw(input_data[i]); + F0 output = gemmlowp::logistic(input); + output_data[i] = output.raw(); + } +} + +// Quantized int8_t logistic activation. Cheats by dequantizing and +// requantizing around the floating point logistic method. This implementation +// is slow on platforms without a floating point unit. + +// TODO(b/141211002): Delete this int8_t implementation once we can reuse the +// approach used in TFLite for int8_t Logistic. +inline void Logistic(const RuntimeShape& input_shape, const int8_t* input_data, + float input_scale, int input_zero_point, + const RuntimeShape& output_shape, int8_t* output_data, + float output_scale, int output_zero_point) { + const float cutoff_upper = 16.619047164916992188f; + const float cutoff_lower = -9.f; + + const int flat_size = MatchingFlatSize(input_shape, output_shape); + + // Rational for using approximation in reference kernel. + // 0. This approximation gives enough precision for float. + // 1. This works around an issue on an embedded chipset where exp() does not + // return correctly as expected - exp(x) should return inf when overflown + // not 1.701417 IEEE 754 defines representation for inf. + // 2. This will speed up calculation and is matching the behavior in the + // optimized kernels. (check the definition of scalar_logistic_op) + + for (int i = 0; i < flat_size; i++) { + // Dequantize. + float val = + static_cast((input_data[i] - input_zero_point) * input_scale); + float result; + if (val > cutoff_upper) { + result = 1.0f; + } else if (val < cutoff_lower) { + result = std::exp(val); + } else { + result = 1.f / (1.f + std::exp(-val)); + } + // Requantize + int8_t output = + static_cast(result / output_scale + output_zero_point); + output_data[i] = output; + } +} + +} // namespace reference_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_LOGISTIC_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/maximum_minimum.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/maximum_minimum.h new file mode 100644 index 00000000..cd11b419 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/maximum_minimum.h @@ -0,0 +1,64 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_MAXIMUM_MINIMUM_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_MAXIMUM_MINIMUM_H_ + +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { +namespace reference_ops { + +template +void MaximumMinimumBroadcastSlow(const RuntimeShape& unextended_input1_shape, + const T* input1_data, + const RuntimeShape& unextended_input2_shape, + const T* input2_data, + const RuntimeShape& unextended_output_shape, + T* output_data, Op op) { + // Uses element-wise calculation if broadcast is not required. + if (unextended_input1_shape == unextended_input2_shape) { + const int flat_size = + MatchingElementsSize(unextended_input1_shape, unextended_input2_shape, + unextended_output_shape); + for (int i = 0; i < flat_size; ++i) { + output_data[i] = op(input1_data[i], input2_data[i]); + } + } else { + TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), N); + TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), N); + TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), N); + + NdArrayDesc desc1; + NdArrayDesc desc2; + NdArrayDesc output_desc; + NdArrayDescsForElementwiseBroadcast( + unextended_input1_shape, unextended_input2_shape, &desc1, &desc2); + CopyDimsToDesc(RuntimeShape::ExtendedShape(N, unextended_output_shape), + &output_desc); + + auto maxmin_func = [&](int indexes[N]) { + output_data[SubscriptToIndex(output_desc, indexes)] = + op(input1_data[SubscriptToIndex(desc1, indexes)], + input2_data[SubscriptToIndex(desc2, indexes)]); + }; + NDOpsHelper(output_desc, maxmin_func); + } +} + +} // namespace reference_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_MAXIMUM_MINIMUM_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/mul.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/mul.h new file mode 100644 index 00000000..0578b81b --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/mul.h @@ -0,0 +1,166 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_MUL_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_MUL_H_ + +#include "tensorflow/lite/kernels/internal/common.h" + +namespace tflite { + +namespace reference_ops { + +// Element-wise mul that can often be used for inner loop of broadcast Mul as +// well as the non-broadcast Mul. +inline void MulElementwise(int size, const ArithmeticParams& params, + const uint8_t* input1_data, + const uint8_t* input2_data, uint8_t* output_data) { + for (int i = 0; i < size; ++i) { + const int32_t input1_val = params.input1_offset + input1_data[i]; + const int32_t input2_val = params.input2_offset + input2_data[i]; + const int32_t unclamped_result = + params.output_offset + + MultiplyByQuantizedMultiplier(input1_val * input2_val, + params.output_multiplier, + params.output_shift); + const int32_t clamped_output = + std::min(params.quantized_activation_max, + std::max(params.quantized_activation_min, unclamped_result)); + output_data[i] = static_cast(clamped_output); + } +} + +template +inline void Mul(const ArithmeticParams& params, + const RuntimeShape& input1_shape, const T* input1_data, + const RuntimeShape& input2_shape, const T* input2_data, + const RuntimeShape& output_shape, T* output_data) { + T output_activation_min; + T output_activation_max; + GetActivationParams(params, &output_activation_min, &output_activation_max); + + const int flat_size = + MatchingFlatSize(input1_shape, input2_shape, output_shape); + for (int i = 0; i < flat_size; ++i) { + output_data[i] = ActivationFunctionWithMinMax( + input1_data[i] * input2_data[i], output_activation_min, + output_activation_max); + } +} + +inline void Mul(const ArithmeticParams& params, + const RuntimeShape& input1_shape, const uint8_t* input1_data, + const RuntimeShape& input2_shape, const uint8_t* input2_data, + const RuntimeShape& output_shape, uint8_t* output_data) { + TFLITE_DCHECK_LE(params.quantized_activation_min, + params.quantized_activation_max); + const int flat_size = + MatchingFlatSize(input1_shape, input2_shape, output_shape); + + MulElementwise(flat_size, params, input1_data, input2_data, output_data); +} + +inline void BroadcastMul4DSlow(const ArithmeticParams& params, + const RuntimeShape& input1_shape, + const uint8_t* input1_data, + const RuntimeShape& input2_shape, + const uint8_t* input2_data, + const RuntimeShape& output_shape, + uint8_t* output_data) { + NdArrayDesc<4> desc1; + NdArrayDesc<4> desc2; + NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1, + &desc2); + const RuntimeShape extended_output_shape = + RuntimeShape::ExtendedShape(4, output_shape); + + for (int b = 0; b < extended_output_shape.Dims(0); ++b) { + for (int y = 0; y < extended_output_shape.Dims(1); ++y) { + for (int x = 0; x < extended_output_shape.Dims(2); ++x) { + for (int c = 0; c < extended_output_shape.Dims(3); ++c) { + const int32_t input1_val = + params.input1_offset + + input1_data[SubscriptToIndex(desc1, b, y, x, c)]; + const int32_t input2_val = + params.input2_offset + + input2_data[SubscriptToIndex(desc2, b, y, x, c)]; + const int32_t unclamped_result = + params.output_offset + + MultiplyByQuantizedMultiplier(input1_val * input2_val, + params.output_multiplier, + params.output_shift); + const int32_t clamped_output = std::min( + params.quantized_activation_max, + std::max(params.quantized_activation_min, unclamped_result)); + output_data[Offset(extended_output_shape, b, y, x, c)] = + static_cast(clamped_output); + } + } + } + } +} + +template +void BroadcastMul4DSlow(const ArithmeticParams& params, + const RuntimeShape& unextended_input1_shape, + const T* input1_data, + const RuntimeShape& unextended_input2_shape, + const T* input2_data, + const RuntimeShape& unextended_output_shape, + T* output_data) { + T output_activation_min; + T output_activation_max; + GetActivationParams(params, &output_activation_min, &output_activation_max); + + TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), 4); + TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), 4); + TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4); + const RuntimeShape output_shape = + RuntimeShape::ExtendedShape(4, unextended_output_shape); + + NdArrayDesc<4> desc1; + NdArrayDesc<4> desc2; + NdArrayDescsForElementwiseBroadcast(unextended_input1_shape, + unextended_input2_shape, &desc1, &desc2); + + // In Tensorflow, the dimensions are canonically named (batch_number, row, + // col, channel), with extents (batches, height, width, depth), with the + // trailing dimension changing most rapidly (channels has the smallest stride, + // typically 1 element). + // + // In generated C code, we store arrays with the dimensions reversed. The + // first dimension has smallest stride. + // + // We name our variables by their Tensorflow convention, but generate C code + // nesting loops such that the innermost loop has the smallest stride for the + // best cache behavior. + for (int b = 0; b < output_shape.Dims(0); ++b) { + for (int y = 0; y < output_shape.Dims(1); ++y) { + for (int x = 0; x < output_shape.Dims(2); ++x) { + for (int c = 0; c < output_shape.Dims(3); ++c) { + output_data[Offset(output_shape, b, y, x, c)] = + ActivationFunctionWithMinMax( + input1_data[SubscriptToIndex(desc1, b, y, x, c)] * + input2_data[SubscriptToIndex(desc2, b, y, x, c)], + output_activation_min, output_activation_max); + } + } + } + } +} + +} // namespace reference_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_MUL_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/neg.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/neg.h new file mode 100644 index 00000000..e127883f --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/neg.h @@ -0,0 +1,37 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_NEG_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_NEG_H_ + +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { + +namespace reference_ops { + +template +inline void Negate(const RuntimeShape& input_shape, const T* input_data, + const RuntimeShape& output_shape, T* output_data) { + const int flat_size = MatchingFlatSize(input_shape, output_shape); + + for (int i = 0; i < flat_size; ++i) { + output_data[i] = -input_data[i]; + } +} + +} // namespace reference_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_NEG_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/pad.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/pad.h new file mode 100644 index 00000000..2a040cef --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/pad.h @@ -0,0 +1,162 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PAD_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PAD_H_ + +#include + +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { + +namespace reference_ops { + +// TFLite Pad supports activation tensors with up to 4 dimensions. +constexpr int PadKernelMaxDimensionCount() { return 4; } + +// There are two versions of pad: Pad and PadV2. In PadV2 there is a second +// scalar input that provides the padding value. Therefore pad_value_ptr can be +// equivalent to a simple input1_data. For Pad, it should point to a zero +// value. +// +// Note that two typenames are required, so that T=P=int32_t is considered a +// specialization distinct from P=int32_t. +template +inline void PadImpl(const tflite::PadParams& op_params, + const RuntimeShape& input_shape, const T* input_data, + const P* pad_value_ptr, const RuntimeShape& output_shape, + T* output_data) { + const RuntimeShape ext_input_shape = + RuntimeShape::ExtendedShape(PadKernelMaxDimensionCount(), input_shape); + const RuntimeShape ext_output_shape = + RuntimeShape::ExtendedShape(PadKernelMaxDimensionCount(), output_shape); + TFLITE_DCHECK_LE(op_params.left_padding_count, PadKernelMaxDimensionCount()); + TFLITE_DCHECK_LE(op_params.right_padding_count, PadKernelMaxDimensionCount()); + + // Runtime calls are currently fixed at 4 dimensions. Copy inputs so we can + // pad them to 4 dims (yes, we are "padding the padding"). + int left_padding_copy[PadKernelMaxDimensionCount()]; + for (int i = 0; i < PadKernelMaxDimensionCount(); i++) { + left_padding_copy[i] = 0; + } + for (int i = 0; i < op_params.left_padding_count; ++i) { + left_padding_copy[i + PadKernelMaxDimensionCount() - + op_params.left_padding_count] = op_params.left_padding[i]; + } + int right_padding_copy[PadKernelMaxDimensionCount()]; + for (int i = 0; i < PadKernelMaxDimensionCount(); i++) { + right_padding_copy[i] = 0; + } + for (int i = 0; i < op_params.right_padding_count; ++i) { + right_padding_copy[i + PadKernelMaxDimensionCount() - + op_params.right_padding_count] = + op_params.right_padding[i]; + } + + const int output_batch = ext_output_shape.Dims(0); + const int output_height = ext_output_shape.Dims(1); + const int output_width = ext_output_shape.Dims(2); + const int output_depth = ext_output_shape.Dims(3); + + const int left_b_padding = left_padding_copy[0]; + const int left_h_padding = left_padding_copy[1]; + const int left_w_padding = left_padding_copy[2]; + const int left_d_padding = left_padding_copy[3]; + + const int right_b_padding = right_padding_copy[0]; + const int right_h_padding = right_padding_copy[1]; + const int right_w_padding = right_padding_copy[2]; + const int right_d_padding = right_padding_copy[3]; + + const T pad_value = *pad_value_ptr; + + const T* in_ptr = input_data; + T* out_ptr = output_data; + for (int out_b = 0; out_b < output_batch; ++out_b) { + for (int out_h = 0; out_h < output_height; ++out_h) { + for (int out_w = 0; out_w < output_width; ++out_w) { + for (int out_d = 0; out_d < output_depth; ++out_d) { + if (out_b < left_b_padding || + out_b >= output_batch - right_b_padding || + out_h < left_h_padding || + out_h >= output_height - right_h_padding || + out_w < left_w_padding || + out_w >= output_width - right_w_padding || + out_d < left_d_padding || + out_d >= output_depth - right_d_padding) { + *out_ptr++ = pad_value; + } else { + *out_ptr++ = *in_ptr++; + } + } + } + } + } +} + +template +inline void Pad(const tflite::PadParams& op_params, + const RuntimeShape& input_shape, const T* input_data, + const P* pad_value_ptr, const RuntimeShape& output_shape, + T* output_data) { + PadImpl(op_params, input_shape, input_data, pad_value_ptr, output_shape, + output_data); +} + +// The second (pad-value) input can be int32_t when, say, the first is uint8_t. +template +inline void Pad(const tflite::PadParams& op_params, + const RuntimeShape& input_shape, const T* input_data, + const int32_t* pad_value_ptr, const RuntimeShape& output_shape, + T* output_data) { + const T converted_pad_value = static_cast(*pad_value_ptr); + PadImpl(op_params, input_shape, input_data, &converted_pad_value, + output_shape, output_data); +} + +// This version avoids conflicting template matching. +template <> +inline void Pad(const tflite::PadParams& op_params, + const RuntimeShape& input_shape, const int32_t* input_data, + const int32_t* pad_value_ptr, const RuntimeShape& output_shape, + int32_t* output_data) { + PadImpl(op_params, input_shape, input_data, pad_value_ptr, output_shape, + output_data); +} + +template +inline void PadImageStyle(const tflite::PadParams& op_params, + const RuntimeShape& input_shape, const T* input_data, + const P* pad_value_ptr, + const RuntimeShape& output_shape, T* output_data) { + Pad(op_params, input_shape, input_data, pad_value_ptr, output_shape, + output_data); +} + +template +inline void PadImageStyle(const tflite::PadParams& op_params, + const RuntimeShape& input_shape, + const float* input_data, const P* pad_value_ptr, + const RuntimeShape& output_shape, + float* output_data) { + Pad(op_params, input_shape, input_data, pad_value_ptr, output_shape, + output_data); +} + +} // namespace reference_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PAD_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/pooling.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/pooling.h new file mode 100644 index 00000000..0872f521 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/pooling.h @@ -0,0 +1,297 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_POOLING_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_POOLING_H_ + +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/cppmath.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { +namespace reference_ops { + +inline void AveragePool(const PoolParams& params, + const RuntimeShape& input_shape, + const float* input_data, + const RuntimeShape& output_shape, float* output_data) { + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + const int batches = MatchingDim(input_shape, 0, output_shape, 0); + const int depth = MatchingDim(input_shape, 3, output_shape, 3); + const int input_height = input_shape.Dims(1); + const int input_width = input_shape.Dims(2); + const int output_height = output_shape.Dims(1); + const int output_width = output_shape.Dims(2); + const int stride_height = params.stride_height; + const int stride_width = params.stride_width; + for (int batch = 0; batch < batches; ++batch) { + for (int out_y = 0; out_y < output_height; ++out_y) { + for (int out_x = 0; out_x < output_width; ++out_x) { + for (int channel = 0; channel < depth; ++channel) { + const int in_x_origin = + (out_x * stride_width) - params.padding_values.width; + const int in_y_origin = + (out_y * stride_height) - params.padding_values.height; + // Compute the boundaries of the filter region clamped so as to + // ensure that the filter window fits in the input array. + const int filter_x_start = std::max(0, -in_x_origin); + const int filter_x_end = + std::min(params.filter_width, input_width - in_x_origin); + const int filter_y_start = std::max(0, -in_y_origin); + const int filter_y_end = + std::min(params.filter_height, input_height - in_y_origin); + float total = 0.f; + float filter_count = 0; + for (int filter_y = filter_y_start; filter_y < filter_y_end; + ++filter_y) { + for (int filter_x = filter_x_start; filter_x < filter_x_end; + ++filter_x) { + const int in_x = in_x_origin + filter_x; + const int in_y = in_y_origin + filter_y; + total += + input_data[Offset(input_shape, batch, in_y, in_x, channel)]; + filter_count++; + } + } + const float average = total / filter_count; + output_data[Offset(output_shape, batch, out_y, out_x, channel)] = + ActivationFunctionWithMinMax(average, params.float_activation_min, + params.float_activation_max); + } + } + } + } +} + +inline void AveragePool(const PoolParams& params, + const RuntimeShape& input_shape, + const uint8_t* input_data, + const RuntimeShape& output_shape, + uint8_t* output_data) { + TFLITE_DCHECK_LE(params.quantized_activation_min, + params.quantized_activation_max); + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + const int batches = MatchingDim(input_shape, 0, output_shape, 0); + const int depth = MatchingDim(input_shape, 3, output_shape, 3); + const int input_height = input_shape.Dims(1); + const int input_width = input_shape.Dims(2); + const int output_height = output_shape.Dims(1); + const int output_width = output_shape.Dims(2); + const int stride_height = params.stride_height; + const int stride_width = params.stride_width; + for (int batch = 0; batch < batches; ++batch) { + for (int out_y = 0; out_y < output_height; ++out_y) { + for (int out_x = 0; out_x < output_width; ++out_x) { + for (int channel = 0; channel < depth; ++channel) { + const int in_x_origin = + (out_x * stride_width) - params.padding_values.width; + const int in_y_origin = + (out_y * stride_height) - params.padding_values.height; + // Compute the boundaries of the filter region clamped so as to + // ensure that the filter window fits in the input array. + const int filter_x_start = std::max(0, -in_x_origin); + const int filter_x_end = + std::min(params.filter_width, input_width - in_x_origin); + const int filter_y_start = std::max(0, -in_y_origin); + const int filter_y_end = + std::min(params.filter_height, input_height - in_y_origin); + int32_t acc = 0; + int filter_count = 0; + for (int filter_y = filter_y_start; filter_y < filter_y_end; + ++filter_y) { + for (int filter_x = filter_x_start; filter_x < filter_x_end; + ++filter_x) { + const int in_x = in_x_origin + filter_x; + const int in_y = in_y_origin + filter_y; + acc += + input_data[Offset(input_shape, batch, in_y, in_x, channel)]; + filter_count++; + } + } + acc = (acc + filter_count / 2) / filter_count; + acc = std::max(acc, params.quantized_activation_min); + acc = std::min(acc, params.quantized_activation_max); + output_data[Offset(output_shape, batch, out_y, out_x, channel)] = + static_cast(acc); + } + } + } + } +} + +inline void L2Pool(const PoolParams& params, const RuntimeShape& input_shape, + const float* input_data, const RuntimeShape& output_shape, + float* output_data) { + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + const int batches = MatchingDim(input_shape, 0, output_shape, 0); + const int depth = MatchingDim(input_shape, 3, output_shape, 3); + const int input_height = input_shape.Dims(1); + const int input_width = input_shape.Dims(2); + const int output_height = output_shape.Dims(1); + const int output_width = output_shape.Dims(2); + const int stride_height = params.stride_height; + const int stride_width = params.stride_width; + for (int batch = 0; batch < batches; ++batch) { + for (int out_y = 0; out_y < output_height; ++out_y) { + for (int out_x = 0; out_x < output_width; ++out_x) { + for (int channel = 0; channel < depth; ++channel) { + const int in_x_origin = + (out_x * stride_width) - params.padding_values.width; + const int in_y_origin = + (out_y * stride_height) - params.padding_values.height; + // Compute the boundaries of the filter region clamped so as to + // ensure that the filter window fits in the input array. + const int filter_x_start = std::max(0, -in_x_origin); + const int filter_x_end = + std::min(params.filter_width, input_width - in_x_origin); + const int filter_y_start = std::max(0, -in_y_origin); + const int filter_y_end = + std::min(params.filter_height, input_height - in_y_origin); + float sum_squares = 0.f; + int filter_count = 0; + for (int filter_y = filter_y_start; filter_y < filter_y_end; + ++filter_y) { + for (int filter_x = filter_x_start; filter_x < filter_x_end; + ++filter_x) { + const int in_x = in_x_origin + filter_x; + const int in_y = in_y_origin + filter_y; + const float val = + input_data[Offset(input_shape, batch, in_y, in_x, channel)]; + sum_squares += val * val; + filter_count++; + } + } + const float l2pool_result = std::sqrt(sum_squares / filter_count); + output_data[Offset(output_shape, batch, out_y, out_x, channel)] = + ActivationFunctionWithMinMax(l2pool_result, + params.float_activation_min, + params.float_activation_max); + } + } + } + } +} + +inline void MaxPool(const PoolParams& params, const RuntimeShape& input_shape, + const float* input_data, const RuntimeShape& output_shape, + float* output_data) { + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + const int batches = MatchingDim(input_shape, 0, output_shape, 0); + const int depth = MatchingDim(input_shape, 3, output_shape, 3); + const int input_height = input_shape.Dims(1); + const int input_width = input_shape.Dims(2); + const int output_height = output_shape.Dims(1); + const int output_width = output_shape.Dims(2); + const int stride_height = params.stride_height; + const int stride_width = params.stride_width; + for (int batch = 0; batch < batches; ++batch) { + for (int out_y = 0; out_y < output_height; ++out_y) { + for (int out_x = 0; out_x < output_width; ++out_x) { + for (int channel = 0; channel < depth; ++channel) { + const int in_x_origin = + (out_x * stride_width) - params.padding_values.width; + const int in_y_origin = + (out_y * stride_height) - params.padding_values.height; + // Compute the boundaries of the filter region clamped so as to + // ensure that the filter window fits in the input array. + const int filter_x_start = std::max(0, -in_x_origin); + const int filter_x_end = + std::min(params.filter_width, input_width - in_x_origin); + const int filter_y_start = std::max(0, -in_y_origin); + const int filter_y_end = + std::min(params.filter_height, input_height - in_y_origin); + float max = std::numeric_limits::lowest(); + for (int filter_y = filter_y_start; filter_y < filter_y_end; + ++filter_y) { + for (int filter_x = filter_x_start; filter_x < filter_x_end; + ++filter_x) { + const int in_x = in_x_origin + filter_x; + const int in_y = in_y_origin + filter_y; + max = std::max( + max, + input_data[Offset(input_shape, batch, in_y, in_x, channel)]); + } + } + output_data[Offset(output_shape, batch, out_y, out_x, channel)] = + ActivationFunctionWithMinMax(max, params.float_activation_min, + params.float_activation_max); + } + } + } + } +} + +inline void MaxPool(const PoolParams& params, const RuntimeShape& input_shape, + const uint8_t* input_data, const RuntimeShape& output_shape, + uint8_t* output_data) { + TFLITE_DCHECK_LE(params.quantized_activation_min, + params.quantized_activation_max); + TFLITE_DCHECK_GE(params.quantized_activation_min, 0); + TFLITE_DCHECK_LE(params.quantized_activation_max, 255); + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + const int batches = MatchingDim(input_shape, 0, output_shape, 0); + const int depth = MatchingDim(input_shape, 3, output_shape, 3); + const int input_height = input_shape.Dims(1); + const int input_width = input_shape.Dims(2); + const int output_height = output_shape.Dims(1); + const int output_width = output_shape.Dims(2); + const int stride_height = params.stride_height; + const int stride_width = params.stride_width; + for (int batch = 0; batch < batches; ++batch) { + for (int out_y = 0; out_y < output_height; ++out_y) { + for (int out_x = 0; out_x < output_width; ++out_x) { + for (int channel = 0; channel < depth; ++channel) { + const int in_x_origin = + (out_x * stride_width) - params.padding_values.width; + const int in_y_origin = + (out_y * stride_height) - params.padding_values.height; + // Compute the boundaries of the filter region clamped so as to + // ensure that the filter window fits in the input array. + const int filter_x_start = std::max(0, -in_x_origin); + const int filter_x_end = + std::min(params.filter_width, input_width - in_x_origin); + const int filter_y_start = std::max(0, -in_y_origin); + const int filter_y_end = + std::min(params.filter_height, input_height - in_y_origin); + uint8_t max = 0; + for (int filter_y = filter_y_start; filter_y < filter_y_end; + ++filter_y) { + for (int filter_x = filter_x_start; filter_x < filter_x_end; + ++filter_x) { + const int in_x = in_x_origin + filter_x; + const int in_y = in_y_origin + filter_y; + max = std::max( + max, + input_data[Offset(input_shape, batch, in_y, in_x, channel)]); + } + } + max = std::max(max, params.quantized_activation_min); + max = std::min(max, params.quantized_activation_max); + output_data[Offset(output_shape, batch, out_y, out_x, channel)] = + static_cast(max); + } + } + } + } +} +} // namespace reference_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_POOLING_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/prelu.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/prelu.h new file mode 100644 index 00000000..02db5174 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/prelu.h @@ -0,0 +1,109 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PRELU_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PRELU_H_ + +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/compatibility.h" +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { + +namespace reference_ops { + +// Broadcast prelu to output_shape for quantized uint8_t/int8_t data. +template +inline void BroadcastPrelu4DSlow( + const PreluParams& params, const RuntimeShape& input_shape, + const T* input_data, const RuntimeShape& alpha_shape, const T* alpha_data, + const RuntimeShape& output_shape, T* output_data) { + TFLITE_DCHECK_LE(input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_LE(alpha_shape.DimensionsCount(), 4); + TFLITE_DCHECK_LE(output_shape.DimensionsCount(), 4); + const RuntimeShape extended_output_shape = + RuntimeShape::ExtendedShape(4, output_shape); + NdArrayDesc<4> desc1; + NdArrayDesc<4> desc2; + NdArrayDescsForElementwiseBroadcast(input_shape, alpha_shape, &desc1, &desc2); + + for (int b = 0; b < extended_output_shape.Dims(0); ++b) { + for (int y = 0; y < extended_output_shape.Dims(1); ++y) { + for (int x = 0; x < extended_output_shape.Dims(2); ++x) { + for (int c = 0; c < extended_output_shape.Dims(3); ++c) { + int output_index = Offset(extended_output_shape, b, y, x, c); + int input_index = SubscriptToIndex(desc1, b, y, x, c); + const int32_t input_value = + params.input_offset + input_data[input_index]; + int32_t output_value; + if (input_value >= 0) { + output_value = MultiplyByQuantizedMultiplier( + input_value, params.output_multiplier_1, params.output_shift_1); + } else { + auto alpha_index = SubscriptToIndex(desc2, b, y, x, c); + const int32_t alpha_value = + params.alpha_offset + alpha_data[alpha_index]; + + output_value = MultiplyByQuantizedMultiplier( + input_value * alpha_value, params.output_multiplier_2, + params.output_shift_2); + } + output_value += params.output_offset; + + const int32_t quantized_min = std::numeric_limits::min(); + const int32_t quantized_max = std::numeric_limits::max(); + const int32_t clamped_output = + std::min(quantized_max, std::max(quantized_min, output_value)); + output_data[output_index] = static_cast(clamped_output); + } + } + } + } +} + +template +inline void Prelu(const PreluParams& params, const RuntimeShape& input_shape, + const T* input_data, const RuntimeShape& alpha_shape, + const T* alpha_data, const RuntimeShape& output_shape, + T* output_data) { + const int32_t quantized_min = std::numeric_limits::min(); + const int32_t quantized_max = std::numeric_limits::max(); + + const int flat_size = + MatchingElementsSize(input_shape, alpha_shape, output_shape); + for (int i = 0; i < flat_size; ++i) { + const int32_t input_value = params.input_offset + input_data[i]; + int32_t output_value; + if (input_value >= 0) { + output_value = MultiplyByQuantizedMultiplier( + input_value, params.output_multiplier_1, params.output_shift_1); + } else { + const int32_t alpha_value = params.alpha_offset + alpha_data[i]; + + output_value = MultiplyByQuantizedMultiplier(input_value * alpha_value, + params.output_multiplier_2, + params.output_shift_2); + } + output_value += params.output_offset; + + const int32_t clamped_output = + std::min(quantized_max, std::max(quantized_min, output_value)); + output_data[i] = static_cast(clamped_output); + } +} + +} // namespace reference_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PRELU_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h new file mode 100644 index 00000000..40f779c5 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h @@ -0,0 +1,138 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PROCESS_BROADCAST_SHAPES_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PROCESS_BROADCAST_SHAPES_H_ + +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { + +namespace reference_ops { + +// Consolidates dimensions in broadcast inputs, checks for five-fold pattern. +// +// For example, if sequence of dimensions of one input is +// ..., 1, 3, 1, 7, 9, 5,... and the other is ..., 2, 3, 1, 7, 1, 1, ... +// we can consolidate these as +// ..., 1, 3*7, 9*5, ... and 2, 3*7, 1. +// +// The category is updated in the less-frequent case of shapes that are +// not suited to a fivefold-loop broadcast. +// +// Falls back to generic pattern when it does not know how to process properly. +// +// Returns true iff there is some sort of broadcast, which includes five-fold +// patterns and falling back to generic broadcast. +inline bool ProcessBroadcastShapes(const RuntimeShape& shape0, + const RuntimeShape& shape1, + tflite::ArithmeticParams* params) { + const int dims_count = + std::max(shape0.DimensionsCount(), shape1.DimensionsCount()); + + params->broadcast_category = BroadcastableOpCategory::kGenericBroadcast; + RuntimeShape scalar_shape(dims_count, 1); + + auto extended_shape0 = RuntimeShape::ExtendedShape(dims_count, shape0); + auto extended_shape1 = RuntimeShape::ExtendedShape(dims_count, shape1); + + // Check for "exact" match, implicitly accepting any scalar shapes. + if (extended_shape0 == extended_shape1) { + params->broadcast_category = BroadcastableOpCategory::kNonBroadcast; + return false; + } + + for (int i = dims_count - 1; i >= 0; --i) { + if (extended_shape0.Dims(i) == extended_shape1.Dims(i)) { + continue; + } else if (extended_shape0.Dims(i) == 1) { + params->broadcast_category = + BroadcastableOpCategory::kFirstInputBroadcastsFast; + break; + } else if (extended_shape1.Dims(i) == 1) { + params->broadcast_category = + BroadcastableOpCategory::kSecondInputBroadcastsFast; + break; + } else { + // This case is erroneous: there is a dimension that does not match and + // is not a broadcast from one shape to the other. + params->broadcast_category = BroadcastableOpCategory::kGenericBroadcast; + return true; + } + } + + if (params->broadcast_category != + BroadcastableOpCategory::kFirstInputBroadcastsFast && + params->broadcast_category != + BroadcastableOpCategory::kSecondInputBroadcastsFast) { + // This is unreachable because at least one else clause in the above loop + // must be reached. + TFLITE_DCHECK(false); + params->broadcast_category = BroadcastableOpCategory::kNonBroadcast; + return false; + } + + // From this point it is assumed contractually that corresponding dimensions + // in shape0 and shape1 are either (a) equal or (b) one or other equals 1. + const bool swap_inputs = params->broadcast_category == + BroadcastableOpCategory::kSecondInputBroadcastsFast; + const RuntimeShape* shape_a = + swap_inputs ? &extended_shape1 : &extended_shape0; + const RuntimeShape* shape_b = + swap_inputs ? &extended_shape0 : &extended_shape1; + + int i = dims_count - 1; + params->broadcast_shape[0] = 1; + params->broadcast_shape[1] = 1; + params->broadcast_shape[2] = 1; + params->broadcast_shape[3] = 1; + params->broadcast_shape[4] = 1; + // y_0 is greedy: include dims if both or neither equal 1: in other words, + // test for equality rather than (shape_a->Dims(i) != 1). + while (i >= 0 && shape_a->Dims(i) == shape_b->Dims(i)) { + params->broadcast_shape[4] *= shape_b->Dims(i); + --i; + } + // Here either input_a or input_b has dim of 1 (if i >= 0). If it is input_b + // that has the unit dimension, the next two loops are not entered. + while (i >= 0 && shape_a->Dims(i) == 1) { + params->broadcast_shape[3] *= shape_b->Dims(i); + --i; + } + while (i >= 0 && shape_a->Dims(i) == shape_b->Dims(i)) { + params->broadcast_shape[2] *= shape_a->Dims(i); + --i; + } + // Here either input_a or input_b has dim of 1 (if i >= 0). + while (i >= 0 && shape_b->Dims(i) == 1) { + params->broadcast_shape[1] *= shape_a->Dims(i); + --i; + } + while (i >= 0 && shape_a->Dims(i) == shape_b->Dims(i)) { + params->broadcast_shape[0] *= shape_b->Dims(i); + --i; + } + + // Rarer case is when the broadcast dimensions cannot be handled by a fivefold + // loop. + if (i >= 0) { + params->broadcast_category = BroadcastableOpCategory::kGenericBroadcast; + } + return true; +} + +} // namespace reference_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PROCESS_BROADCAST_SHAPES_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/quantize.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/quantize.h new file mode 100644 index 00000000..6f3f9aeb --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/quantize.h @@ -0,0 +1,55 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_QUANTIZE_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_QUANTIZE_H_ + +#include +#include + +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/compatibility.h" +#include "tensorflow/lite/kernels/internal/cppmath.h" +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { + +namespace reference_ops { + +template +inline void AffineQuantize(const tflite::QuantizationParams& op_params, + const RuntimeShape& input_shape, + const InputT* input_data, + const RuntimeShape& output_shape, + OutputT* output_data) { + const int32_t zero_point = op_params.zero_point; + const double scale = op_params.scale; + const int flat_size = MatchingFlatSize(input_shape, output_shape); + static constexpr int32_t min_val = std::numeric_limits::min(); + static constexpr int32_t max_val = std::numeric_limits::max(); + + for (int i = 0; i < flat_size; i++) { + const InputT val = input_data[i]; + int32_t unclamped = + static_cast(TfLiteRound(val / static_cast(scale))) + + zero_point; + int32_t clamped = std::min(std::max(unclamped, min_val), max_val); + output_data[i] = clamped; + } +} + +} // namespace reference_ops + +} // namespace tflite +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_QUANTIZE_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/reduce.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/reduce.h new file mode 100644 index 00000000..597d015d --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/reduce.h @@ -0,0 +1,405 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_REDUCE_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_REDUCE_H_ + +#include "ruy/profiler/instrumentation.h" // from @ruy +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/cppmath.h" +#include "tensorflow/lite/kernels/internal/max.h" +#include "tensorflow/lite/kernels/internal/min.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { + +namespace reference_ops { + +// A generic reduce method that can be used for reduce_sum, reduce_mean, etc. +// This method iterates through input data and reduce elements along the +// dimensions given in axis. +template +inline bool Reduce(const In* input_data, const int* input_dims, + const int* output_dims, const int input_num_dims, + const int output_num_dims, const int* axis, + const int num_axis, int* input_iter, + Out reducer(const Out current, const In in), + Out* output_data) { + // Reset input iterator. + for (int idx = 0; idx < input_num_dims; ++idx) { + input_iter[idx] = 0; + } + // Iterate through input_data. + do { + size_t input_offset = + ReducedOutputOffset(input_num_dims, input_dims, input_iter, 0, nullptr); + size_t output_offset = ReducedOutputOffset(input_num_dims, input_dims, + input_iter, num_axis, axis); + output_data[output_offset] = + reducer(output_data[output_offset], input_data[input_offset]); + } while (NextIndex(input_num_dims, input_dims, input_iter)); + return true; +} + +// This method parses the input 'axis' to remove duplicates and handle negative +// values, and returns a valid 'out_axis' +inline bool ResolveAxis(const int num_dims, const int* axis, + const int64_t num_axis, int* out_axis, + int* out_num_axis) { + *out_num_axis = 0; // Just in case. + // Short-circuit axis resolution for scalars; the axis will go unused. + if (num_dims == 0) { + return true; + } + // o(n^2) is fine since out_num_axis should be really small, mostly <= 4 + for (int64_t idx = 0; idx < num_axis; ++idx) { + // Handle negative index. A positive index 'p_idx' can be represented as a + // negative index 'n_idx' as: n_idx = p_idx-num_dims + // eg: For num_dims=3, [0, 1, 2] is the same as [-3, -2, -1] */ + int current = axis[idx] < 0 ? (axis[idx] + num_dims) : axis[idx]; + TFLITE_DCHECK(current >= 0 && current < num_dims); + bool is_dup = false; + for (int j = 0; j < *out_num_axis; ++j) { + if (out_axis[j] == current) { + is_dup = true; + break; + } + } + if (!is_dup) { + out_axis[*out_num_axis] = current; + *out_num_axis += 1; + } + } + return true; +} + +// This method expects that output_data has been initialized. +template +inline bool ReduceSumImpl(const In* input_data, const int* input_dims, + const int* output_dims, const int input_num_dims, + const int output_num_dims, const int* axis, + const int num_axis, int* input_iter, + Out* output_data) { + auto reducer = [](const Out current, const In in) -> Out { + const Out actual_in = static_cast(in); + return current + actual_in; + }; + return Reduce(input_data, input_dims, output_dims, input_num_dims, + output_num_dims, axis, num_axis, input_iter, reducer, + output_data); +} + +template +inline bool InitTensorDataForReduce(const int* dims, const int num_dims, + const T init_value, T* data) { + size_t num_elements = 1; + for (int idx = 0; idx < num_dims; ++idx) { + size_t current = static_cast(dims[idx]); + // Overflow prevention. + if (num_elements > std::numeric_limits::max() / current) { + return false; + } + num_elements *= current; + } + for (size_t idx = 0; idx < num_elements; ++idx) { + data[idx] = init_value; + } + return true; +} + +// Computes the generic value (i.e., sum/max/min/prod) of elements across +// dimensions given in axis. It needs to pass in init_value and reducer. +template +inline bool ReduceGeneric(const T* input_data, const int* input_dims, + const int input_num_dims, T* output_data, + const int* output_dims, const int output_num_dims, + const int* axis, const int64_t num_axis_dimensions, + bool keep_dims, int* temp_index, int* resolved_axis, + T init_value, + T reducer(const T current, const T in)) { + // Reset output data. + if (!InitTensorDataForReduce(output_dims, output_num_dims, init_value, + output_data)) { + return false; + } + + // Resolve axis. + int num_resolved_axis = 0; + if (!ResolveAxis(input_num_dims, axis, num_axis_dimensions, resolved_axis, + &num_resolved_axis)) { + return false; + } + + return Reduce(input_data, input_dims, output_dims, input_num_dims, + output_num_dims, resolved_axis, num_resolved_axis, + temp_index, reducer, output_data); +} + +// Computes the mean of elements across dimensions given in axis. +// It does so in two stages, first calculates the sum of elements along the axis +// then divides it by the number of element in axis. +template +inline bool Mean(const T* input_data, const int* input_dims, + const int input_num_dims, T* output_data, + const int* output_dims, const int output_num_dims, + const int* axis, const int num_axis_dimensions, bool keep_dims, + int* temp_index, int* resolved_axis, U* temp_sum) { + ruy::profiler::ScopeLabel label("Mean"); + // Reset output data. + size_t num_outputs = 1; + for (int idx = 0; idx < output_num_dims; ++idx) { + size_t current = static_cast(output_dims[idx]); + // Overflow prevention. + if (num_outputs > std::numeric_limits::max() / current) { + return false; + } + num_outputs *= current; + } + for (size_t idx = 0; idx < num_outputs; ++idx) { + output_data[idx] = T(); + temp_sum[idx] = U(); + } + + // Resolve axis. + int num_resolved_axis = 0; + if (!ResolveAxis(input_num_dims, axis, num_axis_dimensions, resolved_axis, + &num_resolved_axis)) { + return false; + } + + if (!ReduceSumImpl(input_data, input_dims, output_dims, input_num_dims, + output_num_dims, resolved_axis, num_resolved_axis, + temp_index, temp_sum)) { + return false; + } + + // Calculate mean by dividing output_data by num of aggregated element. + U num_elements_in_axis = 1; + for (int idx = 0; idx < num_resolved_axis; ++idx) { + size_t current = static_cast(input_dims[resolved_axis[idx]]); + // Overflow prevention. + if (current > (std::numeric_limits::max() / num_elements_in_axis)) { + return false; + } + num_elements_in_axis *= current; + } + + if (num_elements_in_axis > 0) { + for (size_t idx = 0; idx < num_outputs; ++idx) { + output_data[idx] = + static_cast(temp_sum[idx] / static_cast(num_elements_in_axis)); + } + } + return true; +} + +template +inline void Mean(const tflite::MeanParams& op_params, + const RuntimeShape& unextended_input_shape, + const T* input_data, + const RuntimeShape& unextended_output_shape, T* output_data) { + ruy::profiler::ScopeLabel label("Mean4D"); + + // Current implementation only supports dimension equals 4 and simultaneous + // reduction over width and height. + TFLITE_CHECK_EQ(unextended_input_shape.DimensionsCount(), 4); + TFLITE_CHECK_LE(unextended_output_shape.DimensionsCount(), 4); + const RuntimeShape input_shape = + RuntimeShape::ExtendedShape(4, unextended_input_shape); + const RuntimeShape output_shape = + RuntimeShape::ExtendedShape(4, unextended_output_shape); + + const int output_batch = output_shape.Dims(0); + const int output_height = output_shape.Dims(1); + const int output_width = output_shape.Dims(2); + const int output_depth = output_shape.Dims(3); + + const int input_height = input_shape.Dims(1); + const int input_width = input_shape.Dims(2); + + TFLITE_CHECK_EQ(op_params.axis_count, 2); + TFLITE_CHECK((op_params.axis[0] == 1 && op_params.axis[1] == 2) || + (op_params.axis[0] == 2 && op_params.axis[1] == 1)); + TFLITE_CHECK_EQ(output_height, 1); + TFLITE_CHECK_EQ(output_width, 1); + + for (int out_b = 0; out_b < output_batch; ++out_b) { + for (int out_d = 0; out_d < output_depth; ++out_d) { + float value = 0; + for (int in_h = 0; in_h < input_height; ++in_h) { + for (int in_w = 0; in_w < input_width; ++in_w) { + value += input_data[Offset(input_shape, out_b, in_h, in_w, out_d)]; + } + } + output_data[Offset(output_shape, out_b, 0, 0, out_d)] = + value / (input_width * input_height); + } + } +} + +inline void Mean(const tflite::MeanParams& op_params, + const RuntimeShape& unextended_input_shape, + const uint8_t* input_data, int32_t input_zero_point, + float input_scale, const RuntimeShape& unextended_output_shape, + uint8_t* output_data, int32_t output_zero_point, + float output_scale) { + ruy::profiler::ScopeLabel label("Mean4D/Uint8"); + + // Current implementation only supports dimension equals 4 and simultaneous + // reduction over width and height. + TFLITE_CHECK_EQ(unextended_input_shape.DimensionsCount(), 4); + TFLITE_CHECK_LE(unextended_output_shape.DimensionsCount(), 4); + const RuntimeShape input_shape = + RuntimeShape::ExtendedShape(4, unextended_input_shape); + const RuntimeShape output_shape = + RuntimeShape::ExtendedShape(4, unextended_output_shape); + const int output_batch = output_shape.Dims(0); + const int output_height = output_shape.Dims(1); + const int output_width = output_shape.Dims(2); + const int output_depth = output_shape.Dims(3); + const int input_height = input_shape.Dims(1); + const int input_width = input_shape.Dims(2); + const float num_elements_in_axis = input_width * input_height; + + TFLITE_CHECK_EQ(op_params.axis_count, 2); + TFLITE_CHECK((op_params.axis[0] == 1 && op_params.axis[1] == 2) || + (op_params.axis[0] == 2 && op_params.axis[1] == 1)); + TFLITE_CHECK_EQ(output_height, 1); + TFLITE_CHECK_EQ(output_width, 1); + + constexpr int32_t kMinValue = std::numeric_limits::min(); + constexpr int32_t kMaxValue = std::numeric_limits::max(); + + int32_t bias = + output_zero_point - + static_cast(input_zero_point * input_scale / output_scale); + double real_scale = + static_cast(input_scale / (num_elements_in_axis * output_scale)); + + int32_t multiplier; + int shift; + QuantizeMultiplier(real_scale, &multiplier, &shift); + for (int out_b = 0; out_b < output_batch; ++out_b) { + for (int out_d = 0; out_d < output_depth; ++out_d) { + int32_t acc = 0; + for (int in_h = 0; in_h < input_height; ++in_h) { + for (int in_w = 0; in_w < input_width; ++in_w) { + acc += input_data[Offset(input_shape, out_b, in_h, in_w, out_d)]; + } + } + acc = MultiplyByQuantizedMultiplier(acc, multiplier, shift); + acc += bias; + acc = std::min(std::max(acc, kMinValue), kMaxValue); + output_data[Offset(output_shape, out_b, 0, 0, out_d)] = + static_cast(acc); + } + } +} + +// Computes the mean of elements across dimensions given in axis. +// It does so in two stages, first calculates the sum of elements along the axis +// then divides it by the number of element in axis for quantized values. +template +inline bool QuantizedMeanOrSum(const T* input_data, int32_t input_zero_point, + float input_scale, const int* input_dims, + const int input_num_dims, T* output_data, + int32_t output_zero_point, float output_scale, + const int* output_dims, + const int output_num_dims, const int* axis, + const int num_axis_dimensions, bool keep_dims, + int* temp_index, int* resolved_axis, U* temp_sum, + bool compute_sum) { + const bool uint8_case = std::is_same::value; + const bool int16_case = std::is_same::value; + if (uint8_case) { + ruy::profiler::ScopeLabel label(compute_sum ? "Sum/Uint8" : "Mean/Uint8"); + } else if (int16_case) { + ruy::profiler::ScopeLabel label(compute_sum ? "Sum/Int16" : "Mean/Int16"); + } else { + ruy::profiler::ScopeLabel label(compute_sum ? "Sum/Int8" : "Mean/Int8"); + } + // Reset output data. + size_t num_outputs = 1; + for (int idx = 0; idx < output_num_dims; ++idx) { + size_t current = static_cast(output_dims[idx]); + // Overflow prevention. + if (num_outputs > std::numeric_limits::max() / current) { + return false; + } + num_outputs *= current; + } + for (size_t idx = 0; idx < num_outputs; ++idx) { + output_data[idx] = T(); + temp_sum[idx] = U(); + } + + // Resolve axis. + int num_resolved_axis = 0; + if (!ResolveAxis(input_num_dims, axis, num_axis_dimensions, resolved_axis, + &num_resolved_axis)) { + return false; + } + + if (!ReduceSumImpl(input_data, input_dims, output_dims, input_num_dims, + output_num_dims, resolved_axis, num_resolved_axis, + temp_index, temp_sum)) { + return false; + } + + // Calculate mean by dividing output_data by num of aggregated element. + U num_elements_in_axis = 1; + for (int idx = 0; idx < num_resolved_axis; ++idx) { + size_t current = static_cast(input_dims[resolved_axis[idx]]); + // Overflow prevention. + if (current > (std::numeric_limits::max() / num_elements_in_axis)) { + return false; + } + num_elements_in_axis *= current; + } + + if (num_elements_in_axis > 0) { + const float scale = input_scale / output_scale; + if (compute_sum) { + // TODO(b/116341117): Eliminate float and do this completely in 8bit. + const float bias = + -input_zero_point * scale * num_elements_in_axis + 0.5f; + for (size_t idx = 0; idx < num_outputs; ++idx) { + const U value = + static_cast(TfLiteRound(temp_sum[idx] * scale + bias)) + + output_zero_point; + output_data[idx] = static_cast(value); + } + } else { + const float bias = -input_zero_point * scale + 0.5f; + for (size_t idx = 0; idx < num_outputs; ++idx) { + float float_mean = static_cast(temp_sum[idx]) / + static_cast(num_elements_in_axis); + float result = TfLiteMin( + TfLiteRound(float_mean * scale + bias) + output_zero_point, + static_cast(std::numeric_limits::max())); + result = TfLiteMax(result, + static_cast(std::numeric_limits::min())); + output_data[idx] = static_cast(result); + } + } + } + return true; +} + +} // namespace reference_ops + +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_REDUCE_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/requantize.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/requantize.h new file mode 100644 index 00000000..32e32ed0 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/requantize.h @@ -0,0 +1,67 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_REQUANTIZE_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_REQUANTIZE_H_ + +#include "ruy/profiler/instrumentation.h" // from @ruy +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { +namespace reference_ops { + +template +inline void Requantize(const input_type* input_data, int32_t size, + int32_t effective_scale_multiplier, + int32_t effective_scale_shift, int32_t input_zeropoint, + int32_t output_zeropoint, output_type* output_data) { + ruy::profiler::ScopeLabel label("Requantize"); + const bool same_scale = + (effective_scale_multiplier == 1 << 30 && effective_scale_shift == 1); + if (same_scale) { + const bool mixed_type_int8_uint8 = + std::is_same::value && + std::is_same::value; + const bool mixed_type_uint8_int8 = + std::is_same::value && + std::is_same::value; + const int32_t zero_point_diff = input_zeropoint - output_zeropoint; + // Fast path to do requantization for the case when just a shift of 128 is + // needed. + if ((mixed_type_int8_uint8 && zero_point_diff == -128) || + (mixed_type_uint8_int8 && zero_point_diff == 128)) { + for (int i = 0; i < size; ++i) { + output_data[i] = input_data[i] ^ 0x80; + } + } + } + static constexpr int32_t kMinOutput = std::numeric_limits::min(); + static constexpr int32_t kMaxOutput = std::numeric_limits::max(); + for (int i = 0; i < size; ++i) { + const int32_t input = input_data[i] - input_zeropoint; + const int32_t output = + MultiplyByQuantizedMultiplier(input, effective_scale_multiplier, + effective_scale_shift) + + output_zeropoint; + const int32_t clamped_output = + std::max(std::min(output, kMaxOutput), kMinOutput); + output_data[i] = static_cast(clamped_output); + } +} + +} // namespace reference_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_REQUANTIZE_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/resize_nearest_neighbor.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/resize_nearest_neighbor.h new file mode 100644 index 00000000..95550abc --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/resize_nearest_neighbor.h @@ -0,0 +1,101 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_RESIZE_NEAREST_NEIGHBOR_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_RESIZE_NEAREST_NEIGHBOR_H_ + +#include + +#include "tensorflow/lite/kernels/internal/cppmath.h" +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { + +namespace reference_ops { + +inline int32_t GetNearestNeighbor(const int input_value, + const int32_t input_size, + const int32_t output_size, + const bool align_corners, + const bool half_pixel_centers) { + const float scale = + (align_corners && output_size > 1) + ? (input_size - 1) / static_cast(output_size - 1) + : input_size / static_cast(output_size); + const float offset = half_pixel_centers ? 0.5f : 0.0f; + int32_t output_value = std::min( + align_corners + ? static_cast(TfLiteRound((input_value + offset) * scale)) + : static_cast(std::floor((input_value + offset) * scale)), + input_size - 1); + if (half_pixel_centers) { + output_value = std::max(static_cast(0), output_value); + } + return output_value; +} + +template +inline void ResizeNearestNeighbor( + const tflite::ResizeNearestNeighborParams& op_params, + const RuntimeShape& unextended_input_shape, const T* input_data, + const RuntimeShape& output_size_shape, const int32_t* output_size_data, + const RuntimeShape& unextended_output_shape, T* output_data) { + TFLITE_DCHECK_LE(unextended_input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4); + + const RuntimeShape input_shape = + RuntimeShape::ExtendedShape(4, unextended_input_shape); + const RuntimeShape output_shape = + RuntimeShape::ExtendedShape(4, unextended_output_shape); + + int32_t batches = MatchingDim(input_shape, 0, output_shape, 0); + int32_t input_height = input_shape.Dims(1); + int32_t input_width = input_shape.Dims(2); + int32_t depth = MatchingDim(input_shape, 3, output_shape, 3); + + // The Tensorflow version of this op allows resize on the width and height + // axis only. + TFLITE_DCHECK_EQ(output_size_shape.FlatSize(), 2); + int32_t output_height = output_size_data[0]; + int32_t output_width = output_size_data[1]; + + const int col_offset = input_shape.Dims(3); + const int row_offset = input_shape.Dims(2) * col_offset; + const int batch_offset = input_shape.Dims(1) * row_offset; + + const T* input_ptr = input_data; + T* output_ptr = output_data; + for (int b = 0; b < batches; ++b) { + for (int y = 0; y < output_height; ++y) { + int32_t in_y = GetNearestNeighbor(y, input_height, output_height, + op_params.align_corners, + op_params.half_pixel_centers); + const T* y_input_ptr = input_ptr + in_y * row_offset; + for (int x = 0; x < output_width; ++x) { + int32_t in_x = GetNearestNeighbor(x, input_width, output_width, + op_params.align_corners, + op_params.half_pixel_centers); + const T* x_input_ptr = y_input_ptr + in_x * col_offset; + memcpy(output_ptr, x_input_ptr, depth * sizeof(T)); + output_ptr += depth; + } + } + input_ptr += batch_offset; + } +} + +} // namespace reference_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_RESIZE_NEAREST_NEIGHBOR_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/round.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/round.h new file mode 100644 index 00000000..9bd8f3f2 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/round.h @@ -0,0 +1,51 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ROUND_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ROUND_H_ + +#include + +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { + +namespace reference_ops { + +inline float RoundToNearest(float value) { + auto floor_val = std::floor(value); + auto diff = value - floor_val; + if ((diff < 0.5f) || + ((diff == 0.5f) && (static_cast(floor_val) % 2 == 0))) { + return floor_val; + } else { + return floor_val = floor_val + 1.0f; + } +} + +inline void Round(const RuntimeShape& input_shape, const float* input_data, + const RuntimeShape& output_shape, float* output_data) { + const int flat_size = MatchingFlatSize(input_shape, output_shape); + for (int i = 0; i < flat_size; ++i) { + // Note that this implementation matches that of tensorFlow tf.round + // and corresponds to the bankers rounding method. + // cfenv (for fesetround) is not yet supported universally on Android, so + // using a work around. + output_data[i] = RoundToNearest(input_data[i]); + } +} + +} // namespace reference_ops +} // namespace tflite +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ROUND_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/softmax.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/softmax.h new file mode 100644 index 00000000..b035b433 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/softmax.h @@ -0,0 +1,228 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SOFTMAX_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SOFTMAX_H_ + +#include +#include + +#include "fixedpoint/fixedpoint.h" +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/cppmath.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/types.h" +#include "tensorflow/lite/kernels/op_macros.h" + +namespace tflite { +namespace reference_ops { + +inline void Softmax(const SoftmaxParams& params, + const RuntimeShape& input_shape, const float* input_data, + const RuntimeShape& output_shape, float* output_data) { + const int trailing_dim = input_shape.DimensionsCount() - 1; + const int outer_size = + MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape); + const int depth = + MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim); + + for (int i = 0; i < outer_size; ++i) { + // Find max element value which we'll use to ensure numerical stability + // taking advantage of the following equality: + // exp(x[i])/sum(exp(x[i])) == exp(x[i]+C)/sum(exp(x[i]+C)) + float max = std::numeric_limits::lowest(); + for (int c = 0; c < depth; ++c) { + max = std::max(max, input_data[i * depth + c]); + } + + // Compute sum. + float sum = 0.f; + for (int c = 0; c < depth; ++c) { + sum += std::exp((input_data[i * depth + c] - max) * + static_cast(params.beta)); + } + + // Compute result. + for (int c = 0; c < depth; ++c) { + output_data[i * depth + c] = std::exp((input_data[i * depth + c] - max) * + static_cast(params.beta)) / + sum; + } + } +} + +// Quantized softmax with int8_t/uint8_t input and int8_t/uint8_t/int16_t +// output. +template +inline void Softmax(const SoftmaxParams& params, + const RuntimeShape& input_shape, const InputT* input_data, + const RuntimeShape& output_shape, OutputT* output_data) { + const int32_t input_beta_multiplier = params.input_multiplier; + const int32_t input_beta_left_shift = params.input_left_shift; + const int diff_min = params.diff_min; + // The representation chosen for the input to the exp() function is Q5.26. + // We need to leave extra space since values that we skip might be as large as + // -32 before multiplying by input_beta_multiplier, and therefore as large as + // -16 afterwards. Note that exp(-8) is definitely not insignificant to + // accumulation, but exp(-16) definitely is. + static const int kScaledDiffIntegerBits = 5; + static const int kAccumulationIntegerBits = 12; + using FixedPointScaledDiff = + gemmlowp::FixedPoint; + using FixedPointAccum = + gemmlowp::FixedPoint; + using FixedPoint0 = gemmlowp::FixedPoint; + + const int trailing_dim = input_shape.DimensionsCount() - 1; + const int outer_size = + MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape); + const int depth = + MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim); + + for (int i = 0; i < outer_size; ++i) { + InputT max_in_row = std::numeric_limits::min(); + for (int c = 0; c < depth; ++c) { + max_in_row = std::max(max_in_row, input_data[i * depth + c]); + } + + FixedPointAccum sum_of_exps = FixedPointAccum::Zero(); + for (int c = 0; c < depth; ++c) { + int32_t input_diff = + static_cast(input_data[i * depth + c]) - max_in_row; + if (input_diff >= diff_min) { + const int32_t input_diff_rescaled = + MultiplyByQuantizedMultiplierGreaterThanOne( + input_diff, input_beta_multiplier, input_beta_left_shift); + const FixedPointScaledDiff scaled_diff_f8 = + FixedPointScaledDiff::FromRaw(input_diff_rescaled); + sum_of_exps = sum_of_exps + gemmlowp::Rescale( + exp_on_negative_values(scaled_diff_f8)); + } + } + + int num_bits_over_unit; + FixedPoint0 shifted_scale = FixedPoint0::FromRaw(GetReciprocal( + sum_of_exps.raw(), kAccumulationIntegerBits, &num_bits_over_unit)); + + for (int c = 0; c < depth; ++c) { + int32_t input_diff = + static_cast(input_data[i * depth + c]) - max_in_row; + if (input_diff >= diff_min) { + const int32_t input_diff_rescaled = + MultiplyByQuantizedMultiplierGreaterThanOne( + input_diff, input_beta_multiplier, input_beta_left_shift); + const FixedPointScaledDiff scaled_diff_f8 = + FixedPointScaledDiff::FromRaw(input_diff_rescaled); + + FixedPoint0 exp_in_0 = exp_on_negative_values(scaled_diff_f8); + int32_t unsat_output = gemmlowp::RoundingDivideByPOT( + (shifted_scale * exp_in_0).raw(), + num_bits_over_unit + 31 - (sizeof(OutputT) * 8)); + + const int32_t shifted_output = + unsat_output + + static_cast(std::numeric_limits::min()); + + output_data[i * depth + c] = static_cast(std::max( + std::min(shifted_output, + static_cast(std::numeric_limits::max())), + static_cast(std::numeric_limits::min()))); + } else { + output_data[i * depth + c] = std::numeric_limits::min(); + } + } + } +} + +// Quantized softmax with int16_t input and int16_t output. +inline void SoftmaxInt16(const SoftmaxParams& params, + const RuntimeShape& input_shape, + const int16_t* input_data, + const RuntimeShape& output_shape, + int16_t* output_data) { + const int trailing_dim = input_shape.DimensionsCount() - 1; + const int outer_size = + MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape); + const int depth = + MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim); + + for (int i = 0; i < outer_size; ++i) { + // Find the largest element + int16_t max_in_row = std::numeric_limits::min(); + for (int c = 0; c < depth; ++c) { + max_in_row = std::max(max_in_row, input_data[i * depth + c]); + } + + // Compute exp(input - max_input) + std::vector exp_result_Q015(depth); + for (int c = 0; c < depth; ++c) { + int32_t input_diff = input_data[i * depth + c] - max_in_row; + // scale the input_diff such that [-65535, 0] correspond to [-10.0, 0.0] + int32_t scaled_diff = MultiplyByQuantizedMultiplier( + input_diff, params.input_multiplier, params.input_left_shift); + // recenter to [-32768, 32767] + int32_t sym_scaled_diff = scaled_diff + 32767; + int16_t sat_sym_scaled_diff = + std::min(std::max(sym_scaled_diff, static_cast(-32768)), + static_cast(32767)); + // apply the exp() LUT activation function + exp_result_Q015[c] = + generic_int16_table_lookup(sat_sym_scaled_diff, params.exp_lut); + } + + // sum_of_exps is a Q16.15 fixed point format. + int32_t sum_of_exps = 0; + for (int c = 0; c < depth; ++c) { + // Q16.15 + Q0.15 + sum_of_exps += exp_result_Q015[c]; + } + + // Compute the reciprocal 1/sum_of_exps + uint8_t headroom_plus_one = + CountLeadingZeros(static_cast(sum_of_exps)); + int32_t shifted_sum = + ((static_cast(sum_of_exps) << (headroom_plus_one - 1)) + + (1 << 13)) >> + 14; + // since the LUT computes 1/(1 + x) we need to first compute x = (sum - 1). + // also, the LUT expects a symmetrical input, so we must also recenter x + // from [0, 65535] to [-32768, 32767]. + int32_t sym_shifted_sum = shifted_sum + (-((1 << 15) + (1 << 16))); + int16_t sat_sym_shifted_sum = static_cast( + std::min(std::max(sym_shifted_sum, static_cast(-32768)), + static_cast(32767))); + // apply 1/(1 + x) LUT activation function + int16_t reciprocal_scale_Q015 = generic_int16_table_lookup( + sat_sym_shifted_sum, params.one_over_one_plus_x_lut); + + // Rescale the exp_result with reciprocal + // range of output is [0, 32767] correspond to [0.0, 1.0] + for (int c = 0; c < depth; ++c) { + uint8_t right_shift = 31 - headroom_plus_one; + int64_t round = 1 << (right_shift - 1); + int32_t result = (static_cast(exp_result_Q015[c]) * + static_cast(reciprocal_scale_Q015) + + round) >> + right_shift; + output_data[i * depth + c] = static_cast( + std::min(std::max(result, static_cast(0)), + static_cast(32767))); + } + } +} + +} // namespace reference_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SOFTMAX_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/strided_slice.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/strided_slice.h new file mode 100644 index 00000000..8b6f0c13 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/strided_slice.h @@ -0,0 +1,94 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_STRIDED_SLICE_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_STRIDED_SLICE_H_ + +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/compatibility.h" +#include "tensorflow/lite/kernels/internal/strided_slice_logic.h" +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { + +namespace reference_ops { +template +inline void StridedSlice(const tflite::StridedSliceParams& op_params, + const RuntimeShape& unextended_input_shape, + const T* input_data, + const RuntimeShape& unextended_output_shape, + T* output_data) { + using strided_slice::LoopCondition; + using strided_slice::StartForAxis; + using strided_slice::StopForAxis; + // Note that the output_shape is not used herein. + tflite::StridedSliceParams params_copy = op_params; + + TFLITE_DCHECK_LE(unextended_input_shape.DimensionsCount(), 5); + TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 5); + const RuntimeShape input_shape = + RuntimeShape::ExtendedShape(5, unextended_input_shape); + const RuntimeShape output_shape = + RuntimeShape::ExtendedShape(5, unextended_output_shape); + + // Reverse and pad to 5 dimensions because that is what the runtime code + // requires (ie. all shapes must be 5D and are given backwards). + strided_slice::StridedSlicePadIndices(¶ms_copy, 5); + + const int start_0 = StartForAxis(params_copy, input_shape, 0); + const int stop_0 = StopForAxis(params_copy, input_shape, 0, start_0); + const int start_1 = StartForAxis(params_copy, input_shape, 1); + const int stop_1 = StopForAxis(params_copy, input_shape, 1, start_1); + const int start_2 = StartForAxis(params_copy, input_shape, 2); + const int stop_2 = StopForAxis(params_copy, input_shape, 2, start_2); + const int start_3 = StartForAxis(params_copy, input_shape, 3); + const int stop_3 = StopForAxis(params_copy, input_shape, 3, start_3); + const int start_4 = StartForAxis(params_copy, input_shape, 4); + const int stop_4 = StopForAxis(params_copy, input_shape, 4, start_4); + + T* out_ptr = output_data; + for (int offset_0 = start_0 * input_shape.Dims(1), + end_0 = stop_0 * input_shape.Dims(1), + step_0 = params_copy.strides[0] * input_shape.Dims(1); + !LoopCondition(offset_0, end_0, params_copy.strides[0]); + offset_0 += step_0) { + for (int offset_1 = (offset_0 + start_1) * input_shape.Dims(2), + end_1 = (offset_0 + stop_1) * input_shape.Dims(2), + step_1 = params_copy.strides[1] * input_shape.Dims(2); + !LoopCondition(offset_1, end_1, params_copy.strides[1]); + offset_1 += step_1) { + for (int offset_2 = (offset_1 + start_2) * input_shape.Dims(3), + end_2 = (offset_1 + stop_2) * input_shape.Dims(3), + step_2 = params_copy.strides[2] * input_shape.Dims(3); + !LoopCondition(offset_2, end_2, params_copy.strides[2]); + offset_2 += step_2) { + for (int offset_3 = (offset_2 + start_3) * input_shape.Dims(4), + end_3 = (offset_2 + stop_3) * input_shape.Dims(4), + step_3 = params_copy.strides[3] * input_shape.Dims(4); + !LoopCondition(offset_3, end_3, params_copy.strides[3]); + offset_3 += step_3) { + for (int offset_4 = offset_3 + start_4, end_4 = offset_3 + stop_4; + !LoopCondition(offset_4, end_4, params_copy.strides[4]); + offset_4 += params_copy.strides[4]) { + *out_ptr++ = input_data[offset_4]; + } + } + } + } + } +} +} // namespace reference_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_STRIDED_SLICE_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/sub.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/sub.h new file mode 100644 index 00000000..b27f251d --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/sub.h @@ -0,0 +1,516 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SUB_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SUB_H_ + +#include + +#include +#include + +#include "ruy/profiler/instrumentation.h" // from @ruy +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/compatibility.h" +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { + +namespace reference_ops { + +inline void SubNonBroadcast(const ArithmeticParams& params, + const RuntimeShape& input1_shape, + const float* input1_data, + const RuntimeShape& input2_shape, + const float* input2_data, + const RuntimeShape& output_shape, + float* output_data) { + const int flat_size = + MatchingElementsSize(input1_shape, input2_shape, output_shape); + for (int i = 0; i < flat_size; ++i) { + output_data[i] = ActivationFunctionWithMinMax( + input1_data[i] - input2_data[i], params.float_activation_min, + params.float_activation_max); + } +} + +inline void SubNonBroadcast(const ArithmeticParams& params, + const RuntimeShape& input1_shape, + const int32_t* input1_data, + const RuntimeShape& input2_shape, + const int32_t* input2_data, + const RuntimeShape& output_shape, + int32_t* output_data) { + const int flat_size = + MatchingElementsSize(input1_shape, input2_shape, output_shape); + for (int i = 0; i < flat_size; ++i) { + output_data[i] = ActivationFunctionWithMinMax( + input1_data[i] - input2_data[i], params.quantized_activation_min, + params.quantized_activation_max); + } +} + +// TODO(b/151345304): We can implement BroadcastSub on buffers of arbitrary +// dimensionality if the runtime code does a single loop over one dimension +// that handles broadcasting as the base case. The code generator would then +// generate max(D1, D2) nested for loops. +// TODO(b/151345101): BroadcastSub is intentionally duplicated from +// reference_ops.h. Once an optimized version is implemented and NdArrayDesc +// is no longer referenced in this file, move NdArrayDesc from types.h to +// reference_ops.h. +template +inline void BroadcastSubSlow(const ArithmeticParams& params, + const RuntimeShape& input1_shape, + const float* input1_data, + const RuntimeShape& input2_shape, + const float* input2_data, + const RuntimeShape& output_shape, + float* output_data) { + ruy::profiler::ScopeLabel label("BroadcastSubSlow/float"); + TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), N); + TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), N); + TFLITE_DCHECK_LE(output_shape.DimensionsCount(), N); + NdArrayDesc desc1; + NdArrayDesc desc2; + NdArrayDesc output_desc; + NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1, + &desc2); + CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc); + + // In Tensorflow, the dimensions are canonically named (batch_number, row, + // col, channel), with extents (batches, height, width, depth), with the + // trailing dimension changing most rapidly (channels has the smallest stride, + // typically 1 element). + // + // In generated C code, we store arrays with the dimensions reversed. The + // first dimension has smallest stride. + // + // We name our variables by their Tensorflow convention, but generate C code + // nesting loops such that the innermost loop has the smallest stride for the + // best cache behavior. + auto sub_func = [&](int indexes[N]) { + output_data[SubscriptToIndex(output_desc, indexes)] = + ActivationFunctionWithMinMax( + input1_data[SubscriptToIndex(desc1, indexes)] - + input2_data[SubscriptToIndex(desc2, indexes)], + params.float_activation_min, params.float_activation_max); + }; + NDOpsHelper(output_desc, sub_func); +} + +template +inline void BroadcastSubSlow(const ArithmeticParams& params, + const RuntimeShape& input1_shape, + const uint8_t* input1_data, + const RuntimeShape& input2_shape, + const uint8_t* input2_data, + const RuntimeShape& output_shape, + uint8_t* output_data) { + ruy::profiler::ScopeLabel label("BroadcastSubSlow/uint8_t"); + TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), N); + TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), N); + TFLITE_DCHECK_LE(output_shape.DimensionsCount(), N); + NdArrayDesc desc1; + NdArrayDesc desc2; + NdArrayDesc output_desc; + NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1, + &desc2); + CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc); + + // In Tensorflow, the dimensions are canonically named (batch_number, row, + // col, channel), with extents (batches, height, width, depth), with the + // trailing dimension changing most rapidly (channels has the smallest stride, + // typically 1 element). + // + // In generated C code, we store arrays with the dimensions reversed. The + // first dimension has smallest stride. + // + // We name our variables by their Tensorflow convention, but generate C code + // nesting loops such that the innermost loop has the smallest stride for the + // best cache behavior. + auto sub_func = [&](int indexes[N]) { + const int32_t input1_val = + params.input1_offset + input1_data[SubscriptToIndex(desc1, indexes)]; + const int32_t input2_val = + params.input2_offset + input2_data[SubscriptToIndex(desc2, indexes)]; + const int32_t shifted_input1_val = input1_val * (1 << params.left_shift); + const int32_t shifted_input2_val = input2_val * (1 << params.left_shift); + const int32_t scaled_input1_val = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + shifted_input1_val, params.input1_multiplier, params.input1_shift); + const int32_t scaled_input2_val = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + shifted_input2_val, params.input2_multiplier, params.input2_shift); + const int32_t raw_sub = scaled_input1_val - scaled_input2_val; + const int32_t raw_output = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + raw_sub, params.output_multiplier, params.output_shift) + + params.output_offset; + const int32_t clamped_output = + std::min(params.quantized_activation_max, + std::max(params.quantized_activation_min, raw_output)); + output_data[SubscriptToIndex(output_desc, indexes)] = + static_cast(clamped_output); + }; + NDOpsHelper(output_desc, sub_func); +} + +template +inline void BroadcastSubSlow(const ArithmeticParams& params, + const RuntimeShape& input1_shape, + const int32_t* input1_data, + const RuntimeShape& input2_shape, + const int32_t* input2_data, + const RuntimeShape& output_shape, + int32_t* output_data) { + ruy::profiler::ScopeLabel label("BroadcastSubSlow/int32_t"); + TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), N); + TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), N); + TFLITE_DCHECK_LE(output_shape.DimensionsCount(), N); + NdArrayDesc desc1; + NdArrayDesc desc2; + NdArrayDesc output_desc; + NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1, + &desc2); + CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc); + + // In Tensorflow, the dimensions are canonically named (batch_number, row, + // col, channel), with extents (batches, height, width, depth), with the + // trailing dimension changing most rapidly (channels has the smallest stride, + // typically 1 element). + // + // In generated C code, we store arrays with the dimensions reversed. The + // first dimension has smallest stride. + // + // We name our variables by their Tensorflow convention, but generate C code + // nesting loops such that the innermost loop has the smallest stride for the + // best cache behavior. + auto sub_func = [&](int indexes[N]) { + output_data[SubscriptToIndex(output_desc, indexes)] = + ActivationFunctionWithMinMax( + input1_data[SubscriptToIndex(desc1, indexes)] - + input2_data[SubscriptToIndex(desc2, indexes)], + params.quantized_activation_min, params.quantized_activation_max); + }; + NDOpsHelper(output_desc, sub_func); +} + +template +inline void BroadcastSubSlow(const ArithmeticParams& params, + const RuntimeShape& input1_shape, + const int8_t* input1_data, + const RuntimeShape& input2_shape, + const int8_t* input2_data, + const RuntimeShape& output_shape, + int8_t* output_data) { + ruy::profiler::ScopeLabel label("BroadcastSubSlow/int8_t"); + NdArrayDesc desc1; + NdArrayDesc desc2; + NdArrayDesc output_desc; + NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1, + &desc2); + CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc); + + // In Tensorflow, the dimensions are canonically named (batch_number, row, + // col, channel), with extents (batches, height, width, depth), with the + // trailing dimension changing most rapidly (channels has the smallest stride, + // typically 1 element). + // + // In generated C code, we store arrays with the dimensions reversed. The + // first dimension has smallest stride. + // + // We name our variables by their Tensorflow convention, but generate C code + // nesting loops such that the innermost loop has the smallest stride for the + // best cache behavior. + auto sub_func = [&](int indexes[N]) { + const int32_t input1_val = + params.input1_offset + input1_data[SubscriptToIndex(desc1, indexes)]; + const int32_t input2_val = + params.input2_offset + input2_data[SubscriptToIndex(desc2, indexes)]; + const int32_t shifted_input1_val = input1_val * (1 << params.left_shift); + const int32_t shifted_input2_val = input2_val * (1 << params.left_shift); + const int32_t scaled_input1_val = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + shifted_input1_val, params.input1_multiplier, params.input1_shift); + const int32_t scaled_input2_val = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + shifted_input2_val, params.input2_multiplier, params.input2_shift); + const int32_t raw_sub = scaled_input1_val - scaled_input2_val; + const int32_t raw_output = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + raw_sub, params.output_multiplier, params.output_shift) + + params.output_offset; + const int32_t clamped_output = + std::min(params.quantized_activation_max, + std::max(params.quantized_activation_min, raw_output)); + output_data[SubscriptToIndex(output_desc, indexes)] = + static_cast(clamped_output); + }; + NDOpsHelper(output_desc, sub_func); +} + +template +void BroadcastSubSlow(const ArithmeticParams& params, + const RuntimeShape& input1_shape, + const int64_t* input1_data, + const RuntimeShape& input2_shape, + const int64_t* input2_data, + const RuntimeShape& output_shape, int64_t* output_data) { + ruy::profiler::ScopeLabel label("BroadcastSubSlow/int64_t"); + TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), N); + TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), N); + TFLITE_DCHECK_LE(output_shape.DimensionsCount(), N); + NdArrayDesc desc1; + NdArrayDesc desc2; + NdArrayDesc output_desc; + NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1, + &desc2); + CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc); + + // In Tensorflow, the dimensions are canonically named (batch_number, row, + // col, channel), with extents (batches, height, width, depth), with the + // trailing dimension changing most rapidly (channels has the smallest stride, + // typically 1 element). + // + // In generated C code, we store arrays with the dimensions reversed. The + // first dimension has smallest stride. + // + // We name our variables by their Tensorflow convention, but generate C code + // nesting loops such that the innermost loop has the smallest stride for the + // best cache behavior. + auto sub_func = [&](int indexes[N]) { + output_data[SubscriptToIndex(output_desc, indexes)] = + ActivationFunctionWithMinMax( + input1_data[SubscriptToIndex(desc1, indexes)] - + input2_data[SubscriptToIndex(desc2, indexes)], + params.int64_activation_min, params.int64_activation_max); + }; + NDOpsHelper(output_desc, sub_func); +} + +template +void BroadcastSubSlow(const ArithmeticParams& params, + const RuntimeShape& input1_shape, const T* input1_data, + const RuntimeShape& input2_shape, const T* input2_data, + const RuntimeShape& output_shape, T* output_data) { + ruy::profiler::ScopeLabel label("BroadcastSubSlow/templated"); + TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), N); + TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), N); + TFLITE_DCHECK_LE(output_shape.DimensionsCount(), N); + NdArrayDesc desc1; + NdArrayDesc desc2; + NdArrayDesc output_desc; + NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1, + &desc2); + CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc); + + // In Tensorflow, the dimensions are canonically named (batch_number, row, + // col, channel), with extents (batches, height, width, depth), with the + // trailing dimension changing most rapidly (channels has the smallest stride, + // typically 1 element). + // + // In generated C code, we store arrays with the dimensions reversed. The + // first dimension has smallest stride. + // + // We name our variables by their Tensorflow convention, but generate C code + // nesting loops such that the innermost loop has the smallest stride for the + // best cache behavior. + auto sub_func = [&](int indexes[N]) { + output_data[SubscriptToIndex(output_desc, indexes)] = + ActivationFunctionWithMinMax( + input1_data[SubscriptToIndex(desc1, indexes)] - + input2_data[SubscriptToIndex(desc2, indexes)], + params.quantized_activation_min, params.quantized_activation_max); + }; + NDOpsHelper(output_desc, sub_func); +} + +// Element-wise Sub that can often be used for inner loop of broadcast sub as +// well as the non-broadcast sub. +inline void SubElementwise(int size, const ArithmeticParams& params, + const uint8_t* input1_data, + const uint8_t* input2_data, uint8_t* output_data) { + TFLITE_DCHECK_GT(params.input1_offset, -256); + TFLITE_DCHECK_GT(params.input2_offset, -256); + TFLITE_DCHECK_LT(params.input1_offset, 256); + TFLITE_DCHECK_LT(params.input2_offset, 256); + + for (int i = 0; i < size; ++i) { + const int32_t input1_val = params.input1_offset + input1_data[i]; + const int32_t input2_val = params.input2_offset + input2_data[i]; + const int32_t shifted_input1_val = input1_val * (1 << params.left_shift); + const int32_t shifted_input2_val = input2_val * (1 << params.left_shift); + const int32_t scaled_input1_val = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + shifted_input1_val, params.input1_multiplier, params.input1_shift); + const int32_t scaled_input2_val = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + shifted_input2_val, params.input2_multiplier, params.input2_shift); + const int32_t raw_sub = scaled_input1_val - scaled_input2_val; + const int32_t raw_output = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + raw_sub, params.output_multiplier, params.output_shift) + + params.output_offset; + const int32_t clamped_output = + std::min(params.quantized_activation_max, + std::max(params.quantized_activation_min, raw_output)); + output_data[i] = static_cast(clamped_output); + } +} + +// Element-wise add that can often be used for inner loop of broadcast add as +// well as the non-broadcast add. +inline void SubElementwise(int size, const ArithmeticParams& params, + const int8_t* input1_data, const int8_t* input2_data, + int8_t* output_data) { + const int32_t int8_max_value = std::numeric_limits::max(); + TFLITE_DCHECK_GE(params.input1_offset, -1 * int8_max_value); + TFLITE_DCHECK_GE(params.input2_offset, -1 * int8_max_value); + TFLITE_DCHECK_LE(params.input1_offset, int8_max_value); + TFLITE_DCHECK_LE(params.input2_offset, int8_max_value); + + for (int i = 0; i < size; ++i) { + const int32_t input1_val = params.input1_offset + input1_data[i]; + const int32_t input2_val = params.input2_offset + input2_data[i]; + const int32_t shifted_input1_val = input1_val * (1 << params.left_shift); + const int32_t shifted_input2_val = input2_val * (1 << params.left_shift); + const int32_t scaled_input1_val = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + shifted_input1_val, params.input1_multiplier, params.input1_shift); + const int32_t scaled_input2_val = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + shifted_input2_val, params.input2_multiplier, params.input2_shift); + const int32_t raw_sub = scaled_input1_val - scaled_input2_val; + const int32_t raw_output = + MultiplyByQuantizedMultiplierSmallerThanOneExp( + raw_sub, params.output_multiplier, params.output_shift) + + params.output_offset; + const int32_t clamped_output = + std::min(params.quantized_activation_max, + std::max(params.quantized_activation_min, raw_output)); + output_data[i] = static_cast(clamped_output); + } +} + +inline void Sub(const ArithmeticParams& params, + const RuntimeShape& input1_shape, const uint8_t* input1_data, + const RuntimeShape& input2_shape, const uint8_t* input2_data, + const RuntimeShape& output_shape, uint8_t* output_data) { + TFLITE_DCHECK_LE(params.quantized_activation_min, + params.quantized_activation_max); + const int flat_size = + MatchingElementsSize(input1_shape, input2_shape, output_shape); + + TFLITE_DCHECK_GT(params.input1_offset, -256); + TFLITE_DCHECK_GT(params.input2_offset, -256); + TFLITE_DCHECK_LT(params.input1_offset, 256); + TFLITE_DCHECK_LT(params.input2_offset, 256); + SubElementwise(flat_size, params, input1_data, input2_data, output_data); +} + +inline void Sub(const ArithmeticParams& params, + const RuntimeShape& input1_shape, const int8_t* input1_data, + const RuntimeShape& input2_shape, const int8_t* input2_data, + const RuntimeShape& output_shape, int8_t* output_data) { + TFLITE_DCHECK_LE(params.quantized_activation_min, + params.quantized_activation_max); + + const int flat_size = + MatchingElementsSize(input1_shape, input2_shape, output_shape); + + const int32_t int8_max_value = std::numeric_limits::max(); + TFLITE_DCHECK_GE(params.input1_offset, -1 * int8_max_value); + TFLITE_DCHECK_GE(params.input2_offset, -1 * int8_max_value); + TFLITE_DCHECK_LE(params.input1_offset, int8_max_value); + TFLITE_DCHECK_LE(params.input2_offset, int8_max_value); + SubElementwise(flat_size, params, input1_data, input2_data, output_data); +} + +template +void Sub(const ArithmeticParams& params, const RuntimeShape& input1_shape, + const T* input1_data, const RuntimeShape& input2_shape, + const T* input2_data, const RuntimeShape& output_shape, + T* output_data) { + NdArrayDesc<4> desc1; + NdArrayDesc<4> desc2; + NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1, + &desc2); + const RuntimeShape extended_output_shape = + RuntimeShape::ExtendedShape(4, output_shape); + + // In Tensorflow, the dimensions are canonically named (batch_number, row, + // col, channel), with extents (batches, height, width, depth), with the + // trailing dimension changing most rapidly (channels has the smallest stride, + // typically 1 element). + // + // In generated C code, we store arrays with the dimensions reversed. The + // first dimension has smallest stride. + // + // We name our variables by their Tensorflow convention, but generate C code + // nesting loops such that the innermost loop has the smallest stride for the + // best cache behavior. + for (int b = 0; b < extended_output_shape.Dims(0); ++b) { + for (int y = 0; y < extended_output_shape.Dims(1); ++y) { + for (int x = 0; x < extended_output_shape.Dims(2); ++x) { + for (int c = 0; c < extended_output_shape.Dims(3); ++c) { + output_data[Offset(extended_output_shape, b, y, x, c)] = + input1_data[SubscriptToIndex(desc1, b, y, x, c)] - + input2_data[SubscriptToIndex(desc2, b, y, x, c)]; + } + } + } + } +} + +inline void SetActivationMinMax(const ArithmeticParams& params, + int32_t* activation_min, + int32_t* activation_max) { + *activation_min = params.quantized_activation_min; + *activation_max = params.quantized_activation_max; +} + +inline void SetActivationMinMax(const ArithmeticParams& params, + float* activation_min, float* activation_max) { + *activation_min = params.float_activation_min; + *activation_max = params.float_activation_max; +} + +inline void SetActivationMinMax(const ArithmeticParams& params, + int64_t* activation_min, + int64_t* activation_max) { + *activation_min = params.int64_activation_min; + *activation_max = params.int64_activation_max; +} + +template +inline void SubWithActivation( + const ArithmeticParams& params, const RuntimeShape& input1_shape, + const T* input1_data, const RuntimeShape& input2_shape, + const T* input2_data, const RuntimeShape& output_shape, T* output_data) { + ruy::profiler::ScopeLabel label("SubWithActivation"); + const int flat_size = + MatchingElementsSize(input1_shape, input2_shape, output_shape); + T activation_min, activation_max; + SetActivationMinMax(params, &activation_min, &activation_max); + + for (int i = 0; i < flat_size; ++i) { + output_data[i] = ActivationFunctionWithMinMax( + input1_data[i] - input2_data[i], activation_min, activation_max); + } +} + +} // namespace reference_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SUB_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/reference/tanh.h b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/tanh.h new file mode 100644 index 00000000..3a05c474 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/reference/tanh.h @@ -0,0 +1,129 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TANH_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TANH_H_ + +#include + +#include "fixedpoint/fixedpoint.h" +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/cppmath.h" +#include "tensorflow/lite/kernels/internal/types.h" +#include "tensorflow/lite/kernels/op_macros.h" + +namespace tflite { +namespace reference_ops { + +inline void Tanh(const RuntimeShape& input_shape, const float* input_data, + const RuntimeShape& output_shape, float* output_data) { + const int flat_size = MatchingFlatSize(input_shape, output_shape); + + for (int i = 0; i < flat_size; i++) { + float val = input_data[i]; + float result = std::tanh(val); + output_data[i] = result; + } +} + +// Convenience version that allows, for example, generated-code calls to be +// uniform between data types. +inline void Tanh(const TanhParams&, const RuntimeShape& input_shape, + const float* input_data, const RuntimeShape& output_shape, + float* output_data) { + // Drop params: not needed. + Tanh(input_shape, input_data, output_shape, output_data); +} + +inline void Tanh(const TanhParams& params, const RuntimeShape& input_shape, + const int16_t* input_data, const RuntimeShape& output_shape, + int16_t* output_data) { + const int input_left_shift = params.input_left_shift; + // Support for shifts is limited until we have a parameterized version of + // SaturatingRoundingMultiplyByPOT(). + TFLITE_DCHECK_GE(input_left_shift, 0); + TFLITE_DCHECK_LE(input_left_shift, 1); + + const int flat_size = MatchingFlatSize(input_shape, output_shape); + + // F0 uses 0 integer bits, range [-1, 1]. + // This is the return type of math functions such as tanh, logistic, + // whose range is in [-1, 1]. + using F0 = gemmlowp::FixedPoint; + // F3 uses 3 integer bits, range [-8, 8], the input range expected here. + using F3 = gemmlowp::FixedPoint; + + if (input_left_shift == 0) { + for (int i = 0; i < flat_size; i++) { + F3 input = F3::FromRaw(input_data[i]); + F0 output = gemmlowp::tanh(input); + output_data[i] = output.raw(); + } + } else { + for (int i = 0; i < flat_size; i++) { + F3 input = F3::FromRaw( + gemmlowp::SaturatingRoundingMultiplyByPOT<1>(input_data[i])); + F0 output = gemmlowp::tanh(input); + output_data[i] = output.raw(); + } + } +} + +inline void Tanh(const TanhParams& params, const RuntimeShape& input_shape, + const uint8_t* input_data, const RuntimeShape& output_shape, + uint8_t* output_data) { + const int32_t input_zero_point = params.input_zero_point; + const int32_t input_range_radius = params.input_range_radius; + const int32_t input_multiplier = params.input_multiplier; + const int input_left_shift = params.input_left_shift; + const int32_t output_zero_point = 128; + const int flat_size = MatchingFlatSize(input_shape, output_shape); + + for (int i = 0; i < flat_size; i++) { + const uint8_t input_val_u8 = input_data[i]; + const int32_t input_val_centered = + static_cast(input_val_u8) - input_zero_point; + uint8_t output_val; + if (input_val_centered <= -input_range_radius) { + output_val = 0; + } else if (input_val_centered >= input_range_radius) { + output_val = 255; + } else { + const int32_t input_val_rescaled = + MultiplyByQuantizedMultiplierGreaterThanOne( + input_val_centered, input_multiplier, input_left_shift); + using FixedPoint4 = gemmlowp::FixedPoint; + using FixedPoint0 = gemmlowp::FixedPoint; + const FixedPoint4 input_val_f4 = FixedPoint4::FromRaw(input_val_rescaled); + const FixedPoint0 output_val_f0 = gemmlowp::tanh(input_val_f4); + // Convert from Q0.31 to Q24.7. + using gemmlowp::RoundingDivideByPOT; + int32_t output_val_s32 = RoundingDivideByPOT(output_val_f0.raw(), 24); + output_val_s32 += output_zero_point; + if (output_val_s32 == 256) { + output_val_s32 = 255; + } + // Reinterpret as Q0.7, encoded in uint8_t. + TFLITE_DCHECK_GE(output_val_s32, 0); + TFLITE_DCHECK_LE(output_val_s32, 255); + output_val = static_cast(output_val_s32); + } + output_data[i] = output_val; + } +} + +} // namespace reference_ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TANH_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/strided_slice_logic.h b/components/tflite_micro/tensorflow/lite/kernels/internal/strided_slice_logic.h new file mode 100644 index 00000000..d9b5acbb --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/strided_slice_logic.h @@ -0,0 +1,204 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_STRIDED_SLICE_LOGIC_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_STRIDED_SLICE_LOGIC_H_ + +#include +#include +#include "tensorflow/lite/kernels/internal/compatibility.h" +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { +namespace strided_slice { + +// Use until std::clamp() is available from C++17. +inline int Clamp(const int v, const int lo, const int hi) { + TFLITE_DCHECK(!(hi < lo)); + if (hi < v) return hi; + if (v < lo) return lo; + return v; +} + +inline void StridedSlicePadIndices(tflite::StridedSliceParams* p, + int dim_count) { + // Add indices and mask bits to fully include extra dimensions + TFLITE_CHECK_LE(dim_count, 5); + TFLITE_CHECK_GE(dim_count, p->start_indices_count); + TFLITE_CHECK_EQ(p->start_indices_count, p->stop_indices_count); + TFLITE_CHECK_EQ(p->stop_indices_count, p->strides_count); + + const int pad_count = dim_count - p->start_indices_count; + + // Pad indices at start, so move arrays by pad_count. + for (int i = p->start_indices_count - 1; i >= 0; --i) { + p->strides[i + pad_count] = p->strides[i]; + p->start_indices[i + pad_count] = p->start_indices[i]; + p->stop_indices[i + pad_count] = p->stop_indices[i]; + } + for (int i = 0; i < pad_count; ++i) { + p->start_indices[i] = 0; + p->stop_indices[i] = 1; + p->strides[i] = 1; + } + + // Pad masks with 0s or 1s as required. + p->shrink_axis_mask <<= pad_count; + p->ellipsis_mask <<= pad_count; + p->new_axis_mask <<= pad_count; + p->begin_mask <<= pad_count; + p->end_mask <<= pad_count; + p->begin_mask |= (1 << pad_count) - 1; + p->end_mask |= (1 << pad_count) - 1; + + p->start_indices_count = dim_count; + p->stop_indices_count = dim_count; + p->strides_count = dim_count; +} + +// Return the index for the first element along that axis. This index will be a +// positive integer between [0, axis_size - 1] that can be used to index +// directly into the data. +inline int StartForAxis(const tflite::StridedSliceParams& params, + const RuntimeShape& input_shape, int axis) { + const auto begin_mask = params.begin_mask; + const auto* start_indices = params.start_indices; + const auto* strides = params.strides; + const int axis_size = input_shape.Dims(axis); + if (axis_size == 0) { + return 0; + } + // Begin with the specified index. + int start = start_indices[axis]; + + // begin_mask override + if (begin_mask & 1 << axis) { + if (strides[axis] > 0) { + // Forward iteration - use the first element. These values will get + // clamped below (Note: We could have set them to 0 and axis_size-1, but + // use lowest() and max() to maintain symmetry with StopForAxis()) + start = std::numeric_limits::lowest(); + } else { + // Backward iteration - use the last element. + start = std::numeric_limits::max(); + } + } + + // Handle negative indices + if (start < 0) { + start += axis_size; + } + + // Clamping + start = Clamp(start, 0, axis_size - 1); + + return start; +} + +// Return the "real" index for the end of iteration along that axis. This is an +// "end" in the traditional C sense, in that it points to one past the last +// element. ie. So if you were iterating through all elements of a 1D array of +// size 4, this function would return 4 as the stop, because it is one past the +// "real" indices of 0, 1, 2 & 3. +inline int StopForAxis(const tflite::StridedSliceParams& params, + const RuntimeShape& input_shape, int axis, + int start_for_axis) { + const auto end_mask = params.end_mask; + const auto shrink_axis_mask = params.shrink_axis_mask; + const auto* stop_indices = params.stop_indices; + const auto* strides = params.strides; + const int axis_size = input_shape.Dims(axis); + if (axis_size == 0) { + return 0; + } + + // Begin with the specified index + const bool shrink_axis = shrink_axis_mask & (1 << axis); + int stop = stop_indices[axis]; + + // When shrinking an axis, the end position does not matter (and can be + // incorrect when negative indexing is used, see Issue #19260). Always use + // start_for_axis + 1 to generate a length 1 slice, since start_for_axis has + // already been adjusted for negative indices. + if (shrink_axis) { + stop = start_for_axis + 1; + } + + // end_mask override + if (end_mask & (1 << axis)) { + if (strides[axis] > 0) { + // Forward iteration - use the last element. These values will get + // clamped below + stop = std::numeric_limits::max(); + } else { + // Backward iteration - use the first element. + stop = std::numeric_limits::lowest(); + } + } + + // Handle negative indices + if (stop < 0) { + stop += axis_size; + } + + // Clamping + // Because the end index points one past the last element, we need slightly + // different clamping ranges depending on the direction. + if (strides[axis] > 0) { + // Forward iteration + stop = Clamp(stop, 0, axis_size); + } else { + // Backward iteration + stop = Clamp(stop, -1, axis_size - 1); + } + + return stop; +} + +inline bool LoopCondition(int index, int stop, int stride) { + // True when we have reached the end of an axis and should loop. + return stride > 0 ? index >= stop : index <= stop; +} + +inline tflite::StridedSliceParams BuildStridedSliceParams( + int begin_mask, int end_mask, int shrink_axis_mask, + const std::vector& start_indices, const std::vector& stop_indices, + const std::vector& strides) { + tflite::StridedSliceParams op_params; + const int dims_count = start_indices.size(); + + op_params.start_indices_count = dims_count; + op_params.stop_indices_count = dims_count; + op_params.strides_count = dims_count; + for (int i = 0; i < dims_count; ++i) { + op_params.start_indices[i] = start_indices[i]; + op_params.stop_indices[i] = stop_indices[i]; + op_params.strides[i] = strides[i]; + } + + op_params.begin_mask = begin_mask; + op_params.ellipsis_mask = 0; + op_params.end_mask = end_mask; + op_params.new_axis_mask = 0; + op_params.shrink_axis_mask = shrink_axis_mask; + + return op_params; +} + +} // namespace strided_slice + +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_STRIDED_SLICE_LOGIC_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/tensor.h b/components/tflite_micro/tensorflow/lite/kernels/internal/tensor.h new file mode 100644 index 00000000..905552fc --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/tensor.h @@ -0,0 +1,147 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_TENSOR_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_TENSOR_H_ + +#include +#include + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/internal/types.h" +#include "tensorflow/lite/string_util.h" + +namespace tflite { + +inline RuntimeShape GetTensorShape(std::vector data) { + return RuntimeShape(data.size(), data.data()); +} + +// A list of tensors in a format that can be used by kernels like split and +// concatenation. +template +class VectorOfTensors { + public: + // Build with the tensors in 'tensor_list'. + VectorOfTensors(const TfLiteContext& context, + const TfLiteIntArray& tensor_list) { + int num_tensors = tensor_list.size; + + all_data_.reserve(num_tensors); + all_shape_.reserve(num_tensors); + all_shape_ptr_.reserve(num_tensors); + + for (int i = 0; i < num_tensors; ++i) { + TfLiteTensor* t = &context.tensors[tensor_list.data[i]]; + all_data_.push_back(GetTensorData(t)); + all_shape_.push_back(GetTensorShape(t)); + } + + // Taking the pointer from inside a std::vector is only OK if the vector is + // never modified, so we populate all_shape in the previous loop and then we + // are free to grab iterators here. + for (int i = 0; i < num_tensors; ++i) { + all_shape_ptr_.push_back(&all_shape_[i]); + } + } + // Return a pointer to the data pointers of all tensors in the list. For + // example: + // float* const* f = v.data(); + // f[0][1] is the second element of the first tensor. + T* const* data() const { return all_data_.data(); } + + // Return a pointer the shape pointers of all tensors in the list. For + // example: + // const RuntimeShape* const* d = v.dims(); + // dims[1] are the dimensions of the second tensor in the list. + const RuntimeShape* const* shapes() const { return all_shape_ptr_.data(); } + + private: + std::vector all_data_; + std::vector all_shape_; + std::vector all_shape_ptr_; +}; + +// A list of quantized tensors in a format that can be used by kernels like +// split and concatenation. +class VectorOfQuantizedTensors : public VectorOfTensors { + public: + // Build with the tensors in 'tensor_list'. + VectorOfQuantizedTensors(const TfLiteContext& context, + const TfLiteIntArray& tensor_list) + : VectorOfTensors(context, tensor_list) { + for (int i = 0; i < tensor_list.size; ++i) { + TfLiteTensor* t = &context.tensors[tensor_list.data[i]]; + zero_point_.push_back(t->params.zero_point); + scale_.push_back(t->params.scale); + } + } + + const float* scale() const { return scale_.data(); } + const int32_t* zero_point() const { return zero_point_.data(); } + + private: + std::vector zero_point_; + std::vector scale_; +}; + +// Writes randomly accessed values from `input` sequentially into `output`. +template +class SequentialTensorWriter { + public: + SequentialTensorWriter(const TfLiteTensor* input, TfLiteTensor* output) { + input_data_ = GetTensorData(input); + output_ptr_ = GetTensorData(output); + } + SequentialTensorWriter(const T* input_data, T* output_data) + : input_data_(input_data), output_ptr_(output_data) {} + + void Write(int position) { *output_ptr_++ = input_data_[position]; } + void WriteN(int position, int len) { + memcpy(output_ptr_, &input_data_[position], sizeof(T) * len); + output_ptr_ += len; + } + + private: + const T* input_data_; + T* output_ptr_; +}; + +// String ops are not yet supported on platforms w/ static memory. +#ifndef TF_LITE_STATIC_MEMORY +template <> +class SequentialTensorWriter { + public: + SequentialTensorWriter(const TfLiteTensor* input, TfLiteTensor* output) + : input_(input), output_(output) {} + ~SequentialTensorWriter() { buffer_.WriteToTensor(output_, nullptr); } + + void Write(int position) { this->WriteN(position, 1); } + void WriteN(int position, int len) { + for (int i = 0; i < len; i++) { + buffer_.AddString(GetString(input_, position + i)); + } + } + + private: + const TfLiteTensor* input_; + TfLiteTensor* output_; + DynamicBuffer buffer_; +}; +#endif // TF_LITE_STATIC_MEMORY + +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_TENSOR_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/tensor_ctypes.h b/components/tflite_micro/tensorflow/lite/kernels/internal/tensor_ctypes.h new file mode 100644 index 00000000..f1d3e17f --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/tensor_ctypes.h @@ -0,0 +1,47 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_TENSOR_CTYPES_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_TENSOR_CTYPES_H_ + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { + +template +inline T* GetTensorData(TfLiteTensor* tensor) { + return tensor != nullptr ? reinterpret_cast(tensor->data.raw) : nullptr; +} + +template +inline const T* GetTensorData(const TfLiteTensor* tensor) { + return tensor != nullptr ? reinterpret_cast(tensor->data.raw) + : nullptr; +} + +inline RuntimeShape GetTensorShape(const TfLiteTensor* tensor) { + if (tensor == nullptr) { + return RuntimeShape(); + } + + TfLiteIntArray* dims = tensor->dims; + const int dims_size = dims->size; + const int32_t* dims_data = reinterpret_cast(dims->data); + return RuntimeShape(dims_size, dims_data); +} + +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_TENSOR_CTYPES_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/internal/types.h b/components/tflite_micro/tensorflow/lite/kernels/internal/types.h new file mode 100644 index 00000000..9db742dd --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/internal/types.h @@ -0,0 +1,1153 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_TYPES_H_ +#define TENSORFLOW_LITE_KERNELS_INTERNAL_TYPES_H_ + +#include +#include +#include +#include + +#include "tensorflow/lite/kernels/internal/compatibility.h" + +namespace tflite { + +enum class FusedActivationFunctionType : uint8_t { + kNone, + kRelu6, + kRelu1, + kRelu +}; +enum class PaddingType : uint8_t { kNone, kSame, kValid }; + +struct PaddingValues { + int16_t width; + int16_t height; + // offset is used for calculating "remaining" padding, for example, `width` + // is 1 and `width_offset` is 1, so padding_left is 1 while padding_right is + // 1 + 1 = 2. + int16_t width_offset; + // Same as width_offset except it's over the height dimension. + int16_t height_offset; +}; + +// This enumeration allows for non-default formats for the weights array +// of a fully-connected operator, allowing the use of special optimized +// runtime paths. +enum class FullyConnectedWeightsFormat : uint8_t { + // Default format (flat 2D layout, the inner contiguous dimension + // is input_depth, the outer non-contiguous dimension is output_depth) + kDefault, + // Summary: optimized layout for fast CPU runtime implementation, + // aimed specifically at ARM CPUs at the moment, and specialized for + // 8-bit quantized layers. + // + // The use case we're concerned with here is: 8-bit quantization, + // large weights matrix that doesn't fit in cache (e.g. 4096x2048 in + // a key application that drove this), very small batch size (e.g. 1 -- 4). + // + // Even with 8-bit quantization of weights, the performance of memory + // accesses to the weights can become the dominant issue when + // the batch size is small, so each weight value is used in only a few + // arithmetic ops, i.e. the fully-connected node has a low arithmetic + // intensity. The specific issues that arise are of three kinds: + // (1) One may, ideally, max out DRAM bandwidth, i.e. be truly memory + // bound. That's the "good" issue to run into. + // (2) One may run into sub-optimal pre-fetching: the data hasn't been + // prefetched into the cache by the time we need it. + // (3) One may run into cache aliasing: multiple values that are + // pre-fetched, alias each other in the L1 cache (which typically + // has only 4-way set associativity in ARM CPUs) and thus evict + // each other before we get to using them. + // + // The point of this shuffling is to avoid issues (2) and (3) so that + // we get as fast as possible given only the hard constraint (1). + // This is achieved by turning the difficulty into a solution: the + // difficulty, that each value loaded from memory is used only in + // one kernel iteration, making this operation memory-intensive, hints at + // the solution, of shuffling the weights so that they are stored in the + // exact order as the kernel needs to load them, so that the memory + // accesses made by the kernel are trivial. This solves (2) because the + // trivial memory access pattern allows the CPU's automatic prefetching + // to perform very well (no need even for preload instructions), and this + // solves (3) because the values being loaded concurrently are now + // contiguous in the address space, thus don't alias each other in the cache. + // + // On ARM, we typically want our kernel to process a 4x16 block of weights + // at a time, because: + // - 16 is the number of bytes in a NEON register. + // - 4 is how many rows we need to handle concurrently in the kernel in + // order to have sufficient mutual independence of instructions to + // maximize arithmetic throughput. + // + // Finally, the 'Int8' part in the name refers to the fact that this + // weights format has each weights value encoded as a signed int8_t value, + // even if the data type of the weights buffer is uint8_t. This is intended + // to save runtime kernels the effort to have to XOR the top bit of these + // bytes before using them in signed arithmetic, see this file for more + // explanations on the 'signed int8_t trick' in matrix multiplication kernels: + // + // tensorflow/lite/toco/graph_transformations/ensure_uint8_weights_safe_for_fast_int8_kernels.cc + // + kShuffled4x16Int8, +}; + +// Quantization parameters, determining the mapping of quantized values +// to real values (i.e. determining how quantized values are mathematically +// interpreted). +// +// The correspondence is as follows: +// +// real_value = scale * (quantized_value - zero_point); +// +// In other words, zero_point designates which quantized value corresponds to +// the real 0 value, and scale designates the difference between the real values +// corresponding to consecutive quantized values differing by 1. +struct QuantizationParams { + int32_t zero_point = 0; + double scale = 0.0; +}; + +inline bool operator==(const QuantizationParams& qp1, + const QuantizationParams& qp2) { + return qp1.zero_point == qp2.zero_point && qp1.scale == qp2.scale; +} + +template +struct Dims { + int sizes[N]; + int strides[N]; +}; + +class RuntimeShape { + public: + // Shapes with dimensions up to 5 are stored directly in the structure, while + // larger shapes are separately allocated. + static constexpr int kMaxSmallSize = 5; + + RuntimeShape& operator=(RuntimeShape const&) = delete; + + RuntimeShape() : size_(0) {} + + explicit RuntimeShape(int dimensions_count) : size_(dimensions_count) { + if (dimensions_count > kMaxSmallSize) { +#ifdef TF_LITE_STATIC_MEMORY + TFLITE_CHECK(false && "No shape resizing supported on this platform"); +#else // TF_LITE_STATIC_MEMORY + dims_pointer_ = new int32_t[dimensions_count]; +#endif // TF_LITE_STATIC_MEMORY + } + } + + RuntimeShape(int shape_size, int32_t value) : size_(0) { + Resize(shape_size); + for (int i = 0; i < shape_size; ++i) { + SetDim(i, value); + } + } + + RuntimeShape(int dimensions_count, const int32_t* dims_data) : size_(0) { + ReplaceWith(dimensions_count, dims_data); + } + + RuntimeShape(const std::initializer_list init_list) : size_(0) { + BuildFrom(init_list); + } + + // Avoid using this constructor. We should be able to delete it when C++17 + // rolls out. + RuntimeShape(RuntimeShape const& other) : size_(other.DimensionsCount()) { + if (size_ > kMaxSmallSize) { + dims_pointer_ = new int32_t[size_]; + } + std::memcpy(DimsData(), other.DimsData(), sizeof(int32_t) * size_); + } + + bool operator==(const RuntimeShape& comp) const { + return this->size_ == comp.size_ && + std::memcmp(DimsData(), comp.DimsData(), size_ * sizeof(int32_t)) == + 0; + } + + ~RuntimeShape() { + if (size_ > kMaxSmallSize) { +#ifdef TF_LITE_STATIC_MEMORY + TFLITE_CHECK(false && "No shape resizing supported on this platform"); +#else // TF_LITE_STATIC_MEMORY + delete[] dims_pointer_; +#endif // TF_LITE_STATIC_MEMORY + } + } + + inline int32_t DimensionsCount() const { return size_; } + inline int32_t Dims(int i) const { + TFLITE_DCHECK_GE(i, 0); + TFLITE_DCHECK_LT(i, size_); + return size_ > kMaxSmallSize ? dims_pointer_[i] : dims_[i]; + } + inline void SetDim(int i, int32_t val) { + TFLITE_DCHECK_GE(i, 0); + TFLITE_DCHECK_LT(i, size_); + if (size_ > kMaxSmallSize) { + dims_pointer_[i] = val; + } else { + dims_[i] = val; + } + } + + inline int32_t* DimsData() { + return size_ > kMaxSmallSize ? dims_pointer_ : dims_; + } + inline const int32_t* DimsData() const { + return size_ > kMaxSmallSize ? dims_pointer_ : dims_; + } + // The caller must ensure that the shape is no bigger than 5-D. + inline const int32_t* DimsDataUpTo5D() const { return dims_; } + + inline void Resize(int dimensions_count) { + if (size_ > kMaxSmallSize) { +#ifdef TF_LITE_STATIC_MEMORY + TFLITE_CHECK(false && "No shape resizing supported on this platform"); +#else // TF_LITE_STATIC_MEMORY + delete[] dims_pointer_; +#endif // TF_LITE_STATIC_MEMORY + } + size_ = dimensions_count; + if (dimensions_count > kMaxSmallSize) { +#ifdef TF_LITE_STATIC_MEMORY + TFLITE_CHECK(false && "No shape resizing supported on this platform"); +#else // TF_LITE_STATIC_MEMORY + dims_pointer_ = new int32_t[dimensions_count]; +#endif // TF_LITE_STATIC_MEMORY + } + } + + inline void ReplaceWith(int dimensions_count, const int32_t* dims_data) { + Resize(dimensions_count); + int32_t* dst_dims = DimsData(); + std::memcpy(dst_dims, dims_data, dimensions_count * sizeof(int32_t)); + } + + template + inline void BuildFrom(const T& src_iterable) { + const int dimensions_count = + std::distance(src_iterable.begin(), src_iterable.end()); + Resize(dimensions_count); + int32_t* data = DimsData(); + for (auto it : src_iterable) { + *data = it; + ++data; + } + } + + // This will probably be factored out. Old code made substantial use of 4-D + // shapes, and so this function is used to extend smaller shapes. Note that + // (a) as Dims<4>-dependent code is eliminated, the reliance on this should be + // reduced, and (b) some kernels are stricly 4-D, but then the shapes of their + // inputs should already be 4-D, so this function should not be needed. + inline static RuntimeShape ExtendedShape(int new_shape_size, + const RuntimeShape& shape) { + return RuntimeShape(new_shape_size, shape, 1); + } + + inline void BuildFrom(const std::initializer_list init_list) { + BuildFrom>(init_list); + } + + // Returns the total count of elements, that is the size when flattened into a + // vector. + inline int FlatSize() const { + int buffer_size = 1; + const int* dims_data = reinterpret_cast(DimsData()); + for (int i = 0; i < size_; i++) { + buffer_size *= dims_data[i]; + } + return buffer_size; + } + + bool operator!=(const RuntimeShape& comp) const { return !((*this) == comp); } + + private: + // For use only by ExtendedShape(), written to guarantee (return-value) copy + // elision in C++17. + // This creates a shape padded to the desired size with the specified value. + RuntimeShape(int new_shape_size, const RuntimeShape& shape, int pad_value) + : size_(0) { + // If the following check fails, it is likely because a 4D-only kernel is + // being used with an array of larger dimension count. + TFLITE_CHECK_GE(new_shape_size, shape.DimensionsCount()); + Resize(new_shape_size); + const int size_increase = new_shape_size - shape.DimensionsCount(); + for (int i = 0; i < size_increase; ++i) { + SetDim(i, pad_value); + } + std::memcpy(DimsData() + size_increase, shape.DimsData(), + sizeof(int32_t) * shape.DimensionsCount()); + } + + int32_t size_; + union { + int32_t dims_[kMaxSmallSize]; + int32_t* dims_pointer_; + }; +}; + +// Converts inference-style shape to legacy tflite::Dims<4>. +inline tflite::Dims<4> ToRuntimeDims(const tflite::RuntimeShape& array_shape) { + tflite::Dims<4> result; + const int dimensions_count = array_shape.DimensionsCount(); + TFLITE_CHECK_LE(dimensions_count, 4); + int cum_prod = 1; + for (int i = 0; i < 4; i++) { + const int new_dim = + (i < dimensions_count) ? array_shape.Dims(dimensions_count - 1 - i) : 1; + result.sizes[i] = new_dim; + result.strides[i] = cum_prod; + cum_prod *= new_dim; + } + return result; +} + +// TODO(b/80418076): Move to legacy ops file, update invocations. +inline RuntimeShape DimsToShape(const tflite::Dims<4>& dims) { + return RuntimeShape( + {dims.sizes[3], dims.sizes[2], dims.sizes[1], dims.sizes[0]}); +} + +// Gets next index to iterate through a multidimensional array. +inline bool NextIndex(const int num_dims, const int* dims, int* current) { + if (num_dims == 0) { + return false; + } + TFLITE_DCHECK(dims != nullptr); + TFLITE_DCHECK(current != nullptr); + int carry = 1; + for (int idx = num_dims - 1; idx >= 0; --idx) { + int current_val = current[idx] + carry; + TFLITE_DCHECK_GE(dims[idx], current_val); + if (dims[idx] == current_val) { + current[idx] = 0; + } else { + current[idx] = current_val; + carry = 0; + break; + } + } + return (carry == 0); +} + +// Gets offset of index if reducing on axis. When reducing, the flattened offset +// will not change, if the input index changes on the given axis. For example, +// if you have a 3D tensor and you are reducing to 2D by eliminating axis 0, +// then index (0, 1, 2) and index (1, 1, 2) will map to the same flattened +// offset. +// TODO(kanlig): uses Dims to represent dimensions. +inline size_t ReducedOutputOffset(const int num_dims, const int* dims, + const int* index, const int num_axis, + const int* axis) { + if (num_dims == 0) { + return 0; + } + TFLITE_DCHECK(dims != nullptr); + TFLITE_DCHECK(index != nullptr); + size_t offset = 0; + for (int idx = 0; idx < num_dims; ++idx) { + // if we need to skip this axis + bool is_axis = false; + if (axis != nullptr) { + for (int axis_idx = 0; axis_idx < num_axis; ++axis_idx) { + if (idx == axis[axis_idx]) { + is_axis = true; + break; + } + } + } + if (!is_axis) { + offset = offset * static_cast(dims[idx]) + + static_cast(index[idx]); + } + } + return offset; +} + +inline int Offset(const RuntimeShape& shape, int i0, int i1, int i2, int i3) { + TFLITE_DCHECK_EQ(shape.DimensionsCount(), 4); + const int* dims_data = reinterpret_cast(shape.DimsDataUpTo5D()); + TFLITE_DCHECK(i0 >= 0 && i0 < dims_data[0]); + TFLITE_DCHECK(i1 >= 0 && i1 < dims_data[1]); + TFLITE_DCHECK(i2 >= 0 && i2 < dims_data[2]); + TFLITE_DCHECK(i3 >= 0 && i3 < dims_data[3]); + return ((i0 * dims_data[1] + i1) * dims_data[2] + i2) * dims_data[3] + i3; +} + +inline int Offset(const Dims<4>& dims, int i0, int i1, int i2, int i3) { + TFLITE_DCHECK(i0 >= 0 && i0 < dims.sizes[0]); + TFLITE_DCHECK(i1 >= 0 && i1 < dims.sizes[1]); + TFLITE_DCHECK(i2 >= 0 && i2 < dims.sizes[2]); + TFLITE_DCHECK(i3 >= 0 && i3 < dims.sizes[3]); + return i0 * dims.strides[0] + i1 * dims.strides[1] + i2 * dims.strides[2] + + i3 * dims.strides[3]; +} + +inline int Offset(const Dims<4>& dims, int* index) { + return Offset(dims, index[0], index[1], index[2], index[3]); +} + +inline int Offset(const RuntimeShape& shape, int* index) { + return Offset(shape, index[0], index[1], index[2], index[3]); +} + +// Get array size, DCHECKing that the dim index is in range. +// +// Note that this will be phased out with Dims<4>, since RuntimeShape::Dims() +// already performs this check. +template +int ArraySize(const Dims& array, int index) { + TFLITE_DCHECK(index >= 0 && index < N); + return array.sizes[index]; +} + +// Get common array size, DCHECKing that they all agree. +template +int MatchingArraySize(const ArrayType1& array1, int index1, + const ArrayType2& array2, int index2) { + TFLITE_DCHECK_EQ(ArraySize(array1, index1), ArraySize(array2, index2)); + return ArraySize(array1, index1); +} + +template +int MatchingArraySize(const ArrayType1& array1, int index1, + const ArrayType2& array2, int index2, Args... args) { + TFLITE_DCHECK_EQ(ArraySize(array1, index1), ArraySize(array2, index2)); + return MatchingArraySize(array1, index1, args...); +} + +// Get common shape dim, DCHECKing that they all agree. +inline int MatchingDim(const RuntimeShape& shape1, int index1, + const RuntimeShape& shape2, int index2) { + TFLITE_DCHECK_EQ(shape1.Dims(index1), shape2.Dims(index2)); + return shape1.Dims(index1); +} + +template +int MatchingDim(const RuntimeShape& shape1, int index1, + const RuntimeShape& shape2, int index2, Args... args) { + TFLITE_DCHECK_EQ(shape1.Dims(index1), shape2.Dims(index2)); + return MatchingDim(shape1, index1, args...); +} + +// Will be phased out with Dims<4>, replaced by RuntimeShape::FlatSize(). +template +inline int FlatSize(const Dims& dims) { + int flat_size = 1; + for (int i = 0; i < N; ++i) { + flat_size *= dims.sizes[i]; + } + return flat_size; +} + +TFLITE_DEPRECATED("Prefer FlatSize.") +inline int RequiredBufferSizeForDims(const Dims<4>& dims) { + return FlatSize(dims); +} + +inline int MatchingElementsSize(const RuntimeShape& shape, + const RuntimeShape& check_shape_0) { + const int size_1 = shape.FlatSize(); + const int size_2 = check_shape_0.FlatSize(); + TFLITE_CHECK_EQ(size_1, size_2); + return size_1; +} + +inline int MatchingElementsSize(const RuntimeShape& shape, + const RuntimeShape& check_shape_0, + const RuntimeShape& check_shape_1) { + const int size_1 = shape.FlatSize(); + const int size_2 = check_shape_0.FlatSize(); + const int size_3 = check_shape_1.FlatSize(); + TFLITE_CHECK_EQ(size_1, size_2); + TFLITE_CHECK_EQ(size_2, size_3); + return size_1; +} + +// Flat size calculation, checking that dimensions match with one or more other +// arrays. +inline int MatchingFlatSize(const RuntimeShape& shape, + const RuntimeShape& check_shape_0) { + TFLITE_DCHECK_EQ(shape.DimensionsCount(), check_shape_0.DimensionsCount()); + const int dims_count = shape.DimensionsCount(); + for (int i = 0; i < dims_count; ++i) { + TFLITE_DCHECK_EQ(shape.Dims(i), check_shape_0.Dims(i)); + } + return shape.FlatSize(); +} + +inline int MatchingFlatSize(const RuntimeShape& shape, + const RuntimeShape& check_shape_0, + const RuntimeShape& check_shape_1) { + TFLITE_DCHECK_EQ(shape.DimensionsCount(), check_shape_0.DimensionsCount()); + const int dims_count = shape.DimensionsCount(); + for (int i = 0; i < dims_count; ++i) { + TFLITE_DCHECK_EQ(shape.Dims(i), check_shape_0.Dims(i)); + } + return MatchingFlatSize(shape, check_shape_1); +} + +inline int MatchingFlatSize(const RuntimeShape& shape, + const RuntimeShape& check_shape_0, + const RuntimeShape& check_shape_1, + const RuntimeShape& check_shape_2) { + TFLITE_DCHECK_EQ(shape.DimensionsCount(), check_shape_0.DimensionsCount()); + const int dims_count = shape.DimensionsCount(); + for (int i = 0; i < dims_count; ++i) { + TFLITE_DCHECK_EQ(shape.Dims(i), check_shape_0.Dims(i)); + } + return MatchingFlatSize(shape, check_shape_1, check_shape_2); +} + +inline int MatchingFlatSize(const RuntimeShape& shape, + const RuntimeShape& check_shape_0, + const RuntimeShape& check_shape_1, + const RuntimeShape& check_shape_2, + const RuntimeShape& check_shape_3) { + TFLITE_DCHECK_EQ(shape.DimensionsCount(), check_shape_0.DimensionsCount()); + const int dims_count = shape.DimensionsCount(); + for (int i = 0; i < dims_count; ++i) { + TFLITE_DCHECK_EQ(shape.Dims(i), check_shape_0.Dims(i)); + } + return MatchingFlatSize(shape, check_shape_1, check_shape_2, check_shape_3); +} + +// Flat size calculation, checking that dimensions match with one or more other +// arrays. +template +inline int MatchingFlatSize(const Dims& dims, const Dims& check_dims_0) { + for (int i = 0; i < N; ++i) { + TFLITE_DCHECK_EQ(ArraySize(dims, i), ArraySize(check_dims_0, i)); + } + return FlatSize(dims); +} + +template +inline int MatchingFlatSize(const Dims& dims, const Dims& check_dims_0, + const Dims& check_dims_1) { + for (int i = 0; i < N; ++i) { + TFLITE_DCHECK_EQ(ArraySize(dims, i), ArraySize(check_dims_0, i)); + } + return MatchingFlatSize(dims, check_dims_1); +} + +template +inline int MatchingFlatSize(const Dims& dims, const Dims& check_dims_0, + const Dims& check_dims_1, + const Dims& check_dims_2) { + for (int i = 0; i < N; ++i) { + TFLITE_DCHECK_EQ(ArraySize(dims, i), ArraySize(check_dims_0, i)); + } + return MatchingFlatSize(dims, check_dims_1, check_dims_2); +} + +template +inline int MatchingFlatSize(const Dims& dims, const Dims& check_dims_0, + const Dims& check_dims_1, + const Dims& check_dims_2, + const Dims& check_dims_3) { + for (int i = 0; i < N; ++i) { + TFLITE_DCHECK_EQ(ArraySize(dims, i), ArraySize(check_dims_0, i)); + } + return MatchingFlatSize(dims, check_dims_1, check_dims_2, check_dims_3); +} + +// Data is required to be contiguous, and so many operators can use either the +// full array flat size or the flat size with one dimension skipped (commonly +// the depth). +template +inline int FlatSizeSkipDim(const Dims& dims, int skip_dim) { + TFLITE_DCHECK(skip_dim >= 0 && skip_dim < N); + int flat_size = 1; + for (int i = 0; i < N; ++i) { + flat_size *= (i == skip_dim) ? 1 : dims.sizes[i]; + } + return flat_size; +} + +// A combination of MatchingFlatSize() and FlatSizeSkipDim(). +template +inline int MatchingFlatSizeSkipDim(const Dims& dims, int skip_dim, + const Dims& check_dims_0) { + for (int i = 0; i < N; ++i) { + if (i != skip_dim) { + TFLITE_DCHECK_EQ(ArraySize(dims, i), ArraySize(check_dims_0, i)); + } + } + return FlatSizeSkipDim(dims, skip_dim); +} + +template +inline int MatchingFlatSizeSkipDim(const Dims& dims, int skip_dim, + const Dims& check_dims_0, + const Dims& check_dims_1) { + for (int i = 0; i < N; ++i) { + if (i != skip_dim) { + TFLITE_DCHECK_EQ(ArraySize(dims, i), ArraySize(check_dims_0, i)); + } + } + return MatchingFlatSizeSkipDim(dims, skip_dim, check_dims_1); +} + +template +inline int MatchingFlatSizeSkipDim(const Dims& dims, int skip_dim, + const Dims& check_dims_0, + const Dims& check_dims_1, + const Dims& check_dims_2) { + for (int i = 0; i < N; ++i) { + if (i != skip_dim) { + TFLITE_DCHECK_EQ(ArraySize(dims, i), ArraySize(check_dims_0, i)); + } + } + return MatchingFlatSizeSkipDim(dims, skip_dim, check_dims_1, check_dims_2); +} + +template +inline int MatchingFlatSizeSkipDim(const Dims& dims, int skip_dim, + const Dims& check_dims_0, + const Dims& check_dims_1, + const Dims& check_dims_2, + const Dims& check_dims_3) { + for (int i = 0; i < N; ++i) { + if (i != skip_dim) { + TFLITE_DCHECK_EQ(ArraySize(dims, i), ArraySize(check_dims_0, i)); + } + } + return MatchingFlatSizeSkipDim(dims, skip_dim, check_dims_1, check_dims_2, + check_dims_3); +} + +// Data is required to be contiguous, and so many operators can use either the +// full array flat size or the flat size with one dimension skipped (commonly +// the depth). +inline int FlatSizeSkipDim(const RuntimeShape& shape, int skip_dim) { + const int dims_count = shape.DimensionsCount(); + TFLITE_DCHECK(skip_dim >= 0 && skip_dim < dims_count); + const auto* dims_data = shape.DimsData(); + int flat_size = 1; + for (int i = 0; i < dims_count; ++i) { + flat_size *= (i == skip_dim) ? 1 : dims_data[i]; + } + return flat_size; +} + +// A combination of MatchingFlatSize() and FlatSizeSkipDim(). +inline int MatchingFlatSizeSkipDim(const RuntimeShape& shape, int skip_dim, + const RuntimeShape& check_shape_0) { + const int dims_count = shape.DimensionsCount(); + for (int i = 0; i < dims_count; ++i) { + if (i != skip_dim) { + TFLITE_DCHECK_EQ(shape.Dims(i), check_shape_0.Dims(i)); + } + } + return FlatSizeSkipDim(shape, skip_dim); +} + +inline int MatchingFlatSizeSkipDim(const RuntimeShape& shape, int skip_dim, + const RuntimeShape& check_shape_0, + const RuntimeShape& check_shape_1) { + const int dims_count = shape.DimensionsCount(); + for (int i = 0; i < dims_count; ++i) { + if (i != skip_dim) { + TFLITE_DCHECK_EQ(shape.Dims(i), check_shape_0.Dims(i)); + } + } + return MatchingFlatSizeSkipDim(shape, skip_dim, check_shape_1); +} + +inline int MatchingFlatSizeSkipDim(const RuntimeShape& shape, int skip_dim, + const RuntimeShape& check_shape_0, + const RuntimeShape& check_shape_1, + const RuntimeShape& check_shape_2) { + const int dims_count = shape.DimensionsCount(); + for (int i = 0; i < dims_count; ++i) { + if (i != skip_dim) { + TFLITE_DCHECK_EQ(shape.Dims(i), check_shape_0.Dims(i)); + } + } + return MatchingFlatSizeSkipDim(shape, skip_dim, check_shape_1, check_shape_2); +} + +inline int MatchingFlatSizeSkipDim(const RuntimeShape& shape, int skip_dim, + const RuntimeShape& check_shape_0, + const RuntimeShape& check_shape_1, + const RuntimeShape& check_shape_2, + const RuntimeShape& check_shape_3) { + const int dims_count = shape.DimensionsCount(); + for (int i = 0; i < dims_count; ++i) { + if (i != skip_dim) { + TFLITE_DCHECK_EQ(shape.Dims(i), check_shape_0.Dims(i)); + } + } + return MatchingFlatSizeSkipDim(shape, skip_dim, check_shape_1, check_shape_2, + check_shape_3); +} + +template +bool IsPackedWithoutStrides(const Dims& dims) { + int expected_stride = 1; + for (int d = 0; d < N; d++) { + if (dims.strides[d] != expected_stride) return false; + expected_stride *= dims.sizes[d]; + } + return true; +} + +template +void ComputeStrides(Dims* dims) { + dims->strides[0] = 1; + for (int d = 1; d < N; d++) { + dims->strides[d] = dims->strides[d - 1] * dims->sizes[d - 1]; + } +} + +enum class BroadcastableOpCategory : uint8_t { + kNone, + kNonBroadcast, // Matching input shapes. + kFirstInputBroadcastsFast, // Fivefold nested loops. + kSecondInputBroadcastsFast, // Fivefold nested loops. + kGenericBroadcast, // Fall-back. +}; + +struct MinMax { + float min; + float max; +}; +static_assert(sizeof(MinMax) == 8, ""); + +struct ActivationParams { + FusedActivationFunctionType activation_type; + // uint8_t, etc, activation params. + int32_t quantized_activation_min; + int32_t quantized_activation_max; +}; + +struct ReluParams : public ActivationParams { + int32_t input_offset; + int32_t output_offset; + int32_t output_multiplier; + int output_shift; +}; + +// Styles of resizing op usages. For example, kImageStyle can be used with a Pad +// op for pattern-specific optimization. +enum class ResizingCategory : uint8_t { + kNone, + kImageStyle, // 4D, operating on inner dimensions, say {0, a, b, 0}. + kGenericResize, +}; + +// For Add, Sub, Mul ops. +struct ArithmeticParams { + // Shape dependent / common to data / op types. + BroadcastableOpCategory broadcast_category; + // uint8_t inference params. + int32_t input1_offset; + int32_t input2_offset; + int32_t output_offset; + int32_t output_multiplier; + int output_shift; + // Add / Sub, not Mul, uint8_t inference params. + int left_shift; + int32_t input1_multiplier; + int input1_shift; + int32_t input2_multiplier; + int input2_shift; + + // TODO(b/158622529): Union the following activation params. + // uint8_t, etc, activation params. + int32_t quantized_activation_min; + int32_t quantized_activation_max; + // float activation params. + float float_activation_min; + float float_activation_max; + // int64_t activation params. + int64_t int64_activation_min; + int64_t int64_activation_max; + + // Processed output dimensions. + // Let input "a" be the one that broadcasts in the faster-changing dimension. + // Then, after coalescing, for shapes {a0, a1, a2, a3, a4} and + // {b0, b1, b2, b3, b4}, + // broadcast_shape[4] = b0 = a0. + // broadcast_shape[3] = b1; a1 = 1. + // broadcast_shape[2] = b2 = a2. + // broadcast_shape[1] = a3; b3 = 1. + // broadcast_shape[0] = b4 = a4. + int broadcast_shape[5]; +}; + +struct ConcatenationParams { + int8_t axis; + const int32_t* input_zeropoint; + const float* input_scale; + uint16_t inputs_count; + int32_t output_zeropoint; + float output_scale; +}; + +struct ComparisonParams { + // uint8_t inference params. + int left_shift; + int32_t input1_offset; + int32_t input1_multiplier; + int input1_shift; + int32_t input2_offset; + int32_t input2_multiplier; + int input2_shift; + // Shape dependent / common to inference types. + bool is_broadcast; +}; + +struct ConvParams { + PaddingType padding_type; + PaddingValues padding_values; + // TODO(starka): This was just "stride", so check that width+height is OK. + int16_t stride_width; + int16_t stride_height; + int16_t dilation_width_factor; + int16_t dilation_height_factor; + // uint8_t inference params. + // TODO(b/65838351): Use smaller types if appropriate. + int32_t input_offset; + int32_t weights_offset; + int32_t output_offset; + int32_t output_multiplier; + int output_shift; + // uint8_t, etc, activation params. + int32_t quantized_activation_min; + int32_t quantized_activation_max; + // float activation params. + float float_activation_min; + float float_activation_max; +}; + +struct DepthToSpaceParams { + int32_t block_size; +}; + +struct DepthwiseParams { + PaddingType padding_type; + PaddingValues padding_values; + int16_t stride_width; + int16_t stride_height; + int16_t dilation_width_factor; + int16_t dilation_height_factor; + int16_t depth_multiplier; + // uint8_t inference params. + // TODO(b/65838351): Use smaller types if appropriate. + int32_t input_offset; + int32_t weights_offset; + int32_t output_offset; + int32_t output_multiplier; + int output_shift; + // uint8_t, etc, activation params. + int32_t quantized_activation_min; + int32_t quantized_activation_max; + // float activation params. + float float_activation_min; + float float_activation_max; + const int32_t* output_multiplier_per_channel; + const int32_t* output_shift_per_channel; +}; + +struct DequantizationParams { + double scale; + int32_t zero_point; +}; + +struct PerChannelDequantizationParams { + const float* scale; + const int32_t* zero_point; + int32_t quantized_dimension; +}; + +struct FakeQuantParams { + MinMax minmax; + int32_t num_bits; +}; + +struct FullyConnectedParams { + // uint8_t inference params. + // TODO(b/65838351): Use smaller types if appropriate. + int32_t input_offset; + int32_t weights_offset; + int32_t output_offset; + int32_t output_multiplier; + int output_shift; + // uint8_t, etc, activation params. + int32_t quantized_activation_min; + int32_t quantized_activation_max; + // float activation params. + float float_activation_min; + float float_activation_max; + // Mark the operands as cacheable if they are unchanging, e.g. weights. + bool lhs_cacheable; + bool rhs_cacheable; + FullyConnectedWeightsFormat weights_format; +}; + +struct GatherParams { + int16_t axis; +}; + +struct L2NormalizationParams { + // uint8_t inference params. + int32_t input_zero_point; +}; + +struct LocalResponseNormalizationParams { + int32_t range; + double bias; + double alpha; + double beta; +}; + +struct HardSwishParams { + // zero_point of the input activations. + int16_t input_zero_point; + // zero_point of the output activations. + int16_t output_zero_point; + // 16bit fixed-point component of the multiplier to apply to go from the + // "high-res input scale", which is the input scale multiplied by 2^7, to the + // "relu-ish scale", which 3.0/32768. + // See the implementation of HardSwishPrepare. + int16_t reluish_multiplier_fixedpoint_int16; + // exponent/bit-shift component of the aforementioned multiplier. + int reluish_multiplier_exponent; + // 16bit fixed-point component of the multiplier to apply to go from the + // "high-res input scale", which is the input scale multiplied by 2^7, to the + // output scale. + // See the implementation of HardSwishPrepare. + int16_t output_multiplier_fixedpoint_int16; + // exponent/bit-shift component of the aforementioned multiplier. + int output_multiplier_exponent; +}; + +struct LogisticParams { + // uint8_t inference params. + int32_t input_zero_point; + int32_t input_range_radius; + int32_t input_multiplier; + int input_left_shift; +}; + +struct LstmCellParams { + int32_t weights_zero_point; + int32_t accum_multiplier; + int accum_shift; + int state_integer_bits; +}; + +struct MeanParams { + int8_t axis_count; + int16_t axis[4]; +}; + +struct PackParams { + int8_t axis; + const int32_t* input_zeropoint; + const float* input_scale; + uint16_t inputs_count; + int32_t output_zeropoint; + float output_scale; +}; + +struct PadParams { + int8_t left_padding_count; + int32_t left_padding[4]; + int8_t right_padding_count; + int32_t right_padding[4]; + ResizingCategory resizing_category; +}; + +struct PreluParams { + int32_t input_offset; + int32_t alpha_offset; + int32_t output_offset; + int32_t output_multiplier_1; + int output_shift_1; + int32_t output_multiplier_2; + int output_shift_2; +}; + +struct PoolParams { + FusedActivationFunctionType activation; + PaddingType padding_type; + PaddingValues padding_values; + int stride_height; + int stride_width; + int filter_height; + int filter_width; + // uint8_t, etc, activation params. + int32_t quantized_activation_min; + int32_t quantized_activation_max; + // float activation params. + float float_activation_min; + float float_activation_max; +}; + +struct ReshapeParams { + int8_t shape_count; + int32_t shape[4]; +}; + +struct ResizeBilinearParams { + bool align_corners; + // half_pixel_centers assumes pixels are of half the actual dimensions, and + // yields more accurate resizes. Corresponds to the same argument for the + // original TensorFlow op in TF2.0. + bool half_pixel_centers; +}; + +struct ResizeNearestNeighborParams { + bool align_corners; + bool half_pixel_centers; +}; + +struct SliceParams { + int8_t begin_count; + int32_t begin[4]; + int8_t size_count; + int32_t size[4]; +}; + +struct SoftmaxParams { + // beta is not really used (not a Tensorflow parameter) and not implemented + // for LogSoftmax. + double beta; + // uint8_t inference params. Used even when beta defaults to 1.0. + int32_t input_multiplier; + int32_t input_left_shift; + // Reverse scaling is only used by LogSoftmax. + int32_t reverse_scaling_divisor; + int32_t reverse_scaling_right_shift; + int diff_min; + int32_t zero_point; + float scale; + float* table; + int16_t* exp_lut; + int16_t* one_over_one_plus_x_lut; + uint8_t* uint8_table1; + uint8_t* uint8_table2; +}; + +struct SpaceToBatchParams { + // "Zero" padding for uint8_t means padding with the output offset. + int32_t output_offset; +}; + +struct SpaceToDepthParams { + int32_t block_size; +}; + +struct SplitParams { + // Graphs that split into, say, 2000 nodes are encountered. The indices in + // OperatorEdges are of type uint16_t. + uint16_t num_split; + int16_t axis; +}; + +struct SqueezeParams { + int8_t squeeze_dims_count; + int32_t squeeze_dims[4]; +}; + +struct StridedSliceParams { + int8_t start_indices_count; + int32_t start_indices[5]; + int8_t stop_indices_count; + int32_t stop_indices[5]; + int8_t strides_count; + int32_t strides[5]; + + int16_t begin_mask; + int16_t ellipsis_mask; + int16_t end_mask; + int16_t new_axis_mask; + int16_t shrink_axis_mask; +}; + +struct TanhParams { + int32_t input_zero_point; + int32_t input_range_radius; + int32_t input_multiplier; + int input_left_shift; +}; + +struct TransposeParams { + int8_t perm_count; + int32_t perm[5]; +}; + +struct UnpackParams { + uint16_t num_split; + int16_t axis; +}; + +struct LeakyReluParams { + float alpha; + int32_t input_offset; + int32_t output_offset; + int32_t output_multiplier_alpha; + int32_t output_shift_alpha; + int32_t output_multiplier_identity; + int32_t output_shift_identity; +}; + +template +inline void SetActivationParams(float min, float max, P* params) { + params->float_activation_min = min; + params->float_activation_max = max; +} + +template +inline void SetActivationParams(int32_t min, int32_t max, P* params) { + params->quantized_activation_min = min; + params->quantized_activation_max = max; +} + +template +inline void SetActivationParams(int64_t min, int64_t max, P* params) { + params->int64_activation_min = min; + params->int64_activation_max = max; +} + +template +inline void GetActivationParams(const P& params, int32_t* min, int32_t* max) { + *min = params.quantized_activation_min; + *max = params.quantized_activation_max; +} + +template +inline void GetActivationParams(const P& params, float* min, float* max) { + *min = params.float_activation_min; + *max = params.float_activation_max; +} + +template +inline void GetActivationParams(const P& params, int64_t* min, int64_t* max) { + *min = params.int64_activation_min; + *max = params.int64_activation_max; +} +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_TYPES_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/kernel_util.cc b/components/tflite_micro/tensorflow/lite/kernels/kernel_util.cc new file mode 100644 index 00000000..74c8c88d --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/kernel_util.cc @@ -0,0 +1,325 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#include "tensorflow/lite/kernels/kernel_util.h" + +#include +#include + +#include +#include +#include + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/cppmath.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" + +namespace tflite { + +const TfLiteTensor* GetInput(const TfLiteContext* context, + const TfLiteNode* node, int index) { + if (context->tensors != nullptr) { + return &context->tensors[node->inputs->data[index]]; + } else { + return context->GetTensor(context, node->inputs->data[index]); + } +} + +TfLiteTensor* GetVariableInput(TfLiteContext* context, const TfLiteNode* node, + int index) { + TfLiteTensor* tensor = nullptr; + if (context->tensors != nullptr) { + tensor = &context->tensors[node->inputs->data[index]]; + } else { + tensor = context->GetTensor(context, node->inputs->data[index]); + } + return tensor->is_variable ? tensor : nullptr; +} + +TfLiteTensor* GetOutput(TfLiteContext* context, const TfLiteNode* node, + int index) { + if (context->tensors != nullptr) { + return &context->tensors[node->outputs->data[index]]; + } else { + return context->GetTensor(context, node->outputs->data[index]); + } +} + +const TfLiteTensor* GetOptionalInputTensor(const TfLiteContext* context, + const TfLiteNode* node, int index) { + const bool use_tensor = index < node->inputs->size && + node->inputs->data[index] != kTfLiteOptionalTensor; + if (use_tensor) { + if (context->tensors != nullptr) { + return &context->tensors[node->inputs->data[index]]; + } else { + return context->GetTensor(context, node->inputs->data[index]); + } + } + return nullptr; +} + +// Per-axis +TfLiteStatus PopulateConvolutionQuantizationParams( + TfLiteContext* context, const TfLiteTensor* input, + const TfLiteTensor* filter, const TfLiteTensor* bias, TfLiteTensor* output, + const TfLiteFusedActivation& activation, int32_t* multiplier, int* shift, + int32_t* output_activation_min, int32_t* output_activation_max, + int32_t* per_channel_multiplier, int* per_channel_shift) { + const auto* affine_quantization = + reinterpret_cast(filter->quantization.params); + return PopulateConvolutionQuantizationParams( + context, input, filter, bias, output, activation, multiplier, shift, + output_activation_min, output_activation_max, per_channel_multiplier, + per_channel_shift, affine_quantization->scale->size); +} + +// Per-axis & per-tensor +TfLiteStatus PopulateConvolutionQuantizationParams( + TfLiteContext* context, const TfLiteTensor* input, + const TfLiteTensor* filter, const TfLiteTensor* bias, TfLiteTensor* output, + const TfLiteFusedActivation& activation, int32_t* multiplier, int* shift, + int32_t* output_activation_min, int32_t* output_activation_max, + int32_t* per_channel_multiplier, int* per_channel_shift, int num_channels) { + TF_LITE_ENSURE_EQ(context, input->quantization.type, + kTfLiteAffineQuantization); + TF_LITE_ENSURE_EQ(context, filter->quantization.type, + kTfLiteAffineQuantization); + // TODO(jianlijianli): Enable bias type check and bias scale == input scale + // * filter scale for each channel in affine quantization once bias + // quantization is properly populated. + // TF_LITE_ENSURE_EQ(context, bias->quantization.type, + // kTfLiteAffineQuantization); + + // Check data type. + const auto* affine_quantization = + reinterpret_cast(filter->quantization.params); + TF_LITE_ENSURE(context, affine_quantization); + TF_LITE_ENSURE(context, affine_quantization->scale); + const bool is_per_channel = affine_quantization->scale->size > 1; + if (is_per_channel) { + // Currently only Int8/Int16 is supported for per channel quantization. + TF_LITE_ENSURE(context, + input->type == kTfLiteInt8 || input->type == kTfLiteInt16); + TF_LITE_ENSURE_EQ(context, filter->type, kTfLiteInt8); + TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size, num_channels); + TF_LITE_ENSURE_EQ( + context, num_channels, + filter->dims->data[affine_quantization->quantized_dimension]); + } + + // Populate multiplier and shift using affine quantization. + const float input_scale = input->params.scale; + const float output_scale = output->params.scale; + const float* filter_scales = affine_quantization->scale->data; + for (int i = 0; i < num_channels; ++i) { + // If per-tensor quantization parameter is specified, broadcast it along the + // quantization dimension (channels_out). + const float scale = is_per_channel ? filter_scales[i] : filter_scales[0]; + const double filter_scale = static_cast(scale); + const double effective_output_scale = static_cast(input_scale) * + filter_scale / + static_cast(output_scale); + int32_t significand; + int channel_shift; + QuantizeMultiplier(effective_output_scale, &significand, &channel_shift); + per_channel_multiplier[i] = significand; + per_channel_shift[i] = channel_shift; + } + + // Populate scalar quantization parameters. + // This check on legacy quantization parameters is kept only for backward + // compatibility. + if (input->type == kTfLiteUInt8) { + // Check bias scale == input scale * filter scale. + double real_multiplier = 0.0; + TF_LITE_ENSURE_STATUS(GetQuantizedConvolutionMultipler( + context, input, filter, bias, output, &real_multiplier)); + int exponent; + + // Populate quantization parameters with multiplier and shift. + QuantizeMultiplier(real_multiplier, multiplier, &exponent); + *shift = -exponent; + } + if (input->type == kTfLiteInt8 || input->type == kTfLiteUInt8 || + input->type == kTfLiteInt16) { + TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized( + context, activation, output, output_activation_min, + output_activation_max)); + } + return kTfLiteOk; +} + +TfLiteStatus GetQuantizedConvolutionMultipler(TfLiteContext* context, + const TfLiteTensor* input, + const TfLiteTensor* filter, + const TfLiteTensor* bias, + TfLiteTensor* output, + double* multiplier) { + const double input_product_scale = static_cast(input->params.scale) * + static_cast(filter->params.scale); + // TODO(ahentz): The following conditions must be guaranteed by the training + // pipeline. + if (bias) { + const double bias_scale = static_cast(bias->params.scale); + // Here we're making sure the input_product_scale & bias_scale are about the + // same. Since we have: + // (output - output_zp) * output_scale = + // input_product_scale * input_product + bias * bias_scale ---- (0) + // + // (0) equals: + // (input_product + bias) * input_product_scale ----- (1) + // + + // bias * (bias_scale - input_product_scale) ------ (2) + // + // For the real kernel computation, we're doing (1), so we really need to + // make sure (2) has minimum impact on the output, so: + // bias * (bias_scale - input_product_scale) / output_scale should be + // a small number for an integer. + // Since normally bias should be within a small range. + // We should expect (bias_scale - input_product_scale) / output_scale to + // be a small number like 0.02. + const double scale_diff = std::abs(input_product_scale - bias_scale); + const double output_scale = static_cast(output->params.scale); + + TF_LITE_ENSURE(context, scale_diff / output_scale <= 0.02); + } + return GetQuantizedConvolutionMultipler(context, input, filter, output, + multiplier); +} + +TfLiteStatus GetQuantizedConvolutionMultipler(TfLiteContext* context, + const TfLiteTensor* input, + const TfLiteTensor* filter, + TfLiteTensor* output, + double* multiplier) { + const double input_product_scale = + static_cast(input->params.scale * filter->params.scale); + TF_LITE_ENSURE(context, input_product_scale >= 0); + *multiplier = input_product_scale / static_cast(output->params.scale); + + return kTfLiteOk; +} + +namespace { +void CalculateActivationRangeQuantizedImpl(TfLiteFusedActivation activation, + int32_t qmin, int32_t qmax, + TfLiteTensor* output, + int32_t* act_min, int32_t* act_max) { + const auto scale = output->params.scale; + const auto zero_point = output->params.zero_point; + + auto quantize = [scale, zero_point](float f) { + return zero_point + static_cast(TfLiteRound(f / scale)); + }; + + if (activation == kTfLiteActRelu) { + *act_min = std::max(qmin, quantize(0.0)); + *act_max = qmax; + } else if (activation == kTfLiteActRelu6) { + *act_min = std::max(qmin, quantize(0.0)); + *act_max = std::min(qmax, quantize(6.0)); + } else if (activation == kTfLiteActReluN1To1) { + *act_min = std::max(qmin, quantize(-1.0)); + *act_max = std::min(qmax, quantize(1.0)); + } else { + *act_min = qmin; + *act_max = qmax; + } +} +} // namespace + +TfLiteStatus CalculateActivationRangeQuantized(TfLiteContext* context, + TfLiteFusedActivation activation, + TfLiteTensor* output, + int32_t* act_min, + int32_t* act_max) { + int32_t qmin = 0; + int32_t qmax = 0; + if (output->type == kTfLiteUInt8) { + qmin = std::numeric_limits::min(); + qmax = std::numeric_limits::max(); + } else if (output->type == kTfLiteInt8) { + qmin = std::numeric_limits::min(); + qmax = std::numeric_limits::max(); + } else if (output->type == kTfLiteInt16) { + qmin = std::numeric_limits::min(); + qmax = std::numeric_limits::max(); + } else { + TF_LITE_ENSURE(context, false); + } + + CalculateActivationRangeQuantizedImpl(activation, qmin, qmax, output, act_min, + act_max); + return kTfLiteOk; +} + +bool HaveSameShapes(const TfLiteTensor* input1, const TfLiteTensor* input2) { + return TfLiteIntArrayEqual(input1->dims, input2->dims); +} + +// TODO(petewarden): Having macros around this is ugly, look at other strategies +// before replicating this approach elsewhere. +#ifndef TF_LITE_STATIC_MEMORY +TfLiteStatus CalculateShapeForBroadcast(TfLiteContext* context, + const TfLiteTensor* input1, + const TfLiteTensor* input2, + TfLiteIntArray** output_shape) { + int dims1 = NumDimensions(input1); + int dims2 = NumDimensions(input2); + int out_dims = std::max(dims1, dims2); + if (NumElements(input1) == 0) { + *output_shape = TfLiteIntArrayCopy(input1->dims); + return kTfLiteOk; + } + std::unique_ptr shape( + TfLiteIntArrayCreate(out_dims), TfLiteIntArrayFree); + for (int i = 0; i < out_dims; ++i) { + int d1 = i >= dims1 ? 1 : SizeOfDimension(input1, dims1 - i - 1); + int d2 = i >= dims2 ? 1 : SizeOfDimension(input2, dims2 - i - 1); + TF_LITE_ENSURE(context, d1 == d2 || d1 == 1 || d2 == 1); + shape->data[out_dims - i - 1] = std::max(d1, d2); + } + *output_shape = shape.release(); + return kTfLiteOk; +} + +TfLiteStatus CalculateShapeForBroadcast(TfLiteContext* context, + const TfLiteTensor* input1, + const TfLiteTensor* input2, + const TfLiteTensor* input3, + TfLiteIntArray** output_shape) { + int dims1 = NumDimensions(input1); + int dims2 = NumDimensions(input2); + int dims3 = NumDimensions(input3); + int out_dims = std::max(std::max(dims1, dims2), dims3); + std::unique_ptr shape( + TfLiteIntArrayCreate(out_dims), TfLiteIntArrayFree); + for (int i = 0; i < out_dims; ++i) { + int d1 = i >= dims1 ? 1 : SizeOfDimension(input1, dims1 - i - 1); + int d2 = i >= dims2 ? 1 : SizeOfDimension(input2, dims2 - i - 1); + int d3 = i >= dims3 ? 1 : SizeOfDimension(input3, dims3 - i - 1); + int max_value = std::max(std::max(d1, d2), d3); + TF_LITE_ENSURE(context, d1 == 1 || d1 == max_value); + TF_LITE_ENSURE(context, d2 == 1 || d2 == max_value); + TF_LITE_ENSURE(context, d3 == 1 || d3 == max_value); + shape->data[out_dims - i - 1] = max_value; + } + *output_shape = shape.release(); + return kTfLiteOk; +} +#endif // TF_LITE_STATIC_MEMORY + +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/kernels/kernel_util.h b/components/tflite_micro/tensorflow/lite/kernels/kernel_util.h new file mode 100644 index 00000000..0d6aa8fc --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/kernel_util.h @@ -0,0 +1,196 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_KERNEL_UTIL_H_ +#define TENSORFLOW_LITE_KERNELS_KERNEL_UTIL_H_ + +#include + +#include + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" + +namespace tflite { + +// A fair number of functions in this header have historically been inline. +// It is ok to change functions to not be inline if the latency with +// benchmark_model for MobileNet + MobileBERT is unaffected. If such a change is +// made, move the newly non-inlined function declarations to the top of this +// header file. +const TfLiteTensor* GetInput(const TfLiteContext* context, + const TfLiteNode* node, int index); + +// Note: You must check if result is not null: +// TfLiteTensor* my_tensor = GetVariableInput(context, node, kMyTensorIdx); +// TF_LITE_ENSURE(context, my_tensor != nullptr); +TfLiteTensor* GetVariableInput(TfLiteContext* context, const TfLiteNode* node, + int index); + +TfLiteTensor* GetOutput(TfLiteContext* context, const TfLiteNode* node, + int index); + +const TfLiteTensor* GetOptionalInputTensor(const TfLiteContext* context, + const TfLiteNode* node, int index); + +inline int NumDimensions(const TfLiteTensor* t) { return t->dims->size; } +inline int SizeOfDimension(const TfLiteTensor* t, int dim) { + return t->dims->data[dim]; +} + +#ifndef TF_LITE_STATIC_MEMORY +inline TfLiteTensor* GetTemporary(TfLiteContext* context, + const TfLiteNode* node, int index) { + return &context->tensors[node->temporaries->data[index]]; +} +inline const TfLiteTensor* GetIntermediates(TfLiteContext* context, + const TfLiteNode* node, int index) { + return &context->tensors[node->intermediates->data[index]]; +} +inline int NumIntermediates(const TfLiteNode* node) { + return node->intermediates->size; +} +#endif // TF_LITE_STATIC_MEMORY +inline int NumInputs(const TfLiteNode* node) { return node->inputs->size; } +inline int NumOutputs(const TfLiteNode* node) { return node->outputs->size; } + +inline int64_t NumElements(const TfLiteIntArray* dims) { + int64_t count = 1; + for (int i = 0; i < dims->size; ++i) { + count *= dims->data[i]; + } + return count; +} + +inline int64_t NumElements(const TfLiteTensor* t) { + return NumElements(t->dims); +} + +// Determines whether tensor is constant. +// TODO(b/138199592): Introduce new query which checks for constant OR +// persistent-read-only, which would be useful for most tensor kernels that +// are potentially dynamic based on the input tensor value availability at the +// time of prepare. +inline bool IsConstantTensor(const TfLiteTensor* tensor) { + return tensor->allocation_type == kTfLiteMmapRo; +} + +// Determines whether tensor is dynamic. Note that a tensor can be non-const and +// not dynamic. This function specifically checks for a dynamic tensor. +inline bool IsDynamicTensor(const TfLiteTensor* tensor) { + return tensor->allocation_type == kTfLiteDynamic; +} + +// Sets tensor to dynamic. +inline void SetTensorToDynamic(TfLiteTensor* tensor) { + if (tensor->allocation_type != kTfLiteDynamic) { + tensor->allocation_type = kTfLiteDynamic; + tensor->data.raw = nullptr; + } +} + +// Sets tensor to persistent and read-only. +inline void SetTensorToPersistentRo(TfLiteTensor* tensor) { + if (tensor->allocation_type != kTfLitePersistentRo) { + tensor->allocation_type = kTfLitePersistentRo; + tensor->data.raw = nullptr; + } +} + +// Determines whether it is a hybrid op - one that has float inputs and +// quantized weights. +inline bool IsHybridOp(const TfLiteTensor* input, const TfLiteTensor* weight) { + return ((weight->type == kTfLiteUInt8 || weight->type == kTfLiteInt8) && + input->type == kTfLiteFloat32); +} + +// Check dimensionality match and populate OpData for Conv and DepthwiseConv. +TfLiteStatus PopulateConvolutionQuantizationParams( + TfLiteContext* context, const TfLiteTensor* input, + const TfLiteTensor* filter, const TfLiteTensor* bias, TfLiteTensor* output, + const TfLiteFusedActivation& activation, int32_t* multiplier, int* shift, + int32_t* output_activation_min, int32_t* output_activation_max, + int32_t* per_channel_multiplier, int* per_channel_shift); + +TfLiteStatus PopulateConvolutionQuantizationParams( + TfLiteContext* context, const TfLiteTensor* input, + const TfLiteTensor* filter, const TfLiteTensor* bias, TfLiteTensor* output, + const TfLiteFusedActivation& activation, int32_t* multiplier, int* shift, + int32_t* output_activation_min, int32_t* output_activation_max, + int32_t* per_channel_multiplier, int* per_channel_shift, int num_channels); + +// Calculates the multiplication factor for a quantized convolution (or +// quantized depthwise convolution) involving the given tensors. Returns an +// error if the scales of the tensors are not compatible. +TfLiteStatus GetQuantizedConvolutionMultipler(TfLiteContext* context, + const TfLiteTensor* input, + const TfLiteTensor* filter, + const TfLiteTensor* bias, + TfLiteTensor* output, + double* multiplier); + +TfLiteStatus GetQuantizedConvolutionMultipler(TfLiteContext* context, + const TfLiteTensor* input, + const TfLiteTensor* filter, + TfLiteTensor* output, + double* multiplier); + +// Calculates the useful quantized range of an activation layer given its +// activation tensor. +TfLiteStatus CalculateActivationRangeQuantized(TfLiteContext* context, + TfLiteFusedActivation activation, + TfLiteTensor* output, + int32_t* act_min, + int32_t* act_max); + +// Calculates the useful range of an activation layer given its activation +// tensor.a +template +void CalculateActivationRange(TfLiteFusedActivation activation, + T* activation_min, T* activation_max) { + if (activation == kTfLiteActRelu) { + *activation_min = 0; + *activation_max = std::numeric_limits::max(); + } else if (activation == kTfLiteActRelu6) { + *activation_min = 0; + *activation_max = 6; + } else if (activation == kTfLiteActReluN1To1) { + *activation_min = -1; + *activation_max = 1; + } else { + *activation_min = std::numeric_limits::lowest(); + *activation_max = std::numeric_limits::max(); + } +} + +// Return true if the given tensors have the same shape. +bool HaveSameShapes(const TfLiteTensor* input1, const TfLiteTensor* input2); + +// Calculates the output_shape that is necessary for element-wise operations +// with broadcasting involving the two input tensors. +TfLiteStatus CalculateShapeForBroadcast(TfLiteContext* context, + const TfLiteTensor* input1, + const TfLiteTensor* input2, + TfLiteIntArray** output_shape); + +// Calculates the output_shape that is necessary for element-wise operations +// with broadcasting involving the three input tensors. +TfLiteStatus CalculateShapeForBroadcast(TfLiteContext* context, + const TfLiteTensor* input1, + const TfLiteTensor* input2, + const TfLiteTensor* input3, + TfLiteIntArray** output_shape); +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_KERNEL_UTIL_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/op_macros.h b/components/tflite_micro/tensorflow/lite/kernels/op_macros.h new file mode 100644 index 00000000..22a17634 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/op_macros.h @@ -0,0 +1,83 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_OP_MACROS_H_ +#define TENSORFLOW_LITE_KERNELS_OP_MACROS_H_ + +// If we're on a platform without standard IO functions, fall back to a +// non-portable function. +#ifdef TF_LITE_MCU_DEBUG_LOG + +#include "tensorflow/lite/micro/debug_log.h" + +#define DEBUG_LOG(x) \ + do { \ + DebugLog(x); \ + } while (0) + +inline void InfiniteLoop() { + DEBUG_LOG("HALTED\n"); + while (1) { + } +} + +#define TFLITE_ABORT InfiniteLoop(); + +#else // TF_LITE_MCU_DEBUG_LOG + +#include +#include + +#define DEBUG_LOG(x) \ + do { \ + printf("%s", (x)); \ + } while (0) + +// Report Error for unsupported type by op 'op_name' and returns kTfLiteError. +#define TF_LITE_UNSUPPORTED_TYPE(context, type, op_name) \ + do { \ + TF_LITE_KERNEL_LOG((context), "%s:%d Type %s is unsupported by op %s.", \ + __FILE__, __LINE__, TfLiteTypeGetName(type), \ + (op_name)); \ + return kTfLiteError; \ + } while (0) + +#define TFLITE_ABORT abort() + +#endif // TF_LITE_MCU_DEBUG_LOG + +#ifdef NDEBUG +#define TFLITE_ASSERT_FALSE (static_cast(0)) +#else +#define TFLITE_ASSERT_FALSE TFLITE_ABORT +#endif + +#define TF_LITE_FATAL(msg) \ + do { \ + DEBUG_LOG(msg); \ + DEBUG_LOG("\nFATAL\n"); \ + TFLITE_ABORT; \ + } while (0) + +#define TF_LITE_ASSERT(x) \ + do { \ + if (!(x)) TF_LITE_FATAL(#x); \ + } while (0) + +#define TF_LITE_ASSERT_EQ(x, y) \ + do { \ + if ((x) != (y)) TF_LITE_FATAL(#x " didn't equal " #y); \ + } while (0) + +#endif // TENSORFLOW_LITE_KERNELS_OP_MACROS_H_ diff --git a/components/tflite_micro/tensorflow/lite/kernels/padding.h b/components/tflite_micro/tensorflow/lite/kernels/padding.h new file mode 100644 index 00000000..1116b1da --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/kernels/padding.h @@ -0,0 +1,80 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_KERNELS_PADDING_H_ +#define TENSORFLOW_LITE_KERNELS_PADDING_H_ + +#include "tensorflow/lite/c/builtin_op_data.h" + +namespace tflite { + +// TODO(renjieliu): Migrate others to use ComputePaddingWithLeftover. +inline int ComputePadding(int stride, int dilation_rate, int in_size, + int filter_size, int out_size) { + int effective_filter_size = (filter_size - 1) * dilation_rate + 1; + int padding = ((out_size - 1) * stride + effective_filter_size - in_size) / 2; + return padding > 0 ? padding : 0; +} + +// It's not guaranteed that padding is symmetric. It's important to keep +// offset for algorithms need all paddings. +inline int ComputePaddingWithOffset(int stride, int dilation_rate, int in_size, + int filter_size, int out_size, + int* offset) { + int effective_filter_size = (filter_size - 1) * dilation_rate + 1; + int total_padding = + ((out_size - 1) * stride + effective_filter_size - in_size); + total_padding = total_padding > 0 ? total_padding : 0; + *offset = total_padding % 2; + return total_padding / 2; +} + +// Matching GetWindowedOutputSize in TensorFlow. +inline int ComputeOutSize(TfLitePadding padding, int image_size, + int filter_size, int stride, int dilation_rate = 1) { + int effective_filter_size = (filter_size - 1) * dilation_rate + 1; + switch (padding) { + case kTfLitePaddingSame: + return (image_size + stride - 1) / stride; + case kTfLitePaddingValid: + return (image_size + stride - effective_filter_size) / stride; + default: + return 0; + } +} + +inline TfLitePaddingValues ComputePaddingHeightWidth( + int stride_height, int stride_width, int dilation_rate_height, + int dilation_rate_width, int in_height, int in_width, int filter_height, + int filter_width, TfLitePadding padding, int* out_height, int* out_width) { + *out_width = ComputeOutSize(padding, in_width, filter_width, stride_width, + dilation_rate_width); + *out_height = ComputeOutSize(padding, in_height, filter_height, stride_height, + dilation_rate_height); + + TfLitePaddingValues padding_values; + int offset = 0; + padding_values.height = + ComputePaddingWithOffset(stride_height, dilation_rate_height, in_height, + filter_height, *out_height, &offset); + padding_values.height_offset = offset; + padding_values.width = + ComputePaddingWithOffset(stride_width, dilation_rate_width, in_width, + filter_width, *out_width, &offset); + padding_values.width_offset = offset; + return padding_values; +} +} // namespace tflite + +#endif // TENSORFLOW_LITE_KERNELS_PADDING_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/all_ops_resolver.cc b/components/tflite_micro/tensorflow/lite/micro/all_ops_resolver.cc new file mode 100644 index 00000000..ff461cb9 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/all_ops_resolver.cc @@ -0,0 +1,91 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/micro/all_ops_resolver.h" + +#include "tensorflow/lite/micro/kernels/micro_ops.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace custom { +TfLiteRegistration* Register_ETHOSU(); +const char* GetString_ETHOSU(); +} // namespace custom +} // namespace micro +} // namespace ops + +AllOpsResolver::AllOpsResolver() { + // Please keep this list of Builtin Operators in alphabetical order. + AddAbs(); + AddAdd(); + AddArgMax(); + AddArgMin(); + AddAveragePool2D(); + AddCeil(); + AddConcatenation(); + AddConv2D(); + AddCos(); + AddDepthwiseConv2D(); + AddDequantize(); + AddEqual(); + AddFloor(); + AddFullyConnected(); + AddGreater(); + AddGreaterEqual(); + AddHardSwish(); + AddL2Normalization(); + AddLess(); + AddLessEqual(); + AddLog(); + AddLogicalAnd(); + AddLogicalNot(); + AddLogicalOr(); + AddLogistic(); + AddMaximum(); + AddMaxPool2D(); + AddMean(); + AddMinimum(); + AddMul(); + AddNeg(); + AddNotEqual(); + AddPack(); + AddPad(); + AddPadV2(); + AddPrelu(); + AddQuantize(); + AddRelu(); + AddRelu6(); + AddReshape(); + AddResizeNearestNeighbor(); + AddRound(); + AddRsqrt(); + AddSin(); + AddSoftmax(); + AddSplit(); + AddSqrt(); + AddSquare(); + AddStridedSlice(); + AddSub(); + AddSvdf(); + AddTanh(); + AddUnpack(); + + // TODO(b/159644355): Figure out if custom Ops belong in AllOpsResolver. + TfLiteRegistration* registration = + tflite::ops::micro::custom::Register_ETHOSU(); + if (registration) { + AddCustom(tflite::ops::micro::custom::GetString_ETHOSU(), registration); + } +} + +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/all_ops_resolver.h b/components/tflite_micro/tensorflow/lite/micro/all_ops_resolver.h new file mode 100644 index 00000000..e8105b96 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/all_ops_resolver.h @@ -0,0 +1,35 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_MICRO_ALL_OPS_RESOLVER_H_ +#define TENSORFLOW_LITE_MICRO_ALL_OPS_RESOLVER_H_ + +#include "tensorflow/lite/micro/compatibility.h" +#include "tensorflow/lite/micro/micro_mutable_op_resolver.h" + +namespace tflite { + +// The magic number in the template parameter is the maximum number of ops that +// can be added to AllOpsResolver. It can be increased if needed. And most +// applications that care about the memory footprint will want to directly use +// MicroMutableOpResolver and have an application specific template parameter. +// The examples directory has sample code for this. +class AllOpsResolver : public MicroMutableOpResolver<128> { + public: + AllOpsResolver(); + + private: + TF_LITE_REMOVE_VIRTUAL_DELETE +}; + +} // namespace tflite + +#endif // TENSORFLOW_LITE_MICRO_ALL_OPS_RESOLVER_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/benchmarks/keyword_scrambled_model_data.cc b/components/tflite_micro/tensorflow/lite/micro/benchmarks/keyword_scrambled_model_data.cc new file mode 100644 index 00000000..834f44ca --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/benchmarks/keyword_scrambled_model_data.cc @@ -0,0 +1,2898 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/micro/benchmarks/keyword_scrambled_model_data.h" + +// Keep model aligned to 8 bytes to guarantee aligned 64-bit accesses. +alignas(8) const unsigned char g_keyword_scrambled_model_data[] = { + 0x18, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0x00, + 0x14, 0x00, 0x10, 0x00, 0x0c, 0x00, 0x08, 0x00, 0x00, 0x00, 0x04, 0x00, + 0x0e, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0xd0, 0x6e, 0x00, 0x00, + 0xe4, 0x85, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0xbc, 0x6e, 0x00, 0x00, 0xac, 0x56, 0x00, 0x00, 0x9c, 0x52, 0x00, 0x00, + 0x8c, 0x51, 0x00, 0x00, 0x7c, 0x4d, 0x00, 0x00, 0x2c, 0x4d, 0x00, 0x00, + 0x1c, 0x49, 0x00, 0x00, 0x0c, 0x45, 0x00, 0x00, 0xfc, 0x43, 0x00, 0x00, + 0xec, 0x3f, 0x00, 0x00, 0x9c, 0x3f, 0x00, 0x00, 0x8c, 0x3b, 0x00, 0x00, + 0x7c, 0x37, 0x00, 0x00, 0x6c, 0x36, 0x00, 0x00, 0x5c, 0x32, 0x00, 0x00, + 0x0c, 0x32, 0x00, 0x00, 0xfc, 0x2d, 0x00, 0x00, 0xec, 0x29, 0x00, 0x00, + 0xdc, 0x28, 0x00, 0x00, 0xcc, 0x24, 0x00, 0x00, 0x7c, 0x24, 0x00, 0x00, + 0x6c, 0x22, 0x00, 0x00, 0x5c, 0x1a, 0x00, 0x00, 0xcc, 0x19, 0x00, 0x00, + 0xbc, 0x15, 0x00, 0x00, 0xac, 0x0d, 0x00, 0x00, 0x1c, 0x0d, 0x00, 0x00, + 0x0c, 0x09, 0x00, 0x00, 0xfc, 0x00, 0x00, 0x00, 0x6c, 0x00, 0x00, 0x00, + 0x1c, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x2a, 0x91, 0xff, 0xff, + 0x04, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x34, 0xe1, 0x4f, 0xa1, + 0x63, 0xa4, 0x62, 0xbf, 0x3e, 0x91, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, + 0x40, 0x00, 0x00, 0x00, 0xa3, 0xb2, 0x8f, 0xee, 0x35, 0xe6, 0xf2, 0xcc, + 0x68, 0xa0, 0x33, 0xc4, 0x7d, 0x4e, 0xbb, 0xa9, 0x10, 0x32, 0x8e, 0x3d, + 0x76, 0x14, 0x1c, 0x33, 0x0e, 0x77, 0xf7, 0xc8, 0x7b, 0x45, 0xc7, 0xdb, + 0xcf, 0x87, 0xc7, 0x70, 0xa9, 0x29, 0xfd, 0x70, 0x32, 0x96, 0x35, 0x7d, + 0xe9, 0xac, 0x6d, 0x9b, 0xfd, 0xe4, 0xbc, 0x4a, 0x57, 0xcd, 0x43, 0xcc, + 0x73, 0x72, 0xdf, 0x07, 0x68, 0xc5, 0x67, 0xbd, 0x8a, 0x91, 0xff, 0xff, + 0x04, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0xb0, 0xfb, 0x5f, 0xdf, + 0x0e, 0xb9, 0xa2, 0xfd, 0x66, 0x86, 0x13, 0x1b, 0x6d, 0x1d, 0x53, 0xdb, + 0x83, 0xbf, 0x44, 0x29, 0x3f, 0x93, 0xee, 0x42, 0x9a, 0xf4, 0x31, 0x6e, + 0xc3, 0x15, 0x7e, 0x48, 0x72, 0x50, 0xc3, 0x53, 0xef, 0x35, 0x1f, 0xc2, + 0x29, 0x42, 0xb4, 0xd7, 0x4b, 0xd7, 0x98, 0x60, 0xb9, 0x3e, 0xbb, 0x31, + 0x35, 0xc3, 0xf6, 0x15, 0x7a, 0x9a, 0x2c, 0xfd, 0xff, 0x04, 0xd9, 0x04, + 0x57, 0x52, 0xae, 0x99, 0xa3, 0x95, 0xae, 0x6a, 0x66, 0x52, 0x5f, 0x91, + 0x17, 0x83, 0x0d, 0x27, 0x16, 0x02, 0x06, 0x64, 0x80, 0x05, 0x99, 0x1c, + 0x6c, 0xab, 0xb1, 0xa1, 0x0e, 0x44, 0x1f, 0x63, 0xe9, 0xc1, 0xab, 0x8d, + 0x08, 0x79, 0x56, 0xe0, 0x90, 0xa5, 0xb8, 0x3b, 0xc4, 0x1e, 0xa5, 0x1f, + 0x64, 0xe4, 0x0b, 0x72, 0x62, 0x19, 0x5f, 0x66, 0xc0, 0x9b, 0x7b, 0xc4, + 0xe5, 0x9f, 0x82, 0xa7, 0x16, 0x92, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, + 0x00, 0x08, 0x00, 0x00, 0x3e, 0x3d, 0xf4, 0x61, 0x45, 0x2a, 0x48, 0x53, + 0x1f, 0x22, 0x74, 0x65, 0xea, 0x5a, 0x00, 0x83, 0x68, 0xf9, 0xbb, 0xa3, + 0xc2, 0x1a, 0x8f, 0xe1, 0xfb, 0x76, 0x6a, 0xe9, 0x1a, 0x0e, 0x4d, 0x32, + 0xc6, 0xf3, 0x8d, 0x85, 0x54, 0xa1, 0xe9, 0xb8, 0x35, 0xee, 0xba, 0x53, + 0x40, 0xa2, 0xea, 0x7f, 0xc3, 0x99, 0x71, 0x17, 0xdd, 0xd5, 0xfe, 0xdf, + 0x5e, 0x15, 0xa0, 0x73, 0xf8, 0x78, 0x49, 0x73, 0xcc, 0xf0, 0x18, 0x12, + 0x06, 0x81, 0xd6, 0x19, 0x2c, 0xa8, 0xd7, 0x80, 0x19, 0x19, 0xbf, 0x1e, + 0x50, 0xb1, 0xfb, 0xb3, 0xa6, 0x56, 0x6f, 0x52, 0xa6, 0xc0, 0xdd, 0x3f, + 0xbb, 0x13, 0x6e, 0x04, 0xdf, 0x79, 0xca, 0x8b, 0xa5, 0x9c, 0xa1, 0x78, + 0x49, 0xca, 0xe5, 0x29, 0xbb, 0x29, 0x7c, 0x96, 0xc6, 0x29, 0x06, 0x99, + 0xec, 0x50, 0xd1, 0xe8, 0x9b, 0xb7, 0x53, 0xd2, 0x36, 0x89, 0xb1, 0x5c, + 0x38, 0xf4, 0x2f, 0xa1, 0xda, 0x6f, 0xd8, 0xd1, 0x62, 0xd2, 0xd4, 0x97, + 0xce, 0xf1, 0xbd, 0x73, 0x2d, 0x92, 0xdb, 0x62, 0x0c, 0xb0, 0x77, 0xed, + 0x32, 0x3a, 0xfc, 0x59, 0x94, 0xef, 0x2b, 0x48, 0x60, 0xb2, 0x82, 0xa2, + 0xb6, 0x51, 0xdb, 0x51, 0x47, 0x99, 0x4c, 0x50, 0x93, 0x53, 0x9d, 0xa9, + 0x3c, 0x94, 0x34, 0x9f, 0xa6, 0x3e, 0x4f, 0x87, 0xd4, 0xa0, 0x40, 0xeb, + 0x7b, 0xfa, 0x1b, 0x7d, 0x03, 0xa8, 0xf8, 0x8b, 0xa5, 0x32, 0x3a, 0xaf, + 0x7e, 0x6b, 0x25, 0x08, 0x97, 0x71, 0x8d, 0x0c, 0x30, 0xc9, 0xa7, 0x23, + 0xe3, 0x51, 0xb3, 0xf2, 0x86, 0xad, 0x12, 0xe2, 0x79, 0x94, 0x7f, 0xf3, + 0xf7, 0x88, 0x67, 0x3e, 0x8e, 0x8e, 0x04, 0x5e, 0x4f, 0x01, 0x6f, 0x1d, + 0x78, 0x42, 0x9e, 0x47, 0x81, 0xdf, 0x03, 0x39, 0x3d, 0x9b, 0xbd, 0xb6, + 0x06, 0x21, 0x82, 0xfe, 0xf2, 0x50, 0xe1, 0x14, 0xbc, 0xe3, 0x5e, 0xe1, + 0xbd, 0x8f, 0xfa, 0x35, 0x31, 0x4e, 0x66, 0xeb, 0x67, 0x49, 0x1c, 0x07, + 0x88, 0xb6, 0x22, 0x0c, 0xeb, 0xd9, 0x9f, 0x9b, 0x8b, 0xe0, 0x9c, 0x3c, + 0xf7, 0x91, 0xab, 0x98, 0x5b, 0x0e, 0x09, 0xdd, 0xe3, 0x0b, 0x14, 0x55, + 0xe9, 0xe4, 0x42, 0xd8, 0xce, 0xd7, 0xfd, 0x4c, 0x20, 0x9f, 0x44, 0x93, + 0xa6, 0x17, 0x8a, 0x68, 0x8f, 0xec, 0x62, 0xd1, 0x97, 0x9c, 0xcc, 0xc4, + 0xd9, 0x42, 0xda, 0xf1, 0x34, 0x04, 0xc6, 0xb6, 0x0f, 0xc7, 0xe6, 0x2d, + 0x26, 0x6e, 0x6f, 0x92, 0x7e, 0xd9, 0xd4, 0x40, 0xc6, 0x70, 0xfa, 0x12, + 0x2a, 0x1b, 0xbc, 0x50, 0xeb, 0x3b, 0x24, 0x96, 0x8d, 0x7c, 0xae, 0xbe, + 0xc3, 0x27, 0xce, 0x97, 0xcf, 0xcd, 0x10, 0x13, 0x01, 0xc6, 0x48, 0x6a, + 0x99, 0x38, 0x79, 0xb9, 0x1c, 0xc9, 0x09, 0xac, 0x96, 0x8c, 0xf7, 0x82, + 0x8f, 0xb8, 0x17, 0x94, 0x2c, 0x5f, 0x40, 0xcc, 0x80, 0xf4, 0x9f, 0xaa, + 0xcb, 0x83, 0x13, 0x7b, 0x3a, 0x78, 0x0a, 0x9f, 0x79, 0x9e, 0xfc, 0x0e, + 0x8f, 0x98, 0x60, 0x39, 0x86, 0x44, 0x8e, 0x4b, 0xc4, 0xad, 0xe6, 0x98, + 0x92, 0x08, 0x84, 0x48, 0x8f, 0x1d, 0x78, 0x10, 0x9e, 0xf7, 0xb8, 0x61, + 0x65, 0x46, 0xdb, 0x4a, 0xcf, 0xc5, 0x37, 0xe3, 0x77, 0x76, 0xcf, 0x0a, + 0x7e, 0x72, 0x3f, 0xe4, 0x51, 0x30, 0x28, 0x57, 0x13, 0xfd, 0xdb, 0x7e, + 0xd6, 0xa3, 0xdd, 0x64, 0xdd, 0x00, 0xd0, 0x7f, 0xbc, 0x48, 0x1d, 0xaf, + 0xde, 0x0e, 0x45, 0xc4, 0xc9, 0xfa, 0xf6, 0xb2, 0xb7, 0x9a, 0x42, 0x8b, + 0x18, 0x08, 0xed, 0xdb, 0xa9, 0xc3, 0x32, 0xf1, 0x9c, 0xcf, 0x16, 0x74, + 0x57, 0xce, 0xe9, 0x44, 0x21, 0xdb, 0x8a, 0x45, 0x89, 0x70, 0x41, 0x5c, + 0xbf, 0x10, 0xdf, 0x83, 0x4a, 0xe4, 0x4c, 0xd8, 0xc9, 0x2e, 0x5b, 0xa3, + 0x05, 0xed, 0x73, 0xb1, 0xb0, 0xb7, 0xc4, 0xd7, 0x0d, 0xea, 0xf6, 0xb4, + 0xc1, 0x5e, 0x12, 0x54, 0x30, 0x73, 0x5c, 0x93, 0xd9, 0xf7, 0xc9, 0x24, + 0x43, 0x8f, 0x4f, 0x8e, 0x94, 0x95, 0xb6, 0xfd, 0xa3, 0x14, 0x42, 0x50, + 0xb8, 0x66, 0xfb, 0xc4, 0xed, 0x72, 0xcf, 0x7b, 0xa9, 0x73, 0xeb, 0xc4, + 0x4a, 0x05, 0xea, 0xb4, 0x47, 0xca, 0x21, 0x56, 0x28, 0xa8, 0x87, 0xb8, + 0x87, 0x0b, 0xe3, 0x8d, 0xfd, 0x70, 0xf7, 0x33, 0x76, 0xf0, 0x3d, 0xa4, + 0x3b, 0x83, 0xab, 0x14, 0x01, 0xe1, 0xb0, 0xa9, 0x44, 0xe8, 0xd7, 0x50, + 0x26, 0x0b, 0xbb, 0x2d, 0x57, 0x39, 0x82, 0x7c, 0x71, 0xd8, 0x12, 0xaf, + 0xf3, 0x9f, 0x46, 0xbd, 0x62, 0xd6, 0x61, 0xf5, 0xb7, 0x04, 0x94, 0xbf, + 0x87, 0xea, 0xc4, 0xc4, 0x33, 0xcf, 0x36, 0x3b, 0x4f, 0xc7, 0x71, 0xf1, + 0x98, 0xe6, 0xb0, 0x96, 0x25, 0xd7, 0xac, 0x75, 0xfc, 0x92, 0xe0, 0x69, + 0x72, 0x37, 0x8d, 0x40, 0x31, 0xaa, 0x2c, 0x86, 0xfb, 0x95, 0x3f, 0x9c, + 0x23, 0xd4, 0x39, 0x99, 0xff, 0xea, 0x95, 0x79, 0xb9, 0x2e, 0xb0, 0x33, + 0xf1, 0xe8, 0xd0, 0x42, 0xb5, 0x70, 0x5c, 0xca, 0x69, 0x48, 0x28, 0x23, + 0x58, 0xb4, 0x07, 0xfc, 0x3e, 0x15, 0x29, 0x00, 0xa9, 0x22, 0x44, 0x70, + 0xd0, 0xc7, 0x01, 0x0d, 0x3e, 0xfc, 0x57, 0xb7, 0x54, 0x3a, 0xc3, 0x43, + 0xd6, 0x2f, 0x55, 0x09, 0x52, 0x4a, 0x6b, 0x8e, 0x4c, 0x82, 0xbb, 0x4e, + 0x3e, 0x38, 0xe1, 0x9e, 0x72, 0x83, 0xec, 0x40, 0xf5, 0xf7, 0x0e, 0x3c, + 0x24, 0xed, 0xda, 0xf2, 0x39, 0x6c, 0xad, 0xeb, 0xff, 0xfb, 0x4a, 0x38, + 0x50, 0x49, 0x28, 0x3d, 0x05, 0xb2, 0x98, 0x44, 0x2b, 0x61, 0xa2, 0x9b, + 0x3a, 0x3c, 0xad, 0xd9, 0x8c, 0xef, 0x3c, 0x72, 0x50, 0x74, 0x13, 0x80, + 0xc4, 0x7e, 0x6e, 0xf3, 0xc9, 0xdf, 0x63, 0xf6, 0x41, 0xb2, 0x08, 0x78, + 0x9b, 0x7c, 0xa9, 0x13, 0xd1, 0x21, 0xe7, 0x5e, 0x6a, 0x0d, 0x64, 0xf7, + 0x52, 0x75, 0xf2, 0x80, 0x69, 0xbe, 0x43, 0xf8, 0xd4, 0xad, 0x49, 0xfc, + 0x97, 0x76, 0x1c, 0xb6, 0x43, 0x9e, 0xcb, 0x45, 0x4d, 0x75, 0x07, 0xae, + 0xdb, 0xbf, 0xf5, 0x8a, 0xeb, 0xb9, 0x6b, 0x12, 0x06, 0xbf, 0x94, 0xad, + 0x77, 0x29, 0xb1, 0xae, 0x24, 0x9b, 0x4d, 0xdc, 0xe1, 0x5e, 0xd7, 0x57, + 0xec, 0xd1, 0xd8, 0xad, 0xf0, 0x06, 0x08, 0x43, 0x33, 0x99, 0xd2, 0x04, + 0xfc, 0xc8, 0xf6, 0x53, 0x3d, 0x73, 0xd4, 0x36, 0xd3, 0x8e, 0x4a, 0xcd, + 0xb1, 0xe9, 0xcb, 0x3a, 0x5f, 0x54, 0xbc, 0xde, 0x16, 0xa2, 0x85, 0xde, + 0x35, 0x27, 0x99, 0x32, 0x4f, 0xb9, 0x2c, 0x16, 0xa2, 0x6e, 0xae, 0x75, + 0x60, 0x77, 0xe9, 0x08, 0x0f, 0x08, 0xc4, 0xd0, 0x62, 0xc7, 0xd2, 0x1f, + 0x3b, 0x29, 0xdd, 0xb7, 0xea, 0xa3, 0x58, 0xaf, 0x4c, 0x05, 0xd2, 0x82, + 0x6a, 0xe0, 0xc4, 0xe9, 0x70, 0x7e, 0xf2, 0xca, 0x82, 0x6a, 0xae, 0xc1, + 0x9a, 0x42, 0x5d, 0x46, 0x4a, 0xb7, 0x8f, 0x4d, 0x33, 0xfe, 0x6f, 0x47, + 0xb5, 0x49, 0xb3, 0x89, 0x51, 0x31, 0x74, 0x68, 0x14, 0xda, 0x0a, 0x41, + 0x3d, 0x1f, 0x8e, 0x30, 0x8c, 0x77, 0xd1, 0xa9, 0x36, 0x41, 0x78, 0x34, + 0xb7, 0x7e, 0x4e, 0x7a, 0x77, 0x12, 0x43, 0x97, 0x43, 0xba, 0xd6, 0x28, + 0x14, 0x2a, 0x9f, 0x98, 0xb4, 0x39, 0x08, 0x5c, 0xb7, 0xb8, 0x03, 0x63, + 0x62, 0x68, 0xc6, 0x9a, 0x4d, 0xf5, 0xdc, 0x7c, 0x0f, 0x7e, 0x77, 0xdc, + 0x85, 0x53, 0x31, 0x8c, 0x53, 0x8b, 0x27, 0xc4, 0xb7, 0x3d, 0xd0, 0x94, + 0x9b, 0x7e, 0x59, 0x59, 0x03, 0x09, 0x8c, 0x30, 0x70, 0x7d, 0x9c, 0x73, + 0x89, 0x6c, 0x5f, 0xbf, 0xf9, 0xc7, 0x72, 0x76, 0x12, 0x98, 0xe3, 0xbe, + 0xc3, 0x67, 0xdf, 0xa1, 0x76, 0xa3, 0xec, 0x44, 0x30, 0x70, 0x2f, 0x6a, + 0x86, 0x28, 0xb9, 0x9d, 0x7f, 0x93, 0xf2, 0x4a, 0x34, 0x48, 0x1f, 0x2e, + 0x2e, 0x95, 0x88, 0xdb, 0x1f, 0x2c, 0x19, 0x46, 0x2e, 0x91, 0x5f, 0x81, + 0x0d, 0x08, 0x9d, 0x03, 0x0b, 0xaf, 0x59, 0x0a, 0x41, 0xad, 0x4d, 0x6c, + 0x09, 0x0e, 0x9f, 0xd1, 0xc4, 0xdb, 0xac, 0x59, 0x27, 0x04, 0x1c, 0x73, + 0xe9, 0xf3, 0xe8, 0x54, 0xd9, 0x11, 0x31, 0xb2, 0xed, 0x2d, 0x8c, 0xeb, + 0x99, 0x26, 0x48, 0x9e, 0xac, 0x88, 0x96, 0xcb, 0x19, 0x49, 0xfa, 0x4a, + 0x82, 0xd5, 0x5d, 0xb8, 0x0f, 0x22, 0x3f, 0xb6, 0x5c, 0x02, 0x2a, 0xb9, + 0xd9, 0xfe, 0x4d, 0x9d, 0xdb, 0x85, 0x90, 0x19, 0x7f, 0x1a, 0x44, 0xa3, + 0x74, 0x68, 0xbf, 0xa2, 0x3b, 0xb4, 0x3b, 0xeb, 0xab, 0x99, 0xc2, 0x46, + 0x50, 0x7e, 0xec, 0xa9, 0xb4, 0x86, 0xfa, 0x50, 0xcb, 0x71, 0x7e, 0x75, + 0xa5, 0xca, 0xa6, 0x2f, 0x40, 0x1d, 0xa1, 0x4a, 0x5c, 0x91, 0xd7, 0x2a, + 0xa6, 0x17, 0x11, 0x4d, 0x19, 0x2b, 0xb3, 0x0f, 0xf0, 0xb3, 0x06, 0x70, + 0x51, 0x5c, 0x52, 0x8c, 0xdf, 0xe3, 0x19, 0x92, 0x08, 0x40, 0xa2, 0xb4, + 0xc0, 0xf2, 0xe8, 0x44, 0xcc, 0x36, 0xaa, 0xf9, 0xf8, 0xfc, 0x2d, 0x83, + 0x79, 0xc6, 0x58, 0xc1, 0xdf, 0x32, 0xb7, 0xde, 0x0f, 0x3e, 0xc0, 0xa8, + 0x7e, 0xeb, 0xf2, 0x30, 0x16, 0xdf, 0x38, 0xcb, 0x69, 0xd9, 0x44, 0x0d, + 0x44, 0xf4, 0x45, 0x9c, 0x81, 0xc8, 0xe7, 0x06, 0xae, 0x95, 0xaf, 0xff, + 0x17, 0x3b, 0x1c, 0x3f, 0xda, 0xa5, 0xf8, 0xfd, 0x9c, 0xf1, 0x0a, 0xca, + 0xda, 0xc0, 0xfa, 0x02, 0xc4, 0xce, 0x78, 0xfb, 0x35, 0x8c, 0xfe, 0x55, + 0xad, 0x0d, 0x9b, 0xeb, 0x10, 0xf1, 0x7b, 0xb1, 0x09, 0xf8, 0xef, 0xfc, + 0xde, 0x7a, 0x69, 0x74, 0x76, 0xef, 0x91, 0x64, 0x33, 0xc4, 0x08, 0x15, + 0x73, 0x85, 0x56, 0xae, 0x9c, 0xf6, 0xdd, 0x55, 0x19, 0x96, 0xe6, 0x41, + 0x12, 0xc9, 0x87, 0x91, 0x9e, 0xc6, 0x18, 0xe8, 0xbf, 0xa0, 0x59, 0xfd, + 0x20, 0xab, 0xb5, 0xcf, 0x0f, 0x6e, 0x30, 0xd3, 0xc5, 0x70, 0xf2, 0x50, + 0xa4, 0x2a, 0xdf, 0xb0, 0x45, 0xfc, 0x82, 0x1a, 0x3b, 0xfe, 0x0c, 0xad, + 0x41, 0x95, 0xf1, 0xd6, 0x85, 0xa2, 0xc9, 0xff, 0xbe, 0x3a, 0x64, 0x70, + 0x43, 0xc0, 0xc5, 0xc8, 0x80, 0x11, 0x0d, 0x20, 0xcd, 0xf2, 0xa2, 0xbb, + 0x43, 0x68, 0x0e, 0xf4, 0x01, 0xb3, 0x73, 0x79, 0x9f, 0x68, 0x41, 0x63, + 0x3e, 0xda, 0xf9, 0xf4, 0x23, 0x57, 0x97, 0x84, 0x99, 0xe8, 0x5e, 0xdb, + 0xaa, 0x24, 0xab, 0x9c, 0x40, 0x83, 0xf9, 0x3f, 0x4f, 0x5a, 0x53, 0xa6, + 0xf1, 0xe8, 0x95, 0xcf, 0xcb, 0x50, 0x13, 0x51, 0xa7, 0x8c, 0x71, 0x1d, + 0xff, 0xcc, 0x66, 0xab, 0xff, 0xca, 0xc5, 0xc3, 0x73, 0x45, 0xb7, 0x21, + 0x1d, 0x65, 0x7a, 0xe5, 0x1f, 0x3f, 0x1a, 0x58, 0x23, 0x28, 0xc8, 0xf3, + 0xbf, 0x98, 0x25, 0xc0, 0x83, 0x68, 0xf0, 0x62, 0x63, 0x90, 0xcf, 0x1f, + 0x20, 0xb8, 0x04, 0x5c, 0xc4, 0x80, 0x5b, 0xf4, 0x6d, 0xdc, 0xe9, 0xac, + 0xd8, 0x13, 0x3b, 0x42, 0xf8, 0x4e, 0xa2, 0x1c, 0xce, 0x3f, 0x8d, 0x15, + 0xd3, 0x87, 0x1b, 0x44, 0x79, 0x52, 0x34, 0x4b, 0x63, 0x4d, 0xbf, 0x95, + 0xec, 0xae, 0xf9, 0xc6, 0x7b, 0x7b, 0x85, 0x8c, 0x4f, 0x20, 0x58, 0x9d, + 0x48, 0x03, 0x2f, 0x77, 0x2e, 0x8b, 0x6f, 0x66, 0x76, 0xb9, 0xb8, 0xb7, + 0x34, 0x5a, 0x63, 0x06, 0x85, 0x82, 0x5f, 0x23, 0x8f, 0x8d, 0x0c, 0x92, + 0x3b, 0xd2, 0x8a, 0x1b, 0x39, 0xee, 0x6a, 0xbc, 0xf6, 0x94, 0x2a, 0xc6, + 0x73, 0xa6, 0x99, 0x98, 0xdc, 0x96, 0xd7, 0xc1, 0xfe, 0x9b, 0xc8, 0xfb, + 0x86, 0x5a, 0xad, 0xce, 0xf8, 0xd5, 0x32, 0x62, 0x96, 0x63, 0xaf, 0x4c, + 0x4a, 0xae, 0xec, 0x26, 0x3d, 0x84, 0x69, 0x50, 0x5f, 0x37, 0x9b, 0x29, + 0xac, 0x15, 0x76, 0x3d, 0x33, 0x96, 0x06, 0xde, 0xc1, 0x6d, 0xa2, 0xc7, + 0xc3, 0x8a, 0x20, 0x2e, 0xf7, 0x08, 0x55, 0x83, 0x23, 0x9c, 0x23, 0x2d, + 0x3a, 0xa1, 0x32, 0xbc, 0x47, 0x48, 0xd5, 0x6a, 0x71, 0xb9, 0xcc, 0x2d, + 0x99, 0xa0, 0x37, 0x07, 0x46, 0x45, 0xbe, 0xf0, 0x27, 0x5a, 0x25, 0x72, + 0x58, 0x47, 0x6d, 0xbf, 0x23, 0xdc, 0x48, 0x44, 0x45, 0x95, 0xb1, 0x62, + 0xf1, 0x7e, 0x4c, 0x95, 0x1c, 0xb4, 0x17, 0x8b, 0x59, 0x2e, 0xf3, 0x4f, + 0x45, 0x3b, 0x5d, 0x67, 0x92, 0x52, 0xd8, 0xc1, 0x91, 0xfa, 0x53, 0xaa, + 0x87, 0xc0, 0xa7, 0xb0, 0x9f, 0x10, 0xe8, 0xac, 0x45, 0x52, 0xbb, 0x17, + 0xee, 0xf6, 0x18, 0xbe, 0x02, 0x70, 0xce, 0x79, 0x66, 0x72, 0xf9, 0xf6, + 0xca, 0x66, 0xff, 0xa4, 0x9a, 0xd9, 0xb7, 0x07, 0xa9, 0xc1, 0x23, 0x7e, + 0x7b, 0x9c, 0xe3, 0x02, 0x7a, 0xcc, 0xa3, 0x67, 0xb7, 0xb0, 0x37, 0xba, + 0xae, 0x12, 0xda, 0x48, 0x6e, 0x7f, 0xde, 0x5f, 0x75, 0x15, 0xca, 0xd2, + 0x46, 0xdd, 0xb0, 0x82, 0xbf, 0x6d, 0xe9, 0x51, 0x66, 0xa5, 0x9e, 0x0c, + 0xd5, 0x03, 0xbd, 0x97, 0x0e, 0x1b, 0x88, 0xf6, 0x61, 0x5a, 0x8b, 0xe0, + 0xdd, 0x3e, 0x59, 0x4c, 0x35, 0xfd, 0xb0, 0x3b, 0x79, 0x8c, 0x1c, 0x96, + 0x97, 0x35, 0x62, 0x36, 0x62, 0x4c, 0x4b, 0x46, 0xb1, 0x21, 0xf7, 0xf0, + 0x34, 0xdc, 0xd9, 0x9f, 0xf8, 0x53, 0x7d, 0xca, 0xbc, 0x4d, 0xaf, 0xf4, + 0xb7, 0x2f, 0xa7, 0x5d, 0x18, 0xf9, 0x3b, 0xa9, 0xb0, 0xbb, 0xdf, 0xfa, + 0x28, 0x2b, 0x58, 0xce, 0x46, 0x01, 0x3f, 0x76, 0xf2, 0x39, 0x45, 0x8b, + 0x3c, 0xda, 0x62, 0x2b, 0x6b, 0xe1, 0x5f, 0x14, 0xfc, 0x79, 0x17, 0x2d, + 0xe2, 0xe5, 0x8c, 0xc5, 0xde, 0x91, 0xfd, 0xf5, 0x6d, 0x9b, 0x6b, 0xbb, + 0xb0, 0x13, 0xae, 0xbe, 0x1e, 0xa8, 0x8f, 0x3c, 0xfd, 0x24, 0xbe, 0xb8, + 0x39, 0x80, 0x03, 0x06, 0x8b, 0xff, 0xca, 0x90, 0x88, 0x0f, 0x45, 0xc4, + 0xeb, 0x50, 0x52, 0xf5, 0x00, 0x8c, 0x16, 0x9d, 0x26, 0xaa, 0xec, 0xb1, + 0x44, 0xd6, 0xfe, 0x67, 0xa3, 0xc1, 0xec, 0x4a, 0x12, 0xa6, 0x7c, 0x7c, + 0xc3, 0x46, 0x1c, 0x64, 0x61, 0x67, 0xec, 0xce, 0x1e, 0xa2, 0xb4, 0xdd, + 0x6e, 0x7f, 0x02, 0x14, 0xf4, 0x1c, 0x17, 0xa7, 0x31, 0x9f, 0xc2, 0xc6, + 0xc0, 0x21, 0x41, 0x88, 0x61, 0xd8, 0xca, 0x06, 0xa5, 0xe4, 0xef, 0xa4, + 0xaa, 0x4d, 0xa3, 0xad, 0x5f, 0xd4, 0x0c, 0x6b, 0x14, 0x38, 0x2e, 0xe8, + 0x87, 0x5a, 0x68, 0x10, 0x51, 0xd8, 0xbb, 0xa6, 0xd9, 0xdc, 0xd3, 0x7f, + 0x1f, 0xea, 0xa8, 0xcc, 0x3f, 0x43, 0xa4, 0x04, 0x95, 0xb4, 0xde, 0x2f, + 0x07, 0x5d, 0x91, 0x1c, 0x8e, 0xc3, 0xbc, 0xaa, 0x46, 0x8a, 0xa8, 0x42, + 0xa7, 0x2c, 0x0f, 0x1f, 0xb3, 0xe2, 0x8a, 0x0b, 0xa0, 0x3f, 0xfb, 0x87, + 0x9e, 0x42, 0xa5, 0x60, 0xce, 0x5a, 0x54, 0x91, 0x26, 0x51, 0xea, 0x81, + 0x6f, 0xf1, 0x54, 0x93, 0xe7, 0xa0, 0xf8, 0x64, 0xab, 0x1d, 0x0d, 0x9d, + 0x64, 0x6a, 0xd5, 0x19, 0x03, 0xbb, 0x94, 0x7f, 0x0a, 0xb8, 0x6b, 0x87, + 0xc3, 0x1a, 0x38, 0xe5, 0xe8, 0xba, 0x13, 0x17, 0xeb, 0x13, 0xcc, 0xac, + 0xcb, 0x1f, 0x96, 0x4c, 0x3b, 0x18, 0xfb, 0xe8, 0x5c, 0x54, 0xce, 0x1a, + 0x91, 0x44, 0xf5, 0x49, 0x6c, 0x38, 0x2a, 0x92, 0x8a, 0x0d, 0x3d, 0x08, + 0xc2, 0x5f, 0x6c, 0xac, 0x48, 0xb3, 0xdc, 0x2e, 0xa6, 0x5a, 0xa8, 0xee, + 0x22, 0x9a, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, + 0x96, 0xc5, 0x3a, 0x4e, 0x42, 0x7d, 0x27, 0xce, 0x44, 0x84, 0xf1, 0x67, + 0x8c, 0xc5, 0xdd, 0x75, 0x3b, 0x8a, 0xed, 0x2e, 0x29, 0x62, 0x7b, 0xb0, + 0xe6, 0xa3, 0xb4, 0x61, 0x73, 0x10, 0xff, 0x0e, 0x0c, 0x98, 0x74, 0xef, + 0xbb, 0xc4, 0xca, 0x03, 0x88, 0xa4, 0x96, 0x61, 0xef, 0x36, 0x6d, 0xa2, + 0xb1, 0xc8, 0xf0, 0xac, 0xf1, 0xb2, 0x08, 0x56, 0xc7, 0x99, 0xcf, 0xae, + 0x0a, 0x37, 0x85, 0x60, 0x78, 0x2d, 0x14, 0xda, 0xb1, 0xa7, 0x00, 0xb6, + 0x00, 0x04, 0x76, 0x80, 0x0e, 0x9f, 0x2a, 0x30, 0x8b, 0x85, 0xd9, 0xc1, + 0xaf, 0xee, 0x27, 0x80, 0x20, 0xed, 0xef, 0x25, 0x5c, 0x98, 0x6b, 0xcc, + 0xf8, 0x72, 0xfb, 0x3f, 0x13, 0xe6, 0x9b, 0x47, 0xee, 0xa1, 0x18, 0x55, + 0xa0, 0x68, 0xbe, 0xd4, 0x21, 0x59, 0x72, 0xa8, 0xa4, 0xd2, 0x33, 0x57, + 0x50, 0xfc, 0x6b, 0xa8, 0x49, 0x1b, 0x74, 0xdb, 0x5a, 0x16, 0xb8, 0x52, + 0x0c, 0xda, 0xa0, 0xa3, 0xff, 0x33, 0x56, 0x82, 0x0f, 0x0a, 0x90, 0x82, + 0xee, 0xf1, 0x1b, 0xb3, 0x05, 0x44, 0x39, 0x01, 0xf7, 0x1e, 0xff, 0xcb, + 0xea, 0xd0, 0xb6, 0x20, 0xbc, 0x84, 0xb1, 0xf9, 0xa2, 0xc1, 0x56, 0xe6, + 0xfa, 0x47, 0xc9, 0xfd, 0x45, 0x77, 0x51, 0x8e, 0x01, 0xe4, 0x17, 0x20, + 0x6f, 0x99, 0xe3, 0x90, 0x2f, 0xcc, 0xaf, 0xd9, 0x61, 0x32, 0x91, 0x62, + 0x58, 0xf4, 0x98, 0xf5, 0xf4, 0xeb, 0x13, 0xeb, 0xdc, 0x8a, 0xac, 0xb2, + 0x9e, 0xcf, 0xe7, 0xa7, 0xd4, 0x97, 0x22, 0x12, 0x08, 0x10, 0x6d, 0x40, + 0xea, 0x26, 0xea, 0x42, 0x29, 0x6e, 0x75, 0x62, 0x47, 0x08, 0x17, 0xa8, + 0x69, 0x0f, 0xf7, 0x35, 0x59, 0x23, 0x86, 0x83, 0xfd, 0xb5, 0x61, 0x98, + 0x9c, 0x4d, 0x37, 0xda, 0x9f, 0xfc, 0xfb, 0x16, 0xb7, 0x6c, 0x52, 0xee, + 0xa8, 0x9c, 0x3e, 0x93, 0x43, 0xc5, 0x2b, 0xd4, 0xd0, 0x9f, 0x69, 0x2c, + 0xc9, 0x1f, 0x2e, 0xdf, 0x5b, 0xe6, 0xc6, 0x5f, 0x71, 0xd1, 0xd7, 0xb2, + 0x8f, 0x3a, 0xba, 0x60, 0x75, 0x3d, 0x34, 0x41, 0x43, 0x9b, 0x13, 0xc0, + 0x3b, 0x30, 0xc5, 0xe9, 0x84, 0x81, 0xde, 0x85, 0x4e, 0x65, 0x7b, 0x21, + 0x37, 0xb8, 0xef, 0x24, 0x19, 0xaa, 0x26, 0x0c, 0x27, 0xa7, 0xd9, 0x29, + 0x47, 0x1a, 0x15, 0x42, 0x1e, 0x30, 0x79, 0x79, 0x96, 0x09, 0x62, 0x26, + 0xad, 0x98, 0x8b, 0xcb, 0x3d, 0xeb, 0x66, 0x83, 0x77, 0xd9, 0x79, 0x4d, + 0x05, 0x81, 0x72, 0xe9, 0xe0, 0x6f, 0x13, 0x00, 0x7e, 0xa3, 0x92, 0x82, + 0x1c, 0x90, 0x83, 0x4b, 0x15, 0x97, 0x0f, 0x92, 0xe2, 0xd3, 0x3d, 0xd7, + 0x6c, 0xb9, 0x60, 0x9a, 0x23, 0x52, 0xbe, 0x59, 0xc9, 0x36, 0x9e, 0xf7, + 0x77, 0x09, 0x79, 0x01, 0xcc, 0xec, 0x17, 0xd1, 0x74, 0xbc, 0x58, 0x65, + 0x45, 0x3c, 0x86, 0xf1, 0xbc, 0xbd, 0x95, 0x54, 0x46, 0x45, 0x7b, 0x4c, + 0xa2, 0xea, 0x2a, 0x6e, 0xa8, 0xd1, 0x66, 0x03, 0xb2, 0x6a, 0xe0, 0xd3, + 0x07, 0x8d, 0xe0, 0x09, 0x81, 0x42, 0xe3, 0x97, 0xc4, 0xe7, 0x37, 0xc5, + 0x82, 0xcf, 0xb1, 0xec, 0xba, 0xbd, 0xf4, 0xb6, 0x41, 0xb2, 0xb8, 0xa6, + 0x3a, 0x85, 0x4b, 0x4f, 0x46, 0x48, 0xe9, 0x9b, 0x72, 0xf5, 0xb0, 0x64, + 0x66, 0x75, 0x42, 0xb4, 0x00, 0xbe, 0x11, 0x6d, 0x86, 0x93, 0x07, 0x50, + 0xa7, 0xef, 0x55, 0x42, 0xcf, 0xe8, 0x61, 0xd0, 0x9b, 0x11, 0x84, 0x8c, + 0x74, 0xe4, 0xb8, 0x3f, 0x48, 0xb3, 0x61, 0xe3, 0xea, 0x66, 0x86, 0x94, + 0x95, 0x12, 0x77, 0x26, 0x75, 0x30, 0xb5, 0xd3, 0x7a, 0xad, 0x2d, 0x58, + 0x46, 0x1b, 0x4b, 0xd9, 0x2d, 0x1e, 0x0b, 0xff, 0xd7, 0x03, 0x56, 0x3b, + 0xbd, 0x65, 0xb0, 0xf9, 0xfe, 0x43, 0x1c, 0x9c, 0x18, 0x82, 0x78, 0x5e, + 0x06, 0x02, 0x21, 0x70, 0xb2, 0x7f, 0xb5, 0x63, 0x71, 0x85, 0x95, 0x79, + 0xae, 0x1e, 0xc6, 0x62, 0x7a, 0x7c, 0x63, 0x46, 0x70, 0x1c, 0x58, 0x72, + 0x1d, 0xde, 0xca, 0xb4, 0xfc, 0xc8, 0x56, 0x38, 0x32, 0xf4, 0x0b, 0x56, + 0x87, 0x6b, 0x5b, 0x53, 0xd2, 0x2c, 0x35, 0xef, 0x5b, 0x33, 0x59, 0x13, + 0x76, 0x82, 0x30, 0x80, 0x23, 0x10, 0x07, 0x4c, 0x3f, 0xac, 0x9c, 0x58, + 0x2d, 0x04, 0xe6, 0x6a, 0xd3, 0x5c, 0xf9, 0xb6, 0x59, 0x4e, 0x85, 0xfe, + 0x01, 0x71, 0xf0, 0xf7, 0xf2, 0x1f, 0x46, 0xd5, 0x20, 0x3c, 0x9b, 0xc2, + 0x1e, 0x73, 0x1c, 0x56, 0x9c, 0x76, 0x8c, 0x12, 0x95, 0x51, 0xd4, 0x6f, + 0x5b, 0x3a, 0xa7, 0x5f, 0xa7, 0xe4, 0xfa, 0xb7, 0x1a, 0xdd, 0xb6, 0x4c, + 0x01, 0x02, 0xae, 0x9c, 0x02, 0x0d, 0x66, 0x2f, 0x40, 0x87, 0xa1, 0xbc, + 0xf3, 0xde, 0xf4, 0xdb, 0x65, 0xee, 0xcc, 0xca, 0xe1, 0x7a, 0xa2, 0xf4, + 0xf7, 0xf5, 0x7c, 0x2a, 0x3f, 0xa4, 0x67, 0xbb, 0x07, 0x50, 0x7a, 0x29, + 0x8a, 0xcf, 0x2c, 0x7a, 0x0e, 0x0d, 0xc7, 0x95, 0x8b, 0xf4, 0xe2, 0x50, + 0xe1, 0xc1, 0x40, 0x16, 0x99, 0x5c, 0x72, 0xe7, 0xe4, 0x01, 0xeb, 0x29, + 0x6a, 0x99, 0xf2, 0x67, 0x23, 0x46, 0x1f, 0xaa, 0xea, 0xc1, 0x51, 0x30, + 0xeb, 0x7d, 0x34, 0x52, 0x91, 0x37, 0x2d, 0xc6, 0x5c, 0x3a, 0x7c, 0x54, + 0xc0, 0x79, 0xdc, 0xf9, 0xbf, 0x08, 0x2a, 0xf6, 0xe1, 0x1e, 0xee, 0xc6, + 0xd2, 0xe9, 0x30, 0x27, 0x60, 0x0c, 0xa2, 0x63, 0x16, 0x06, 0x3d, 0xe2, + 0xf5, 0x6f, 0xea, 0xe4, 0x4d, 0x9f, 0x2d, 0x36, 0x62, 0x95, 0x47, 0x5d, + 0x00, 0x22, 0x9f, 0x0c, 0xbb, 0x71, 0xad, 0xea, 0xe7, 0x62, 0x59, 0x21, + 0xd1, 0xaf, 0x04, 0x5a, 0xfc, 0x1f, 0x28, 0x6b, 0x6f, 0x71, 0xec, 0xd4, + 0xbd, 0x9c, 0x88, 0xfb, 0x3f, 0x04, 0xea, 0xd6, 0xb2, 0x24, 0xe5, 0x28, + 0xfe, 0xc5, 0x3e, 0x15, 0x00, 0x8c, 0xa2, 0xdf, 0x18, 0x3d, 0x10, 0x9a, + 0xb1, 0xcd, 0x64, 0xda, 0x87, 0x41, 0xc8, 0xa1, 0x1c, 0x97, 0xd5, 0x44, + 0xd9, 0x51, 0xd2, 0x96, 0xed, 0xad, 0x28, 0x1f, 0x03, 0x89, 0x21, 0xbd, + 0x79, 0x91, 0x48, 0x9c, 0x8e, 0x17, 0xfd, 0x36, 0x72, 0xf6, 0x69, 0x4f, + 0x3f, 0x02, 0x57, 0xcc, 0x3f, 0x1c, 0x49, 0x82, 0x00, 0x45, 0x9e, 0x29, + 0x83, 0x14, 0x12, 0xbb, 0xd2, 0xd0, 0x1a, 0x66, 0x0f, 0x57, 0x24, 0xd4, + 0x9f, 0x46, 0x0c, 0xf4, 0xb8, 0x28, 0x85, 0x52, 0xe2, 0xa1, 0xc2, 0x3a, + 0x8c, 0x34, 0x4a, 0x81, 0xe3, 0xbc, 0xa2, 0x67, 0x67, 0x12, 0x13, 0xc4, + 0xe7, 0xd7, 0x2c, 0x4e, 0xa9, 0xf5, 0xed, 0x63, 0xf2, 0x18, 0x9c, 0x0c, + 0xe2, 0x4d, 0x25, 0x23, 0x30, 0x3e, 0x49, 0x29, 0xa6, 0x37, 0xdf, 0xc2, + 0xdc, 0xf6, 0x5e, 0xae, 0x45, 0xd7, 0x8d, 0x56, 0xba, 0x29, 0x4f, 0xee, + 0xc9, 0x26, 0xd7, 0xbf, 0x10, 0x4d, 0x0a, 0x3b, 0x3d, 0x1f, 0xd5, 0x72, + 0xe1, 0xe6, 0xf5, 0x23, 0x4a, 0x17, 0x2d, 0xe4, 0x40, 0x55, 0x9b, 0x39, + 0x66, 0x36, 0xe4, 0x6d, 0x6d, 0xb6, 0x8d, 0x2a, 0x7e, 0x76, 0x73, 0xa5, + 0x86, 0x20, 0x3d, 0x18, 0xa0, 0x6c, 0x35, 0x59, 0xc8, 0x1c, 0xef, 0x0f, + 0x36, 0x1d, 0x6f, 0xba, 0x89, 0xb9, 0x9e, 0x7a, 0x58, 0x1d, 0x43, 0xad, + 0x85, 0x8b, 0x6b, 0xcc, 0x25, 0xb8, 0xe4, 0xdd, 0xa1, 0x35, 0xd9, 0xef, + 0xc4, 0xb1, 0xf6, 0x99, 0x27, 0x17, 0xb7, 0xbe, 0xd1, 0x4f, 0xa1, 0x81, + 0x4e, 0xb6, 0x19, 0xcd, 0xa0, 0x92, 0xeb, 0x56, 0x41, 0x4f, 0x37, 0xca, + 0x3b, 0x43, 0x85, 0x86, 0xdf, 0x5d, 0x5a, 0x8c, 0xd4, 0x5b, 0xc4, 0x28, + 0xdb, 0x16, 0xea, 0x3a, 0x2e, 0x9e, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, + 0x80, 0x00, 0x00, 0x00, 0xea, 0x59, 0x40, 0xc4, 0x40, 0x8b, 0x6a, 0x8a, + 0xb8, 0x7f, 0x1e, 0x0b, 0xfe, 0xab, 0xa4, 0xac, 0x42, 0x91, 0xc5, 0xfa, + 0x2c, 0x7e, 0xb4, 0xf9, 0x5c, 0xd5, 0x4c, 0x6a, 0x74, 0x82, 0x90, 0x81, + 0x96, 0xb0, 0xf4, 0xd4, 0xba, 0xc9, 0xa3, 0x2e, 0x26, 0x0a, 0xc9, 0x55, + 0x65, 0xac, 0xde, 0x83, 0x37, 0xec, 0x0e, 0xf6, 0xdc, 0x8c, 0x34, 0xe6, + 0x57, 0xde, 0x32, 0x0a, 0x02, 0x62, 0x4f, 0x6a, 0x92, 0xa5, 0xb4, 0x40, + 0xde, 0x57, 0xf4, 0xd1, 0xa3, 0x1c, 0xd3, 0xf7, 0x4a, 0x15, 0xcc, 0x27, + 0x26, 0x00, 0xba, 0xf3, 0xfa, 0x4e, 0xc6, 0xe9, 0xc3, 0x05, 0x3d, 0x3a, + 0x89, 0x96, 0x7d, 0x41, 0xac, 0xca, 0x28, 0x7f, 0x69, 0x02, 0x40, 0x03, + 0x93, 0x86, 0x85, 0x85, 0x73, 0x00, 0x09, 0x5a, 0xcf, 0x5f, 0x1d, 0xaa, + 0x46, 0x41, 0x9d, 0x08, 0xbf, 0xea, 0x45, 0x9b, 0x93, 0xda, 0x9e, 0x81, + 0xba, 0x9e, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, + 0x6a, 0x1f, 0x9b, 0x03, 0xdd, 0xe4, 0x16, 0x07, 0x7f, 0x5b, 0xb0, 0xee, + 0xac, 0x55, 0xc4, 0x50, 0xe6, 0x2b, 0x17, 0xed, 0x7f, 0x50, 0x4d, 0x71, + 0x73, 0xae, 0xe0, 0x4d, 0xce, 0x08, 0xd9, 0x8b, 0x83, 0x2c, 0x01, 0x48, + 0x02, 0xd3, 0xbb, 0xca, 0x86, 0xd7, 0xca, 0x5f, 0xc7, 0xce, 0x59, 0xdf, + 0xc1, 0xcc, 0xf7, 0x7b, 0x54, 0xf8, 0x0d, 0x4f, 0x81, 0x9e, 0x50, 0x6a, + 0x65, 0x66, 0x4a, 0xec, 0x7a, 0x1b, 0x92, 0xb2, 0x39, 0x8f, 0x5d, 0x41, + 0x33, 0xcf, 0xe6, 0x1b, 0x34, 0x5d, 0xe1, 0xf6, 0xef, 0xcb, 0xa0, 0x55, + 0x7e, 0x1f, 0x45, 0x38, 0xb9, 0x56, 0x15, 0x3b, 0x70, 0xab, 0xc8, 0x2f, + 0x1c, 0xb9, 0x7d, 0x37, 0xe1, 0xb4, 0x03, 0x44, 0x5a, 0xf6, 0x57, 0x97, + 0x03, 0x54, 0x4c, 0x22, 0x88, 0xc3, 0x82, 0xfd, 0x91, 0xc1, 0xf1, 0x63, + 0xb4, 0x50, 0x46, 0x11, 0x64, 0x07, 0xfd, 0x85, 0xe5, 0x78, 0x57, 0xdd, + 0x19, 0x2a, 0x6b, 0x64, 0x3e, 0xec, 0xb8, 0xf3, 0xb5, 0x95, 0x29, 0x72, + 0xf1, 0x9d, 0xdd, 0xb9, 0xad, 0xd0, 0x78, 0x26, 0x86, 0x10, 0x10, 0x19, + 0xe4, 0x79, 0xae, 0xdc, 0x56, 0xb7, 0x54, 0x4f, 0x94, 0xc6, 0x26, 0x9a, + 0x93, 0xa8, 0x2e, 0x1b, 0x1c, 0xda, 0x87, 0x3a, 0xa2, 0x44, 0xb9, 0x0b, + 0x0f, 0xab, 0x70, 0x3b, 0xb7, 0x6c, 0xbf, 0x58, 0x67, 0x32, 0x7d, 0xa3, + 0x2a, 0xcb, 0x4e, 0x02, 0x92, 0xa1, 0x26, 0x0e, 0x20, 0x5e, 0xb3, 0xec, + 0xc4, 0x04, 0x5b, 0x7f, 0xe5, 0xbd, 0x30, 0xeb, 0xc8, 0xdd, 0xf1, 0x72, + 0x5a, 0x7e, 0xcb, 0x93, 0x22, 0xa0, 0x01, 0x9f, 0xbb, 0x24, 0x9f, 0x50, + 0x01, 0x1f, 0x24, 0x02, 0x85, 0x6d, 0xe6, 0x4d, 0x55, 0xc4, 0x07, 0xe9, + 0x87, 0x38, 0xbf, 0x1a, 0x3b, 0x05, 0x82, 0xc4, 0x73, 0x4b, 0x87, 0x3c, + 0xb4, 0x0a, 0x48, 0x8c, 0x06, 0x67, 0xe7, 0xbf, 0xcc, 0xe7, 0xe5, 0xc3, + 0xb2, 0x81, 0x60, 0xe2, 0xd1, 0xb1, 0x8f, 0x98, 0xbd, 0x7d, 0xbd, 0x4e, + 0x9a, 0xca, 0xbe, 0xcb, 0x81, 0x47, 0x25, 0xaa, 0xfa, 0x91, 0xcf, 0x78, + 0xce, 0xcb, 0x1a, 0x11, 0x79, 0xcf, 0x97, 0xa3, 0x95, 0x95, 0x6f, 0xd7, + 0xae, 0x80, 0xc9, 0xd5, 0x95, 0xb7, 0xcf, 0xe2, 0x9d, 0x98, 0x65, 0x80, + 0xfd, 0x2e, 0xee, 0x46, 0x5e, 0x46, 0x8c, 0xde, 0x52, 0xb4, 0xdc, 0xce, + 0xa8, 0xab, 0x4e, 0x0c, 0x12, 0x9f, 0x89, 0x9c, 0x84, 0x80, 0xfe, 0x08, + 0x64, 0x12, 0x12, 0x95, 0x62, 0xea, 0x65, 0xcc, 0x34, 0x80, 0xcf, 0x92, + 0x5f, 0xc2, 0xae, 0x76, 0xe7, 0x2f, 0xbb, 0xa8, 0xdb, 0x6a, 0x66, 0x60, + 0xaf, 0x88, 0xba, 0x65, 0x32, 0xcf, 0xf7, 0x6e, 0xd8, 0xd0, 0x69, 0xb0, + 0x12, 0x23, 0xd6, 0xc2, 0x32, 0xe5, 0x8e, 0x51, 0xc5, 0x61, 0x28, 0x45, + 0xf7, 0xf9, 0xea, 0x73, 0xce, 0x04, 0x2d, 0x56, 0x43, 0x10, 0x8b, 0x4f, + 0x6b, 0xfa, 0x32, 0xa8, 0x92, 0x8f, 0xd9, 0xb4, 0xfd, 0xa4, 0x74, 0xa8, + 0xea, 0xca, 0xd3, 0x84, 0xbb, 0x5a, 0x34, 0x57, 0xf9, 0xda, 0x25, 0x40, + 0x1f, 0x5e, 0xc2, 0x66, 0x43, 0x05, 0xdd, 0x13, 0x88, 0x91, 0x60, 0xa1, + 0x75, 0xd3, 0xc4, 0x27, 0xff, 0xda, 0x24, 0x3d, 0xd9, 0xd7, 0x47, 0x46, + 0x30, 0xd0, 0x76, 0xc4, 0x9e, 0x97, 0xe3, 0x43, 0xd7, 0x45, 0xaf, 0x49, + 0x36, 0xf2, 0x18, 0xdd, 0x3f, 0x86, 0x9a, 0xec, 0x9a, 0x70, 0xeb, 0x5a, + 0xe2, 0xa0, 0x4b, 0x45, 0x21, 0xb3, 0x32, 0x3d, 0x0c, 0x8c, 0x03, 0x13, + 0xae, 0x46, 0xb5, 0x1a, 0x0a, 0x03, 0x36, 0xfe, 0xfe, 0xfa, 0xc9, 0x4d, + 0x46, 0xf8, 0xfe, 0x6f, 0x99, 0x8c, 0xe4, 0x77, 0x0c, 0x27, 0x59, 0xf7, + 0xc3, 0xfc, 0x32, 0xb3, 0xa5, 0xae, 0xdc, 0x49, 0xac, 0x31, 0x27, 0xa6, + 0x14, 0x92, 0xfb, 0xe3, 0x69, 0x35, 0x8d, 0xa0, 0x50, 0x55, 0x09, 0x90, + 0xdf, 0x67, 0x08, 0x4c, 0x0e, 0xaf, 0x71, 0xc2, 0xe8, 0xb8, 0xdc, 0x45, + 0xe3, 0x6d, 0x58, 0x3f, 0x19, 0x8d, 0xcd, 0xeb, 0xe3, 0x02, 0x49, 0xd8, + 0xc8, 0x8b, 0x29, 0xb3, 0xef, 0x2b, 0xf0, 0x39, 0x5c, 0x11, 0xaa, 0x52, + 0x44, 0x0d, 0x1a, 0x3a, 0x7a, 0x62, 0xda, 0x6d, 0xe3, 0xdd, 0x03, 0x30, + 0x6d, 0x3e, 0x18, 0x30, 0x1d, 0xc0, 0xd0, 0x05, 0x67, 0x98, 0xf5, 0x2a, + 0xc7, 0xa1, 0x58, 0xd7, 0xf8, 0x6f, 0x7d, 0x07, 0x59, 0x27, 0x95, 0xb9, + 0x8d, 0x4d, 0xd7, 0xc8, 0x5e, 0x8b, 0x89, 0x14, 0xb7, 0x1b, 0x35, 0xaa, + 0x72, 0x02, 0x39, 0x3c, 0x41, 0x7c, 0x91, 0x93, 0x81, 0xe1, 0xad, 0xbe, + 0x77, 0x28, 0x80, 0xa2, 0x9c, 0xa8, 0x00, 0x18, 0xa5, 0x70, 0xec, 0xec, + 0x96, 0x95, 0x37, 0xa3, 0xee, 0x15, 0xa0, 0x69, 0x0e, 0x05, 0xb5, 0xb4, + 0xb6, 0xa7, 0x8b, 0xb9, 0x41, 0x88, 0x4f, 0x56, 0x39, 0xa7, 0xbe, 0x24, + 0xce, 0x4c, 0xe0, 0x9c, 0x24, 0x5a, 0xa1, 0xab, 0xcd, 0x82, 0xf1, 0x16, + 0x3f, 0xc0, 0xaf, 0xe1, 0x42, 0xe0, 0x7d, 0x1b, 0xd9, 0x8f, 0xb8, 0x04, + 0xa1, 0x88, 0xd9, 0xc3, 0xaf, 0x4f, 0xda, 0xfd, 0x0b, 0x5c, 0xc3, 0x04, + 0xf3, 0xdb, 0xe6, 0x76, 0x6e, 0xe9, 0xdc, 0xea, 0x6f, 0xa2, 0xa5, 0x75, + 0x2c, 0xc7, 0x91, 0x7d, 0x4b, 0xd5, 0x68, 0x55, 0xbb, 0x2d, 0x14, 0xdb, + 0x06, 0x76, 0xf7, 0xcc, 0x0a, 0x88, 0x6c, 0x2b, 0xa1, 0x57, 0xd6, 0x15, + 0x9c, 0x46, 0xcf, 0x5b, 0x6f, 0x9e, 0x7e, 0xc5, 0x39, 0xda, 0x97, 0x26, + 0x5e, 0xf5, 0x25, 0x06, 0xed, 0x8e, 0x9b, 0x1d, 0x1b, 0x91, 0x07, 0x89, + 0x08, 0xce, 0xd7, 0x38, 0x43, 0x64, 0x8e, 0xf5, 0x3a, 0x52, 0x4a, 0xfb, + 0x3e, 0xff, 0x2c, 0xb3, 0x78, 0x40, 0xb5, 0xdd, 0xb2, 0x8a, 0xd3, 0x6a, + 0xc5, 0xb0, 0xa3, 0x4a, 0xb8, 0xe7, 0x27, 0xa0, 0x5a, 0x8f, 0x0f, 0xda, + 0x53, 0x49, 0xc9, 0x77, 0x2a, 0xef, 0x78, 0xc6, 0xec, 0xaf, 0x10, 0xe5, + 0x71, 0xc5, 0x7a, 0x85, 0xdf, 0xb2, 0x85, 0x02, 0xe3, 0x55, 0x7a, 0x91, + 0x3a, 0x68, 0xb2, 0x9d, 0x3d, 0xd9, 0x01, 0xc5, 0x5f, 0x3c, 0xa8, 0x1d, + 0x99, 0xc6, 0xe7, 0xad, 0x09, 0xd1, 0x39, 0x3a, 0x92, 0xc5, 0x77, 0x9c, + 0xdf, 0x99, 0x56, 0x9f, 0xfe, 0xf8, 0xfd, 0xc8, 0x4f, 0x19, 0xa3, 0xa0, + 0xdf, 0xff, 0x17, 0xac, 0xa9, 0x03, 0x32, 0x85, 0x4c, 0x29, 0xca, 0x89, + 0x58, 0xdc, 0x88, 0xdd, 0xeb, 0x79, 0x68, 0x5e, 0x0f, 0x37, 0x1a, 0xf7, + 0x05, 0xfd, 0x39, 0x91, 0x25, 0x61, 0xf3, 0x04, 0xda, 0x97, 0xfc, 0x7b, + 0xcc, 0x40, 0x63, 0xfd, 0x5b, 0x3b, 0x27, 0x8e, 0x92, 0x6d, 0x98, 0x0f, + 0xcc, 0x9c, 0x9b, 0xda, 0xb2, 0xc6, 0xca, 0x56, 0xff, 0x7e, 0xcc, 0xa2, + 0xc0, 0x45, 0x3e, 0xf6, 0xdf, 0xa7, 0xe8, 0x2a, 0xef, 0x0c, 0xde, 0xec, + 0xa4, 0x1d, 0x2c, 0x3e, 0x03, 0xfd, 0xa4, 0x44, 0x60, 0x4a, 0xf5, 0x83, + 0x8f, 0x09, 0x2d, 0xe8, 0xd5, 0x46, 0xf6, 0x1c, 0x2d, 0x39, 0x28, 0x0c, + 0xdf, 0xa1, 0x2b, 0x05, 0x6e, 0x3c, 0x36, 0xdd, 0x91, 0x81, 0x52, 0xf1, + 0x56, 0xdc, 0xbb, 0x79, 0x62, 0xd8, 0x2e, 0x27, 0x5d, 0x9f, 0x3c, 0xce, + 0x81, 0x5c, 0x70, 0xe5, 0x4d, 0x33, 0x06, 0xd5, 0x14, 0x04, 0xb7, 0xbc, + 0x7b, 0x7a, 0xb4, 0xf7, 0x4a, 0x48, 0x8f, 0x97, 0x85, 0x96, 0x69, 0xc9, + 0x40, 0x52, 0xb1, 0x1c, 0x28, 0x82, 0xb3, 0x63, 0xee, 0x94, 0x2f, 0xcb, + 0x40, 0xad, 0xd7, 0x78, 0xb1, 0xc4, 0x21, 0x05, 0x36, 0xd9, 0x46, 0xf0, + 0x83, 0xcd, 0xee, 0x52, 0x7a, 0xa6, 0xa4, 0x40, 0xb0, 0x2f, 0xf0, 0x1c, + 0xfa, 0x42, 0x98, 0x54, 0x5b, 0xfe, 0x5e, 0xd6, 0x84, 0x73, 0xca, 0x39, + 0xbe, 0x87, 0xf2, 0x92, 0xee, 0x3d, 0x21, 0xcc, 0x69, 0x81, 0xe5, 0xe8, + 0x8a, 0xc3, 0x23, 0x64, 0x98, 0xd5, 0x1d, 0xcd, 0x5c, 0x6c, 0x37, 0xc8, + 0x8b, 0x08, 0x22, 0x12, 0x9f, 0x85, 0xc9, 0xed, 0xb4, 0xa6, 0x07, 0xe1, + 0x62, 0x79, 0x35, 0x5d, 0x26, 0x11, 0x4a, 0x6b, 0x33, 0x37, 0x91, 0x78, + 0xe8, 0xe2, 0xba, 0x8b, 0x8a, 0xb7, 0xbb, 0x0f, 0xd2, 0xb3, 0xa2, 0x02, + 0x0c, 0x57, 0x35, 0x99, 0x88, 0x6b, 0x9b, 0x64, 0x79, 0x1f, 0x4a, 0x48, + 0xd4, 0x3b, 0x5c, 0xeb, 0xb4, 0x83, 0xc3, 0xad, 0x9c, 0x6a, 0xb0, 0xcf, + 0x7f, 0x70, 0xe8, 0x22, 0x46, 0x25, 0xfe, 0x7e, 0x02, 0x44, 0x83, 0x02, + 0xb3, 0x08, 0x2e, 0x34, 0x08, 0x4b, 0xff, 0xa2, 0xc1, 0x60, 0xbb, 0xd8, + 0x89, 0x16, 0xf8, 0xaa, 0xab, 0xea, 0xf7, 0xa0, 0x10, 0x9a, 0xc9, 0xe9, + 0xa4, 0x81, 0xa7, 0x87, 0x32, 0x5b, 0xc1, 0xd0, 0xd9, 0x70, 0x6f, 0xb6, + 0x7c, 0x65, 0xd5, 0x0e, 0x65, 0x93, 0xfe, 0x6d, 0x66, 0xaa, 0xab, 0xd0, + 0x03, 0x07, 0xf2, 0xbe, 0x39, 0xd6, 0xc8, 0xac, 0xf2, 0x06, 0x58, 0x58, + 0x46, 0xc0, 0x1a, 0xbd, 0xa4, 0x96, 0x38, 0x31, 0x32, 0x89, 0x04, 0xdf, + 0xcd, 0x3c, 0x2e, 0x98, 0xb8, 0x39, 0xba, 0xe2, 0xca, 0x6b, 0xd0, 0x53, + 0xce, 0x4a, 0xc8, 0x95, 0x81, 0x84, 0x17, 0xce, 0x7f, 0x1d, 0xc1, 0x5a, + 0xc4, 0xc2, 0x73, 0x30, 0x6d, 0x0b, 0x8c, 0xf8, 0x66, 0x38, 0x4e, 0xa3, + 0x14, 0x84, 0x15, 0x36, 0x9e, 0x0d, 0x56, 0x6b, 0xa6, 0x77, 0x65, 0xa4, + 0x2c, 0x77, 0x00, 0x8b, 0x43, 0x57, 0xc6, 0x25, 0xc5, 0xd0, 0x17, 0x79, + 0x6b, 0x5d, 0xbc, 0xcd, 0xc8, 0x25, 0x8f, 0x20, 0x09, 0xcc, 0xbd, 0x80, + 0x10, 0xdf, 0x35, 0xf6, 0x9c, 0x04, 0x80, 0x23, 0xdc, 0x97, 0xe0, 0xba, + 0x29, 0x48, 0x2e, 0x95, 0x0f, 0xb1, 0x9b, 0xc7, 0xe6, 0x0b, 0x89, 0x16, + 0xe2, 0x81, 0x3b, 0x32, 0x69, 0xc4, 0xde, 0xc6, 0x12, 0x09, 0x47, 0xff, + 0x50, 0xe4, 0x45, 0xb7, 0x35, 0xd2, 0x61, 0x9b, 0x52, 0x6e, 0xbe, 0xaf, + 0xd2, 0xeb, 0x0c, 0x50, 0xf1, 0x57, 0x9f, 0x59, 0xe1, 0xc1, 0x4f, 0x8c, + 0x79, 0x07, 0x05, 0xce, 0x8d, 0x64, 0xb2, 0xf0, 0xd3, 0x4f, 0xe1, 0x7b, + 0xfa, 0x30, 0x0a, 0xc2, 0x5d, 0x0c, 0x47, 0x6c, 0x17, 0x77, 0x1f, 0xe5, + 0xd8, 0x14, 0xfd, 0xc1, 0x01, 0x70, 0x51, 0x60, 0xb2, 0x20, 0xfd, 0x86, + 0xbc, 0x19, 0x5e, 0x01, 0xa6, 0x19, 0x3a, 0x21, 0xa5, 0x0a, 0x1c, 0xd9, + 0xa9, 0x78, 0xbb, 0xc9, 0x01, 0x65, 0xe4, 0xb3, 0x48, 0xb8, 0xe1, 0xe7, + 0xb5, 0xf4, 0x4e, 0xa9, 0xb6, 0xe2, 0x5b, 0xeb, 0xf5, 0x76, 0x06, 0x1a, + 0xd9, 0x08, 0x40, 0xff, 0x72, 0xb2, 0xe3, 0x01, 0x50, 0xb1, 0xad, 0xb3, + 0xa3, 0xf6, 0xef, 0x72, 0x05, 0x0c, 0xf4, 0xce, 0x24, 0x2c, 0x63, 0x89, + 0x63, 0x9e, 0x21, 0xb8, 0xb0, 0xbe, 0xc7, 0x45, 0xae, 0x47, 0x2b, 0x9e, + 0x61, 0x81, 0x4c, 0x76, 0x96, 0x7b, 0x18, 0x37, 0x74, 0xcb, 0x00, 0xef, + 0x38, 0x72, 0x24, 0x0a, 0x63, 0xc1, 0x64, 0xd6, 0x41, 0xc8, 0x6a, 0xf1, + 0xe7, 0x11, 0x20, 0x4b, 0xc2, 0x95, 0x70, 0xb8, 0xf8, 0x8f, 0xd9, 0xae, + 0x8c, 0x12, 0xd8, 0x6f, 0x63, 0x30, 0xca, 0x56, 0x46, 0x11, 0xda, 0x49, + 0x1f, 0x84, 0x3d, 0xae, 0xab, 0x78, 0x29, 0x02, 0x6c, 0x43, 0xa3, 0xef, + 0x9d, 0x97, 0x59, 0x15, 0x53, 0xcd, 0xc7, 0x47, 0x65, 0x30, 0xc7, 0xae, + 0x31, 0x4a, 0x41, 0xb4, 0x66, 0x9c, 0xbb, 0x51, 0x0b, 0xbd, 0xe2, 0x7d, + 0x41, 0x2c, 0xd0, 0x75, 0x57, 0x93, 0xce, 0x2e, 0xeb, 0x31, 0x7f, 0x56, + 0xb2, 0xa4, 0x2b, 0x9f, 0xcc, 0xef, 0x6f, 0xf0, 0x77, 0x19, 0xad, 0x4d, + 0x2e, 0x37, 0x00, 0x75, 0x53, 0xae, 0x22, 0x44, 0x69, 0x1c, 0x8a, 0x90, + 0xf2, 0xcd, 0x0f, 0x6b, 0x37, 0xdb, 0xfd, 0x71, 0x64, 0x80, 0xd8, 0x57, + 0x1b, 0x8f, 0xff, 0x14, 0xd4, 0x5f, 0xe1, 0xd1, 0x0f, 0x06, 0x13, 0x61, + 0x29, 0xa9, 0x80, 0x9d, 0xc7, 0x8a, 0xa0, 0xb5, 0xaa, 0xfc, 0xe0, 0xb4, + 0xb4, 0xf0, 0x31, 0xf0, 0xec, 0x78, 0x03, 0x28, 0xb9, 0xf7, 0xd9, 0xa7, + 0xc8, 0xad, 0x2e, 0x16, 0xb8, 0x18, 0x82, 0x43, 0x66, 0x8b, 0xae, 0xb2, + 0x45, 0x2b, 0x0c, 0x9d, 0x69, 0xbd, 0x1b, 0xc5, 0x20, 0xc6, 0x41, 0xe7, + 0x4f, 0x4b, 0x7b, 0x46, 0x3d, 0x7a, 0x6d, 0x9f, 0x13, 0x2e, 0x0f, 0xf3, + 0x85, 0x3e, 0x5b, 0x12, 0xe5, 0xbf, 0x1b, 0x20, 0xc3, 0x5f, 0x6b, 0xf7, + 0xf7, 0xa3, 0xd7, 0x33, 0xd2, 0xcb, 0x18, 0xa5, 0xa4, 0xa2, 0xd3, 0x59, + 0x91, 0x9a, 0x04, 0xfa, 0x9d, 0xa5, 0x55, 0xad, 0x09, 0x5a, 0x1e, 0x0b, + 0x10, 0xd0, 0x46, 0x18, 0xe4, 0x09, 0xe8, 0x1b, 0x44, 0xd3, 0x78, 0x45, + 0xc0, 0xdf, 0xa2, 0xef, 0xfc, 0x59, 0x8a, 0x1b, 0x22, 0x60, 0xc9, 0x58, + 0x7d, 0x65, 0x45, 0xa9, 0xac, 0xd5, 0xd4, 0xc4, 0x44, 0xd3, 0x08, 0x44, + 0x40, 0x4d, 0x3d, 0x7e, 0x39, 0x81, 0x72, 0x15, 0x49, 0xd7, 0x2c, 0xda, + 0x33, 0xaf, 0xc5, 0xb5, 0x8a, 0x3c, 0xbf, 0x81, 0x88, 0x4f, 0x12, 0xe4, + 0xe8, 0xe6, 0x00, 0xb6, 0xd9, 0xcd, 0xb2, 0x70, 0x08, 0x15, 0x72, 0xf6, + 0x46, 0xc7, 0x98, 0x7c, 0x1d, 0x54, 0xd0, 0x66, 0x2d, 0xa1, 0xd8, 0xda, + 0xb0, 0xe5, 0x9f, 0xa3, 0x2f, 0x2c, 0xfb, 0x34, 0xb3, 0x21, 0x8b, 0x61, + 0xf4, 0xce, 0x60, 0x2b, 0xb5, 0x5e, 0x3d, 0x14, 0x2c, 0xbe, 0x19, 0x9d, + 0x5f, 0x01, 0xe1, 0x21, 0x34, 0x11, 0x6b, 0x10, 0xd4, 0x17, 0x58, 0xb3, + 0x0a, 0x30, 0xe4, 0x17, 0x51, 0x0b, 0xf2, 0xbb, 0xa6, 0xb7, 0x00, 0xa2, + 0xe8, 0xa5, 0xa3, 0x41, 0x1d, 0x65, 0x2d, 0x26, 0x93, 0x26, 0x7d, 0xdc, + 0xad, 0x6f, 0x83, 0xeb, 0x66, 0x55, 0xde, 0x60, 0x21, 0x56, 0x19, 0x4f, + 0x9b, 0x7b, 0x26, 0x4a, 0x80, 0xf5, 0xab, 0x8b, 0xbf, 0xe4, 0xb1, 0xa1, + 0xd6, 0x33, 0x32, 0xbf, 0x86, 0x8c, 0x3c, 0xd0, 0x12, 0x03, 0xd4, 0xb9, + 0x23, 0x54, 0x1b, 0x94, 0x2f, 0xa5, 0x34, 0x4d, 0x59, 0x18, 0x33, 0x8e, + 0x8c, 0xf7, 0x1f, 0xc9, 0x6d, 0x75, 0xfb, 0x2a, 0x22, 0x6c, 0x64, 0xb7, + 0x79, 0xd8, 0x3b, 0xf6, 0x4e, 0x98, 0xd8, 0xa8, 0x2c, 0x06, 0xd1, 0x92, + 0x32, 0x44, 0xec, 0x38, 0x40, 0x3b, 0x53, 0x16, 0x40, 0x8f, 0x92, 0x72, + 0x87, 0xa8, 0xb8, 0xc0, 0x8f, 0x25, 0x4c, 0x4f, 0x24, 0xfc, 0x8d, 0xc6, + 0xa6, 0xeb, 0x2f, 0xdf, 0x2f, 0x0d, 0x2f, 0xd3, 0x6e, 0x70, 0x71, 0xfe, + 0xf0, 0x2e, 0xe9, 0x84, 0xd3, 0xc1, 0xd1, 0x70, 0x4b, 0x8f, 0x7b, 0x60, + 0xb0, 0xb7, 0xe3, 0x79, 0x52, 0x6a, 0x6b, 0x26, 0x03, 0x8f, 0x6a, 0x0f, + 0x8d, 0x85, 0xd7, 0x5f, 0xf7, 0x39, 0x31, 0x0e, 0x26, 0x73, 0x84, 0x3f, + 0x9b, 0x10, 0x6f, 0x29, 0x63, 0x14, 0x36, 0xa2, 0xec, 0x44, 0x7d, 0x84, + 0xc6, 0x4a, 0xec, 0xfe, 0xac, 0xcb, 0xe4, 0xfa, 0xf6, 0x68, 0x83, 0x68, + 0xe0, 0x8f, 0xd3, 0x8a, 0x60, 0x73, 0xf1, 0x5c, 0x71, 0x02, 0x0c, 0xa2, + 0x88, 0x2c, 0xa2, 0x35, 0x35, 0x5c, 0x3f, 0xb1, 0xbe, 0xb3, 0x6b, 0x5c, + 0xe1, 0x78, 0x75, 0x40, 0x20, 0x87, 0x67, 0xca, 0x07, 0x1c, 0x9c, 0x02, + 0xc7, 0xf2, 0x9d, 0x1c, 0xda, 0x1b, 0x86, 0x1b, 0xc6, 0xa6, 0xff, 0xff, + 0x04, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x93, 0xca, 0x30, 0xae, + 0xea, 0x26, 0x6a, 0x1b, 0x15, 0x46, 0x0a, 0xe3, 0x57, 0x23, 0x4c, 0x0c, + 0x98, 0x8e, 0x3e, 0xbb, 0x43, 0x14, 0x73, 0xdf, 0x17, 0x91, 0xe2, 0xee, + 0x39, 0xf9, 0xc2, 0x2f, 0xdc, 0xad, 0x0e, 0x00, 0xf5, 0xdd, 0xe3, 0x97, + 0xba, 0x8c, 0xee, 0x53, 0xc4, 0x70, 0x37, 0x46, 0xcf, 0x04, 0xc3, 0xc8, + 0x56, 0x38, 0x2e, 0x39, 0x75, 0x32, 0x6d, 0x98, 0xc4, 0x14, 0xae, 0xa4, + 0x29, 0xa3, 0xc6, 0xb6, 0x66, 0x45, 0x48, 0xdf, 0xc0, 0xa9, 0x4b, 0x4f, + 0xef, 0xb9, 0xb4, 0x89, 0x0d, 0x64, 0x00, 0x5c, 0xd1, 0xc8, 0x2b, 0xf7, + 0xc5, 0x1a, 0x1b, 0x06, 0xb7, 0x49, 0xb1, 0xe3, 0x4d, 0x87, 0xf9, 0x3f, + 0xba, 0x39, 0xa3, 0x56, 0x7f, 0x43, 0xcc, 0x15, 0x9c, 0x3d, 0xba, 0x71, + 0x7b, 0xeb, 0x45, 0x0f, 0x15, 0x1b, 0x6c, 0x84, 0x75, 0x6d, 0x43, 0x0b, + 0x27, 0x12, 0x6b, 0xbc, 0x0a, 0x6d, 0xe4, 0xf6, 0x4f, 0xc7, 0xbb, 0x9e, + 0x91, 0xb5, 0x09, 0x5f, 0x79, 0x2a, 0xbf, 0xda, 0x34, 0x91, 0x44, 0x47, + 0x52, 0x64, 0x00, 0x89, 0x27, 0x17, 0x5c, 0xe9, 0x90, 0x8b, 0xcb, 0xbe, + 0x21, 0x47, 0x65, 0x1c, 0x54, 0x61, 0x48, 0x17, 0x66, 0xb7, 0xa1, 0x60, + 0x27, 0x31, 0x04, 0x42, 0x3b, 0x33, 0x3d, 0xda, 0xf7, 0x61, 0x3d, 0x4b, + 0x91, 0xa5, 0x74, 0x4b, 0xde, 0x16, 0xf2, 0x79, 0x3e, 0xf7, 0x89, 0x87, + 0xb3, 0xdd, 0xa2, 0x49, 0xd7, 0x54, 0x1b, 0x39, 0xff, 0xb5, 0xec, 0x9d, + 0x1d, 0x09, 0x7e, 0x5a, 0x3c, 0xd1, 0xdc, 0x0e, 0x2a, 0x0e, 0x2c, 0x40, + 0x4e, 0xa5, 0x8c, 0x9d, 0xc8, 0x9b, 0xa5, 0xb2, 0x40, 0xa4, 0xaa, 0x3b, + 0xac, 0x93, 0x19, 0xf7, 0xa1, 0x8b, 0xf8, 0x4a, 0x40, 0x08, 0x5d, 0x1d, + 0xb0, 0xae, 0x0f, 0x67, 0xa7, 0x21, 0xaf, 0xe3, 0xb1, 0xfc, 0xff, 0xa0, + 0x95, 0x66, 0x2b, 0xf7, 0x82, 0x2d, 0x8a, 0x26, 0x0f, 0xc3, 0xed, 0x62, + 0xb6, 0xcb, 0x4c, 0x86, 0xe9, 0x20, 0x78, 0x3f, 0x08, 0x53, 0x8f, 0x41, + 0xf1, 0xa1, 0x04, 0x77, 0xd9, 0xe6, 0xea, 0x26, 0x6d, 0x33, 0x48, 0xb3, + 0xbb, 0xed, 0xfc, 0xd7, 0xa3, 0x2b, 0xe2, 0x39, 0xcf, 0x78, 0x4e, 0x11, + 0x26, 0xad, 0x39, 0x83, 0x6e, 0x72, 0xbf, 0xc6, 0x34, 0x23, 0x97, 0x5d, + 0x7b, 0x64, 0x1e, 0x78, 0x00, 0x34, 0x92, 0x5d, 0x3f, 0x23, 0x28, 0x60, + 0x7f, 0x88, 0xf0, 0xca, 0x96, 0x4a, 0x15, 0xbf, 0x8a, 0xb7, 0xd0, 0xd9, + 0x99, 0x8b, 0xdb, 0x26, 0xdc, 0x7e, 0x8d, 0x35, 0x53, 0x60, 0x07, 0x85, + 0x80, 0xc4, 0x9c, 0x0d, 0x81, 0xe2, 0x93, 0x85, 0x76, 0x2d, 0x85, 0x21, + 0x6e, 0xda, 0x29, 0xe5, 0xb1, 0x08, 0x46, 0x09, 0x1b, 0x8a, 0xd9, 0xd2, + 0xd7, 0x16, 0x74, 0xee, 0x26, 0x3e, 0xc4, 0x8c, 0x2e, 0x6b, 0x0c, 0xbc, + 0x95, 0xea, 0x4a, 0xb2, 0xd6, 0x6f, 0x43, 0xd1, 0x3a, 0x8f, 0xbd, 0x77, + 0xb4, 0x67, 0x63, 0x6b, 0xd2, 0xe0, 0xf0, 0x81, 0x74, 0xb7, 0xc5, 0x11, + 0x60, 0x10, 0x6b, 0xc6, 0x0f, 0xfd, 0x84, 0x2e, 0x5c, 0x8f, 0x3b, 0xf5, + 0x68, 0xa7, 0x62, 0xc6, 0x4f, 0xa6, 0xee, 0x19, 0x44, 0xea, 0xc0, 0xe4, + 0x64, 0x12, 0x71, 0x2f, 0xfb, 0xa3, 0x4d, 0xb0, 0x8e, 0x5e, 0xe1, 0x79, + 0x65, 0xd4, 0xf3, 0xed, 0x73, 0x04, 0xf1, 0x6d, 0xc6, 0x75, 0x54, 0x28, + 0x13, 0xe2, 0xd6, 0xa1, 0x26, 0xf9, 0xa4, 0x29, 0x20, 0x5b, 0xd0, 0x3c, + 0x3d, 0xf3, 0x7a, 0x18, 0x9a, 0x3d, 0xec, 0x6a, 0x4c, 0xfd, 0xa5, 0x00, + 0xdf, 0xec, 0xfd, 0x64, 0x38, 0x66, 0xa7, 0xba, 0x59, 0xb3, 0x9b, 0x9c, + 0x44, 0xfb, 0x10, 0x08, 0xb8, 0x79, 0xea, 0x85, 0xbf, 0xa4, 0x14, 0xce, + 0xce, 0x85, 0x22, 0x3f, 0x16, 0x00, 0x1c, 0x57, 0xc8, 0x5a, 0x1b, 0xf5, + 0xff, 0xde, 0x7e, 0xa9, 0xcc, 0xf3, 0xb5, 0x1d, 0x57, 0x06, 0xda, 0xbb, + 0x6c, 0x0a, 0x1e, 0xd4, 0x09, 0x74, 0x84, 0x1d, 0xfa, 0xdf, 0x33, 0x1e, + 0xe2, 0x8f, 0x10, 0xf7, 0x73, 0xab, 0x71, 0xb8, 0x64, 0xce, 0xc0, 0x49, + 0xc0, 0x36, 0xd3, 0x39, 0x31, 0x4c, 0x12, 0x5b, 0xf3, 0xf9, 0xb4, 0x2c, + 0x88, 0xba, 0xd4, 0x1a, 0xbd, 0x0c, 0x99, 0xbd, 0x0e, 0xad, 0x51, 0xe0, + 0xca, 0xdb, 0x25, 0x66, 0x83, 0xe0, 0x55, 0x18, 0xeb, 0xa6, 0x4e, 0x56, + 0xcb, 0x2f, 0xa5, 0xf2, 0x42, 0x7a, 0xa1, 0x05, 0xf0, 0x3a, 0x71, 0x5a, + 0x78, 0x3a, 0x7a, 0x6d, 0x12, 0x9f, 0x43, 0xc5, 0xcc, 0xb3, 0xfd, 0xf2, + 0xbf, 0x05, 0x16, 0xef, 0x07, 0xf9, 0xde, 0x0d, 0x51, 0xf0, 0x33, 0x86, + 0x43, 0x57, 0x40, 0xbc, 0xa9, 0xbd, 0xa0, 0x23, 0xff, 0xbb, 0xe6, 0x15, + 0xa1, 0xeb, 0xe9, 0x78, 0x0d, 0x72, 0x76, 0xf2, 0xb6, 0x6e, 0x46, 0xe2, + 0x86, 0xab, 0x3c, 0x52, 0x2c, 0xc6, 0x77, 0xdd, 0x57, 0xf7, 0x4d, 0x36, + 0xbb, 0x41, 0x08, 0x21, 0xaa, 0xe6, 0x44, 0x50, 0xed, 0xaf, 0x18, 0xb3, + 0xdd, 0x6b, 0x57, 0x46, 0x9e, 0x44, 0x93, 0x20, 0xe0, 0x62, 0x95, 0xcd, + 0xcf, 0xe4, 0x96, 0x92, 0xc3, 0x0d, 0x16, 0xb2, 0xc3, 0xf4, 0x0f, 0x3f, + 0x87, 0x17, 0xb9, 0x7b, 0x60, 0x60, 0xfa, 0xfb, 0x81, 0x5c, 0xb3, 0xb7, + 0x89, 0x73, 0xf7, 0x35, 0xf7, 0x27, 0xf1, 0x0e, 0xa4, 0xa1, 0xba, 0xea, + 0x6a, 0xe3, 0x5c, 0x0f, 0xf7, 0x15, 0xbc, 0x28, 0x57, 0x27, 0x8f, 0xd8, + 0xca, 0x82, 0x19, 0xd0, 0xa3, 0x9d, 0xe5, 0xe0, 0x44, 0xbf, 0x78, 0xa4, + 0x09, 0x69, 0x27, 0xa0, 0x69, 0xb5, 0xd4, 0xbe, 0x00, 0xe6, 0x03, 0x97, + 0xbc, 0x8b, 0xfc, 0x25, 0x70, 0xb3, 0x49, 0x30, 0xe3, 0x24, 0x19, 0x77, + 0xb4, 0x93, 0x46, 0x03, 0xe6, 0x22, 0xaf, 0x76, 0xd2, 0x90, 0x00, 0x05, + 0x46, 0xb8, 0xa4, 0xf5, 0x4c, 0xaa, 0x04, 0x63, 0xa0, 0x57, 0xe0, 0x20, + 0x6e, 0x1a, 0xed, 0x21, 0x86, 0xd0, 0x38, 0x5b, 0xe6, 0xa7, 0xb0, 0xe7, + 0x75, 0xe3, 0x76, 0xb3, 0x15, 0x8b, 0xdc, 0x10, 0x52, 0x15, 0x21, 0x7b, + 0xd0, 0xc4, 0x75, 0x26, 0x1d, 0x6e, 0x0d, 0x4c, 0x08, 0x5b, 0x95, 0x9a, + 0xd0, 0xda, 0xbe, 0x23, 0x98, 0xde, 0x60, 0x2a, 0xe9, 0xa4, 0x92, 0xf0, + 0x92, 0x84, 0xdc, 0x86, 0x60, 0xf5, 0x23, 0x31, 0xf5, 0xe9, 0xd6, 0x00, + 0xc1, 0x78, 0xab, 0x05, 0x94, 0xd3, 0x47, 0x4d, 0x32, 0x0f, 0x82, 0xa0, + 0x99, 0x0b, 0xfe, 0x6b, 0x58, 0xf9, 0x24, 0xf6, 0x17, 0xa0, 0x5f, 0x24, + 0x6a, 0xc6, 0x01, 0xa8, 0xfa, 0xca, 0xdc, 0xb6, 0x83, 0xcb, 0xd2, 0x3b, + 0xb7, 0x0b, 0x04, 0x3e, 0x6a, 0xaf, 0x23, 0x17, 0x3e, 0x14, 0xce, 0x52, + 0x1c, 0xe3, 0x06, 0x66, 0x29, 0x17, 0x6f, 0x7e, 0x66, 0x06, 0xa9, 0x68, + 0x7f, 0xca, 0xad, 0xa8, 0xb7, 0x2d, 0xa4, 0x5d, 0xa6, 0x16, 0xcd, 0xed, + 0xee, 0x14, 0x96, 0xc8, 0x12, 0x69, 0x4e, 0x70, 0x72, 0x2a, 0x75, 0x82, + 0x08, 0x3f, 0x3e, 0x27, 0xa0, 0xea, 0x43, 0x84, 0xa9, 0x9a, 0x91, 0x87, + 0x4f, 0x20, 0x61, 0x55, 0x8d, 0x70, 0xad, 0x6c, 0x59, 0x5d, 0x13, 0x80, + 0xbb, 0x52, 0x55, 0x81, 0x8b, 0x59, 0x94, 0x0f, 0xc2, 0x54, 0x79, 0x59, + 0xe8, 0x9d, 0x58, 0xe5, 0x91, 0x10, 0xb3, 0xef, 0x1c, 0xda, 0xaa, 0xdd, + 0x91, 0x0b, 0xb0, 0x14, 0x3b, 0xad, 0x02, 0x98, 0x40, 0x3c, 0x54, 0xc4, + 0x23, 0xb9, 0x40, 0x54, 0x7e, 0x88, 0x10, 0x3e, 0x24, 0xe5, 0xf6, 0xdf, + 0x5c, 0x9e, 0x7a, 0x9f, 0xd0, 0xff, 0x5e, 0x9c, 0xb6, 0x30, 0x17, 0x94, + 0xd2, 0xaa, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, + 0x96, 0xff, 0x2f, 0x01, 0x60, 0x2c, 0x1b, 0xe3, 0xc6, 0xcb, 0xa4, 0x41, + 0xa1, 0x44, 0x13, 0x14, 0xe2, 0x44, 0x77, 0x1c, 0x96, 0xe8, 0xe6, 0x4f, + 0x70, 0x99, 0x3a, 0xef, 0xa1, 0x6f, 0x1f, 0x7f, 0xb9, 0xe9, 0x1e, 0x35, + 0x37, 0x5b, 0x94, 0x90, 0x78, 0xcc, 0x8d, 0xcd, 0x6c, 0x9f, 0xf6, 0x73, + 0xed, 0x23, 0xa2, 0x28, 0x64, 0x58, 0x50, 0x64, 0x05, 0xbc, 0xc9, 0x9b, + 0x5a, 0xec, 0x3f, 0x2b, 0x61, 0xcf, 0xa7, 0x35, 0x56, 0x8c, 0x77, 0x68, + 0xd6, 0xcf, 0x9b, 0xc5, 0x62, 0xee, 0x3a, 0xb2, 0xfe, 0x78, 0xba, 0x02, + 0xe7, 0x26, 0x8a, 0x89, 0x30, 0x19, 0xcc, 0xb0, 0x98, 0xbf, 0x30, 0x2c, + 0xae, 0x13, 0x6c, 0x93, 0x86, 0x19, 0x84, 0x13, 0x01, 0x2f, 0x39, 0x4e, + 0x33, 0xd1, 0x15, 0x99, 0xf7, 0x1e, 0xb8, 0x86, 0xdb, 0xb6, 0xf9, 0x56, + 0x42, 0x0e, 0x4a, 0xb1, 0x5e, 0xf0, 0x9a, 0x06, 0x5e, 0xab, 0xff, 0xff, + 0x04, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0xcd, 0xde, 0xad, 0x40, + 0x34, 0xcd, 0x79, 0x0a, 0x29, 0x84, 0x05, 0x3f, 0xb5, 0xbe, 0x49, 0x84, + 0x43, 0xcc, 0xa6, 0xe3, 0xe9, 0xdc, 0x84, 0x14, 0xe7, 0xb3, 0x1b, 0x96, + 0xe8, 0xda, 0x35, 0x15, 0x38, 0xf5, 0xb3, 0xb5, 0x91, 0xc3, 0xc3, 0x94, + 0xc6, 0x79, 0xeb, 0xf5, 0x22, 0x78, 0xf0, 0x0b, 0xda, 0xb0, 0x91, 0xa7, + 0x43, 0x71, 0x8e, 0xa6, 0x52, 0x0f, 0x81, 0x06, 0xc8, 0xdf, 0xb5, 0x1f, + 0x92, 0xb0, 0xfe, 0x93, 0x38, 0x4c, 0xf4, 0x17, 0x66, 0x31, 0xea, 0x08, + 0x72, 0xb9, 0xaa, 0xfd, 0x40, 0x8d, 0xbf, 0x56, 0x19, 0xb1, 0xb5, 0x8e, + 0x4e, 0x4e, 0x73, 0x7f, 0x4b, 0x0c, 0x70, 0x94, 0x7c, 0x9f, 0xfc, 0x23, + 0x35, 0xba, 0xd2, 0x23, 0x88, 0x1d, 0x83, 0x28, 0x45, 0xd7, 0x1b, 0x63, + 0xfb, 0x36, 0x86, 0x06, 0xf3, 0x99, 0x81, 0x6e, 0xd7, 0xf1, 0xd4, 0x53, + 0x6d, 0x30, 0x3c, 0x8d, 0xac, 0xc6, 0x9a, 0xd5, 0xe8, 0x4f, 0x11, 0x58, + 0xba, 0xfd, 0x67, 0x06, 0xe7, 0x1a, 0xb4, 0xa1, 0x45, 0x13, 0xf2, 0x3b, + 0xdc, 0x71, 0xf0, 0xc6, 0x53, 0xfc, 0x8b, 0x2f, 0x14, 0xe4, 0xe0, 0xd6, + 0x8c, 0x96, 0x4c, 0x48, 0xc0, 0x30, 0x6e, 0x00, 0x0f, 0x42, 0xfe, 0xa7, + 0x9d, 0x0f, 0xf2, 0x52, 0x58, 0xf9, 0x35, 0x33, 0x99, 0xda, 0xd5, 0x9d, + 0x61, 0x26, 0x6b, 0x80, 0xff, 0x08, 0x51, 0x54, 0x26, 0xfa, 0x8d, 0xfc, + 0x67, 0x60, 0x93, 0x0e, 0xcd, 0x78, 0x41, 0x5a, 0x31, 0x47, 0x14, 0xb0, + 0x65, 0x89, 0x30, 0xcb, 0x0c, 0xc5, 0xa0, 0x37, 0xa8, 0xe0, 0xcf, 0x24, + 0xa4, 0x2f, 0xad, 0xa7, 0x9c, 0xa2, 0xe8, 0x81, 0x17, 0xbe, 0x2f, 0xd5, + 0xd1, 0xa8, 0xff, 0x9d, 0x5e, 0x7f, 0xd9, 0x6c, 0x56, 0xe6, 0xc4, 0x60, + 0x8d, 0xa5, 0x47, 0x5e, 0x43, 0x1e, 0x34, 0x23, 0xb3, 0x6a, 0xdf, 0x6c, + 0xf8, 0xd1, 0x85, 0x11, 0xaa, 0x74, 0x85, 0x71, 0x27, 0xc5, 0x80, 0x37, + 0x60, 0xb4, 0x2b, 0x53, 0x5a, 0xc4, 0x35, 0xd1, 0xe8, 0x4b, 0x01, 0x58, + 0x1f, 0xdb, 0x73, 0xf3, 0x2c, 0x8b, 0xbb, 0x17, 0x36, 0x76, 0x35, 0x6b, + 0xa0, 0x82, 0x47, 0xf5, 0x16, 0x21, 0x41, 0x43, 0xc9, 0x1f, 0x53, 0xf9, + 0xe9, 0x47, 0xf0, 0x9c, 0x6d, 0xe3, 0x23, 0x59, 0x74, 0xdc, 0x1a, 0x8f, + 0x4e, 0x6c, 0x71, 0x83, 0x7e, 0xd0, 0x2b, 0x50, 0x44, 0x86, 0x5f, 0xbf, + 0x60, 0x92, 0xeb, 0x9a, 0x9b, 0xa2, 0xc9, 0x2b, 0xa8, 0xc4, 0x77, 0x4e, + 0x3f, 0xf8, 0xa6, 0x39, 0x50, 0x5c, 0x7e, 0x2a, 0x70, 0xb0, 0x5d, 0x28, + 0xb2, 0x81, 0xa9, 0xaf, 0x16, 0x5e, 0x27, 0xeb, 0x03, 0x0e, 0x82, 0xad, + 0x28, 0x51, 0x16, 0xd1, 0xf4, 0x58, 0x75, 0x1a, 0xf9, 0x6a, 0xbf, 0x73, + 0xd7, 0x84, 0x07, 0x7f, 0x4c, 0x4e, 0x29, 0x02, 0x9b, 0x60, 0x81, 0x85, + 0xa9, 0xbf, 0xc7, 0xa0, 0x8f, 0x8a, 0xdc, 0xa4, 0xc5, 0x17, 0x51, 0x24, + 0x15, 0x28, 0x9e, 0x5e, 0x78, 0x84, 0x21, 0x02, 0xca, 0x26, 0x61, 0x4e, + 0x95, 0xa6, 0x8d, 0xa6, 0x98, 0x7d, 0x1f, 0x84, 0x19, 0x24, 0x8b, 0x31, + 0x76, 0x89, 0x2a, 0x5f, 0xa9, 0xfb, 0xaa, 0x8a, 0x8c, 0xce, 0xe4, 0x30, + 0xd6, 0xec, 0x5b, 0x39, 0xb7, 0x09, 0x80, 0x23, 0x4c, 0xe1, 0x6e, 0x8f, + 0x7c, 0x10, 0xe8, 0x8a, 0x60, 0x35, 0xd7, 0xa3, 0xe0, 0x5f, 0xcd, 0xfa, + 0x3d, 0x8f, 0xd8, 0x5d, 0xec, 0xc9, 0xc5, 0xa0, 0x73, 0x41, 0x89, 0xe5, + 0x39, 0xf2, 0x42, 0xff, 0x08, 0xa0, 0x12, 0xb7, 0x4a, 0x5e, 0x46, 0x06, + 0x31, 0xbd, 0x88, 0x5e, 0x9e, 0x05, 0x17, 0x51, 0xb3, 0xe7, 0x88, 0x10, + 0x19, 0x32, 0xff, 0x8a, 0x1e, 0xce, 0x66, 0xbc, 0x84, 0x1f, 0xed, 0x52, + 0x52, 0x77, 0xe1, 0x5e, 0xa6, 0x21, 0xe4, 0xad, 0x59, 0xca, 0xa3, 0x77, + 0xea, 0x66, 0x28, 0x15, 0x73, 0x3a, 0xfd, 0xe4, 0x75, 0x46, 0x99, 0x59, + 0x5c, 0x7a, 0x9b, 0x9d, 0x11, 0xb4, 0x76, 0x45, 0x06, 0x45, 0x41, 0x1e, + 0x94, 0xb7, 0xd9, 0xb8, 0xcb, 0xbf, 0x71, 0xec, 0xba, 0x9f, 0x4a, 0x1b, + 0xbc, 0xfd, 0x5c, 0x06, 0x64, 0xfd, 0x31, 0x52, 0xc0, 0xe4, 0xa7, 0x21, + 0x2f, 0x22, 0x92, 0xf0, 0x51, 0x33, 0x92, 0x1d, 0x40, 0x3c, 0x01, 0x81, + 0x3b, 0xa8, 0x2e, 0x4e, 0xb6, 0x60, 0xcd, 0xd4, 0x36, 0x3b, 0x2e, 0x1d, + 0x5e, 0x43, 0xd9, 0x94, 0xf1, 0x51, 0xd3, 0x59, 0x94, 0x6a, 0xd5, 0x5f, + 0x1f, 0xd3, 0xa6, 0x55, 0xda, 0x15, 0xf1, 0x3e, 0x2c, 0x60, 0xb8, 0xc3, + 0xda, 0x0e, 0x56, 0x53, 0xea, 0xcd, 0x39, 0x27, 0x94, 0x86, 0x94, 0xb2, + 0x5b, 0xd8, 0x9a, 0x12, 0x94, 0xb0, 0xb6, 0x77, 0x28, 0xba, 0xde, 0xb6, + 0x60, 0x4d, 0x2b, 0x6e, 0x3d, 0xf6, 0xf1, 0x48, 0xf7, 0x77, 0xa1, 0x49, + 0xe0, 0x9f, 0x1e, 0xc9, 0xe6, 0xcb, 0x95, 0x26, 0x61, 0x5a, 0xc9, 0xed, + 0x49, 0x40, 0x17, 0x57, 0x15, 0xfc, 0x3c, 0xb8, 0x28, 0x79, 0xb8, 0x42, + 0x2a, 0xf9, 0xd4, 0x19, 0xb9, 0x5f, 0x41, 0xc2, 0x25, 0xd7, 0x88, 0x34, + 0xb3, 0x25, 0x4e, 0xca, 0xff, 0x9e, 0x59, 0x9a, 0x33, 0xc8, 0x12, 0xf9, + 0xd5, 0x70, 0xc0, 0x8b, 0x43, 0x13, 0xc4, 0x8d, 0x45, 0x99, 0xaa, 0xd7, + 0xeb, 0xb1, 0xe9, 0xb7, 0x5b, 0xab, 0x48, 0xd1, 0x26, 0x60, 0x8c, 0x13, + 0x55, 0x8a, 0x41, 0xd3, 0x68, 0x58, 0xd4, 0xa6, 0x30, 0x6e, 0x88, 0x3e, + 0x81, 0x6e, 0x61, 0x06, 0x13, 0x66, 0xd5, 0x8e, 0x5d, 0x87, 0x4f, 0xd9, + 0xb1, 0x66, 0xb3, 0xc5, 0x88, 0xa9, 0xc0, 0x73, 0xcb, 0x7f, 0x42, 0xec, + 0x96, 0x64, 0xad, 0x72, 0x85, 0x72, 0xaf, 0xeb, 0xa9, 0xc4, 0x17, 0x86, + 0xab, 0xe7, 0x23, 0xd7, 0x96, 0xf7, 0xb2, 0xb3, 0x51, 0xe1, 0x9a, 0x3b, + 0x0e, 0xaf, 0x89, 0xca, 0x7b, 0xf1, 0x70, 0x7b, 0xc7, 0x82, 0xfc, 0xc7, + 0x6c, 0x37, 0xd9, 0x7b, 0x82, 0x0f, 0x94, 0xcf, 0xd1, 0xa9, 0x33, 0xc2, + 0xa4, 0xab, 0xed, 0xad, 0xee, 0x64, 0x5d, 0x04, 0xf2, 0xcb, 0x8e, 0x99, + 0x22, 0x33, 0x69, 0x85, 0x85, 0xb6, 0x1a, 0x9b, 0x09, 0x18, 0xbe, 0xcd, + 0x63, 0xf6, 0x5d, 0x52, 0xbc, 0x26, 0x99, 0x3e, 0x52, 0xe5, 0x0c, 0xc5, + 0xee, 0xdd, 0xbb, 0x07, 0xbc, 0x38, 0xc1, 0x67, 0x96, 0x8c, 0xe6, 0xe4, + 0x18, 0xfa, 0x07, 0x91, 0x48, 0xef, 0x9c, 0x70, 0x9d, 0x5b, 0x1c, 0x0e, + 0xd5, 0xd3, 0x59, 0xee, 0x44, 0x13, 0xf7, 0x00, 0xa6, 0x20, 0xad, 0x65, + 0x1d, 0xb7, 0x96, 0x2f, 0x79, 0x7b, 0x04, 0xa3, 0x10, 0x90, 0x29, 0x8c, + 0xa3, 0x2e, 0x14, 0x39, 0xd3, 0xe4, 0x6e, 0x46, 0xf7, 0x6e, 0x96, 0x68, + 0xd9, 0xef, 0x45, 0xf7, 0x3c, 0xcd, 0xc7, 0xca, 0x33, 0x64, 0x8e, 0x31, + 0x80, 0x48, 0x7b, 0x7c, 0x81, 0x9a, 0x48, 0xff, 0xd5, 0x0d, 0x74, 0xe7, + 0x77, 0x46, 0x61, 0x9b, 0xde, 0xed, 0x83, 0xe9, 0x4f, 0x92, 0xc1, 0x16, + 0xad, 0x44, 0x40, 0x23, 0xce, 0x04, 0x31, 0xbf, 0xcf, 0xe2, 0x5a, 0x68, + 0x5a, 0xf4, 0x0f, 0xe1, 0x87, 0x79, 0xb0, 0x32, 0x0b, 0x09, 0x6b, 0x72, + 0x2b, 0x16, 0x06, 0x67, 0x82, 0x0b, 0x92, 0x35, 0xdb, 0x4c, 0xe2, 0x4a, + 0x60, 0x99, 0xaf, 0x52, 0x10, 0x4b, 0xa5, 0xcf, 0xac, 0x66, 0x49, 0x56, + 0x04, 0xc0, 0xd6, 0x6f, 0x62, 0x53, 0x6f, 0xcb, 0x62, 0xe9, 0xa5, 0xca, + 0x18, 0x8e, 0x86, 0x3f, 0x36, 0xfd, 0xea, 0x55, 0x16, 0x6d, 0x6c, 0x6a, + 0x8f, 0xa7, 0x9c, 0x70, 0x15, 0xd7, 0xf4, 0x57, 0x68, 0x04, 0x84, 0x60, + 0x3b, 0xb0, 0x32, 0xc4, 0xea, 0x9d, 0x70, 0xb9, 0xa6, 0x34, 0xe5, 0xfa, + 0xa1, 0x24, 0x54, 0x7f, 0xef, 0xac, 0xb4, 0x5f, 0xa0, 0xc0, 0x40, 0x3f, + 0x73, 0xdf, 0x56, 0xa6, 0xd9, 0x17, 0xf4, 0xff, 0x50, 0xae, 0x21, 0x0d, + 0x5a, 0xe0, 0xb0, 0xf9, 0x5b, 0x7a, 0x61, 0x6e, 0xa6, 0x85, 0x85, 0xbf, + 0x19, 0x03, 0xe2, 0x74, 0x1f, 0x03, 0x70, 0x76, 0x3c, 0xed, 0x02, 0x7d, + 0xfa, 0xf9, 0x1e, 0x17, 0xdd, 0x42, 0x30, 0xf0, 0x32, 0x47, 0x46, 0xae, + 0xf5, 0x64, 0xe6, 0x5e, 0x2b, 0x40, 0x86, 0x97, 0xb1, 0x24, 0x52, 0x69, + 0x67, 0x79, 0x8e, 0x0d, 0xcc, 0x07, 0xcb, 0x72, 0x29, 0xe9, 0xba, 0x2d, + 0xf7, 0xcb, 0xe3, 0x86, 0x06, 0xaa, 0x6d, 0x79, 0xf8, 0xb6, 0x93, 0x0a, + 0x9c, 0x97, 0xef, 0x47, 0x37, 0x13, 0x2e, 0x6b, 0xfd, 0x59, 0x0c, 0xc9, + 0x5e, 0x5e, 0xcd, 0x71, 0x6f, 0x99, 0x0d, 0x88, 0x9d, 0xbb, 0x7c, 0x2b, + 0x22, 0xd5, 0xbe, 0xee, 0x26, 0x1c, 0xe1, 0xad, 0xc8, 0x4d, 0x5f, 0x6b, + 0xd1, 0xf4, 0x30, 0x4d, 0x46, 0x1d, 0x54, 0x11, 0x4b, 0xa0, 0x7f, 0x94, + 0x71, 0xc0, 0x44, 0x4a, 0x42, 0x11, 0xf5, 0x89, 0xec, 0xb5, 0x24, 0x45, + 0xf1, 0xf0, 0x30, 0x54, 0xf8, 0x62, 0xdb, 0x58, 0x3d, 0x7c, 0x2a, 0x82, + 0xe5, 0xbe, 0x13, 0xcf, 0xdc, 0x88, 0xfb, 0xd3, 0x1e, 0x4d, 0xa5, 0x3e, + 0xad, 0x95, 0xa2, 0xe6, 0x48, 0x73, 0xb2, 0xbe, 0x96, 0xef, 0x8e, 0x0b, + 0x28, 0xf9, 0xbe, 0x2a, 0xd6, 0x68, 0x9e, 0x9c, 0x7b, 0x5a, 0xaf, 0x20, + 0xf6, 0xa5, 0x3f, 0x99, 0x61, 0x57, 0xe8, 0x1c, 0xb2, 0xc3, 0xd0, 0x7f, + 0x2c, 0xb5, 0xe9, 0x66, 0x8e, 0x88, 0xec, 0x13, 0x51, 0xbc, 0x8e, 0xb6, + 0xe2, 0x91, 0xbf, 0x5e, 0x8c, 0x1c, 0xdd, 0x0e, 0x0a, 0x13, 0x06, 0xc6, + 0x62, 0x1c, 0x41, 0x8d, 0xa1, 0xc0, 0xf2, 0xfa, 0x76, 0x35, 0xaa, 0x77, + 0x06, 0x3f, 0x76, 0x50, 0xf6, 0x43, 0xf2, 0x25, 0x00, 0x79, 0xde, 0xca, + 0xa1, 0x06, 0x6f, 0xb4, 0x17, 0x4b, 0x99, 0x5a, 0x00, 0x32, 0xd6, 0xb0, + 0x1f, 0x80, 0x53, 0x16, 0xaa, 0x87, 0x72, 0xa2, 0x34, 0xaf, 0x90, 0x3d, + 0x60, 0xde, 0x0e, 0x6d, 0x83, 0xda, 0xb2, 0x11, 0x2f, 0x39, 0xdc, 0x1a, + 0xfe, 0x51, 0x74, 0x10, 0x3c, 0x41, 0xd5, 0x41, 0x65, 0x4a, 0xa0, 0x11, + 0xde, 0x95, 0x34, 0xef, 0xa0, 0xc9, 0xa8, 0xd3, 0xcb, 0xb9, 0x7d, 0x51, + 0x7d, 0xff, 0x26, 0x88, 0xd8, 0x29, 0x0e, 0xa0, 0xd4, 0xa7, 0x07, 0x33, + 0xe7, 0x7d, 0x59, 0x9f, 0x35, 0xc1, 0xb5, 0xf7, 0x78, 0x78, 0x84, 0xf0, + 0x20, 0x41, 0x3f, 0x02, 0x7d, 0x41, 0x90, 0x01, 0x8d, 0xa4, 0xd8, 0xd7, + 0xeb, 0x56, 0x7f, 0x38, 0xbc, 0x1e, 0x15, 0xdf, 0xfc, 0x34, 0xe7, 0x99, + 0xd4, 0x92, 0xd5, 0xf3, 0x9e, 0x16, 0x0b, 0x5c, 0xeb, 0xb6, 0x78, 0xac, + 0x84, 0x06, 0x8e, 0xfe, 0xd0, 0x7c, 0xce, 0x4a, 0x43, 0x49, 0x3b, 0xe1, + 0xab, 0x57, 0xc0, 0x12, 0xd6, 0x9d, 0xa4, 0xee, 0x91, 0x10, 0x81, 0xe2, + 0xfc, 0x02, 0x26, 0x7a, 0xca, 0x81, 0x5b, 0x2f, 0x34, 0x51, 0xdd, 0x25, + 0x4d, 0xc8, 0xf9, 0x3e, 0x59, 0x0f, 0x3d, 0x64, 0x51, 0xbf, 0x42, 0xc4, + 0x92, 0x9d, 0x8f, 0x39, 0x8a, 0x31, 0x09, 0x24, 0x19, 0x44, 0xc0, 0xf4, + 0xea, 0xca, 0x59, 0xcb, 0x86, 0x6c, 0x02, 0x7a, 0xe5, 0x30, 0x79, 0xe2, + 0x2c, 0x76, 0x08, 0x8f, 0x98, 0x0d, 0x4d, 0x12, 0xc3, 0x98, 0xb4, 0x24, + 0x04, 0x4f, 0x51, 0xec, 0x4e, 0xec, 0xbd, 0x8c, 0xc4, 0x79, 0x51, 0x7f, + 0xe1, 0xce, 0x76, 0x28, 0x0b, 0x7b, 0xc5, 0x3f, 0x5b, 0x48, 0x19, 0x76, + 0x68, 0x31, 0x8e, 0x28, 0xff, 0x18, 0x24, 0xe3, 0x91, 0xe7, 0x49, 0x0d, + 0x10, 0xbd, 0x00, 0xc6, 0x58, 0xfd, 0xb6, 0x88, 0x63, 0xbd, 0xb4, 0x4b, + 0xb8, 0xed, 0xdd, 0xb7, 0x53, 0xce, 0x89, 0xdb, 0x7f, 0xf4, 0xc3, 0x21, + 0x31, 0xad, 0x20, 0x78, 0x06, 0x71, 0xaf, 0xc0, 0xe3, 0xdc, 0xb8, 0xf4, + 0x80, 0xc8, 0x33, 0x1d, 0x8b, 0xff, 0x5a, 0x92, 0x68, 0x4d, 0xc1, 0x5b, + 0x58, 0x3e, 0xf6, 0x7f, 0xba, 0x42, 0xa5, 0x6d, 0xec, 0x03, 0x36, 0xc9, + 0x3f, 0x83, 0x1f, 0x0c, 0x33, 0x57, 0x6a, 0x43, 0x5f, 0x11, 0x72, 0x19, + 0x2c, 0xda, 0x71, 0x58, 0xf2, 0x50, 0x50, 0x06, 0x97, 0xd0, 0xdf, 0xd1, + 0x4f, 0x0b, 0x00, 0x1a, 0xea, 0x85, 0x3b, 0x37, 0x2f, 0xf0, 0x40, 0x52, + 0xd9, 0x2a, 0xe8, 0x54, 0xa5, 0xee, 0x0f, 0x49, 0x74, 0x39, 0x96, 0x5d, + 0x60, 0x8f, 0x14, 0x59, 0x86, 0x59, 0x86, 0xfb, 0x67, 0x71, 0x5c, 0x26, + 0x5f, 0xe9, 0xab, 0x32, 0x77, 0x83, 0xdf, 0x02, 0x19, 0x85, 0xae, 0x4d, + 0x7d, 0x9c, 0x8d, 0x4f, 0x61, 0x05, 0x3c, 0x0c, 0xc6, 0x74, 0x9e, 0x36, + 0x33, 0xb8, 0x14, 0x85, 0xab, 0xa2, 0x0b, 0x5d, 0x22, 0xf2, 0x50, 0x3e, + 0xa4, 0x88, 0xac, 0x67, 0xf9, 0x06, 0xe5, 0x30, 0x8e, 0xf9, 0x67, 0x34, + 0xd5, 0x94, 0x5b, 0x35, 0xb7, 0x3d, 0x39, 0x5f, 0x4e, 0xae, 0xfe, 0xf7, + 0x57, 0xd3, 0x95, 0x7b, 0x0a, 0xd9, 0x92, 0x4a, 0x66, 0x29, 0xa0, 0x18, + 0x35, 0x54, 0x14, 0x44, 0x79, 0x72, 0xc3, 0xbc, 0xa8, 0x1a, 0xd3, 0xa3, + 0xbe, 0x6f, 0x9e, 0xcc, 0x68, 0xb6, 0x5f, 0xd4, 0x42, 0xab, 0xe8, 0x09, + 0x60, 0x57, 0x2e, 0xb2, 0x9a, 0x5b, 0x62, 0x38, 0xfb, 0x0a, 0x35, 0x9c, + 0x4f, 0xf7, 0xe0, 0xd2, 0x06, 0x04, 0x1f, 0x79, 0x7f, 0xa7, 0x7b, 0xd3, + 0x63, 0xc9, 0xbd, 0x16, 0x58, 0x38, 0x7b, 0xaa, 0x08, 0xf3, 0x14, 0x6c, + 0x25, 0xf8, 0xa5, 0xe9, 0x4b, 0x45, 0x34, 0x89, 0x76, 0x74, 0xcb, 0x41, + 0x9c, 0x2a, 0xd9, 0xca, 0xb3, 0x12, 0x46, 0x6d, 0x85, 0x4d, 0x63, 0x2d, + 0x24, 0x1b, 0x19, 0x6b, 0x3f, 0x61, 0x6b, 0x4b, 0x15, 0x83, 0x2d, 0x8f, + 0x61, 0xab, 0xd1, 0x55, 0x93, 0x4e, 0x26, 0xd6, 0x7a, 0x0a, 0x8a, 0xff, + 0x58, 0x44, 0xf7, 0x39, 0x31, 0x1a, 0xab, 0xa6, 0x98, 0x31, 0x41, 0x03, + 0xb6, 0xc9, 0xf5, 0x50, 0xe3, 0x7b, 0xc0, 0x59, 0x74, 0x60, 0x91, 0xb4, + 0x79, 0x02, 0x25, 0xc1, 0xb5, 0xbd, 0xcb, 0x6e, 0x40, 0x61, 0xfe, 0x68, + 0x29, 0x83, 0x1b, 0xd2, 0x49, 0xe1, 0x31, 0xde, 0xdd, 0x53, 0xb0, 0xb8, + 0x96, 0xa2, 0xce, 0xea, 0x8b, 0x66, 0x2c, 0x5a, 0x80, 0x51, 0x0b, 0xc1, + 0x2d, 0x9a, 0xfa, 0x9d, 0xc6, 0xcc, 0x2b, 0xbb, 0xaa, 0xce, 0x98, 0xaa, + 0x26, 0x15, 0x8f, 0x4a, 0xe7, 0xdb, 0x17, 0x6c, 0xe5, 0x58, 0xc9, 0xae, + 0xe4, 0x9c, 0x1d, 0xab, 0x59, 0x84, 0x3e, 0x27, 0x76, 0x03, 0xe3, 0x82, + 0x64, 0x6f, 0x6e, 0x6f, 0x63, 0xd2, 0x12, 0x84, 0xe3, 0x9b, 0x9d, 0x7e, + 0x53, 0x1a, 0x54, 0x8d, 0xc1, 0xf0, 0x94, 0xae, 0xad, 0x8f, 0x6a, 0x12, + 0x4e, 0xa7, 0x30, 0xdb, 0x55, 0xbe, 0x09, 0xe2, 0x56, 0x08, 0xc4, 0x3a, + 0xb0, 0x55, 0xb0, 0x24, 0x96, 0xa6, 0x3e, 0x28, 0xd0, 0x35, 0xfb, 0x58, + 0x47, 0xba, 0x2d, 0x51, 0xbb, 0x72, 0x20, 0x59, 0xd2, 0xdd, 0x9c, 0xe2, + 0xb5, 0x31, 0x90, 0xac, 0x74, 0x5d, 0x9f, 0x3d, 0x8c, 0x1c, 0x96, 0xc0, + 0x60, 0x61, 0xa8, 0xbb, 0x3c, 0xb3, 0x6d, 0x6d, 0x92, 0x4a, 0xca, 0xbb, + 0x60, 0x5e, 0x82, 0x0d, 0x7f, 0xab, 0x4b, 0x36, 0x4c, 0x93, 0x0d, 0x88, + 0x71, 0xaf, 0xb6, 0x53, 0xb0, 0x38, 0xb4, 0x1c, 0xb4, 0x7b, 0xd4, 0x13, + 0x32, 0x6c, 0xe4, 0xee, 0x6a, 0xb3, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, + 0x00, 0x02, 0x00, 0x00, 0x88, 0x83, 0x91, 0x4c, 0x2e, 0x1e, 0xbe, 0xa4, + 0xb5, 0x96, 0xff, 0x67, 0x50, 0xe9, 0x81, 0x0e, 0x5d, 0x0e, 0xad, 0xc4, + 0x1f, 0xeb, 0x98, 0x38, 0xcc, 0x54, 0x9d, 0x27, 0xa6, 0xf1, 0x37, 0x23, + 0xce, 0xb4, 0x5b, 0xff, 0x12, 0xb1, 0xb8, 0x35, 0x5e, 0x03, 0x02, 0x04, + 0xad, 0xa6, 0x6f, 0x43, 0xfc, 0xe4, 0xbe, 0x0c, 0xe0, 0x93, 0xd5, 0xef, + 0x09, 0xfa, 0x04, 0xe9, 0x5a, 0x22, 0xd4, 0x81, 0xc1, 0x27, 0x4f, 0x5f, + 0x6e, 0x83, 0x5a, 0x8a, 0x2d, 0xbb, 0x8f, 0xa4, 0x91, 0xcc, 0x82, 0x37, + 0x3b, 0x14, 0x98, 0x58, 0x86, 0x44, 0xb7, 0xa9, 0x58, 0xf3, 0x3d, 0x49, + 0x71, 0x7a, 0x37, 0xcd, 0xc5, 0xb9, 0xc9, 0x46, 0xd5, 0xd4, 0x17, 0x60, + 0x1a, 0xbf, 0x93, 0xa9, 0xe9, 0x08, 0x25, 0x40, 0xd1, 0x65, 0xae, 0xdd, + 0x85, 0xa6, 0xcc, 0x06, 0xca, 0x91, 0xe1, 0x63, 0xf9, 0x6b, 0x15, 0xa8, + 0x04, 0x61, 0xd2, 0xa6, 0x59, 0x21, 0x1a, 0x1c, 0xc9, 0xa9, 0xa9, 0xc8, + 0x54, 0x86, 0xac, 0xa5, 0xd6, 0x95, 0x39, 0x83, 0x4b, 0x6b, 0x69, 0xa6, + 0x94, 0xd8, 0xc0, 0xfb, 0x66, 0x0f, 0x3a, 0xbe, 0xc7, 0xf3, 0xcc, 0xd5, + 0xb7, 0x1b, 0x60, 0x02, 0x95, 0x45, 0x4a, 0x12, 0xc9, 0xfe, 0x75, 0x7c, + 0x1b, 0xb2, 0x86, 0x96, 0x28, 0x07, 0xa2, 0x18, 0x7a, 0x6c, 0x90, 0x6f, + 0x32, 0x0c, 0xc8, 0x34, 0xbc, 0x75, 0x4d, 0x96, 0x03, 0xa6, 0x0f, 0x3d, + 0x35, 0x1b, 0x64, 0x76, 0x95, 0x55, 0xff, 0x25, 0xd4, 0x71, 0xcf, 0x8a, + 0x73, 0x6d, 0x9b, 0x74, 0xfe, 0xff, 0x9e, 0x31, 0x9e, 0x5e, 0x89, 0x5a, + 0x1a, 0xeb, 0x8d, 0x06, 0x3b, 0xf2, 0xf6, 0x06, 0x5d, 0xc3, 0xba, 0x04, + 0xca, 0x0f, 0x07, 0x2c, 0xbd, 0x54, 0x52, 0xd9, 0x1c, 0x2f, 0x0e, 0x13, + 0x5e, 0x25, 0x13, 0xe5, 0xd7, 0x8e, 0x19, 0x42, 0x1b, 0x52, 0x2e, 0xd2, + 0x8f, 0xc5, 0x8e, 0x1c, 0x34, 0x2e, 0x4d, 0xd5, 0x51, 0x7d, 0x91, 0x64, + 0xbc, 0xb4, 0x0d, 0xc9, 0xe7, 0x1c, 0x6c, 0x47, 0xe9, 0xbb, 0x67, 0x9a, + 0x96, 0xde, 0xad, 0xff, 0xba, 0x35, 0x25, 0x6d, 0x57, 0xa1, 0x93, 0xfe, + 0xe2, 0x8d, 0x02, 0xeb, 0xf0, 0x2f, 0x54, 0xfd, 0x46, 0xc0, 0x8f, 0xea, + 0x32, 0x7b, 0x57, 0xda, 0xe0, 0x29, 0x1c, 0x19, 0xba, 0xa4, 0xa6, 0x1c, + 0x6e, 0xeb, 0x7a, 0xa8, 0x8a, 0xe1, 0xc6, 0x12, 0xf5, 0xa3, 0x24, 0x1a, + 0x96, 0xe1, 0x02, 0xc0, 0xf4, 0x7d, 0x14, 0x72, 0xd6, 0x12, 0x8e, 0x6c, + 0x8c, 0xd2, 0xfd, 0x88, 0x78, 0x48, 0xf3, 0x74, 0x38, 0x86, 0x04, 0x68, + 0x6d, 0x7c, 0xf4, 0x4c, 0x40, 0x17, 0xf6, 0x8f, 0xb2, 0x6c, 0xd7, 0x66, + 0x66, 0x3b, 0x38, 0xa1, 0xbb, 0x1e, 0xff, 0x72, 0x1f, 0x64, 0x56, 0xc2, + 0x53, 0x1c, 0x6f, 0x84, 0x2b, 0xbd, 0x23, 0xd9, 0xb4, 0x6b, 0x87, 0x79, + 0x99, 0xec, 0x81, 0x8d, 0x1a, 0x58, 0x00, 0xf0, 0x2c, 0xc1, 0xc4, 0x57, + 0x74, 0x0f, 0xce, 0x32, 0xe2, 0x5e, 0xae, 0x02, 0x1c, 0xe8, 0x94, 0xc6, + 0x44, 0xaa, 0x7b, 0x9a, 0x32, 0xb5, 0x33, 0xac, 0xfc, 0x41, 0x65, 0xf2, + 0xca, 0xcc, 0xc6, 0x74, 0x36, 0xb2, 0xc9, 0x0e, 0x26, 0x73, 0xae, 0x68, + 0x98, 0xa4, 0x36, 0xe8, 0x98, 0x39, 0xad, 0x05, 0x3f, 0xca, 0x12, 0xcc, + 0x86, 0xfd, 0xc6, 0x57, 0xf0, 0x02, 0x4e, 0x45, 0xcb, 0x54, 0x34, 0xdd, + 0x66, 0x26, 0xab, 0xda, 0x95, 0xa5, 0x85, 0xec, 0x02, 0x03, 0xb6, 0x29, + 0x30, 0x11, 0x40, 0x54, 0x9a, 0x6a, 0x87, 0x2e, 0x97, 0xa1, 0x7e, 0xeb, + 0x34, 0x39, 0x78, 0x3b, 0xbc, 0x5f, 0x8e, 0xc5, 0x0e, 0x21, 0x29, 0x4b, + 0xb7, 0x1b, 0xe7, 0x14, 0x08, 0x34, 0xb7, 0x9a, 0x0a, 0xb2, 0x6c, 0x25, + 0x76, 0xb5, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, + 0xe2, 0x7d, 0x48, 0xdd, 0x1a, 0xcb, 0xb6, 0x5c, 0x6f, 0xbe, 0x32, 0x9d, + 0xd2, 0x2b, 0x9e, 0x10, 0x65, 0xd7, 0x1e, 0xec, 0xc8, 0xb5, 0x10, 0x64, + 0x8f, 0x5d, 0xef, 0xfe, 0x9b, 0x6c, 0x9b, 0x02, 0x6a, 0x6d, 0xf7, 0x98, + 0x7b, 0xf7, 0x17, 0xfd, 0x49, 0x1b, 0x6a, 0xc5, 0x3c, 0xa0, 0xfc, 0xa8, + 0x94, 0x95, 0xed, 0x48, 0x81, 0x04, 0x53, 0x8c, 0xbe, 0xe4, 0x4e, 0xaf, + 0xc1, 0x9d, 0xc3, 0xdf, 0xc2, 0xb5, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, + 0x00, 0x04, 0x00, 0x00, 0xae, 0xb0, 0x67, 0x5b, 0x99, 0x26, 0x07, 0xfb, + 0x6c, 0x98, 0xfe, 0xbb, 0x35, 0xf1, 0x5b, 0x02, 0xc6, 0x03, 0xfc, 0x97, + 0x21, 0x16, 0x8d, 0x48, 0xd4, 0x4f, 0x03, 0xd9, 0x7c, 0x9f, 0xa6, 0x1e, + 0x6f, 0x5a, 0x58, 0x17, 0x6d, 0x26, 0xb4, 0xc5, 0x4c, 0xe5, 0x93, 0x0a, + 0x9c, 0xb2, 0x40, 0xbc, 0x60, 0xc7, 0x2b, 0xdb, 0x3b, 0xc0, 0x3c, 0x5c, + 0x44, 0x4b, 0xdd, 0x58, 0xbe, 0xdc, 0xc5, 0xb5, 0x6a, 0xf9, 0x5e, 0x73, + 0x07, 0x58, 0x8f, 0x45, 0x7b, 0xac, 0xba, 0x82, 0x96, 0x49, 0x4d, 0x22, + 0x70, 0x7a, 0x3d, 0x69, 0x26, 0x8b, 0x88, 0x13, 0xf1, 0x8d, 0xfc, 0xdf, + 0x73, 0xd5, 0x20, 0x3c, 0x52, 0x92, 0x16, 0xb1, 0x6e, 0xb7, 0x41, 0xbe, + 0x23, 0x9b, 0x51, 0xf7, 0xc9, 0x38, 0x8a, 0xc7, 0x6e, 0x68, 0x82, 0xd1, + 0x59, 0x50, 0x09, 0x4b, 0x44, 0x3b, 0x28, 0x06, 0x60, 0x75, 0x7a, 0xe5, + 0xa1, 0x36, 0xbb, 0x62, 0x44, 0xe3, 0xd0, 0x68, 0x14, 0xea, 0xad, 0xf9, + 0x18, 0xcc, 0xd5, 0x42, 0x5d, 0x18, 0x53, 0xe6, 0x4a, 0xfe, 0xde, 0x32, + 0xe1, 0xe7, 0xf8, 0x8c, 0x9d, 0x35, 0xf4, 0x4a, 0xcb, 0x23, 0x2f, 0x91, + 0xb5, 0xb0, 0xb2, 0x01, 0x5c, 0x22, 0x8c, 0x42, 0x42, 0xd5, 0xf0, 0x82, + 0x6f, 0x9f, 0x64, 0xe5, 0x99, 0x4d, 0x36, 0x0b, 0xfc, 0x78, 0x38, 0x30, + 0x47, 0x8f, 0x0b, 0x57, 0x86, 0x4f, 0x1b, 0xc9, 0x05, 0x0e, 0x08, 0xc4, + 0xf4, 0xab, 0x9e, 0x90, 0xb4, 0x4f, 0x36, 0x54, 0xe8, 0xa1, 0x3f, 0x90, + 0xd2, 0xf3, 0xb4, 0xb4, 0xdd, 0xf3, 0x43, 0x2f, 0xc4, 0x43, 0xbb, 0x99, + 0x8e, 0xb8, 0x61, 0x59, 0x5e, 0xfa, 0x1b, 0x3c, 0xc1, 0xeb, 0x9d, 0x35, + 0x62, 0x34, 0x82, 0x45, 0xef, 0x41, 0xe9, 0xfc, 0x35, 0xae, 0xb4, 0x0b, + 0xce, 0x52, 0x5b, 0x40, 0x7d, 0xdd, 0x86, 0x83, 0x52, 0x74, 0x77, 0x11, + 0xc2, 0x9b, 0x8c, 0xa3, 0x63, 0xc2, 0x2d, 0xdd, 0x8c, 0x76, 0x13, 0xc5, + 0xc0, 0xde, 0x3e, 0x6b, 0xe1, 0x0f, 0xeb, 0x0f, 0x0a, 0x25, 0x41, 0x2f, + 0x8b, 0x4a, 0x98, 0x30, 0xcb, 0x1a, 0x43, 0xa3, 0xc1, 0xcc, 0x44, 0x9a, + 0x6c, 0xdc, 0x92, 0x40, 0xc4, 0x7a, 0x1f, 0x8a, 0x6f, 0x74, 0xf3, 0xf5, + 0x52, 0x72, 0xf7, 0x81, 0x6e, 0x74, 0x75, 0xe6, 0xea, 0xd9, 0x57, 0x91, + 0xae, 0xf2, 0x3f, 0x35, 0x4b, 0x99, 0xd9, 0x3f, 0x85, 0xe0, 0x92, 0xaa, + 0x35, 0xac, 0x28, 0xbf, 0x43, 0xb8, 0xad, 0xc7, 0xc5, 0xf6, 0x15, 0x2f, + 0x7c, 0xfb, 0x34, 0x48, 0xf3, 0x04, 0x12, 0xf4, 0x2f, 0x92, 0x74, 0xc8, + 0xea, 0xbc, 0x24, 0x6e, 0x3b, 0x0e, 0x9e, 0xf0, 0xaf, 0x02, 0x97, 0x95, + 0xbc, 0x90, 0x7f, 0xc4, 0xf8, 0xe2, 0x04, 0x9a, 0x8f, 0xfc, 0xbc, 0x50, + 0xfe, 0xf7, 0x89, 0x17, 0x2c, 0xdb, 0xd6, 0x5e, 0xbf, 0xd9, 0x8e, 0x89, + 0x8b, 0x06, 0x1d, 0x0b, 0x81, 0x2a, 0x55, 0x5c, 0x5f, 0xb6, 0xa6, 0xa5, + 0xd2, 0xaa, 0x79, 0x9c, 0x39, 0x31, 0x76, 0x03, 0x98, 0x42, 0xd6, 0xb7, + 0x37, 0x1f, 0xc8, 0x51, 0x8a, 0x1c, 0x5d, 0xcd, 0x9c, 0x78, 0xa4, 0x22, + 0x6e, 0x12, 0x10, 0x0a, 0x33, 0xc9, 0xe0, 0xfe, 0xfc, 0xe8, 0x15, 0xe7, + 0xef, 0xd8, 0x6d, 0xc7, 0xc9, 0xc2, 0x8e, 0x18, 0x82, 0x2f, 0xa6, 0x09, + 0x8a, 0xdc, 0x41, 0x6b, 0x89, 0xea, 0xd9, 0xd6, 0x96, 0xfd, 0xba, 0x6e, + 0xae, 0x2d, 0x0c, 0xf9, 0x3c, 0x4c, 0x1a, 0xfa, 0x98, 0x83, 0x51, 0x45, + 0x9d, 0x1e, 0xa5, 0xc1, 0x81, 0x54, 0x37, 0x5d, 0x28, 0xca, 0xa6, 0xfe, + 0x48, 0xf4, 0x77, 0x17, 0x92, 0x1d, 0x0c, 0xb3, 0x39, 0x77, 0x22, 0xd9, + 0xc7, 0xc2, 0xaf, 0x70, 0x0a, 0xd3, 0xa6, 0x57, 0x69, 0xfb, 0xb9, 0xe0, + 0xc4, 0x73, 0x7a, 0x68, 0xee, 0x27, 0x6e, 0x3a, 0x6e, 0xae, 0x32, 0xf6, + 0x09, 0xb3, 0x0b, 0x40, 0x72, 0xc6, 0x26, 0x6e, 0xc5, 0x88, 0x6b, 0xce, + 0x99, 0x88, 0x60, 0x6f, 0x6e, 0xa9, 0xe6, 0xd7, 0x35, 0x5e, 0x3b, 0x36, + 0x0d, 0x14, 0xb8, 0x2f, 0xde, 0x67, 0xc8, 0x2e, 0x52, 0xc1, 0xf1, 0x58, + 0x87, 0x32, 0x2a, 0x52, 0x21, 0x27, 0x1e, 0x04, 0xed, 0xc4, 0x82, 0xd7, + 0xeb, 0x85, 0x12, 0x3e, 0xea, 0xd0, 0x07, 0xa0, 0x80, 0x48, 0xe9, 0xbd, + 0x9b, 0x3a, 0x8e, 0x8b, 0xa0, 0xfc, 0x07, 0xf0, 0x69, 0x4e, 0xc7, 0x1d, + 0xd9, 0x9a, 0x73, 0x18, 0x63, 0xb8, 0xe6, 0x4a, 0xa0, 0x81, 0xf0, 0xdb, + 0xb9, 0x88, 0xf4, 0x2b, 0x1f, 0x0d, 0xda, 0x31, 0xc0, 0xb0, 0x55, 0x79, + 0x56, 0x48, 0x22, 0xbb, 0x49, 0x7f, 0xb1, 0xf1, 0xf6, 0x6f, 0x42, 0xd3, + 0xba, 0x68, 0x3a, 0x8f, 0xe7, 0xac, 0x53, 0x30, 0x96, 0xec, 0x51, 0x7d, + 0xfc, 0xc0, 0x35, 0xe9, 0x59, 0xe7, 0x0e, 0xed, 0x29, 0x46, 0x50, 0x3c, + 0x4b, 0x36, 0xc6, 0x2a, 0xaa, 0x3b, 0xbe, 0xce, 0xd3, 0xda, 0x4d, 0x65, + 0xb0, 0xe8, 0x52, 0x68, 0xf0, 0x23, 0xde, 0x02, 0x77, 0xb3, 0xcc, 0xce, + 0x78, 0xdd, 0x8c, 0xf8, 0xbe, 0x5d, 0x0d, 0xa9, 0xb6, 0x96, 0x85, 0xbf, + 0x92, 0x2a, 0x6b, 0x1b, 0xe8, 0x76, 0x05, 0x13, 0x30, 0xd8, 0x3d, 0x80, + 0xaa, 0xa2, 0xa3, 0xbc, 0x07, 0xba, 0x9c, 0x75, 0x5b, 0x42, 0x03, 0xd8, + 0xde, 0x42, 0x44, 0xf7, 0x29, 0x43, 0x29, 0x0d, 0x48, 0x2b, 0x02, 0xd0, + 0xcc, 0xe9, 0x17, 0x47, 0x23, 0x73, 0x6d, 0xc5, 0x91, 0x6d, 0x4e, 0xc5, + 0xcf, 0xc3, 0x58, 0xaf, 0x6e, 0xa2, 0x9e, 0xe7, 0xe1, 0x88, 0xac, 0x62, + 0xff, 0xbc, 0x69, 0x57, 0xad, 0x0f, 0x08, 0xf8, 0x32, 0xfd, 0x79, 0xcb, + 0x30, 0xbc, 0xd2, 0xe5, 0x20, 0xd9, 0x0f, 0xd1, 0x33, 0xbf, 0xe4, 0x49, + 0x7a, 0x2b, 0x5c, 0xb3, 0x63, 0x13, 0x4d, 0xed, 0x17, 0xe7, 0x5b, 0xf4, + 0x36, 0x9d, 0x3c, 0x4e, 0x51, 0xb2, 0xf7, 0xf2, 0xcd, 0xfb, 0xec, 0x42, + 0x79, 0x46, 0xae, 0x18, 0x50, 0xdf, 0xbf, 0x5b, 0xb1, 0x9a, 0x49, 0x22, + 0xae, 0xe9, 0xf3, 0x86, 0x3f, 0xe0, 0xb4, 0xc6, 0x9c, 0x08, 0xd6, 0xd9, + 0xf4, 0x68, 0xbb, 0x33, 0x0e, 0x59, 0x3d, 0x76, 0xf0, 0xd7, 0x54, 0x04, + 0x19, 0x66, 0xee, 0x61, 0x11, 0x0d, 0x48, 0x10, 0x21, 0x16, 0x7c, 0xac, + 0x49, 0xab, 0xe0, 0x19, 0x85, 0x93, 0x48, 0x65, 0x7c, 0x5e, 0x6c, 0x1a, + 0xf5, 0xb0, 0xc6, 0x80, 0xa1, 0x2a, 0xd5, 0x71, 0x42, 0xec, 0x2f, 0x25, + 0xf7, 0xb8, 0x84, 0xcd, 0xf0, 0x5c, 0xcd, 0xee, 0x44, 0xcb, 0xeb, 0x74, + 0x96, 0x3c, 0xb0, 0x56, 0xcb, 0xaf, 0x7e, 0x9e, 0x4a, 0x12, 0x06, 0xae, + 0x57, 0x43, 0x2d, 0xb2, 0x11, 0x96, 0x05, 0xdb, 0xb3, 0x1a, 0x01, 0xa7, + 0x1d, 0x02, 0x81, 0x1c, 0x36, 0x41, 0x65, 0xf0, 0x67, 0xd6, 0xd0, 0x0f, + 0xec, 0x34, 0x7d, 0xd3, 0x89, 0xac, 0x60, 0x67, 0x95, 0x81, 0x84, 0xe7, + 0xbb, 0x9a, 0x59, 0x36, 0x3b, 0xde, 0xa4, 0x88, 0xda, 0xf2, 0xd2, 0xa2, + 0x0c, 0xba, 0xfb, 0x93, 0xbf, 0xc8, 0xad, 0xe8, 0x57, 0xa0, 0x2b, 0xbb, + 0x4e, 0xa9, 0x38, 0xe7, 0x86, 0x6b, 0x95, 0x34, 0x24, 0x96, 0xc0, 0x09, + 0xd9, 0xfd, 0x5f, 0x1c, 0x93, 0xd9, 0x72, 0xfa, 0xc4, 0x14, 0x72, 0x9c, + 0x19, 0x6f, 0xee, 0x12, 0x17, 0xee, 0x65, 0xb4, 0x8c, 0x83, 0x39, 0x3c, + 0x0f, 0xbf, 0x25, 0xcf, 0xee, 0x05, 0x8c, 0x6a, 0x56, 0x18, 0xf0, 0x20, + 0x72, 0xc1, 0xbf, 0xe4, 0xce, 0x37, 0xbf, 0x2b, 0xba, 0x70, 0x1e, 0xc2, + 0xc8, 0xcd, 0x58, 0xb9, 0x60, 0xc7, 0xfb, 0xd0, 0xce, 0xb9, 0xff, 0xff, + 0x04, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x7c, 0x63, 0x50, 0x90, + 0xcb, 0x9c, 0xce, 0x59, 0xb1, 0x47, 0xb0, 0x49, 0x9b, 0xfc, 0xfb, 0x3d, + 0x3d, 0x62, 0xcf, 0x58, 0x4c, 0x2a, 0x79, 0xf0, 0x72, 0x7f, 0x81, 0x41, + 0xac, 0x82, 0x2d, 0xa9, 0xf0, 0x0e, 0x4d, 0xd2, 0xe0, 0xbd, 0xca, 0x17, + 0xb7, 0x59, 0x9f, 0xdb, 0xfe, 0x51, 0x90, 0x88, 0xb9, 0xeb, 0x4e, 0xac, + 0x80, 0x30, 0x64, 0xc4, 0x49, 0xd1, 0xb6, 0x65, 0x67, 0xef, 0x9d, 0x5c, + 0x04, 0xe0, 0x9d, 0xbe, 0x47, 0x75, 0x9b, 0x6e, 0x30, 0x76, 0xad, 0x37, + 0x9a, 0x56, 0xff, 0xcd, 0x40, 0x26, 0x3e, 0xe2, 0x7d, 0x30, 0x55, 0x09, + 0x92, 0x25, 0x36, 0x2f, 0xf8, 0x55, 0xb8, 0x9b, 0x66, 0x49, 0x41, 0x9d, + 0x78, 0x6d, 0x3f, 0x54, 0x41, 0x01, 0x93, 0x9c, 0x5e, 0x0c, 0x4a, 0x38, + 0x79, 0x76, 0xb4, 0x98, 0xae, 0xf9, 0x99, 0x21, 0x05, 0x6a, 0xfb, 0xbc, + 0x44, 0xf7, 0xdc, 0x85, 0x5e, 0x5f, 0x18, 0x49, 0x22, 0x11, 0x6d, 0xa5, + 0x9e, 0x6b, 0x59, 0x60, 0xf8, 0x73, 0x8b, 0xcb, 0x38, 0xbb, 0xc9, 0xbf, + 0x49, 0x0e, 0x57, 0x65, 0x48, 0x41, 0x41, 0xa2, 0x40, 0x67, 0x91, 0x1d, + 0x54, 0xac, 0xa7, 0xef, 0x16, 0x8b, 0xc7, 0xd1, 0xe6, 0xdb, 0xc5, 0x9c, + 0xd4, 0x04, 0x67, 0xd8, 0x75, 0x21, 0x2b, 0x1d, 0x11, 0xc1, 0x79, 0x45, + 0xb4, 0x91, 0x7a, 0x97, 0x00, 0xde, 0xc6, 0xc5, 0x8a, 0xd1, 0xd7, 0xea, + 0xc1, 0x22, 0xe1, 0x58, 0x61, 0xf2, 0x89, 0x3d, 0xdb, 0x04, 0x3d, 0xe4, + 0xe9, 0xe7, 0xbf, 0x4b, 0x99, 0x8a, 0xc6, 0xf2, 0x09, 0xc4, 0xe2, 0x6d, + 0x0b, 0xda, 0x13, 0xfb, 0xff, 0xbf, 0x0b, 0xfc, 0x78, 0x33, 0xb8, 0x7b, + 0x3e, 0xd8, 0xba, 0x27, 0xba, 0xae, 0xdf, 0xce, 0xea, 0x80, 0x08, 0x38, + 0xd8, 0x33, 0x00, 0xa9, 0xb6, 0x88, 0x48, 0xa9, 0x3b, 0x54, 0xf0, 0x95, + 0xda, 0xba, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, + 0xb1, 0xd7, 0x8d, 0x6c, 0xb9, 0x96, 0xdc, 0x64, 0x9b, 0x0c, 0x74, 0x54, + 0x59, 0x82, 0xf6, 0x6e, 0x7c, 0x4e, 0x23, 0x83, 0x04, 0x2e, 0x49, 0xfb, + 0x56, 0x4b, 0xcd, 0x0d, 0x76, 0x29, 0xb1, 0xce, 0x40, 0xa3, 0xd0, 0x02, + 0x16, 0x8e, 0x1c, 0x0a, 0x00, 0x5b, 0x8c, 0x06, 0xf9, 0x07, 0x97, 0x12, + 0x0c, 0x33, 0xd5, 0x48, 0x6d, 0xae, 0x7d, 0x2c, 0x8f, 0x74, 0x32, 0x24, + 0xcf, 0x91, 0xd7, 0xbe, 0xb2, 0x05, 0xcf, 0x2f, 0x93, 0xd5, 0x43, 0x90, + 0xce, 0x02, 0x97, 0xf8, 0x51, 0xb3, 0xba, 0x56, 0x5d, 0x94, 0x41, 0xa4, + 0x11, 0xf3, 0x21, 0xc0, 0xcc, 0x28, 0xf8, 0x5a, 0x00, 0x0a, 0xd4, 0x53, + 0xdd, 0xac, 0xfe, 0x25, 0x03, 0xea, 0x2b, 0x6b, 0x9d, 0x7e, 0x1a, 0xe1, + 0x5f, 0x5c, 0xa7, 0x47, 0xa2, 0x72, 0x4f, 0x92, 0x60, 0x25, 0x7c, 0x1c, + 0xa5, 0x34, 0xa6, 0x86, 0x0e, 0xda, 0x8f, 0x3f, 0xec, 0xe2, 0xe4, 0xad, + 0xa9, 0x41, 0xcc, 0x3d, 0x94, 0x43, 0xfd, 0x28, 0xd8, 0xb0, 0x0f, 0x05, + 0x9e, 0x2b, 0x27, 0x3f, 0xe0, 0x84, 0xbc, 0x9e, 0x7a, 0xa5, 0x83, 0x3d, + 0x3b, 0xac, 0x83, 0xd3, 0x16, 0x92, 0x8c, 0xd2, 0x4a, 0x81, 0xdd, 0xba, + 0x0a, 0xb7, 0xc5, 0x9f, 0x83, 0x0f, 0x78, 0xb8, 0xab, 0x2d, 0xca, 0xf8, + 0x6c, 0x06, 0xd7, 0x82, 0xb8, 0x61, 0x7d, 0x2a, 0x31, 0x3a, 0x39, 0x97, + 0x5f, 0xc7, 0x00, 0x6e, 0x46, 0xf2, 0xc5, 0x12, 0x71, 0x55, 0x5b, 0x10, + 0xaf, 0xbb, 0x07, 0x4c, 0x2f, 0xa3, 0x51, 0x53, 0x22, 0x20, 0xab, 0xed, + 0x02, 0x95, 0xc6, 0x5f, 0xaa, 0xb8, 0xc0, 0xcb, 0xe5, 0xe0, 0x25, 0x97, + 0xf7, 0xda, 0x1d, 0xd8, 0x5a, 0xff, 0x76, 0x0c, 0x3e, 0x33, 0x1b, 0x7a, + 0x15, 0xb8, 0x34, 0x75, 0xcf, 0xe9, 0xf3, 0x53, 0x61, 0x03, 0x2d, 0x52, + 0x29, 0x69, 0x3a, 0xc3, 0xd9, 0x22, 0xc0, 0x2d, 0x80, 0xed, 0x66, 0xc4, + 0xf4, 0x89, 0x60, 0x14, 0xdb, 0xec, 0x7d, 0xcc, 0x99, 0x5c, 0x94, 0x27, + 0xab, 0xed, 0xd2, 0x17, 0xf4, 0x36, 0xfc, 0x7e, 0x99, 0x98, 0xb6, 0x86, + 0xb6, 0x7c, 0x54, 0xd6, 0xec, 0xb5, 0xad, 0x62, 0xcc, 0xb0, 0xf7, 0x8c, + 0x52, 0x99, 0xf2, 0x44, 0x27, 0x3a, 0xb0, 0xff, 0x8f, 0x09, 0xae, 0xe1, + 0x61, 0xd8, 0x9f, 0xdd, 0x2f, 0x6b, 0xea, 0xd0, 0x12, 0x70, 0x8c, 0x9d, + 0x8f, 0x4c, 0x36, 0x98, 0x1e, 0x2e, 0xb5, 0x50, 0x63, 0x33, 0x9c, 0x4b, + 0xc3, 0xd4, 0xa0, 0xe6, 0x96, 0x96, 0x75, 0xfd, 0x8a, 0xc4, 0x0c, 0xa7, + 0xea, 0x9d, 0xf1, 0x23, 0x9e, 0x38, 0xff, 0x1a, 0x67, 0x36, 0x5f, 0x5f, + 0x17, 0x88, 0x1a, 0x43, 0x25, 0xea, 0x76, 0xb5, 0xcd, 0xce, 0x43, 0xf8, + 0x71, 0x2b, 0xdb, 0xf0, 0xcd, 0x76, 0xbd, 0x94, 0x57, 0xdb, 0x77, 0xcd, + 0xb2, 0x8f, 0xd1, 0xc0, 0xeb, 0x00, 0x61, 0x7f, 0x66, 0xb0, 0x43, 0x6e, + 0xe0, 0x9f, 0x11, 0x0e, 0x65, 0xf7, 0x4e, 0x00, 0x74, 0xc3, 0xeb, 0xb1, + 0xeb, 0x0c, 0x24, 0x5d, 0x15, 0x56, 0x16, 0x47, 0x87, 0xcf, 0x34, 0xbe, + 0x2a, 0xdd, 0x77, 0x55, 0xa4, 0x09, 0x15, 0x79, 0x8c, 0xaa, 0xce, 0x32, + 0x90, 0x9b, 0x16, 0x40, 0x94, 0x7f, 0x19, 0x27, 0xbc, 0xbf, 0x45, 0x4b, + 0xa5, 0xf0, 0xd0, 0x9e, 0x5b, 0xb9, 0x46, 0x6e, 0x72, 0x8f, 0x49, 0x3b, + 0x7a, 0xc1, 0x92, 0xb0, 0xd5, 0x25, 0x1b, 0x0b, 0xf3, 0xd0, 0x8a, 0x47, + 0x8b, 0xbe, 0xa4, 0xf9, 0x6a, 0x09, 0x84, 0x9a, 0x5b, 0x5b, 0xea, 0xbb, + 0x6f, 0xd8, 0xaf, 0xcd, 0x67, 0x9b, 0x79, 0x7c, 0x8f, 0xcc, 0xd7, 0x5f, + 0x3a, 0xc3, 0xd0, 0xb7, 0xba, 0x28, 0x83, 0x81, 0x4a, 0x05, 0x51, 0xaf, + 0xa0, 0x52, 0x34, 0xe3, 0x4f, 0xec, 0x82, 0xdc, 0x97, 0xd8, 0x69, 0xb2, + 0x0d, 0x68, 0x35, 0x87, 0x58, 0xc0, 0xcf, 0x58, 0x0d, 0xf6, 0x6b, 0x6d, + 0x2a, 0xc0, 0x72, 0xe4, 0x90, 0x8c, 0x7b, 0x45, 0xba, 0xf1, 0x13, 0x6f, + 0x8c, 0xd2, 0xdd, 0xc5, 0x8e, 0xc8, 0xec, 0xf9, 0xfb, 0xde, 0xe5, 0xaa, + 0xcb, 0xc0, 0xff, 0x77, 0x2d, 0x99, 0xb1, 0x69, 0x7f, 0xe3, 0x38, 0x61, + 0x35, 0xb6, 0x45, 0xdd, 0x73, 0x45, 0x84, 0x89, 0x1b, 0x96, 0x7e, 0x6a, + 0x1d, 0xd9, 0xe6, 0x76, 0xa8, 0x16, 0x0f, 0x42, 0xc9, 0x41, 0xec, 0x5d, + 0x25, 0x01, 0xb0, 0x45, 0xa6, 0xaa, 0x69, 0x87, 0x11, 0xa1, 0xb8, 0x9e, + 0x68, 0x48, 0x68, 0xe9, 0xb5, 0xc2, 0xff, 0x83, 0x8f, 0x71, 0xb9, 0xd7, + 0xbb, 0xae, 0x59, 0x8b, 0x1b, 0x4c, 0x44, 0xd8, 0xe3, 0xce, 0xab, 0x88, + 0xfb, 0x64, 0xd9, 0x61, 0x5a, 0x7d, 0xce, 0x3a, 0x27, 0xb5, 0xa3, 0xfd, + 0x5d, 0xa3, 0xb8, 0xa1, 0x15, 0x63, 0x0b, 0x75, 0x39, 0xc3, 0xa4, 0xfb, + 0x60, 0x53, 0xfd, 0x11, 0x21, 0x35, 0x0f, 0x19, 0x28, 0x14, 0xcd, 0x8a, + 0xcf, 0x33, 0xaa, 0x4f, 0x6a, 0x1e, 0x56, 0x87, 0xd5, 0x6e, 0x43, 0x9b, + 0xa3, 0x72, 0x95, 0x8c, 0x34, 0xa2, 0xac, 0x11, 0x76, 0x95, 0xd7, 0xdd, + 0xbf, 0x10, 0xf4, 0x0f, 0x2a, 0x64, 0xd2, 0x4d, 0x7b, 0xc6, 0x9b, 0x7d, + 0xf7, 0xa5, 0xb3, 0x84, 0x9a, 0x9a, 0x5e, 0xcf, 0x7f, 0x95, 0x6d, 0x44, + 0xd1, 0xb2, 0x19, 0xbb, 0xed, 0x37, 0x42, 0x4b, 0x4b, 0x6d, 0xb7, 0x10, + 0x02, 0x5f, 0x00, 0x1f, 0x24, 0xce, 0xb2, 0x8b, 0x3e, 0x7d, 0xc6, 0x6e, + 0x6c, 0x90, 0x75, 0xad, 0x3f, 0x9d, 0x63, 0x04, 0x76, 0x20, 0x7a, 0x56, + 0x48, 0xa1, 0x6a, 0x37, 0x74, 0xd2, 0xb7, 0x4f, 0xa3, 0x64, 0x62, 0xaa, + 0xce, 0x75, 0x8c, 0x15, 0x75, 0x79, 0xa0, 0xbd, 0xdd, 0x01, 0x46, 0xca, + 0xa0, 0x31, 0x1a, 0x16, 0x1f, 0xef, 0x8b, 0xc6, 0x54, 0x57, 0xfa, 0x6e, + 0x43, 0xdf, 0xb0, 0x99, 0xed, 0xa4, 0xcb, 0xeb, 0x91, 0x35, 0x14, 0x0c, + 0xa9, 0x1d, 0xb5, 0xa9, 0x32, 0x99, 0xe3, 0x89, 0x74, 0xaa, 0xa4, 0x65, + 0x1e, 0x82, 0x47, 0xfa, 0x37, 0x23, 0xe5, 0x86, 0xb6, 0xc0, 0xb6, 0x89, + 0x9a, 0xd9, 0xae, 0x29, 0x39, 0x7b, 0x66, 0xc7, 0x5b, 0x02, 0x08, 0x86, + 0xd4, 0xf0, 0x75, 0xc2, 0x05, 0x86, 0xc3, 0x75, 0xd2, 0x2a, 0x1e, 0xec, + 0x6e, 0x75, 0x29, 0x58, 0x8c, 0x25, 0x3b, 0x95, 0x21, 0xde, 0x42, 0xd5, + 0xb7, 0x15, 0x30, 0x09, 0x49, 0x78, 0x55, 0xd5, 0xf2, 0x30, 0x80, 0x93, + 0x8a, 0xce, 0x84, 0x27, 0xdb, 0x4a, 0x09, 0x30, 0x0c, 0x7f, 0x4d, 0xd1, + 0x0f, 0xda, 0x66, 0x58, 0xe1, 0x01, 0xfd, 0x75, 0x83, 0xf5, 0x39, 0x2e, + 0xe2, 0x6b, 0xde, 0xff, 0x20, 0x8a, 0xf7, 0xcc, 0x81, 0x8e, 0x99, 0xb4, + 0xeb, 0x76, 0x74, 0x38, 0x2b, 0xe0, 0x6d, 0x61, 0x8f, 0x39, 0x59, 0x10, + 0x7d, 0xb5, 0xd3, 0x14, 0x96, 0x04, 0x1d, 0x22, 0x89, 0xef, 0x15, 0x7c, + 0x28, 0x5a, 0xd6, 0x8d, 0xf3, 0xb7, 0x6a, 0x9a, 0xce, 0x21, 0x77, 0xfd, + 0x4f, 0x22, 0x26, 0x28, 0xb8, 0xb5, 0xb3, 0x73, 0xfd, 0x2a, 0x7b, 0x42, + 0x26, 0x77, 0x41, 0x93, 0xed, 0xf9, 0x8f, 0xa9, 0x92, 0xd5, 0x9f, 0x2e, + 0x60, 0xec, 0x60, 0x98, 0xf1, 0xd5, 0x11, 0xe2, 0xe0, 0xd7, 0x45, 0xa7, + 0xe4, 0xf2, 0x82, 0x61, 0x2f, 0x41, 0x1b, 0xd9, 0x8e, 0x78, 0xd5, 0x6b, + 0x68, 0x74, 0xf0, 0xc3, 0x83, 0x01, 0x16, 0x60, 0x6e, 0x34, 0x88, 0x45, + 0x8a, 0x86, 0x44, 0x5b, 0xa5, 0xa8, 0x55, 0xbc, 0xfa, 0x8f, 0xbd, 0x93, + 0x95, 0x3f, 0xab, 0x19, 0x54, 0x8f, 0x06, 0x8e, 0xca, 0x0b, 0x4a, 0x18, + 0x3f, 0x7a, 0x9c, 0x3f, 0xe6, 0xbe, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, + 0x00, 0x04, 0x00, 0x00, 0x81, 0x32, 0x41, 0x46, 0x59, 0x26, 0xf4, 0xef, + 0x93, 0x9f, 0x04, 0xc2, 0x67, 0x13, 0x32, 0x45, 0xc0, 0x79, 0x70, 0x27, + 0x21, 0x2b, 0xaf, 0x35, 0xf3, 0xc4, 0x88, 0x52, 0x28, 0xea, 0xca, 0x8a, + 0x08, 0x01, 0x6f, 0x61, 0xab, 0x10, 0xa3, 0xf0, 0x6b, 0x3b, 0x54, 0x64, + 0xf1, 0x63, 0x83, 0x38, 0x2b, 0x26, 0x18, 0x5a, 0x67, 0xc4, 0x67, 0x38, + 0x3f, 0x2c, 0x9a, 0xc9, 0x48, 0x33, 0x77, 0xb4, 0xb2, 0xc2, 0xc7, 0x08, + 0x21, 0x5e, 0xc4, 0x19, 0x59, 0xe1, 0xfa, 0x32, 0xa4, 0x4c, 0x3e, 0xba, + 0x65, 0x92, 0x98, 0x39, 0x71, 0x2f, 0x99, 0x08, 0xf8, 0xb3, 0x7a, 0x03, + 0x53, 0xd7, 0x68, 0xb2, 0x5e, 0xb0, 0xef, 0xe0, 0x1e, 0x7d, 0xb2, 0x23, + 0x5d, 0x2b, 0xd7, 0x09, 0xa6, 0x78, 0xa4, 0x7c, 0x08, 0xed, 0x8a, 0xf6, + 0x96, 0xa0, 0x10, 0x17, 0x62, 0x8b, 0x8a, 0xa0, 0xac, 0x22, 0x67, 0x02, + 0xa8, 0x66, 0x1a, 0xb5, 0x02, 0xde, 0xa5, 0xfa, 0x69, 0x29, 0x5f, 0x24, + 0x89, 0x46, 0x68, 0xd6, 0x51, 0x2a, 0xfe, 0x88, 0xf0, 0x40, 0xde, 0xd1, + 0x12, 0x2e, 0xed, 0x13, 0x7b, 0x49, 0xf6, 0xe1, 0x7a, 0xcf, 0x61, 0xcb, + 0x70, 0x9d, 0xaa, 0x51, 0x07, 0xc2, 0x54, 0x76, 0x89, 0x29, 0x94, 0x29, + 0x8b, 0x0e, 0xf5, 0xe8, 0x81, 0xc7, 0xdb, 0x59, 0x1e, 0x75, 0xda, 0x6a, + 0x94, 0x18, 0x16, 0xae, 0xbb, 0x43, 0x87, 0x56, 0x66, 0x8b, 0x84, 0xe9, + 0xa9, 0xd0, 0xd2, 0x8f, 0x5b, 0xbf, 0x1d, 0x24, 0x3a, 0xb7, 0x64, 0xff, + 0xe9, 0x22, 0x21, 0x65, 0xaf, 0x2b, 0x45, 0x8d, 0x28, 0xea, 0xbc, 0x07, + 0x10, 0x6e, 0xfb, 0x4d, 0x6f, 0x35, 0xe5, 0xeb, 0x5d, 0x29, 0x72, 0xe1, + 0x94, 0xad, 0xed, 0x25, 0xd7, 0x39, 0x63, 0x32, 0x37, 0x0b, 0xb2, 0xd7, + 0x54, 0x1f, 0xe4, 0x0d, 0xe7, 0xb3, 0xd1, 0xa6, 0x2a, 0xcf, 0x8e, 0x97, + 0xf1, 0xa8, 0xfc, 0xb1, 0x61, 0xdc, 0xb4, 0x8f, 0x29, 0xa2, 0x68, 0x4a, + 0xe6, 0x2f, 0x8a, 0x69, 0x2c, 0xa1, 0x1d, 0xe2, 0x9e, 0x65, 0x71, 0xb7, + 0x83, 0xef, 0x63, 0xf5, 0x36, 0xdc, 0xa0, 0x94, 0x5a, 0x45, 0x8a, 0x85, + 0x5e, 0x28, 0x86, 0x21, 0xd2, 0xbf, 0x7a, 0x2f, 0x76, 0x1c, 0x2a, 0x15, + 0xb2, 0xe8, 0xaf, 0x63, 0x37, 0xbe, 0xd8, 0x0a, 0xef, 0x54, 0xee, 0xe6, + 0xd9, 0xb3, 0xdb, 0x41, 0x55, 0xba, 0xd8, 0x14, 0x7c, 0x10, 0x61, 0x06, + 0x40, 0x45, 0x69, 0x37, 0x60, 0xf7, 0x6a, 0x7a, 0x23, 0x70, 0x30, 0x57, + 0x3e, 0xe5, 0x12, 0x24, 0xbc, 0x5e, 0x82, 0x89, 0xd8, 0x37, 0xc9, 0x33, + 0xb9, 0x38, 0xa5, 0xba, 0xed, 0xdd, 0x93, 0x58, 0x81, 0x15, 0xec, 0x15, + 0x70, 0x2f, 0x30, 0xfa, 0xaf, 0xf7, 0xf5, 0xcb, 0x41, 0x74, 0xea, 0xc0, + 0x91, 0xbe, 0x53, 0x4c, 0xc2, 0x74, 0x1b, 0x5b, 0x8c, 0x74, 0xd8, 0xc3, + 0x4a, 0x12, 0xaa, 0x57, 0xd6, 0x61, 0xb1, 0xb8, 0x81, 0x5d, 0x81, 0x37, + 0x1e, 0x5b, 0x3d, 0x5a, 0xbc, 0xa6, 0xb2, 0x27, 0xe3, 0x01, 0x4c, 0xf0, + 0xad, 0x7b, 0xdf, 0x50, 0xf9, 0xd7, 0xb7, 0xcc, 0xa8, 0x5c, 0x3d, 0x9a, + 0xb7, 0x60, 0x3e, 0x63, 0x3f, 0x6a, 0x08, 0x0b, 0x82, 0xdc, 0x3e, 0xfa, + 0x24, 0x33, 0xd3, 0x01, 0xbf, 0xef, 0xeb, 0x52, 0x3f, 0x91, 0x61, 0xda, + 0xe2, 0x26, 0x10, 0xdf, 0xe4, 0x9b, 0x77, 0x91, 0x22, 0xc5, 0x4e, 0x9c, + 0x0b, 0x32, 0xff, 0x27, 0x85, 0x85, 0x0c, 0x99, 0x50, 0x8f, 0xad, 0x5d, + 0x06, 0x18, 0x52, 0xb4, 0x64, 0x09, 0xc4, 0xa4, 0x84, 0xd4, 0x81, 0x07, + 0x0a, 0x97, 0x55, 0xf8, 0x96, 0x52, 0xb2, 0x9a, 0xf4, 0x06, 0x2c, 0x9a, + 0x3b, 0x8b, 0xaa, 0x67, 0x18, 0x3a, 0xee, 0xbc, 0xca, 0x8f, 0x46, 0xf6, + 0x4a, 0x33, 0x5b, 0x56, 0x09, 0xb2, 0x72, 0x87, 0xdb, 0xbb, 0x57, 0x67, + 0x53, 0x82, 0x77, 0x31, 0x66, 0xbb, 0xf1, 0x33, 0x6d, 0x55, 0x82, 0xaa, + 0x80, 0xd4, 0x4d, 0xb8, 0xab, 0xbd, 0x2a, 0xda, 0x10, 0x3a, 0xc8, 0xf0, + 0x14, 0x1e, 0xcb, 0x8e, 0x76, 0x6c, 0xc8, 0x74, 0x05, 0xb3, 0x51, 0xbd, + 0x63, 0x06, 0x69, 0x05, 0x2a, 0x21, 0xd6, 0x2f, 0xe4, 0x38, 0xae, 0xf8, + 0xd4, 0xe9, 0xa7, 0xe8, 0xc8, 0x5a, 0x65, 0x7d, 0x54, 0x34, 0x33, 0x0d, + 0xf6, 0x07, 0xd6, 0x8c, 0xe5, 0x72, 0x9b, 0xfb, 0x60, 0x49, 0xd2, 0xaf, + 0xb4, 0x17, 0xc4, 0x74, 0x8d, 0xe5, 0x54, 0xda, 0x96, 0x56, 0x7d, 0x97, + 0x62, 0xe8, 0xec, 0x0d, 0x2b, 0x02, 0x2e, 0x59, 0xf8, 0xa1, 0x06, 0x6a, + 0xb6, 0x3e, 0x15, 0xeb, 0x64, 0x1a, 0x48, 0x3d, 0x53, 0x2c, 0x42, 0x3b, + 0x97, 0xa1, 0x3f, 0x47, 0x8b, 0x74, 0x87, 0x8b, 0x96, 0x63, 0x08, 0x4c, + 0x99, 0x38, 0x5a, 0xb6, 0x93, 0xa8, 0xcc, 0xee, 0x62, 0x3a, 0x00, 0x6d, + 0x5c, 0xab, 0x77, 0x3c, 0x46, 0xae, 0x6e, 0xeb, 0xf1, 0xf9, 0x63, 0xf1, + 0xa2, 0x31, 0x21, 0x38, 0xc3, 0x4f, 0xe2, 0x3a, 0x33, 0x7f, 0xe7, 0xc6, + 0x69, 0xd5, 0x1c, 0x7e, 0x5b, 0x4f, 0xb1, 0x50, 0x3b, 0xbe, 0x31, 0xa7, + 0x42, 0xa3, 0x97, 0x7b, 0xe3, 0x90, 0xd0, 0x07, 0xfd, 0x05, 0xb9, 0xf2, + 0x47, 0xc4, 0xc8, 0xdd, 0x1c, 0x3c, 0xa4, 0x22, 0x96, 0x04, 0xca, 0x28, + 0x17, 0xcc, 0x5c, 0x49, 0x7e, 0xc6, 0x93, 0x98, 0xd3, 0x8b, 0xd2, 0xf6, + 0x4a, 0xb6, 0xbe, 0x8d, 0xa2, 0xdd, 0xb6, 0x7c, 0x66, 0x0c, 0x29, 0xcb, + 0x1d, 0x98, 0xf6, 0xe4, 0xe5, 0x30, 0x4c, 0x84, 0xbf, 0x6f, 0x71, 0x4e, + 0xc2, 0x12, 0x9f, 0x35, 0xd6, 0xf8, 0xc6, 0x30, 0xe9, 0x9e, 0x1a, 0x8a, + 0x2f, 0xd1, 0x96, 0xb3, 0x3c, 0x0f, 0xf5, 0x78, 0xa7, 0xe0, 0xbd, 0x4b, + 0xe0, 0xd8, 0x3d, 0x57, 0xa5, 0x44, 0xa0, 0xd9, 0x10, 0x79, 0xd2, 0x10, + 0x50, 0xc7, 0x77, 0x73, 0x09, 0xf8, 0xb4, 0xcf, 0x66, 0xe3, 0x0c, 0xfb, + 0x96, 0xf8, 0x52, 0xb3, 0x7e, 0x44, 0xf0, 0x03, 0x54, 0xd4, 0xa2, 0x57, + 0x38, 0x8a, 0x96, 0xfc, 0x7c, 0x4c, 0x9f, 0x3a, 0xf2, 0xa2, 0x48, 0xbb, + 0x3e, 0xd1, 0x11, 0x2c, 0xab, 0xdf, 0x53, 0x96, 0xac, 0x58, 0x33, 0xb9, + 0xdd, 0xd2, 0x4f, 0x8a, 0x0a, 0x89, 0x0e, 0xd3, 0x6f, 0x58, 0x8c, 0xa1, + 0x0a, 0x0b, 0xa7, 0xd7, 0x1f, 0x0a, 0x70, 0xe3, 0x43, 0x12, 0x56, 0xb8, + 0x6c, 0xf8, 0x75, 0x4e, 0x2b, 0xb0, 0x17, 0x29, 0xe4, 0x95, 0x85, 0xd8, + 0x85, 0x95, 0x63, 0x55, 0xa8, 0x82, 0xf0, 0xe7, 0x7d, 0xf3, 0xf1, 0x78, + 0x66, 0xd1, 0x92, 0x71, 0x99, 0xad, 0x30, 0x94, 0xe9, 0x54, 0x2c, 0xe1, + 0x57, 0xf3, 0x6a, 0xe6, 0x0c, 0x5e, 0xc7, 0x58, 0xba, 0xb7, 0x61, 0xd3, + 0x74, 0x72, 0x96, 0x06, 0x0b, 0x01, 0x3d, 0xc2, 0xa1, 0xb4, 0x38, 0x81, + 0x19, 0x44, 0xbc, 0x84, 0x52, 0x22, 0xc9, 0x67, 0x81, 0x99, 0xfb, 0x0a, + 0xc2, 0xff, 0x50, 0x67, 0xbe, 0x38, 0x5e, 0x13, 0x16, 0x60, 0x83, 0x35, + 0xb9, 0x2f, 0xa9, 0x55, 0xbb, 0x30, 0x6b, 0x19, 0xfc, 0x2a, 0x40, 0x24, + 0x74, 0x20, 0x57, 0x78, 0xb9, 0x55, 0xb7, 0x70, 0x86, 0x65, 0x43, 0x1c, + 0x76, 0x2e, 0x91, 0x83, 0x5e, 0x33, 0xc2, 0xd4, 0xcc, 0xb5, 0x1c, 0x45, + 0xaf, 0xa3, 0x87, 0x95, 0x9b, 0x77, 0x50, 0x44, 0x7e, 0xdd, 0xca, 0x3f, + 0x51, 0x21, 0xae, 0xf2, 0x15, 0xa9, 0x32, 0x94, 0xca, 0xde, 0x3b, 0x97, + 0x13, 0x6b, 0xff, 0xe0, 0x79, 0x39, 0x40, 0xf0, 0x66, 0x7d, 0x5e, 0xef, + 0xec, 0x0a, 0x35, 0xd2, 0x0d, 0x09, 0x19, 0x13, 0xf2, 0xc2, 0xff, 0xff, + 0x04, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0xdc, 0x07, 0x2e, 0x46, + 0xab, 0x4d, 0x6d, 0xf7, 0x24, 0xba, 0x02, 0xe3, 0xc5, 0xe3, 0xed, 0x64, + 0xc6, 0x77, 0x5a, 0x14, 0xae, 0x38, 0x52, 0x8c, 0x16, 0x2c, 0x52, 0x0e, + 0xf6, 0x65, 0x99, 0xcc, 0xf6, 0x9f, 0x77, 0xcc, 0x2e, 0xaf, 0x14, 0xd1, + 0xf0, 0x0f, 0xa7, 0x3e, 0x5b, 0x74, 0xff, 0xb9, 0xd3, 0x30, 0x02, 0x5e, + 0x52, 0xc8, 0x6f, 0x57, 0xef, 0x28, 0xf5, 0xfa, 0x9e, 0x70, 0x00, 0xfc, + 0x3e, 0xc3, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, + 0xaa, 0x9f, 0x86, 0xb0, 0x6d, 0xa1, 0x0c, 0xfa, 0xef, 0xb3, 0x6a, 0x50, + 0xa6, 0xfe, 0xff, 0xa9, 0x61, 0x0b, 0x18, 0x72, 0xee, 0xc6, 0xcd, 0x3a, + 0x34, 0x5e, 0xa8, 0x81, 0x31, 0x54, 0x25, 0x05, 0xc1, 0xd9, 0x66, 0x3d, + 0x17, 0xbb, 0x03, 0x21, 0x07, 0x69, 0x3a, 0x37, 0xe8, 0xd4, 0x6a, 0x68, + 0xe1, 0xa3, 0x19, 0x5a, 0x8d, 0x14, 0x11, 0x09, 0xef, 0xae, 0xfe, 0x94, + 0x19, 0x8a, 0xe4, 0xb9, 0x6e, 0xe8, 0xfa, 0x12, 0x2a, 0x5d, 0x00, 0x29, + 0x27, 0x6d, 0x5a, 0xa5, 0x09, 0x34, 0x79, 0x2b, 0xa8, 0xcc, 0x42, 0xb4, + 0xde, 0xe0, 0x91, 0xb9, 0x06, 0x0c, 0x11, 0x17, 0x25, 0x7a, 0x35, 0x57, + 0x51, 0x40, 0xf3, 0xc7, 0xc6, 0x4a, 0x69, 0x98, 0x2b, 0x2b, 0x3e, 0x5d, + 0x32, 0xd8, 0x8f, 0xb0, 0x1d, 0xee, 0x77, 0xe3, 0xaf, 0x4f, 0x71, 0x05, + 0x04, 0xd2, 0xff, 0x51, 0xed, 0xa4, 0x69, 0x50, 0x24, 0x2a, 0xe5, 0xaa, + 0xbb, 0xc6, 0x7a, 0x7f, 0xb2, 0xdf, 0x1d, 0xc2, 0x02, 0x2e, 0x52, 0xd1, + 0xd9, 0x5b, 0xe7, 0x6c, 0x50, 0x31, 0x4e, 0xdf, 0x8e, 0x3f, 0x37, 0xfc, + 0xf5, 0x34, 0x0e, 0xdb, 0x4c, 0x5d, 0x7d, 0xc8, 0xe4, 0x72, 0x40, 0xcb, + 0x95, 0xa5, 0x41, 0xeb, 0x78, 0x5f, 0x64, 0x20, 0x55, 0x19, 0xc7, 0xf9, + 0x9c, 0x71, 0x40, 0x8f, 0xcc, 0x2d, 0x86, 0xc0, 0xf4, 0x36, 0x2b, 0x0e, + 0x28, 0xb4, 0xad, 0x1b, 0xde, 0x60, 0x67, 0x03, 0x0f, 0x7c, 0x18, 0xd9, + 0xc3, 0x73, 0x67, 0x0d, 0x44, 0x3d, 0xbe, 0x7c, 0xcf, 0x96, 0x22, 0x0b, + 0x0e, 0x3a, 0x0b, 0xcf, 0x04, 0x95, 0x92, 0x7d, 0x4b, 0xa2, 0x6a, 0x0b, + 0x47, 0x72, 0x73, 0xa8, 0x9b, 0x96, 0x3d, 0xc6, 0x03, 0x34, 0xb1, 0x69, + 0xc2, 0x50, 0x60, 0x89, 0x8c, 0x55, 0x8f, 0x8e, 0x74, 0xa8, 0x9e, 0x25, + 0xe4, 0x0e, 0x73, 0xef, 0x4f, 0x51, 0xbe, 0xed, 0x5c, 0x14, 0xd3, 0xfa, + 0x94, 0x58, 0x8d, 0x5c, 0xa0, 0xb1, 0xfc, 0x37, 0x6e, 0x9c, 0x9e, 0x61, + 0xe5, 0x12, 0x13, 0xb2, 0x88, 0xc6, 0xcf, 0x60, 0x3f, 0x0d, 0x51, 0x33, + 0x22, 0xfa, 0xfb, 0x2d, 0x2b, 0x8d, 0x43, 0x9b, 0x3d, 0x1e, 0x88, 0x24, + 0x50, 0x78, 0xf7, 0x7e, 0x45, 0xb1, 0x0f, 0xa9, 0xe6, 0x77, 0xf8, 0x78, + 0xff, 0x57, 0x6a, 0x05, 0x06, 0x0c, 0x7e, 0x1e, 0x7f, 0xe9, 0x90, 0xe8, + 0x61, 0x68, 0xbc, 0x9e, 0xc4, 0xe5, 0x06, 0x04, 0x76, 0xcc, 0x01, 0x57, + 0x1a, 0x55, 0x9e, 0x45, 0x26, 0xd6, 0xd8, 0xc2, 0x50, 0x25, 0xfc, 0x72, + 0x4e, 0x18, 0xbe, 0xf2, 0x2f, 0xc0, 0x1b, 0xc8, 0x14, 0xeb, 0x24, 0xda, + 0x15, 0x0a, 0x83, 0x38, 0xc5, 0xdd, 0xc9, 0xd7, 0x12, 0x35, 0x55, 0xdf, + 0x2c, 0x23, 0xea, 0x17, 0xca, 0xbf, 0x18, 0xc9, 0x80, 0x63, 0x4b, 0x77, + 0x8b, 0x17, 0x01, 0x05, 0x1b, 0xa3, 0x0b, 0x0f, 0xdd, 0xc6, 0xe0, 0xdf, + 0xc9, 0xa6, 0x8c, 0x50, 0x95, 0x8d, 0x6c, 0x96, 0x67, 0xff, 0x88, 0x38, + 0x3b, 0x76, 0x72, 0x11, 0x35, 0xa0, 0x1c, 0xc8, 0x96, 0x9c, 0xe5, 0x90, + 0x79, 0x0e, 0x62, 0x57, 0x00, 0xd9, 0x57, 0xf8, 0xa4, 0xc2, 0xc2, 0x0a, + 0x17, 0x8e, 0xd7, 0x03, 0x6d, 0x4d, 0x14, 0xb6, 0x96, 0x8a, 0x76, 0x67, + 0x58, 0xce, 0x9c, 0xb3, 0x10, 0x49, 0x06, 0xeb, 0x56, 0x43, 0x40, 0xcb, + 0xd4, 0xd7, 0x59, 0x42, 0xa4, 0xd7, 0x21, 0x6a, 0x51, 0x3d, 0x1c, 0x54, + 0xd7, 0xd6, 0xa2, 0xcf, 0xf8, 0xf6, 0x72, 0x35, 0x04, 0xa6, 0xe3, 0x53, + 0xca, 0xc5, 0x62, 0xee, 0xa9, 0xc3, 0x6d, 0x1b, 0xc4, 0xc5, 0xd9, 0xa7, + 0x37, 0xc2, 0x04, 0x01, 0xc9, 0x4a, 0x2e, 0x26, 0xdd, 0x12, 0x6e, 0x41, + 0x64, 0xb4, 0xe8, 0xe8, 0xc7, 0xf8, 0xab, 0x8a, 0xab, 0x1d, 0x7f, 0x2d, + 0x58, 0xc2, 0xc4, 0xf0, 0x5d, 0x11, 0x35, 0x52, 0x88, 0xbc, 0x0f, 0x44, + 0x6e, 0x91, 0x1e, 0x87, 0xb4, 0xb1, 0x91, 0x52, 0x32, 0xe4, 0x38, 0x6d, + 0x5e, 0x8d, 0x30, 0xf0, 0xbc, 0xc3, 0x15, 0x80, 0x47, 0x36, 0x35, 0xb0, + 0x93, 0xf3, 0xc4, 0x82, 0xc7, 0x73, 0xc1, 0x67, 0x0c, 0x7a, 0x31, 0x36, + 0xbc, 0x73, 0x67, 0x66, 0xae, 0x48, 0x82, 0x27, 0x6e, 0x14, 0xd0, 0xd5, + 0x12, 0x10, 0xce, 0x5e, 0x37, 0xcd, 0x7e, 0xa5, 0xcb, 0xff, 0x91, 0xf0, + 0x62, 0xdb, 0x95, 0x74, 0x0c, 0x8c, 0x1e, 0x78, 0x11, 0x02, 0xb3, 0x02, + 0x0b, 0x31, 0xe7, 0x4e, 0x8b, 0x58, 0x6a, 0xde, 0x20, 0x93, 0x8b, 0x8e, + 0x62, 0x03, 0x24, 0xc9, 0xca, 0xf8, 0x44, 0x1d, 0x0c, 0x1b, 0xd8, 0x5d, + 0xcc, 0xe2, 0x8e, 0x02, 0xc6, 0x5c, 0x06, 0x45, 0xe6, 0x94, 0x8f, 0xa2, + 0x3e, 0xf5, 0xe9, 0xf5, 0x88, 0x87, 0xb2, 0x84, 0x1e, 0xb6, 0xb6, 0xfc, + 0x9f, 0x8e, 0x79, 0xf5, 0x4b, 0x24, 0x81, 0x3e, 0x5d, 0xf4, 0x10, 0x6e, + 0xdd, 0x8c, 0x8c, 0xae, 0xc6, 0x2c, 0x26, 0xb2, 0xfc, 0xf3, 0x99, 0xe8, + 0x8c, 0x65, 0x5d, 0x6c, 0xa8, 0x1d, 0x6f, 0x1e, 0x32, 0x0a, 0xee, 0x87, + 0xf6, 0xe1, 0xdd, 0x5e, 0x7f, 0x7a, 0x90, 0x8c, 0x3f, 0xe8, 0x47, 0x95, + 0x9b, 0xc8, 0x2c, 0x49, 0xc9, 0xe4, 0x2d, 0xea, 0x58, 0xfc, 0x29, 0x1a, + 0xb7, 0xa1, 0xf9, 0xb8, 0x84, 0x41, 0xa0, 0xf1, 0x77, 0x83, 0x56, 0x73, + 0x86, 0xea, 0xf4, 0xf5, 0x2a, 0xa6, 0x6b, 0x00, 0x64, 0x39, 0x08, 0x8f, + 0xf0, 0x22, 0x1a, 0x4c, 0xf2, 0x5a, 0xd0, 0xaa, 0x39, 0xae, 0x8a, 0xbc, + 0x03, 0x99, 0xf7, 0xcc, 0x80, 0xdf, 0x2b, 0x85, 0xbe, 0x1a, 0x97, 0x28, + 0x63, 0x04, 0x72, 0x75, 0x75, 0xb4, 0x9c, 0xd3, 0x17, 0xcc, 0x1e, 0xa1, + 0xd2, 0x47, 0x18, 0x45, 0xad, 0xb4, 0x0a, 0x32, 0x31, 0x36, 0x64, 0x48, + 0x3f, 0x7b, 0x4b, 0xc0, 0xd6, 0x78, 0x46, 0xaa, 0x90, 0x89, 0xf9, 0x36, + 0x3d, 0xb4, 0xb3, 0x50, 0x51, 0xd9, 0x55, 0x6f, 0xa9, 0xe7, 0x25, 0xaf, + 0xa0, 0xca, 0x9d, 0x45, 0x83, 0xc3, 0x0b, 0x2a, 0x0c, 0xf9, 0x3f, 0xe4, + 0x08, 0xf4, 0xbd, 0x23, 0x45, 0x85, 0xcf, 0x41, 0x93, 0xd3, 0x21, 0x5f, + 0x53, 0xa2, 0x5b, 0xa9, 0xf5, 0xe9, 0x8f, 0x2a, 0x2d, 0x53, 0x3c, 0x36, + 0x17, 0xce, 0x37, 0x35, 0x3e, 0x9e, 0x6b, 0xbc, 0xba, 0xaa, 0xa5, 0x61, + 0x79, 0x98, 0x8e, 0xbd, 0x19, 0xf4, 0x5f, 0xa9, 0xb8, 0x96, 0xa2, 0xce, + 0x32, 0x00, 0xab, 0x51, 0xcb, 0xfa, 0x30, 0x3a, 0x83, 0x92, 0x91, 0xad, + 0x08, 0x61, 0x62, 0x51, 0x7f, 0x19, 0xa9, 0x2a, 0x84, 0xf2, 0xab, 0x7e, + 0x5e, 0xa7, 0x5a, 0x54, 0x7f, 0x68, 0x2a, 0x7b, 0x4f, 0xde, 0x45, 0x1d, + 0xef, 0x73, 0x5f, 0xc0, 0x40, 0x6e, 0xec, 0x6c, 0xe9, 0xa5, 0x6b, 0x46, + 0x54, 0x7c, 0x24, 0x8b, 0xa4, 0xe5, 0xb4, 0x82, 0x31, 0x1f, 0x3e, 0x79, + 0x2e, 0x21, 0x8c, 0xf1, 0xbd, 0xad, 0x7c, 0x28, 0xcc, 0xbd, 0x58, 0x72, + 0xe9, 0x6a, 0x04, 0x56, 0x67, 0x0f, 0x62, 0x98, 0x5a, 0x97, 0x4b, 0xe2, + 0x67, 0x70, 0xbb, 0x17, 0xb1, 0x84, 0x5b, 0xd4, 0x6e, 0xab, 0x90, 0x29, + 0x20, 0x93, 0x34, 0xa8, 0x03, 0x0f, 0xed, 0x1a, 0xf0, 0x1b, 0x92, 0x87, + 0x43, 0xa5, 0x6a, 0x1c, 0xdc, 0xd7, 0x22, 0x68, 0x83, 0x98, 0x74, 0x2a, + 0x4c, 0x51, 0xef, 0x71, 0x19, 0xd5, 0x3d, 0x05, 0x19, 0x61, 0xb2, 0x52, + 0xa8, 0x6e, 0xda, 0x72, 0x51, 0x66, 0x9f, 0xf0, 0x12, 0xf6, 0x18, 0x60, + 0xcc, 0xd7, 0x2f, 0x2e, 0x83, 0x14, 0x09, 0xdb, 0x55, 0x1c, 0xf2, 0xaf, + 0xfd, 0xa4, 0x40, 0xf1, 0x4a, 0xc7, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, + 0x00, 0x01, 0x00, 0x00, 0x9c, 0x52, 0xff, 0x48, 0x06, 0x61, 0x76, 0x6d, + 0xd7, 0x44, 0xb1, 0x0c, 0x32, 0x62, 0x15, 0xa1, 0xc3, 0x97, 0x03, 0xdd, + 0xed, 0x20, 0x3c, 0x3a, 0x09, 0x16, 0xe5, 0x7d, 0x8c, 0xf9, 0x7b, 0x22, + 0x5e, 0x3a, 0xdd, 0xf0, 0xc6, 0xf0, 0x3a, 0xd4, 0x94, 0x85, 0x1c, 0x60, + 0x74, 0x91, 0xa3, 0xe2, 0x8a, 0xe5, 0x3e, 0xd4, 0x95, 0x28, 0x8b, 0x1a, + 0x7b, 0xbe, 0x07, 0xc0, 0xe3, 0x6b, 0xb9, 0x85, 0x82, 0x0b, 0x24, 0xba, + 0x1c, 0xfc, 0xc0, 0x0a, 0x21, 0x33, 0xad, 0x00, 0x19, 0xce, 0xb5, 0x8f, + 0x73, 0x05, 0xf1, 0xac, 0x03, 0xbe, 0x1f, 0x22, 0xd5, 0x32, 0x5e, 0x50, + 0xe3, 0xe0, 0x62, 0x26, 0xf4, 0xb0, 0x85, 0xd8, 0xf7, 0xa7, 0xf4, 0xa7, + 0xff, 0x10, 0xb8, 0xbc, 0xe0, 0x3e, 0x4d, 0xcb, 0x37, 0x74, 0xcc, 0x85, + 0xed, 0xa0, 0x34, 0x6c, 0xfa, 0x37, 0x84, 0x6a, 0x94, 0x55, 0x3b, 0x1e, + 0x14, 0xab, 0x26, 0x7b, 0x3e, 0xac, 0xc3, 0x79, 0xcd, 0x1b, 0x00, 0x02, + 0xb3, 0x01, 0xc3, 0x10, 0xdd, 0x56, 0x7d, 0x0e, 0x69, 0x39, 0x3c, 0x17, + 0xa3, 0xae, 0x9c, 0x2d, 0xc7, 0x5a, 0x0b, 0x7c, 0xd0, 0xac, 0xa1, 0x91, + 0x6a, 0x6d, 0xc0, 0x3f, 0x98, 0xf1, 0x21, 0xf5, 0xa5, 0x7c, 0xbc, 0x70, + 0x0d, 0x7b, 0x2f, 0x0d, 0x5a, 0xa5, 0x4a, 0x5a, 0xff, 0x51, 0xbf, 0x7f, + 0xb5, 0x4f, 0x2c, 0xba, 0xa9, 0x46, 0x81, 0x6b, 0xac, 0xc6, 0x62, 0x2d, + 0xd7, 0xb5, 0x04, 0x5f, 0xd4, 0x5f, 0x1f, 0x6b, 0x11, 0x7d, 0xe3, 0x58, + 0x1f, 0xb5, 0xbf, 0x16, 0x43, 0x88, 0x05, 0xf5, 0xa4, 0x7b, 0xb5, 0x0e, + 0xf4, 0x01, 0xb6, 0x90, 0x69, 0x52, 0x0a, 0x5e, 0x9b, 0x87, 0x51, 0x5e, + 0xd5, 0xed, 0x2c, 0xcc, 0x58, 0xad, 0xe6, 0x77, 0xa2, 0xc5, 0x7c, 0x1e, + 0xc5, 0x92, 0xbe, 0xed, 0x3a, 0x9a, 0x97, 0xed, 0x56, 0xc8, 0xff, 0xff, + 0x04, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x16, 0xe8, 0x24, 0xe3, + 0x82, 0x36, 0x8e, 0x50, 0x45, 0xbe, 0xc6, 0x10, 0x02, 0xb9, 0x6d, 0xf9, + 0xed, 0x8f, 0x64, 0x35, 0x4d, 0x2c, 0x9f, 0x99, 0xdc, 0xee, 0xfa, 0x63, + 0x99, 0xc4, 0xb8, 0x3d, 0x77, 0xea, 0xda, 0xd5, 0x95, 0x8b, 0x8e, 0x76, + 0x02, 0x9c, 0x62, 0xa0, 0xad, 0xfe, 0x80, 0x61, 0x72, 0x59, 0xd6, 0x9f, + 0x16, 0x2e, 0x09, 0x71, 0xb8, 0xd7, 0x65, 0x25, 0xc2, 0x5b, 0x40, 0x67, + 0x8e, 0xd6, 0xf8, 0xdf, 0x67, 0x29, 0x19, 0xa2, 0xa6, 0x07, 0xf3, 0xc8, + 0x91, 0x7d, 0xf2, 0x50, 0x71, 0xba, 0x5c, 0x2d, 0xa7, 0xae, 0xc4, 0xd5, + 0xeb, 0xb9, 0x0d, 0x2d, 0x23, 0xe5, 0x8c, 0x65, 0xf5, 0xf8, 0x97, 0x69, + 0xde, 0x25, 0x6f, 0xea, 0x12, 0x72, 0x3e, 0xb9, 0xa7, 0x8d, 0xcf, 0xa5, + 0x66, 0xee, 0x4e, 0x2e, 0x66, 0x6b, 0xec, 0x77, 0x7f, 0x53, 0xdc, 0x29, + 0x73, 0x5e, 0xe9, 0x2f, 0x79, 0xac, 0x8d, 0x0f, 0x44, 0x09, 0x5d, 0x25, + 0x1d, 0x78, 0xb6, 0xe9, 0xd0, 0xfa, 0x8f, 0x5f, 0x9c, 0xf0, 0xe0, 0xfc, + 0x62, 0x9f, 0x52, 0x6b, 0x5b, 0x8e, 0x3f, 0xdf, 0xb4, 0xf1, 0xdf, 0x35, + 0xd0, 0x8f, 0x5a, 0xc9, 0x1f, 0x08, 0x86, 0xaa, 0x5a, 0x9e, 0xe8, 0xb0, + 0xaa, 0xd4, 0xcd, 0x2a, 0x5b, 0x4f, 0x7f, 0x39, 0x9f, 0x7f, 0x21, 0xf2, + 0xfd, 0x05, 0x96, 0x53, 0x09, 0xfd, 0x36, 0x4c, 0xcd, 0x98, 0x74, 0xf5, + 0xbd, 0xcd, 0x9e, 0x14, 0x15, 0x05, 0xb9, 0x3d, 0x5f, 0x8a, 0x02, 0x86, + 0x10, 0xd7, 0xd4, 0x01, 0x20, 0xd9, 0x8c, 0x65, 0x7d, 0x9d, 0x39, 0x25, + 0xbc, 0xce, 0x1a, 0xb1, 0x76, 0x92, 0xc3, 0x03, 0xed, 0xa2, 0x41, 0x31, + 0x0d, 0xc0, 0x40, 0x94, 0x01, 0xbc, 0x9b, 0xe9, 0x5e, 0x3e, 0x8c, 0x49, + 0xf6, 0x98, 0x0c, 0x39, 0x79, 0xdc, 0xd1, 0x1b, 0xc5, 0xb2, 0x20, 0xb4, + 0x6c, 0xb4, 0x4f, 0xce, 0xf4, 0x6c, 0x0b, 0xef, 0x85, 0xf2, 0x7d, 0x9a, + 0x90, 0x58, 0x1b, 0x51, 0x56, 0x52, 0xac, 0x75, 0x9f, 0x17, 0xe6, 0x48, + 0xaf, 0x18, 0x4c, 0xd8, 0x67, 0xe8, 0xd2, 0x61, 0xbc, 0xa0, 0x95, 0xc9, + 0x78, 0xd8, 0xa2, 0x1d, 0x47, 0x59, 0x30, 0xcf, 0xf3, 0x79, 0x06, 0xd4, + 0x25, 0xf8, 0x9c, 0x5c, 0x28, 0xee, 0xb0, 0xd2, 0xb6, 0xaf, 0x34, 0x0e, + 0xe5, 0xe4, 0x16, 0x2e, 0x05, 0x45, 0x23, 0xc1, 0x88, 0x90, 0x4a, 0x8f, + 0xff, 0xfb, 0xe2, 0xc0, 0xb7, 0xae, 0xb5, 0x50, 0xc9, 0x26, 0xf0, 0xa2, + 0xf5, 0x21, 0x23, 0x79, 0x23, 0xb6, 0x8f, 0x57, 0x64, 0xd1, 0x27, 0xc2, + 0x07, 0x63, 0xa6, 0x54, 0x1f, 0x2f, 0xca, 0x16, 0xb8, 0x28, 0x51, 0x2a, + 0x92, 0xe0, 0x06, 0x36, 0x55, 0x00, 0x6c, 0x99, 0x31, 0xa7, 0x56, 0xb3, + 0x7b, 0x15, 0xcd, 0xc1, 0x32, 0x3a, 0xc0, 0x37, 0x1f, 0xea, 0x29, 0xb6, + 0x75, 0xdf, 0x8a, 0x17, 0x09, 0x45, 0xc2, 0x6e, 0xe2, 0x4c, 0xa5, 0x93, + 0x9b, 0x17, 0x08, 0x27, 0x75, 0x33, 0xdb, 0x1f, 0xab, 0x37, 0xad, 0x8e, + 0xaa, 0xef, 0x0b, 0x82, 0xaa, 0xa7, 0xae, 0x2c, 0x43, 0x4d, 0x8f, 0xa0, + 0x43, 0xd7, 0xa1, 0x34, 0xeb, 0xc0, 0x4e, 0xbd, 0x64, 0xfc, 0xc8, 0x6a, + 0x56, 0xa8, 0xfc, 0x9e, 0x2d, 0x5f, 0x7a, 0xa3, 0x72, 0x06, 0x79, 0x38, + 0x33, 0x05, 0xa7, 0xf0, 0x09, 0x48, 0x55, 0xfe, 0x3f, 0xab, 0x25, 0x8e, + 0x76, 0x1d, 0x12, 0x5a, 0x20, 0x68, 0xfb, 0x51, 0x51, 0x33, 0x40, 0x37, + 0x0c, 0x90, 0x98, 0x6f, 0x66, 0x3f, 0x40, 0xa2, 0x2e, 0x3c, 0xd1, 0x22, + 0x51, 0x54, 0x25, 0x7e, 0x4c, 0x5d, 0x96, 0xb2, 0x65, 0x0f, 0xa3, 0xdf, + 0x8e, 0x97, 0xfe, 0xeb, 0xe7, 0xc6, 0x22, 0x2a, 0x47, 0x3a, 0x78, 0x1b, + 0x39, 0x2e, 0xd6, 0xbc, 0x35, 0xb4, 0xf4, 0xc3, 0xf2, 0x6a, 0x12, 0xc9, + 0xe7, 0x6c, 0x9a, 0xfc, 0xed, 0xbc, 0x11, 0xc7, 0x71, 0x09, 0x8f, 0x56, + 0xc1, 0xd8, 0xb6, 0x92, 0x35, 0x97, 0x8e, 0x71, 0xd2, 0xbb, 0xb4, 0xed, + 0xf0, 0x7e, 0xff, 0x58, 0xd9, 0x95, 0x26, 0xea, 0xa9, 0x4d, 0x38, 0x8d, + 0x4e, 0x8e, 0x53, 0xae, 0x7e, 0xe6, 0xe6, 0x82, 0x35, 0x96, 0xab, 0x0f, + 0x04, 0x0f, 0xf2, 0xac, 0x1b, 0xcd, 0x07, 0x17, 0x1b, 0x25, 0x2f, 0x92, + 0xaf, 0x19, 0xa2, 0x1b, 0xa0, 0x7a, 0xc7, 0x4f, 0xb8, 0x1b, 0x89, 0x21, + 0xb5, 0xe2, 0x24, 0xe9, 0x78, 0xae, 0x7d, 0xd7, 0xcc, 0x8e, 0x3f, 0xa7, + 0xe9, 0xbe, 0xe6, 0x79, 0x0f, 0xdf, 0x86, 0xe9, 0xb9, 0xcd, 0x82, 0x7b, + 0xf5, 0x04, 0x89, 0xa0, 0x73, 0x5d, 0xa2, 0x4e, 0xd6, 0xa0, 0x60, 0x21, + 0xe2, 0xfe, 0xd3, 0xf4, 0x19, 0x8b, 0x6a, 0x03, 0x12, 0x9c, 0x51, 0x9a, + 0x41, 0x4e, 0xf6, 0xb4, 0x6e, 0x0c, 0x43, 0xf5, 0x00, 0x00, 0x78, 0x12, + 0xdd, 0x21, 0xa8, 0xc7, 0x21, 0xa1, 0x4e, 0x44, 0x10, 0xd0, 0xdb, 0x6f, + 0x0b, 0x4c, 0xe7, 0x7a, 0x8c, 0x0c, 0xaa, 0xb6, 0x9a, 0x7d, 0xa9, 0xff, + 0x5a, 0x2e, 0x15, 0x9e, 0x6f, 0xea, 0xe1, 0x42, 0x0c, 0x9c, 0x5a, 0x3b, + 0xd5, 0xe6, 0xde, 0x23, 0x3f, 0x9c, 0x45, 0x20, 0x67, 0x96, 0x50, 0x16, + 0x80, 0x42, 0xe7, 0x67, 0x7d, 0x24, 0xdc, 0x00, 0xaa, 0x01, 0x8a, 0xa3, + 0x61, 0xfe, 0x9a, 0xce, 0xc1, 0xe5, 0x2e, 0x19, 0x85, 0x04, 0xe6, 0x7b, + 0xe8, 0x7a, 0xbc, 0x9d, 0xfe, 0x71, 0x29, 0x1d, 0x17, 0xae, 0x6b, 0x1a, + 0x64, 0xd7, 0xfe, 0x18, 0x29, 0x07, 0x9b, 0x49, 0x43, 0xba, 0x29, 0x37, + 0xa8, 0xb0, 0x26, 0x27, 0x6b, 0x7d, 0xde, 0x49, 0x12, 0x90, 0x05, 0xe2, + 0x2c, 0xd8, 0x08, 0xd0, 0x5d, 0x74, 0xa7, 0x15, 0xbe, 0x34, 0x34, 0x6d, + 0xad, 0xfb, 0xa8, 0x01, 0x4a, 0x6c, 0x98, 0xba, 0x84, 0x38, 0xbd, 0x05, + 0xe8, 0x87, 0x27, 0x91, 0x3f, 0xb8, 0xe9, 0x06, 0x27, 0xda, 0x56, 0x07, + 0xaa, 0xea, 0xf4, 0x80, 0x5c, 0x12, 0x44, 0xbe, 0x23, 0xb3, 0x63, 0x9f, + 0x5f, 0x37, 0xa7, 0x53, 0x4c, 0xfc, 0x4d, 0x87, 0xeb, 0x91, 0xe8, 0xd7, + 0x5a, 0xd6, 0xca, 0x67, 0x2d, 0x2f, 0x5a, 0x0e, 0xc7, 0x82, 0x78, 0xa4, + 0xf3, 0x56, 0x07, 0xa5, 0xab, 0x6d, 0x09, 0xd2, 0x0d, 0x08, 0x6b, 0x6e, + 0x1f, 0xc1, 0xf2, 0x91, 0x1a, 0x39, 0xfe, 0x14, 0x56, 0x3f, 0xeb, 0x9f, + 0x14, 0xc2, 0xb3, 0xb2, 0xc2, 0x8d, 0xc2, 0xee, 0x7e, 0xf0, 0x7d, 0x92, + 0xd2, 0xc3, 0x57, 0x3e, 0x2c, 0x07, 0x1b, 0x6a, 0x9b, 0x3b, 0x79, 0x59, + 0xc9, 0x22, 0x96, 0x6c, 0x3e, 0x37, 0xd3, 0x0e, 0x5c, 0xf6, 0x8f, 0xa9, + 0xaa, 0xc9, 0xa4, 0x4b, 0xaf, 0x5d, 0x1a, 0xb6, 0xf3, 0x91, 0x32, 0x4f, + 0xca, 0x72, 0xa0, 0x42, 0x01, 0x51, 0xaf, 0x19, 0x89, 0xc4, 0xcc, 0x9b, + 0xf3, 0x52, 0xe9, 0xa6, 0xf2, 0x71, 0x6f, 0x5a, 0x38, 0x02, 0xb8, 0x75, + 0x88, 0x5f, 0x8d, 0x12, 0xc5, 0x55, 0x4f, 0xd1, 0xba, 0xf2, 0x24, 0xdc, + 0x63, 0x5f, 0x93, 0xc7, 0xf3, 0xe7, 0x59, 0xac, 0xc3, 0xed, 0xbc, 0x02, + 0xe3, 0xad, 0xb2, 0x8e, 0x2c, 0x2d, 0x47, 0xb4, 0x34, 0x8d, 0xae, 0x44, + 0xc8, 0x5f, 0x14, 0xe8, 0x8e, 0x7b, 0xc3, 0x60, 0x53, 0x9a, 0x51, 0xea, + 0x7f, 0x2f, 0xb6, 0x62, 0x61, 0xf7, 0xc0, 0x18, 0x0f, 0x20, 0x79, 0x13, + 0x5c, 0xe8, 0xca, 0x04, 0x29, 0x5f, 0x70, 0x4d, 0x88, 0xa2, 0x43, 0x20, + 0x57, 0x33, 0x04, 0x74, 0x8e, 0x7c, 0x89, 0xd4, 0x56, 0x8f, 0x93, 0x86, + 0x81, 0x6c, 0x11, 0xfc, 0x32, 0x0e, 0xb0, 0x3e, 0xe5, 0x13, 0xbf, 0x76, + 0x62, 0xcc, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, + 0x0e, 0xf8, 0x8f, 0xde, 0xfd, 0xfd, 0xcf, 0xd1, 0x6f, 0x9f, 0xf2, 0xb6, + 0xb6, 0x59, 0xb2, 0x73, 0x1c, 0x3c, 0x0d, 0xb0, 0x4d, 0xb8, 0x96, 0xc6, + 0xeb, 0xe5, 0xf8, 0x0d, 0x3e, 0xd7, 0x0c, 0xbd, 0x9c, 0xaa, 0xd5, 0x1c, + 0x19, 0x9a, 0x4c, 0x8e, 0xfa, 0xac, 0x68, 0x74, 0x16, 0x06, 0xb5, 0x49, + 0xe7, 0xd5, 0x6f, 0x4f, 0xcc, 0xd9, 0x02, 0x74, 0xd6, 0x08, 0x73, 0x7c, + 0xa9, 0xfa, 0x3e, 0x50, 0x87, 0xf7, 0xfb, 0xa6, 0x94, 0xdc, 0xb1, 0x40, + 0xec, 0xa7, 0xa9, 0x39, 0xff, 0x40, 0x4a, 0x97, 0x9b, 0xcc, 0x57, 0x66, + 0x68, 0xd6, 0xa8, 0x4d, 0x13, 0x06, 0x0e, 0x03, 0xc4, 0xdf, 0x7a, 0xe4, + 0x2f, 0x0e, 0xd7, 0x54, 0xe0, 0xbd, 0x93, 0xeb, 0x82, 0xd8, 0x05, 0x2d, + 0xa2, 0xf0, 0x4e, 0xd0, 0xf9, 0x3e, 0x3e, 0x6b, 0x3d, 0x08, 0x39, 0x4e, + 0x35, 0x13, 0x7b, 0x3b, 0x39, 0x2c, 0x47, 0x2c, 0x61, 0x9f, 0xfd, 0x59, + 0x88, 0x5f, 0x65, 0x08, 0xa9, 0x66, 0xec, 0xb5, 0x21, 0xf3, 0xe9, 0xba, + 0x11, 0x63, 0x24, 0x6c, 0xf4, 0x50, 0x3a, 0xe5, 0x0c, 0x06, 0x39, 0x69, + 0x2f, 0xca, 0x0f, 0x48, 0xbe, 0x95, 0x7d, 0x13, 0x3d, 0xa5, 0x75, 0x69, + 0x85, 0xc8, 0xb3, 0x72, 0x72, 0x3c, 0x4f, 0x96, 0xe7, 0xb7, 0xbd, 0xe7, + 0x76, 0xba, 0xac, 0xc0, 0x07, 0x4d, 0xc1, 0xed, 0xb9, 0xf0, 0x91, 0x2e, + 0x36, 0xb7, 0x5b, 0x1c, 0xb7, 0xd6, 0xb3, 0x45, 0x7d, 0x0a, 0xf5, 0x43, + 0xdd, 0x7a, 0x8b, 0x4e, 0x18, 0xf2, 0xf3, 0x19, 0xcd, 0x4a, 0xda, 0x3c, + 0x1b, 0x05, 0x27, 0x67, 0x43, 0xa9, 0x8e, 0xe7, 0x4a, 0x95, 0xa9, 0xad, + 0x6c, 0x8c, 0xb2, 0x2e, 0x12, 0xcb, 0xf3, 0xeb, 0x65, 0x26, 0xf4, 0x3e, + 0x86, 0xee, 0x7e, 0xd9, 0xba, 0xce, 0x8d, 0x15, 0x3e, 0xa8, 0x40, 0x59, + 0x1d, 0x27, 0x78, 0x75, 0xf0, 0xf9, 0x33, 0xb5, 0x32, 0xa9, 0x66, 0xe6, + 0x2e, 0x2e, 0x3d, 0xf5, 0x4a, 0xf0, 0x97, 0x2d, 0xe7, 0x43, 0x85, 0x43, + 0x61, 0x25, 0x15, 0x13, 0x9e, 0x8e, 0xf6, 0x78, 0xe8, 0x67, 0xba, 0xc2, + 0x6d, 0xda, 0x46, 0x25, 0x76, 0xd9, 0x9b, 0x69, 0x95, 0x4b, 0x50, 0x8c, + 0xb7, 0x36, 0x49, 0xbc, 0xd7, 0x39, 0x69, 0xb9, 0xc1, 0x5f, 0x5f, 0xcc, + 0x83, 0x4c, 0x16, 0xb8, 0x0c, 0x85, 0xf1, 0xa4, 0x57, 0x6c, 0x22, 0x1f, + 0x60, 0x0c, 0xff, 0xb6, 0xc9, 0xf7, 0x21, 0x2d, 0x35, 0x78, 0x31, 0x79, + 0xd0, 0x6d, 0x61, 0xec, 0x61, 0x04, 0x75, 0x5c, 0x06, 0xc3, 0x53, 0x1b, + 0xb5, 0xdc, 0x23, 0xb9, 0xd9, 0x07, 0xd1, 0xd0, 0xb3, 0xa5, 0xab, 0xd9, + 0xbe, 0xb7, 0xdc, 0xae, 0x3f, 0x3e, 0xd7, 0x2a, 0x79, 0x3f, 0x9c, 0x27, + 0x81, 0x8d, 0x61, 0xe8, 0x46, 0x8f, 0x05, 0xf4, 0x9c, 0x30, 0x35, 0x9a, + 0x2f, 0x62, 0x84, 0x7c, 0xa5, 0x95, 0x68, 0x34, 0xe6, 0xf0, 0xb9, 0x42, + 0xd4, 0x37, 0xc6, 0xd2, 0x35, 0x1f, 0x7b, 0xe0, 0xa6, 0x92, 0xcf, 0xf7, + 0x0f, 0x08, 0x10, 0x79, 0xbd, 0xa8, 0x7c, 0x4e, 0xef, 0xf1, 0x01, 0x8d, + 0x1b, 0x0c, 0x98, 0x46, 0x28, 0xdc, 0xd5, 0xa8, 0xcf, 0x67, 0x7d, 0x87, + 0x2a, 0x8f, 0xdd, 0x52, 0x43, 0x5a, 0x55, 0x80, 0x88, 0xa6, 0xcd, 0x9c, + 0x5d, 0x36, 0xae, 0xef, 0x61, 0x43, 0xec, 0xf0, 0x7f, 0x92, 0x21, 0x1f, + 0xa2, 0xa3, 0x76, 0x0e, 0x5d, 0xf3, 0xa7, 0xe7, 0x7d, 0xb0, 0x2c, 0x94, + 0x36, 0x95, 0x34, 0x4e, 0x04, 0xfb, 0x51, 0xf9, 0xe6, 0x7e, 0x56, 0x7a, + 0x59, 0xce, 0x0a, 0x45, 0x7e, 0xeb, 0xc4, 0xbc, 0xfd, 0x20, 0xaa, 0x34, + 0x6b, 0xee, 0x3b, 0x09, 0xe8, 0x00, 0x4b, 0xfc, 0x68, 0x24, 0x43, 0xdb, + 0x09, 0x58, 0xd0, 0xb6, 0xbf, 0xaf, 0x1d, 0x7f, 0x8a, 0x4c, 0x9e, 0x51, + 0x97, 0x97, 0xe1, 0x0c, 0x0d, 0xaf, 0xd1, 0x1e, 0x62, 0xad, 0x70, 0xa5, + 0x8a, 0x24, 0x2f, 0x4a, 0xa6, 0x55, 0xb1, 0x44, 0x09, 0x88, 0xab, 0xa5, + 0x45, 0x28, 0xa0, 0x34, 0x9e, 0x14, 0x2c, 0xf9, 0x0f, 0xb8, 0x33, 0x8f, + 0xcc, 0xba, 0x50, 0x34, 0x4c, 0x96, 0x89, 0x09, 0xb9, 0xa8, 0xfb, 0xac, + 0x59, 0x73, 0xea, 0x61, 0xbc, 0x0d, 0x24, 0x3a, 0x20, 0xc2, 0x76, 0xfc, + 0x2e, 0xce, 0xfb, 0x75, 0x00, 0xca, 0x58, 0xbd, 0xab, 0x61, 0x9b, 0x13, + 0x2b, 0xa3, 0xf6, 0x15, 0x55, 0x83, 0x23, 0xc4, 0xf3, 0x4c, 0x89, 0xc5, + 0x4a, 0x18, 0x5c, 0x8d, 0x41, 0xcc, 0x06, 0x7b, 0xe3, 0x2a, 0x1f, 0x6a, + 0x57, 0xbc, 0x54, 0x61, 0x0c, 0xf2, 0xec, 0xbf, 0xb0, 0xf0, 0x21, 0xde, + 0xfc, 0xe4, 0xef, 0xce, 0x47, 0xc8, 0xdc, 0x11, 0xc7, 0x8a, 0x12, 0x97, + 0x68, 0x1d, 0x9e, 0x9a, 0xbf, 0xad, 0x62, 0x7e, 0x4b, 0x88, 0xd7, 0x20, + 0x22, 0xce, 0x5e, 0xe3, 0x87, 0x12, 0xa3, 0x05, 0xef, 0x1f, 0x05, 0xb1, + 0xbd, 0x1b, 0x80, 0x43, 0x84, 0x33, 0x8b, 0x87, 0xa5, 0xc2, 0xe1, 0x49, + 0xa8, 0x75, 0x49, 0x9b, 0x1b, 0x64, 0x8a, 0xd0, 0x86, 0x10, 0xa8, 0x72, + 0xeb, 0x2e, 0xe7, 0x3f, 0xaa, 0x6b, 0x4a, 0x22, 0xae, 0x17, 0x8f, 0x10, + 0x22, 0x03, 0x66, 0x67, 0x35, 0x40, 0x29, 0x1e, 0xf2, 0x05, 0x36, 0xd5, + 0xed, 0xe2, 0x2a, 0xcc, 0x77, 0xe2, 0x16, 0xef, 0xa7, 0x9b, 0xe1, 0x1b, + 0xba, 0xf3, 0xf5, 0x74, 0x6c, 0x2a, 0x98, 0x8a, 0x14, 0xaf, 0x2c, 0xab, + 0xfb, 0x51, 0x53, 0x75, 0x17, 0xcb, 0x5c, 0x86, 0xb5, 0x60, 0x70, 0x29, + 0x65, 0x69, 0x49, 0x42, 0x4f, 0x42, 0x6b, 0xc7, 0xdb, 0x98, 0x7d, 0x1e, + 0xf8, 0x45, 0xb2, 0x33, 0xd6, 0x34, 0x26, 0xa6, 0x7f, 0x76, 0x31, 0x13, + 0x13, 0x9d, 0xd2, 0xb0, 0x30, 0x0b, 0x0b, 0x3e, 0x1a, 0x84, 0xb0, 0xbd, + 0x81, 0x34, 0x25, 0x73, 0x99, 0x87, 0x1a, 0xc8, 0x44, 0x34, 0x9d, 0x1a, + 0x3d, 0x76, 0x44, 0x1d, 0xe2, 0x22, 0xad, 0x3d, 0xb2, 0xa3, 0x1c, 0xd5, + 0x27, 0x8c, 0xc6, 0x84, 0xdf, 0x33, 0xbe, 0xb2, 0xa7, 0xb9, 0xc5, 0x6e, + 0x48, 0xdc, 0xe9, 0xf8, 0xef, 0xfc, 0xaa, 0x1f, 0x5e, 0x41, 0x48, 0x1e, + 0xe0, 0xb9, 0xd6, 0x6e, 0x7a, 0x9c, 0xa3, 0x98, 0x4b, 0xfa, 0x90, 0xa4, + 0x58, 0x33, 0x85, 0x3b, 0x11, 0x44, 0x83, 0x4b, 0x1e, 0x0e, 0x5d, 0x11, + 0x36, 0x15, 0xe1, 0xbf, 0x15, 0x04, 0x8e, 0x88, 0xc6, 0x18, 0x53, 0xc3, + 0x8d, 0x28, 0x86, 0x25, 0xef, 0x55, 0x7b, 0xf6, 0x85, 0xf8, 0xed, 0x3b, + 0xcf, 0x5d, 0xa6, 0xc7, 0x66, 0xb7, 0xbe, 0x14, 0xf0, 0x62, 0x89, 0x1f, + 0x32, 0x1e, 0x86, 0x2a, 0x93, 0xd5, 0xca, 0x37, 0x03, 0x0b, 0xf8, 0x0f, + 0xca, 0x50, 0x6c, 0x16, 0x2b, 0xf0, 0x77, 0xca, 0xbb, 0x8e, 0x95, 0x11, + 0xef, 0x5b, 0xbe, 0x2f, 0x62, 0x50, 0xb8, 0x3d, 0xff, 0xfa, 0x30, 0x21, + 0xb2, 0x86, 0x3f, 0x50, 0x57, 0x98, 0x79, 0x15, 0xce, 0x3e, 0xbf, 0x49, + 0x58, 0xb0, 0xb5, 0xd7, 0xbe, 0x01, 0x55, 0xee, 0x60, 0x14, 0x9d, 0x5b, + 0x57, 0x48, 0x05, 0x72, 0x6a, 0x23, 0x29, 0xeb, 0xf3, 0x36, 0x2a, 0xc1, + 0xda, 0x5e, 0x4a, 0x63, 0xc4, 0x6b, 0x04, 0xe8, 0xe8, 0xc1, 0xb5, 0xc4, + 0x2d, 0x60, 0x1f, 0xa0, 0x2b, 0x33, 0xa5, 0xb7, 0x82, 0x59, 0x21, 0xba, + 0x13, 0xda, 0x79, 0xda, 0x5a, 0xb1, 0x82, 0x5b, 0x52, 0x7f, 0x0c, 0x70, + 0x75, 0x65, 0xe0, 0x44, 0xb3, 0xca, 0xd0, 0x09, 0x38, 0x24, 0x83, 0x8e, + 0x0c, 0x4c, 0xef, 0x96, 0xe4, 0x04, 0x30, 0x46, 0x23, 0x6a, 0x28, 0x13, + 0x1d, 0x37, 0x14, 0x75, 0x6e, 0xd0, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, + 0x40, 0x00, 0x00, 0x00, 0x21, 0xa2, 0xf0, 0x7d, 0x29, 0x8f, 0x62, 0x2e, + 0xf4, 0x0e, 0x14, 0x9b, 0x60, 0x38, 0xc0, 0x95, 0xfb, 0x3c, 0x90, 0x5a, + 0xa0, 0x1f, 0x30, 0x09, 0xfc, 0x6d, 0xa9, 0xd1, 0x7b, 0x0b, 0x7c, 0x78, + 0xf9, 0xf6, 0xa8, 0x5e, 0xa6, 0x7a, 0xf6, 0x1c, 0xab, 0x1b, 0x0e, 0xa9, + 0x08, 0xfd, 0xd9, 0x97, 0x08, 0x24, 0x2b, 0xda, 0x08, 0x8b, 0x0c, 0x07, + 0x70, 0x15, 0xa8, 0x0c, 0x86, 0xfc, 0xd1, 0x84, 0xba, 0xd0, 0xff, 0xff, + 0x04, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x35, 0x7a, 0xab, 0xaa, + 0xbe, 0xd7, 0xad, 0x22, 0x99, 0x46, 0xbb, 0x78, 0xfd, 0x47, 0x8f, 0x2a, + 0x4a, 0xa6, 0x2f, 0x8d, 0x15, 0x07, 0xed, 0x26, 0x1d, 0xb3, 0x12, 0xd3, + 0x88, 0x0f, 0xf1, 0x75, 0x2a, 0x07, 0x62, 0xac, 0xbf, 0x52, 0x4a, 0xc3, + 0x12, 0xe5, 0x3c, 0xea, 0xa6, 0x1e, 0x57, 0x90, 0x56, 0x60, 0x7d, 0xcf, + 0x4b, 0x65, 0xaf, 0xee, 0x17, 0x56, 0xbe, 0xd2, 0x38, 0x3f, 0xd6, 0xbc, + 0xef, 0xa7, 0x32, 0xb7, 0x10, 0xe9, 0xbd, 0x97, 0x45, 0x92, 0x3c, 0xd3, + 0x35, 0x2e, 0x59, 0x37, 0x65, 0x5c, 0x7f, 0xd0, 0x99, 0x9c, 0x01, 0xe9, + 0x1f, 0x65, 0xe9, 0xec, 0x0f, 0x2d, 0x46, 0xbc, 0xd4, 0x8f, 0x51, 0x1c, + 0xa0, 0xa4, 0x9b, 0x4f, 0x95, 0x54, 0xb0, 0x50, 0x74, 0xfa, 0x0f, 0xe6, + 0x55, 0x81, 0xce, 0x0f, 0xd1, 0x25, 0x56, 0xc8, 0x2f, 0x3a, 0x65, 0xd4, + 0x86, 0x4a, 0x8e, 0xff, 0x5a, 0xcc, 0x67, 0x96, 0xcc, 0x65, 0x0d, 0x20, + 0xee, 0xba, 0x6b, 0xcb, 0xde, 0x10, 0x2f, 0xbf, 0x67, 0x6d, 0xbe, 0xef, + 0x72, 0xfc, 0x25, 0x62, 0xbf, 0xbb, 0xc5, 0xe0, 0x7b, 0x4c, 0x32, 0xc5, + 0xdb, 0x9f, 0xb5, 0xe2, 0x75, 0x8a, 0xba, 0xbb, 0x69, 0x28, 0xb6, 0x41, + 0x25, 0x83, 0x67, 0x35, 0x1b, 0xd7, 0xb3, 0xd7, 0x58, 0x54, 0x8a, 0x0b, + 0x7c, 0xf3, 0x05, 0xcf, 0x2c, 0x78, 0x70, 0xc6, 0xed, 0x7e, 0x56, 0xb6, + 0x4e, 0x48, 0xaa, 0x57, 0xc4, 0xb0, 0xb2, 0xa0, 0xca, 0x50, 0xe1, 0xc7, + 0x41, 0xea, 0xac, 0x5f, 0x18, 0x13, 0xe5, 0x85, 0x78, 0x3f, 0x05, 0xf3, + 0xfd, 0x74, 0x7a, 0x42, 0x61, 0x91, 0x19, 0xc6, 0x19, 0xe9, 0xd2, 0x78, + 0x2c, 0xb1, 0xa3, 0x7f, 0x62, 0xea, 0x2a, 0x35, 0x1c, 0x55, 0xa3, 0xf7, + 0xdc, 0xec, 0x48, 0x23, 0x99, 0x8d, 0xe1, 0x4d, 0x45, 0xad, 0x92, 0xc6, + 0xf4, 0xa2, 0xe5, 0xe6, 0x58, 0xe4, 0xd5, 0x37, 0xd0, 0x47, 0x0b, 0x64, + 0x68, 0x48, 0x7e, 0xeb, 0xbe, 0x5e, 0x74, 0xd1, 0xc4, 0xa5, 0x60, 0xd0, + 0x30, 0x62, 0xbc, 0x81, 0xc4, 0x01, 0x68, 0x18, 0xf3, 0xac, 0x9d, 0xb1, + 0x4d, 0xdd, 0x8b, 0xd2, 0x54, 0x5d, 0xd1, 0x1c, 0xee, 0x75, 0x9e, 0x99, + 0x42, 0x69, 0x38, 0xcc, 0x66, 0x24, 0xd9, 0x8f, 0x70, 0x98, 0xc3, 0x5e, + 0x08, 0xf0, 0xd8, 0x2d, 0xe6, 0x52, 0x48, 0xdf, 0xd0, 0x03, 0x04, 0x92, + 0xab, 0xa1, 0xa1, 0x2f, 0x7d, 0x84, 0xb2, 0x82, 0x51, 0x56, 0x74, 0x4a, + 0x94, 0xff, 0xd2, 0xe4, 0x4e, 0x1a, 0xbd, 0x18, 0xab, 0x33, 0x68, 0x0e, + 0x4f, 0x99, 0x1d, 0x7e, 0x02, 0x3f, 0x1f, 0x50, 0x05, 0xf8, 0x59, 0x47, + 0x97, 0x98, 0x60, 0xb1, 0x30, 0xb1, 0x14, 0xac, 0x2c, 0x0a, 0xa8, 0x97, + 0x83, 0xf5, 0x5a, 0x5c, 0x87, 0xe5, 0x36, 0x26, 0xec, 0xb4, 0x94, 0x46, + 0x9a, 0xad, 0x2b, 0x9a, 0xb7, 0xac, 0xc4, 0x1a, 0x55, 0x53, 0xc0, 0x16, + 0x91, 0x1c, 0xd6, 0xaa, 0x6b, 0xdd, 0x85, 0x6a, 0x54, 0xec, 0x7c, 0xa1, + 0xd5, 0x18, 0x00, 0x74, 0xd2, 0xf1, 0x7e, 0xad, 0x7c, 0xa8, 0x85, 0x9b, + 0xc0, 0x9f, 0x4f, 0x3b, 0xd9, 0x08, 0xc8, 0x9d, 0x31, 0x22, 0x7a, 0x53, + 0xa8, 0xbd, 0x00, 0xdf, 0xe8, 0x39, 0x52, 0xe9, 0x14, 0x74, 0x7b, 0x53, + 0xf9, 0xbd, 0x29, 0x8e, 0x5d, 0xf2, 0x35, 0x3b, 0xe3, 0x48, 0xbf, 0xa0, + 0xc4, 0x3d, 0x40, 0xb4, 0xf2, 0x7c, 0xd0, 0xe3, 0x17, 0x11, 0x5b, 0xd6, + 0x55, 0xd2, 0x54, 0xcf, 0x20, 0x8d, 0x74, 0x4a, 0x6b, 0xe9, 0x5d, 0xfe, + 0x72, 0x14, 0x6a, 0x11, 0x8b, 0x14, 0x19, 0xba, 0x63, 0xe4, 0x6b, 0x39, + 0xb4, 0x90, 0x67, 0x79, 0x56, 0x31, 0xd3, 0xb5, 0xeb, 0x9e, 0x95, 0x4b, + 0x1e, 0x04, 0x20, 0xd8, 0xbe, 0xe8, 0x1c, 0xd7, 0x95, 0xcb, 0x57, 0x60, + 0xe6, 0x11, 0x35, 0x42, 0x90, 0xfd, 0xb2, 0xe4, 0x9b, 0x24, 0x70, 0xc0, + 0xc3, 0xa9, 0x8a, 0xc9, 0x46, 0xd0, 0xea, 0xc9, 0x93, 0x7d, 0x9f, 0x64, + 0x12, 0x54, 0x09, 0xb7, 0xc2, 0x4d, 0x6e, 0xcc, 0x60, 0x07, 0x36, 0x31, + 0x64, 0x3d, 0x1e, 0xd3, 0x86, 0x47, 0x47, 0x42, 0x76, 0xb6, 0xf0, 0xe5, + 0xb4, 0xe7, 0xbe, 0x47, 0x91, 0x78, 0xbe, 0x06, 0xf1, 0x6e, 0x58, 0xce, + 0x32, 0x13, 0x26, 0x34, 0x92, 0xae, 0xb2, 0x29, 0xd0, 0x30, 0x55, 0xfd, + 0x89, 0x6a, 0xbf, 0x3e, 0xdf, 0x11, 0x39, 0xe4, 0xfd, 0x56, 0xd7, 0x2f, + 0x89, 0x96, 0x08, 0x54, 0xaa, 0xab, 0x8b, 0xfa, 0x65, 0xe5, 0x64, 0xff, + 0x24, 0x25, 0x8f, 0x7d, 0xf6, 0xb1, 0x7f, 0x2f, 0xa6, 0xf6, 0x46, 0xab, + 0x61, 0xfd, 0x47, 0xad, 0x6d, 0x38, 0x6d, 0xc1, 0xe9, 0x4a, 0xf1, 0x85, + 0x05, 0x0e, 0x69, 0x48, 0x7c, 0xa6, 0x76, 0x61, 0xe3, 0x94, 0xf2, 0xd6, + 0x7a, 0x9c, 0x79, 0xc0, 0x2a, 0x51, 0x23, 0xc6, 0xaf, 0x29, 0x04, 0x0f, + 0x47, 0xc2, 0x93, 0xd7, 0x64, 0xe5, 0x37, 0x2e, 0x53, 0x3b, 0xb7, 0x7c, + 0x9c, 0xb4, 0x63, 0x13, 0xc7, 0x56, 0x90, 0xe9, 0x53, 0xd5, 0x86, 0x2b, + 0x96, 0x41, 0x42, 0x56, 0xc5, 0x16, 0xd7, 0x9e, 0x30, 0xce, 0xa1, 0x0d, + 0x93, 0x5d, 0x11, 0x07, 0xb2, 0x95, 0xfd, 0xf6, 0x0b, 0x28, 0x95, 0x1a, + 0x8f, 0xfa, 0xe1, 0x57, 0x7e, 0x06, 0xff, 0x18, 0xaf, 0xe3, 0x4f, 0x3c, + 0x34, 0x5b, 0xd4, 0x46, 0x1a, 0xd1, 0xd1, 0x7e, 0x55, 0xba, 0x5d, 0x2a, + 0x1f, 0x42, 0x49, 0x95, 0x75, 0x5f, 0x80, 0x60, 0x02, 0x01, 0xdb, 0x36, + 0xad, 0x68, 0x69, 0x1e, 0x0b, 0x90, 0x3f, 0xa6, 0xb6, 0x2f, 0x66, 0xa6, + 0x7d, 0x81, 0x8c, 0xa0, 0xee, 0x05, 0x95, 0xbc, 0xb3, 0x7c, 0x18, 0xd4, + 0x1b, 0x40, 0x96, 0xf5, 0x05, 0x9d, 0x27, 0x3b, 0x78, 0xfc, 0x19, 0x18, + 0xc0, 0x61, 0xa0, 0xd6, 0xf9, 0xc0, 0x3f, 0xe5, 0x48, 0x35, 0x0f, 0x8b, + 0x0d, 0xfb, 0x31, 0xb7, 0x32, 0x40, 0x1d, 0x69, 0x12, 0x5a, 0x23, 0xf0, + 0xce, 0xe9, 0x5e, 0xa6, 0x68, 0x6b, 0xe1, 0xe2, 0x68, 0x07, 0x02, 0x0d, + 0x7a, 0xc2, 0x0a, 0x40, 0x10, 0x5e, 0x94, 0xba, 0x77, 0x1d, 0xf7, 0xac, + 0xec, 0x79, 0xa9, 0xa1, 0x8a, 0xb8, 0x49, 0x32, 0x08, 0xe0, 0x18, 0xa8, + 0x3d, 0x69, 0x41, 0x5d, 0x30, 0x3b, 0xb6, 0x91, 0x46, 0x8d, 0x81, 0x10, + 0xb0, 0xc2, 0xed, 0xa0, 0x4e, 0x59, 0x48, 0xd8, 0x64, 0x7d, 0x2d, 0x46, + 0xf2, 0x8a, 0x2e, 0x5d, 0x0c, 0x4d, 0x9f, 0xfe, 0x7b, 0x5e, 0xbf, 0x1a, + 0x78, 0xdf, 0xfc, 0x0f, 0x04, 0x37, 0x72, 0x1a, 0x09, 0xb8, 0x6e, 0x1b, + 0xf1, 0x18, 0x7d, 0x83, 0x44, 0xaa, 0x9b, 0x71, 0xe1, 0x03, 0x04, 0x83, + 0xe5, 0xaa, 0xc0, 0xd4, 0xa7, 0x80, 0x10, 0x35, 0x09, 0xae, 0xf7, 0xe1, + 0x5e, 0x7c, 0x31, 0x20, 0x43, 0x82, 0xda, 0x07, 0x39, 0xfe, 0x8f, 0x9d, + 0x70, 0x3c, 0x57, 0x43, 0x01, 0x51, 0x37, 0x2e, 0x97, 0xef, 0xcf, 0x05, + 0x44, 0x75, 0x69, 0xf7, 0xdb, 0xda, 0x80, 0x78, 0x0c, 0xcc, 0xc1, 0x49, + 0xac, 0x3b, 0x7e, 0x27, 0x6a, 0xbb, 0xdf, 0x45, 0x5b, 0x3b, 0x29, 0xf6, + 0x1b, 0xa9, 0x25, 0xf9, 0x2f, 0xcf, 0x37, 0x71, 0x33, 0xb4, 0x90, 0xd7, + 0x9b, 0x87, 0x41, 0x15, 0xd1, 0xa6, 0x39, 0xa7, 0xa9, 0xcd, 0x66, 0x29, + 0x59, 0xb4, 0x53, 0x12, 0xa1, 0x20, 0xd5, 0x04, 0xca, 0x40, 0x31, 0xfa, + 0x6f, 0xbb, 0x92, 0x04, 0xf3, 0xc2, 0x10, 0x0d, 0xc1, 0x19, 0x78, 0x8c, + 0x82, 0xed, 0x92, 0x3a, 0x6b, 0xd1, 0x3d, 0xe8, 0xac, 0x55, 0xe4, 0x8c, + 0xc6, 0xd4, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, + 0xc2, 0x1d, 0x86, 0xe4, 0xf6, 0xa1, 0xbe, 0xf5, 0xf3, 0x36, 0x9d, 0x32, + 0x80, 0x17, 0x3b, 0x1f, 0x18, 0x21, 0xed, 0xa7, 0xf5, 0xaf, 0xf1, 0x94, + 0xe2, 0xa7, 0x08, 0xd5, 0xca, 0x18, 0x45, 0xf5, 0x68, 0x94, 0x82, 0x61, + 0xf7, 0xb7, 0xb2, 0xfa, 0xd4, 0x5e, 0x32, 0xd0, 0xf0, 0x20, 0x66, 0x83, + 0xd1, 0x6b, 0x3c, 0xdf, 0x73, 0xeb, 0x73, 0x82, 0x09, 0x9b, 0xd0, 0xc5, + 0xb0, 0x9f, 0x01, 0x77, 0x85, 0xcc, 0x6e, 0x23, 0xb7, 0x00, 0x45, 0xe0, + 0xa6, 0x01, 0x29, 0x1d, 0x8b, 0xc4, 0xe0, 0xc2, 0xe0, 0x4f, 0x3b, 0x07, + 0xd5, 0xac, 0x6b, 0x88, 0xb8, 0xa4, 0xe2, 0x5c, 0x19, 0xe9, 0x98, 0x72, + 0xa5, 0x6b, 0xf5, 0xa4, 0xf7, 0x15, 0xaf, 0xfb, 0xb4, 0x80, 0x9a, 0xe3, + 0xa5, 0x35, 0x2f, 0x45, 0x81, 0xf1, 0x8b, 0x2d, 0x26, 0x5c, 0x65, 0xa9, + 0x5b, 0x6e, 0x83, 0xc3, 0x62, 0x2f, 0x84, 0xef, 0x11, 0xa5, 0x58, 0x48, + 0xe9, 0x67, 0x7e, 0xd3, 0x0b, 0x5d, 0x51, 0x80, 0x39, 0x08, 0x8e, 0xc1, + 0x0d, 0x04, 0x11, 0x5f, 0x72, 0x64, 0x1f, 0x83, 0xf8, 0xd3, 0x09, 0x38, + 0xb6, 0x7f, 0x50, 0x78, 0x27, 0x20, 0xe5, 0xbd, 0x16, 0xbf, 0x51, 0xd8, + 0x4f, 0x67, 0x60, 0xf6, 0x9e, 0xff, 0x08, 0xfe, 0xc6, 0x96, 0xd6, 0x64, + 0x94, 0x28, 0xc6, 0x9a, 0x09, 0x1a, 0x34, 0x08, 0x31, 0x4b, 0x0b, 0x97, + 0x5a, 0x18, 0x72, 0x49, 0xe9, 0x1d, 0xbb, 0x9c, 0xed, 0x7e, 0xb5, 0xc5, + 0xa7, 0xf4, 0x25, 0x7a, 0x26, 0xe9, 0x15, 0x61, 0x85, 0x32, 0xc9, 0xb3, + 0xcf, 0x95, 0xbf, 0x35, 0x10, 0x2d, 0x71, 0xfe, 0x03, 0xd6, 0x69, 0x75, + 0x8d, 0xb7, 0x16, 0xa7, 0x3d, 0x0e, 0xb7, 0x55, 0x6d, 0xa7, 0x9f, 0x10, + 0x7e, 0x7e, 0xff, 0x39, 0xee, 0x8e, 0xa7, 0x81, 0x7d, 0x11, 0xea, 0xa9, + 0xd6, 0xed, 0x54, 0xf8, 0xd2, 0xd5, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, + 0x00, 0x04, 0x00, 0x00, 0xf9, 0xde, 0x41, 0xe7, 0xa6, 0x88, 0x53, 0x76, + 0x5a, 0x26, 0xc3, 0x5c, 0xf2, 0x58, 0x68, 0x9c, 0xc7, 0x4e, 0x53, 0x18, + 0x53, 0x67, 0x39, 0x23, 0x96, 0xb0, 0xef, 0x58, 0x29, 0xe1, 0x68, 0xd8, + 0xce, 0xc0, 0x41, 0xc2, 0x35, 0x5f, 0x74, 0xfa, 0xdf, 0xc7, 0x0f, 0x80, + 0x50, 0xd1, 0xf6, 0x5a, 0x3a, 0x81, 0xe0, 0xd9, 0x9b, 0x47, 0x96, 0xcd, + 0xc5, 0x0f, 0x91, 0x12, 0x81, 0x77, 0x1e, 0xef, 0x2e, 0xba, 0x16, 0x51, + 0x70, 0x78, 0xdc, 0xa3, 0x84, 0x12, 0x7c, 0x9e, 0x21, 0x7d, 0xa3, 0x5f, + 0xce, 0xa1, 0x25, 0x84, 0x99, 0xa4, 0x2d, 0xa6, 0x0f, 0x95, 0xef, 0xef, + 0x31, 0xe6, 0xf2, 0x18, 0x08, 0x47, 0xd2, 0x5a, 0x39, 0x01, 0x7a, 0xca, + 0xd3, 0x03, 0xb1, 0xc2, 0x48, 0xf4, 0x1f, 0x6d, 0xc2, 0x8c, 0x5c, 0xda, + 0xf5, 0x10, 0xed, 0xfc, 0x2e, 0x0c, 0xb3, 0x52, 0xaa, 0xa9, 0xed, 0xbc, + 0x41, 0xcc, 0xd4, 0x4b, 0x1c, 0xd0, 0xa3, 0x1d, 0xf4, 0xe7, 0x48, 0x34, + 0x4e, 0xcf, 0x3b, 0xb3, 0x71, 0x06, 0xbe, 0x0c, 0x35, 0xbb, 0xb4, 0x17, + 0xd8, 0x8b, 0xba, 0xdd, 0x32, 0x30, 0x51, 0xb1, 0xb1, 0xd6, 0x3a, 0xdc, + 0x3b, 0x25, 0x9a, 0x57, 0xc7, 0x4d, 0xd3, 0x75, 0x93, 0x59, 0x3e, 0x9b, + 0x10, 0xcf, 0xdb, 0x38, 0x75, 0x51, 0xb2, 0x2a, 0x48, 0x78, 0xfc, 0xaa, + 0xe3, 0x91, 0xe7, 0x93, 0xe7, 0x0a, 0x07, 0x2c, 0xf8, 0x88, 0x93, 0xde, + 0x2f, 0xba, 0x7b, 0x72, 0xcd, 0x92, 0xdd, 0xb1, 0xac, 0x1e, 0xe4, 0xe3, + 0x5d, 0xa4, 0x7f, 0x86, 0xa7, 0xcb, 0xb5, 0x81, 0x86, 0xf1, 0xf5, 0xad, + 0xd6, 0x36, 0x08, 0x09, 0x9f, 0x75, 0x6f, 0x4a, 0x5b, 0x30, 0xf8, 0xaf, + 0xd2, 0xbc, 0xb5, 0xbe, 0xf2, 0xeb, 0x9b, 0xbc, 0x11, 0xd4, 0x0c, 0x14, + 0xa6, 0x6f, 0x43, 0xd3, 0xc9, 0x4e, 0xca, 0x9b, 0x4e, 0x46, 0x60, 0x4c, + 0x63, 0xcc, 0x07, 0x36, 0x8c, 0xf2, 0xd1, 0x93, 0x7a, 0x51, 0x49, 0x15, + 0xbf, 0xbf, 0x9e, 0x82, 0x21, 0x06, 0xa0, 0x39, 0x11, 0x1d, 0x6c, 0x41, + 0x72, 0xcd, 0x2a, 0x8a, 0x4a, 0xd0, 0x13, 0x6c, 0x56, 0xf4, 0x00, 0x48, + 0xaf, 0xab, 0xdf, 0xa9, 0xe9, 0xa6, 0xaa, 0x06, 0x61, 0x79, 0xc4, 0x57, + 0x42, 0xca, 0x12, 0x18, 0xcf, 0x81, 0xec, 0x79, 0x19, 0xd2, 0xd2, 0xe3, + 0x1d, 0xc6, 0x6c, 0xd0, 0xd6, 0x0a, 0xfb, 0x70, 0x42, 0x28, 0x25, 0x23, + 0xb6, 0x23, 0x15, 0x28, 0x5e, 0x9f, 0x49, 0xf2, 0x7b, 0x69, 0x74, 0xa5, + 0xb9, 0x26, 0x81, 0xfe, 0x39, 0x3e, 0x3f, 0xc8, 0x7e, 0x9e, 0x5e, 0x8e, + 0xf2, 0xdb, 0x6b, 0xfd, 0xe1, 0xc3, 0x01, 0x4a, 0xba, 0x8f, 0x33, 0x71, + 0x09, 0x80, 0x5d, 0x9c, 0x58, 0x64, 0xb7, 0x90, 0x13, 0x2a, 0xe9, 0x1d, + 0x07, 0x2c, 0x06, 0x70, 0x43, 0x0d, 0xb6, 0x57, 0x02, 0x3c, 0xbe, 0x3c, + 0x42, 0xab, 0x77, 0x15, 0x0e, 0x98, 0xfb, 0xf2, 0x1d, 0x14, 0xd9, 0xb8, + 0xd1, 0x59, 0x2a, 0x67, 0x6f, 0xfc, 0x59, 0x39, 0x33, 0xe0, 0x49, 0x0b, + 0x4e, 0x65, 0x81, 0x9f, 0x71, 0xf2, 0xa5, 0x90, 0x4f, 0x24, 0xc7, 0x05, + 0xfb, 0x77, 0x1e, 0x14, 0xca, 0x2f, 0xfc, 0xac, 0xec, 0xbf, 0xa2, 0x69, + 0x15, 0x0a, 0x6b, 0xa9, 0xa0, 0x74, 0xee, 0xad, 0xa9, 0x50, 0x4d, 0x4d, + 0xab, 0x6e, 0xc1, 0xb3, 0xda, 0xbb, 0xbd, 0xab, 0x00, 0x05, 0x14, 0xc1, + 0xc4, 0x53, 0x7b, 0x78, 0x97, 0x68, 0x3c, 0x05, 0xf2, 0xed, 0x87, 0xca, + 0x86, 0xd1, 0xdf, 0xda, 0xb3, 0x2f, 0x17, 0x87, 0x87, 0x2f, 0xd8, 0xe9, + 0xb2, 0x96, 0xdc, 0x7f, 0x22, 0xf1, 0x2a, 0x9f, 0xfe, 0x54, 0x55, 0xa1, + 0x96, 0xab, 0x9f, 0x61, 0x74, 0xcd, 0x4d, 0x77, 0x38, 0x02, 0x23, 0x29, + 0x28, 0x5b, 0xfc, 0x86, 0x17, 0x40, 0xd4, 0x42, 0x2a, 0x9b, 0x84, 0xf7, + 0x67, 0x2b, 0x3a, 0xc1, 0x31, 0x89, 0x4b, 0x67, 0xd1, 0x7d, 0x6b, 0x36, + 0xec, 0x69, 0x6b, 0x24, 0xca, 0xd6, 0x2d, 0xbb, 0x21, 0xc8, 0x0c, 0x53, + 0x41, 0x29, 0x0b, 0xc1, 0xfe, 0xd5, 0xa3, 0x4c, 0x66, 0x2f, 0xc7, 0xf1, + 0xa8, 0xc0, 0x3d, 0x9a, 0xb9, 0x09, 0x50, 0x3f, 0x09, 0x87, 0xa4, 0x3f, + 0x7a, 0x33, 0xef, 0xf0, 0xfb, 0x77, 0x02, 0x7d, 0x92, 0xaf, 0x73, 0xaa, + 0xcc, 0x3f, 0x66, 0x56, 0xd0, 0x21, 0xd1, 0xe8, 0x0e, 0x47, 0x03, 0x5e, + 0x3b, 0xe9, 0xa2, 0xe3, 0x83, 0x0b, 0x73, 0xd3, 0xaa, 0x94, 0x80, 0xef, + 0x7c, 0xdf, 0xde, 0x86, 0xc3, 0xa9, 0x62, 0x34, 0x76, 0xee, 0x4d, 0x15, + 0x73, 0x7b, 0xd7, 0x6d, 0xd4, 0x21, 0x05, 0xd4, 0xcf, 0xf3, 0x54, 0xdc, + 0x49, 0x5f, 0x5a, 0x2a, 0x37, 0x19, 0x89, 0x61, 0x1d, 0x95, 0x17, 0x8b, + 0x09, 0x95, 0x5d, 0x9f, 0xde, 0x86, 0x03, 0x93, 0x76, 0xec, 0x54, 0xec, + 0x13, 0xc3, 0xf9, 0x38, 0x8f, 0xa9, 0x11, 0xf0, 0x9a, 0x0e, 0x5e, 0x38, + 0x69, 0xeb, 0x62, 0x41, 0x9e, 0xd0, 0x1b, 0x59, 0x8c, 0xfd, 0x16, 0xfa, + 0xd8, 0x99, 0x0d, 0x83, 0x7e, 0xba, 0x5b, 0xc6, 0x59, 0xe1, 0xae, 0xba, + 0xb9, 0xb8, 0xba, 0xa5, 0x4d, 0x20, 0x00, 0xc9, 0x0c, 0xe1, 0x77, 0xdf, + 0xc4, 0x95, 0xca, 0x7c, 0xa5, 0xef, 0x0a, 0xed, 0x9b, 0x31, 0x06, 0xe1, + 0xc9, 0xa3, 0x88, 0x0a, 0xcc, 0x3d, 0xc8, 0xb6, 0x01, 0xe2, 0xa9, 0x29, + 0x03, 0x8a, 0x28, 0xf8, 0x0d, 0x70, 0x77, 0xb9, 0xe1, 0x1b, 0x06, 0x19, + 0x86, 0xc1, 0xd3, 0xcf, 0x6b, 0x9c, 0x09, 0x70, 0x50, 0xed, 0xb5, 0xf6, + 0x69, 0xcc, 0xac, 0x30, 0x6a, 0x1f, 0x1d, 0xe6, 0x75, 0x33, 0xab, 0x55, + 0x48, 0xfa, 0x81, 0xb8, 0x06, 0x3a, 0x78, 0xee, 0xde, 0xef, 0xe2, 0x17, + 0xc4, 0x3e, 0xe5, 0x22, 0xa7, 0xd1, 0x45, 0x5b, 0x57, 0xb0, 0xde, 0x69, + 0x30, 0xd1, 0x9a, 0xd7, 0x6b, 0x0e, 0x7a, 0x30, 0x0d, 0xb5, 0xec, 0x60, + 0xa7, 0x05, 0x87, 0x42, 0x4b, 0x92, 0x1f, 0x68, 0x8e, 0x1a, 0x90, 0x84, + 0x27, 0x2a, 0xc0, 0xd2, 0xff, 0xbc, 0x8e, 0x34, 0x53, 0x9d, 0x04, 0x50, + 0xcb, 0x79, 0xd9, 0x55, 0xd5, 0x4d, 0x3c, 0xe2, 0xb4, 0x9b, 0x57, 0x07, + 0x1f, 0xce, 0xd0, 0xa7, 0x84, 0xe1, 0xb7, 0x3a, 0xaf, 0xc5, 0x67, 0x64, + 0xbc, 0x02, 0xbe, 0xb0, 0x65, 0x7e, 0xb0, 0x4c, 0xc2, 0x2d, 0xcd, 0xf8, + 0x60, 0xcb, 0xfe, 0xd1, 0x8d, 0x14, 0x5a, 0xd3, 0x38, 0xd4, 0x71, 0x5a, + 0xca, 0xbb, 0xfe, 0x0e, 0x54, 0xf9, 0xb4, 0x25, 0xa5, 0x71, 0x13, 0x95, + 0x14, 0xdc, 0x86, 0xb8, 0x21, 0xa7, 0x2e, 0x13, 0xc6, 0x2f, 0xce, 0xe7, + 0x6c, 0xb8, 0x0d, 0xc9, 0xe4, 0xc4, 0x64, 0x12, 0x78, 0x1c, 0x95, 0x92, + 0xc2, 0xec, 0xaa, 0xd3, 0xc3, 0x3a, 0xd2, 0xe8, 0x95, 0xf0, 0x6b, 0x03, + 0x8c, 0xcf, 0x6b, 0xdb, 0x21, 0xa0, 0xcf, 0xf4, 0x05, 0xc8, 0xe7, 0x77, + 0x05, 0x55, 0x7b, 0x6b, 0xfa, 0x96, 0xf1, 0x7c, 0x30, 0x62, 0x75, 0xbe, + 0x6e, 0xea, 0xba, 0x9f, 0x40, 0x2e, 0x9a, 0x86, 0x93, 0xcc, 0x38, 0xf7, + 0xee, 0xd8, 0xbb, 0x24, 0xcd, 0x85, 0x3e, 0x85, 0x16, 0x8c, 0x33, 0x23, + 0x73, 0xe6, 0x43, 0xc4, 0x67, 0xbf, 0xef, 0x85, 0xb1, 0x44, 0xf9, 0x55, + 0x93, 0x4d, 0x0b, 0x8e, 0xc1, 0x42, 0x13, 0xc6, 0xc8, 0x09, 0x63, 0xab, + 0xb3, 0xc7, 0xc4, 0xa4, 0x8b, 0x72, 0xfb, 0xa5, 0x99, 0xa1, 0x5d, 0x07, + 0x02, 0x82, 0x56, 0x11, 0x3c, 0xc2, 0x5a, 0x55, 0xf9, 0x3a, 0x93, 0x61, + 0x89, 0x46, 0xb7, 0x6a, 0x42, 0x76, 0x1e, 0x70, 0xde, 0xd9, 0xff, 0xff, + 0x04, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x32, 0xc1, 0x61, 0xaa, + 0xdb, 0xe9, 0xae, 0x88, 0xcb, 0xf7, 0x28, 0xdd, 0x82, 0x62, 0x61, 0x41, + 0x4e, 0xbb, 0xf9, 0xb7, 0xe8, 0x81, 0x99, 0x18, 0xe2, 0xa7, 0xb4, 0x7c, + 0xb7, 0x08, 0x44, 0x6f, 0x24, 0xb3, 0xda, 0x57, 0x62, 0x29, 0xc7, 0xa6, + 0x84, 0xb1, 0x5d, 0xc5, 0x00, 0x4c, 0x30, 0x16, 0xf0, 0x0a, 0x74, 0x73, + 0xec, 0xaf, 0xb5, 0xde, 0xb0, 0xa7, 0x75, 0x22, 0x8f, 0x9e, 0x43, 0x01, + 0x68, 0xae, 0x91, 0xeb, 0x46, 0x52, 0x3f, 0x2c, 0x4e, 0xc5, 0xd0, 0xc8, + 0x15, 0xea, 0x99, 0xc2, 0x37, 0x5b, 0x68, 0xb5, 0xce, 0x41, 0x92, 0xbf, + 0xd6, 0xdb, 0x85, 0xad, 0x08, 0xd1, 0x11, 0x93, 0xe8, 0xd4, 0x78, 0x43, + 0x3b, 0x7d, 0xcb, 0x42, 0x84, 0xf3, 0x61, 0x88, 0x9e, 0x6a, 0x73, 0xb9, + 0x78, 0x17, 0x9a, 0x9f, 0xfb, 0x97, 0xcb, 0xd6, 0xb5, 0x3f, 0x00, 0x41, + 0xb0, 0x30, 0x2f, 0x6f, 0x89, 0xdd, 0xfa, 0x13, 0xd1, 0x07, 0xbe, 0x2f, + 0xea, 0x91, 0x62, 0xaa, 0xed, 0xcb, 0xfd, 0x07, 0x82, 0xbb, 0x3f, 0xf4, + 0xa6, 0x94, 0x66, 0x71, 0x20, 0x61, 0xac, 0x84, 0x04, 0x70, 0xf2, 0xd3, + 0xdf, 0xac, 0x44, 0xfd, 0x47, 0x26, 0x81, 0x64, 0xb3, 0xa6, 0x90, 0x2b, + 0xd2, 0x2c, 0xd0, 0x77, 0x81, 0x53, 0x45, 0x78, 0x5f, 0x30, 0x77, 0x91, + 0x83, 0x13, 0x33, 0xd1, 0x91, 0xa6, 0x35, 0x21, 0xcb, 0x26, 0x54, 0x0a, + 0xf7, 0x70, 0x5e, 0xdb, 0xd8, 0x92, 0xc7, 0xdf, 0xf9, 0x2a, 0x46, 0x91, + 0x22, 0x3b, 0xe6, 0xe1, 0x91, 0xeb, 0xa6, 0x78, 0x81, 0x57, 0xf3, 0x04, + 0xdf, 0x34, 0x55, 0x74, 0x0a, 0xfe, 0xf2, 0xbd, 0xb3, 0xeb, 0xa3, 0x8e, + 0x71, 0x15, 0xa9, 0x2f, 0x53, 0xe2, 0xa1, 0x45, 0xdf, 0xe8, 0x29, 0x40, + 0xf1, 0x4b, 0x23, 0xdb, 0x8e, 0xee, 0x19, 0xa8, 0xd4, 0x15, 0x90, 0x8c, + 0x04, 0x46, 0x81, 0x49, 0x92, 0xe5, 0xe1, 0xfe, 0x99, 0x06, 0xfc, 0x3e, + 0x43, 0x58, 0x3b, 0x19, 0x7f, 0xd2, 0x13, 0x65, 0xc2, 0x64, 0x27, 0x6d, + 0x93, 0x6a, 0xcf, 0x48, 0x2a, 0x3d, 0xdd, 0x79, 0x9f, 0x05, 0x32, 0xeb, + 0xfd, 0xb4, 0xd2, 0x1d, 0x16, 0x61, 0x3d, 0x17, 0x4c, 0xb8, 0xad, 0x63, + 0x0e, 0x6b, 0x8a, 0x4a, 0x34, 0x4c, 0xb5, 0x3c, 0x0f, 0x05, 0x28, 0x8c, + 0x8b, 0xdf, 0xf4, 0xa0, 0x49, 0xbf, 0x34, 0x6c, 0x6a, 0x5f, 0x40, 0x95, + 0x48, 0x4b, 0x93, 0x1e, 0x61, 0x6d, 0x58, 0xc3, 0x86, 0x98, 0x70, 0x11, + 0x4e, 0x44, 0x65, 0xc1, 0x0d, 0xea, 0x2f, 0xda, 0x38, 0x16, 0xbd, 0xd4, + 0x7b, 0x3e, 0x31, 0xee, 0x42, 0x4c, 0xdc, 0xe9, 0x8b, 0x1f, 0xa9, 0xcf, + 0xab, 0x60, 0xb5, 0xb1, 0xd2, 0xf2, 0x6a, 0xe9, 0xbc, 0xcc, 0xcb, 0x60, + 0x4a, 0xca, 0x70, 0x79, 0x64, 0x9d, 0x07, 0x1e, 0xdb, 0xef, 0x34, 0xaf, + 0x17, 0x93, 0x6b, 0x60, 0x73, 0x2d, 0x8c, 0x08, 0x27, 0x1e, 0x46, 0x9f, + 0xcb, 0x33, 0xdd, 0x76, 0xef, 0x17, 0x58, 0x9a, 0x5f, 0x82, 0x78, 0x0f, + 0xbf, 0xe7, 0x0f, 0x3a, 0x1e, 0xa8, 0x30, 0xbf, 0xff, 0xc7, 0xc7, 0x82, + 0x8b, 0xc3, 0x65, 0x04, 0xfd, 0x45, 0xc9, 0x88, 0x99, 0x8e, 0x44, 0xc5, + 0x23, 0x1e, 0xbf, 0xf1, 0x95, 0x70, 0x35, 0xe6, 0x56, 0x4a, 0x53, 0xb2, + 0xac, 0x0c, 0xfd, 0xf5, 0x61, 0x26, 0x5b, 0x70, 0xd6, 0x4c, 0xfc, 0x0f, + 0xcc, 0x53, 0x6e, 0x25, 0xca, 0x1d, 0x0c, 0x56, 0xf7, 0x9c, 0x95, 0xf6, + 0x3c, 0x08, 0x0c, 0x64, 0xb1, 0x1c, 0x5c, 0xe6, 0x25, 0xa4, 0xa3, 0xb7, + 0xaf, 0x8b, 0xbc, 0xe1, 0x68, 0xdf, 0x10, 0xab, 0xbb, 0xd5, 0x30, 0x64, + 0x42, 0xf6, 0xe6, 0x9a, 0xb5, 0x59, 0x12, 0x76, 0x92, 0xac, 0x29, 0xe9, + 0x45, 0xdb, 0x2e, 0x62, 0x22, 0x58, 0x24, 0x89, 0xc8, 0x6a, 0x2a, 0xa7, + 0x3f, 0x04, 0x53, 0x4e, 0x07, 0x41, 0x4e, 0x5f, 0x95, 0x5f, 0x6e, 0x14, + 0x5b, 0xa7, 0xa7, 0xd3, 0x5a, 0xa2, 0x95, 0x4a, 0xc8, 0xe9, 0x3c, 0x5a, + 0x84, 0x50, 0xbc, 0xe1, 0x9c, 0x7a, 0x16, 0xe5, 0xc7, 0x04, 0x9d, 0x60, + 0x2e, 0x7d, 0xb3, 0x77, 0x5d, 0x86, 0x2e, 0xac, 0x57, 0x2a, 0x31, 0x26, + 0x23, 0x6e, 0xcc, 0x7f, 0xb8, 0x36, 0x29, 0xa9, 0xa8, 0xd9, 0xc6, 0x75, + 0xee, 0x16, 0x23, 0x27, 0x0f, 0xe1, 0xb0, 0x3d, 0x91, 0x3a, 0x26, 0x4a, + 0x60, 0x72, 0x14, 0xf9, 0x3c, 0x66, 0x66, 0xe8, 0x7d, 0x4a, 0x6f, 0x7e, + 0x63, 0x58, 0x6a, 0x28, 0x78, 0x50, 0xef, 0x3b, 0x9d, 0xeb, 0xb6, 0x4b, + 0x5d, 0x55, 0x80, 0x84, 0x97, 0x9b, 0x74, 0x4b, 0x5c, 0x09, 0x1d, 0xe7, + 0x57, 0xfc, 0x40, 0x3f, 0xa9, 0xbd, 0xdf, 0x61, 0x2a, 0x89, 0x62, 0x51, + 0xfc, 0x24, 0xee, 0xee, 0x97, 0x10, 0xca, 0xb6, 0x0e, 0x8e, 0x71, 0x67, + 0x2a, 0x79, 0x4f, 0xc4, 0xe6, 0x3e, 0x27, 0xc2, 0x9b, 0x85, 0xfd, 0xde, + 0xfb, 0x58, 0x75, 0xf3, 0x1c, 0x31, 0xa2, 0x56, 0x3e, 0xdc, 0x24, 0xf4, + 0x4f, 0xcb, 0x5a, 0x1a, 0x77, 0x5c, 0x28, 0xd1, 0x5a, 0x55, 0xa9, 0x8c, + 0xb5, 0xdd, 0x77, 0x93, 0x58, 0xd8, 0x2f, 0x7d, 0x5a, 0x67, 0xa1, 0x95, + 0x0a, 0xd2, 0x6a, 0x93, 0xa6, 0xf0, 0x5f, 0x7f, 0x0a, 0x29, 0xdb, 0x1d, + 0x8c, 0xa7, 0x12, 0x0a, 0xf4, 0xc9, 0xcd, 0x70, 0xd1, 0xbd, 0x48, 0xd4, + 0x9a, 0xbb, 0xbb, 0x24, 0xbf, 0x52, 0x25, 0xb9, 0x75, 0xc2, 0x17, 0x36, + 0x6f, 0x4a, 0xc0, 0x53, 0x6d, 0x38, 0xfb, 0x7a, 0x60, 0xc8, 0x5d, 0x03, + 0xc1, 0x1c, 0x0c, 0x31, 0xf0, 0x59, 0xed, 0x0a, 0x5f, 0x84, 0xf2, 0x89, + 0x6c, 0xb4, 0xd5, 0x24, 0x2d, 0x2a, 0xda, 0xbe, 0x74, 0x1d, 0x22, 0xe2, + 0xc6, 0xf0, 0x9b, 0x98, 0x5a, 0x41, 0x11, 0x4c, 0x51, 0x97, 0x16, 0xa7, + 0xc9, 0xd8, 0x53, 0x12, 0x53, 0xdd, 0x22, 0xa9, 0xf2, 0xae, 0x52, 0x49, + 0x02, 0xf9, 0x5c, 0x78, 0x00, 0xa2, 0x64, 0xff, 0x91, 0x62, 0x20, 0x6a, + 0x87, 0x6a, 0x40, 0x01, 0x85, 0x30, 0xf5, 0xdd, 0xa7, 0x64, 0x0a, 0x85, + 0x8d, 0x37, 0x99, 0xcb, 0x03, 0xc8, 0x29, 0x56, 0x7e, 0x75, 0x4f, 0xa1, + 0xc3, 0x76, 0xce, 0xdb, 0xa3, 0xb4, 0x7e, 0x91, 0x95, 0xbe, 0x53, 0x0e, + 0x20, 0xc9, 0xe7, 0x71, 0x78, 0xad, 0x3d, 0x4c, 0xbb, 0x59, 0xb9, 0x77, + 0xcf, 0x7d, 0x7b, 0xff, 0x15, 0xdb, 0x1d, 0xae, 0x1f, 0xbe, 0x33, 0x88, + 0x01, 0x04, 0x95, 0xe5, 0xe9, 0x6a, 0x1c, 0xbf, 0xc8, 0xc3, 0x33, 0x3b, + 0xd8, 0x2f, 0x75, 0x4a, 0xc3, 0x6f, 0x09, 0x88, 0x26, 0x46, 0x90, 0x89, + 0x53, 0x12, 0x27, 0xc2, 0x7d, 0x23, 0x6b, 0xc4, 0xe3, 0x0a, 0x0f, 0xc2, + 0x86, 0x6d, 0x20, 0x35, 0x82, 0x33, 0xec, 0xdd, 0xa7, 0x6a, 0xc3, 0xa8, + 0x11, 0xdc, 0x02, 0xd9, 0x05, 0x1b, 0x04, 0x75, 0x92, 0x6c, 0x08, 0x9e, + 0x38, 0x72, 0xd9, 0x7d, 0x9b, 0xbc, 0xfd, 0xca, 0xb8, 0x06, 0x0e, 0x24, + 0x89, 0x90, 0xde, 0x52, 0xe4, 0xd1, 0xcc, 0x99, 0x87, 0x0b, 0x87, 0xbb, + 0x5c, 0xa9, 0xab, 0xec, 0xb5, 0xe4, 0xdd, 0x5d, 0xfa, 0xb1, 0x97, 0x5f, + 0x61, 0xf7, 0x58, 0xd6, 0x08, 0x02, 0xf2, 0x51, 0x7c, 0x7a, 0xe6, 0xf1, + 0xcb, 0x43, 0xd0, 0x21, 0x09, 0xb8, 0x82, 0xa9, 0x52, 0xd9, 0xa8, 0x7f, + 0x2b, 0xe1, 0x0f, 0x31, 0xbc, 0x16, 0xa2, 0xce, 0x35, 0x55, 0x2e, 0xd6, + 0xda, 0x38, 0xd9, 0xc2, 0x5e, 0xca, 0x27, 0xd9, 0xa6, 0xd6, 0x4b, 0xa2, + 0x73, 0xc4, 0xce, 0x66, 0x30, 0x60, 0xa2, 0x01, 0xfa, 0xc1, 0xd6, 0xc8, + 0xea, 0xdd, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, + 0x70, 0xe2, 0x62, 0x68, 0xff, 0x60, 0x67, 0x64, 0x88, 0xdd, 0x81, 0x79, + 0x82, 0xf5, 0x46, 0xf9, 0x7e, 0x0e, 0xa9, 0x26, 0xf6, 0xcf, 0x5d, 0xef, + 0x10, 0x11, 0xe1, 0x71, 0x72, 0x77, 0xcf, 0x02, 0x7b, 0xf1, 0x6e, 0xc4, + 0xb4, 0xfa, 0x2a, 0x12, 0xfe, 0x7e, 0x3c, 0x66, 0xef, 0x41, 0x98, 0x3a, + 0x1f, 0xa9, 0x14, 0x8f, 0x46, 0x22, 0xa0, 0xc2, 0xee, 0x93, 0x25, 0x34, + 0xf2, 0xb7, 0x6d, 0x0a, 0x36, 0xde, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, + 0x00, 0x04, 0x00, 0x00, 0xd4, 0x17, 0x62, 0x25, 0xfd, 0x5b, 0x75, 0xeb, + 0xec, 0x06, 0xc9, 0x39, 0x86, 0x6d, 0xc5, 0x60, 0x2d, 0x33, 0x3d, 0xce, + 0x6a, 0x9f, 0x07, 0x3b, 0xb9, 0x70, 0x0f, 0xc7, 0x13, 0x46, 0x35, 0x46, + 0x26, 0xe4, 0xbc, 0x6e, 0x54, 0x89, 0x29, 0xd5, 0xa4, 0x94, 0xa0, 0x3a, + 0x7a, 0x61, 0xcf, 0xd1, 0x48, 0x27, 0x7a, 0x72, 0x95, 0xde, 0x93, 0xd1, + 0x19, 0x1f, 0xc9, 0xc8, 0x8f, 0x0d, 0xce, 0x34, 0x03, 0x39, 0x0a, 0x92, + 0x16, 0x09, 0xc4, 0x49, 0xf9, 0x30, 0x2e, 0x19, 0xd1, 0x69, 0x7e, 0x78, + 0x00, 0x25, 0x30, 0x6f, 0x6b, 0xe1, 0xbe, 0xad, 0xb2, 0x05, 0xde, 0xc7, + 0xc2, 0xf7, 0xd5, 0xa7, 0x4d, 0x03, 0x6f, 0x6b, 0xcd, 0xcb, 0x42, 0xfa, + 0x88, 0x16, 0xd5, 0xa6, 0x60, 0x08, 0xd4, 0xa5, 0x5b, 0x3b, 0x7b, 0xa2, + 0xca, 0xa3, 0xa2, 0x5d, 0x63, 0x7f, 0xc0, 0x37, 0xc5, 0x7e, 0x99, 0x04, + 0x5d, 0x9a, 0xb9, 0xa5, 0xac, 0xd1, 0xe2, 0x5d, 0xb2, 0x2b, 0x7e, 0xbb, + 0xb9, 0x66, 0x13, 0xa7, 0x30, 0xbf, 0x80, 0x0c, 0x2b, 0x8d, 0x45, 0xe1, + 0x8d, 0x96, 0x25, 0x27, 0x47, 0x3d, 0x21, 0x7d, 0x1c, 0x42, 0xac, 0x31, + 0x26, 0x47, 0x59, 0xb3, 0x44, 0x85, 0xf2, 0x8e, 0x7d, 0x01, 0x96, 0x6d, + 0xb2, 0x64, 0xc3, 0xfc, 0xa7, 0x82, 0x06, 0x4a, 0x87, 0x75, 0x9b, 0x99, + 0x47, 0x7e, 0xa6, 0x4d, 0x2c, 0x36, 0xff, 0xac, 0x2b, 0x77, 0x96, 0x52, + 0x14, 0x8d, 0x07, 0x0d, 0x28, 0x9d, 0x84, 0xa2, 0xda, 0xd6, 0x45, 0x3a, + 0xd4, 0xe6, 0xb7, 0x9a, 0xf3, 0x34, 0xe3, 0xda, 0x39, 0xdf, 0x35, 0x9c, + 0xe4, 0x87, 0x55, 0xc8, 0x43, 0xd0, 0x61, 0x46, 0x52, 0x2f, 0x75, 0x63, + 0xbb, 0x98, 0x97, 0xeb, 0xfb, 0x15, 0xaf, 0x8e, 0x96, 0xdc, 0xff, 0x0a, + 0x90, 0xda, 0x09, 0x63, 0x28, 0x7b, 0x92, 0x73, 0x0b, 0xd4, 0x2b, 0x72, + 0x2a, 0x86, 0x32, 0xc3, 0xc1, 0x3e, 0xe4, 0x2c, 0x07, 0x89, 0x53, 0xb7, + 0xfe, 0x78, 0x6c, 0x95, 0xb4, 0x62, 0x4d, 0x4b, 0xfe, 0x6c, 0xfc, 0x5e, + 0x4e, 0xa7, 0x8c, 0x07, 0x4f, 0x85, 0x27, 0xe0, 0x7b, 0xd9, 0x7a, 0xe5, + 0x1d, 0xbc, 0x36, 0xda, 0x8e, 0x21, 0xff, 0xb3, 0x60, 0x2c, 0x5e, 0x23, + 0x0f, 0xde, 0x3f, 0xae, 0xa5, 0x3a, 0x50, 0xa9, 0x99, 0x39, 0x45, 0xaf, + 0xd3, 0x5f, 0x4a, 0x15, 0xad, 0x9c, 0x66, 0x7f, 0x92, 0xe0, 0x02, 0x81, + 0x3e, 0x06, 0x6a, 0x5e, 0xd0, 0x0c, 0x42, 0xe7, 0xcf, 0xe2, 0xeb, 0xa3, + 0xe0, 0xf7, 0x2d, 0x8a, 0x21, 0xdb, 0x64, 0x28, 0x2a, 0xb3, 0x2b, 0xc4, + 0xc9, 0xd5, 0x60, 0xaf, 0xfc, 0x15, 0xa1, 0x44, 0x9c, 0x96, 0x04, 0x42, + 0x1c, 0x55, 0x8c, 0xa5, 0xce, 0x80, 0xce, 0x75, 0x64, 0xa9, 0xf6, 0xa5, + 0x5a, 0x0f, 0x8a, 0x4b, 0x8b, 0x72, 0xcf, 0x3e, 0xd7, 0xeb, 0xe1, 0xd0, + 0xd3, 0x2d, 0x04, 0x6c, 0x9e, 0x02, 0x75, 0x43, 0x5c, 0xc1, 0x57, 0x66, + 0xd9, 0x14, 0x5b, 0x08, 0x10, 0x44, 0x8d, 0x8e, 0x89, 0xd1, 0x65, 0x27, + 0x2a, 0x0b, 0x99, 0x6f, 0x09, 0xa6, 0x20, 0xa5, 0x75, 0x24, 0xe4, 0xf7, + 0xf5, 0xe0, 0xed, 0x79, 0x37, 0x18, 0x13, 0x1c, 0xd9, 0xd1, 0xf5, 0x69, + 0x0c, 0xa5, 0x02, 0xdf, 0x6a, 0xfd, 0x2e, 0x35, 0x8e, 0xd0, 0x41, 0x91, + 0x61, 0x0f, 0x5c, 0xdd, 0x70, 0xbf, 0x1c, 0x49, 0xcb, 0xe9, 0xc9, 0x33, + 0xc4, 0x99, 0x1e, 0x8b, 0x75, 0x48, 0xc2, 0x58, 0xa4, 0x70, 0x1f, 0xbb, + 0xcd, 0xd3, 0x0e, 0x79, 0x25, 0xbe, 0x53, 0xfa, 0x32, 0x32, 0xf6, 0xb9, + 0xf0, 0x0a, 0x52, 0x5b, 0xe0, 0x69, 0xff, 0x43, 0xda, 0x98, 0x1f, 0xee, + 0x54, 0x60, 0xf8, 0x24, 0x43, 0xc5, 0x37, 0x72, 0xd1, 0xfc, 0x99, 0x9a, + 0x3e, 0x24, 0xe0, 0xd9, 0xc2, 0x61, 0x47, 0xb3, 0x26, 0x09, 0x85, 0x74, + 0xa1, 0x2b, 0x4a, 0x70, 0xd0, 0x1b, 0x90, 0x03, 0x25, 0xd9, 0x22, 0xc2, + 0x16, 0x22, 0x3a, 0x62, 0x20, 0xd4, 0x13, 0xce, 0xa2, 0xc7, 0x02, 0xfb, + 0x9a, 0xbf, 0xf1, 0x1c, 0x80, 0x01, 0x97, 0x90, 0x7f, 0x5a, 0x98, 0x70, + 0x30, 0x61, 0x77, 0xe5, 0xd4, 0x3b, 0x03, 0x42, 0x57, 0x31, 0x5e, 0xc6, + 0x64, 0xe1, 0xf4, 0x64, 0x77, 0x21, 0x9b, 0x44, 0x1c, 0xd9, 0x8c, 0x95, + 0x8a, 0xf1, 0xcb, 0x82, 0xac, 0xc1, 0x26, 0x31, 0xf2, 0x22, 0x41, 0xab, + 0xbb, 0x23, 0xd3, 0x8d, 0xcc, 0x5c, 0x9d, 0x9b, 0x1d, 0x9c, 0x4d, 0xf3, + 0x62, 0xde, 0x15, 0x6a, 0x94, 0x8d, 0x24, 0xe7, 0x52, 0x8d, 0x2a, 0xa4, + 0x1d, 0x54, 0x5a, 0xda, 0xaf, 0xab, 0x05, 0x27, 0x4b, 0xbb, 0xb4, 0xda, + 0x0c, 0xb9, 0x20, 0xb3, 0xaf, 0x4a, 0xeb, 0x37, 0xe5, 0x43, 0xe4, 0xc1, + 0xf6, 0x9e, 0xf8, 0x6c, 0xd8, 0xa1, 0x0c, 0xf9, 0xd1, 0x4b, 0x96, 0xa0, + 0x6d, 0x38, 0x64, 0x41, 0xd3, 0x14, 0xfb, 0xad, 0x89, 0xa9, 0xf7, 0x36, + 0x01, 0x0f, 0xbe, 0x8e, 0xd7, 0x76, 0xc6, 0x70, 0x22, 0x32, 0x8b, 0x08, + 0xca, 0x95, 0xbf, 0xcf, 0x5e, 0xb8, 0xc0, 0x3f, 0xd9, 0xaa, 0x84, 0xab, + 0x30, 0x5b, 0xe3, 0x7a, 0x61, 0x32, 0xe5, 0x54, 0x01, 0x5e, 0xb6, 0x1c, + 0x9c, 0x78, 0x52, 0x2a, 0xa7, 0xf5, 0x29, 0xa6, 0x0f, 0x14, 0xa5, 0x3a, + 0x34, 0xd4, 0xf5, 0xc2, 0xb2, 0x8d, 0x12, 0x7b, 0x8a, 0x64, 0x00, 0xfd, + 0x02, 0x0e, 0x02, 0x26, 0x5a, 0xb9, 0xeb, 0xfd, 0x30, 0xce, 0x51, 0xec, + 0x5f, 0xbc, 0xee, 0x53, 0x21, 0xec, 0x0e, 0xee, 0xc4, 0x28, 0x1a, 0xec, + 0x2a, 0x39, 0x4e, 0xe1, 0x50, 0x11, 0x3f, 0x16, 0xdd, 0xbf, 0xaf, 0x3e, + 0xbe, 0xd4, 0xfe, 0x34, 0x1e, 0x62, 0x3f, 0x5a, 0xea, 0x05, 0xfc, 0xd5, + 0x45, 0x08, 0x47, 0xce, 0x38, 0x3f, 0x75, 0x7e, 0x0c, 0x3a, 0x2a, 0x14, + 0xa7, 0x61, 0xba, 0x3a, 0xa1, 0x41, 0xa2, 0x72, 0x19, 0xfa, 0x33, 0x43, + 0xa7, 0xf4, 0x4e, 0x5b, 0xf9, 0xb1, 0x45, 0x16, 0x57, 0x8e, 0xb1, 0xad, + 0x7d, 0x88, 0xd3, 0x93, 0xa2, 0x08, 0xf3, 0x96, 0x4d, 0x84, 0x63, 0x08, + 0xfa, 0x9d, 0xf3, 0x04, 0x33, 0xbd, 0x7e, 0x7a, 0xc7, 0x63, 0xc5, 0x31, + 0x5a, 0x82, 0x33, 0x90, 0x56, 0x44, 0xe9, 0xd3, 0xc4, 0xd4, 0x76, 0x29, + 0x2f, 0xdb, 0xa3, 0x9d, 0xff, 0xd4, 0xd2, 0xb1, 0xce, 0xf1, 0xcb, 0x7f, + 0x10, 0x3b, 0x90, 0xa4, 0x1b, 0xa0, 0x9b, 0xa7, 0xfa, 0x27, 0x40, 0x11, + 0x35, 0xc9, 0x7f, 0x01, 0x97, 0x76, 0x9f, 0x33, 0xc5, 0xd6, 0x8d, 0x20, + 0x07, 0x73, 0x93, 0x0b, 0x24, 0x88, 0x4e, 0x73, 0x68, 0x79, 0x92, 0x20, + 0x2a, 0x71, 0xed, 0x22, 0x0b, 0xfb, 0x42, 0xb5, 0xd9, 0xc3, 0xaa, 0xed, + 0x45, 0x03, 0x64, 0xde, 0x6f, 0x25, 0x8e, 0x3b, 0x9a, 0xef, 0xc5, 0x63, + 0xc2, 0x7f, 0x34, 0xd0, 0x1b, 0x20, 0xa3, 0xab, 0x9d, 0x54, 0x41, 0x0e, + 0x7b, 0x2e, 0x96, 0x12, 0x75, 0x58, 0xdf, 0xd5, 0xaa, 0x3c, 0xf2, 0x26, + 0xc1, 0xf1, 0x18, 0x37, 0x56, 0xf2, 0xd2, 0x86, 0x6f, 0xd4, 0x9f, 0x57, + 0x2b, 0x32, 0xe9, 0x08, 0x94, 0x53, 0x40, 0xc5, 0x4d, 0x77, 0x39, 0xc6, + 0x4c, 0x63, 0x53, 0xf9, 0xbf, 0x35, 0x08, 0xc5, 0x0d, 0xd0, 0x89, 0x82, + 0xa7, 0x2d, 0x6a, 0xb4, 0x22, 0xb1, 0x10, 0x7f, 0xcf, 0x2e, 0x21, 0x27, + 0x9c, 0x12, 0xc6, 0x0e, 0xca, 0xd2, 0x32, 0xb1, 0x6d, 0xfd, 0x59, 0x12, + 0x23, 0x60, 0x46, 0x89, 0xe0, 0x75, 0x5e, 0xc9, 0xf4, 0x3d, 0x8a, 0x89, + 0xd4, 0x23, 0xc2, 0xbe, 0x30, 0x32, 0x4a, 0x95, 0x42, 0xe2, 0xff, 0xff, + 0x04, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0xa7, 0x0b, 0x48, 0xe2, + 0xeb, 0xd7, 0x12, 0x42, 0x4c, 0x71, 0xfb, 0x25, 0x17, 0x23, 0x0e, 0x01, + 0xa6, 0x21, 0xb9, 0x17, 0x6e, 0xf0, 0x24, 0x66, 0x9e, 0x9d, 0x0f, 0x71, + 0xf8, 0x5b, 0x79, 0xb0, 0x1b, 0x1f, 0xe7, 0xa2, 0xc0, 0x17, 0x16, 0x08, + 0x5e, 0x24, 0x7b, 0xf9, 0x7a, 0x1e, 0x70, 0xe2, 0x05, 0x40, 0x16, 0x56, + 0xe7, 0x79, 0xf2, 0x30, 0xa3, 0xdc, 0xe3, 0x7a, 0x7e, 0x22, 0x88, 0xc0, + 0xf7, 0xc8, 0x5c, 0x93, 0x95, 0x86, 0x02, 0x6c, 0x73, 0x76, 0xef, 0x03, + 0x2d, 0xcb, 0xa5, 0x22, 0xfe, 0x05, 0xbb, 0xe6, 0xfd, 0x19, 0x8c, 0x8b, + 0x67, 0x58, 0x81, 0x81, 0x2d, 0x36, 0xd0, 0xc1, 0x20, 0xb2, 0x87, 0x87, + 0xdb, 0xe4, 0xe5, 0xd1, 0xd1, 0xd5, 0x81, 0x34, 0x4c, 0xd6, 0x09, 0xa2, + 0x5d, 0xcc, 0x99, 0x12, 0xa5, 0x06, 0x0f, 0x06, 0x7e, 0xbb, 0x67, 0x26, + 0x69, 0x15, 0x6e, 0x5f, 0xb1, 0x8e, 0xd6, 0x34, 0xfc, 0x4d, 0xd9, 0x03, + 0xb7, 0x5a, 0xf4, 0xaa, 0x03, 0x00, 0x88, 0x6b, 0x5a, 0xc9, 0xf2, 0xfb, + 0x67, 0x72, 0xbc, 0xf7, 0xb9, 0xdc, 0x97, 0xdf, 0x80, 0x91, 0xfa, 0x30, + 0x18, 0x02, 0x89, 0xc7, 0xc9, 0x62, 0x1d, 0xc0, 0x0b, 0xa6, 0xfe, 0x7e, + 0xb9, 0xa9, 0x1f, 0x11, 0x71, 0xe1, 0xd1, 0xfe, 0x8d, 0x90, 0x2c, 0x09, + 0x82, 0x2e, 0x36, 0x79, 0xa5, 0x75, 0x54, 0xfb, 0xd3, 0x3c, 0xb4, 0x18, + 0x2f, 0x4e, 0x3f, 0x37, 0xc4, 0xf8, 0xc5, 0x59, 0xa3, 0xfd, 0x0c, 0x62, + 0x9e, 0xa8, 0x7a, 0x56, 0xc5, 0x97, 0x89, 0x35, 0xc7, 0xb0, 0x29, 0x87, + 0xbf, 0x6a, 0xdc, 0xb1, 0x2f, 0x01, 0xf4, 0x0d, 0x7c, 0x25, 0x95, 0x39, + 0x81, 0xdd, 0x1a, 0x81, 0x36, 0xc0, 0x6b, 0xbf, 0x6b, 0x4d, 0xea, 0x23, + 0xc0, 0x3e, 0x5c, 0x39, 0xe5, 0x6b, 0x59, 0xa0, 0x50, 0x02, 0x99, 0xdf, + 0x4e, 0xe3, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, + 0x17, 0x88, 0xf8, 0xda, 0x3d, 0x57, 0x83, 0x63, 0x76, 0xa0, 0x5c, 0x13, + 0x1a, 0x00, 0x64, 0x30, 0x19, 0xfd, 0x2e, 0x9c, 0x64, 0xb6, 0xda, 0x51, + 0x7b, 0x55, 0xe8, 0xc4, 0x67, 0x1b, 0xda, 0xfc, 0x4c, 0xd0, 0x27, 0x58, + 0x56, 0xa1, 0x52, 0xd2, 0xb8, 0xd8, 0xd5, 0x94, 0x69, 0xcf, 0xd0, 0xd5, + 0x72, 0xeb, 0x2b, 0x05, 0xf3, 0x12, 0xa6, 0xac, 0xa6, 0xf7, 0x90, 0x24, + 0x1f, 0x22, 0x97, 0x5e, 0x8b, 0x7c, 0x2c, 0x30, 0x61, 0x11, 0x9b, 0xdf, + 0x83, 0x2b, 0x10, 0x09, 0x42, 0x77, 0x2b, 0xd9, 0x43, 0xb3, 0x27, 0x69, + 0x75, 0xf2, 0x2e, 0x72, 0xed, 0x50, 0xea, 0xbf, 0x7f, 0x47, 0x39, 0x9c, + 0xf8, 0x1e, 0xce, 0x6f, 0xdd, 0xe8, 0x40, 0xc5, 0x14, 0x01, 0x7e, 0xbb, + 0x0f, 0x43, 0x2d, 0x36, 0x70, 0x54, 0xc6, 0xbe, 0x69, 0x24, 0xd1, 0x65, + 0x49, 0x77, 0xf0, 0xd2, 0x99, 0xb4, 0x50, 0x8d, 0x98, 0xcb, 0xbf, 0x7a, + 0x7c, 0x65, 0xd3, 0x46, 0xcf, 0x90, 0x69, 0x56, 0x15, 0xa2, 0xae, 0x11, + 0x94, 0x60, 0xf9, 0x45, 0x17, 0x54, 0x6b, 0xbd, 0xeb, 0xd8, 0x74, 0x41, + 0x5c, 0xf6, 0x49, 0x0a, 0x14, 0xce, 0x43, 0x1f, 0x67, 0xc3, 0x6c, 0xf4, + 0x01, 0xce, 0x3f, 0x85, 0xed, 0x19, 0xa1, 0xf7, 0x1b, 0xf8, 0x46, 0x45, + 0xb4, 0xe9, 0xa7, 0x1f, 0x2a, 0x65, 0x00, 0x2a, 0xd3, 0x8b, 0x6a, 0x3b, + 0xac, 0x78, 0xab, 0xf4, 0xc8, 0x62, 0x76, 0xc8, 0x24, 0xf8, 0xf8, 0x08, + 0xe0, 0x64, 0x00, 0x64, 0x74, 0x9e, 0x55, 0x2e, 0xf8, 0xc9, 0xc8, 0x58, + 0x0e, 0x1f, 0x27, 0x32, 0xfd, 0x30, 0x24, 0x68, 0xc8, 0xa4, 0x8c, 0x1c, + 0xf3, 0xa7, 0x32, 0xae, 0x84, 0x0a, 0x8a, 0x1e, 0x11, 0xce, 0xb2, 0x02, + 0xf1, 0xb3, 0x5f, 0x7d, 0x5e, 0x54, 0x8c, 0xe0, 0xeb, 0x46, 0x6e, 0x8a, + 0x5f, 0x3f, 0x71, 0x47, 0x2a, 0x8a, 0xe6, 0xf0, 0xb0, 0x04, 0x49, 0x64, + 0xb3, 0x7e, 0x16, 0x09, 0x83, 0x5f, 0x12, 0xe0, 0x85, 0xb7, 0x36, 0xc0, + 0x8a, 0xa5, 0xcd, 0xae, 0xc0, 0xb4, 0xa2, 0x62, 0x9b, 0xfa, 0x64, 0x18, + 0x16, 0x8e, 0xb6, 0x50, 0xf2, 0x9b, 0xc4, 0x7d, 0x0c, 0x4c, 0x8b, 0x58, + 0xcf, 0x9b, 0x87, 0x09, 0xb1, 0x37, 0xbb, 0xaf, 0xa7, 0x72, 0x79, 0x81, + 0x09, 0x55, 0xa1, 0x6a, 0x87, 0xb0, 0x7d, 0xc8, 0xb0, 0xc1, 0xa4, 0xa9, + 0xdf, 0xcf, 0x95, 0x77, 0x36, 0x8e, 0x2b, 0xae, 0xeb, 0x4b, 0xf9, 0x2a, + 0x83, 0x6c, 0x53, 0x3c, 0x89, 0xa6, 0x08, 0xae, 0x00, 0x4e, 0xb8, 0xf6, + 0x34, 0x7c, 0xc6, 0x76, 0x87, 0x1a, 0x02, 0xb0, 0x89, 0xa3, 0x0f, 0x00, + 0xc6, 0x7b, 0xeb, 0xf7, 0x95, 0x40, 0xc5, 0x0d, 0x6f, 0x74, 0xd8, 0x21, + 0x2f, 0x9f, 0x24, 0xac, 0x43, 0xdb, 0x3a, 0x39, 0x6c, 0x34, 0x59, 0x62, + 0x66, 0xbc, 0x28, 0x7f, 0x8c, 0x64, 0x62, 0x8c, 0x28, 0x6c, 0xf5, 0x79, + 0x24, 0xb1, 0x00, 0x9c, 0x58, 0x6b, 0x09, 0xef, 0xb0, 0x73, 0xcd, 0x47, + 0xbb, 0x52, 0xfd, 0x26, 0x6a, 0xff, 0xb9, 0xf1, 0xd5, 0x82, 0x59, 0x01, + 0xfa, 0x87, 0x14, 0x24, 0x10, 0xb0, 0xf7, 0xdf, 0xf9, 0x3f, 0x67, 0x19, + 0xbd, 0xc7, 0x85, 0xb0, 0xad, 0x47, 0xa8, 0x4c, 0x3e, 0xb6, 0x2e, 0x8a, + 0xb3, 0xcc, 0x35, 0xa0, 0x48, 0xc7, 0x90, 0x81, 0xb7, 0x53, 0x1c, 0x38, + 0x63, 0xf2, 0x2f, 0xa0, 0x71, 0x82, 0xe2, 0x56, 0xdb, 0x68, 0xe8, 0x5f, + 0xf8, 0x42, 0xf2, 0xf6, 0xb8, 0x10, 0x6b, 0x54, 0x21, 0xa0, 0xc1, 0xfe, + 0xcb, 0xce, 0x12, 0xa2, 0x49, 0x51, 0x86, 0x53, 0x56, 0xec, 0x33, 0xb3, + 0x72, 0xce, 0xa4, 0x46, 0xe3, 0x37, 0xcb, 0xc0, 0x95, 0xaa, 0xe2, 0xa3, + 0xc5, 0xe9, 0x36, 0x40, 0xfe, 0xf7, 0xe2, 0x5a, 0x6d, 0x58, 0x39, 0xb2, + 0x41, 0x5d, 0xe2, 0x71, 0x72, 0xd0, 0xf0, 0x5c, 0x16, 0x88, 0x95, 0x30, + 0x0a, 0xfb, 0x8d, 0xda, 0x14, 0x80, 0xf4, 0x15, 0xf2, 0xf6, 0xac, 0xf3, + 0xd8, 0x8d, 0x13, 0x24, 0x2c, 0x74, 0x60, 0x6e, 0x8c, 0xa1, 0x59, 0xcf, + 0x74, 0x7c, 0x2d, 0x0b, 0xbb, 0x06, 0x5c, 0x9d, 0xcd, 0xf3, 0x1e, 0x4a, + 0xba, 0x3f, 0x9c, 0x4a, 0xc4, 0xd7, 0xf9, 0xf0, 0xa5, 0x56, 0x7f, 0xb0, + 0xa2, 0x57, 0xd0, 0xc3, 0xaa, 0xa7, 0xd0, 0x49, 0xe2, 0x28, 0x9b, 0xc4, + 0x64, 0x0c, 0xe0, 0x71, 0x9c, 0x05, 0x04, 0x95, 0x00, 0x1f, 0x7b, 0xa9, + 0xb9, 0xb3, 0x2b, 0x8f, 0x0b, 0x45, 0x1e, 0x23, 0xaa, 0x27, 0x89, 0x4a, + 0xb0, 0x7d, 0x03, 0xdf, 0xae, 0xdb, 0xcb, 0xc4, 0xec, 0x3b, 0x02, 0xe2, + 0x85, 0x3a, 0xb7, 0x25, 0xfb, 0xab, 0xca, 0xc1, 0x33, 0x00, 0x5b, 0xd2, + 0xcf, 0xb0, 0x11, 0x1d, 0x51, 0xb5, 0x5b, 0xea, 0x94, 0xf7, 0xa0, 0x98, + 0x33, 0xba, 0x58, 0xfc, 0x12, 0xea, 0xdd, 0x89, 0xbd, 0x63, 0x03, 0xbe, + 0x7e, 0x3b, 0x69, 0xc4, 0x9d, 0x57, 0x0f, 0xd6, 0xbe, 0xea, 0x5b, 0xd0, + 0x97, 0x63, 0x89, 0xb0, 0xa0, 0xc0, 0xd6, 0x39, 0xc1, 0x69, 0x12, 0x6a, + 0xfb, 0xac, 0x74, 0x7f, 0xfb, 0xf4, 0x7f, 0x38, 0x44, 0x4c, 0x8a, 0xa2, + 0x41, 0x15, 0xc0, 0x54, 0xc0, 0xed, 0x14, 0x83, 0xef, 0xbc, 0x9c, 0xc7, + 0xdd, 0x21, 0xd6, 0xf0, 0x9b, 0x7f, 0x09, 0xd5, 0x96, 0xe5, 0xf7, 0xc5, + 0xa9, 0xb3, 0x41, 0xb0, 0x9d, 0xeb, 0x49, 0x68, 0x9d, 0x2b, 0xea, 0x47, + 0x80, 0x3b, 0x54, 0xb8, 0xf4, 0x14, 0x5e, 0xd6, 0x66, 0x89, 0x04, 0xb3, + 0x00, 0xa3, 0xa8, 0x32, 0x62, 0x2e, 0xc3, 0x15, 0xc6, 0x93, 0x7d, 0x40, + 0x32, 0xb1, 0x6b, 0x60, 0xd3, 0x52, 0xdf, 0x09, 0x8c, 0x80, 0x2b, 0x01, + 0xe7, 0x97, 0x8d, 0xbb, 0x14, 0xd6, 0x10, 0x15, 0x64, 0x00, 0x4a, 0x2c, + 0x67, 0xca, 0xd0, 0xa1, 0x37, 0x33, 0x7b, 0xa1, 0x2a, 0x5b, 0x5b, 0x78, + 0xf8, 0x2f, 0xdd, 0x76, 0xab, 0x8a, 0xc3, 0xe3, 0x37, 0x00, 0xd1, 0x29, + 0xb0, 0x96, 0x1d, 0x18, 0xbe, 0x5d, 0x32, 0x7e, 0xb7, 0x11, 0xa9, 0x78, + 0x72, 0xa2, 0x2d, 0x29, 0x1c, 0x32, 0xa4, 0xff, 0xc7, 0xce, 0xfe, 0xaf, + 0xb7, 0x17, 0x43, 0xe5, 0x2f, 0xae, 0x45, 0xd3, 0xaf, 0x10, 0xe3, 0xd0, + 0x58, 0xb6, 0xee, 0xee, 0x7a, 0xb5, 0x06, 0x70, 0x26, 0x7e, 0x2d, 0x5b, + 0xd5, 0xe1, 0x7b, 0x9a, 0x37, 0x02, 0xfc, 0x1d, 0x08, 0x4f, 0x1a, 0xf5, + 0x44, 0x63, 0xde, 0x4b, 0x14, 0x68, 0x54, 0x0b, 0x6a, 0x22, 0x4e, 0x02, + 0x65, 0xcd, 0xf4, 0x04, 0xec, 0xcc, 0x8a, 0x0b, 0xe0, 0x59, 0xf8, 0x65, + 0x25, 0x63, 0xed, 0x0f, 0xa6, 0xc5, 0x3c, 0xcb, 0x5d, 0xc5, 0xd8, 0x9f, + 0x5a, 0xd3, 0x88, 0x3d, 0xd4, 0x2c, 0xb3, 0x04, 0xf6, 0x97, 0xc7, 0xe2, + 0xfd, 0xb6, 0xf4, 0x7d, 0x0d, 0xb9, 0x75, 0x7e, 0x9d, 0x81, 0xdc, 0xdf, + 0x8e, 0x90, 0x40, 0x0c, 0x7b, 0x45, 0xfe, 0x68, 0xfd, 0xff, 0x1c, 0xf1, + 0x16, 0x09, 0x33, 0x74, 0x27, 0x7b, 0x4d, 0xd9, 0x9b, 0x48, 0x6d, 0x84, + 0xeb, 0x96, 0x8f, 0x4b, 0x82, 0x73, 0xd5, 0x69, 0x7d, 0x14, 0x45, 0x8c, + 0xb8, 0x71, 0x87, 0x70, 0x09, 0x26, 0xfc, 0x89, 0x6f, 0x0f, 0xb6, 0xc1, + 0xd6, 0xe1, 0xbf, 0xdb, 0x85, 0x8f, 0x94, 0xad, 0x94, 0x01, 0x01, 0xbb, + 0x3f, 0xc0, 0xb5, 0xff, 0xf5, 0xbb, 0x4f, 0x50, 0x09, 0xca, 0x7d, 0x36, + 0x47, 0x66, 0x9a, 0x8c, 0xee, 0x84, 0x73, 0x9a, 0x1f, 0x49, 0x75, 0xb4, + 0xab, 0x66, 0xf7, 0x3b, 0xfe, 0x81, 0x67, 0xc9, 0xd1, 0x16, 0xde, 0x1f, + 0xc2, 0x24, 0xed, 0x6a, 0x5a, 0xe7, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, + 0x00, 0x18, 0x00, 0x00, 0xc5, 0xd7, 0x14, 0x84, 0xf8, 0xcf, 0x9b, 0xf4, + 0xb7, 0x6f, 0x47, 0x90, 0x47, 0x30, 0x80, 0x4b, 0x9e, 0x32, 0x25, 0xa9, + 0xf1, 0x33, 0xb5, 0xde, 0xa1, 0x68, 0xf4, 0xe2, 0x85, 0x1f, 0x07, 0x2f, + 0xcc, 0x00, 0xfc, 0xaa, 0x7c, 0xa6, 0x20, 0x61, 0x71, 0x7a, 0x48, 0xe5, + 0x2e, 0x29, 0xa3, 0xfa, 0x37, 0x9a, 0x95, 0x3f, 0xaa, 0x68, 0x93, 0xe3, + 0x2e, 0xc5, 0xa2, 0x7b, 0x94, 0x5e, 0x60, 0x5f, 0x10, 0x85, 0xf3, 0x23, + 0x2d, 0x42, 0x4c, 0x13, 0x29, 0xc8, 0x8d, 0x78, 0x6e, 0xd6, 0x8c, 0xe6, + 0xfc, 0xb6, 0x2a, 0xa6, 0x3b, 0xf9, 0xab, 0x61, 0x7c, 0x08, 0x8a, 0x3b, + 0x70, 0xbe, 0x57, 0xaa, 0xda, 0x1f, 0x33, 0x4a, 0x70, 0x17, 0x25, 0x0d, + 0x3f, 0x60, 0x3d, 0xc8, 0x2e, 0xbd, 0x3b, 0x12, 0x0b, 0x63, 0x5e, 0x3f, + 0xf5, 0x6b, 0x1f, 0x0b, 0xd9, 0x33, 0x85, 0x23, 0x71, 0x24, 0x9a, 0xb3, + 0xdf, 0x5c, 0x1f, 0xef, 0x14, 0x33, 0xc8, 0x66, 0x85, 0xb7, 0xf0, 0x56, + 0x68, 0x1d, 0x51, 0x52, 0xaf, 0x80, 0x3c, 0xe2, 0x59, 0x06, 0xf1, 0xd1, + 0x9f, 0xb6, 0xc6, 0x80, 0x4e, 0x06, 0xea, 0x28, 0xab, 0x17, 0x8f, 0x45, + 0x7a, 0xf6, 0xb4, 0x93, 0xb7, 0x43, 0x9e, 0xc6, 0xd4, 0x29, 0x00, 0x62, + 0xab, 0x51, 0x7a, 0x72, 0xe5, 0xc1, 0xd4, 0x10, 0xcd, 0xd6, 0x17, 0x54, + 0xe4, 0x20, 0x84, 0x50, 0xe4, 0xf9, 0x00, 0x13, 0xfd, 0xa6, 0x9f, 0xef, + 0x19, 0xd4, 0x60, 0x2a, 0x42, 0x07, 0xcd, 0xd5, 0xa1, 0x01, 0x6d, 0x07, + 0x01, 0x32, 0x61, 0x3c, 0x65, 0x9a, 0x8f, 0x5d, 0x33, 0xf3, 0xcb, 0x29, + 0x0b, 0x8c, 0xe7, 0x3b, 0x83, 0x44, 0xb1, 0x3a, 0x4f, 0x8e, 0x09, 0x15, + 0x14, 0x69, 0x84, 0xa1, 0xbb, 0x15, 0xfd, 0xea, 0xde, 0xbe, 0x5b, 0x6a, + 0xc0, 0x95, 0x04, 0x46, 0x4d, 0x8a, 0xaa, 0xac, 0xbc, 0x2f, 0xad, 0x12, + 0x15, 0x8a, 0x53, 0x4c, 0x94, 0xb8, 0xca, 0x42, 0x96, 0x3a, 0xf4, 0x7a, + 0x18, 0x9d, 0x5b, 0x24, 0x9a, 0xce, 0xa8, 0x99, 0xd4, 0x37, 0x32, 0xf6, + 0xf2, 0xac, 0xaf, 0x3f, 0xf5, 0x3b, 0xfe, 0xda, 0x13, 0x9a, 0xab, 0x4f, + 0x55, 0xc0, 0x2c, 0x21, 0x2b, 0x65, 0x71, 0x1f, 0xc5, 0x04, 0x32, 0xc9, + 0x94, 0xe5, 0xfa, 0x6f, 0xd8, 0x2a, 0xbc, 0x70, 0x85, 0x55, 0xdc, 0x62, + 0xb7, 0x3a, 0x20, 0x0e, 0xe7, 0x67, 0x3c, 0xfe, 0xcb, 0x83, 0x6a, 0x15, + 0x6e, 0x4a, 0x35, 0x65, 0xea, 0xc1, 0xb9, 0x4d, 0x35, 0xf9, 0x4b, 0xcf, + 0xd8, 0xfd, 0xa5, 0xff, 0xff, 0x67, 0x70, 0x04, 0xae, 0xa2, 0xa4, 0x12, + 0x4b, 0x83, 0x4f, 0xc2, 0x96, 0xf0, 0x21, 0x2b, 0x14, 0x21, 0x73, 0x42, + 0x14, 0x99, 0x07, 0xe5, 0xa9, 0x52, 0x4c, 0xeb, 0xbe, 0xc3, 0x11, 0x2e, + 0x27, 0xda, 0x69, 0x94, 0xd5, 0xf6, 0xc6, 0x77, 0x0a, 0x00, 0x5d, 0x9a, + 0x82, 0xaa, 0x21, 0xfc, 0x86, 0x9b, 0xd0, 0xc4, 0xc4, 0x1f, 0x53, 0x41, + 0x7a, 0x92, 0xab, 0x1c, 0x12, 0xf6, 0xd5, 0x48, 0xfb, 0x29, 0x4d, 0xb4, + 0xd2, 0x12, 0xee, 0xc5, 0xea, 0x18, 0x33, 0xf1, 0x4d, 0x0a, 0x10, 0x43, + 0xa5, 0x35, 0xb1, 0x63, 0xc4, 0xfb, 0x38, 0x1e, 0xef, 0xac, 0x3f, 0x97, + 0x41, 0xc6, 0x96, 0x3e, 0x60, 0x13, 0xc8, 0xe3, 0xbe, 0x61, 0xe9, 0xb6, + 0x26, 0x16, 0x14, 0xf8, 0x82, 0x0d, 0x6e, 0x75, 0x2f, 0xd7, 0x9c, 0x3a, + 0x4a, 0xda, 0xd8, 0x2b, 0x35, 0xd4, 0x20, 0x32, 0xd4, 0x4f, 0x0f, 0xe4, + 0xdc, 0xd5, 0x0f, 0xfe, 0xa6, 0x81, 0x28, 0xb4, 0x24, 0x3e, 0xb7, 0x0f, + 0xb0, 0xb2, 0x5b, 0x05, 0x76, 0xbb, 0x24, 0x49, 0x6a, 0x01, 0x68, 0x3f, + 0x03, 0x96, 0xbc, 0x0c, 0x77, 0x48, 0x5f, 0xe8, 0x39, 0xf4, 0xb0, 0x84, + 0x42, 0x0e, 0x6a, 0xb9, 0xab, 0xf2, 0x95, 0x97, 0xa7, 0x5e, 0x29, 0x34, + 0x9d, 0x50, 0xc0, 0x4b, 0x40, 0x72, 0xa1, 0x7c, 0x79, 0x5e, 0x95, 0xbe, + 0xd6, 0x17, 0x43, 0x0a, 0xc9, 0x27, 0x25, 0x43, 0xd7, 0x99, 0xd5, 0x48, + 0xd8, 0x98, 0xb5, 0x2b, 0x7f, 0xe3, 0xbd, 0x1d, 0xc0, 0xd1, 0x04, 0xd5, + 0xa4, 0xe1, 0x68, 0xbe, 0x96, 0xf1, 0x2e, 0x5e, 0x37, 0x8d, 0x39, 0x4e, + 0xe4, 0xcc, 0x5e, 0xd7, 0xdd, 0x59, 0x7e, 0xe8, 0xae, 0x48, 0xb5, 0xec, + 0x2c, 0xf7, 0x68, 0x96, 0x00, 0xe5, 0xec, 0x03, 0x6f, 0x98, 0x3a, 0x9a, + 0x4f, 0xd9, 0xf1, 0x2f, 0xfe, 0x76, 0xcf, 0x8f, 0x0b, 0x3d, 0x8a, 0x14, + 0x00, 0x83, 0xcb, 0xca, 0xe3, 0x34, 0x81, 0xb5, 0x91, 0x64, 0x2b, 0x12, + 0x24, 0x86, 0x9c, 0xae, 0x3c, 0x7f, 0x53, 0x22, 0xd4, 0x94, 0x90, 0x44, + 0x6b, 0x35, 0xd2, 0xce, 0x8e, 0x95, 0xe2, 0xbe, 0x46, 0x50, 0x3f, 0x3d, + 0xc3, 0xcd, 0xef, 0x47, 0x99, 0xb5, 0xf2, 0xd4, 0x6f, 0xf4, 0xfa, 0xa2, + 0xfc, 0x1e, 0xe3, 0x99, 0x49, 0xfd, 0x1a, 0x6e, 0x0d, 0xb5, 0xf1, 0xc8, + 0x05, 0x22, 0x29, 0xca, 0x03, 0xb8, 0x15, 0x3b, 0x01, 0x8a, 0x95, 0x74, + 0x48, 0x93, 0x61, 0x35, 0xde, 0xeb, 0xa9, 0xc4, 0x56, 0xa9, 0xd7, 0xde, + 0x4b, 0xe5, 0x4b, 0xa1, 0x42, 0x6a, 0x5f, 0xe3, 0xb2, 0xc7, 0xda, 0xfb, + 0xc7, 0x70, 0x64, 0xe0, 0x68, 0x19, 0xc6, 0x11, 0x77, 0x2b, 0x5f, 0xba, + 0x1d, 0x58, 0x77, 0x98, 0x2c, 0x91, 0xb4, 0xd2, 0xea, 0x1b, 0xdc, 0xe8, + 0xfa, 0x82, 0xf3, 0x6e, 0xac, 0x88, 0x15, 0x16, 0x1a, 0x53, 0xb3, 0x01, + 0x94, 0x03, 0x47, 0x20, 0xdb, 0x71, 0xcb, 0x71, 0xe8, 0x62, 0xad, 0x34, + 0x2b, 0xa3, 0xa5, 0xe9, 0xa6, 0x82, 0x0e, 0x16, 0x61, 0xbc, 0x29, 0x6b, + 0xb1, 0x60, 0x67, 0x80, 0x9a, 0x9f, 0xc4, 0x82, 0xf6, 0xb0, 0x7a, 0x16, + 0x9c, 0x25, 0x04, 0xeb, 0xfd, 0xe0, 0x18, 0xd3, 0xfc, 0xeb, 0xe1, 0x3c, + 0x2b, 0x29, 0x7b, 0x32, 0x4e, 0xd3, 0x6d, 0xe1, 0x27, 0xda, 0xc9, 0x14, + 0x5c, 0x7f, 0xfa, 0x70, 0x41, 0x8e, 0xb4, 0xa3, 0xde, 0x36, 0x92, 0x67, + 0x97, 0xe2, 0xec, 0x85, 0x8b, 0x76, 0x08, 0x3c, 0x32, 0x58, 0xd4, 0x7f, + 0x6f, 0x91, 0x03, 0xdb, 0x19, 0x3e, 0xc4, 0x8b, 0x3c, 0xb7, 0x75, 0x90, + 0x71, 0x7a, 0x21, 0x9d, 0xa7, 0x77, 0xbf, 0xf5, 0x92, 0x57, 0x46, 0x07, + 0xa7, 0xbb, 0x0c, 0x42, 0xca, 0x4f, 0x5a, 0x27, 0x45, 0x69, 0xfe, 0x6d, + 0x78, 0x43, 0x77, 0xc4, 0xb4, 0x43, 0xff, 0x37, 0x0d, 0xb7, 0xfa, 0xe9, + 0x9e, 0x06, 0x70, 0x53, 0xfd, 0xf6, 0xa0, 0x28, 0x84, 0x46, 0xcd, 0x61, + 0xa2, 0x95, 0xc4, 0x1e, 0x6a, 0x13, 0xa1, 0x7f, 0xaf, 0xe1, 0x73, 0x85, + 0xb0, 0x53, 0x9c, 0x08, 0xb6, 0x1d, 0x4d, 0xb4, 0x0b, 0xfb, 0x1f, 0x0c, + 0x7b, 0x17, 0x06, 0x73, 0xa7, 0x22, 0x1f, 0xb0, 0xd8, 0x45, 0x6e, 0xe5, + 0xde, 0x48, 0xb7, 0x9f, 0x5a, 0xa8, 0xd1, 0xc3, 0x04, 0xd1, 0x87, 0xec, + 0x15, 0x3e, 0xd1, 0xc7, 0x57, 0x01, 0x46, 0x4b, 0x28, 0xa8, 0x79, 0x5a, + 0x7e, 0x0b, 0x56, 0x56, 0x28, 0xda, 0x35, 0xea, 0x4c, 0x14, 0x81, 0xae, + 0xc0, 0x0d, 0x12, 0xfe, 0x2d, 0xb7, 0x95, 0x4d, 0xea, 0x78, 0xb6, 0x53, + 0xcf, 0xac, 0x8a, 0xfc, 0xc9, 0x07, 0x9f, 0x93, 0xf0, 0x11, 0x86, 0x13, + 0xe9, 0xca, 0x3d, 0xce, 0xb1, 0xfd, 0x1a, 0x0a, 0x8b, 0x11, 0x82, 0x94, + 0x6a, 0xae, 0xc5, 0x80, 0x6a, 0x3b, 0xa8, 0x7c, 0xb4, 0x53, 0x4e, 0xa9, + 0x04, 0x1a, 0x4f, 0xb0, 0xb9, 0x95, 0x96, 0xa5, 0xfd, 0xce, 0xdc, 0x57, + 0x00, 0x48, 0x16, 0xe2, 0x40, 0xae, 0x04, 0xf5, 0x83, 0x60, 0x23, 0xd9, + 0x8e, 0x59, 0x56, 0x20, 0x50, 0x38, 0xc4, 0xde, 0x88, 0x9f, 0x91, 0x06, + 0xdb, 0x8f, 0x84, 0xa2, 0xaf, 0x61, 0xdd, 0x48, 0x03, 0x4f, 0xc4, 0xb8, + 0xed, 0x12, 0xd2, 0x74, 0x08, 0xb9, 0x51, 0x63, 0xb5, 0xfe, 0x09, 0x7f, + 0x7b, 0x8c, 0x5e, 0xd7, 0x27, 0xe5, 0x79, 0xe6, 0x33, 0x60, 0x54, 0xe1, + 0x21, 0xda, 0xca, 0x8b, 0x81, 0xdf, 0xb6, 0xa7, 0x2e, 0x9d, 0x0f, 0xfc, + 0x05, 0x80, 0x67, 0xcb, 0xc5, 0xdf, 0xc7, 0x13, 0xee, 0xb5, 0x40, 0x8e, + 0xa7, 0x0c, 0xcb, 0xf2, 0x45, 0x15, 0x29, 0xb1, 0xb8, 0x02, 0x23, 0x61, + 0x38, 0xf1, 0x16, 0xa1, 0x0c, 0xa1, 0xc9, 0x40, 0x8c, 0xd0, 0x48, 0x4b, + 0xce, 0x9c, 0x1e, 0x53, 0x40, 0x44, 0xf6, 0x17, 0x16, 0xc6, 0x5c, 0xb0, + 0x2a, 0x29, 0x59, 0x87, 0x67, 0x85, 0xa7, 0x81, 0x84, 0xe9, 0x4f, 0xe5, + 0x4e, 0x13, 0x5a, 0x11, 0xa1, 0x24, 0x62, 0xe9, 0x7a, 0xea, 0x51, 0xaa, + 0x45, 0xf3, 0x1d, 0x2a, 0xaf, 0x01, 0x28, 0x35, 0xda, 0xb4, 0xe7, 0xab, + 0xc1, 0xb9, 0x3c, 0x45, 0xa2, 0x0b, 0x5d, 0x40, 0x09, 0xac, 0x62, 0x16, + 0xd3, 0x1f, 0x9f, 0xc7, 0x1a, 0x56, 0xb7, 0x27, 0xd1, 0x1b, 0xe1, 0xb5, + 0x82, 0x9e, 0xe8, 0xd3, 0x5c, 0x0f, 0xe8, 0x87, 0x61, 0xc6, 0x20, 0xb7, + 0x31, 0x3f, 0x0d, 0xb3, 0x0a, 0x5a, 0xce, 0x06, 0xa5, 0xe9, 0xfd, 0xf3, + 0x29, 0x1a, 0xcd, 0x86, 0x0e, 0x31, 0x29, 0xaa, 0xb7, 0x32, 0xf1, 0x10, + 0x4e, 0x92, 0x12, 0x00, 0xc0, 0xac, 0x50, 0x4b, 0x52, 0x59, 0x51, 0x7c, + 0xa8, 0x0c, 0xf7, 0xcb, 0x16, 0x73, 0x7b, 0x90, 0xa8, 0x57, 0x79, 0xb4, + 0x73, 0x53, 0xd7, 0xed, 0xba, 0x46, 0xc5, 0x06, 0x53, 0x02, 0xc7, 0x58, + 0x4c, 0x09, 0x0c, 0xa5, 0x01, 0x13, 0x18, 0x39, 0x4b, 0x4e, 0xc2, 0x0d, + 0xd6, 0xdf, 0xaa, 0x7e, 0x46, 0xba, 0x6e, 0xcc, 0x25, 0x42, 0xd0, 0xb3, + 0x31, 0xdc, 0xdf, 0x7d, 0xf1, 0xc3, 0x73, 0xca, 0x7a, 0xf6, 0xcb, 0x23, + 0x81, 0x8d, 0xbe, 0x0b, 0xf2, 0x79, 0x8d, 0x14, 0xa4, 0xc8, 0x36, 0x18, + 0x49, 0xc8, 0x0d, 0xd7, 0xc9, 0xdd, 0x35, 0xeb, 0xec, 0x52, 0x56, 0xae, + 0xf2, 0xd2, 0x51, 0x91, 0x39, 0xbc, 0xb0, 0x49, 0xb7, 0xf2, 0x1b, 0x64, + 0x83, 0x5a, 0xa6, 0x97, 0xc2, 0x15, 0x95, 0xdc, 0x11, 0xd2, 0x89, 0xc0, + 0x6a, 0xb1, 0x44, 0x43, 0x38, 0xb6, 0x54, 0x0f, 0xdc, 0xcb, 0xed, 0x26, + 0x27, 0xd9, 0x46, 0x56, 0x4e, 0x6a, 0x54, 0x74, 0x0f, 0x45, 0xfc, 0xb6, + 0x93, 0xab, 0x3c, 0xd1, 0x86, 0x51, 0xaf, 0xa9, 0x4a, 0xc0, 0x9c, 0x78, + 0xc1, 0xb1, 0xc7, 0xf1, 0x9c, 0xd1, 0xd0, 0x32, 0x4e, 0x4b, 0x02, 0x36, + 0x68, 0x38, 0x88, 0x56, 0xc0, 0x2b, 0x12, 0x05, 0x3b, 0xb9, 0xf6, 0xa2, + 0x37, 0xe7, 0xbc, 0x81, 0xf9, 0x75, 0x51, 0x27, 0x56, 0x0d, 0x55, 0xd1, + 0x6a, 0xe0, 0xcf, 0x87, 0x0a, 0x44, 0xc6, 0x57, 0xe1, 0x1b, 0xc0, 0x2c, + 0xcf, 0xab, 0x77, 0xe9, 0x14, 0xf5, 0x34, 0x89, 0xfb, 0xc9, 0xf2, 0x87, + 0x5c, 0x75, 0xba, 0x51, 0x9a, 0x49, 0xe9, 0x23, 0x23, 0xf4, 0xc9, 0xd1, + 0x2f, 0x87, 0xf6, 0x75, 0x38, 0x97, 0x48, 0xb8, 0x30, 0x46, 0x1d, 0x46, + 0x65, 0x03, 0x10, 0xcf, 0xfb, 0x36, 0xf2, 0xb1, 0xaf, 0x31, 0x02, 0x7b, + 0x74, 0xfe, 0x9f, 0x8c, 0x73, 0x04, 0xfd, 0xb5, 0xae, 0x2e, 0x27, 0x9c, + 0xd8, 0x73, 0xbc, 0xc3, 0x4a, 0x76, 0x93, 0x66, 0xf6, 0xb7, 0x90, 0xc4, + 0x42, 0x3d, 0xcd, 0xb5, 0xf1, 0x75, 0xbf, 0xb7, 0xdd, 0x8e, 0xb7, 0xcd, + 0x90, 0x35, 0xf5, 0x95, 0x3d, 0xe4, 0x4e, 0xb0, 0x7c, 0x5f, 0xad, 0xff, + 0x75, 0x38, 0xc4, 0xc7, 0xed, 0xec, 0x70, 0xcc, 0x9f, 0xf9, 0x77, 0xa1, + 0x00, 0x2f, 0xf1, 0xa2, 0xc9, 0x74, 0xdc, 0x18, 0x14, 0xd0, 0x2f, 0x86, + 0x66, 0xa7, 0x5b, 0x39, 0x5c, 0xba, 0x0e, 0x77, 0x16, 0x04, 0xc3, 0x02, + 0x42, 0x3b, 0x66, 0x29, 0xee, 0x65, 0x00, 0xd4, 0x22, 0x5a, 0x77, 0x74, + 0xd4, 0xc3, 0xf3, 0x00, 0xdf, 0x6b, 0xc3, 0x15, 0x89, 0x0e, 0xb1, 0xbc, + 0xac, 0xe8, 0x44, 0x2f, 0x80, 0x34, 0x34, 0x8b, 0x0c, 0x48, 0x45, 0xc2, + 0x6a, 0xa3, 0x67, 0xd7, 0x3d, 0x36, 0xf3, 0x3f, 0xe5, 0xf0, 0x5b, 0xe8, + 0xad, 0x41, 0xd5, 0x82, 0xc1, 0x28, 0xab, 0x77, 0xe8, 0x7f, 0xb3, 0xf6, + 0xd2, 0x0c, 0xe4, 0x03, 0xcf, 0xe4, 0x72, 0xdb, 0x7b, 0x81, 0xf4, 0xf3, + 0x48, 0x74, 0xe1, 0x91, 0xb8, 0xf8, 0x4c, 0x2c, 0x60, 0x99, 0x3e, 0x1e, + 0x4f, 0xaf, 0x12, 0xab, 0x52, 0xef, 0xc7, 0x60, 0xd2, 0xfe, 0x62, 0x55, + 0xc8, 0x18, 0xad, 0x60, 0xa7, 0x5d, 0xde, 0x4d, 0xfc, 0x6d, 0xe1, 0x10, + 0x7c, 0xf9, 0xa2, 0x64, 0x00, 0x16, 0x1f, 0x44, 0x7c, 0xe2, 0x72, 0x37, + 0xd9, 0x92, 0xad, 0xfc, 0x62, 0x53, 0xbe, 0xb6, 0xe0, 0xc8, 0xe0, 0xa2, + 0xef, 0x22, 0x4b, 0x70, 0x3a, 0x4f, 0xc9, 0xed, 0x6b, 0xbc, 0x17, 0x0a, + 0xcf, 0x6a, 0x2c, 0xd3, 0xd2, 0x6b, 0x02, 0x45, 0xfa, 0x9e, 0xc2, 0x21, + 0x28, 0xfc, 0x07, 0x68, 0xd6, 0xb8, 0x9f, 0x2a, 0x0b, 0x7a, 0x0e, 0xbc, + 0x4e, 0xee, 0x84, 0x38, 0xe4, 0x8e, 0x70, 0xc3, 0xc4, 0xad, 0x74, 0x87, + 0x2d, 0x16, 0x4f, 0xa1, 0xf8, 0x20, 0xf5, 0xde, 0xa3, 0xc5, 0x0c, 0x3b, + 0xde, 0x44, 0x48, 0x0f, 0x3c, 0xdc, 0x7e, 0x10, 0x8b, 0x87, 0xc4, 0x3b, + 0xb0, 0x95, 0xbf, 0x61, 0x1e, 0xad, 0x07, 0x52, 0xfd, 0x0b, 0x84, 0xa9, + 0x46, 0xb0, 0x32, 0xd5, 0x22, 0x80, 0x35, 0x26, 0x41, 0xf8, 0x11, 0x72, + 0xb1, 0x31, 0x6f, 0x5a, 0x75, 0xcc, 0x67, 0xe0, 0xb2, 0x50, 0x89, 0xb2, + 0x66, 0x6e, 0xee, 0xa0, 0x41, 0x8d, 0x00, 0x2a, 0xa7, 0x9d, 0xa5, 0x11, + 0x2b, 0x07, 0x95, 0x3a, 0x55, 0x8c, 0x67, 0xb1, 0xe5, 0x2d, 0xd4, 0xd1, + 0x3e, 0x29, 0xed, 0xa5, 0x59, 0x97, 0x7b, 0xdf, 0x92, 0x10, 0x0b, 0x04, + 0x89, 0x27, 0xa0, 0xa2, 0x93, 0x18, 0x7f, 0x47, 0x84, 0x1c, 0xc6, 0xd6, + 0x8f, 0x73, 0x81, 0xa0, 0xfa, 0xe5, 0x3e, 0xd8, 0xbf, 0x56, 0x1a, 0x76, + 0xf4, 0xc4, 0x0f, 0x7a, 0x29, 0x9d, 0x32, 0x5d, 0x41, 0xe0, 0x07, 0xb9, + 0xd3, 0x3f, 0x7e, 0xff, 0x90, 0x89, 0xce, 0xdc, 0xf1, 0x1d, 0x54, 0xb6, + 0x67, 0x7f, 0x4d, 0x71, 0x9a, 0x4a, 0x5f, 0x80, 0x0d, 0x5c, 0x77, 0xd5, + 0x50, 0x7c, 0x41, 0x56, 0x7e, 0x99, 0x0a, 0xeb, 0x66, 0x1f, 0xd2, 0x55, + 0xc3, 0xc6, 0x6c, 0xc5, 0xfc, 0x34, 0x40, 0x2c, 0x05, 0x29, 0x05, 0x7c, + 0xca, 0xe6, 0x8d, 0xd3, 0xb0, 0xca, 0x84, 0x27, 0x50, 0x7c, 0x6b, 0x17, + 0x1b, 0x22, 0xe4, 0x7f, 0xe6, 0x44, 0x94, 0x06, 0x4b, 0xb3, 0xb7, 0xbb, + 0x98, 0x81, 0x44, 0x0b, 0xf5, 0x66, 0xcb, 0xad, 0xf2, 0x9a, 0xe1, 0x47, + 0xf3, 0x97, 0xa9, 0xb2, 0xc2, 0xca, 0xcd, 0x98, 0x78, 0x60, 0xdc, 0x6e, + 0x87, 0x55, 0x47, 0xf3, 0xae, 0x84, 0xdd, 0x9a, 0xe9, 0x1a, 0x63, 0x83, + 0xea, 0x23, 0x09, 0x67, 0x34, 0x83, 0x00, 0x6e, 0x5e, 0x58, 0xb8, 0x89, + 0x04, 0x08, 0x0a, 0x55, 0x9e, 0x78, 0xc9, 0xff, 0xb9, 0xb5, 0x2c, 0xdd, + 0x3b, 0x0c, 0x58, 0x07, 0x8b, 0xb4, 0x6a, 0xc4, 0x64, 0xa3, 0x5e, 0x5b, + 0xfe, 0x4d, 0xd0, 0x74, 0x01, 0x1b, 0xdf, 0x10, 0x45, 0x2b, 0xd6, 0x9e, + 0xa9, 0x60, 0x1f, 0xad, 0x46, 0xa1, 0x8c, 0xf8, 0xf6, 0xa9, 0x8a, 0x27, + 0xea, 0x51, 0x37, 0x84, 0xcf, 0xe5, 0xd7, 0x51, 0xd6, 0x40, 0x39, 0x39, + 0x5f, 0xf6, 0x96, 0x33, 0xd9, 0x86, 0x8d, 0x38, 0xb6, 0x26, 0x04, 0x14, + 0x07, 0x46, 0x3e, 0xd0, 0xc5, 0xf6, 0x0d, 0xa0, 0x47, 0x2b, 0xc8, 0x73, + 0x18, 0x6b, 0xd3, 0x0e, 0x18, 0xcc, 0x43, 0x98, 0xd0, 0xcf, 0x1c, 0xe4, + 0x4a, 0x41, 0x6a, 0x56, 0x2d, 0xf0, 0x93, 0x89, 0x81, 0x6c, 0xce, 0x04, + 0x1a, 0x23, 0x05, 0x91, 0x4f, 0x48, 0x44, 0x3a, 0xaa, 0x03, 0xa5, 0x4a, + 0xa9, 0x20, 0x2c, 0xbe, 0x6a, 0x81, 0xe6, 0xa9, 0xf8, 0xf0, 0x2b, 0x29, + 0xa1, 0xe0, 0xc4, 0xce, 0xf5, 0xda, 0x25, 0x70, 0x49, 0xcc, 0xa0, 0x4b, + 0x24, 0x49, 0x4f, 0x11, 0xc4, 0x3b, 0x22, 0x89, 0x9a, 0xb4, 0xf4, 0xcd, + 0xa3, 0xee, 0xb0, 0x76, 0x13, 0xc4, 0xbb, 0xaf, 0x03, 0x7f, 0x27, 0xf3, + 0x38, 0xbc, 0xde, 0x7c, 0x0c, 0x39, 0x14, 0xb7, 0x14, 0xbb, 0x5c, 0xae, + 0x89, 0xf8, 0xf7, 0xd6, 0x00, 0x78, 0xf4, 0xb0, 0x52, 0x16, 0xf5, 0x54, + 0xc5, 0x93, 0xf7, 0x6d, 0x0d, 0xe8, 0x58, 0xe2, 0xa1, 0xa7, 0xdc, 0x49, + 0xdb, 0xc8, 0x79, 0xbc, 0xc3, 0x97, 0x7b, 0x6c, 0x82, 0x7b, 0xbe, 0xe9, + 0x79, 0xac, 0x4a, 0xa4, 0x7c, 0x49, 0x83, 0x58, 0x3a, 0xe4, 0xf5, 0x68, + 0x5c, 0xb7, 0x7f, 0x2d, 0xfe, 0x6b, 0x96, 0xc7, 0x8b, 0x67, 0xb5, 0xd0, + 0xa1, 0x0a, 0x16, 0x62, 0x64, 0x53, 0xea, 0x29, 0x80, 0x93, 0xf9, 0xd6, + 0xa0, 0xc5, 0x1b, 0x3a, 0x1e, 0xab, 0x51, 0x88, 0xe0, 0x9e, 0xd4, 0xf6, + 0xbf, 0x70, 0x2d, 0x29, 0x2e, 0x08, 0xa9, 0x31, 0x78, 0x0a, 0x15, 0x30, + 0x9f, 0x2e, 0xc8, 0x41, 0x65, 0x8e, 0x97, 0x51, 0x5e, 0x73, 0x46, 0x42, + 0x74, 0x84, 0xfd, 0x9b, 0x4a, 0x8a, 0x68, 0x28, 0x45, 0xd0, 0x5d, 0x65, + 0x08, 0xb3, 0xf5, 0x40, 0x8a, 0x29, 0x8e, 0x70, 0x02, 0x49, 0x6a, 0x01, + 0xd6, 0x41, 0x4a, 0xf8, 0x15, 0xa3, 0x70, 0x59, 0xe9, 0xa2, 0xe2, 0x76, + 0x8c, 0x60, 0x33, 0xb3, 0xfa, 0x8b, 0xb4, 0x90, 0x6f, 0x92, 0xc8, 0x21, + 0x59, 0xc0, 0x3a, 0x30, 0x46, 0xeb, 0x49, 0xd8, 0x85, 0x63, 0x5a, 0x23, + 0x87, 0xe1, 0xa7, 0xc0, 0x1a, 0xb0, 0xc7, 0xc4, 0x40, 0x4d, 0x11, 0x9c, + 0xe3, 0xd4, 0x6b, 0xef, 0x68, 0xc8, 0x2c, 0x31, 0xcd, 0x3e, 0xee, 0x55, + 0x10, 0x67, 0x77, 0x7b, 0x30, 0xc1, 0xd0, 0x23, 0x6c, 0x65, 0x6f, 0xfb, + 0x2e, 0x62, 0x33, 0x42, 0x63, 0xdc, 0xca, 0x86, 0xf1, 0x0e, 0xb3, 0xb0, + 0x69, 0x11, 0x65, 0xe1, 0x6e, 0x6c, 0x03, 0x49, 0x79, 0xe8, 0xf1, 0x2e, + 0x8d, 0x94, 0xc8, 0xa8, 0x98, 0x2d, 0x3f, 0xfe, 0xbd, 0x2d, 0x75, 0x45, + 0xd1, 0x7a, 0x09, 0xf8, 0x90, 0x49, 0xbd, 0x4a, 0x3b, 0xa4, 0xa3, 0x26, + 0xb8, 0x62, 0x66, 0x97, 0xd9, 0xc1, 0xca, 0x12, 0x49, 0xe1, 0x27, 0x93, + 0x4f, 0x60, 0xfa, 0xb3, 0x4f, 0x4c, 0xdb, 0x87, 0x6c, 0x3b, 0x50, 0x47, + 0xe2, 0xd8, 0x5b, 0x13, 0x99, 0xf0, 0x2b, 0xbb, 0x32, 0x33, 0xfd, 0x7d, + 0x15, 0x0f, 0x2c, 0xee, 0x85, 0x83, 0xc0, 0x53, 0x79, 0x3e, 0x51, 0xfe, + 0x7c, 0x06, 0x73, 0x49, 0x49, 0x4f, 0x5a, 0x22, 0x36, 0x8f, 0x30, 0x8a, + 0xef, 0x84, 0xd6, 0x15, 0x26, 0x48, 0xe7, 0x1e, 0xb1, 0xaa, 0x82, 0xd0, + 0xc7, 0x0b, 0x97, 0x7b, 0x6c, 0x2d, 0x49, 0x7e, 0x6d, 0xe7, 0xa3, 0x05, + 0x80, 0xd7, 0x42, 0xa9, 0xc6, 0x66, 0x98, 0x30, 0xe3, 0x8a, 0x79, 0x86, + 0x9c, 0x2b, 0xbc, 0x4a, 0xe6, 0x0d, 0xc5, 0xe5, 0x1a, 0x92, 0xd9, 0xef, + 0x63, 0x52, 0x03, 0x88, 0x36, 0xc5, 0x83, 0x65, 0xf8, 0xf1, 0x87, 0xce, + 0x43, 0xfe, 0x89, 0x58, 0x07, 0x6a, 0xad, 0x85, 0x37, 0x0f, 0xdf, 0x9e, + 0xa5, 0x62, 0xa9, 0xd2, 0x41, 0x3f, 0x7f, 0xb7, 0xf1, 0xe2, 0x58, 0xb5, + 0xda, 0xdf, 0xd1, 0xba, 0x36, 0x2c, 0xe7, 0x43, 0x31, 0x07, 0xc5, 0xf5, + 0x79, 0xc9, 0x31, 0xd7, 0x1d, 0x97, 0x57, 0x9a, 0x8e, 0x3f, 0xac, 0x00, + 0x49, 0x00, 0x2f, 0xad, 0xac, 0xe7, 0x65, 0x7c, 0xbf, 0xec, 0x85, 0x57, + 0xe6, 0xcc, 0x07, 0x34, 0x02, 0x36, 0xa8, 0x6a, 0x9f, 0x3a, 0x9a, 0x2f, + 0x34, 0x93, 0x1f, 0x7d, 0x38, 0x54, 0xe3, 0x54, 0x54, 0xee, 0x84, 0x55, + 0xe1, 0x0d, 0xc1, 0x08, 0x3e, 0x33, 0x9e, 0x2a, 0xc3, 0x6a, 0x83, 0xc4, + 0x75, 0xed, 0xbc, 0x5f, 0xd9, 0x04, 0xd7, 0x77, 0x91, 0xb1, 0xa0, 0xf2, + 0xef, 0x81, 0xb0, 0x8b, 0x53, 0x5f, 0x71, 0xec, 0xa5, 0x0b, 0xbe, 0xf2, + 0x92, 0x7e, 0x0a, 0x34, 0xeb, 0x5d, 0x65, 0xc7, 0xa9, 0x44, 0x10, 0xfb, + 0xd3, 0xef, 0xe1, 0xbc, 0x06, 0x65, 0x68, 0x22, 0xfb, 0x43, 0x2c, 0xcf, + 0x8e, 0x6a, 0x28, 0xdb, 0x0b, 0xf4, 0xaf, 0x01, 0x65, 0x97, 0xd6, 0xe5, + 0x91, 0x20, 0x13, 0x2c, 0xb1, 0xc2, 0xd3, 0xc3, 0x76, 0x90, 0xf8, 0xcd, + 0x00, 0xde, 0x93, 0xf8, 0x4e, 0xcc, 0xdc, 0xca, 0x9a, 0xf0, 0xbd, 0x9b, + 0xd6, 0x57, 0xb1, 0x13, 0xd9, 0xe0, 0xe1, 0x9e, 0x21, 0x74, 0xa9, 0x76, + 0xc0, 0x0c, 0xad, 0x4f, 0x5d, 0xfe, 0x23, 0x32, 0x5a, 0x10, 0x75, 0x5b, + 0x05, 0xdf, 0xdc, 0x5b, 0x94, 0xcb, 0xe1, 0x9f, 0x13, 0x51, 0xf5, 0x50, + 0x36, 0x3b, 0xf2, 0x90, 0x9c, 0x9a, 0xc8, 0x10, 0x88, 0xa9, 0xec, 0x22, + 0x1e, 0x96, 0x70, 0xe8, 0x9e, 0x69, 0xc1, 0x22, 0xd9, 0x14, 0x15, 0x2e, + 0xbc, 0x03, 0x96, 0x9e, 0x1d, 0x00, 0x10, 0x16, 0x4f, 0x56, 0xf0, 0x29, + 0x47, 0x0a, 0x45, 0x34, 0x27, 0x21, 0x3b, 0x67, 0x33, 0xf9, 0xdd, 0x29, + 0x3a, 0xf2, 0xe4, 0x56, 0x34, 0x46, 0xbe, 0xd8, 0x42, 0x29, 0x11, 0x7f, + 0x30, 0xc1, 0xbe, 0xa5, 0xc8, 0x9d, 0x7b, 0x2e, 0x4e, 0xcf, 0xba, 0x91, + 0xb4, 0xbf, 0x0a, 0x04, 0x00, 0x49, 0x83, 0x6b, 0x46, 0x5f, 0x3b, 0xfa, + 0xf7, 0x40, 0x8d, 0x85, 0x47, 0x14, 0x58, 0xb3, 0xa5, 0x66, 0x30, 0xfd, + 0x4a, 0x80, 0xa4, 0x61, 0x3b, 0x7c, 0xb4, 0xcc, 0x34, 0x8c, 0xc6, 0xb6, + 0x10, 0xa9, 0x76, 0xc9, 0x11, 0xd7, 0x8a, 0x51, 0x86, 0x17, 0x89, 0x28, + 0xab, 0xd5, 0x03, 0x88, 0x74, 0x5b, 0x81, 0xbd, 0x3a, 0x57, 0xfe, 0x66, + 0x25, 0xd0, 0x92, 0x15, 0x84, 0x02, 0x0f, 0x51, 0xa8, 0x58, 0xcf, 0x77, + 0x65, 0x10, 0x61, 0xe8, 0xe6, 0xab, 0xb1, 0xba, 0x3b, 0x08, 0xd6, 0xba, + 0x5f, 0xf5, 0x74, 0xc5, 0x07, 0x60, 0xfd, 0xd3, 0xc8, 0x52, 0x4e, 0xdb, + 0xc3, 0xe3, 0x6d, 0x81, 0x20, 0x51, 0x01, 0x9a, 0x5e, 0x32, 0x4e, 0x80, + 0x5a, 0xcb, 0x83, 0xd7, 0xa4, 0xd9, 0xfb, 0xed, 0x3d, 0x80, 0xa1, 0x83, + 0x81, 0x91, 0xc0, 0x0b, 0xff, 0x67, 0xd8, 0x8b, 0xd0, 0x12, 0x0b, 0xd4, + 0x2b, 0x8e, 0x0d, 0x0f, 0xfc, 0xc7, 0xb3, 0xf1, 0xe3, 0xf3, 0x5e, 0x0c, + 0xb6, 0x6b, 0x9d, 0xdc, 0x22, 0x70, 0x31, 0x54, 0xe8, 0x41, 0xfe, 0xa1, + 0xe1, 0x4f, 0xfa, 0x81, 0xfb, 0xae, 0x72, 0x16, 0xb8, 0x87, 0xc9, 0x31, + 0x9d, 0x42, 0x47, 0x4a, 0x20, 0xae, 0x63, 0x16, 0x0d, 0xfa, 0xf1, 0x27, + 0x19, 0x47, 0xee, 0x45, 0x84, 0x29, 0x9a, 0xb6, 0x42, 0xef, 0xbd, 0x15, + 0xa8, 0x34, 0x33, 0x38, 0x9c, 0x9d, 0xbb, 0x5c, 0x03, 0xf3, 0xcf, 0xcf, + 0x6d, 0x2e, 0xd5, 0x88, 0xf8, 0xdd, 0xfc, 0xc0, 0x4a, 0xdb, 0x69, 0xd9, + 0x62, 0x89, 0x24, 0x46, 0xee, 0xa4, 0xb9, 0x95, 0xe6, 0xaf, 0x7d, 0x53, + 0xec, 0x41, 0xae, 0x70, 0xfe, 0x4f, 0x31, 0xe3, 0xa2, 0x59, 0x2c, 0xa1, + 0x53, 0x8b, 0xb6, 0x3b, 0x39, 0xc1, 0xa4, 0xa7, 0x9e, 0xaa, 0x00, 0x60, + 0x9a, 0x5f, 0x56, 0x51, 0xf3, 0x7b, 0x28, 0x84, 0x36, 0x1a, 0xc1, 0x2d, + 0xc8, 0xed, 0xf8, 0x48, 0x48, 0x1d, 0x39, 0x4d, 0x3d, 0xce, 0x30, 0x90, + 0x29, 0x33, 0x6f, 0x9a, 0xce, 0x58, 0xe7, 0x88, 0xac, 0x59, 0xce, 0x85, + 0x5a, 0x52, 0x2b, 0x6c, 0xb7, 0xe9, 0x2e, 0xa9, 0xd9, 0x9a, 0xea, 0x1c, + 0x47, 0xb2, 0x59, 0xff, 0x73, 0x76, 0x21, 0x40, 0xe1, 0xde, 0x32, 0xb8, + 0x73, 0x3d, 0xa5, 0x44, 0x66, 0x79, 0xa1, 0xfe, 0xaf, 0xf6, 0x8a, 0x97, + 0x09, 0x5c, 0x8b, 0x64, 0x38, 0x9f, 0xe1, 0x59, 0x38, 0x18, 0xe9, 0xc0, + 0xd6, 0xa2, 0xac, 0x74, 0xa9, 0xfd, 0x4a, 0x0d, 0xf6, 0x47, 0x00, 0x2b, + 0x09, 0x46, 0x38, 0x1c, 0xa4, 0x9f, 0x63, 0x20, 0x18, 0x75, 0x5a, 0xb8, + 0xc4, 0xbc, 0xd6, 0x6b, 0xc8, 0x14, 0x72, 0x03, 0xe4, 0x05, 0xd4, 0x4e, + 0x66, 0x20, 0x42, 0xa2, 0x8f, 0x96, 0xe7, 0xaf, 0xd3, 0xfb, 0xa8, 0x88, + 0x9b, 0xe3, 0xaa, 0xcd, 0xab, 0xce, 0x8f, 0x07, 0x6d, 0xef, 0x98, 0xce, + 0xdb, 0x42, 0x5b, 0xf4, 0x61, 0x57, 0x62, 0x27, 0x8a, 0x53, 0x5e, 0xf8, + 0x3e, 0xf6, 0x7f, 0xde, 0x5e, 0x3b, 0x1b, 0x13, 0x2e, 0x30, 0x46, 0x4b, + 0x6b, 0xb7, 0xbb, 0x33, 0x31, 0xc0, 0xfa, 0x40, 0xab, 0x68, 0x72, 0xe3, + 0x92, 0x30, 0x47, 0xd6, 0x30, 0x60, 0x42, 0x5b, 0x88, 0x8d, 0xa6, 0x56, + 0xe4, 0xac, 0x33, 0x2e, 0xca, 0x05, 0x1f, 0x60, 0xaf, 0xde, 0x7f, 0xa9, + 0xda, 0x3f, 0xa8, 0x21, 0xf6, 0xfc, 0x98, 0x7d, 0xc4, 0x1e, 0xb0, 0xa9, + 0x56, 0x2d, 0x8d, 0xea, 0x03, 0x51, 0x48, 0xac, 0xe8, 0x22, 0xc7, 0x8b, + 0xef, 0x91, 0x0e, 0xcf, 0x0c, 0xe9, 0x38, 0x43, 0x99, 0xa8, 0x98, 0x4f, + 0xfa, 0xe3, 0x03, 0xa6, 0x4f, 0xd4, 0x0d, 0x98, 0x5b, 0x50, 0x28, 0xd7, + 0xe7, 0x46, 0xd7, 0xad, 0x43, 0xb8, 0x56, 0x2a, 0x2f, 0x7c, 0x39, 0x67, + 0xf4, 0x62, 0x0e, 0xc0, 0xa8, 0x87, 0xb5, 0x81, 0xe2, 0x13, 0x9f, 0xe4, + 0xdd, 0x72, 0xf2, 0x07, 0xca, 0xac, 0x6d, 0xb2, 0x96, 0x53, 0x5a, 0x8f, + 0x66, 0x3c, 0xb4, 0xc1, 0x4f, 0x9a, 0x82, 0x55, 0xcf, 0x0e, 0x27, 0x5f, + 0xc7, 0xd2, 0x28, 0x27, 0x7f, 0x22, 0x6e, 0xa5, 0xe7, 0x32, 0x56, 0x51, + 0x18, 0xe0, 0x85, 0x6d, 0x1f, 0xfc, 0x25, 0x08, 0x18, 0x60, 0x57, 0xfc, + 0x66, 0x94, 0x2c, 0x4c, 0xbe, 0x00, 0xab, 0x9e, 0x73, 0x9b, 0x06, 0xd3, + 0xb5, 0x24, 0xa8, 0x8f, 0xb1, 0x33, 0x99, 0x4c, 0xb4, 0x13, 0x07, 0xcd, + 0x04, 0xdd, 0x77, 0xdc, 0xee, 0x96, 0x02, 0x59, 0xe8, 0x22, 0x07, 0x16, + 0x2e, 0x41, 0xc9, 0xc4, 0x59, 0x70, 0x37, 0x0f, 0x14, 0xc9, 0xcf, 0x90, + 0x57, 0xc2, 0x0d, 0xa3, 0xd7, 0x66, 0xb6, 0x7d, 0x10, 0xd4, 0xfc, 0x18, + 0x66, 0xad, 0xea, 0x5e, 0x64, 0x6c, 0x12, 0x66, 0x3d, 0x96, 0xa5, 0xa8, + 0x9c, 0x49, 0x5c, 0xd4, 0x8d, 0x1c, 0xc3, 0x38, 0xfe, 0x53, 0xc2, 0x71, + 0xd1, 0xc6, 0x41, 0xe2, 0xb9, 0x17, 0x74, 0x6e, 0xcc, 0xf8, 0x72, 0x28, + 0x38, 0x4e, 0x54, 0x9b, 0x0e, 0xa3, 0x3a, 0x43, 0x5c, 0xd5, 0x83, 0x06, + 0xbb, 0x46, 0x16, 0x6e, 0xe3, 0x8a, 0xd5, 0x1e, 0x7f, 0x88, 0x62, 0xac, + 0x35, 0x89, 0xfb, 0xbe, 0x96, 0x1d, 0x87, 0x37, 0xb7, 0x91, 0x63, 0xae, + 0x77, 0x7b, 0x66, 0x60, 0xc1, 0x3e, 0x80, 0x56, 0xb1, 0xc8, 0x0d, 0x16, + 0xde, 0x38, 0x82, 0x66, 0x99, 0x2b, 0x35, 0xd8, 0xb4, 0x5b, 0x4b, 0x3e, + 0x93, 0x96, 0x59, 0xf8, 0x96, 0x7e, 0x7b, 0x27, 0xf4, 0x62, 0xb7, 0xda, + 0x89, 0xa7, 0x34, 0x47, 0xed, 0xb3, 0x42, 0x20, 0xeb, 0xcd, 0xf6, 0xa3, + 0x9f, 0xf7, 0x48, 0x91, 0x17, 0xd2, 0x21, 0xed, 0x5a, 0x22, 0x39, 0xc9, + 0x76, 0x95, 0x36, 0xd9, 0x97, 0x0f, 0x19, 0xce, 0xd3, 0xbc, 0x74, 0x7d, + 0x53, 0x37, 0x3b, 0x4a, 0x97, 0xb7, 0xf8, 0x7e, 0xdd, 0x4c, 0x5f, 0xae, + 0x5c, 0x0b, 0xab, 0x4c, 0x34, 0xa1, 0x7e, 0x34, 0x35, 0xf4, 0xfc, 0x92, + 0xab, 0x2e, 0x6a, 0x15, 0xce, 0x84, 0xae, 0x70, 0xae, 0x85, 0x21, 0xe6, + 0x41, 0x13, 0x31, 0xe0, 0x8f, 0xab, 0x82, 0xe3, 0x09, 0xaf, 0xa4, 0x7c, + 0xb4, 0xb9, 0xb7, 0xc0, 0x67, 0x08, 0xc9, 0x9d, 0xcd, 0x0b, 0x3c, 0xa0, + 0x0c, 0xde, 0x49, 0x2f, 0x40, 0x19, 0x95, 0x64, 0xb9, 0x7c, 0x2a, 0x72, + 0xdd, 0xa2, 0x92, 0x0a, 0x21, 0xeb, 0x8c, 0xc3, 0x6d, 0x52, 0xe7, 0x05, + 0x50, 0x01, 0x55, 0x19, 0x2f, 0xbd, 0x1b, 0x72, 0x73, 0xfe, 0x82, 0x9f, + 0xbf, 0xa0, 0xfe, 0x19, 0x7c, 0x42, 0x6d, 0x76, 0x32, 0x47, 0x36, 0x15, + 0x2e, 0xde, 0xe8, 0xe6, 0xca, 0x07, 0xa3, 0x6b, 0x40, 0x99, 0x96, 0xcd, + 0x19, 0xea, 0x7e, 0xc9, 0x87, 0x9d, 0x3d, 0xa0, 0x82, 0x88, 0xe7, 0xe4, + 0x34, 0x9f, 0xa5, 0x27, 0xdf, 0xae, 0x03, 0x37, 0xa8, 0x35, 0x64, 0x02, + 0x09, 0x09, 0x9e, 0xec, 0x38, 0x0a, 0xff, 0x79, 0x8c, 0x9a, 0x87, 0x66, + 0xcd, 0xe4, 0xf4, 0x9d, 0xa9, 0x07, 0x96, 0x36, 0xae, 0x2e, 0x4e, 0xc5, + 0xe9, 0x86, 0xb2, 0x8e, 0x71, 0x5d, 0xe8, 0xee, 0x84, 0xf3, 0x30, 0x2a, + 0x58, 0x1a, 0x80, 0xb8, 0xaa, 0xb8, 0x1d, 0xc4, 0xae, 0x59, 0x91, 0xf3, + 0x16, 0x9b, 0xa3, 0x8a, 0xa3, 0x26, 0xb2, 0x0a, 0xe5, 0x58, 0xb7, 0x96, + 0x87, 0xfb, 0x00, 0xe4, 0x50, 0x7c, 0xb1, 0x77, 0x3a, 0x18, 0xc2, 0xe3, + 0xc1, 0x12, 0xa6, 0x0d, 0x06, 0xeb, 0x80, 0x6c, 0x5a, 0xee, 0x34, 0xcc, + 0x1c, 0x87, 0x35, 0x46, 0x1d, 0x05, 0x83, 0xd8, 0x91, 0x22, 0xaa, 0xf6, + 0xad, 0x87, 0xab, 0x76, 0x18, 0x79, 0xe2, 0x09, 0xc3, 0xa3, 0x15, 0x67, + 0x3a, 0x7c, 0x0f, 0xa0, 0x4c, 0x7b, 0xfc, 0xfc, 0xdd, 0x5c, 0xe4, 0x86, + 0x58, 0x13, 0xb8, 0x97, 0xae, 0x8c, 0x75, 0xc8, 0x02, 0x1e, 0x33, 0x45, + 0xa9, 0x54, 0x09, 0x15, 0x53, 0x4f, 0x28, 0x47, 0x4d, 0x5f, 0xd0, 0xc7, + 0x09, 0xbd, 0x93, 0xb0, 0x08, 0x79, 0x05, 0xbc, 0xbc, 0xaf, 0x2c, 0xbd, + 0xbb, 0x21, 0xd1, 0x60, 0xb8, 0x81, 0x4c, 0x6c, 0x5e, 0x45, 0x39, 0xa3, + 0x31, 0x54, 0xb7, 0x82, 0xef, 0x86, 0xe4, 0x5e, 0xca, 0xd6, 0xb8, 0x31, + 0xa2, 0x4c, 0x84, 0x5b, 0xac, 0xe5, 0x29, 0xbf, 0xbf, 0x89, 0xb4, 0x4c, + 0xd3, 0x69, 0x66, 0x50, 0xeb, 0xda, 0x7d, 0x00, 0xbb, 0x45, 0x0f, 0xe1, + 0xd1, 0x30, 0x1a, 0xc6, 0x94, 0x66, 0xdc, 0x01, 0x75, 0xce, 0xf8, 0xfc, + 0xd9, 0xce, 0xcf, 0x1f, 0x9e, 0x5a, 0x55, 0xa4, 0x3e, 0xe6, 0x51, 0xc7, + 0x74, 0x40, 0x82, 0x09, 0xea, 0xa0, 0xf5, 0xb2, 0x70, 0x9f, 0x0e, 0xfb, + 0x46, 0x8a, 0x69, 0xbf, 0x07, 0x92, 0xdc, 0x74, 0x03, 0x70, 0xc6, 0x44, + 0x81, 0x66, 0x40, 0xc7, 0xf5, 0xb8, 0xf0, 0x45, 0x0f, 0xca, 0xd8, 0xb0, + 0x9e, 0x48, 0x94, 0xff, 0x85, 0xcb, 0x7b, 0xec, 0x67, 0x5d, 0xfe, 0xe9, + 0x13, 0xd1, 0x67, 0x95, 0xd9, 0x35, 0x9e, 0x8a, 0x53, 0x4d, 0x6b, 0x9d, + 0x42, 0x53, 0xb1, 0x6b, 0x51, 0x1e, 0x35, 0x40, 0x81, 0x92, 0x91, 0x5f, + 0x1f, 0x8e, 0xbe, 0x37, 0xd3, 0x85, 0xab, 0x85, 0x37, 0x1c, 0x0f, 0xae, + 0xd9, 0xf7, 0xa2, 0x75, 0x3d, 0xd9, 0xd7, 0x2a, 0x80, 0xb0, 0x4c, 0x14, + 0x04, 0x40, 0xc5, 0xba, 0x0e, 0xbe, 0xab, 0xcc, 0x38, 0x35, 0x62, 0x6c, + 0xa5, 0xce, 0x49, 0x15, 0x2a, 0x10, 0xb5, 0x6a, 0xd2, 0x3b, 0xd2, 0x6a, + 0xad, 0x2e, 0x34, 0x46, 0x8b, 0x78, 0x57, 0x6e, 0xc4, 0xde, 0x65, 0x68, + 0x05, 0x8f, 0xd6, 0x6e, 0x34, 0xb9, 0xaa, 0x80, 0x77, 0xff, 0x6c, 0x1a, + 0x37, 0x87, 0xdd, 0x33, 0x13, 0x33, 0xa7, 0xa9, 0x3a, 0x90, 0x32, 0x7b, + 0x9b, 0x21, 0x31, 0xc8, 0xf5, 0x4c, 0xa6, 0x73, 0x42, 0x79, 0x46, 0x14, + 0x1b, 0xef, 0xf4, 0x78, 0xd9, 0x7e, 0x6f, 0x31, 0xaa, 0x59, 0x97, 0x34, + 0xe5, 0xe6, 0x67, 0xf3, 0x86, 0xf5, 0x61, 0xe7, 0x51, 0x6d, 0xce, 0xb3, + 0xdc, 0x86, 0xc7, 0x55, 0x43, 0xfa, 0x38, 0x78, 0xb0, 0x8d, 0x03, 0x9c, + 0xe4, 0x6c, 0xca, 0x73, 0x94, 0xa1, 0x0c, 0xb8, 0x11, 0xda, 0x0c, 0x0b, + 0x18, 0x1b, 0xd0, 0x99, 0xe7, 0xa9, 0x0d, 0xc3, 0x36, 0xd7, 0x8c, 0x16, + 0xad, 0x16, 0x1f, 0xb2, 0x3c, 0x07, 0x32, 0x11, 0x6c, 0xd2, 0x8f, 0x33, + 0x37, 0x5c, 0x3e, 0x4f, 0x7a, 0x76, 0xf7, 0x85, 0xcc, 0x68, 0x1a, 0xf9, + 0x26, 0x74, 0x42, 0xc9, 0xea, 0x21, 0x7e, 0x74, 0x3c, 0x4f, 0xde, 0xfb, + 0xd7, 0x83, 0x62, 0x12, 0xc7, 0x4f, 0xfc, 0x47, 0x18, 0x9d, 0xc5, 0xf5, + 0xe9, 0xd7, 0xaa, 0x76, 0x20, 0x99, 0x79, 0xae, 0x9b, 0x7a, 0xde, 0x8b, + 0x95, 0xc2, 0xa5, 0xa3, 0x6a, 0x30, 0x9b, 0x99, 0x63, 0x34, 0x7c, 0xd1, + 0x53, 0xa1, 0x6c, 0xd6, 0xed, 0x7d, 0x8c, 0xba, 0xc8, 0x21, 0xf3, 0xe1, + 0x31, 0x55, 0x3d, 0x88, 0x87, 0x04, 0xc7, 0xc9, 0x65, 0x0c, 0x53, 0x1e, + 0xd4, 0xd9, 0xaa, 0xda, 0xc2, 0x14, 0x88, 0xf2, 0x07, 0x2c, 0x12, 0x4d, + 0x79, 0x54, 0xaa, 0xd9, 0x47, 0x95, 0xf9, 0x7e, 0x26, 0x89, 0x4b, 0x63, + 0x7e, 0x44, 0x06, 0x0e, 0xe2, 0x8d, 0x9a, 0x0a, 0xc3, 0xee, 0x55, 0x13, + 0x55, 0x04, 0xcc, 0xb5, 0x2e, 0xa0, 0x0d, 0xec, 0x76, 0x84, 0xc1, 0x1e, + 0xdd, 0xe6, 0xfa, 0x54, 0x6e, 0x38, 0x30, 0x6f, 0xcc, 0xa4, 0x8d, 0x76, + 0x1e, 0xa3, 0x8e, 0x2c, 0x5e, 0x37, 0xeb, 0x0b, 0xf4, 0xb5, 0x80, 0xde, + 0x58, 0x13, 0x5a, 0x52, 0xdc, 0x65, 0x99, 0x1a, 0x1b, 0x75, 0x0c, 0xbd, + 0x83, 0xe8, 0x90, 0x8e, 0xa9, 0xbf, 0x42, 0x22, 0xe1, 0x3a, 0x31, 0x4e, + 0x54, 0xad, 0xd4, 0x6f, 0x80, 0xb4, 0xb5, 0x82, 0x05, 0x20, 0xd7, 0x38, + 0xd7, 0xeb, 0x25, 0x33, 0xe9, 0x4b, 0xc3, 0x5e, 0xd1, 0x11, 0xb0, 0xd9, + 0x8e, 0x90, 0x48, 0x2a, 0xe3, 0xa0, 0x60, 0x16, 0x70, 0xe3, 0xd1, 0x45, + 0x11, 0x64, 0x91, 0x69, 0x87, 0x1c, 0xbb, 0x91, 0xc4, 0x43, 0x12, 0x62, + 0x99, 0x69, 0xe5, 0x96, 0x01, 0x15, 0xdb, 0xdf, 0x05, 0x55, 0x34, 0xbb, + 0xd6, 0x76, 0x89, 0xcd, 0xb5, 0x4f, 0x2e, 0xa7, 0x6e, 0x15, 0xc9, 0xc0, + 0x8e, 0xa8, 0x63, 0x79, 0x12, 0xfb, 0x7e, 0x69, 0x8f, 0x52, 0x5e, 0xe7, + 0x76, 0x16, 0x28, 0x76, 0xca, 0xcb, 0xd8, 0x0e, 0x4a, 0x93, 0x9d, 0x16, + 0x68, 0x98, 0xf8, 0xc3, 0x39, 0xb2, 0x2d, 0xea, 0xba, 0x72, 0x16, 0x33, + 0xb7, 0xec, 0x61, 0x9e, 0x94, 0x32, 0x01, 0x22, 0xde, 0x66, 0xfd, 0x68, + 0xfa, 0xcf, 0xf2, 0x52, 0x4f, 0x02, 0xe8, 0x25, 0xd3, 0xa3, 0x5b, 0x29, + 0xae, 0xe9, 0x62, 0xfa, 0xd6, 0x1a, 0x50, 0x80, 0x95, 0x96, 0xdf, 0x00, + 0xfc, 0x23, 0xf1, 0x95, 0xef, 0xbb, 0xf5, 0x23, 0x9d, 0x6b, 0xd6, 0xed, + 0xb4, 0xe2, 0x4a, 0xf6, 0xb8, 0x20, 0x83, 0x6b, 0x45, 0x92, 0x29, 0x5a, + 0x02, 0xe9, 0xf7, 0x8e, 0x5c, 0x02, 0xde, 0xb4, 0x9a, 0xdf, 0x18, 0x10, + 0x17, 0x7f, 0xd8, 0x2e, 0x17, 0xc0, 0xf0, 0x6b, 0x3b, 0x88, 0x09, 0x58, + 0xf2, 0x18, 0x22, 0x09, 0x80, 0x4a, 0xe0, 0x51, 0x6f, 0x7a, 0x70, 0x09, + 0x1f, 0xe5, 0xfa, 0xa9, 0x4d, 0x24, 0x1f, 0x18, 0x1c, 0x74, 0xcd, 0x87, + 0x04, 0xfd, 0x85, 0x33, 0x4c, 0x28, 0xbd, 0xa3, 0x66, 0x6c, 0x99, 0x7e, + 0x50, 0x5e, 0xb5, 0x22, 0x33, 0x92, 0xd4, 0xd8, 0x82, 0x4e, 0x38, 0xbe, + 0xcb, 0x3d, 0x5f, 0x19, 0xd1, 0x0f, 0x8b, 0xa1, 0x78, 0x08, 0x1c, 0x10, + 0x0b, 0x77, 0xa7, 0x39, 0x2e, 0x91, 0x83, 0xee, 0x1d, 0x36, 0xd8, 0x77, + 0x87, 0x8a, 0x38, 0x45, 0x3c, 0xbd, 0xb9, 0x88, 0xbb, 0x1b, 0x20, 0xd1, + 0x95, 0xb9, 0x8f, 0x03, 0x46, 0xfa, 0xab, 0x70, 0x68, 0x26, 0xd9, 0xb1, + 0x25, 0x52, 0x5a, 0x77, 0x2d, 0x92, 0xc2, 0x1d, 0xb6, 0x6e, 0xec, 0x67, + 0xef, 0x34, 0xe2, 0x64, 0xb3, 0xa0, 0xae, 0x0c, 0xd9, 0x36, 0xa1, 0xc7, + 0xd8, 0xbf, 0x7a, 0x43, 0xbf, 0xc0, 0xc6, 0x90, 0x60, 0x6a, 0x23, 0xc0, + 0x6a, 0x5d, 0x62, 0x18, 0xac, 0xc1, 0x20, 0x35, 0x17, 0xba, 0x4e, 0x54, + 0xb7, 0xec, 0xd4, 0xad, 0x99, 0x94, 0xa4, 0xda, 0x57, 0xe7, 0x46, 0xed, + 0x47, 0xd1, 0xb4, 0xa2, 0x3e, 0x0f, 0x4a, 0xb6, 0xa6, 0x68, 0x3e, 0x94, + 0xb9, 0x18, 0x30, 0xe0, 0x75, 0x08, 0xe8, 0xf3, 0x21, 0x79, 0x26, 0x68, + 0x6a, 0x65, 0xb6, 0xbe, 0x03, 0x98, 0x8f, 0x04, 0xad, 0x1e, 0xb0, 0x54, + 0xd2, 0x28, 0xdd, 0x4a, 0xe9, 0xf3, 0xa0, 0x06, 0xbf, 0x0b, 0x2a, 0xee, + 0xf8, 0x03, 0x7e, 0x1d, 0x37, 0xc1, 0x32, 0xd1, 0x41, 0xf4, 0x9b, 0xc5, + 0x02, 0x10, 0x6f, 0x55, 0x5a, 0xec, 0x5b, 0xe7, 0x61, 0x05, 0x17, 0xf0, + 0xf8, 0xc6, 0x89, 0xe8, 0xad, 0x32, 0x57, 0x14, 0xe5, 0xf8, 0xf5, 0x88, + 0xd9, 0x73, 0x17, 0x10, 0xa7, 0xc3, 0xf8, 0x78, 0x0b, 0x66, 0xab, 0x63, + 0x4f, 0x96, 0x5d, 0xdf, 0x36, 0x83, 0xc4, 0x6f, 0x20, 0xbd, 0xcb, 0x4c, + 0xd2, 0xfa, 0x35, 0x87, 0xd8, 0xb6, 0xbb, 0xcc, 0xb6, 0xd2, 0x85, 0x03, + 0x6a, 0xea, 0xbb, 0x6d, 0x2f, 0xa2, 0x06, 0xc0, 0xd6, 0x68, 0xd9, 0x7f, + 0xd6, 0xa2, 0x3b, 0x08, 0x6a, 0x98, 0x26, 0x6d, 0x9a, 0x2b, 0x68, 0x51, + 0x78, 0xde, 0xa6, 0x96, 0x50, 0x7b, 0xfc, 0x03, 0x43, 0xf8, 0x21, 0x01, + 0x9d, 0xe2, 0x89, 0x65, 0x47, 0xae, 0x9c, 0x45, 0x5e, 0xa5, 0xce, 0x97, + 0xb3, 0xe6, 0xf6, 0xd4, 0x5a, 0xe8, 0x6b, 0x87, 0xd6, 0xdf, 0xfb, 0x1f, + 0xaf, 0xfb, 0xaf, 0x19, 0xa5, 0xfd, 0xba, 0xe0, 0x22, 0x2f, 0x91, 0x97, + 0xdf, 0xae, 0xe9, 0x39, 0xb1, 0xe4, 0xd3, 0x10, 0xcb, 0xb3, 0x03, 0xb5, + 0x0b, 0xf0, 0xd9, 0x70, 0x1e, 0x9c, 0x63, 0x6f, 0x3a, 0xcf, 0x3c, 0x1b, + 0x86, 0xa3, 0xad, 0x1a, 0xe7, 0x4c, 0x09, 0xd0, 0x80, 0xf6, 0x8b, 0x72, + 0x96, 0x53, 0x7e, 0x66, 0xfb, 0x7c, 0x7c, 0x8a, 0xb0, 0x60, 0xa6, 0x4c, + 0x20, 0xc4, 0x63, 0x69, 0x6a, 0xc3, 0x53, 0xf8, 0x9a, 0x28, 0x30, 0x9d, + 0x6f, 0x0e, 0x1b, 0xb2, 0x2c, 0xe6, 0x94, 0x9f, 0xfc, 0xc0, 0x8d, 0x71, + 0xbe, 0x37, 0xa6, 0xc9, 0xbd, 0x3c, 0x4a, 0xf3, 0xc4, 0xb3, 0x88, 0x4c, + 0x45, 0x26, 0x4e, 0x2f, 0x83, 0x16, 0x70, 0xb6, 0xc7, 0xb2, 0x36, 0xf0, + 0x0c, 0x67, 0xd2, 0x0a, 0xd3, 0xd9, 0x7c, 0x35, 0x29, 0xac, 0xd4, 0x9c, + 0x6d, 0xfc, 0xec, 0x58, 0x92, 0xf0, 0xba, 0x32, 0x00, 0xae, 0xb1, 0xeb, + 0x4d, 0x8c, 0x1a, 0x20, 0xe7, 0x5c, 0xfc, 0x9a, 0x4d, 0x51, 0x24, 0x7b, + 0x52, 0xeb, 0x13, 0x3d, 0xb4, 0xab, 0xda, 0xb3, 0x74, 0x39, 0xd2, 0xf8, + 0x2d, 0xef, 0x9b, 0x0f, 0xae, 0xf5, 0x3c, 0x99, 0x34, 0xbe, 0x15, 0x5c, + 0x9f, 0x5d, 0xae, 0xf4, 0x72, 0xc2, 0xac, 0x06, 0xbe, 0xad, 0xe4, 0x68, + 0xea, 0xd5, 0xa1, 0xdc, 0xdb, 0xf4, 0x61, 0x51, 0xf5, 0x1a, 0x62, 0x15, + 0xfd, 0x00, 0x51, 0x35, 0x53, 0x6c, 0x39, 0x3e, 0xdb, 0x60, 0x0a, 0x52, + 0xc1, 0x52, 0x3c, 0xd7, 0xab, 0x73, 0xea, 0x1e, 0x38, 0x38, 0x65, 0x35, + 0x35, 0x2b, 0x28, 0x04, 0x5c, 0x82, 0xea, 0x4a, 0x9e, 0x96, 0x72, 0xa4, + 0x8e, 0x42, 0xfd, 0x55, 0xa8, 0x66, 0x7a, 0x40, 0xc9, 0xf2, 0xc2, 0x1e, + 0x5d, 0x09, 0x90, 0x32, 0x18, 0xdb, 0x11, 0x4c, 0x6c, 0x9c, 0x27, 0x62, + 0x0a, 0xe6, 0xc1, 0xdf, 0xf2, 0x6a, 0x8c, 0x26, 0xb4, 0xfb, 0xda, 0xa9, + 0x08, 0x10, 0x3a, 0xf0, 0xe1, 0x64, 0xe5, 0x03, 0x81, 0x7d, 0x15, 0x74, + 0xa1, 0x8d, 0x10, 0xc8, 0xbb, 0x6a, 0x7c, 0x60, 0xa1, 0x09, 0x35, 0x19, + 0x2d, 0x70, 0xb5, 0x36, 0xc8, 0x8b, 0x66, 0x5f, 0xe0, 0xe7, 0xea, 0x70, + 0x2f, 0x5d, 0x3f, 0xae, 0x5e, 0x25, 0x84, 0xdd, 0x9b, 0x69, 0x44, 0x37, + 0x7c, 0x6b, 0x9e, 0x81, 0x18, 0x36, 0x4b, 0xff, 0x86, 0x44, 0x2a, 0x39, + 0x66, 0x7f, 0x71, 0x43, 0xe7, 0x65, 0xfe, 0xfd, 0x34, 0xb9, 0xd9, 0x5a, + 0x00, 0xd1, 0x41, 0x43, 0xc7, 0xbc, 0x65, 0x68, 0xb7, 0x73, 0xff, 0x19, + 0xd3, 0xed, 0x15, 0xa4, 0x67, 0xa1, 0x53, 0x0e, 0xa6, 0xfb, 0x25, 0xce, + 0x9d, 0x5b, 0x73, 0x08, 0xf3, 0x3b, 0x69, 0xe4, 0x94, 0x9b, 0x94, 0x03, + 0xb3, 0x8a, 0x2e, 0x07, 0x0c, 0xef, 0x18, 0x4c, 0x2b, 0x1c, 0x83, 0x9f, + 0x25, 0x20, 0x29, 0x72, 0x11, 0xa0, 0xaa, 0xed, 0x0c, 0xf9, 0xce, 0x94, + 0x0d, 0x7a, 0xb6, 0xb3, 0xa4, 0x57, 0xd6, 0x61, 0xca, 0x1a, 0x0e, 0x89, + 0x6d, 0x99, 0x4d, 0x06, 0xcd, 0x83, 0x7e, 0x09, 0x14, 0x5b, 0xe7, 0x4c, + 0x72, 0xa8, 0x98, 0xc8, 0x27, 0xf3, 0x70, 0x89, 0x87, 0x11, 0xbb, 0x98, + 0x82, 0x77, 0x9d, 0xaa, 0x95, 0x8c, 0xc1, 0xf8, 0x39, 0x27, 0xd5, 0x64, + 0x59, 0x6a, 0x8c, 0xbe, 0xe2, 0xe1, 0xd1, 0x6b, 0xe3, 0xaf, 0x30, 0x6f, + 0xf4, 0x9e, 0x35, 0x0b, 0x10, 0x24, 0x77, 0xd8, 0xa4, 0x30, 0x2e, 0xf7, + 0x97, 0xfd, 0xef, 0x1e, 0x9e, 0xf2, 0xbd, 0xf2, 0x41, 0x73, 0x19, 0xe6, + 0x7b, 0x7f, 0x74, 0x11, 0x91, 0x38, 0xc5, 0xac, 0xd5, 0xb0, 0x48, 0xc4, + 0xe9, 0x41, 0xd4, 0x50, 0x76, 0x13, 0xbf, 0xec, 0xe8, 0x3a, 0xa8, 0x84, + 0x42, 0x98, 0x12, 0x64, 0x95, 0x85, 0x79, 0x29, 0xea, 0x3a, 0xf9, 0xa4, + 0x5c, 0x9c, 0x35, 0x01, 0x68, 0x71, 0xb9, 0x5b, 0xbe, 0xaa, 0x76, 0x9e, + 0x63, 0x1c, 0xc1, 0x83, 0x94, 0xc6, 0x89, 0x2b, 0x1d, 0x00, 0x43, 0x74, + 0x00, 0x41, 0x93, 0x58, 0x52, 0xf9, 0x13, 0xfe, 0x9f, 0x7a, 0xb7, 0x3d, + 0x6b, 0x70, 0x4e, 0x4f, 0x8f, 0xf4, 0x9c, 0xe4, 0x97, 0x62, 0xaf, 0x69, + 0x45, 0xec, 0xf4, 0x53, 0x71, 0xdc, 0xc7, 0x8d, 0x6f, 0xb2, 0x9d, 0xec, + 0x43, 0xdd, 0xc0, 0xe5, 0xd1, 0x6c, 0x1a, 0x82, 0x19, 0xf6, 0x18, 0xd3, + 0x59, 0x0e, 0x07, 0x81, 0x5a, 0x23, 0x10, 0x8b, 0xaa, 0x0b, 0x99, 0xc8, + 0x34, 0xc2, 0xd0, 0xa9, 0x69, 0x7f, 0x54, 0xe3, 0xc4, 0xa0, 0xe7, 0x4b, + 0x31, 0x90, 0xe7, 0x3b, 0x45, 0x9b, 0x7f, 0xae, 0xd2, 0xab, 0x22, 0xb9, + 0xfc, 0x07, 0x39, 0x4b, 0x45, 0x83, 0x8d, 0x41, 0x7a, 0x52, 0xb2, 0xae, + 0x71, 0x78, 0x17, 0x63, 0xfa, 0xbe, 0x59, 0xca, 0xf0, 0xfd, 0x68, 0xe5, + 0xc4, 0x9a, 0x74, 0x3d, 0xec, 0xd4, 0x8b, 0xa1, 0x2c, 0x31, 0x4d, 0x73, + 0xfd, 0x5c, 0x1e, 0xeb, 0x5f, 0xf6, 0x42, 0x0d, 0x79, 0x5f, 0x64, 0x10, + 0xae, 0xb2, 0xf6, 0x9e, 0xa8, 0xab, 0xa5, 0x2b, 0x9a, 0xcf, 0x25, 0xfa, + 0xa2, 0xb3, 0xdc, 0x30, 0x3d, 0x08, 0x4e, 0xbb, 0x7b, 0x0c, 0x28, 0x34, + 0x9d, 0xda, 0xc4, 0x94, 0xa4, 0xf4, 0x1e, 0x78, 0x8b, 0xa9, 0xd3, 0xa7, + 0x1c, 0x2a, 0x27, 0x14, 0xa0, 0x44, 0x1a, 0x9a, 0x87, 0x72, 0xa5, 0x6d, + 0x69, 0x46, 0xe5, 0xc1, 0x4f, 0x29, 0x87, 0xc0, 0xa7, 0xa8, 0x96, 0xde, + 0xa9, 0x63, 0x08, 0xd8, 0x4a, 0xa1, 0x25, 0x43, 0x76, 0x41, 0xf7, 0x9f, + 0x17, 0xe3, 0xe1, 0x4b, 0xc6, 0x2b, 0x79, 0xea, 0xd5, 0xa7, 0x72, 0x16, + 0x0a, 0x8c, 0xcd, 0x49, 0x70, 0x75, 0xd4, 0x59, 0x4a, 0x19, 0x7b, 0x31, + 0x02, 0x7a, 0x3a, 0x20, 0x15, 0x62, 0x7e, 0x4e, 0x6f, 0xac, 0xd0, 0xd1, + 0x29, 0xbd, 0x2d, 0xa1, 0xc6, 0x3e, 0xa6, 0x1a, 0x26, 0x18, 0x96, 0x98, + 0x12, 0x56, 0x37, 0xbf, 0xb4, 0x91, 0x57, 0xe8, 0xda, 0x61, 0x7c, 0x2f, + 0x3e, 0xd4, 0x51, 0xfe, 0xe8, 0x5b, 0x00, 0x30, 0x08, 0xf6, 0x4e, 0x69, + 0xa8, 0x1a, 0x2b, 0x82, 0x41, 0x85, 0xa9, 0xd9, 0x3c, 0xc8, 0x02, 0x91, + 0x99, 0xd4, 0xa2, 0xfd, 0x9d, 0x1b, 0x08, 0xfc, 0x41, 0x3e, 0x10, 0x6b, + 0x80, 0x74, 0x3d, 0x72, 0x61, 0x97, 0xdd, 0x96, 0xec, 0xf4, 0xd6, 0x6d, + 0x68, 0x02, 0x6e, 0xbb, 0x55, 0x9d, 0x6f, 0x11, 0xde, 0xd1, 0xad, 0x6d, + 0x42, 0x96, 0x2c, 0x42, 0x1e, 0xa9, 0x19, 0x42, 0x22, 0x38, 0x38, 0x18, + 0x3c, 0x4b, 0xc1, 0x9c, 0x0f, 0xe1, 0x34, 0x61, 0x06, 0x77, 0x54, 0x04, + 0xe0, 0x87, 0x94, 0x5c, 0xc9, 0xa1, 0x35, 0x55, 0x3d, 0x4a, 0xf2, 0x4f, + 0x05, 0x11, 0x98, 0x6f, 0x3c, 0x85, 0x84, 0xe6, 0xf8, 0x71, 0x8a, 0xdf, + 0xe9, 0x9a, 0xe3, 0x70, 0xd6, 0x36, 0xd6, 0xc8, 0x66, 0x3e, 0xba, 0x7c, + 0x0a, 0x23, 0x0a, 0xd0, 0xb6, 0x66, 0x68, 0xa8, 0xdf, 0x37, 0x17, 0xfb, + 0xdd, 0x9c, 0x8b, 0xc7, 0x8e, 0xc4, 0x4f, 0x40, 0x08, 0x23, 0x58, 0x15, + 0xa2, 0xba, 0xef, 0xdf, 0x67, 0xcd, 0x1f, 0xb6, 0xc4, 0xea, 0xce, 0x81, + 0x38, 0x58, 0x92, 0x57, 0xcf, 0x83, 0x47, 0x29, 0x9f, 0xde, 0x9b, 0xde, + 0x01, 0xfe, 0x68, 0x91, 0x67, 0x06, 0x9d, 0x31, 0xd0, 0xb9, 0xc3, 0xbb, + 0xc3, 0x6b, 0xa0, 0x04, 0x1e, 0x34, 0xd5, 0x38, 0xd4, 0xac, 0x70, 0xae, + 0xab, 0xb2, 0xbd, 0x4b, 0xa0, 0xad, 0x2b, 0x82, 0xaf, 0x8c, 0x90, 0x4d, + 0xd3, 0xca, 0x71, 0x35, 0x75, 0x89, 0xe5, 0x42, 0x91, 0x46, 0x8d, 0x18, + 0x04, 0x7a, 0xb9, 0xaa, 0x3b, 0xe7, 0x1e, 0x8c, 0x4e, 0xf9, 0x6e, 0x74, + 0xaa, 0x2e, 0x36, 0x86, 0xfb, 0xef, 0x9c, 0xd7, 0xba, 0x5e, 0x2e, 0x3c, + 0x40, 0xce, 0x8b, 0x2b, 0x94, 0x55, 0xf2, 0xd4, 0x7d, 0xbf, 0x8c, 0x8a, + 0xa8, 0x59, 0x84, 0x6f, 0x32, 0x95, 0xc5, 0xcc, 0xad, 0xee, 0x30, 0x23, + 0x7c, 0x54, 0xea, 0x60, 0xb8, 0x88, 0x12, 0x45, 0x03, 0xbc, 0xe3, 0x92, + 0x9f, 0xa8, 0x5b, 0x07, 0x97, 0x53, 0x0d, 0xe1, 0xe3, 0x3d, 0xdf, 0xf2, + 0x2a, 0x12, 0xee, 0xdf, 0x73, 0x8d, 0x41, 0xf4, 0xe4, 0x2c, 0xb4, 0xd4, + 0x9e, 0xfe, 0xf2, 0xe6, 0xa0, 0x9e, 0x2a, 0x3a, 0x36, 0x26, 0x7e, 0xd9, + 0xe1, 0x22, 0xee, 0x0b, 0x5b, 0x48, 0xd2, 0xa9, 0x55, 0xab, 0x50, 0x7c, + 0xf6, 0xc8, 0x56, 0x31, 0xbb, 0x51, 0xe9, 0x31, 0x4d, 0xaa, 0x13, 0x3a, + 0x99, 0x9f, 0x8c, 0x59, 0x6a, 0xc9, 0xf1, 0x0a, 0x89, 0xcc, 0x39, 0x98, + 0xbd, 0xc3, 0x93, 0x97, 0x28, 0xe5, 0x73, 0x94, 0xf2, 0x0a, 0x7a, 0x09, + 0x38, 0x0b, 0xab, 0xd8, 0x49, 0x98, 0x14, 0x34, 0x32, 0x9d, 0xef, 0x9d, + 0x47, 0xdb, 0x82, 0xb9, 0x84, 0xd6, 0xd7, 0x9f, 0xf7, 0xdf, 0x79, 0x5b, + 0xe8, 0x92, 0x44, 0x31, 0x5d, 0x42, 0x80, 0x90, 0x8d, 0x36, 0xa2, 0x39, + 0x02, 0x64, 0x21, 0xa2, 0xb8, 0xfc, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00, + 0x04, 0x00, 0x00, 0x00, 0x4c, 0xe9, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, + 0xd8, 0x03, 0x00, 0x00, 0xdc, 0x03, 0x00, 0x00, 0xe0, 0x03, 0x00, 0x00, + 0x0f, 0x00, 0x00, 0x00, 0xa8, 0x03, 0x00, 0x00, 0x50, 0x03, 0x00, 0x00, + 0x04, 0x03, 0x00, 0x00, 0xac, 0x02, 0x00, 0x00, 0x74, 0x02, 0x00, 0x00, + 0x2c, 0x02, 0x00, 0x00, 0xf4, 0x01, 0x00, 0x00, 0xac, 0x01, 0x00, 0x00, + 0x74, 0x01, 0x00, 0x00, 0x2c, 0x01, 0x00, 0x00, 0xe4, 0x00, 0x00, 0x00, + 0x9c, 0x00, 0x00, 0x00, 0x64, 0x00, 0x00, 0x00, 0x28, 0x00, 0x00, 0x00, + 0x04, 0x00, 0x00, 0x00, 0x9e, 0xfc, 0xff, 0xff, 0x0c, 0x00, 0x00, 0x00, + 0x10, 0x00, 0x00, 0x00, 0x0e, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x35, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x33, 0x00, 0x00, 0x00, + 0x5e, 0xfd, 0xff, 0xff, 0x1c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09, + 0x1c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x06, 0x00, 0x08, 0x00, 0x04, 0x00, 0x06, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x80, 0x3f, 0x01, 0x00, 0x00, 0x00, 0x33, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x32, 0x00, 0x00, 0x00, 0x96, 0xfd, 0xff, 0xff, + 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x10, 0x00, 0x00, 0x00, + 0x14, 0x00, 0x00, 0x00, 0x0b, 0x00, 0x00, 0x00, 0x88, 0xfd, 0xff, 0xff, + 0x01, 0x00, 0x00, 0x00, 0x32, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, + 0x2f, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x31, 0x00, 0x00, 0x00, + 0xca, 0xfd, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, + 0x18, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x0a, 0x00, 0x00, 0x00, + 0x78, 0xfd, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x2f, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, + 0x2a, 0x00, 0x00, 0x00, 0x2b, 0x00, 0x00, 0x00, 0x2c, 0x00, 0x00, 0x00, + 0x2d, 0x00, 0x00, 0x00, 0x2e, 0x00, 0x00, 0x00, 0x0e, 0xfe, 0xff, 0xff, + 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x18, 0x00, 0x00, 0x00, + 0x1c, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0xbc, 0xfd, 0xff, 0xff, + 0x00, 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x2a, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x25, 0x00, 0x00, 0x00, + 0x26, 0x00, 0x00, 0x00, 0x27, 0x00, 0x00, 0x00, 0x28, 0x00, 0x00, 0x00, + 0x29, 0x00, 0x00, 0x00, 0x52, 0xfe, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x06, 0x18, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, + 0x08, 0x00, 0x00, 0x00, 0x00, 0xfe, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, + 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x25, 0x00, 0x00, 0x00, + 0x05, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x21, 0x00, 0x00, 0x00, + 0x22, 0x00, 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, + 0x96, 0xfe, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, + 0x10, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, + 0x88, 0xfe, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0x03, 0x00, 0x00, 0x00, 0x1d, 0x00, 0x00, 0x00, 0x1e, 0x00, 0x00, 0x00, + 0x1f, 0x00, 0x00, 0x00, 0xca, 0xfe, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x06, 0x18, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, + 0x06, 0x00, 0x00, 0x00, 0x78, 0xfe, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, + 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x1d, 0x00, 0x00, 0x00, + 0x05, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, 0x19, 0x00, 0x00, 0x00, + 0x1a, 0x00, 0x00, 0x00, 0x1b, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, + 0x0e, 0xff, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, + 0x10, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, + 0x00, 0xff, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, + 0x03, 0x00, 0x00, 0x00, 0x15, 0x00, 0x00, 0x00, 0x16, 0x00, 0x00, 0x00, + 0x17, 0x00, 0x00, 0x00, 0x42, 0xff, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x06, 0x18, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, + 0x04, 0x00, 0x00, 0x00, 0xf0, 0xfe, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, + 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x15, 0x00, 0x00, 0x00, + 0x05, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x11, 0x00, 0x00, 0x00, + 0x12, 0x00, 0x00, 0x00, 0x13, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, + 0x86, 0xff, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, + 0x10, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, + 0x78, 0xff, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0x03, 0x00, 0x00, 0x00, 0x0d, 0x00, 0x00, 0x00, 0x0e, 0x00, 0x00, 0x00, + 0x0f, 0x00, 0x00, 0x00, 0xba, 0xff, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x06, 0x18, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, + 0x02, 0x00, 0x00, 0x00, 0x68, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, + 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x0d, 0x00, 0x00, 0x00, + 0x05, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, + 0x0a, 0x00, 0x00, 0x00, 0x0b, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x0e, 0x00, 0x18, 0x00, 0x14, 0x00, 0x10, 0x00, 0x0c, 0x00, + 0x0b, 0x00, 0x04, 0x00, 0x0e, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x08, 0x14, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x04, 0x00, 0x04, 0x00, 0x04, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, + 0x05, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x0e, 0x00, 0x14, 0x00, 0x00, 0x00, 0x10, 0x00, 0x0c, 0x00, + 0x0b, 0x00, 0x04, 0x00, 0x0e, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x06, 0x1c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0x08, 0x00, 0x0c, 0x00, 0x08, 0x00, 0x07, 0x00, 0x08, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x05, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, + 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0a, 0x00, 0x10, 0x00, 0x0c, 0x00, + 0x08, 0x00, 0x04, 0x00, 0x0a, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00, + 0x10, 0x00, 0x00, 0x00, 0x0d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x34, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x35, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x34, 0x00, 0x00, 0x00, 0x36, 0x00, 0x00, 0x00, 0xac, 0x12, 0x00, 0x00, + 0x3c, 0x12, 0x00, 0x00, 0xdc, 0x11, 0x00, 0x00, 0x90, 0x11, 0x00, 0x00, + 0x24, 0x11, 0x00, 0x00, 0xac, 0x10, 0x00, 0x00, 0x5c, 0x10, 0x00, 0x00, + 0x10, 0x10, 0x00, 0x00, 0xa8, 0x0f, 0x00, 0x00, 0x58, 0x0f, 0x00, 0x00, + 0x04, 0x0f, 0x00, 0x00, 0xb8, 0x0e, 0x00, 0x00, 0x4c, 0x0e, 0x00, 0x00, + 0xe4, 0x0d, 0x00, 0x00, 0x94, 0x0d, 0x00, 0x00, 0x48, 0x0d, 0x00, 0x00, + 0xe0, 0x0c, 0x00, 0x00, 0x90, 0x0c, 0x00, 0x00, 0x3c, 0x0c, 0x00, 0x00, + 0xf0, 0x0b, 0x00, 0x00, 0x84, 0x0b, 0x00, 0x00, 0x1c, 0x0b, 0x00, 0x00, + 0xcc, 0x0a, 0x00, 0x00, 0x80, 0x0a, 0x00, 0x00, 0x18, 0x0a, 0x00, 0x00, + 0xc8, 0x09, 0x00, 0x00, 0x74, 0x09, 0x00, 0x00, 0x28, 0x09, 0x00, 0x00, + 0xbc, 0x08, 0x00, 0x00, 0x54, 0x08, 0x00, 0x00, 0x04, 0x08, 0x00, 0x00, + 0xb8, 0x07, 0x00, 0x00, 0x50, 0x07, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, + 0xac, 0x06, 0x00, 0x00, 0x60, 0x06, 0x00, 0x00, 0xf4, 0x05, 0x00, 0x00, + 0x8c, 0x05, 0x00, 0x00, 0x3c, 0x05, 0x00, 0x00, 0xe8, 0x04, 0x00, 0x00, + 0x9c, 0x04, 0x00, 0x00, 0x30, 0x04, 0x00, 0x00, 0xc8, 0x03, 0x00, 0x00, + 0x78, 0x03, 0x00, 0x00, 0x24, 0x03, 0x00, 0x00, 0xd8, 0x02, 0x00, 0x00, + 0x6c, 0x02, 0x00, 0x00, 0x04, 0x02, 0x00, 0x00, 0xb4, 0x01, 0x00, 0x00, + 0x68, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x9c, 0x00, 0x00, 0x00, + 0x50, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x3a, 0xee, 0xff, 0xff, + 0x10, 0x00, 0x00, 0x00, 0x2c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, + 0x2c, 0x00, 0x00, 0x00, 0x94, 0xee, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, + 0x10, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x38, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x82, 0xee, 0xff, 0xff, + 0x10, 0x00, 0x00, 0x00, 0x2c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, + 0x2c, 0x00, 0x00, 0x00, 0xdc, 0xee, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, + 0x10, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x0a, 0xd7, 0x23, 0x3a, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x60, 0x00, 0x00, 0x00, 0xca, 0xee, 0xff, 0xff, + 0x10, 0x00, 0x00, 0x00, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, + 0x44, 0x00, 0x00, 0x00, 0xbc, 0xee, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, + 0x18, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0x01, 0x00, 0x00, 0x00, 0x80, 0x00, 0x80, 0x37, 0x01, 0x00, 0x00, 0x00, + 0xc2, 0xff, 0x7f, 0x3f, 0x01, 0x00, 0x00, 0x00, 0xd2, 0x6f, 0x75, 0x36, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x2a, 0xef, 0xff, 0xff, + 0x10, 0x00, 0x00, 0x00, 0x48, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09, + 0x48, 0x00, 0x00, 0x00, 0x1c, 0xef, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, + 0x1c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x06, 0x16, 0x49, 0x3d, + 0x01, 0x00, 0x00, 0x00, 0x87, 0x19, 0xb1, 0x40, 0x01, 0x00, 0x00, 0x00, + 0x58, 0x80, 0xdf, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, + 0xfa, 0xef, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, + 0x1f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x2c, 0x00, 0x00, 0x00, + 0xec, 0xef, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x5d, 0xd1, 0xce, 0x39, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, + 0x42, 0xf0, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, + 0x1e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09, 0x2c, 0x00, 0x00, 0x00, + 0x34, 0xf0, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x23, 0x20, 0xb6, 0x3b, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, + 0x20, 0x00, 0x00, 0x00, 0x22, 0xf0, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, + 0x48, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09, 0x48, 0x00, 0x00, 0x00, + 0x14, 0xf0, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, + 0x20, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0xa2, 0x5a, 0x91, 0x3d, 0x01, 0x00, 0x00, 0x00, + 0x47, 0xc9, 0x90, 0x41, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0xf2, 0xff, 0xff, + 0x00, 0x00, 0x00, 0x01, 0x10, 0x00, 0x00, 0x00, 0x48, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x07, 0x48, 0x00, 0x00, 0x00, 0x7c, 0xf0, 0xff, 0xff, + 0x10, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0x24, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x81, 0xb7, 0xf1, 0x39, 0x01, 0x00, 0x00, 0x00, 0x9e, 0xb5, 0x71, 0x41, + 0x01, 0x00, 0x00, 0x00, 0x33, 0x20, 0x70, 0xc1, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x00, 0x04, 0x00, 0x00, 0x5a, 0xf1, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, + 0x30, 0x00, 0x00, 0x00, 0x1d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, + 0x2c, 0x00, 0x00, 0x00, 0x4c, 0xf1, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, + 0x10, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x7a, 0x08, 0x97, 0x35, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x20, 0x00, 0x00, 0x00, 0xa2, 0xf1, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, + 0x34, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, + 0x30, 0x00, 0x00, 0x00, 0x94, 0xf1, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, + 0x14, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x2f, 0xf5, 0x1f, 0x3b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x02, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0xf2, 0xf1, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, + 0x1b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09, 0x2c, 0x00, 0x00, 0x00, + 0xe4, 0xf1, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0xc7, 0xea, 0x1a, 0x3c, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0x20, 0x00, 0x00, 0x00, 0xd2, 0xf1, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, + 0x48, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09, 0x48, 0x00, 0x00, 0x00, + 0xc4, 0xf1, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, + 0x20, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0xb2, 0x78, 0x3f, 0x3d, 0x01, 0x00, 0x00, 0x00, + 0x39, 0xb9, 0x3e, 0x41, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0xb0, 0xf3, 0xff, 0xff, + 0x00, 0x00, 0x00, 0x01, 0x10, 0x00, 0x00, 0x00, 0x48, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x07, 0x48, 0x00, 0x00, 0x00, 0x2c, 0xf2, 0xff, 0xff, + 0x10, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0x24, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x89, 0x25, 0xf2, 0x39, 0x01, 0x00, 0x00, 0x00, 0xde, 0xdc, 0x1d, 0x41, + 0x01, 0x00, 0x00, 0x00, 0xa5, 0x23, 0x72, 0xc1, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x00, 0x04, 0x00, 0x00, 0x0a, 0xf3, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, + 0x30, 0x00, 0x00, 0x00, 0x1a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, + 0x2c, 0x00, 0x00, 0x00, 0xfc, 0xf2, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, + 0x10, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x42, 0xe0, 0x90, 0x35, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x20, 0x00, 0x00, 0x00, 0x52, 0xf3, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, + 0x34, 0x00, 0x00, 0x00, 0x19, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, + 0x30, 0x00, 0x00, 0x00, 0x44, 0xf3, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, + 0x14, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x1a, 0x2a, 0x19, 0x3b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x02, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0xa2, 0xf3, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, + 0x18, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09, 0x2c, 0x00, 0x00, 0x00, + 0x94, 0xf3, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0xe9, 0x36, 0xdd, 0x3b, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0x20, 0x00, 0x00, 0x00, 0x82, 0xf3, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, + 0x48, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09, 0x48, 0x00, 0x00, 0x00, + 0x74, 0xf3, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, + 0x20, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0xdd, 0x43, 0x7e, 0x3d, 0x01, 0x00, 0x00, 0x00, + 0x99, 0x45, 0x7d, 0x41, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x60, 0xf5, 0xff, 0xff, + 0x00, 0x00, 0x00, 0x01, 0x10, 0x00, 0x00, 0x00, 0x48, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x07, 0x48, 0x00, 0x00, 0x00, 0xdc, 0xf3, 0xff, 0xff, + 0x10, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0x24, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x5c, 0xfd, 0xa9, 0x39, 0x01, 0x00, 0x00, 0x00, 0x1e, 0xaa, 0x87, 0x40, + 0x01, 0x00, 0x00, 0x00, 0x08, 0xfc, 0x29, 0xc1, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x00, 0x04, 0x00, 0x00, 0xba, 0xf4, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, + 0x30, 0x00, 0x00, 0x00, 0x17, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, + 0x2c, 0x00, 0x00, 0x00, 0xac, 0xf4, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, + 0x10, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x55, 0xf7, 0x52, 0x35, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x20, 0x00, 0x00, 0x00, 0x02, 0xf5, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, + 0x34, 0x00, 0x00, 0x00, 0x16, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, + 0x30, 0x00, 0x00, 0x00, 0xf4, 0xf4, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, + 0x14, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0xd0, 0xda, 0x1e, 0x3b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x02, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0x52, 0xf5, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, + 0x15, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09, 0x2c, 0x00, 0x00, 0x00, + 0x44, 0xf5, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x8e, 0x0b, 0xa8, 0x3b, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0x10, 0x00, 0x00, 0x00, 0x32, 0xf5, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, + 0x48, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09, 0x48, 0x00, 0x00, 0x00, + 0x24, 0xf5, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, + 0x20, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0xf5, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x12, 0x1c, 0x6e, 0x3d, 0x01, 0x00, 0x00, 0x00, + 0xdd, 0x4a, 0x00, 0x41, 0x01, 0x00, 0x00, 0x00, 0x31, 0xc6, 0xd9, 0xc0, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x02, 0xf6, 0xff, 0xff, + 0x14, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x02, 0x2c, 0x00, 0x00, 0x00, 0xf4, 0xf5, 0xff, 0xff, + 0x08, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x80, 0x9d, 0x16, 0x39, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x4a, 0xf6, 0xff, 0xff, + 0x14, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x13, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x09, 0x2c, 0x00, 0x00, 0x00, 0x3c, 0xf6, 0xff, 0xff, + 0x08, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0xa4, 0x34, 0xab, 0x3b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x02, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, + 0x2a, 0xf6, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, 0x48, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x09, 0x48, 0x00, 0x00, 0x00, 0x1c, 0xf6, 0xff, 0xff, + 0x10, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0x24, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x2e, 0x36, 0xe1, 0x3c, 0x01, 0x00, 0x00, 0x00, 0xf8, 0x54, 0xe0, 0x40, + 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x40, 0x00, 0x00, 0x00, 0x08, 0xf8, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, + 0x10, 0x00, 0x00, 0x00, 0x48, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, + 0x48, 0x00, 0x00, 0x00, 0x84, 0xf6, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, + 0x1c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xe1, 0xd0, 0xa2, 0x39, + 0x01, 0x00, 0x00, 0x00, 0x9b, 0xcf, 0x22, 0x41, 0x01, 0x00, 0x00, 0x00, + 0xea, 0x23, 0x12, 0xc1, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, + 0x62, 0xf7, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, + 0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x2c, 0x00, 0x00, 0x00, + 0x54, 0xf7, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x99, 0xd3, 0xf7, 0x34, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, + 0xaa, 0xf7, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, 0x34, 0x00, 0x00, 0x00, + 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0x30, 0x00, 0x00, 0x00, + 0x9c, 0xf7, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x10, 0xd5, 0xc2, 0x3a, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, + 0x40, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0xfa, 0xf7, 0xff, 0xff, + 0x14, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x09, 0x2c, 0x00, 0x00, 0x00, 0xec, 0xf7, 0xff, 0xff, + 0x08, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x8f, 0x84, 0xa2, 0x3b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x02, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0xda, 0xf7, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, 0x48, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x09, 0x48, 0x00, 0x00, 0x00, 0xcc, 0xf7, 0xff, 0xff, + 0x10, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0x24, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xf7, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x64, 0xeb, 0x8e, 0x3d, 0x01, 0x00, 0x00, 0x00, 0x3b, 0xf3, 0x17, 0x41, + 0x01, 0x00, 0x00, 0x00, 0xb7, 0xc5, 0x04, 0xc1, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x10, 0x00, 0x00, 0x00, 0xaa, 0xf8, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, + 0x30, 0x00, 0x00, 0x00, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, + 0x2c, 0x00, 0x00, 0x00, 0x9c, 0xf8, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, + 0x10, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x92, 0xa8, 0x98, 0x39, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x10, 0x00, 0x00, 0x00, 0xf2, 0xf8, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, + 0x30, 0x00, 0x00, 0x00, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09, + 0x2c, 0x00, 0x00, 0x00, 0xe4, 0xf8, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, + 0x10, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x58, 0x76, 0xb9, 0x3b, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, + 0x10, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0xd2, 0xf8, 0xff, 0xff, + 0x10, 0x00, 0x00, 0x00, 0x48, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09, + 0x48, 0x00, 0x00, 0x00, 0xc4, 0xf8, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, + 0x1c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x43, 0xb8, 0x52, 0x3d, + 0x01, 0x00, 0x00, 0x00, 0x8b, 0xe5, 0x51, 0x41, 0x01, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, + 0xb0, 0xfa, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x10, 0x00, 0x00, 0x00, + 0x48, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0x48, 0x00, 0x00, 0x00, + 0x2c, 0xf9, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, + 0x20, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0xe3, 0xa1, 0xf0, 0x39, 0x01, 0x00, 0x00, 0x00, + 0x02, 0xa0, 0x70, 0x41, 0x01, 0x00, 0x00, 0x00, 0x87, 0x08, 0x65, 0xc1, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x0a, 0xfa, 0xff, 0xff, + 0x14, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x0d, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x02, 0x2c, 0x00, 0x00, 0x00, 0xfc, 0xf9, 0xff, 0xff, + 0x08, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0xcc, 0x98, 0x41, 0x35, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x52, 0xfa, 0xff, 0xff, + 0x14, 0x00, 0x00, 0x00, 0x34, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x07, 0x30, 0x00, 0x00, 0x00, 0x44, 0xfa, 0xff, 0xff, + 0x08, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0xed, 0xf5, 0xcd, 0x3a, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, + 0x08, 0x00, 0x00, 0x00, 0xa2, 0xfa, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, + 0x30, 0x00, 0x00, 0x00, 0x0b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09, + 0x2c, 0x00, 0x00, 0x00, 0x94, 0xfa, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, + 0x10, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x9d, 0xca, 0xd4, 0x3b, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, + 0x40, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x82, 0xfa, 0xff, 0xff, + 0x10, 0x00, 0x00, 0x00, 0x48, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09, + 0x48, 0x00, 0x00, 0x00, 0x74, 0xfa, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, + 0x1c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x58, 0x58, 0xce, 0x3d, + 0x01, 0x00, 0x00, 0x00, 0x00, 0x0e, 0x49, 0x41, 0x01, 0x00, 0x00, 0x00, + 0x01, 0x06, 0x52, 0xc1, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0x52, 0xfb, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, + 0x0a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x2c, 0x00, 0x00, 0x00, + 0x44, 0xfb, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x9b, 0x9c, 0xe1, 0x39, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0x9a, 0xfb, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, + 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09, 0x2c, 0x00, 0x00, 0x00, + 0x8c, 0xfb, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0xf8, 0xb6, 0xc3, 0x3b, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0x40, 0x00, 0x00, 0x00, 0x7a, 0xfb, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, + 0x48, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09, 0x48, 0x00, 0x00, 0x00, + 0x6c, 0xfb, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, + 0x20, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x94, 0x8d, 0x93, 0x3d, 0x01, 0x00, 0x00, 0x00, + 0x06, 0xfa, 0x92, 0x41, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x58, 0xfd, 0xff, 0xff, + 0x00, 0x00, 0x00, 0x01, 0x10, 0x00, 0x00, 0x00, 0x48, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x07, 0x48, 0x00, 0x00, 0x00, 0xd4, 0xfb, 0xff, 0xff, + 0x10, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0x24, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x7a, 0xf6, 0x5f, 0x3a, 0x01, 0x00, 0x00, 0x00, 0xba, 0xf4, 0xdf, 0x41, + 0x01, 0x00, 0x00, 0x00, 0xf4, 0x7c, 0xcf, 0xc1, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x00, 0x02, 0x00, 0x00, 0xb2, 0xfc, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, + 0x30, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, + 0x2c, 0x00, 0x00, 0x00, 0xa4, 0xfc, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, + 0x10, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x46, 0x2f, 0xc4, 0x35, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x40, 0x00, 0x00, 0x00, 0xfa, 0xfc, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, + 0x34, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, + 0x30, 0x00, 0x00, 0x00, 0xec, 0xfc, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, + 0x14, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x8f, 0x3f, 0xe0, 0x3a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x02, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, + 0x4a, 0xfd, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, + 0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09, 0x2c, 0x00, 0x00, 0x00, + 0x3c, 0xfd, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x25, 0xd7, 0xa9, 0x3b, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, + 0x10, 0x00, 0x00, 0x00, 0x2a, 0xfd, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, + 0x48, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09, 0x48, 0x00, 0x00, 0x00, + 0x1c, 0xfd, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, + 0x20, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0xe3, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0xc4, 0xf4, 0x39, 0x3e, 0x01, 0x00, 0x00, 0x00, + 0xf4, 0x1f, 0xe3, 0x41, 0x01, 0x00, 0x00, 0x00, 0xaa, 0x55, 0x8f, 0xc1, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0xfa, 0xfd, 0xff, 0xff, + 0x14, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x02, 0x2c, 0x00, 0x00, 0x00, 0xec, 0xfd, 0xff, 0xff, + 0x08, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x8b, 0x00, 0x4b, 0x3a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x42, 0xfe, 0xff, 0xff, + 0x14, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x09, 0x2c, 0x00, 0x00, 0x00, 0x34, 0xfe, 0xff, 0xff, + 0x08, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0xd7, 0xdf, 0xc3, 0x3b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x02, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, + 0x22, 0xfe, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, 0x48, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x09, 0x48, 0x00, 0x00, 0x00, 0x14, 0xfe, 0xff, 0xff, + 0x10, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0x24, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x68, 0xa8, 0x04, 0x3e, 0x01, 0x00, 0x00, 0x00, 0xc0, 0x23, 0x04, 0x42, + 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x40, 0x00, 0x00, 0x00, 0x10, 0x00, 0x18, 0x00, 0x14, 0x00, 0x13, 0x00, + 0x00, 0x00, 0x0c, 0x00, 0x08, 0x00, 0x07, 0x00, 0x10, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x01, 0x10, 0x00, 0x00, 0x00, 0x48, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x07, 0x48, 0x00, 0x00, 0x00, 0x8c, 0xfe, 0xff, 0xff, + 0x10, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0x24, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x3b, 0xda, 0x75, 0x3b, 0x01, 0x00, 0x00, 0x00, 0x4f, 0xd8, 0xf5, 0x42, + 0x01, 0x00, 0x00, 0x00, 0xa8, 0x2a, 0x61, 0xc2, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x00, 0x02, 0x00, 0x00, 0x6a, 0xff, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, + 0x30, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, + 0x2c, 0x00, 0x00, 0x00, 0x5c, 0xff, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, + 0x10, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xcf, 0x37, 0x69, 0x37, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x40, 0x00, 0x00, 0x00, 0xb2, 0xff, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, + 0x30, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, + 0x2c, 0x00, 0x00, 0x00, 0xa4, 0xff, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, + 0x10, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x14, 0xd8, 0x72, 0x3b, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, + 0x40, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0x00, + 0x18, 0x00, 0x14, 0x00, 0x13, 0x00, 0x0c, 0x00, 0x08, 0x00, 0x04, 0x00, + 0x0e, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09, 0x3c, 0x00, 0x00, 0x00, + 0x0c, 0x00, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x04, 0x00, + 0x0c, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xd4, 0x42, 0x16, 0x3c, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, + 0x40, 0x00, 0x00, 0x00, 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0x00, + 0x14, 0x00, 0x10, 0x00, 0x0f, 0x00, 0x00, 0x00, 0x08, 0x00, 0x04, 0x00, + 0x0e, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x54, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x09, 0x54, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x14, 0x00, + 0x10, 0x00, 0x0c, 0x00, 0x08, 0x00, 0x04, 0x00, 0x0c, 0x00, 0x00, 0x00, + 0x10, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0x24, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0xa8, 0x41, 0x5b, 0x3d, 0x01, 0x00, 0x00, 0x00, 0x66, 0x66, 0x5a, 0x41, + 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x60, 0x00, 0x00, 0x00, 0x0f, 0x00, 0x00, 0x00, 0xc4, 0x00, 0x00, 0x00, + 0xb4, 0x00, 0x00, 0x00, 0xa4, 0x00, 0x00, 0x00, 0x98, 0x00, 0x00, 0x00, + 0x8c, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x74, 0x00, 0x00, 0x00, + 0x68, 0x00, 0x00, 0x00, 0x5c, 0x00, 0x00, 0x00, 0x50, 0x00, 0x00, 0x00, + 0x44, 0x00, 0x00, 0x00, 0x38, 0x00, 0x00, 0x00, 0x2c, 0x00, 0x00, 0x00, + 0x20, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0a, 0x00, + 0x0c, 0x00, 0x0b, 0x00, 0x00, 0x00, 0x04, 0x00, 0x0a, 0x00, 0x00, 0x00, + 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x96, 0xff, 0xff, 0xff, + 0x00, 0x00, 0x00, 0x72, 0x9e, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x19, + 0xa6, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x09, 0xae, 0xff, 0xff, 0xff, + 0x00, 0x00, 0x00, 0x1b, 0xb6, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x1b, + 0xbe, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x1b, 0xc6, 0xff, 0xff, 0xff, + 0x00, 0x00, 0x00, 0x09, 0xce, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x1b, + 0xd6, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x09, 0xde, 0xff, 0xff, 0xff, + 0x00, 0x00, 0x00, 0x1b, 0xe6, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x09, + 0xfa, 0xff, 0xff, 0xff, 0x00, 0x1b, 0x06, 0x00, 0x06, 0x00, 0x05, 0x00, + 0x06, 0x00, 0x00, 0x00, 0x00, 0x09, 0x06, 0x00, 0x08, 0x00, 0x07, 0x00, + 0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1b}; + +const unsigned int g_keyword_scrambled_model_data_length = 34520; diff --git a/components/tflite_micro/tensorflow/lite/micro/benchmarks/keyword_scrambled_model_data.h b/components/tflite_micro/tensorflow/lite/micro/benchmarks/keyword_scrambled_model_data.h new file mode 100644 index 00000000..ce34426c --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/benchmarks/keyword_scrambled_model_data.h @@ -0,0 +1,22 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_LITE_MICRO_BENCHMARKS_KEYWORD_SCRAMBLED_MODEL_DATA_H_ +#define TENSORFLOW_LITE_MICRO_BENCHMARKS_KEYWORD_SCRAMBLED_MODEL_DATA_H_ + +extern const unsigned char g_keyword_scrambled_model_data[]; +extern const unsigned int g_keyword_scrambled_model_data_length; + +#endif // TENSORFLOW_LITE_MICRO_BENCHMARKS_KEYWORD_SCRAMBLED_MODEL_DATA_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/benchmarks/micro_benchmark.h b/components/tflite_micro/tensorflow/lite/micro/benchmarks/micro_benchmark.h new file mode 100644 index 00000000..dea05856 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/benchmarks/micro_benchmark.h @@ -0,0 +1,121 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_LITE_MICRO_BENCHMARKS_MICRO_BENCHMARK_H_ +#define TENSORFLOW_LITE_MICRO_BENCHMARKS_MICRO_BENCHMARK_H_ + +#include + +#include "tensorflow/lite/micro/micro_error_reporter.h" +#include "tensorflow/lite/micro/micro_interpreter.h" +#include "tensorflow/lite/micro/micro_op_resolver.h" +#include "tensorflow/lite/micro/micro_time.h" + +namespace micro_benchmark { +extern tflite::ErrorReporter* reporter; +} // namespace micro_benchmark + +#define TF_LITE_MICRO_BENCHMARKS_BEGIN \ + namespace micro_benchmark { \ + tflite::ErrorReporter* reporter; \ + } \ + \ + int main(int argc, char** argv) { \ + tflite::MicroErrorReporter error_reporter; \ + micro_benchmark::reporter = &error_reporter; \ + int32_t start_ticks; \ + int32_t duration_ticks; \ + int32_t duration_ms; \ + HAL_Init();\ + SystemClock_Config();\ + board_init();\ + +#define TF_LITE_MICRO_BENCHMARKS_END \ + return 0; \ + } + +#define TF_LITE_MICRO_BENCHMARK(func) \ + if (tflite::ticks_per_second() == 0) { \ + TF_LITE_REPORT_ERROR(micro_benchmark::reporter, \ + "no timer implementation found"); \ + return 0; \ + } \ + start_ticks = tflite::GetCurrentTimeTicks(); \ + func; \ + duration_ticks = tflite::GetCurrentTimeTicks() - start_ticks; \ + if (duration_ticks > INT_MAX / 1000) { \ + duration_ms = duration_ticks / (tflite::ticks_per_second() / 1000); \ + } else { \ + duration_ms = (duration_ticks * 1000) / tflite::ticks_per_second(); \ + } \ + micro_benchmark::reporter->Report("%s took %d ticks (%d ms)", #func, \ + duration_ticks, duration_ms); + +template +class MicroBenchmarkRunner { + public: + // The lifetimes of model, op_resolver and tensor_arena must exceed that of + // the created MicroBenchmarkRunner object. + MicroBenchmarkRunner(const uint8_t* model, + const tflite::MicroOpResolver* op_resolver, + uint8_t* tensor_arena, int tensor_arena_size) + : model_(tflite::GetModel(model)), + reporter_(µ_reporter_), + interpreter_(model_, *op_resolver, tensor_arena, tensor_arena_size, + reporter_) { + interpreter_.AllocateTensors(); + } + + void RunSingleIteration() { + // Run the model on this input and make sure it succeeds. + TfLiteStatus invoke_status = interpreter_.Invoke(); + if (invoke_status != kTfLiteOk) { + TF_LITE_REPORT_ERROR(reporter_, "Invoke failed."); + } + } + + void SetRandomInput(const int random_seed) { + // The pseudo-random number generator is initialized to a constant seed + std::srand(random_seed); + TfLiteTensor* input = interpreter_.input(0); + + // Pre-populate input tensor with random values. + int input_length = input->bytes / sizeof(inputT); + inputT* input_values = tflite::GetTensorData(input); + for (int i = 0; i < input_length; i++) { + // Pre-populate input tensor with a random value based on a constant seed. + input_values[i] = static_cast( + std::rand() % (std::numeric_limits::max() - + std::numeric_limits::min() + 1)); + } + } + + void SetInput(const inputT* custom_input) { + TfLiteTensor* input = interpreter_.input(0); + inputT* input_buffer = tflite::GetTensorData(input); + int input_length = input->bytes / sizeof(inputT); + for (int i = 0; i < input_length; i++) { + input_buffer[i] = custom_input[i]; + } + } + + private: + const tflite::Model* model_; + tflite::MicroErrorReporter micro_reporter_; + tflite::ErrorReporter* reporter_; + tflite::MicroInterpreter interpreter_; +}; + +#endif // TENSORFLOW_LITE_MICRO_BENCHMARKS_MICRO_BENCHMARK_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/benchmarks/person_detection_experimental_benchmark.cc b/components/tflite_micro/tensorflow/lite/micro/benchmarks/person_detection_experimental_benchmark.cc new file mode 100644 index 00000000..68850c90 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/benchmarks/person_detection_experimental_benchmark.cc @@ -0,0 +1,92 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/micro/all_ops_resolver.h" +#include "tensorflow/lite/micro/benchmarks/micro_benchmark.h" +#include "tensorflow/lite/micro/examples/person_detection_experimental/model_settings.h" +#include "tensorflow/lite/micro/examples/person_detection_experimental/no_person_image_data.h" +#include "tensorflow/lite/micro/examples/person_detection_experimental/person_detect_model_data.h" +#include "tensorflow/lite/micro/examples/person_detection_experimental/person_image_data.h" +#include "tensorflow/lite/micro/micro_error_reporter.h" +#include "tensorflow/lite/micro/micro_interpreter.h" +#include "tensorflow/lite/micro/micro_utils.h" +#include "tensorflow/lite/schema/schema_generated.h" +#include "tensorflow/lite/version.h" + +/* + * Person Detection benchmark. Evaluates runtime performance of the visual + * wakewords person detection model. This is the same model found in + * exmaples/person_detection. + */ + +namespace { + +using PersonDetectionExperimentalOpResolver = tflite::AllOpsResolver; +using PersonDetectionExperimentalBenchmarkRunner = MicroBenchmarkRunner; + +// Create an area of memory to use for input, output, and intermediate arrays. +// Align arena to 16 bytes to avoid alignment warnings on certain platforms. +constexpr int kTensorArenaSize = 135 * 1024; +alignas(16) uint8_t tensor_arena[kTensorArenaSize]; + +uint8_t op_resolver_buffer[sizeof(PersonDetectionExperimentalOpResolver)]; +uint8_t + benchmark_runner_buffer[sizeof(PersonDetectionExperimentalBenchmarkRunner)]; +PersonDetectionExperimentalBenchmarkRunner* benchmark_runner = nullptr; + +// Initialize benchmark runner instance explicitly to avoid global init order +// issues on Sparkfun. Use new since static variables within a method +// are automatically surrounded by locking, which breaks bluepill and stm32f4. +void CreateBenchmarkRunner() { + // We allocate PersonDetectionExperimentalOpResolver from a global buffer + // because the object's lifetime must exceed that of the + // PersonDetectionBenchmarkRunner object. + benchmark_runner = + new (benchmark_runner_buffer) PersonDetectionExperimentalBenchmarkRunner( + g_person_detect_model_data, + new (op_resolver_buffer) PersonDetectionExperimentalOpResolver(), + tensor_arena, kTensorArenaSize); +} + +void InitializeBenchmarkRunner() { + CreateBenchmarkRunner(); + benchmark_runner->SetInput(reinterpret_cast(g_person_data)); +} + +void PersonDetectionTenIerationsWithPerson() { + benchmark_runner->SetInput(reinterpret_cast(g_person_data)); + for (int i = 0; i < 10; i++) { + benchmark_runner->RunSingleIteration(); + } +} + +void PersonDetectionTenIerationsWithoutPerson() { + benchmark_runner->SetInput(reinterpret_cast(g_no_person_data)); + for (int i = 0; i < 10; i++) { + benchmark_runner->RunSingleIteration(); + } +} + +} // namespace + +TF_LITE_MICRO_BENCHMARKS_BEGIN + +TF_LITE_MICRO_BENCHMARK(InitializeBenchmarkRunner()); +TF_LITE_MICRO_BENCHMARK(benchmark_runner->RunSingleIteration()); +TF_LITE_MICRO_BENCHMARK(PersonDetectionTenIerationsWithPerson()); +TF_LITE_MICRO_BENCHMARK(PersonDetectionTenIerationsWithoutPerson()); + +TF_LITE_MICRO_BENCHMARKS_END diff --git a/components/tflite_micro/tensorflow/lite/micro/compatibility.h b/components/tflite_micro/tensorflow/lite/micro/compatibility.h new file mode 100644 index 00000000..49acb28f --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/compatibility.h @@ -0,0 +1,32 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_MICRO_COMPATIBILITY_H_ +#define TENSORFLOW_LITE_MICRO_COMPATIBILITY_H_ + +// C++ will automatically create class-specific delete operators for virtual +// objects, which by default call the global delete function. For embedded +// applications we want to avoid this, and won't be calling new/delete on these +// objects, so we need to override the default implementation with one that does +// nothing to avoid linking in ::delete(). +// This macro needs to be included in all subclasses of a virtual base class in +// the private section. +#ifdef TF_LITE_STATIC_MEMORY +#define TF_LITE_REMOVE_VIRTUAL_DELETE \ + void operator delete(void* p) {} +#else +#define TF_LITE_REMOVE_VIRTUAL_DELETE +#endif + +#endif // TENSORFLOW_LITE_MICRO_COMPATIBILITY_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/debug_log.cc b/components/tflite_micro/tensorflow/lite/micro/debug_log.cc new file mode 100644 index 00000000..966b0bb6 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/debug_log.cc @@ -0,0 +1,27 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/micro/debug_log.h" +#include "stdio.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void DebugLog(const char *s) { printf("%s", s); } + +#ifdef __cplusplus +} +#endif diff --git a/components/tflite_micro/tensorflow/lite/micro/debug_log.h b/components/tflite_micro/tensorflow/lite/micro/debug_log.h new file mode 100644 index 00000000..1004ab9f --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/debug_log.h @@ -0,0 +1,23 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_MICRO_DEBUG_LOG_H_ +#define TENSORFLOW_LITE_MICRO_DEBUG_LOG_H_ + +// This function should be implemented by each target platform, and provide a +// way for strings to be output to some text stream. For more information, see +// tensorflow/lite/micro/debug_log.cc. +extern "C" void DebugLog(const char* s); + +#endif // TENSORFLOW_LITE_MICRO_DEBUG_LOG_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/detection_responder.cc b/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/detection_responder.cc new file mode 100644 index 00000000..bc409b5b --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/detection_responder.cc @@ -0,0 +1,25 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/micro/examples/person_detection_experimental/detection_responder.h" + +// This dummy implementation writes person and no person scores to the error +// console. Real applications will want to take some custom action instead, and +// should implement their own versions of this function. +void RespondToDetection(tflite::ErrorReporter* error_reporter, + int8_t person_score, int8_t no_person_score) { + TF_LITE_REPORT_ERROR(error_reporter, "person score:%d no person score %d", + person_score, no_person_score); +} diff --git a/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/detection_responder.h b/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/detection_responder.h new file mode 100644 index 00000000..aadad3be --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/detection_responder.h @@ -0,0 +1,34 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +// Provides an interface to take an action based on the output from the person +// detection model. + +#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_DETECTION_RESPONDER_H_ +#define TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_DETECTION_RESPONDER_H_ + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/micro/micro_error_reporter.h" + +// Called every time the results of a person detection run are available. The +// `person_score` has the numerical confidence that the captured image contains +// a person, and `no_person_score` has the numerical confidence that the image +// does not contain a person. Typically if person_score > no person score, the +// image is considered to contain a person. This threshold may be adjusted for +// particular applications. +void RespondToDetection(tflite::ErrorReporter* error_reporter, + int8_t person_score, int8_t no_person_score); + +#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_DETECTION_RESPONDER_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/image_provider.cc b/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/image_provider.cc new file mode 100644 index 00000000..5d976a5f --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/image_provider.cc @@ -0,0 +1,62 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/micro/examples/person_detection_experimental/image_provider.h" +#include "tensorflow/lite/micro/examples/person_detection_experimental/model_settings.h" +#include "tensorflow/lite/micro/examples/person_detection_experimental/person_image_data.h" +#include "tensorflow/lite/micro/examples/person_detection_experimental/no_person_image_data.h" +#include "stdint.h" +#include "sys.h" +#define OV2640_PIXEL_WIDTH ((uint16_t)96) +#define OV2640_PIXEL_HEIGHT ((uint16_t)96) + +extern uint16_t camBuffer[OV2640_PIXEL_WIDTH*OV2640_PIXEL_HEIGHT]; + +uint8_t RGB565toGRAY(uint16_t bg_color) +{ + uint8_t bg_r = 0; + uint8_t bg_g = 0; + uint8_t bg_b = 0; + bg_r = ((bg_color>>11)&0xff)<<3; + bg_g = ((bg_color>>5)&0x3f)<<2; + bg_b = (bg_color&0x1f)<<2; + uint8_t gray = (bg_r*299 + bg_g*587 + bg_b*114 + 500) / 1000; + return gray; +} + +void Input_Convert(uint16_t* camera_buffer , uint8_t* model_buffer) +{ + for(int i=0 ; iversion() != TFLITE_SCHEMA_VERSION) { + TF_LITE_REPORT_ERROR(error_reporter, + "Model provided is schema version %d not equal " + "to supported version %d.", + model->version(), TFLITE_SCHEMA_VERSION); + return; + } + + // Pull in only the operation implementations we need. + // This relies on a complete list of all the ops needed by this graph. + // An easier approach is to just use the AllOpsResolver, but this will + // incur some penalty in code space for op implementations that are not + // needed by this graph. + // + // tflite::AllOpsResolver resolver; + // NOLINTNEXTLINE(runtime-global-variables) + static tflite::MicroMutableOpResolver<5> micro_op_resolver; + micro_op_resolver.AddAveragePool2D(); + micro_op_resolver.AddConv2D(); + micro_op_resolver.AddDepthwiseConv2D(); + micro_op_resolver.AddReshape(); + micro_op_resolver.AddSoftmax(); + + // Build an interpreter to run the model with. + // NOLINTNEXTLINE(runtime-global-variables) + static tflite::MicroInterpreter static_interpreter( + model, micro_op_resolver, tensor_arena, kTensorArenaSize, error_reporter); + interpreter = &static_interpreter; + + // Allocate memory from the tensor_arena for the model's tensors. + TfLiteStatus allocate_status = interpreter->AllocateTensors(); + if (allocate_status != kTfLiteOk) { + TF_LITE_REPORT_ERROR(error_reporter, "AllocateTensors() failed"); + return; + } + + // Get information about the memory area to use for the model's input. + input = interpreter->input(0); +} + +// The name of this function is important for Arduino compatibility. +int loop() { + // Get image from provider. + if (kTfLiteOk != GetImage(error_reporter, kNumCols, kNumRows, kNumChannels, + input->data.int8)) { + TF_LITE_REPORT_ERROR(error_reporter, "Image capture failed."); + } + + // Run the model on this input and make sure it succeeds. + if (kTfLiteOk != interpreter->Invoke()) { + TF_LITE_REPORT_ERROR(error_reporter, "Invoke failed."); + } + + TfLiteTensor* output = interpreter->output(0); + + // Process the inference results. + int8_t person_score = output->data.uint8[kPersonIndex]; + int8_t no_person_score = output->data.uint8[kNotAPersonIndex]; + RespondToDetection(error_reporter, person_score, no_person_score); + if(person_score >= no_person_score + 50) return 1; + else return 0; +} diff --git a/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/main_functions.h b/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/main_functions.h new file mode 100644 index 00000000..30f2e1bc --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/main_functions.h @@ -0,0 +1,27 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_MAIN_FUNCTIONS_H_ +#define TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_MAIN_FUNCTIONS_H_ +// Initializes all data needed for the example. The name is important, and needs +// to be setup() for Arduino compatibility. +extern "C" void setup(); + +// Runs one iteration of data gathering and inference. This should be called +// repeatedly from the application code. The name needs to be loop() for Arduino +// compatibility. +extern "C" int loop(); + +#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_MAIN_FUNCTIONS_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/model_settings.cc b/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/model_settings.cc new file mode 100644 index 00000000..c7359b8f --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/model_settings.cc @@ -0,0 +1,21 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/micro/examples/person_detection_experimental/model_settings.h" + +const char* kCategoryLabels[kCategoryCount] = { + "notperson", + "person", +}; diff --git a/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/model_settings.h b/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/model_settings.h new file mode 100644 index 00000000..f6c968e9 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/model_settings.h @@ -0,0 +1,35 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_MODEL_SETTINGS_H_ +#define TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_MODEL_SETTINGS_H_ + +// Keeping these as constant expressions allow us to allocate fixed-sized arrays +// on the stack for our working memory. + +// All of these values are derived from the values used during model training, +// if you change your model you'll need to update these constants. +constexpr int kNumCols = 96; +constexpr int kNumRows = 96; +constexpr int kNumChannels = 1; + +constexpr int kMaxImageSize = kNumCols * kNumRows * kNumChannels; + +constexpr int kCategoryCount = 2; +constexpr int kPersonIndex = 1; +constexpr int kNotAPersonIndex = 0; +extern const char* kCategoryLabels[kCategoryCount]; + +#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_MODEL_SETTINGS_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/no_person_image_data.h b/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/no_person_image_data.h new file mode 100644 index 00000000..d3db7beb --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/no_person_image_data.h @@ -0,0 +1,30 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +// This data was created from a sample image from without a person in it. +// Convert original image to simpler format: +// convert -resize 96x96\! noperson.PNG noperson.bmp3 +// Skip the 54 byte bmp3 header and add the reset of the bytes to a C array: +// xxd -s 54 -i /tmp/noperson.bmp3 > /tmp/noperson.cc + +#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_NO_PERSON_IMAGE_DATA_H_ +#define TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_NO_PERSON_IMAGE_DATA_H_ + +#include + +extern const int g_no_person_data_size; +extern const uint8_t g_no_person_data[]; + +#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_NO_PERSON_IMAGE_DATA_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/person_detect_model_data.h b/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/person_detect_model_data.h new file mode 100644 index 00000000..5d1b59ff --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/person_detect_model_data.h @@ -0,0 +1,27 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +// This is a standard TensorFlow Lite model file that has been converted into a +// C data array, so it can be easily compiled into a binary for devices that +// don't have a file system. It was created using the command: +// xxd -i person_detect.tflite > person_detect_model_data.cc + +#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_PERSON_DETECT_MODEL_DATA_H_ +#define TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_PERSON_DETECT_MODEL_DATA_H_ + +extern const unsigned char g_person_detect_model_data[]; +extern const int g_person_detect_model_data_len; + +#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_PERSON_DETECT_MODEL_DATA_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/person_image_data.h b/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/person_image_data.h new file mode 100644 index 00000000..13e16666 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/examples/person_detection_experimental/person_image_data.h @@ -0,0 +1,30 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +// This data was created from a sample image from with a person in it. +// Convert original image to simpler format: +// convert -resize 96x96\! person.PNG person.bmp3 +// Skip the 54 byte bmp3 header and add the reset of the bytes to a C array: +// xxd -s 54 -i /tmp/person.bmp3 > /tmp/person.cc + +#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_PERSON_IMAGE_DATA_H_ +#define TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_PERSON_IMAGE_DATA_H_ + +#include + +extern const int g_person_data_size; +extern const uint8_t g_person_data[]; + +#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_PERSON_IMAGE_DATA_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/activation_utils.h b/components/tflite_micro/tensorflow/lite/micro/kernels/activation_utils.h new file mode 100644 index 00000000..95ecc26d --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/activation_utils.h @@ -0,0 +1,57 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_LITE_MICRO_KERNELS_ACTIVATION_UTILS_H_ +#define TENSORFLOW_LITE_MICRO_KERNELS_ACTIVATION_UTILS_H_ + +#include +#include + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/kernels/internal/cppmath.h" +#include "tensorflow/lite/kernels/internal/max.h" +#include "tensorflow/lite/kernels/internal/min.h" + +namespace tflite { +namespace ops { +namespace micro { + +// Returns the floating point value for a fused activation: +inline float ActivationValFloat(TfLiteFusedActivation act, float a) { + switch (act) { + case kTfLiteActNone: + return a; + case kTfLiteActRelu: + return TfLiteMax(0.0f, a); + case kTfLiteActReluN1To1: + return TfLiteMax(-1.0f, TfLiteMin(a, 1.0f)); + case kTfLiteActRelu6: + return TfLiteMax(0.0f, TfLiteMin(a, 6.0f)); + case kTfLiteActTanh: + return std::tanh(a); + case kTfLiteActSignBit: + return std::signbit(a); + case kTfLiteActSigmoid: + return 1.0f / (1.0f + std::exp(-a)); + } + return 0.0f; // To indicate an unsupported activation (i.e. when a new fused + // activation is added to the enum and not handled here). +} + +} // namespace micro +} // namespace ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_MICRO_KERNELS_ACTIVATION_UTILS_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/activations.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/activations.cc new file mode 100644 index 00000000..2bdc0b51 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/activations.cc @@ -0,0 +1,285 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/internal/types.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/kernels/op_macros.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" +#include "tensorflow/lite/micro/micro_utils.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace activations { +namespace { + +struct ReluOpData { + ReluParams params; +}; + +struct Relu6OpData { + int8_t six_int8; + int8_t zero_int8; + uint8_t six_uint8; + uint8_t zero_uint8; +}; + +} // namespace + +constexpr int kInputTensor = 0; +constexpr int kOutputTensor = 0; + +template +inline void ReluQuantized(const ReluOpData& data, + const RuntimeShape& input_shape, + const RuntimeShape& output_shape, const T* input_data, + T* output_data) { + const int flat_size = MatchingFlatSize(input_shape, output_shape); + for (int i = 0; i < flat_size; ++i) { + const int32_t val = static_cast(input_data[i]); + int32_t clamped = + data.params.output_offset + + MultiplyByQuantizedMultiplier(val - data.params.input_offset, + data.params.output_multiplier, + data.params.output_shift); + clamped = std::max(data.params.quantized_activation_min, clamped); + clamped = std::min(data.params.quantized_activation_max, clamped); + output_data[i] = static_cast(clamped); + } +} + +template +inline void CalculateReluOpData(const TfLiteTensor* input, TfLiteTensor* output, + ReluOpData* data) { + float act_min = 0.0; + float act_max = std::numeric_limits::infinity(); + double real_multiplier = + static_cast(input->params.scale / output->params.scale); + + const RuntimeShape input_shape = GetTensorShape(input); + const RuntimeShape output_shape = GetTensorShape(output); + + QuantizeMultiplier(real_multiplier, &data->params.output_multiplier, + &data->params.output_shift); + + data->params.quantized_activation_min = std::max( + static_cast(std::numeric_limits::min()), + output->params.zero_point + + static_cast(roundf(act_min / output->params.scale))); + data->params.quantized_activation_max = + act_max == std::numeric_limits::infinity() + ? static_cast(std::numeric_limits::max()) + : std::min(static_cast(std::numeric_limits::max()), + output->params.zero_point + + static_cast( + roundf(act_max / output->params.scale))); + data->params.input_offset = input->params.zero_point; + data->params.output_offset = output->params.zero_point; +} + +inline void ReluFloat(const RuntimeShape& input_shape, const float* input_data, + const RuntimeShape& output_shape, float* output_data) { + const int flat_size = MatchingFlatSize(input_shape, output_shape); + for (int i = 0; i < flat_size; ++i) { + const float val = input_data[i]; + const float lower = 0.0f; + const float clamped = val < lower ? lower : val; + output_data[i] = clamped; + } +} + +inline void Relu6Float(const RuntimeShape& input_shape, const float* input_data, + const RuntimeShape& output_shape, float* output_data) { + const int flat_size = MatchingFlatSize(input_shape, output_shape); + for (int i = 0; i < flat_size; ++i) { + const float val = input_data[i]; + const float upper = 6.0f; + const float lower = 0.0f; + const float clamped = val > upper ? upper : val < lower ? lower : val; + output_data[i] = clamped; + } +} + +template +inline void Relu6Quantized(Q lower, Q upper, const RuntimeShape& input_shape, + const Q* input_data, + const RuntimeShape& output_shape, Q* output_data) { + const int flat_size = MatchingFlatSize(input_shape, output_shape); + for (int i = 0; i < flat_size; ++i) { + const Q val = input_data[i]; + const Q clamped = val > upper ? upper : val < lower ? lower : val; + output_data[i] = clamped; + } +} + +void* ReluInit(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(ReluOpData)); +} + +TfLiteStatus ReluPrepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + ReluOpData* data = static_cast(node->user_data); + + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + + if (input->type == kTfLiteInt8) { + CalculateReluOpData(input, output, data); + } else if (input->type == kTfLiteUInt8) { + CalculateReluOpData(input, output, data); + } + + return kTfLiteOk; +} + +TfLiteStatus ReluEval(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + const ReluOpData& data = *(static_cast(node->user_data)); + + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + switch (input->type) { + case kTfLiteFloat32: { + ReluFloat(tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + + return kTfLiteOk; + } + case kTfLiteInt8: { + ReluQuantized(data, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorData(output)); + return kTfLiteOk; + } + case kTfLiteUInt8: { + ReluQuantized(data, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorData(output)); + return kTfLiteOk; + } + default: { + TF_LITE_KERNEL_LOG(context, "Only float32 is supported currently, got %s", + TfLiteTypeGetName(input->type)); + return kTfLiteError; + } + } +} + +void* Relu6Init(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(Relu6OpData)); +} + +TfLiteStatus Relu6Prepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + Relu6OpData* data = static_cast(node->user_data); + + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + + if (input->type == kTfLiteInt8) { + data->six_int8 = FloatToAsymmetricQuantizedInt8(6.0f, input->params.scale, + input->params.zero_point); + data->zero_int8 = input->params.zero_point; + } else if (input->type == kTfLiteUInt8) { + data->six_uint8 = FloatToAsymmetricQuantizedUInt8(6.0f, input->params.scale, + input->params.zero_point); + data->zero_uint8 = input->params.zero_point; + } + + return kTfLiteOk; +} + +TfLiteStatus Relu6Eval(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + const Relu6OpData& data = *(static_cast(node->user_data)); + + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + switch (input->type) { + case kTfLiteFloat32: { + Relu6Float(tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + + return kTfLiteOk; + } + case kTfLiteInt8: { + Relu6Quantized(data.zero_int8, data.six_int8, + tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + return kTfLiteOk; + } + case kTfLiteUInt8: { + Relu6Quantized(data.zero_uint8, data.six_uint8, + tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + return kTfLiteOk; + } + default: { + TF_LITE_KERNEL_LOG(context, "Only float32 is supported currently, got %s", + TfLiteTypeGetName(input->type)); + return kTfLiteError; + } + } +} + +} // namespace activations + +TfLiteRegistration Register_RELU() { + return {/*init=*/activations::ReluInit, + /*free=*/nullptr, + /*prepare=*/activations::ReluPrepare, + /*invoke=*/activations::ReluEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +TfLiteRegistration Register_RELU6() { + return {/*init=*/activations::Relu6Init, + /*free=*/nullptr, + /*prepare=*/activations::Relu6Prepare, + /*invoke=*/activations::Relu6Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/activations_test.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/activations_test.cc new file mode 100644 index 00000000..f7466f9b --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/activations_test.cc @@ -0,0 +1,378 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#include "mcu_init.h" + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/micro/all_ops_resolver.h" +#include "tensorflow/lite/micro/kernels/kernel_runner.h" +#include "tensorflow/lite/micro/testing/micro_test.h" +#include "tensorflow/lite/micro/testing/test_utils.h" + +namespace tflite { +namespace testing { +namespace { + +void TestReluFloat(const int* input_dims_data, const float* input_data, + const int* output_dims_data, const float* golden, + float* output_data) { + TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data); + TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); + const int output_elements_count = ElementCount(*output_dims); + + constexpr int inputs_size = 1; + constexpr int outputs_size = 1; + constexpr int tensors_size = inputs_size + outputs_size; + TfLiteTensor tensors[tensors_size] = { + CreateFloatTensor(input_data, input_dims), + CreateFloatTensor(output_data, output_dims), + }; + + int inputs_array_data[] = {1, 0}; + TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); + int outputs_array_data[] = {1, 1}; + TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); + + const TfLiteRegistration registration = ops::micro::Register_RELU(); + micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array, + outputs_array, + /*builtin_data=*/nullptr, micro_test::reporter); + + TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare()); + TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke()); + + for (int i = 0; i < output_elements_count; ++i) { + TF_LITE_MICRO_EXPECT_NEAR(golden[i], output_data[i], 1e-5f); + } +} + +void TestRelu6Float(const int* input_dims_data, const float* input_data, + const int* output_dims_data, const float* golden, + float* output_data) { + TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data); + TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); + const int output_elements_count = ElementCount(*output_dims); + + constexpr int inputs_size = 1; + constexpr int outputs_size = 1; + constexpr int tensors_size = inputs_size + outputs_size; + TfLiteTensor tensors[tensors_size] = { + CreateFloatTensor(input_data, input_dims), + CreateFloatTensor(output_data, output_dims), + }; + + int inputs_array_data[] = {1, 0}; + TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); + int outputs_array_data[] = {1, 1}; + TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); + + const TfLiteRegistration registration = ops::micro::Register_RELU6(); + micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array, + outputs_array, + /*builtin_data=*/nullptr, micro_test::reporter); + + TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare()); + TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke()); + + for (int i = 0; i < output_elements_count; ++i) { + TF_LITE_MICRO_EXPECT_NEAR(golden[i], output_data[i], 1e-5f); + } +} + +void TestReluUint8(const int* input_dims_data, const float* input_data, + uint8_t* input_data_quantized, const float input_scale, + const int input_zero_point, const float* golden, + uint8_t* golden_quantized, const int* output_dims_data, + const float output_scale, const int output_zero_point, + uint8_t* output_data) { + TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data); + TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); + const int output_elements_count = ElementCount(*output_dims); + + constexpr int inputs_size = 1; + constexpr int outputs_size = 1; + constexpr int tensors_size = inputs_size + outputs_size; + TfLiteTensor tensors[tensors_size] = { + CreateQuantizedTensor(input_data, input_data_quantized, input_dims, + input_scale, input_zero_point), + CreateQuantizedTensor(output_data, output_dims, output_scale, + output_zero_point), + }; + + int inputs_array_data[] = {1, 0}; + TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); + int outputs_array_data[] = {1, 1}; + TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); + + const TfLiteRegistration registration = ops::micro::Register_RELU(); + micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array, + outputs_array, + /*builtin_data=*/nullptr, micro_test::reporter); + + TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare()); + TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke()); + + AsymmetricQuantize(golden, golden_quantized, output_elements_count, + output_scale, output_zero_point); + + for (int i = 0; i < output_elements_count; ++i) { + TF_LITE_MICRO_EXPECT_EQ(golden_quantized[i], output_data[i]); + } +} + +void TestRelu6Uint8(const int* input_dims_data, const float* input_data, + uint8_t* input_data_quantized, const float input_scale, + const int input_zero_point, const float* golden, + uint8_t* golden_quantized, const int* output_dims_data, + const float output_scale, const int output_zero_point, + uint8_t* output_data) { + TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data); + TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); + const int output_elements_count = ElementCount(*output_dims); + + constexpr int inputs_size = 1; + constexpr int outputs_size = 1; + constexpr int tensors_size = inputs_size + outputs_size; + TfLiteTensor tensors[tensors_size] = { + CreateQuantizedTensor(input_data, input_data_quantized, input_dims, + input_scale, input_zero_point), + CreateQuantizedTensor(output_data, output_dims, output_scale, + output_zero_point), + }; + + int inputs_array_data[] = {1, 0}; + TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); + int outputs_array_data[] = {1, 1}; + TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); + + const TfLiteRegistration registration = ops::micro::Register_RELU6(); + micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array, + outputs_array, + /*builtin_data=*/nullptr, micro_test::reporter); + + TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare()); + TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke()); + + AsymmetricQuantize(golden, golden_quantized, output_elements_count, + output_scale, output_zero_point); + + for (int i = 0; i < output_elements_count; ++i) { + TF_LITE_MICRO_EXPECT_EQ(golden_quantized[i], output_data[i]); + } +} + +void TestReluInt8(const int* input_dims_data, const float* input_data, + int8_t* input_data_quantized, const float input_scale, + const int input_zero_point, const float* golden, + int8_t* golden_quantized, const int* output_dims_data, + const float output_scale, const int output_zero_point, + int8_t* output_data) { + TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data); + TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); + const int output_elements_count = ElementCount(*output_dims); + constexpr int inputs_size = 1; + constexpr int outputs_size = 1; + constexpr int tensors_size = inputs_size + outputs_size; + TfLiteTensor tensors[tensors_size] = { + CreateQuantizedTensor(input_data, input_data_quantized, input_dims, + input_scale, input_zero_point), + CreateQuantizedTensor(output_data, output_dims, output_scale, + output_zero_point), + }; + + int inputs_array_data[] = {1, 0}; + TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); + int outputs_array_data[] = {1, 1}; + TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); + + const TfLiteRegistration registration = ops::micro::Register_RELU(); + micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array, + outputs_array, + /*builtin_data=*/nullptr, micro_test::reporter); + + TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare()); + TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke()); + + AsymmetricQuantize(golden, golden_quantized, output_elements_count, + output_scale, output_zero_point); + + for (int i = 0; i < output_elements_count; ++i) { + TF_LITE_MICRO_EXPECT_EQ(golden_quantized[i], output_data[i]); + } +} + +void TestRelu6Int8(const int* input_dims_data, const float* input_data, + int8_t* input_data_quantized, const float input_scale, + const int input_zero_point, const float* golden, + int8_t* golden_quantized, const int* output_dims_data, + const float output_scale, const int output_zero_point, + int8_t* output_data) { + TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data); + TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); + const int output_elements_count = ElementCount(*output_dims); + constexpr int inputs_size = 1; + constexpr int outputs_size = 1; + constexpr int tensors_size = inputs_size + outputs_size; + TfLiteTensor tensors[tensors_size] = { + CreateQuantizedTensor(input_data, input_data_quantized, input_dims, + input_scale, input_zero_point), + CreateQuantizedTensor(output_data, output_dims, output_scale, + output_zero_point), + }; + + int inputs_array_data[] = {1, 0}; + TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); + int outputs_array_data[] = {1, 1}; + TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); + + const TfLiteRegistration registration = ops::micro::Register_RELU6(); + micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array, + outputs_array, + /*builtin_data=*/nullptr, micro_test::reporter); + + TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare()); + TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke()); + + AsymmetricQuantize(golden, golden_quantized, output_elements_count, + output_scale, output_zero_point); + + for (int i = 0; i < output_elements_count; ++i) { + TF_LITE_MICRO_EXPECT_EQ(golden_quantized[i], output_data[i]); + } +} + +} // namespace +} // namespace testing +} // namespace tflite + +TF_LITE_MICRO_TESTS_BEGIN + +TF_LITE_MICRO_TEST(SimpleReluTestFloat) { + const int output_elements_count = 10; + const int input_shape[] = {2, 1, 5}; + const float input_data[] = { + 1.0, 2.0, 3.0, 4.0, 5.0, -1.0, -2.0, -3.0, -4.0, -5.0, + }; + const float golden[] = {1.0, 2.0, 3.0, 4.0, 5.0, 0, 0, 0, 0, 0}; + const int output_shape[] = {2, 1, 5}; + float output_data[output_elements_count]; + tflite::testing::TestReluFloat(input_shape, input_data, output_shape, golden, + output_data); +} + +TF_LITE_MICRO_TEST(SimpleRelu6TestFloat) { + const int output_elements_count = 10; + float output_data[output_elements_count]; + const int input_shape[] = {2, 1, 5}; + const float input_data[] = {4.0, 5.0, 6.0, 7.0, 8.0, + -4.0, -5.0, -6.0, -7.0, -8.0}; + const int output_shape[] = {2, 1, 5}; + const float golden[] = { + 4.0, 5.0, 6.0, 6.0, 6.0, 0.0, 0.0, 0.0, 0.0, 0.0, + }; + + tflite::testing::TestRelu6Float(input_shape, input_data, output_shape, golden, + output_data); +} + +TF_LITE_MICRO_TEST(SimpleReluTestUint8) { + const int elements_count = 10; + + const int input_shape[] = {2, 1, 5}; + const float input_data[] = {1, 2, 3, 4, 5, -1, -2, -3, -4, -5}; + uint8_t input_quantized[elements_count]; + const int output_shape[] = {2, 1, 5}; + const float golden[] = {1, 2, 3, 4, 5, 0, 0, 0, 0, 0}; + uint8_t golden_quantized[elements_count]; + uint8_t output_data[elements_count]; + + const float input_scale = 0.5f; + const int input_zero_point = 127; + const float output_scale = 0.5f; + const int output_zero_point = 127; + + tflite::testing::TestReluUint8(input_shape, input_data, input_quantized, + input_scale, input_zero_point, golden, + golden_quantized, output_shape, output_scale, + output_zero_point, output_data); +} + +TF_LITE_MICRO_TEST(SimpleRelu6TestUint8) { + const int elements_count = 10; + + const int input_shape[] = {2, 1, 5}; + const float input_data[] = {4, 5, 6, 7, 8, -1, -2, -3, -4, -5}; + uint8_t input_quantized[elements_count]; + const int output_shape[] = {2, 1, 5}; + const float golden[] = {4, 5, 6, 6, 6, 0, 0, 0, 0, 0}; + uint8_t golden_quantized[elements_count]; + uint8_t output_data[elements_count]; + + const float input_scale = 0.5f; + const int input_zero_point = 127; + const float output_scale = 0.5f; + const int output_zero_point = 127; + + tflite::testing::TestRelu6Uint8(input_shape, input_data, input_quantized, + input_scale, input_zero_point, golden, + golden_quantized, output_shape, output_scale, + output_zero_point, output_data); +} + +TF_LITE_MICRO_TEST(SimpleReluTestInt8) { + const int elements_count = 10; + + const int input_shape[] = {2, 1, 5}; + const float input_data[] = {1, 2, 3, 4, 5, -1, -2, -3, -4, -5}; + int8_t input_quantized[elements_count]; + const int output_shape[] = {2, 1, 5}; + const float golden[] = {1, 2, 3, 4, 5, 0, 0, 0, 0, 0}; + int8_t golden_quantized[elements_count]; + int8_t output_data[elements_count]; + + const float input_scale = 0.5f; + const int input_zero_point = 0; + const float output_scale = 0.5f; + const int output_zero_point = 0; + + tflite::testing::TestReluInt8(input_shape, input_data, input_quantized, + input_scale, input_zero_point, golden, + golden_quantized, output_shape, output_scale, + output_zero_point, output_data); +} + +TF_LITE_MICRO_TEST(SimpleRelu6TestInt8) { + const int elements_count = 10; + + const int input_shape[] = {2, 1, 5}; + const float input_data[] = {4, 5, 6, 7, 8, -1, -2, -3, -4, -5}; + int8_t input_quantized[elements_count]; + const int output_shape[] = {2, 1, 5}; + const float golden[] = {4, 5, 6, 6, 6, 0, 0, 0, 0, 0}; + int8_t golden_quantized[elements_count]; + int8_t output_data[elements_count]; + + const float input_scale = 0.5f; + const int input_zero_point = 127; + const float output_scale = 0.5f; + const int output_zero_point = 127; + + tflite::testing::TestRelu6Int8(input_shape, input_data, input_quantized, + input_scale, input_zero_point, golden, + golden_quantized, output_shape, output_scale, + output_zero_point, output_data); +} + +TF_LITE_MICRO_TESTS_END diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/add.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/add.cc new file mode 100644 index 00000000..79a04875 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/add.cc @@ -0,0 +1,240 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/add.h" + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/reference/integer_ops/add.h" +#include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/kernels/op_macros.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" +#include "tensorflow/lite/micro/memory_helpers.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace add { + +constexpr int kInputTensor1 = 0; +constexpr int kInputTensor2 = 1; +constexpr int kOutputTensor = 0; + +struct OpData { + bool requires_broadcast; + + // These fields are used in both the general 8-bit -> 8bit quantized path, + // and the special 16-bit -> 16bit quantized path + int input1_shift; + int input2_shift; + int32_t output_activation_min; + int32_t output_activation_max; + + // These fields are used only in the general 8-bit -> 8bit quantized path + int32_t input1_multiplier; + int32_t input2_multiplier; + int32_t output_multiplier; + int output_shift; + int left_shift; + int32_t input1_offset; + int32_t input2_offset; + int32_t output_offset; + + // Used only for float evals: + float output_activation_min_f32; + float output_activation_max_f32; +}; + +TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteAddParams* params, + const TfLiteTensor* input1, + const TfLiteTensor* input2, TfLiteTensor* output, + OpData* data) { + data->requires_broadcast = !HaveSameShapes(input1, input2); + + if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) { + // 8bit -> 8bit general quantized path, with general rescalings + data->input1_offset = -input1->params.zero_point; + data->input2_offset = -input2->params.zero_point; + data->output_offset = output->params.zero_point; + data->left_shift = 20; + const double twice_max_input_scale = + 2 * static_cast( + std::max(input1->params.scale, input2->params.scale)); + const double real_input1_multiplier = + static_cast(input1->params.scale) / twice_max_input_scale; + const double real_input2_multiplier = + static_cast(input2->params.scale) / twice_max_input_scale; + const double real_output_multiplier = + twice_max_input_scale / + ((1 << data->left_shift) * static_cast(output->params.scale)); + + QuantizeMultiplierSmallerThanOneExp( + real_input1_multiplier, &data->input1_multiplier, &data->input1_shift); + + QuantizeMultiplierSmallerThanOneExp( + real_input2_multiplier, &data->input2_multiplier, &data->input2_shift); + + QuantizeMultiplierSmallerThanOneExp( + real_output_multiplier, &data->output_multiplier, &data->output_shift); + + TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized( + context, params->activation, output, &data->output_activation_min, + &data->output_activation_max)); + } else if (output->type == kTfLiteFloat32) { + CalculateActivationRange(params->activation, + &data->output_activation_min_f32, + &data->output_activation_max_f32); + } + + return kTfLiteOk; +} + +void EvalAdd(TfLiteContext* context, TfLiteNode* node, TfLiteAddParams* params, + const OpData* data, const TfLiteEvalTensor* input1, + const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) { + tflite::ArithmeticParams op_params; + SetActivationParams(data->output_activation_min_f32, + data->output_activation_max_f32, &op_params); +#define TF_LITE_ADD(opname) \ + reference_ops::opname(op_params, tflite::micro::GetTensorShape(input1), \ + tflite::micro::GetTensorData(input1), \ + tflite::micro::GetTensorShape(input2), \ + tflite::micro::GetTensorData(input2), \ + tflite::micro::GetTensorShape(output), \ + tflite::micro::GetTensorData(output)) + if (data->requires_broadcast) { + TF_LITE_ADD(BroadcastAdd4DSlow); + } else { + TF_LITE_ADD(Add); + } +#undef TF_LITE_ADD +} + +TfLiteStatus EvalAddQuantized(TfLiteContext* context, TfLiteNode* node, + TfLiteAddParams* params, const OpData* data, + const TfLiteEvalTensor* input1, + const TfLiteEvalTensor* input2, + TfLiteEvalTensor* output) { + if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) { + tflite::ArithmeticParams op_params; + op_params.left_shift = data->left_shift; + op_params.input1_offset = data->input1_offset; + op_params.input1_multiplier = data->input1_multiplier; + op_params.input1_shift = data->input1_shift; + op_params.input2_offset = data->input2_offset; + op_params.input2_multiplier = data->input2_multiplier; + op_params.input2_shift = data->input2_shift; + op_params.output_offset = data->output_offset; + op_params.output_multiplier = data->output_multiplier; + op_params.output_shift = data->output_shift; + SetActivationParams(data->output_activation_min, + data->output_activation_max, &op_params); + bool need_broadcast = reference_ops::ProcessBroadcastShapes( + tflite::micro::GetTensorShape(input1), + tflite::micro::GetTensorShape(input2), &op_params); +#define TF_LITE_ADD(type, opname, dtype) \ + type::opname(op_params, tflite::micro::GetTensorShape(input1), \ + tflite::micro::GetTensorData(input1), \ + tflite::micro::GetTensorShape(input2), \ + tflite::micro::GetTensorData(input2), \ + tflite::micro::GetTensorShape(output), \ + tflite::micro::GetTensorData(output)); + if (output->type == kTfLiteInt8) { + if (need_broadcast) { + TF_LITE_ADD(reference_integer_ops, BroadcastAdd4DSlow, int8_t); + } else { + TF_LITE_ADD(reference_integer_ops, Add, int8_t); + } + } else { + if (need_broadcast) { + TF_LITE_ADD(reference_ops, BroadcastAdd4DSlow, uint8_t); + } else { + TF_LITE_ADD(reference_ops, Add, uint8_t); + } + } +#undef TF_LITE_ADD + } + + return kTfLiteOk; +} + +void* Init(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(OpData)); +} + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + TFLITE_DCHECK(node->builtin_data != nullptr); + + const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1); + const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + + OpData* data = static_cast(node->user_data); + auto* params = reinterpret_cast(node->builtin_data); + + TF_LITE_ENSURE_STATUS( + CalculateOpData(context, params, input1, input2, output, data)); + + return kTfLiteOk; +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + auto* params = reinterpret_cast(node->builtin_data); + + TFLITE_DCHECK(node->user_data != nullptr); + const OpData* data = static_cast(node->user_data); + + const TfLiteEvalTensor* input1 = + tflite::micro::GetEvalInput(context, node, kInputTensor1); + const TfLiteEvalTensor* input2 = + tflite::micro::GetEvalInput(context, node, kInputTensor2); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + if (output->type == kTfLiteFloat32) { + EvalAdd(context, node, params, data, input1, input2, output); + } else if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) { + TF_LITE_ENSURE_OK(context, EvalAddQuantized(context, node, params, data, + input1, input2, output)); + } else { + TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", + TfLiteTypeGetName(output->type), output->type); + return kTfLiteError; + } + + return kTfLiteOk; +} + +} // namespace add + +TfLiteRegistration Register_ADD() { + return {/*init=*/add::Init, + /*free=*/nullptr, + /*prepare=*/add::Prepare, + /*invoke=*/add::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/arg_min_max.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/arg_min_max.cc new file mode 100644 index 00000000..12ac0019 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/arg_min_max.cc @@ -0,0 +1,133 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/arg_min_max.h" + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" +#include "tensorflow/lite/micro/kernels/micro_utils.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace arg_min_max { + +constexpr int kInputTensor = 0; +constexpr int kAxis = 1; +constexpr int kOutputTensor = 0; + +template +inline void ArgMinMaxHelper(const RuntimeShape& input1_shape, + const T1* input1_data, const T3* input2_data, + const RuntimeShape& output_shape, T2* output_data, + bool is_arg_max) { + if (is_arg_max) { + reference_ops::ArgMinMax(input1_shape, input1_data, input2_data, + output_shape, output_data, micro::Greater()); + } else { + reference_ops::ArgMinMax(input1_shape, input1_data, input2_data, + output_shape, output_data, micro::Less()); + } +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node, bool is_arg_max) { + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + const TfLiteEvalTensor* axis = + tflite::micro::GetEvalInput(context, node, kAxis); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + +#define TF_LITE_ARG_MIN_MAX(data_type, axis_type, output_type) \ + ArgMinMaxHelper(tflite::micro::GetTensorShape(input), \ + tflite::micro::GetTensorData(input), \ + tflite::micro::GetTensorData(axis), \ + tflite::micro::GetTensorShape(output), \ + tflite::micro::GetTensorData(output), \ + is_arg_max) + if (axis->type == kTfLiteInt32) { + if (output->type == kTfLiteInt32) { + switch (input->type) { + case kTfLiteFloat32: + TF_LITE_ARG_MIN_MAX(float, int32_t, int32_t); + break; + case kTfLiteUInt8: + TF_LITE_ARG_MIN_MAX(uint8_t, int32_t, int32_t); + break; + case kTfLiteInt8: + TF_LITE_ARG_MIN_MAX(int8_t, int32_t, int32_t); + break; + default: + TF_LITE_KERNEL_LOG(context, + "Only float32, uint8_t and int8_t are " + "supported currently, got %s.", + TfLiteTypeGetName(input->type)); + return kTfLiteError; + } + } else { + TF_LITE_KERNEL_LOG(context, + "Only int32_t are supported currently, got %s.", + TfLiteTypeGetName(output->type)); + return kTfLiteError; + } + } else { + TF_LITE_KERNEL_LOG(context, "Only int32_t are supported currently, got %s.", + TfLiteTypeGetName(axis->type)); + return kTfLiteError; + } + +#undef TF_LITE_ARG_MIN_MAX + + return kTfLiteOk; +} + +TfLiteStatus ArgMinEval(TfLiteContext* context, TfLiteNode* node) { + return Eval(context, node, false); +} + +TfLiteStatus ArgMaxEval(TfLiteContext* context, TfLiteNode* node) { + return Eval(context, node, true); +} + +} // namespace arg_min_max + +TfLiteRegistration Register_ARG_MAX() { + return {/*init=*/nullptr, + /*free=*/nullptr, + /*prepare=*/nullptr, + /*invoke=*/arg_min_max::ArgMaxEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +TfLiteRegistration Register_ARG_MIN() { + return {/*init=*/nullptr, + /*free=*/nullptr, + /*prepare=*/nullptr, + /*invoke=*/arg_min_max::ArgMinEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/ceil.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/ceil.cc new file mode 100644 index 00000000..3bce8a73 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/ceil.cc @@ -0,0 +1,74 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/ceil.h" + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace ceil { + +constexpr int kInputTensor = 0; +constexpr int kOutputTensor = 0; + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); + TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); + TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32); + TF_LITE_ENSURE_TYPES_EQ(context, output->type, input->type); + TF_LITE_ENSURE_EQ(context, output->bytes, input->bytes); + TF_LITE_ENSURE_EQ(context, output->dims->size, input->dims->size); + for (int i = 0; i < output->dims->size; ++i) { + TF_LITE_ENSURE_EQ(context, output->dims->data[i], input->dims->data[i]); + } + return kTfLiteOk; +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + reference_ops::Ceil(tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + + return kTfLiteOk; +} +} // namespace ceil + +TfLiteRegistration Register_CEIL() { + return {/*init=*/nullptr, + /*free=*/nullptr, + /*prepare=*/ceil::Prepare, + /*invoke=*/ceil::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/circular_buffer.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/circular_buffer.cc new file mode 100644 index 00000000..b5a8ae1b --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/circular_buffer.cc @@ -0,0 +1,178 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/compatibility.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/reference/integer_ops/add.h" +#include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/kernels/op_macros.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +/* + * The circular buffer custom operator is used to implement strided streaming + * convolutions on TFLite Micro. Each time this operator is invoked, it checks + * whether or not to run, based on a predetermined stride in time. If the op + * runs, it inserts the input into the end of the output buffer and shifts the + * output values towards the start of the buffer. It discards the oldest value + * in the output buffer. + * + * Input: [, , , ] + * + * After shifting: + * Output: [, , , ] + * + * We make some assumptions in this custom operator: + * - Input shape must be [1, 1, 1, depth] + * - Output shape must be [1, num_slots, 1, depth] + * - Input and output types must match. + * - Input and output quantization params must be identical. + */ +namespace tflite { +namespace ops { +namespace micro { +namespace circular_buffer { + +namespace { + +// The CircularBuffer op has one input and one output tensor. +constexpr int kInputTensor = 0; +constexpr int kOutputTensor = 0; + +// TODO(b/149795762): Add this to TfLiteStatus enum. +constexpr int kTfLiteAbort = -9; + +// These fields control the stride period of a strided streaming model. This op +// returns kTfLiteAbort until cycles_until_run-- is zero. At this time, +// cycles_until_run is reset to cycles_max. +struct OpData { + int cycles_until_run; + int cycles_max; +}; + +// These constants represent constants specific to the music detect model. +// They exist until (b/132070898) is fixed. +constexpr int kMaxOpDataSize = 7; +int op_data_counter = 0; +OpData op_data_array[kMaxOpDataSize]; + +} // namespace + +void Free(TfLiteContext* context, void* buffer) { op_data_counter = 0; } + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + + TF_LITE_ENSURE(context, input != nullptr); + TF_LITE_ENSURE(context, output != nullptr); + TF_LITE_ENSURE_EQ(context, 1, output->dims->data[0]); + TF_LITE_ENSURE_EQ(context, 1, input->dims->data[0]); + TF_LITE_ENSURE_EQ(context, 1, input->dims->data[1]); + TF_LITE_ENSURE_EQ(context, 1, output->dims->data[2]); + TF_LITE_ENSURE_EQ(context, 1, input->dims->data[2]); + TF_LITE_ENSURE_EQ(context, output->dims->data[3], input->dims->data[3]); + + TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); + + // The circular buffer custom operator currently only supports int8_t. + TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteInt8); + + // TODO(b/132070898): Use statically slotted OpData structures until a + // scratch memory API is ready. + TFLITE_DCHECK_LE(op_data_counter, kMaxOpDataSize); + OpData* op_data = &op_data_array[op_data_counter++]; + // The last circular buffer layer (length 5) simply accumulates outputs, and + // does not run periodically. + // TODO(b/150001379): Move this special case logic to the tflite flatbuffer. + if (output->dims->data[1] == 5) { + op_data->cycles_max = 1; + } else { + op_data->cycles_max = 2; + } + op_data->cycles_until_run = op_data->cycles_max; + node->user_data = op_data; + + return kTfLiteOk; +} + +// Shifts buffer over by the output depth, and write new input to end of buffer. +// num_slots is the number of samples stored in the output buffer. +// depth is the size of each sample. +void EvalInt8(const int8_t* input, int num_slots, int depth, int8_t* output) { + memmove(output, &output[depth], (num_slots - 1) * depth); + memcpy(&output[(num_slots - 1) * depth], input, depth); +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + OpData* data = reinterpret_cast(node->user_data); + + int num_slots = output->dims->data[1]; + int depth = output->dims->data[3]; + + if (input->type == kTfLiteInt8) { + EvalInt8(tflite::micro::GetTensorData(input), num_slots, depth, + tflite::micro::GetTensorData(output)); + } else { + TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", + TfLiteTypeGetName(input->type), input->type); + return kTfLiteError; + } + + if (--data->cycles_until_run != 0) { + // Signal the interpreter to end current run if the delay before op invoke + // has not been reached. + // TODO(b/149795762): Add kTfLiteAbort to TfLiteStatus enum. + return static_cast(kTfLiteAbort); + } + + // If prepare is ever called more than one time (for example, when testing the + // ambient model, the interpreter is created a few times), this op data + // counter needs to be reset so that future instances do not overrun this op + // data array. + op_data_counter = 0; + + data->cycles_until_run = data->cycles_max; + + return kTfLiteOk; +} + +} // namespace circular_buffer + +TfLiteRegistration* Register_CIRCULAR_BUFFER() { + static TfLiteRegistration r = {/*init=*/nullptr, + /*free=*/circular_buffer::Free, + /*prepare=*/circular_buffer::Prepare, + /*invoke=*/circular_buffer::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; + return &r; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/cmsis-nn/add.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/cmsis-nn/add.cc new file mode 100644 index 00000000..6db88839 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/cmsis-nn/add.cc @@ -0,0 +1,246 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/add.h" + +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/reference/integer_ops/add.h" +#include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/kernels/op_macros.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" +#include "tensorflow/lite/micro/memory_helpers.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace add { + +constexpr int kInputTensor1 = 0; +constexpr int kInputTensor2 = 1; +constexpr int kOutputTensor = 0; + +struct OpData { + bool requires_broadcast; + + // These fields are used in both the general 8-bit -> 8bit quantized path, + // and the special 16-bit -> 16bit quantized path + int input1_shift; + int input2_shift; + int32_t output_activation_min; + int32_t output_activation_max; + + // These fields are used only in the general 8-bit -> 8bit quantized path + int32_t input1_multiplier; + int32_t input2_multiplier; + int32_t output_multiplier; + int output_shift; + int left_shift; + int32_t input1_offset; + int32_t input2_offset; + int32_t output_offset; +}; + +TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteAddParams* params, + const TfLiteTensor* input1, + const TfLiteTensor* input2, TfLiteTensor* output, + OpData* data) { + data->requires_broadcast = !HaveSameShapes(input1, input2); + + if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) { + // 8bit -> 8bit general quantized path, with general rescalings + data->input1_offset = -input1->params.zero_point; + data->input2_offset = -input2->params.zero_point; + data->output_offset = output->params.zero_point; + data->left_shift = 20; + const double twice_max_input_scale = + 2 * static_cast( + std::max(input1->params.scale, input2->params.scale)); + const double real_input1_multiplier = + static_cast(input1->params.scale) / twice_max_input_scale; + const double real_input2_multiplier = + static_cast(input2->params.scale) / twice_max_input_scale; + const double real_output_multiplier = + twice_max_input_scale / + ((1 << data->left_shift) * static_cast(output->params.scale)); + + QuantizeMultiplierSmallerThanOneExp( + real_input1_multiplier, &data->input1_multiplier, &data->input1_shift); + + QuantizeMultiplierSmallerThanOneExp( + real_input2_multiplier, &data->input2_multiplier, &data->input2_shift); + + QuantizeMultiplierSmallerThanOneExp( + real_output_multiplier, &data->output_multiplier, &data->output_shift); + + TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized( + context, params->activation, output, &data->output_activation_min, + &data->output_activation_max)); + } + + return kTfLiteOk; +} + +void EvalAdd(TfLiteContext* context, TfLiteNode* node, TfLiteAddParams* params, + const OpData* data, const TfLiteEvalTensor* input1, + const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) { + float output_activation_min, output_activation_max; + CalculateActivationRange(params->activation, &output_activation_min, + &output_activation_max); + tflite::ArithmeticParams op_params; + SetActivationParams(output_activation_min, output_activation_max, &op_params); +#define TF_LITE_ADD(opname) \ + reference_ops::opname(op_params, tflite::micro::GetTensorShape(input1), \ + tflite::micro::GetTensorData(input1), \ + tflite::micro::GetTensorShape(input2), \ + tflite::micro::GetTensorData(input2), \ + tflite::micro::GetTensorShape(output), \ + tflite::micro::GetTensorData(output)) + if (data->requires_broadcast) { + TF_LITE_ADD(BroadcastAdd4DSlow); + } else { + TF_LITE_ADD(Add); + } +#undef TF_LITE_ADD +} + +TfLiteStatus EvalAddQuantized(TfLiteContext* context, TfLiteNode* node, + TfLiteAddParams* params, const OpData* data, + const TfLiteEvalTensor* input1, + const TfLiteEvalTensor* input2, + TfLiteEvalTensor* output) { + if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) { + tflite::ArithmeticParams op_params; + op_params.left_shift = data->left_shift; + op_params.input1_offset = data->input1_offset; + op_params.input1_multiplier = data->input1_multiplier; + op_params.input1_shift = data->input1_shift; + op_params.input2_offset = data->input2_offset; + op_params.input2_multiplier = data->input2_multiplier; + op_params.input2_shift = data->input2_shift; + op_params.output_offset = data->output_offset; + op_params.output_multiplier = data->output_multiplier; + op_params.output_shift = data->output_shift; + SetActivationParams(data->output_activation_min, + data->output_activation_max, &op_params); + bool need_broadcast = reference_ops::ProcessBroadcastShapes( + tflite::micro::GetTensorShape(input1), + tflite::micro::GetTensorShape(input2), &op_params); +#define TF_LITE_ADD(type, opname, dtype) \ + type::opname(op_params, tflite::micro::GetTensorShape(input1), \ + tflite::micro::GetTensorData(input1), \ + tflite::micro::GetTensorShape(input2), \ + tflite::micro::GetTensorData(input2), \ + tflite::micro::GetTensorShape(output), \ + tflite::micro::GetTensorData(output)); + if (output->type == kTfLiteInt8) { + if (need_broadcast) { + TF_LITE_ADD(reference_integer_ops, BroadcastAdd4DSlow, int8_t); + } else { + arm_elementwise_add_s8( + tflite::micro::GetTensorData(input1), + tflite::micro::GetTensorData(input2), + op_params.input1_offset, op_params.input1_multiplier, + op_params.input1_shift, op_params.input2_offset, + op_params.input2_multiplier, op_params.input2_shift, + op_params.left_shift, tflite::micro::GetTensorData(output), + op_params.output_offset, op_params.output_multiplier, + op_params.output_shift, op_params.quantized_activation_min, + op_params.quantized_activation_max, + MatchingElementsSize(tflite::micro::GetTensorShape(input1), + tflite::micro::GetTensorShape(input2), + tflite::micro::GetTensorShape(output))); + } + } else { + if (need_broadcast) { + TF_LITE_ADD(reference_ops, BroadcastAdd4DSlow, uint8_t); + } else { + TF_LITE_ADD(reference_ops, Add, uint8_t); + } + } +#undef TF_LITE_ADD + } + + return kTfLiteOk; +} + +void* Init(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(OpData)); +} + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + TFLITE_DCHECK(node->builtin_data != nullptr); + + const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1); + const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + + OpData* data = static_cast(node->user_data); + auto* params = reinterpret_cast(node->builtin_data); + + TF_LITE_ENSURE_STATUS( + CalculateOpData(context, params, input1, input2, output, data)); + + return kTfLiteOk; +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + auto* params = reinterpret_cast(node->builtin_data); + + const TfLiteEvalTensor* input1 = + tflite::micro::GetEvalInput(context, node, kInputTensor1); + const TfLiteEvalTensor* input2 = + tflite::micro::GetEvalInput(context, node, kInputTensor2); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + TFLITE_DCHECK(node->user_data != nullptr); + const OpData* data = static_cast(node->user_data); + + if (output->type == kTfLiteFloat32) { + EvalAdd(context, node, params, data, input1, input2, output); + } else if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) { + TF_LITE_ENSURE_OK(context, EvalAddQuantized(context, node, params, data, + input1, input2, output)); + } else { + TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", + TfLiteTypeGetName(output->type), output->type); + return kTfLiteError; + } + + return kTfLiteOk; +} + +} // namespace add + +TfLiteRegistration Register_ADD() { + return {/*init=*/add::Init, + /*free=*/nullptr, + /*prepare=*/add::Prepare, + /*invoke=*/add::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/cmsis-nn/conv.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/cmsis-nn/conv.cc new file mode 100644 index 00000000..cf1ce8cb --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/cmsis-nn/conv.cc @@ -0,0 +1,455 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/conv.h" + +#include "cmsis/CMSIS/NN/Include/arm_nn_types.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/reference/integer_ops/conv.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/kernels/padding.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace conv { + +constexpr int kInputTensor = 0; +constexpr int kFilterTensor = 1; +constexpr int kBiasTensor = 2; +constexpr int kOutputTensor = 0; +constexpr int kMaxChannels = 256; + +// Conv is quantized along dimension 0: +// https://www.tensorflow.org/lite/performance/quantization_spec +constexpr int kConvQuantizedDimension = 0; + +struct OpData { + TfLitePaddingValues padding; + + // Cached tensor zero point values for quantized operations. + int32_t input_zero_point; + int32_t filter_zero_point; + int32_t output_zero_point; + + // The scaling factor from input to output (aka the 'real multiplier') can + // be represented as a fixed point multiplier plus a left shift. + int32_t output_multiplier; + int output_shift; + + // Per channel output multiplier and shift. + // TODO(b/141139247): Allocate these dynamically when possible. + int32_t per_channel_output_multiplier[kMaxChannels]; + int32_t per_channel_output_shift[kMaxChannels]; + + // The range of the fused activation layer. For example for kNone and + // uint8_t these would be 0 and 255. + int32_t output_activation_min; + int32_t output_activation_max; + + // Index to buffer for optimizations if applicable. + int buffer_idx; +}; + +inline PaddingType RuntimePaddingType(TfLitePadding padding) { + switch (padding) { + case TfLitePadding::kTfLitePaddingSame: + return PaddingType::kSame; + case TfLitePadding::kTfLitePaddingValid: + return PaddingType::kValid; + case TfLitePadding::kTfLitePaddingUnknown: + default: + return PaddingType::kNone; + } +} + +TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node, + TfLiteConvParams* params, int width, int height, + int filter_width, int filter_height, int out_width, + int out_height, const TfLiteType data_type, + OpData* data) { + bool has_bias = node->inputs->size == 3; + // Check number of inputs/outputs + TF_LITE_ENSURE(context, has_bias || node->inputs->size == 2); + TF_LITE_ENSURE_EQ(context, node->outputs->size, 1); + + // Matching GetWindowedOutputSize in TensorFlow. + auto padding = params->padding; + data->padding = ComputePaddingHeightWidth( + params->stride_height, params->stride_width, + params->dilation_height_factor, params->dilation_width_factor, height, + width, filter_height, filter_width, padding, &out_height, &out_width); + + // Note that quantized inference requires that all tensors have their + // parameters set. This is usually done during quantized training. + if (data_type != kTfLiteFloat32) { + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + const TfLiteTensor* filter = GetInput(context, node, kFilterTensor); + const TfLiteTensor* bias = + GetOptionalInputTensor(context, node, kBiasTensor); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + int num_channels = filter->dims->data[kConvQuantizedDimension]; + + TF_LITE_ENSURE_STATUS(tflite::PopulateConvolutionQuantizationParams( + context, input, filter, bias, output, params->activation, + &data->output_multiplier, &data->output_shift, + &data->output_activation_min, &data->output_activation_max, + data->per_channel_output_multiplier, + reinterpret_cast(data->per_channel_output_shift), num_channels)); + } + return kTfLiteOk; +} + +void* Init(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(OpData)); +} + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { +#if defined(__ARM_FEATURE_DSP) || defined(__ARM_FEATURE_MVE) + int32_t buf_size = 0; + + TFLITE_DCHECK(node->user_data != nullptr); + TFLITE_DCHECK(node->builtin_data != nullptr); + auto* params = reinterpret_cast(node->builtin_data); + auto* data = reinterpret_cast(node->user_data); + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + const TfLiteTensor* filter = GetInput(context, node, kFilterTensor); + const TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + + RuntimeShape input_shape = GetTensorShape(input); + RuntimeShape output_shape = GetTensorShape(output); + + // Initialize cmsis-nn input dimensions + cmsis_nn_dims input_dims; + input_dims.n = MatchingDim(input_shape, 0, output_shape, 0); + input_dims.h = input->dims->data[1]; + input_dims.w = input->dims->data[2]; + input_dims.c = input_shape.Dims(3); + + // Initialize cmsis-nn filter dimensions + cmsis_nn_dims filter_dims; + filter_dims.n = output_shape.Dims(3); + filter_dims.h = filter->dims->data[1]; + filter_dims.w = filter->dims->data[2]; + filter_dims.c = input_dims.c; + + // Initialize cmsis-nn output dimensions + cmsis_nn_dims output_dims; + output_dims.n = input_dims.n; + output_dims.h = output->dims->data[1]; + output_dims.w = output->dims->data[2]; + output_dims.c = output_shape.Dims(3); + + TF_LITE_ENSURE_STATUS(CalculateOpData( + context, node, params, input_dims.w, input_dims.h, filter_dims.w, + filter_dims.h, output_dims.w, output_dims.h, input->type, data)); + + data->input_zero_point = input->params.zero_point; + data->filter_zero_point = filter->params.zero_point; + data->output_zero_point = output->params.zero_point; + + if (input->type == kTfLiteInt8) { + // Initialize cmsis-nn convolution parameters + cmsis_nn_conv_params conv_params; + conv_params.input_offset = -input->params.zero_point; + conv_params.output_offset = output->params.zero_point; + conv_params.stride.h = params->stride_height; + conv_params.stride.w = params->stride_width; + conv_params.dilation.h = params->dilation_height_factor; + conv_params.dilation.w = params->dilation_width_factor; + conv_params.padding.h = data->padding.height; + conv_params.padding.w = data->padding.width; + conv_params.activation.min = data->output_activation_min; + conv_params.activation.max = data->output_activation_max; + + buf_size = arm_convolve_wrapper_s8_get_buffer_size( + &conv_params, &input_dims, &filter_dims, &output_dims); + } + + if (buf_size > 0) { + TF_LITE_ENSURE_STATUS(context->RequestScratchBufferInArena( + context, buf_size, &data->buffer_idx)); + } else { + data->buffer_idx = -1; + } +#endif + return kTfLiteOk; +} + +TfLiteStatus EvalQuantized(TfLiteContext* context, TfLiteNode* node, + TfLiteConvParams* params, const OpData& data, + const TfLiteEvalTensor* input, + const TfLiteEvalTensor* filter, + const TfLiteEvalTensor* bias, + TfLiteEvalTensor* im2col, + TfLiteEvalTensor* hwcn_weights, + TfLiteEvalTensor* output) { + const int32_t input_offset = -data.input_zero_point; + const int32_t filter_offset = -data.filter_zero_point; + const int32_t output_offset = data.output_zero_point; + + ConvParams op_params; + op_params.padding_type = RuntimePaddingType(params->padding); + op_params.padding_values.width = data.padding.width; + op_params.padding_values.height = data.padding.height; + op_params.stride_width = params->stride_width; + op_params.stride_height = params->stride_height; + op_params.dilation_width_factor = params->dilation_width_factor; + op_params.dilation_height_factor = params->dilation_height_factor; + op_params.input_offset = input_offset; + op_params.weights_offset = filter_offset; + op_params.output_offset = output_offset; + op_params.output_multiplier = data.output_multiplier; + op_params.output_shift = -data.output_shift; + op_params.quantized_activation_min = data.output_activation_min; + op_params.quantized_activation_max = data.output_activation_max; + reference_ops::Conv(op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(filter), + tflite::micro::GetTensorData(filter), + tflite::micro::GetTensorShape(bias), + tflite::micro::GetTensorData(bias), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output), + tflite::micro::GetTensorShape(im2col), + tflite::micro::GetTensorData(im2col), nullptr); + return kTfLiteOk; +} + +TfLiteStatus EvalQuantizedPerChannel( + TfLiteContext* context, TfLiteNode* node, TfLiteConvParams* params, + const OpData& data, const TfLiteEvalTensor* input, + const TfLiteEvalTensor* filter, const TfLiteEvalTensor* bias, + TfLiteEvalTensor* output, TfLiteEvalTensor* im2col) { + // Initialize cmsis-nn convolution parameters + cmsis_nn_conv_params conv_params; + conv_params.input_offset = -data.input_zero_point; + conv_params.output_offset = data.output_zero_point; + conv_params.stride.h = params->stride_height; + conv_params.stride.w = params->stride_width; + conv_params.dilation.h = params->dilation_height_factor; + conv_params.dilation.w = params->dilation_width_factor; + conv_params.padding.h = data.padding.height; + conv_params.padding.w = data.padding.width; + conv_params.activation.min = data.output_activation_min; + conv_params.activation.max = data.output_activation_max; + + // Initialize cmsis-nn per channel quantization parameters + cmsis_nn_per_channel_quant_params quant_params; + quant_params.multiplier = + const_cast(data.per_channel_output_multiplier); + quant_params.shift = const_cast(data.per_channel_output_shift); + +#if defined(__ARM_FEATURE_DSP) || defined(__ARM_FEATURE_MVE) + RuntimeShape filter_shape = tflite::micro::GetTensorShape(filter); + RuntimeShape input_shape = tflite::micro::GetTensorShape(input); + RuntimeShape output_shape = tflite::micro::GetTensorShape(output); + RuntimeShape bias_shape = tflite::micro::GetTensorShape(bias); + + // Consistency check. + TFLITE_DCHECK_LE(conv_params.activation.min, conv_params.activation.max); + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + const int batch_size = MatchingDim(input_shape, 0, output_shape, 0); + const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3); + const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3); + if (tflite::micro::GetTensorData(bias)) { + TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth); + } + + // Initialize cmsis-nn dimensions + // Input + cmsis_nn_dims input_dims; + input_dims.n = batch_size; + input_dims.h = input_shape.Dims(1); + input_dims.w = input_shape.Dims(2); + input_dims.c = input_depth; + + // Filter + cmsis_nn_dims filter_dims; + filter_dims.n = output_depth; + filter_dims.h = filter_shape.Dims(1); + filter_dims.w = filter_shape.Dims(2); + filter_dims.c = input_depth; + + // Bias + cmsis_nn_dims bias_dims; + bias_dims.n = 1; + bias_dims.h = 1; + bias_dims.w = 1; + bias_dims.c = output_depth; + + // Output + cmsis_nn_dims output_dims; + output_dims.n = batch_size; + output_dims.h = output_shape.Dims(1); + output_dims.w = output_shape.Dims(2); + output_dims.c = output_depth; + + // Initialize cmsis-nn context + cmsis_nn_context ctx; + ctx.buf = nullptr; + ctx.size = 0; + + if (data.buffer_idx > -1) { + ctx.buf = context->GetScratchBuffer(context, data.buffer_idx); + // Note: ctx.size is currently not used in cmsis-nn. + // The buffer should be allocated in the Prepare function through + // arm_convolve_wrapper_s8_get_buffer_size + } + + // arm_convolve_wrapper_s8 dispatches the optimized kernel accordingly with + // the parameters passed + arm_status status = arm_convolve_wrapper_s8( + &ctx, &conv_params, &quant_params, &input_dims, + tflite::micro::GetTensorData(input), &filter_dims, + tflite::micro::GetTensorData(filter), &bias_dims, + tflite::micro::GetTensorData(bias), &output_dims, + tflite::micro::GetTensorData(output)); + + if (status == ARM_MATH_SUCCESS) { + return kTfLiteOk; + } else { + return kTfLiteError; + } + +#else +#pragma message( \ + "CMSIS-NN optimization for conv not available for this target. Using reference kernel.") + + ConvParams op_params; + conv_params.input_offset = -data.input_zero_point; + conv_params.output_offset = data.output_zero_point; + op_params.stride_height = params->stride_height; + op_params.stride_width = params->stride_width; + op_params.dilation_height_factor = params->dilation_height_factor; + op_params.dilation_width_factor = params->dilation_width_factor; + op_params.padding_values.height = data.padding.height; + op_params.padding_values.width = data.padding.width; + op_params.quantized_activation_min = data->output_activation_min; + op_params.quantized_activation_max = data->output_activation_max; + + reference_integer_ops::ConvPerChannel( + op_params, data->per_channel_output_multiplier, + data->per_channel_output_shift, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(filter), + tflite::micro::GetTensorData(filter), + tflite::micro::GetTensorShape(bias), + tflite::micro::GetTensorData(bias), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + +#endif + return kTfLiteOk; +} + +TfLiteStatus EvalFloat(TfLiteContext* context, TfLiteNode* node, + TfLiteConvParams* params, const OpData& data, + const TfLiteEvalTensor* input, + const TfLiteEvalTensor* filter, + const TfLiteEvalTensor* bias, TfLiteEvalTensor* im2col, + TfLiteEvalTensor* hwcn_weights, + TfLiteEvalTensor* output) { + float output_activation_min, output_activation_max; + CalculateActivationRange(params->activation, &output_activation_min, + &output_activation_max); + // TODO(b/154032858): Investigate removing extra copies. + ConvParams op_params; + op_params.padding_type = RuntimePaddingType(params->padding); + op_params.padding_values.width = data.padding.width; + op_params.padding_values.height = data.padding.height; + op_params.stride_width = params->stride_width; + op_params.stride_height = params->stride_height; + op_params.dilation_width_factor = params->dilation_width_factor; + op_params.dilation_height_factor = params->dilation_height_factor; + op_params.float_activation_min = output_activation_min; + op_params.float_activation_max = output_activation_max; + + reference_ops::Conv(op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(filter), + tflite::micro::GetTensorData(filter), + tflite::micro::GetTensorShape(bias), + tflite::micro::GetTensorData(bias), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output), + tflite::micro::GetTensorShape(im2col), + tflite::micro::GetTensorData(im2col)); + return kTfLiteOk; +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + auto* params = reinterpret_cast(node->builtin_data); + + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + const TfLiteEvalTensor* filter = + tflite::micro::GetEvalInput(context, node, kFilterTensor); + const TfLiteEvalTensor* bias = + (NumInputs(node) == 3) + ? tflite::micro::GetEvalInput(context, node, kBiasTensor) + : nullptr; + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + TFLITE_DCHECK(node->user_data != nullptr); + const OpData& data = *(static_cast(node->user_data)); + + switch (input->type) { // Already know in/out types are same. + case kTfLiteFloat32: + EvalFloat(context, node, params, data, input, filter, bias, nullptr, + nullptr, output); + break; + case kTfLiteInt8: + return EvalQuantizedPerChannel(context, node, params, data, input, filter, + bias, output, nullptr); + break; + case kTfLiteUInt8: + return EvalQuantized(context, node, params, data, input, filter, bias, + nullptr, nullptr, output); + break; + default: + TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", + TfLiteTypeGetName(input->type), input->type); + return kTfLiteError; + } + return kTfLiteOk; +} + +} // namespace conv + +TfLiteRegistration Register_CONV_2D() { + return {/*init=*/conv::Init, + /*free=*/nullptr, + /*prepare=*/conv::Prepare, + /*invoke=*/conv::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/cmsis-nn/depthwise_conv.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/cmsis-nn/depthwise_conv.cc new file mode 100644 index 00000000..42ac15a0 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/cmsis-nn/depthwise_conv.cc @@ -0,0 +1,478 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/integer_ops/depthwise_conv.h" + +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/reference/depthwiseconv_float.h" +#include "tensorflow/lite/kernels/internal/reference/depthwiseconv_uint8.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/kernels/padding.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace depthwise_conv { +namespace { + +constexpr int kInputTensor = 0; +constexpr int kFilterTensor = 1; +constexpr int kBiasTensor = 2; +constexpr int kOutputTensor = 0; +constexpr int kMaxChannels = 256; + +// Depthwise conv is quantized along dimension 3: +// https://www.tensorflow.org/lite/performance/quantization_spec +constexpr int kDepthwiseConvQuantizedDimension = 3; + +struct OpData { + TfLitePaddingValues padding; + + // Cached tensor zero point values for quantized operations. + int32_t input_zero_point; + int32_t filter_zero_point; + int32_t output_zero_point; + + // The scaling factor from input to output (aka the 'real multiplier') can + // be represented as a fixed point multiplier plus a left shift. + int32_t output_multiplier; + int output_shift; + + // Per channel output multiplier and shift. + // TODO: Allocate dynamic buffers when b/158779832 is resolved + int32_t per_channel_output_multiplier[kMaxChannels]; + int32_t per_channel_output_shift[kMaxChannels]; + // The range of the fused activation layer. For example for kNone and + // uint8_t these would be 0 and 255. + int32_t output_activation_min; + int32_t output_activation_max; + // Index to buffer for optimizations if applicable. + int buffer_idx; +}; + +TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node, + TfLiteDepthwiseConvParams* params, int width, + int height, int filter_width, int filter_height, + const TfLiteType data_type, OpData* data) { + bool has_bias = node->inputs->size == 3; + // Check number of inputs/outputs + TF_LITE_ENSURE(context, has_bias || node->inputs->size == 2); + TF_LITE_ENSURE_EQ(context, node->outputs->size, 1); + + int unused_output_height, unused_output_width; + // Set buffer index to a reset value + data->buffer_idx = -1; + data->padding = ComputePaddingHeightWidth( + params->stride_height, params->stride_width, 1, 1, height, width, + filter_height, filter_width, params->padding, &unused_output_height, + &unused_output_width); + + // Note that quantized inference requires that all tensors have their + // parameters set. This is usually done during quantized training. + if (data_type != kTfLiteFloat32) { + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + const TfLiteTensor* filter = GetInput(context, node, kFilterTensor); + const TfLiteTensor* bias = + GetOptionalInputTensor(context, node, kBiasTensor); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + int num_channels = filter->dims->data[kDepthwiseConvQuantizedDimension]; + + return tflite::PopulateConvolutionQuantizationParams( + context, input, filter, bias, output, params->activation, + &data->output_multiplier, &data->output_shift, + &data->output_activation_min, &data->output_activation_max, + data->per_channel_output_multiplier, + reinterpret_cast(data->per_channel_output_shift), num_channels); + } + return kTfLiteOk; +} + +} // namespace + +void* Init(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(OpData)); +} + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + TFLITE_DCHECK(node->builtin_data != nullptr); + + OpData* data = static_cast(node->user_data); + auto* params = + reinterpret_cast(node->builtin_data); + + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + const TfLiteTensor* filter = GetInput(context, node, kFilterTensor); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + + const TfLiteType data_type = input->type; + int width = SizeOfDimension(input, 2); + int height = SizeOfDimension(input, 1); + int filter_width = SizeOfDimension(filter, 2); + int filter_height = SizeOfDimension(filter, 1); + + if (input->type == kTfLiteInt8) { + // Allocate memory for per-channel quantization parameters + const int num_channels = + filter->dims->data[kDepthwiseConvQuantizedDimension]; + TFLITE_DCHECK_LE(num_channels, kMaxChannels); + + TF_LITE_ENSURE_EQ(context, filter->quantization.type, + kTfLiteAffineQuantization); + + // All per-channel quantized tensors need valid zero point and scale arrays. + const auto* affine_quantization = + reinterpret_cast( + filter->quantization.params); + TF_LITE_ENSURE(context, affine_quantization); + TF_LITE_ENSURE(context, affine_quantization->scale); + TF_LITE_ENSURE(context, affine_quantization->zero_point); + TF_LITE_ENSURE( + context, affine_quantization->scale->size == 1 || + affine_quantization->scale->size == + filter->dims->data[kDepthwiseConvQuantizedDimension]); + TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size, + affine_quantization->zero_point->size); + } + + TF_LITE_ENSURE_STATUS(CalculateOpData(context, node, params, width, height, + filter_width, filter_height, data_type, + data)); + + data->input_zero_point = input->params.zero_point; + data->filter_zero_point = filter->params.zero_point; + data->output_zero_point = output->params.zero_point; + + if (input->type == kTfLiteInt8) { + RuntimeShape input_shape = GetTensorShape(input); + RuntimeShape output_shape = GetTensorShape(output); + RuntimeShape filter_shape = GetTensorShape(filter); + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + + const int batch_size = MatchingDim(input_shape, 0, output_shape, 0); + const int output_depth = MatchingDim(output_shape, 3, filter_shape, 3); + TFLITE_DCHECK_EQ(batch_size, 1); /* Only batch = 1 is supported */ + + cmsis_nn_dims input_dims; + input_dims.n = batch_size; + input_dims.h = height; + input_dims.w = width; + input_dims.c = input_shape.Dims(3); + + cmsis_nn_dims filter_dims; + filter_dims.n = 1; + filter_dims.h = filter_height; + filter_dims.w = filter_width; + filter_dims.c = output_depth; + + cmsis_nn_dims output_dims; + output_dims.n = batch_size; + output_dims.h = output_shape.Dims(1); + output_dims.w = output_shape.Dims(2); + output_dims.c = output_depth; + + cmsis_nn_dw_conv_params dw_conv_params; + dw_conv_params.padding.h = data->padding.height; + dw_conv_params.padding.w = data->padding.width; + + const int32_t buf_size = arm_depthwise_conv_wrapper_s8_get_buffer_size( + &dw_conv_params, &input_dims, &filter_dims, &output_dims); + + if (buf_size > 0) { + TF_LITE_ENSURE_STATUS(context->RequestScratchBufferInArena( + context, buf_size, &data->buffer_idx)); + } else { + data->buffer_idx = -1; + } + } + return kTfLiteOk; +} + +void EvalFloat(TfLiteContext* context, TfLiteNode* node, + TfLiteDepthwiseConvParams* params, const OpData* data, + const TfLiteEvalTensor* input, const TfLiteEvalTensor* filter, + const TfLiteEvalTensor* bias, TfLiteEvalTensor* output) { + float output_activation_min, output_activation_max; + CalculateActivationRange(params->activation, &output_activation_min, + &output_activation_max); + + tflite::DepthwiseParams op_params; + // Padding type is ignored, but still set. + op_params.padding_type = PaddingType::kSame; + op_params.padding_values.width = data->padding.width; + op_params.padding_values.height = data->padding.height; + op_params.stride_width = params->stride_width; + op_params.stride_height = params->stride_height; + op_params.dilation_width_factor = params->dilation_width_factor; + op_params.dilation_height_factor = params->dilation_height_factor; + op_params.depth_multiplier = params->depth_multiplier; + op_params.float_activation_min = output_activation_min; + op_params.float_activation_max = output_activation_max; + + tflite::reference_ops::DepthwiseConv( + op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(filter), + tflite::micro::GetTensorData(filter), + tflite::micro::GetTensorShape(bias), + tflite::micro::GetTensorData(bias), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); +} + +void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node, + TfLiteDepthwiseConvParams* params, OpData* data, + const TfLiteEvalTensor* input, + const TfLiteEvalTensor* filter, + const TfLiteEvalTensor* bias, + TfLiteEvalTensor* output) { + cmsis_nn_dw_conv_params dw_conv_params; + dw_conv_params.dilation.h = params->dilation_height_factor; + dw_conv_params.dilation.w = params->dilation_width_factor; + // Call to reference implementation can be removed when dilation is supported + // in the optimized implementations. + if (1 == dw_conv_params.dilation.h && 1 == dw_conv_params.dilation.w) { + dw_conv_params.input_offset = -data->input_zero_point; + dw_conv_params.output_offset = data->output_zero_point; + dw_conv_params.stride.h = params->stride_height; + dw_conv_params.stride.w = params->stride_width; + dw_conv_params.padding.h = data->padding.height; + dw_conv_params.padding.w = data->padding.width; + // TODO(b/130439627): Use calculated value for clamping. + dw_conv_params.activation.min = std::numeric_limits::min(); + dw_conv_params.activation.max = std::numeric_limits::max(); + dw_conv_params.ch_mult = params->depth_multiplier; + + cmsis_nn_per_channel_quant_params quant_params; + quant_params.multiplier = data->per_channel_output_multiplier; + quant_params.shift = data->per_channel_output_shift; + + RuntimeShape filter_shape = tflite::micro::GetTensorShape(filter); + RuntimeShape input_shape = tflite::micro::GetTensorShape(input); + RuntimeShape output_shape = tflite::micro::GetTensorShape(output); + RuntimeShape bias_shape = tflite::micro::GetTensorShape(bias); + + TFLITE_DCHECK_LE(dw_conv_params.activation.min, + dw_conv_params.activation.max); + + const int batch_size = MatchingDim(input_shape, 0, output_shape, 0); + const int output_depth = MatchingDim(filter_shape, 3, output_shape, 3); + + if (tflite::micro::GetTensorData(bias)) { + TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth); + } + + cmsis_nn_dims input_dims; + input_dims.n = batch_size; + input_dims.h = input_shape.Dims(1); + input_dims.w = input_shape.Dims(2); + input_dims.c = input_shape.Dims(3); + + cmsis_nn_dims filter_dims; + filter_dims.n = filter_shape.Dims(0); + filter_dims.h = filter_shape.Dims(1); + filter_dims.w = filter_shape.Dims(2); + filter_dims.c = output_depth; + + cmsis_nn_dims bias_dims; + bias_dims.n = 1; + bias_dims.h = 1; + bias_dims.w = 1; + bias_dims.c = output_depth; + + cmsis_nn_dims output_dims; + output_dims.n = batch_size; + output_dims.h = output_shape.Dims(1); + output_dims.w = output_shape.Dims(2); + output_dims.c = output_depth; + + cmsis_nn_context ctx; + ctx.buf = nullptr; + /* 'size' is unused */ + ctx.size = 0; + + if (data->buffer_idx > -1) { + ctx.buf = context->GetScratchBuffer(context, data->buffer_idx); + } + + TFLITE_DCHECK_EQ( + arm_depthwise_conv_wrapper_s8( + &ctx, &dw_conv_params, &quant_params, &input_dims, + tflite::micro::GetTensorData(input), &filter_dims, + tflite::micro::GetTensorData(filter), &bias_dims, + tflite::micro::GetTensorData(bias), &output_dims, + tflite::micro::GetTensorData(output)), + ARM_MATH_SUCCESS); + } else { + DepthwiseParams op_params; + op_params.padding_type = PaddingType::kSame; + op_params.padding_values.width = data->padding.width; + op_params.padding_values.height = data->padding.height; + op_params.stride_width = params->stride_width; + op_params.stride_height = params->stride_height; + op_params.dilation_width_factor = params->dilation_width_factor; + op_params.dilation_height_factor = params->dilation_height_factor; + op_params.depth_multiplier = params->depth_multiplier; + op_params.input_offset = -data->input_zero_point; + op_params.weights_offset = 0; + op_params.output_offset = data->output_zero_point; + // TODO(b/130439627): Use calculated value for clamping. + op_params.quantized_activation_min = std::numeric_limits::min(); + op_params.quantized_activation_max = std::numeric_limits::max(); + + reference_integer_ops::DepthwiseConvPerChannel( + op_params, data->per_channel_output_multiplier, + data->per_channel_output_shift, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(filter), + tflite::micro::GetTensorData(filter), + tflite::micro::GetTensorShape(bias), + tflite::micro::GetTensorData(bias), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } +} + +void EvalQuantized(TfLiteContext* context, TfLiteNode* node, + TfLiteDepthwiseConvParams* params, const OpData* data, + const TfLiteEvalTensor* input, + const TfLiteEvalTensor* filter, const TfLiteEvalTensor* bias, + TfLiteEvalTensor* output) { + const int32_t input_offset = -data->input_zero_point; + const int32_t filter_offset = -data->filter_zero_point; + const int32_t output_offset = data->output_zero_point; + + tflite::DepthwiseParams op_params; + // Padding type is ignored, but still set. + op_params.padding_type = PaddingType::kSame; + op_params.padding_values.width = data->padding.width; + op_params.padding_values.height = data->padding.height; + op_params.stride_width = params->stride_width; + op_params.stride_height = params->stride_height; + op_params.dilation_width_factor = params->dilation_width_factor; + op_params.dilation_height_factor = params->dilation_height_factor; + op_params.depth_multiplier = params->depth_multiplier; + op_params.quantized_activation_min = data->output_activation_min; + op_params.quantized_activation_max = data->output_activation_max; + op_params.input_offset = input_offset; + op_params.weights_offset = filter_offset; + op_params.output_offset = output_offset; + op_params.output_multiplier = data->output_multiplier; + // Legacy ops used mixed left and right shifts. Now all are +ve-means-left. + op_params.output_shift = -data->output_shift; + + if (1 == op_params.dilation_width_factor && + 1 == op_params.dilation_height_factor) { + RuntimeShape filter_shape = tflite::micro::GetTensorShape(filter); + const int filter_height = filter_shape.Dims(1); + const int filter_width = filter_shape.Dims(2); + RuntimeShape input_shape = tflite::micro::GetTensorShape(input); + const int input_height = input_shape.Dims(1); + const int input_width = input_shape.Dims(2); + const int input_depth = input_shape.Dims(3); + RuntimeShape output_shape = tflite::micro::GetTensorShape(output); + const int output_height = output_shape.Dims(1); + const int output_width = output_shape.Dims(2); + arm_depthwise_conv_u8_basic_ver1( + tflite::micro::GetTensorData(input), input_width, input_height, + input_depth, tflite::micro::GetTensorData(filter), + filter_width, filter_height, op_params.depth_multiplier, + op_params.padding_values.width, op_params.padding_values.height, + op_params.stride_width, op_params.stride_height, + op_params.dilation_width_factor, op_params.dilation_height_factor, + tflite::micro::GetTensorData(bias), op_params.input_offset, + op_params.weights_offset, op_params.output_offset, + tflite::micro::GetTensorData(output), output_width, + output_height, op_params.quantized_activation_min, + op_params.quantized_activation_max, op_params.output_shift, + op_params.output_multiplier); + } else { + tflite::reference_ops::DepthwiseConv( + op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(filter), + tflite::micro::GetTensorData(filter), + tflite::micro::GetTensorShape(bias), + tflite::micro::GetTensorData(bias), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + TFLITE_DCHECK(node->builtin_data != nullptr); + + auto* params = + reinterpret_cast(node->builtin_data); + OpData& data = *(static_cast(node->user_data)); + + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + const TfLiteEvalTensor* filter = + tflite::micro::GetEvalInput(context, node, kFilterTensor); + const TfLiteEvalTensor* bias = + (NumInputs(node) == 3) + ? tflite::micro::GetEvalInput(context, node, kBiasTensor) + : nullptr; + + // TODO(aselle): Consider whether float conv and quantized conv should be + // separate ops to avoid dispatch overhead here. + switch (input->type) { // Already know in/out types are same. + case kTfLiteFloat32: + EvalFloat(context, node, params, &data, input, filter, bias, output); + break; + case kTfLiteInt8: + EvalQuantizedPerChannel(context, node, params, &data, input, filter, bias, + output); + break; + case kTfLiteUInt8: + EvalQuantized(context, node, params, &data, input, filter, bias, output); + break; + default: + TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", + TfLiteTypeGetName(input->type), input->type); + return kTfLiteError; + } + return kTfLiteOk; +} + +} // namespace depthwise_conv + +TfLiteRegistration Register_DEPTHWISE_CONV_2D() { + return {/*init=*/depthwise_conv::Init, + /*free=*/nullptr, + /*prepare=*/depthwise_conv::Prepare, + /*invoke=*/depthwise_conv::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/cmsis-nn/fully_connected.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/cmsis-nn/fully_connected.cc new file mode 100644 index 00000000..8af92e6d --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/cmsis-nn/fully_connected.cc @@ -0,0 +1,350 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/fully_connected.h" + +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/reference/integer_ops/fully_connected.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace fully_connected { +namespace { + +struct OpData { + // The scaling factor from input to output (aka the 'real multiplier') can + // be represented as a fixed point multiplier plus a left shift. + int32_t output_multiplier; + int output_shift; + // The range of the fused activation layer. For example for kNone and + // uint8_t these would be 0 and 255. + int32_t output_activation_min; + int32_t output_activation_max; + // The index of the temporary tensor where the quantized inputs are cached. + int input_quantized_index; + // Index to buffer for optimizations if applicable. + int buffer_idx; + + // Cached tensor zero point values for quantized operations. + int32_t input_zero_point; + int32_t filter_zero_point; + int32_t output_zero_point; +}; + +constexpr int kInputTensor = 0; +constexpr int kWeightsTensor = 1; +constexpr int kBiasTensor = 2; +constexpr int kOutputTensor = 0; + +TfLiteStatus CalculateOpData(TfLiteContext* context, + TfLiteFusedActivation activation, + TfLiteType data_type, const TfLiteTensor* input, + const TfLiteTensor* filter, + const TfLiteTensor* bias, TfLiteTensor* output, + OpData* data) { + TfLiteStatus status = kTfLiteOk; + // Set buffer index to a reset value + data->buffer_idx = -1; + if (data_type != kTfLiteFloat32) { + double real_multiplier = 0.0; + TF_LITE_ENSURE_STATUS(GetQuantizedConvolutionMultipler( + context, input, filter, bias, output, &real_multiplier)); + int exponent; + QuantizeMultiplier(real_multiplier, &data->output_multiplier, &exponent); + data->output_shift = -exponent; + TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized( + context, activation, output, &data->output_activation_min, + &data->output_activation_max)); + data->input_zero_point = input->params.zero_point; + data->filter_zero_point = filter->params.zero_point; + data->output_zero_point = output->params.zero_point; + } + return status; +} + +} // namespace + +void* Init(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(OpData)); +} + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + TFLITE_DCHECK(node->builtin_data != nullptr); + + OpData* data = static_cast(node->user_data); + const auto params = + static_cast(node->builtin_data); + + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + const TfLiteTensor* filter = GetInput(context, node, kWeightsTensor); + const TfLiteTensor* bias = GetOptionalInputTensor(context, node, kBiasTensor); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); + TF_LITE_ENSURE_MSG(context, input->type == filter->type, + "Hybrid models are not supported on TFLite Micro."); + TF_LITE_ENSURE_STATUS(CalculateOpData(context, params->activation, + input->type, input, filter, bias, + output, data)); + + if (input->type == kTfLiteInt8 && nullptr != GetTensorData(bias)) { + RuntimeShape filter_shape = GetTensorShape(filter); + RuntimeShape output_shape = GetTensorShape(output); + + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 2); + const int filter_dim_count = filter_shape.DimensionsCount(); + cmsis_nn_dims filter_dims; + filter_dims.n = filter_shape.Dims(filter_dim_count - 1); + filter_dims.h = 1; + filter_dims.w = 1; + filter_dims.c = output_shape.Dims(1); + + const int32_t buf_size = + arm_fully_connected_s8_get_buffer_size(&filter_dims); + + if (buf_size > 0) { + TF_LITE_ENSURE_STATUS(context->RequestScratchBufferInArena( + context, buf_size, &data->buffer_idx)); + } else { + data->buffer_idx = -1; + } + } + return kTfLiteOk; +} + +TfLiteStatus EvalQuantizedInt8(TfLiteContext* context, TfLiteNode* node, + const OpData& data, + const TfLiteEvalTensor* input, + const TfLiteEvalTensor* filter, + const TfLiteEvalTensor* bias, + TfLiteEvalTensor* output) { + // The 'if' condition can be removed when null handling of bias is added to + // arm_fully_connected_s8 + if (nullptr != tflite::micro::GetTensorData(bias)) { + RuntimeShape output_shape = tflite::micro::GetTensorShape(output); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 2); + const int batches = output_shape.Dims(0); + const int output_depth = output_shape.Dims(1); + const RuntimeShape filter_shape = tflite::micro::GetTensorShape(filter); + const int filter_dim_count = filter_shape.DimensionsCount(); + const int accum_depth = filter_shape.Dims(filter_dim_count - 1); + const RuntimeShape input_shape = tflite::micro::GetTensorShape(input); + + cmsis_nn_fc_params fc_params; + fc_params.input_offset = -data.input_zero_point; + fc_params.output_offset = data.output_zero_point; + fc_params.activation.min = data.output_activation_min; + fc_params.activation.max = data.output_activation_max; + + cmsis_nn_per_tensor_quant_params quant_params; + quant_params.multiplier = data.output_multiplier; + // TODO(b/138810107): Figure out whether output shift should be inverted + quant_params.shift = -data.output_shift; + + cmsis_nn_dims input_dims; + input_dims.n = batches; + input_dims.h = input_shape.Dims(1); + input_dims.w = input_shape.Dims(2); + input_dims.c = input_shape.Dims(3); + + cmsis_nn_dims filter_dims; + filter_dims.n = accum_depth; + filter_dims.h = 1; + filter_dims.w = 1; + filter_dims.c = output_depth; + + cmsis_nn_dims bias_dims; + bias_dims.n = 1; + bias_dims.h = 1; + bias_dims.w = 1; + bias_dims.c = output_depth; + + cmsis_nn_dims output_dims; + output_dims.n = batches; + output_dims.h = 1; + output_dims.w = 1; + output_dims.c = output_depth; + + cmsis_nn_context ctx; + ctx.buf = nullptr; + ctx.size = 0; + + if (data.buffer_idx > -1) { + ctx.buf = context->GetScratchBuffer(context, data.buffer_idx); + } + + TF_LITE_ENSURE_EQ( + context, + arm_fully_connected_s8( + &ctx, &fc_params, &quant_params, &input_dims, + tflite::micro::GetTensorData(input), &filter_dims, + tflite::micro::GetTensorData(filter), &bias_dims, + tflite::micro::GetTensorData(bias), &output_dims, + tflite::micro::GetTensorData(output)), + ARM_MATH_SUCCESS); + } else { + tflite::FullyConnectedParams op_params; + op_params.input_offset = -data.input_zero_point; + op_params.weights_offset = -data.filter_zero_point; + op_params.output_offset = data.output_zero_point; + op_params.output_multiplier = data.output_multiplier; + // TODO(b/138810107): Figure out whether output shift should be inverted + op_params.output_shift = -data.output_shift; + op_params.quantized_activation_min = data.output_activation_min; + op_params.quantized_activation_max = data.output_activation_max; + + reference_integer_ops::FullyConnected( + op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(filter), + tflite::micro::GetTensorData(filter), + tflite::micro::GetTensorShape(bias), + tflite::micro::GetTensorData(bias), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } + return kTfLiteOk; +} + +TfLiteStatus EvalQuantized(TfLiteContext* context, TfLiteNode* node, + const OpData& data, const TfLiteEvalTensor* input, + const TfLiteEvalTensor* filter, + const TfLiteEvalTensor* bias, + TfLiteEvalTensor* output) { + const int32_t input_offset = -data.input_zero_point; + const int32_t filter_offset = -data.filter_zero_point; + const int32_t output_offset = data.output_zero_point; + + tflite::FullyConnectedParams op_params; + op_params.input_offset = input_offset; + op_params.weights_offset = filter_offset; + op_params.output_offset = output_offset; + op_params.output_multiplier = data.output_multiplier; + // Legacy ops used mixed left and right shifts. Now all are +ve-means-left. + op_params.output_shift = -data.output_shift; + op_params.quantized_activation_min = data.output_activation_min; + op_params.quantized_activation_max = data.output_activation_max; + +#define TF_LITE_FULLY_CONNECTED(output_data_type) \ + reference_ops::FullyConnected( \ + op_params, tflite::micro::GetTensorShape(input), \ + tflite::micro::GetTensorData(input), \ + tflite::micro::GetTensorShape(filter), \ + tflite::micro::GetTensorData(filter), \ + tflite::micro::GetTensorShape(bias), \ + tflite::micro::GetTensorData(bias), \ + tflite::micro::GetTensorShape(output), \ + tflite::micro::GetTensorData(output)) + switch (output->type) { + case kTfLiteUInt8: + TF_LITE_FULLY_CONNECTED(uint8_t); + break; + case kTfLiteInt16: + TF_LITE_FULLY_CONNECTED(int16_t); + break; + default: + TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", + TfLiteTypeGetName(output->type), output->type); + return kTfLiteError; + } + + return kTfLiteOk; +} + +TfLiteStatus EvalFloat(TfLiteContext* context, TfLiteNode* node, + TfLiteFusedActivation activation, + const TfLiteEvalTensor* input, + const TfLiteEvalTensor* filter, + const TfLiteEvalTensor* bias, TfLiteEvalTensor* output) { + float output_activation_min, output_activation_max; + CalculateActivationRange(activation, &output_activation_min, + &output_activation_max); + tflite::FullyConnectedParams op_params; + op_params.float_activation_min = output_activation_min; + op_params.float_activation_max = output_activation_max; + tflite::reference_ops::FullyConnected( + op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(filter), + tflite::micro::GetTensorData(filter), + tflite::micro::GetTensorShape(bias), + tflite::micro::GetTensorData(bias), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + return kTfLiteOk; +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->builtin_data != nullptr); + const auto* params = + static_cast(node->builtin_data); + + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + const TfLiteEvalTensor* filter = + tflite::micro::GetEvalInput(context, node, kWeightsTensor); + const TfLiteEvalTensor* bias = + tflite::micro::GetEvalInput(context, node, kBiasTensor); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + TFLITE_DCHECK(node->user_data != nullptr); + const OpData& data = *(static_cast(node->user_data)); + + // Checks in Prepare ensure input, output and filter types are all the same. + switch (input->type) { + case kTfLiteFloat32: + return EvalFloat(context, node, params->activation, input, filter, bias, + output); + case kTfLiteInt8: + return EvalQuantizedInt8(context, node, data, input, filter, bias, + output); + + case kTfLiteUInt8: + return EvalQuantized(context, node, data, input, filter, bias, output); + + default: + TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", + TfLiteTypeGetName(input->type), input->type); + return kTfLiteError; + } + return kTfLiteOk; +} + +} // namespace fully_connected + +TfLiteRegistration Register_FULLY_CONNECTED() { + return {/*init=*/fully_connected::Init, + /*free=*/nullptr, + /*prepare=*/fully_connected::Prepare, + /*invoke=*/fully_connected::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/cmsis-nn/mul.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/cmsis-nn/mul.cc new file mode 100644 index 00000000..00d884eb --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/cmsis-nn/mul.cc @@ -0,0 +1,218 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/mul.h" + +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/reference/integer_ops/mul.h" +#include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" +#include "tensorflow/lite/micro/memory_helpers.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace mul { + +constexpr int kInput1Tensor = 0; +constexpr int kInput2Tensor = 1; +constexpr int kOutputTensor = 0; + +struct OpData { + int32_t output_activation_min; + int32_t output_activation_max; + + int32_t output_multiplier; + int output_shift; + + // Cached tensor zero point values for quantized operations. + int32_t input1_zero_point; + int32_t input2_zero_point; + int32_t output_zero_point; +}; + +TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node, + TfLiteMulParams* params, OpData* data) { + const TfLiteTensor* input1 = GetInput(context, node, kInput1Tensor); + const TfLiteTensor* input2 = GetInput(context, node, kInput2Tensor); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + + TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); + TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); + + TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type); + + if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) { + TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized( + context, params->activation, output, &data->output_activation_min, + &data->output_activation_max)); + + double real_multiplier = + input1->params.scale * input2->params.scale / output->params.scale; + QuantizeMultiplier(real_multiplier, &data->output_multiplier, + &data->output_shift); + } + + return kTfLiteOk; +} + +void* Init(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(OpData)); +} + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { + const TfLiteTensor* input1 = GetInput(context, node, kInput1Tensor); + const TfLiteTensor* input2 = GetInput(context, node, kInput2Tensor); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + + if (output->dims->size == 0) { + return AllocateOutputDimensionsFromInput(context, input1, input2, output); + } + + TFLITE_DCHECK(node->builtin_data != nullptr); + auto* params = reinterpret_cast(node->builtin_data); + TFLITE_DCHECK(node->user_data != nullptr); + OpData* data = static_cast(node->user_data); + + data->input1_zero_point = input1->params.zero_point; + data->input2_zero_point = input2->params.zero_point; + data->output_zero_point = output->params.zero_point; + CalculateOpData(context, node, params, data); + + return kTfLiteOk; +} + +void EvalQuantized(TfLiteContext* context, TfLiteNode* node, + TfLiteMulParams* params, const OpData& data, + const TfLiteEvalTensor* input1, + const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) { + if (output->type == kTfLiteInt8 || output->type == kTfLiteUInt8) { + tflite::ArithmeticParams op_params; + SetActivationParams(data.output_activation_min, data.output_activation_max, + &op_params); + op_params.input1_offset = -data.input1_zero_point; + op_params.input2_offset = -data.input2_zero_point; + op_params.output_offset = data.output_zero_point; + op_params.output_multiplier = data.output_multiplier; + op_params.output_shift = data.output_shift; + bool need_broadcast = reference_ops::ProcessBroadcastShapes( + tflite::micro::GetTensorShape(input1), + tflite::micro::GetTensorShape(input2), &op_params); + +#define TF_LITE_MUL(type, opname, dtype) \ + type::opname(op_params, tflite::micro::GetTensorShape(input1), \ + tflite::micro::GetTensorData(input1), \ + tflite::micro::GetTensorShape(input2), \ + tflite::micro::GetTensorData(input2), \ + tflite::micro::GetTensorShape(output), \ + tflite::micro::GetTensorData(output)); + + if (output->type == kTfLiteInt8) { + if (need_broadcast) { + TF_LITE_MUL(reference_integer_ops, BroadcastMul4DSlow, int8_t); + } else { + arm_elementwise_mul_s8( + tflite::micro::GetTensorData(input1), + tflite::micro::GetTensorData(input2), + op_params.input1_offset, op_params.input2_offset, + tflite::micro::GetTensorData(output), + op_params.output_offset, op_params.output_multiplier, + op_params.output_shift, op_params.quantized_activation_min, + op_params.quantized_activation_max, + MatchingElementsSize(tflite::micro::GetTensorShape(input1), + tflite::micro::GetTensorShape(input2), + tflite::micro::GetTensorShape(output))); + } + } else if (output->type == kTfLiteUInt8) { + if (need_broadcast) { + TF_LITE_MUL(reference_ops, BroadcastMul4DSlow, uint8_t); + } else { + TF_LITE_MUL(reference_ops, Mul, uint8_t); + } + } +#undef TF_LITE_MUL + } +} + +void EvalFloat(TfLiteContext* context, TfLiteNode* node, + TfLiteMulParams* params, const TfLiteEvalTensor* input1, + const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) { + float output_activation_min, output_activation_max; + CalculateActivationRange(params->activation, &output_activation_min, + &output_activation_max); + tflite::ArithmeticParams op_params; + SetActivationParams(output_activation_min, output_activation_max, &op_params); + + bool need_broadcast = reference_ops::ProcessBroadcastShapes( + tflite::micro::GetTensorShape(input1), + tflite::micro::GetTensorShape(input2), &op_params); +#define TF_LITE_MUL(opname) \ + reference_ops::opname(op_params, tflite::micro::GetTensorShape(input1), \ + tflite::micro::GetTensorData(input1), \ + tflite::micro::GetTensorShape(input2), \ + tflite::micro::GetTensorData(input2), \ + tflite::micro::GetTensorShape(output), \ + tflite::micro::GetTensorData(output)); + + if (need_broadcast) { + TF_LITE_MUL(BroadcastMul4DSlow); + } else { + TF_LITE_MUL(Mul); + } +#undef TF_LITE_MUL +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + auto* params = reinterpret_cast(node->builtin_data); + + const TfLiteEvalTensor* input1 = + tflite::micro::GetEvalInput(context, node, kInput1Tensor); + const TfLiteEvalTensor* input2 = + tflite::micro::GetEvalInput(context, node, kInput2Tensor); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + TFLITE_DCHECK(node->user_data != nullptr); + const OpData& data = *(static_cast(node->user_data)); + + switch (input1->type) { + case kTfLiteUInt8: + case kTfLiteInt8: + EvalQuantized(context, node, params, data, input1, input2, output); + break; + case kTfLiteFloat32: + EvalFloat(context, node, params, input1, input2, output); + break; + default: + TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", + TfLiteTypeGetName(input1->type), input1->type); + return kTfLiteError; + } + + return kTfLiteOk; +} +} // namespace mul + +TfLiteRegistration Register_MUL() { + return {mul::Init, nullptr /* Free */, mul::Prepare, mul::Eval}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/cmsis-nn/pooling.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/cmsis-nn/pooling.cc new file mode 100644 index 00000000..4229b2c2 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/cmsis-nn/pooling.cc @@ -0,0 +1,397 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#include "tensorflow/lite/kernels/internal/reference/pooling.h" + +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" +#include "flatbuffers/base.h" // from @flatbuffers +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/kernels/internal/reference/integer_ops/pooling.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/kernels/padding.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace pooling { + +namespace { + +constexpr int kInputTensor = 0; +constexpr int kOutputTensor = 0; + +struct OpData { + TfLitePaddingValues padding; + // Index to buffer for optimizations if applicable. + int buffer_idx; + + int32_t activation_min; + int32_t activation_max; +}; + +TfLiteStatus CalculateOpData(TfLiteContext* context, + const TfLitePoolParams* params, + const TfLiteTensor* input, TfLiteTensor* output, + OpData* data) { + // input: batch, height, width, channel + int height = SizeOfDimension(input, 1); + int width = SizeOfDimension(input, 2); + + int out_height, out_width; + + data->padding = ComputePaddingHeightWidth( + params->stride_height, params->stride_width, + /*dilation_rate_height=*/1, + /*dilation_rate_width=*/1, height, width, params->filter_height, + params->filter_width, params->padding, &out_height, &out_width); + + if (input->type != kTfLiteFloat32) { + TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized( + context, params->activation, output, &data->activation_min, + &data->activation_max)); + TFLITE_DCHECK_LE(data->activation_min, data->activation_max); + } + + // Set buffer index to a reset value + data->buffer_idx = -1; + + return kTfLiteOk; +} + +void AverageEvalFloat(const TfLiteContext* context, const TfLiteNode* node, + const TfLitePoolParams* params, const OpData& data, + const TfLiteEvalTensor* input, TfLiteEvalTensor* output) { + float activation_min, activation_max; + CalculateActivationRange(params->activation, &activation_min, + &activation_max); + + PoolParams op_params; + op_params.stride_height = params->stride_height; + op_params.stride_width = params->stride_width; + op_params.filter_height = params->filter_height; + op_params.filter_width = params->filter_width; + op_params.padding_values.height = data.padding.height; + op_params.padding_values.width = data.padding.width; + op_params.float_activation_min = activation_min; + op_params.float_activation_max = activation_max; + reference_ops::AveragePool(op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); +} + +void AverageEvalQuantized(TfLiteContext* context, const TfLiteNode* node, + const TfLitePoolParams* params, const OpData& data, + const TfLiteEvalTensor* input, + TfLiteEvalTensor* output) { + TFLITE_DCHECK(input->type == kTfLiteUInt8 || input->type == kTfLiteInt8); + + PoolParams op_params; + op_params.stride_height = params->stride_height; + op_params.stride_width = params->stride_width; + op_params.filter_height = params->filter_height; + op_params.filter_width = params->filter_width; + op_params.padding_values.height = data.padding.height; + op_params.padding_values.width = data.padding.width; + op_params.quantized_activation_min = data.activation_min; + op_params.quantized_activation_max = data.activation_max; + + if (input->type == kTfLiteUInt8) { + reference_ops::AveragePool(op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } else { + RuntimeShape input_shape = tflite::micro::GetTensorShape(input); + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + + RuntimeShape output_shape = tflite::micro::GetTensorShape(output); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + + const int depth = MatchingDim(input_shape, 3, output_shape, 3); + + cmsis_nn_dims input_dims; + input_dims.n = 1; + input_dims.h = input_shape.Dims(1); + input_dims.w = input_shape.Dims(2); + input_dims.c = depth; + + cmsis_nn_dims output_dims; + output_dims.n = 1; + output_dims.h = output_shape.Dims(1); + output_dims.w = output_shape.Dims(2); + output_dims.c = depth; + + cmsis_nn_pool_params pool_params; + pool_params.stride.h = params->stride_height; + pool_params.stride.w = params->stride_width; + pool_params.padding.h = data.padding.height; + pool_params.padding.w = data.padding.width; + pool_params.activation.min = data.activation_min; + pool_params.activation.max = data.activation_max; + + cmsis_nn_dims filter_dims; + filter_dims.n = 1; + filter_dims.h = params->filter_height; + filter_dims.w = params->filter_width; + filter_dims.c = 1; + + cmsis_nn_context ctx; + ctx.buf = nullptr; + ctx.size = 0; + if (data.buffer_idx > -1) { + ctx.buf = context->GetScratchBuffer(context, data.buffer_idx); + } + + TFLITE_DCHECK_EQ( + arm_avgpool_s8(&ctx, &pool_params, &input_dims, + tflite::micro::GetTensorData(input), + &filter_dims, &output_dims, + tflite::micro::GetTensorData(output)), + ARM_MATH_SUCCESS); + } +} + +void MaxEvalFloat(TfLiteContext* context, TfLiteNode* node, + TfLitePoolParams* params, const OpData& data, + const TfLiteEvalTensor* input, TfLiteEvalTensor* output) { + float activation_min, activation_max; + CalculateActivationRange(params->activation, &activation_min, + &activation_max); + tflite::PoolParams op_params; + op_params.stride_height = params->stride_height; + op_params.stride_width = params->stride_width; + op_params.filter_height = params->filter_height; + op_params.filter_width = params->filter_width; + op_params.padding_values.height = data.padding.height; + op_params.padding_values.width = data.padding.width; + op_params.float_activation_min = activation_min; + op_params.float_activation_max = activation_max; + reference_ops::MaxPool(op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); +} + +void MaxEvalQuantizedUInt8(TfLiteContext* context, TfLiteNode* node, + TfLitePoolParams* params, const OpData& data, + const TfLiteEvalTensor* input, + TfLiteEvalTensor* output) { + tflite::PoolParams op_params; + op_params.stride_height = params->stride_height; + op_params.stride_width = params->stride_width; + op_params.filter_height = params->filter_height; + op_params.filter_width = params->filter_width; + op_params.padding_values.height = data.padding.height; + op_params.padding_values.width = data.padding.width; + op_params.quantized_activation_min = data.activation_min; + op_params.quantized_activation_max = data.activation_max; + reference_ops::MaxPool(op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); +} + +TfLiteStatus MaxEvalInt8(TfLiteContext* context, const TfLiteNode* node, + const TfLitePoolParams* params, const OpData& data, + const TfLiteEvalTensor* input, + TfLiteEvalTensor* output) { + RuntimeShape input_shape = tflite::micro::GetTensorShape(input); + RuntimeShape output_shape = tflite::micro::GetTensorShape(output); + const int depth = MatchingDim(input_shape, 3, output_shape, 3); + + cmsis_nn_dims input_dims; + input_dims.n = 1; + input_dims.h = input_shape.Dims(1); + input_dims.w = input_shape.Dims(2); + input_dims.c = depth; + + cmsis_nn_dims output_dims; + output_dims.n = 1; + output_dims.h = output_shape.Dims(1); + output_dims.w = output_shape.Dims(2); + output_dims.c = depth; + + cmsis_nn_pool_params pool_params; + pool_params.stride.h = params->stride_height; + pool_params.stride.w = params->stride_width; + pool_params.padding.h = data.padding.height; + pool_params.padding.w = data.padding.width; + pool_params.activation.min = data.activation_min; + pool_params.activation.max = data.activation_max; + + cmsis_nn_dims filter_dims; + filter_dims.n = 1; + filter_dims.h = params->filter_height; + filter_dims.w = params->filter_width; + filter_dims.c = 1; + + cmsis_nn_context ctx; + ctx.buf = nullptr; + ctx.size = 0; + if (data.buffer_idx > -1) { + ctx.buf = context->GetScratchBuffer(context, data.buffer_idx); + } + + TFLITE_DCHECK_EQ( + arm_max_pool_s8(&ctx, &pool_params, &input_dims, + tflite::micro::GetTensorData(input), &filter_dims, + &output_dims, + tflite::micro::GetTensorData(output)), + ARM_MATH_SUCCESS); + + return kTfLiteOk; +} + +} // namespace + +void* Init(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(OpData)); +} + +TfLiteStatus MaxPrepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + TFLITE_DCHECK(node->builtin_data != nullptr); + + OpData* data = static_cast(node->user_data); + auto* params = reinterpret_cast(node->builtin_data); + + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + + TF_LITE_ENSURE_STATUS(CalculateOpData(context, params, input, output, data)); + + return kTfLiteOk; +} + +TfLiteStatus AveragePrepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + TFLITE_DCHECK(node->builtin_data != nullptr); + + OpData* data = static_cast(node->user_data); + auto* params = reinterpret_cast(node->builtin_data); + + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + + TF_LITE_ENSURE_STATUS(CalculateOpData(context, params, input, output, data)); + + if (input->type == kTfLiteInt8) { + RuntimeShape input_shape = GetTensorShape(input); + TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); + + RuntimeShape output_shape = GetTensorShape(output); + TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); + + const int depth = MatchingDim(input_shape, 3, output_shape, 3); + const int output_width = output_shape.Dims(2); + + const int32_t buffer_size = + arm_avgpool_s8_get_buffer_size(output_width, depth); + + if (buffer_size > 0) { + TF_LITE_ENSURE_STATUS(context->RequestScratchBufferInArena( + context, buffer_size, &data->buffer_idx)); + } else { + data->buffer_idx = -1; + } + } + return kTfLiteOk; +} + +TfLiteStatus AverageEval(TfLiteContext* context, TfLiteNode* node) { + auto* params = reinterpret_cast(node->builtin_data); + + const OpData& data = *(static_cast(node->user_data)); + + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + // Inputs and outputs share the same type, guaranteed by the converter. + switch (input->type) { + case kTfLiteFloat32: + AverageEvalFloat(context, node, params, data, input, output); + break; + case kTfLiteUInt8: + case kTfLiteInt8: + AverageEvalQuantized(context, node, params, data, input, output); + break; + default: + TF_LITE_KERNEL_LOG(context, "Input type %s is not currently supported", + TfLiteTypeGetName(input->type)); + return kTfLiteError; + } + return kTfLiteOk; +} + +TfLiteStatus MaxEval(TfLiteContext* context, TfLiteNode* node) { + auto* params = reinterpret_cast(node->builtin_data); + + const OpData& data = *(static_cast(node->user_data)); + + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + switch (input->type) { + case kTfLiteFloat32: + MaxEvalFloat(context, node, params, data, input, output); + break; + case kTfLiteUInt8: + MaxEvalQuantizedUInt8(context, node, params, data, input, output); + break; + case kTfLiteInt8: + MaxEvalInt8(context, node, params, data, input, output); + break; + default: + TF_LITE_KERNEL_LOG(context, "Type %s not currently supported.", + TfLiteTypeGetName(input->type)); + return kTfLiteError; + } + return kTfLiteOk; +} + +} // namespace pooling + +TfLiteRegistration Register_AVERAGE_POOL_2D() { + return {/*init=*/pooling::Init, + /*free=*/nullptr, + /*prepare=*/pooling::AveragePrepare, + /*invoke=*/pooling::AverageEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +TfLiteRegistration Register_MAX_POOL_2D() { + return {/*init=*/pooling::Init, + /*free=*/nullptr, + /*prepare=*/pooling::MaxPrepare, + /*invoke=*/pooling::MaxEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/cmsis-nn/softmax.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/cmsis-nn/softmax.cc new file mode 100644 index 00000000..194bba4f --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/cmsis-nn/softmax.cc @@ -0,0 +1,175 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/softmax.h" + +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace activations { +namespace { + +TfLiteStatus CalculateSoftmaxParams(TfLiteContext* context, + const TfLiteTensor* input, + TfLiteTensor* output, + const TfLiteSoftmaxParams* params, + SoftmaxParams* op_data) { + if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8) { + if (input->type == kTfLiteUInt8) { + TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteUInt8); + TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); + } else { + TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteInt8); + if (output->type == kTfLiteInt16) { + TF_LITE_ENSURE_EQ(context, output->params.zero_point, -32768); + // NOTE: Current int16_t softmax output does not require symmetric + // scaling + // - so no need to verify scale here. + } else { + TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteInt8); + TF_LITE_ENSURE_EQ(context, output->params.zero_point, -128); + TF_LITE_ENSURE(context, output->params.scale == 1.f / 256); + } + } + + static const int kScaledDiffIntegerBits = 5; + + int input_left_shift; + tflite::PreprocessSoftmaxScaling( + static_cast(params->beta), + static_cast(input->params.scale), kScaledDiffIntegerBits, + &op_data->input_multiplier, &input_left_shift); + op_data->input_left_shift = input_left_shift; + op_data->diff_min = + -1.0 * tflite::CalculateInputRadius(kScaledDiffIntegerBits, + op_data->input_left_shift); + } else { + TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32); + TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteFloat32); + op_data->beta = static_cast(params->beta); + } + return kTfLiteOk; +} + +} // namespace + +void* SoftmaxInit(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(SoftmaxParams)); +} + +TfLiteStatus SoftmaxPrepare(TfLiteContext* context, TfLiteNode* node) { + auto* params = static_cast(node->builtin_data); + + TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); + TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); + const TfLiteTensor* input = GetInput(context, node, 0); + TF_LITE_ENSURE(context, NumDimensions(input) >= 1); + + TfLiteTensor* output = GetOutput(context, node, 0); + + TFLITE_DCHECK(node->user_data != nullptr); + SoftmaxParams* data = static_cast(node->user_data); + return CalculateSoftmaxParams(context, input, output, params, data); +} + +// Takes a tensor and performs softmax along the last dimension. +void SoftmaxFloat(const TfLiteEvalTensor* input, TfLiteEvalTensor* output, + const SoftmaxParams& op_data) { + tflite::reference_ops::Softmax(op_data, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); +} + +void SoftmaxQuantized(const TfLiteEvalTensor* input, TfLiteEvalTensor* output, + const SoftmaxParams& op_data) { + const auto input_shape = tflite::micro::GetTensorShape(input); + const auto output_shape = tflite::micro::GetTensorShape(output); + + if (input->type == kTfLiteUInt8) { + tflite::reference_ops::Softmax( + op_data, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } else { + if (output->type == kTfLiteInt16) { + tflite::reference_ops::Softmax( + op_data, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } else { + const int trailing_dim = input_shape.DimensionsCount() - 1; + const int outer_size = + MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape); + const int depth = + MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim); + + arm_softmax_s8(tflite::micro::GetTensorData(input), outer_size, + depth, op_data.input_multiplier, op_data.input_left_shift, + op_data.diff_min, + tflite::micro::GetTensorData(output)); + } + } +} + +TfLiteStatus SoftmaxEval(TfLiteContext* context, TfLiteNode* node) { + const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0); + TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0); + + TFLITE_DCHECK(node->user_data != nullptr); + const SoftmaxParams& data = + *(static_cast(node->user_data)); + + switch (input->type) { + case kTfLiteFloat32: { + SoftmaxFloat(input, output, data); + return kTfLiteOk; + } + case kTfLiteInt8: + case kTfLiteUInt8: { + SoftmaxQuantized(input, output, data); + return kTfLiteOk; + } + default: + TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", + TfLiteTypeGetName(input->type), input->type); + return kTfLiteError; + } +} + +} // namespace activations + +TfLiteRegistration Register_SOFTMAX() { + return {/*init=*/activations::SoftmaxInit, + /*free=*/nullptr, + /*prepare=*/activations::SoftmaxPrepare, + /*invoke=*/activations::SoftmaxEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/comparisons.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/comparisons.cc new file mode 100644 index 00000000..6b01f78c --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/comparisons.cc @@ -0,0 +1,722 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#include "tensorflow/lite/kernels/internal/reference/comparisons.h" + +#include "tensorflow/lite/micro/kernels/kernel_util.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace comparisons { +namespace { + +struct OpData { + ComparisonParams params; +}; + +constexpr int kInputTensor1 = 0; +constexpr int kInputTensor2 = 1; +constexpr int kOutputTensor = 0; + +TfLiteStatus EqualEval(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + const OpData* data = static_cast(node->user_data); + + const TfLiteEvalTensor* input1 = + tflite::micro::GetEvalInput(context, node, kInputTensor1); + const TfLiteEvalTensor* input2 = + tflite::micro::GetEvalInput(context, node, kInputTensor2); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + RuntimeShape input1_shape = tflite::micro::GetTensorShape(input1); + RuntimeShape input2_shape = tflite::micro::GetTensorShape(input2); + RuntimeShape output_shape = tflite::micro::GetTensorShape(output); + bool* output_data = tflite::micro::GetTensorData(output); + + bool requires_broadcast = !tflite::micro::HaveSameShapes(input1, input2); + switch (input1->type) { + case kTfLiteBool: + requires_broadcast + ? reference_ops::Broadcast4DSlowEqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::EqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteFloat32: + requires_broadcast + ? reference_ops::Broadcast4DSlowEqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::EqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteInt32: + requires_broadcast + ? reference_ops::Broadcast4DSlowEqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::EqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteInt64: + requires_broadcast + ? reference_ops::Broadcast4DSlowEqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::EqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteUInt8: + requires_broadcast + ? reference_ops::Broadcast4DSlowEqualWithScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::EqualWithScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteInt8: + requires_broadcast + ? reference_ops::Broadcast4DSlowEqualWithScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::EqualWithScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + default: + TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", + TfLiteTypeGetName(input1->type), input1->type); + return kTfLiteError; + } + return kTfLiteOk; +} + +// TODO(renjieliu): Refactor the logic to avoid duplications. +TfLiteStatus NotEqualEval(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + const OpData* data = static_cast(node->user_data); + + const TfLiteEvalTensor* input1 = + tflite::micro::GetEvalInput(context, node, kInputTensor1); + const TfLiteEvalTensor* input2 = + tflite::micro::GetEvalInput(context, node, kInputTensor2); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + RuntimeShape input1_shape = tflite::micro::GetTensorShape(input1); + RuntimeShape input2_shape = tflite::micro::GetTensorShape(input2); + RuntimeShape output_shape = tflite::micro::GetTensorShape(output); + bool* output_data = tflite::micro::GetTensorData(output); + + bool requires_broadcast = !tflite::micro::HaveSameShapes(input1, input2); + switch (input1->type) { + case kTfLiteBool: + requires_broadcast + ? reference_ops::Broadcast4DSlowNotEqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::NotEqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteFloat32: + requires_broadcast + ? reference_ops::Broadcast4DSlowNotEqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::NotEqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteInt32: + requires_broadcast + ? reference_ops::Broadcast4DSlowNotEqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::NotEqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteInt64: + requires_broadcast + ? reference_ops::Broadcast4DSlowNotEqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::NotEqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteUInt8: + requires_broadcast + ? reference_ops::Broadcast4DSlowNotEqualWithScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::NotEqualWithScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteInt8: + requires_broadcast + ? reference_ops::Broadcast4DSlowNotEqualWithScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::NotEqualWithScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + default: + TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", + TfLiteTypeGetName(input1->type), input1->type); + return kTfLiteError; + } + return kTfLiteOk; +} + +TfLiteStatus GreaterEval(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + const OpData* data = static_cast(node->user_data); + + const TfLiteEvalTensor* input1 = + tflite::micro::GetEvalInput(context, node, kInputTensor1); + const TfLiteEvalTensor* input2 = + tflite::micro::GetEvalInput(context, node, kInputTensor2); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + RuntimeShape input1_shape = tflite::micro::GetTensorShape(input1); + RuntimeShape input2_shape = tflite::micro::GetTensorShape(input2); + RuntimeShape output_shape = tflite::micro::GetTensorShape(output); + bool* output_data = tflite::micro::GetTensorData(output); + + bool requires_broadcast = !tflite::micro::HaveSameShapes(input1, input2); + switch (input1->type) { + case kTfLiteFloat32: + requires_broadcast + ? reference_ops::Broadcast4DSlowGreaterNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::GreaterNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteInt32: + requires_broadcast + ? reference_ops::Broadcast4DSlowGreaterNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::GreaterNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteInt64: + requires_broadcast + ? reference_ops::Broadcast4DSlowGreaterNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::GreaterNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteUInt8: + requires_broadcast + ? reference_ops::Broadcast4DSlowGreaterWithScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::GreaterWithScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteInt8: + requires_broadcast + ? reference_ops::Broadcast4DSlowGreaterWithScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::GreaterWithScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + default: + TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", + TfLiteTypeGetName(input1->type), input1->type); + return kTfLiteError; + } + return kTfLiteOk; +} + +TfLiteStatus GreaterEqualEval(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + const OpData* data = static_cast(node->user_data); + + const TfLiteEvalTensor* input1 = + tflite::micro::GetEvalInput(context, node, kInputTensor1); + const TfLiteEvalTensor* input2 = + tflite::micro::GetEvalInput(context, node, kInputTensor2); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + RuntimeShape input1_shape = tflite::micro::GetTensorShape(input1); + RuntimeShape input2_shape = tflite::micro::GetTensorShape(input2); + RuntimeShape output_shape = tflite::micro::GetTensorShape(output); + bool* output_data = tflite::micro::GetTensorData(output); + + bool requires_broadcast = !tflite::micro::HaveSameShapes(input1, input2); + switch (input1->type) { + case kTfLiteFloat32: + requires_broadcast + ? reference_ops::Broadcast4DSlowGreaterEqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::GreaterEqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteInt32: + requires_broadcast + ? reference_ops::Broadcast4DSlowGreaterEqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::GreaterEqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteInt64: + requires_broadcast + ? reference_ops::Broadcast4DSlowGreaterEqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::GreaterEqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteUInt8: + requires_broadcast + ? reference_ops::Broadcast4DSlowGreaterEqualWithScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::GreaterEqualWithScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteInt8: + requires_broadcast + ? reference_ops::Broadcast4DSlowGreaterEqualWithScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::GreaterEqualWithScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + default: + TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", + TfLiteTypeGetName(input1->type), input1->type); + return kTfLiteError; + } + return kTfLiteOk; +} + +TfLiteStatus LessEval(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + const OpData* data = static_cast(node->user_data); + + const TfLiteEvalTensor* input1 = + tflite::micro::GetEvalInput(context, node, kInputTensor1); + const TfLiteEvalTensor* input2 = + tflite::micro::GetEvalInput(context, node, kInputTensor2); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + RuntimeShape input1_shape = tflite::micro::GetTensorShape(input1); + RuntimeShape input2_shape = tflite::micro::GetTensorShape(input2); + RuntimeShape output_shape = tflite::micro::GetTensorShape(output); + bool* output_data = tflite::micro::GetTensorData(output); + + bool requires_broadcast = !tflite::micro::HaveSameShapes(input1, input2); + switch (input1->type) { + case kTfLiteFloat32: + requires_broadcast + ? reference_ops::Broadcast4DSlowLessNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::LessNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteInt32: + requires_broadcast + ? reference_ops::Broadcast4DSlowLessNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::LessNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteInt64: + requires_broadcast + ? reference_ops::Broadcast4DSlowLessNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::LessNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteUInt8: + requires_broadcast + ? reference_ops::Broadcast4DSlowLessWithScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::LessWithScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteInt8: + requires_broadcast + ? reference_ops::Broadcast4DSlowLessWithScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::LessWithScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + default: + TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", + TfLiteTypeGetName(input1->type), input1->type); + return kTfLiteError; + } + return kTfLiteOk; +} + +TfLiteStatus LessEqualEval(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + const OpData* data = static_cast(node->user_data); + + const TfLiteEvalTensor* input1 = + tflite::micro::GetEvalInput(context, node, kInputTensor1); + const TfLiteEvalTensor* input2 = + tflite::micro::GetEvalInput(context, node, kInputTensor2); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + RuntimeShape input1_shape = tflite::micro::GetTensorShape(input1); + RuntimeShape input2_shape = tflite::micro::GetTensorShape(input2); + RuntimeShape output_shape = tflite::micro::GetTensorShape(output); + bool* output_data = tflite::micro::GetTensorData(output); + + bool requires_broadcast = !tflite::micro::HaveSameShapes(input1, input2); + switch (input1->type) { + case kTfLiteFloat32: + requires_broadcast + ? reference_ops::Broadcast4DSlowLessEqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::LessEqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteInt32: + requires_broadcast + ? reference_ops::Broadcast4DSlowLessEqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::LessEqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteInt64: + requires_broadcast + ? reference_ops::Broadcast4DSlowLessEqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::LessEqualNoScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteUInt8: + requires_broadcast + ? reference_ops::Broadcast4DSlowLessEqualWithScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::LessEqualWithScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + case kTfLiteInt8: + requires_broadcast + ? reference_ops::Broadcast4DSlowLessEqualWithScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data) + : reference_ops::LessEqualWithScaling( + data->params, input1_shape, + tflite::micro::GetTensorData(input1), input2_shape, + tflite::micro::GetTensorData(input2), output_shape, + output_data); + break; + default: + TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", + TfLiteTypeGetName(input1->type), input1->type); + return kTfLiteError; + } + return kTfLiteOk; +} + +} // namespace + +void* Init(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(OpData)); +} + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + OpData* data = static_cast(node->user_data); + + const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1); + const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2); + + if (input1->type == kTfLiteUInt8 || input1->type == kTfLiteInt8) { + auto input1_offset = -input1->params.zero_point; + auto input2_offset = -input2->params.zero_point; + const int kLeftShift = 8; + + int32_t input1_multiplier; + int input1_shift; + QuantizeMultiplierSmallerThanOneExp( + static_cast(input1->params.scale), &input1_multiplier, + &input1_shift); + int32_t input2_multiplier; + int input2_shift; + QuantizeMultiplierSmallerThanOneExp( + static_cast(input2->params.scale), &input2_multiplier, + &input2_shift); + + data->params.left_shift = kLeftShift; + data->params.input1_offset = input1_offset; + data->params.input1_multiplier = input1_multiplier; + data->params.input1_shift = input1_shift; + data->params.input2_offset = input2_offset; + data->params.input2_multiplier = input2_multiplier; + data->params.input2_shift = input2_shift; + } + + return kTfLiteOk; +} + +} // namespace comparisons + +TfLiteRegistration Register_EQUAL() { + return {/*init=*/comparisons::Init, + /*free=*/nullptr, + /*prepare=*/comparisons::Prepare, + /*invoke=*/comparisons::EqualEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +TfLiteRegistration Register_NOT_EQUAL() { + return {/*init=*/comparisons::Init, + /*free=*/nullptr, + /*prepare=*/comparisons::Prepare, + /*invoke=*/comparisons::NotEqualEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +TfLiteRegistration Register_GREATER() { + return {/*init=*/comparisons::Init, + /*free=*/nullptr, + /*prepare=*/comparisons::Prepare, + /*invoke=*/comparisons::GreaterEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +TfLiteRegistration Register_GREATER_EQUAL() { + return {/*init=*/comparisons::Init, + /*free=*/nullptr, + /*prepare=*/comparisons::Prepare, + /*invoke=*/comparisons::GreaterEqualEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +TfLiteRegistration Register_LESS() { + return {/*init=*/comparisons::Init, + /*free=*/nullptr, + /*prepare=*/comparisons::Prepare, + /*invoke=*/comparisons::LessEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +TfLiteRegistration Register_LESS_EQUAL() { + return {/*init=*/comparisons::Init, + /*free=*/nullptr, + /*prepare=*/comparisons::Prepare, + /*invoke=*/comparisons::LessEqualEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/concatenation.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/concatenation.cc new file mode 100644 index 00000000..1db8fd2c --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/concatenation.cc @@ -0,0 +1,264 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#include "tensorflow/lite/kernels/internal/reference/concatenation.h" + +#include + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/tensor.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/internal/types.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace concatenation { + +constexpr int kMaxInputNum = 10; // Maximum number of input tensors +constexpr int kOutputTensor = 0; + +struct OpData { + ConcatenationParams params; +}; + +// Handles negative axis index, coerces to positive index value. +inline int CalculatePositiveAxis(int axis, const TfLiteTensor* output_tensor) { + if (axis >= 0) { + return axis; + } else { + return NumDimensions(output_tensor) + axis; + } +} + +// The following functions are helpers to get tensor data in the format that the +// reference op implementation expects. They provide the same functionality as +// class VectorOfTensors and class VectorOfQuantizedTensors in TFLite. + +// Gets shapes from a list of tensors. +inline void GetAllInputTensorShapes(const TfLiteContext* context, + const TfLiteNode* node, + RuntimeShape all_shapes[kMaxInputNum]) { + TFLITE_DCHECK(context != nullptr); + TFLITE_DCHECK(node != nullptr); + for (int i = 0; i < node->inputs->size; ++i) { + const TfLiteEvalTensor* t = tflite::micro::GetEvalInput(context, node, i); + RuntimeShape shape = tflite::micro::GetTensorShape(t); + all_shapes[i].ReplaceWith(shape.DimensionsCount(), shape.DimsData()); + } +} + +// Get shape pointers from a list of shapes. +inline void GetShapesPointers(const RuntimeShape* shapes, size_t num, + const RuntimeShape* pointers[]) { + for (size_t i = 0; i < num; ++i) { + pointers[i] = &shapes[i]; + } +} + +// Gets data pointers from a list of tensors. +template +inline void GetAllInputTensorData(const TfLiteContext* context, + const TfLiteNode* node, + T* all_data[kMaxInputNum]) { + TFLITE_DCHECK(context != nullptr); + TFLITE_DCHECK(node != nullptr); + for (int i = 0; i < node->inputs->size; ++i) { + const TfLiteEvalTensor* t = tflite::micro::GetEvalInput(context, node, i); + all_data[i] = tflite::micro::GetTensorData(t); + } +} + +template +void EvalUnquantized(TfLiteContext* context, TfLiteNode* node) { + // Collect the shapes and data pointer of input tensors + RuntimeShape inputs_shape[kMaxInputNum]; + const RuntimeShape* inputs_shape_ptr[kMaxInputNum]; + const data_type* inputs_data[kMaxInputNum]; + GetAllInputTensorShapes(context, node, inputs_shape); + GetShapesPointers(inputs_shape, node->inputs->size, inputs_shape_ptr); + GetAllInputTensorData(context, node, inputs_data); + + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + TFLITE_DCHECK(node->user_data != nullptr); + const OpData* data = static_cast(node->user_data); + + reference_ops::Concatenation(data->params, inputs_shape_ptr, inputs_data, + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); +} + +void EvalQuantizedUInt8(TfLiteContext* context, TfLiteNode* node) { + // Collect the shapes and data pointer of input tensors + RuntimeShape inputs_shape[kMaxInputNum]; + const RuntimeShape* inputs_shape_ptr[kMaxInputNum]; + const uint8_t* inputs_data[kMaxInputNum]; + GetAllInputTensorShapes(context, node, inputs_shape); + GetShapesPointers(inputs_shape, node->inputs->size, inputs_shape_ptr); + GetAllInputTensorData(context, node, inputs_data); + + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + TFLITE_DCHECK(node->user_data != nullptr); + const OpData* data = static_cast(node->user_data); + + reference_ops::ConcatenationWithScaling( + data->params, inputs_shape_ptr, inputs_data, + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); +} + +void* Init(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(OpData)); +} + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { + // This function only checks the types. Additional shape validations are + // performed in the reference implementation called during Eval(). + const TfLiteConcatenationParams* params = + reinterpret_cast(node->builtin_data); + + TfLiteType input_type = GetInput(context, node, 0)->type; + TfLiteType output_type = GetOutput(context, node, kOutputTensor)->type; + + // Check activation and input type + TF_LITE_ENSURE_EQ(context, params->activation, kTfLiteActNone); + TF_LITE_ENSURE(context, + input_type == kTfLiteFloat32 || input_type == kTfLiteUInt8 || + input_type == kTfLiteInt8 || input_type == kTfLiteInt32 || + input_type == kTfLiteInt64); + + // Output type must match input type + TF_LITE_ENSURE_EQ(context, output_type, input_type); + + // This implementation does not support large number of input tensors + const int num_inputs = NumInputs(node); + TF_LITE_ENSURE(context, num_inputs <= kMaxInputNum); + + // Shapes with dimensions >4 are not yet supported with static allocation. + for (int i = 0; i < num_inputs; ++i) { + const TfLiteTensor* input = GetInput(context, node, i); + int num_dimensions = NumDimensions(input); + + if (num_dimensions > 4) { + TF_LITE_KERNEL_LOG(context, + "Op Concatenation does not currently support num dimensions >4 " + "Tensor has %d dimensions.", + num_dimensions); + return kTfLiteError; + } + } + + // Calculate OpData. + TFLITE_DCHECK(node->user_data != nullptr); + OpData* data = static_cast(node->user_data); + + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + + switch (output_type) { // Already know in/outtypes are same. + case kTfLiteFloat32: + case kTfLiteInt32: + case kTfLiteInt64: { + data->params.axis = CalculatePositiveAxis(params->axis, output); + data->params.inputs_count = node->inputs->size; + break; + } + case kTfLiteUInt8: + case kTfLiteInt8: { + data->params.axis = CalculatePositiveAxis(params->axis, output); + data->params.inputs_count = node->inputs->size; + + float* input_scales = + reinterpret_cast(context->AllocatePersistentBuffer( + context, node->inputs->size * sizeof(float))); + + int32_t* input_zero_points = + reinterpret_cast(context->AllocatePersistentBuffer( + context, node->inputs->size * sizeof(int32_t))); + + // Allocate persistent scale and zeropoint buffers. + // Store input scale and zero point values in OpParams: + for (int i = 0; i < node->inputs->size; ++i) { + const TfLiteTensor* t = GetInput(context, node, i); + input_scales[i] = t->params.scale; + input_zero_points[i] = t->params.zero_point; + } + + data->params.input_scale = input_scales; + data->params.input_zeropoint = input_zero_points; + data->params.output_zeropoint = output->params.zero_point; + data->params.output_scale = output->params.scale; + break; + } + default: + TF_LITE_KERNEL_LOG(context, "Op Concatenation does not currently support Type '%s'.", + TfLiteTypeGetName(output_type)); + return kTfLiteError; + } + + return kTfLiteOk; +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + TfLiteType output_type = GetOutput(context, node, kOutputTensor)->type; + + switch (output_type) { // Already know in/outtypes are same. + case kTfLiteFloat32: + EvalUnquantized(context, node); + break; + case kTfLiteInt32: + EvalUnquantized(context, node); + break; + case kTfLiteUInt8: + EvalQuantizedUInt8(context, node); + break; + case kTfLiteInt8: + EvalUnquantized(context, node); + break; + case kTfLiteInt64: + EvalUnquantized(context, node); + break; + + default: + TF_LITE_KERNEL_LOG(context, "Op Concatenation does not currently support Type '%s'.", + TfLiteTypeGetName(output_type)); + return kTfLiteError; + } + + return kTfLiteOk; +} + +} // namespace concatenation + +TfLiteRegistration Register_CONCATENATION() { + return {/*init=*/concatenation::Init, + /*free=*/nullptr, + /*prepare=*/concatenation::Prepare, + /*invoke=*/concatenation::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/conv.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/conv.cc new file mode 100644 index 00000000..6601213f --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/conv.cc @@ -0,0 +1,334 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/conv.h" + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/reference/integer_ops/conv.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/kernels/padding.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace conv { + +constexpr int kInputTensor = 0; +constexpr int kFilterTensor = 1; +constexpr int kBiasTensor = 2; +constexpr int kOutputTensor = 0; + +// Conv is quantized along dimension 0: +// https://www.tensorflow.org/lite/performance/quantization_spec +constexpr int kConvQuantizedDimension = 0; + +// This file has 2 implementation of Conv. + +struct OpData { + TfLitePaddingValues padding; + + // Cached tensor zero point values for quantized operations. + int32_t input_zero_point; + int32_t filter_zero_point; + int32_t output_zero_point; + + // The scaling factor from input to output (aka the 'real multiplier') can + // be represented as a fixed point multiplier plus a left shift. + int32_t output_multiplier; + int output_shift; + + // Per channel output multiplier and shift. + int32_t* per_channel_output_multiplier; + int32_t* per_channel_output_shift; + + // The range of the fused activation layer. For example for kNone and + // uint8_t these would be 0 and 255. + int32_t output_activation_min; + int32_t output_activation_max; +}; + +inline PaddingType RuntimePaddingType(TfLitePadding padding) { + switch (padding) { + case TfLitePadding::kTfLitePaddingSame: + return PaddingType::kSame; + case TfLitePadding::kTfLitePaddingValid: + return PaddingType::kValid; + case TfLitePadding::kTfLitePaddingUnknown: + default: + return PaddingType::kNone; + } +} + +TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node, + const TfLiteConvParams* params, int width, + int height, int filter_width, int filter_height, + int out_width, int out_height, + const TfLiteType data_type, OpData* data) { + bool has_bias = node->inputs->size == 3; + // Check number of inputs/outputs + TF_LITE_ENSURE(context, has_bias || node->inputs->size == 2); + TF_LITE_ENSURE_EQ(context, node->outputs->size, 1); + + // Matching GetWindowedOutputSize in TensorFlow. + auto padding = params->padding; + data->padding = ComputePaddingHeightWidth( + params->stride_height, params->stride_width, + params->dilation_height_factor, params->dilation_width_factor, height, + width, filter_height, filter_width, padding, &out_height, &out_width); + + // Note that quantized inference requires that all tensors have their + // parameters set. This is usually done during quantized training. + if (data_type != kTfLiteFloat32) { + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + const TfLiteTensor* filter = GetInput(context, node, kFilterTensor); + const TfLiteTensor* bias = + GetOptionalInputTensor(context, node, kBiasTensor); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + int output_channels = filter->dims->data[kConvQuantizedDimension]; + + TF_LITE_ENSURE_STATUS(tflite::PopulateConvolutionQuantizationParams( + context, input, filter, bias, output, params->activation, + &data->output_multiplier, &data->output_shift, + &data->output_activation_min, &data->output_activation_max, + data->per_channel_output_multiplier, + reinterpret_cast(data->per_channel_output_shift), + output_channels)); + } + return kTfLiteOk; +} + +void* Init(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(OpData)); +} + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + TFLITE_DCHECK(node->builtin_data != nullptr); + + OpData* data = static_cast(node->user_data); + const auto params = static_cast(node->builtin_data); + + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + const TfLiteTensor* filter = GetInput(context, node, kFilterTensor); + + int input_width = input->dims->data[2]; + int input_height = input->dims->data[1]; + int filter_width = filter->dims->data[2]; + int filter_height = filter->dims->data[1]; + int output_width = output->dims->data[2]; + int output_height = output->dims->data[1]; + + // Dynimically allocate per-channel quantization parameters. + const int num_channels = filter->dims->data[kConvQuantizedDimension]; + data->per_channel_output_multiplier = + reinterpret_cast(context->AllocatePersistentBuffer( + context, num_channels * sizeof(int32_t))); + data->per_channel_output_shift = + reinterpret_cast(context->AllocatePersistentBuffer( + context, num_channels * sizeof(int32_t))); + + // All per-channel quantized tensors need valid zero point and scale arrays. + if (input->type == kTfLiteInt8) { + TF_LITE_ENSURE_EQ(context, filter->quantization.type, + kTfLiteAffineQuantization); + + const auto* affine_quantization = + static_cast(filter->quantization.params); + TF_LITE_ENSURE(context, affine_quantization); + TF_LITE_ENSURE(context, affine_quantization->scale); + TF_LITE_ENSURE(context, affine_quantization->zero_point); + + TF_LITE_ENSURE(context, + affine_quantization->scale->size == 1 || + affine_quantization->scale->size == + filter->dims->data[kConvQuantizedDimension]); + TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size, + affine_quantization->zero_point->size); + } + + TF_LITE_ENSURE_STATUS(CalculateOpData( + context, node, params, input_width, input_height, filter_width, + filter_height, output_width, output_height, input->type, data)); + + data->input_zero_point = input->params.zero_point; + data->filter_zero_point = filter->params.zero_point; + data->output_zero_point = output->params.zero_point; + + return kTfLiteOk; +} // namespace conv + +void EvalQuantized(TfLiteContext* context, TfLiteNode* node, + TfLiteConvParams* params, const OpData& data, + const TfLiteEvalTensor* input, + const TfLiteEvalTensor* filter, const TfLiteEvalTensor* bias, + TfLiteEvalTensor* im2col, TfLiteEvalTensor* hwcn_weights, + TfLiteEvalTensor* output) { + const int32_t input_offset = -data.input_zero_point; + const int32_t filter_offset = -data.filter_zero_point; + const int32_t output_offset = data.output_zero_point; + + // TODO(b/154032858): Investigate removing extra copies. + ConvParams op_params; + op_params.padding_type = RuntimePaddingType(params->padding); + op_params.padding_values.width = data.padding.width; + op_params.padding_values.height = data.padding.height; + op_params.stride_width = params->stride_width; + op_params.stride_height = params->stride_height; + op_params.dilation_width_factor = params->dilation_width_factor; + op_params.dilation_height_factor = params->dilation_height_factor; + op_params.input_offset = input_offset; + op_params.weights_offset = filter_offset; + op_params.output_offset = output_offset; + op_params.output_multiplier = data.output_multiplier; + op_params.output_shift = -data.output_shift; + op_params.quantized_activation_min = data.output_activation_min; + op_params.quantized_activation_max = data.output_activation_max; + reference_ops::Conv(op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(filter), + tflite::micro::GetTensorData(filter), + tflite::micro::GetTensorShape(bias), + tflite::micro::GetTensorData(bias), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output), + tflite::micro::GetTensorShape(im2col), + tflite::micro::GetTensorData(im2col), nullptr); +} + +void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node, + TfLiteConvParams* params, const OpData& data, + const TfLiteEvalTensor* input, + const TfLiteEvalTensor* filter, + const TfLiteEvalTensor* bias, + TfLiteEvalTensor* output, + TfLiteEvalTensor* im2col) { + // TODO(b/154032858): Investigate removing extra copies. + ConvParams op_params; + op_params.input_offset = -data.input_zero_point; + op_params.output_offset = data.output_zero_point; + op_params.stride_height = params->stride_height; + op_params.stride_width = params->stride_width; + op_params.dilation_height_factor = params->dilation_height_factor; + op_params.dilation_width_factor = params->dilation_width_factor; + op_params.padding_values.height = data.padding.height; + op_params.padding_values.width = data.padding.width; + op_params.quantized_activation_min = data.output_activation_min; + op_params.quantized_activation_max = data.output_activation_max; + + reference_integer_ops::ConvPerChannel( + op_params, data.per_channel_output_multiplier, + data.per_channel_output_shift, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(filter), + tflite::micro::GetTensorData(filter), + tflite::micro::GetTensorShape(bias), + tflite::micro::GetTensorData(bias), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); +} + +void EvalFloat(TfLiteContext* context, TfLiteNode* node, + TfLiteConvParams* params, const OpData& data, + const TfLiteEvalTensor* input, const TfLiteEvalTensor* filter, + const TfLiteEvalTensor* bias, TfLiteEvalTensor* im2col, + TfLiteEvalTensor* hwcn_weights, TfLiteEvalTensor* output) { + float output_activation_min, output_activation_max; + CalculateActivationRange(params->activation, &output_activation_min, + &output_activation_max); + // TODO(b/154032858): Investigate removing extra copies. + ConvParams op_params; + op_params.padding_type = RuntimePaddingType(params->padding); + op_params.padding_values.width = data.padding.width; + op_params.padding_values.height = data.padding.height; + op_params.stride_width = params->stride_width; + op_params.stride_height = params->stride_height; + op_params.dilation_width_factor = params->dilation_width_factor; + op_params.dilation_height_factor = params->dilation_height_factor; + op_params.float_activation_min = output_activation_min; + op_params.float_activation_max = output_activation_max; + + reference_ops::Conv(op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(filter), + tflite::micro::GetTensorData(filter), + tflite::micro::GetTensorShape(bias), + tflite::micro::GetTensorData(bias), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output), + tflite::micro::GetTensorShape(im2col), + tflite::micro::GetTensorData(im2col)); +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + auto* params = reinterpret_cast(node->builtin_data); + + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + const TfLiteEvalTensor* filter = + tflite::micro::GetEvalInput(context, node, kFilterTensor); + const TfLiteEvalTensor* bias = + (NumInputs(node) == 3) + ? tflite::micro::GetEvalInput(context, node, kBiasTensor) + : nullptr; + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + TFLITE_DCHECK(node->user_data != nullptr); + const OpData& data = *(static_cast(node->user_data)); + + switch (input->type) { // Already know in/out types are same. + case kTfLiteFloat32: + EvalFloat(context, node, params, data, input, filter, bias, nullptr, + nullptr, output); + break; + case kTfLiteInt8: + EvalQuantizedPerChannel(context, node, params, data, input, filter, bias, + output, nullptr); + break; + case kTfLiteUInt8: + EvalQuantized(context, node, params, data, input, filter, bias, nullptr, + nullptr, output); + break; + default: + TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", + TfLiteTypeGetName(input->type), input->type); + return kTfLiteError; + } + return kTfLiteOk; +} + +} // namespace conv + +TfLiteRegistration Register_CONV_2D() { + return {/*init=*/conv::Init, + /*free=*/nullptr, + /*prepare=*/conv::Prepare, + /*invoke=*/conv::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/depthwise_conv.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/depthwise_conv.cc new file mode 100644 index 00000000..2f6083d5 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/depthwise_conv.cc @@ -0,0 +1,327 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/integer_ops/depthwise_conv.h" + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/reference/depthwiseconv_float.h" +#include "tensorflow/lite/kernels/internal/reference/depthwiseconv_uint8.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/kernels/padding.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace depthwise_conv { +namespace { + +constexpr int kInputTensor = 0; +constexpr int kFilterTensor = 1; +constexpr int kBiasTensor = 2; +constexpr int kOutputTensor = 0; + +// Depthwise conv is quantized along dimension 3: +// https://www.tensorflow.org/lite/performance/quantization_spec +constexpr int kDepthwiseConvQuantizedDimension = 3; + +struct OpData { + TfLitePaddingValues padding; + + // Cached tensor zero point values for quantized operations. + int32_t input_zero_point; + int32_t filter_zero_point; + int32_t output_zero_point; + + // The scaling factor from input to output (aka the 'real multiplier') can + // be represented as a fixed point multiplier plus a left shift. + int32_t output_multiplier; + int output_shift; + + // Per channel output multiplier and shift. + int32_t* per_channel_output_multiplier; + int32_t* per_channel_output_shift; + // The range of the fused activation layer. For example for kNone and + // uint8_t these would be 0 and 255. + int32_t output_activation_min; + int32_t output_activation_max; +}; + +TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node, + TfLiteDepthwiseConvParams* params, int width, + int height, int filter_width, int filter_height, + const TfLiteType data_type, OpData* data) { + bool has_bias = node->inputs->size == 3; + // Check number of inputs/outputs + TF_LITE_ENSURE(context, has_bias || node->inputs->size == 2); + TF_LITE_ENSURE_EQ(context, node->outputs->size, 1); + + int unused_output_height, unused_output_width; + data->padding = ComputePaddingHeightWidth( + params->stride_height, params->stride_width, 1, 1, height, width, + filter_height, filter_width, params->padding, &unused_output_height, + &unused_output_width); + + // Note that quantized inference requires that all tensors have their + // parameters set. This is usually done during quantized training. + if (data_type != kTfLiteFloat32) { + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + const TfLiteTensor* filter = GetInput(context, node, kFilterTensor); + const TfLiteTensor* bias = + GetOptionalInputTensor(context, node, kBiasTensor); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + int num_channels = filter->dims->data[kDepthwiseConvQuantizedDimension]; + + return tflite::PopulateConvolutionQuantizationParams( + context, input, filter, bias, output, params->activation, + &data->output_multiplier, &data->output_shift, + &data->output_activation_min, &data->output_activation_max, + data->per_channel_output_multiplier, + reinterpret_cast(data->per_channel_output_shift), num_channels); + } + return kTfLiteOk; +} + +} // namespace + +void* Init(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(OpData)); +} + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + TFLITE_DCHECK(node->builtin_data != nullptr); + + auto* params = + reinterpret_cast(node->builtin_data); + OpData* data = static_cast(node->user_data); + + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + const TfLiteTensor* filter = GetInput(context, node, kFilterTensor); + + const TfLiteType data_type = input->type; + int width = SizeOfDimension(input, 2); + int height = SizeOfDimension(input, 1); + int filter_width = SizeOfDimension(filter, 2); + int filter_height = SizeOfDimension(filter, 1); + + // Per channel quantization is only needed for int8_t inference. For other + // quantized types, only a single scale and zero point is needed. + const int num_channels = filter->dims->data[kDepthwiseConvQuantizedDimension]; + // Dynimically allocate per-channel quantization parameters. + data->per_channel_output_multiplier = + reinterpret_cast(context->AllocatePersistentBuffer( + context, num_channels * sizeof(int32_t))); + data->per_channel_output_shift = + reinterpret_cast(context->AllocatePersistentBuffer( + context, num_channels * sizeof(int32_t))); + + // All per-channel quantized tensors need valid zero point and scale arrays. + if (input->type == kTfLiteInt8) { + TF_LITE_ENSURE_EQ(context, filter->quantization.type, + kTfLiteAffineQuantization); + + const auto* affine_quantization = + reinterpret_cast( + filter->quantization.params); + TF_LITE_ENSURE(context, affine_quantization); + TF_LITE_ENSURE(context, affine_quantization->scale); + TF_LITE_ENSURE(context, affine_quantization->zero_point); + TF_LITE_ENSURE( + context, affine_quantization->scale->size == 1 || + affine_quantization->scale->size == + filter->dims->data[kDepthwiseConvQuantizedDimension]); + TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size, + affine_quantization->zero_point->size); + } + + TF_LITE_ENSURE_STATUS(CalculateOpData(context, node, params, width, height, + filter_width, filter_height, data_type, + data)); + + data->input_zero_point = input->params.zero_point; + data->filter_zero_point = filter->params.zero_point; + data->output_zero_point = output->params.zero_point; + + return kTfLiteOk; +} + +void EvalFloat(TfLiteContext* context, TfLiteNode* node, + TfLiteDepthwiseConvParams* params, const OpData& data, + const TfLiteEvalTensor* input, const TfLiteEvalTensor* filter, + const TfLiteEvalTensor* bias, TfLiteEvalTensor* output) { + float output_activation_min, output_activation_max; + CalculateActivationRange(params->activation, &output_activation_min, + &output_activation_max); + + tflite::DepthwiseParams op_params; + // Padding type is ignored, but still set. + op_params.padding_type = PaddingType::kSame; + op_params.padding_values.width = data.padding.width; + op_params.padding_values.height = data.padding.height; + op_params.stride_width = params->stride_width; + op_params.stride_height = params->stride_height; + op_params.dilation_width_factor = params->dilation_width_factor; + op_params.dilation_height_factor = params->dilation_height_factor; + op_params.depth_multiplier = params->depth_multiplier; + op_params.float_activation_min = output_activation_min; + op_params.float_activation_max = output_activation_max; + + tflite::reference_ops::DepthwiseConv( + op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(filter), + tflite::micro::GetTensorData(filter), + tflite::micro::GetTensorShape(bias), + tflite::micro::GetTensorData(bias), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); +} + +void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node, + TfLiteDepthwiseConvParams* params, + const OpData& data, const TfLiteEvalTensor* input, + const TfLiteEvalTensor* filter, + const TfLiteEvalTensor* bias, + TfLiteEvalTensor* output) { + DepthwiseParams op_params; + op_params.padding_type = PaddingType::kSame; + op_params.padding_values.width = data.padding.width; + op_params.padding_values.height = data.padding.height; + op_params.stride_width = params->stride_width; + op_params.stride_height = params->stride_height; + op_params.dilation_width_factor = params->dilation_width_factor; + op_params.dilation_height_factor = params->dilation_height_factor; + op_params.depth_multiplier = params->depth_multiplier; + op_params.input_offset = -data.input_zero_point; + op_params.weights_offset = 0; + op_params.output_offset = data.output_zero_point; + // TODO(b/130439627): Use calculated value for clamping. + op_params.quantized_activation_min = std::numeric_limits::min(); + op_params.quantized_activation_max = std::numeric_limits::max(); + + reference_integer_ops::DepthwiseConvPerChannel( + op_params, data.per_channel_output_multiplier, + data.per_channel_output_shift, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(filter), + tflite::micro::GetTensorData(filter), + tflite::micro::GetTensorShape(bias), + tflite::micro::GetTensorData(bias), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); +} + +void EvalQuantized(TfLiteContext* context, TfLiteNode* node, + TfLiteDepthwiseConvParams* params, const OpData& data, + const TfLiteEvalTensor* input, + const TfLiteEvalTensor* filter, const TfLiteEvalTensor* bias, + TfLiteEvalTensor* output) { + const int32_t input_offset = -data.input_zero_point; + const int32_t filter_offset = -data.filter_zero_point; + const int32_t output_offset = data.output_zero_point; + + tflite::DepthwiseParams op_params; + // Padding type is ignored, but still set. + op_params.padding_type = PaddingType::kSame; + op_params.padding_values.width = data.padding.width; + op_params.padding_values.height = data.padding.height; + op_params.stride_width = params->stride_width; + op_params.stride_height = params->stride_height; + op_params.dilation_width_factor = params->dilation_width_factor; + op_params.dilation_height_factor = params->dilation_height_factor; + op_params.depth_multiplier = params->depth_multiplier; + op_params.quantized_activation_min = data.output_activation_min; + op_params.quantized_activation_max = data.output_activation_max; + op_params.input_offset = input_offset; + op_params.weights_offset = filter_offset; + op_params.output_offset = output_offset; + op_params.output_multiplier = data.output_multiplier; + // Legacy ops used mixed left and right shifts. Now all are +ve-means-left. + op_params.output_shift = -data.output_shift; + + tflite::reference_ops::DepthwiseConv( + op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(filter), + tflite::micro::GetTensorData(filter), + tflite::micro::GetTensorShape(bias), + tflite::micro::GetTensorData(bias), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + TFLITE_DCHECK(node->builtin_data != nullptr); + + auto* params = + reinterpret_cast(node->builtin_data); + const OpData& data = *(static_cast(node->user_data)); + + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + const TfLiteEvalTensor* filter = + tflite::micro::GetEvalInput(context, node, kFilterTensor); + const TfLiteEvalTensor* bias = + (NumInputs(node) == 3) + ? tflite::micro::GetEvalInput(context, node, kBiasTensor) + : nullptr; + + // TODO(aselle): Consider whether float conv and quantized conv should be + // separate ops to avoid dispatch overhead here. + switch (input->type) { // Already know in/out types are same. + case kTfLiteFloat32: + EvalFloat(context, node, params, data, input, filter, bias, output); + break; + case kTfLiteInt8: + EvalQuantizedPerChannel(context, node, params, data, input, filter, bias, + output); + break; + case kTfLiteUInt8: + EvalQuantized(context, node, params, data, input, filter, bias, output); + break; + default: + TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", + TfLiteTypeGetName(input->type), input->type); + return kTfLiteError; + } + return kTfLiteOk; +} + +} // namespace depthwise_conv + +TfLiteRegistration Register_DEPTHWISE_CONV_2D() { + return {/*init=*/depthwise_conv::Init, + /*free=*/nullptr, + /*prepare=*/depthwise_conv::Prepare, + /*invoke=*/depthwise_conv::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/dequantize.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/dequantize.cc new file mode 100644 index 00000000..df501887 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/dequantize.cc @@ -0,0 +1,164 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/dequantize.h" + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/reference/quantize.h" +#include "tensorflow/lite/kernels/internal/reference/requantize.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace dequantize { + +struct OpData { + tflite::DequantizationParams quantization_params; + // The scaling factor from input to output (aka the 'real multiplier') can + // be represented as a fixed point multiplier plus a left shift. + int32_t output_multiplier; + int output_shift; + int32_t output_zero_point; +}; + +void* Init(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(OpData)); +} + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + OpData* data = static_cast(node->user_data); + + TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); + TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); + + // TODO(b/140515557): Add cached dequant to improve hybrid model performance. + const TfLiteTensor* input = GetInput(context, node, 0); + TfLiteTensor* output = GetOutput(context, node, 0); + + TF_LITE_ENSURE(context, input->type == kTfLiteUInt8 || + input->type == kTfLiteInt8 || + input->type == kTfLiteInt16); + TF_LITE_ENSURE( + context, output->type == kTfLiteFloat32 || output->type == kTfLiteInt32); + + if (output->type == kTfLiteInt32) { + const double effective_output_scale = + static_cast(input->params.scale) / + static_cast(output->params.scale); + QuantizeMultiplier(effective_output_scale, &data->output_multiplier, + &data->output_shift); + } + + data->quantization_params.zero_point = input->params.zero_point; + data->quantization_params.scale = static_cast(input->params.scale); + data->output_zero_point = output->params.zero_point; + return kTfLiteOk; +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + OpData* data = static_cast(node->user_data); + + const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0); + TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0); + + if (output->type == kTfLiteFloat32) { + switch (input->type) { + case kTfLiteUInt8: + reference_ops::Dequantize(data->quantization_params, + tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + break; + case kTfLiteInt8: + reference_ops::Dequantize(data->quantization_params, + tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + break; + case kTfLiteInt16: + reference_ops::Dequantize(data->quantization_params, + tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + break; + default: + TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.", + TfLiteTypeGetName(input->type), + TfLiteTypeGetName(output->type)); + return kTfLiteError; + } + } else if (output->type == kTfLiteInt32) { + int flat_size = MatchingFlatSize(tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorShape(output)); + switch (input->type) { + case kTfLiteInt16: { + reference_ops::Requantize( + tflite::micro::GetTensorData(input), flat_size, + data->output_multiplier, data->output_shift, + data->quantization_params.zero_point, data->output_zero_point, + tflite::micro::GetTensorData(output)); + break; + } + case kTfLiteInt8: { + reference_ops::Requantize( + tflite::micro::GetTensorData(input), flat_size, + data->output_multiplier, data->output_shift, + data->quantization_params.zero_point, data->output_zero_point, + tflite::micro::GetTensorData(output)); + break; + } + default: + TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.", + TfLiteTypeGetName(input->type), + TfLiteTypeGetName(output->type)); + return kTfLiteError; + } + } else { + TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.", + TfLiteTypeGetName(input->type), + TfLiteTypeGetName(output->type)); + return kTfLiteError; + } + + return kTfLiteOk; +} + +} // namespace dequantize + +TfLiteRegistration Register_DEQUANTIZE() { + return {/*init=*/dequantize::Init, + /*free=*/nullptr, + /*prepare=*/dequantize::Prepare, + /*invoke=*/dequantize::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/elementwise.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/elementwise.cc new file mode 100644 index 00000000..64880344 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/elementwise.cc @@ -0,0 +1,212 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" +#include "tensorflow/lite/micro/micro_utils.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace elementwise { +namespace { + +bool IsNumericSupportedType(const TfLiteType type) { + return type == kTfLiteFloat32; +} + +bool IsLogicalSupportedType(const TfLiteType type) { + return type == kTfLiteBool; +} + +typedef bool (*IsSupportedType)(TfLiteType); +template +TfLiteStatus GenericPrepare(TfLiteContext* context, TfLiteNode* node) { + TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); + TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); + const TfLiteTensor* input = GetInput(context, node, 0); + TfLiteTensor* output = GetOutput(context, node, 0); + TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); + if (!IsSupportedType(input->type)) { + TF_LITE_KERNEL_LOG(context, "Input data type %s (%d) is not supported.", + TfLiteTypeGetName(input->type), input->type); + return kTfLiteError; + } + return kTfLiteOk; +} + +template +inline TfLiteStatus EvalImpl(TfLiteContext* context, TfLiteNode* node, + T func(T), TfLiteType expected_type) { + const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0); + TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0); + TF_LITE_ENSURE_TYPES_EQ(context, input->type, expected_type); + const size_t num_elements = ElementCount(*input->dims); + const T* in_data = tflite::micro::GetTensorData(input); + T* out_data = tflite::micro::GetTensorData(output); + for (size_t i = 0; i < num_elements; ++i) { + out_data[i] = func(in_data[i]); + } + return kTfLiteOk; +} + +inline TfLiteStatus EvalNumeric(TfLiteContext* context, TfLiteNode* node, + float float_func(float)) { + return EvalImpl(context, node, float_func, kTfLiteFloat32); +} + +inline TfLiteStatus EvalLogical(TfLiteContext* context, TfLiteNode* node, + bool bool_func(bool)) { + return EvalImpl(context, node, bool_func, kTfLiteBool); +} + +TfLiteStatus AbsEval(TfLiteContext* context, TfLiteNode* node) { + return EvalNumeric(context, node, std::abs); +} + +TfLiteStatus SinEval(TfLiteContext* context, TfLiteNode* node) { + return EvalNumeric(context, node, std::sin); +} + +TfLiteStatus CosEval(TfLiteContext* context, TfLiteNode* node) { + return EvalNumeric(context, node, std::cos); +} + +TfLiteStatus LogEval(TfLiteContext* context, TfLiteNode* node) { + return EvalNumeric(context, node, std::log); +} + +TfLiteStatus SqrtEval(TfLiteContext* context, TfLiteNode* node) { + return EvalNumeric(context, node, std::sqrt); +} + +TfLiteStatus RsqrtEval(TfLiteContext* context, TfLiteNode* node) { + return EvalNumeric(context, node, [](float f) { return 1.f / std::sqrt(f); }); +} + +TfLiteStatus SquareEval(TfLiteContext* context, TfLiteNode* node) { + return EvalNumeric(context, node, [](float f) { return f * f; }); +} + +TfLiteStatus LogicalNotEval(TfLiteContext* context, TfLiteNode* node) { + return EvalLogical(context, node, [](bool v) { return !v; }); +} + +} // namespace +} // namespace elementwise + +TfLiteRegistration Register_ABS() { + return {/*init=*/nullptr, + /*free=*/nullptr, + /*prepare=*/ + elementwise::GenericPrepare, + /*invoke=*/elementwise::AbsEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +TfLiteRegistration Register_SIN() { + return {/*init=*/nullptr, + /*free=*/nullptr, + /*prepare=*/ + elementwise::GenericPrepare, + /*invoke=*/elementwise::SinEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +TfLiteRegistration Register_COS() { + return {/*init=*/nullptr, + /*free=*/nullptr, + /*prepare=*/ + elementwise::GenericPrepare, + /*invoke=*/elementwise::CosEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +TfLiteRegistration Register_LOG() { + return {/*init=*/nullptr, + /*free=*/nullptr, + /*prepare=*/ + elementwise::GenericPrepare, + /*invoke=*/elementwise::LogEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +TfLiteRegistration Register_SQRT() { + return {/*init=*/nullptr, + /*free=*/nullptr, + /*prepare=*/ + elementwise::GenericPrepare, + /*invoke=*/elementwise::SqrtEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +TfLiteRegistration Register_RSQRT() { + return {/*init=*/nullptr, + /*free=*/nullptr, + /*prepare=*/ + elementwise::GenericPrepare, + /*invoke=*/elementwise::RsqrtEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +TfLiteRegistration Register_SQUARE() { + return {/*init=*/nullptr, + /*free=*/nullptr, + /*prepare=*/ + elementwise::GenericPrepare, + /*invoke=*/elementwise::SquareEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +TfLiteRegistration Register_LOGICAL_NOT() { + return {/*init=*/nullptr, + /*free=*/nullptr, + /*prepare=*/ + elementwise::GenericPrepare, + /*invoke=*/elementwise::LogicalNotEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/ethosu.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/ethosu.cc new file mode 100644 index 00000000..eac6cea8 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/ethosu.cc @@ -0,0 +1,32 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +// +// This is a stub file for non-Ethos platforms +// +#include "tensorflow/lite/c/common.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace custom { +TfLiteRegistration* Register_ETHOSU() { return nullptr; } + +const char* GetString_ETHOSU() { return ""; } + +} // namespace custom +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/floor.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/floor.cc new file mode 100644 index 00000000..b8be1cf0 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/floor.cc @@ -0,0 +1,57 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/floor.h" + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace floor { + +constexpr int kInputTensor = 0; +constexpr int kOutputTensor = 0; + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + reference_ops::Floor(tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + return kTfLiteOk; +} +} // namespace floor + +TfLiteRegistration Register_FLOOR() { + return {/*init=*/nullptr, + /*free=*/nullptr, + /*prepare=*/nullptr, + /*invoke=*/floor::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/fully_connected.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/fully_connected.cc new file mode 100644 index 00000000..03078f89 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/fully_connected.cc @@ -0,0 +1,256 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/fully_connected.h" + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/reference/integer_ops/fully_connected.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace fully_connected { +namespace { + +struct OpData { + // The scaling factor from input to output (aka the 'real multiplier') can + // be represented as a fixed point multiplier plus a left shift. + int32_t output_multiplier; + int output_shift; + // The range of the fused activation layer. For example for kNone and + // uint8_t these would be 0 and 255. + int32_t output_activation_min; + int32_t output_activation_max; + // The index of the temporary tensor where the quantized inputs are cached. + int input_quantized_index; + // Cached zero point values of tensors. + int32_t input_zero_point; + int32_t filter_zero_point; + int32_t output_zero_point; +}; + +constexpr int kInputTensor = 0; +constexpr int kWeightsTensor = 1; +constexpr int kBiasTensor = 2; +constexpr int kOutputTensor = 0; + +TfLiteStatus CalculateOpData(TfLiteContext* context, + TfLiteFusedActivation activation, + TfLiteType data_type, const TfLiteTensor* input, + const TfLiteTensor* filter, + const TfLiteTensor* bias, TfLiteTensor* output, + OpData* data) { + TfLiteStatus status = kTfLiteOk; + if (data_type != kTfLiteFloat32) { + double real_multiplier = 0.0; + TF_LITE_ENSURE_STATUS(GetQuantizedConvolutionMultipler( + context, input, filter, bias, output, &real_multiplier)); + int exponent; + QuantizeMultiplier(real_multiplier, &data->output_multiplier, &exponent); + data->output_shift = -exponent; + TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized( + context, activation, output, &data->output_activation_min, + &data->output_activation_max)); + + data->input_zero_point = input->params.zero_point; + data->filter_zero_point = filter->params.zero_point; + data->output_zero_point = output->params.zero_point; + } + return status; +} + +} // namespace + +void* Init(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(OpData)); +} + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + TFLITE_DCHECK(node->builtin_data != nullptr); + + OpData* data = static_cast(node->user_data); + const auto params = + static_cast(node->builtin_data); + + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + const TfLiteTensor* filter = GetInput(context, node, kWeightsTensor); + const TfLiteTensor* bias = GetOptionalInputTensor(context, node, kBiasTensor); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + + TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); + TF_LITE_ENSURE_MSG(context, input->type == filter->type, + "Hybrid models are not supported on TFLite Micro."); + + return CalculateOpData(context, params->activation, input->type, input, + filter, bias, output, data); +} + +TfLiteStatus EvalQuantizedInt8(TfLiteContext* context, TfLiteNode* node, + const OpData& data, + const TfLiteEvalTensor* input, + const TfLiteEvalTensor* filter, + const TfLiteEvalTensor* bias, + TfLiteEvalTensor* output) { + tflite::FullyConnectedParams op_params; + op_params.input_offset = -data.input_zero_point; + op_params.weights_offset = -data.filter_zero_point; + op_params.output_offset = data.output_zero_point; + op_params.output_multiplier = data.output_multiplier; + // TODO(b/138810107): Figure out whether output shift should be inverted + op_params.output_shift = -data.output_shift; + op_params.quantized_activation_min = data.output_activation_min; + op_params.quantized_activation_max = data.output_activation_max; + + reference_integer_ops::FullyConnected( + op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(filter), + tflite::micro::GetTensorData(filter), + tflite::micro::GetTensorShape(bias), + tflite::micro::GetTensorData(bias), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + return kTfLiteOk; +} + +TfLiteStatus EvalQuantized(TfLiteContext* context, TfLiteNode* node, + const OpData& data, const TfLiteEvalTensor* input, + const TfLiteEvalTensor* filter, + const TfLiteEvalTensor* bias, + TfLiteEvalTensor* output) { + const int32_t input_offset = -data.input_zero_point; + const int32_t filter_offset = -data.filter_zero_point; + const int32_t output_offset = data.output_zero_point; + + tflite::FullyConnectedParams op_params; + op_params.input_offset = input_offset; + op_params.weights_offset = filter_offset; + op_params.output_offset = output_offset; + op_params.output_multiplier = data.output_multiplier; + // Legacy ops used mixed left and right shifts. Now all are +ve-means-left. + op_params.output_shift = -data.output_shift; + op_params.quantized_activation_min = data.output_activation_min; + op_params.quantized_activation_max = data.output_activation_max; + +#define TF_LITE_FULLY_CONNECTED(output_data_type) \ + reference_ops::FullyConnected( \ + op_params, tflite::micro::GetTensorShape(input), \ + tflite::micro::GetTensorData(input), \ + tflite::micro::GetTensorShape(filter), \ + tflite::micro::GetTensorData(filter), \ + tflite::micro::GetTensorShape(bias), \ + tflite::micro::GetTensorData(bias), \ + tflite::micro::GetTensorShape(output), \ + tflite::micro::GetTensorData(output)) + switch (output->type) { + case kTfLiteUInt8: + TF_LITE_FULLY_CONNECTED(uint8_t); + break; + case kTfLiteInt16: + TF_LITE_FULLY_CONNECTED(int16_t); + break; + default: + TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", + TfLiteTypeGetName(output->type), output->type); + return kTfLiteError; + } + + return kTfLiteOk; +} + +TfLiteStatus EvalFloat(TfLiteContext* context, TfLiteNode* node, + TfLiteFusedActivation activation, + const TfLiteEvalTensor* input, + const TfLiteEvalTensor* filter, + const TfLiteEvalTensor* bias, TfLiteEvalTensor* output) { + float output_activation_min, output_activation_max; + CalculateActivationRange(activation, &output_activation_min, + &output_activation_max); + tflite::FullyConnectedParams op_params; + op_params.float_activation_min = output_activation_min; + op_params.float_activation_max = output_activation_max; + tflite::reference_ops::FullyConnected( + op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(filter), + tflite::micro::GetTensorData(filter), + tflite::micro::GetTensorShape(bias), + tflite::micro::GetTensorData(bias), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + return kTfLiteOk; +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->builtin_data != nullptr); + const auto* params = + static_cast(node->builtin_data); + + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + const TfLiteEvalTensor* filter = + tflite::micro::GetEvalInput(context, node, kWeightsTensor); + const TfLiteEvalTensor* bias = + tflite::micro::GetEvalInput(context, node, kBiasTensor); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + TFLITE_DCHECK(node->user_data != nullptr); + const OpData& data = *(static_cast(node->user_data)); + + // Checks in Prepare ensure input, output and filter types are all the same. + switch (input->type) { + case kTfLiteFloat32: + return EvalFloat(context, node, params->activation, input, filter, bias, + output); + case kTfLiteInt8: + return EvalQuantizedInt8(context, node, data, input, filter, bias, + output); + + case kTfLiteUInt8: + return EvalQuantized(context, node, data, input, filter, bias, output); + + default: + TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", + TfLiteTypeGetName(input->type), input->type); + return kTfLiteError; + } + return kTfLiteOk; +} + +} // namespace fully_connected + +TfLiteRegistration Register_FULLY_CONNECTED() { + return {/*init=*/fully_connected::Init, + /*free=*/nullptr, + /*prepare=*/fully_connected::Prepare, + /*invoke=*/fully_connected::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/hard_swish.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/hard_swish.cc new file mode 100644 index 00000000..11e1d1a7 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/hard_swish.cc @@ -0,0 +1,140 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/hard_swish.h" + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/internal/types.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/kernels/op_macros.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" +#include "tensorflow/lite/micro/micro_utils.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace hard_swish { + +constexpr int kInputTensor = 0; +constexpr int kOutputTensor = 0; + +void* HardSwishInit(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(HardSwishParams)); +} + +TfLiteStatus HardSwishPrepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); + TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); + + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + + if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8) { + HardSwishParams* params = static_cast(node->user_data); + + params->input_zero_point = input->params.zero_point; + params->output_zero_point = output->params.zero_point; + + const float input_scale = input->params.scale; + const float hires_input_scale = (1.0f / 128.0f) * input_scale; + const float reluish_scale = 3.0f / 32768.0f; + const float output_scale = output->params.scale; + + const double output_multiplier = + static_cast(hires_input_scale / output_scale); + int32_t output_multiplier_fixedpoint_int32; + QuantizeMultiplier(output_multiplier, &output_multiplier_fixedpoint_int32, + ¶ms->output_multiplier_exponent); + DownScaleInt32ToInt16Multiplier( + output_multiplier_fixedpoint_int32, + ¶ms->output_multiplier_fixedpoint_int16); + + TF_LITE_ENSURE(context, params->output_multiplier_exponent <= 0); + + const double reluish_multiplier = + static_cast(hires_input_scale / reluish_scale); + int32_t reluish_multiplier_fixedpoint_int32; + QuantizeMultiplier(reluish_multiplier, &reluish_multiplier_fixedpoint_int32, + ¶ms->reluish_multiplier_exponent); + DownScaleInt32ToInt16Multiplier( + reluish_multiplier_fixedpoint_int32, + ¶ms->reluish_multiplier_fixedpoint_int16); + } + + return kTfLiteOk; +} + +TfLiteStatus HardSwishEval(TfLiteContext* context, TfLiteNode* node) { + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + HardSwishParams* params = static_cast(node->user_data); + + switch (input->type) { + case kTfLiteFloat32: { + tflite::reference_ops::HardSwish( + tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } break; + case kTfLiteUInt8: { + tflite::reference_ops::HardSwish( + *params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } break; + case kTfLiteInt8: { + tflite::reference_ops::HardSwish( + *params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } break; + default: { + TF_LITE_KERNEL_LOG( + context, + "Only float32/int8_t/uint8_t are supported currently, got %s", + TfLiteTypeGetName(input->type)); + return kTfLiteError; + } + } + return kTfLiteOk; +} + +} // namespace hard_swish + +TfLiteRegistration Register_HARD_SWISH() { + return {/*init=*/hard_swish::HardSwishInit, + /*free=*/nullptr, + /*prepare=*/hard_swish::HardSwishPrepare, + /*invoke=*/hard_swish::HardSwishEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/kernel_runner.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/kernel_runner.cc new file mode 100644 index 00000000..cef6c01c --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/kernel_runner.cc @@ -0,0 +1,165 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/micro/kernels/kernel_runner.h" + +namespace tflite { +namespace micro { + +namespace { +constexpr size_t kBufferAlignment = 16; +} // namespace + +// TODO(b/161841696): Consider moving away from global arena buffers: +constexpr int KernelRunner::kNumScratchBuffers_; +constexpr int KernelRunner::kKernelRunnerBufferSize_; +uint8_t KernelRunner::kKernelRunnerBuffer_[]; + +KernelRunner::KernelRunner(const TfLiteRegistration& registration, + TfLiteTensor* tensors, int tensors_size, + TfLiteIntArray* inputs, TfLiteIntArray* outputs, + void* builtin_data, ErrorReporter* error_reporter) + : allocator_(SimpleMemoryAllocator::Create( + error_reporter, kKernelRunnerBuffer_, kKernelRunnerBufferSize_)), + registration_(registration), + tensors_(tensors), + error_reporter_(error_reporter) { + // Prepare TfLiteContext: + context_.impl_ = static_cast(this); + context_.ReportError = ReportOpError; + context_.recommended_num_threads = 1; + context_.GetTensor = GetTensor; + context_.GetEvalTensor = GetEvalTensor; + context_.AllocatePersistentBuffer = AllocatePersistentBuffer; + context_.RequestScratchBufferInArena = RequestScratchBufferInArena; + context_.GetScratchBuffer = GetScratchBuffer; + + // Prepare TfLiteNode: + node_.inputs = inputs; + node_.outputs = outputs; + node_.builtin_data = builtin_data; +} + +TfLiteStatus KernelRunner::InitAndPrepare(const char* init_data) { + if (registration_.init) { + node_.user_data = registration_.init(&context_, init_data, /*length=*/0); + } + if (registration_.prepare) { + TF_LITE_ENSURE_STATUS(registration_.prepare(&context_, &node_)); + } + return kTfLiteOk; +} + +TfLiteStatus KernelRunner::Invoke() { + if (registration_.invoke == nullptr) { + TF_LITE_REPORT_ERROR(error_reporter_, + "TfLiteRegistration missing invoke function pointer!"); + return kTfLiteError; + } + return registration_.invoke(&context_, &node_); +} + +TfLiteTensor* KernelRunner::GetTensor(const struct TfLiteContext* context, + int tensor_index) { + TFLITE_DCHECK(context != nullptr); + KernelRunner* runner = reinterpret_cast(context->impl_); + TFLITE_DCHECK(runner != nullptr); + + return &runner->tensors_[tensor_index]; +} + +TfLiteEvalTensor* KernelRunner::GetEvalTensor( + const struct TfLiteContext* context, int tensor_index) { + TFLITE_DCHECK(context != nullptr); + KernelRunner* runner = reinterpret_cast(context->impl_); + TFLITE_DCHECK(runner != nullptr); + + TfLiteEvalTensor* eval_tensor = + reinterpret_cast(runner->allocator_->AllocateTemp( + sizeof(TfLiteEvalTensor), alignof(TfLiteEvalTensor))); + TFLITE_DCHECK(eval_tensor != nullptr); + + // In unit tests, the TfLiteTensor pointer contains the source of truth for + // buffers and values: + eval_tensor->data = runner->tensors_[tensor_index].data; + eval_tensor->dims = runner->tensors_[tensor_index].dims; + eval_tensor->type = runner->tensors_[tensor_index].type; + return eval_tensor; +} + +void* KernelRunner::AllocatePersistentBuffer(TfLiteContext* context, + size_t bytes) { + TFLITE_DCHECK(context != nullptr); + KernelRunner* runner = reinterpret_cast(context->impl_); + TFLITE_DCHECK(runner != nullptr); + + return runner->allocator_->AllocateFromTail(bytes, kBufferAlignment); +} + +TfLiteStatus KernelRunner::RequestScratchBufferInArena(TfLiteContext* context, + size_t bytes, + int* buffer_index) { + TFLITE_DCHECK(context != nullptr); + TFLITE_DCHECK(buffer_index != nullptr); + + KernelRunner* runner = reinterpret_cast(context->impl_); + TFLITE_DCHECK(runner != nullptr); + + if (runner->scratch_buffer_count_ == kNumScratchBuffers_) { + TF_LITE_REPORT_ERROR( + runner->error_reporter_, + "Exceeded the maximum number of scratch tensors allowed (%d).", + kNumScratchBuffers_); + return kTfLiteError; + } + + // For tests, we allocate scratch buffers from the tail and keep them around + // for the lifetime of model. This means that the arena size in the tests will + // be more than what we would have if the scratch buffers could share memory. + runner->scratch_buffers_[runner->scratch_buffer_count_] = + runner->allocator_->AllocateFromTail(bytes, kBufferAlignment); + TFLITE_DCHECK(runner->scratch_buffers_[runner->scratch_buffer_count_] != + nullptr); + + *buffer_index = runner->scratch_buffer_count_++; + return kTfLiteOk; +} + +void* KernelRunner::GetScratchBuffer(TfLiteContext* context, int buffer_index) { + TFLITE_DCHECK(context != nullptr); + KernelRunner* runner = reinterpret_cast(context->impl_); + TFLITE_DCHECK(runner != nullptr); + + TFLITE_DCHECK(runner->scratch_buffer_count_ <= kNumScratchBuffers_); + if (buffer_index >= runner->scratch_buffer_count_) { + return nullptr; + } + return runner->scratch_buffers_[buffer_index]; +} + +void KernelRunner::ReportOpError(struct TfLiteContext* context, + const char* format, ...) { + TFLITE_DCHECK(context != nullptr); + KernelRunner* runner = reinterpret_cast(context->impl_); + TFLITE_DCHECK(runner != nullptr); + + va_list args; + va_start(args, format); + TF_LITE_REPORT_ERROR(runner->error_reporter_, format, args); + va_end(args); +} + +} // namespace micro +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/kernel_runner.h b/components/tflite_micro/tensorflow/lite/micro/kernels/kernel_runner.h new file mode 100644 index 00000000..45d107e7 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/kernel_runner.h @@ -0,0 +1,83 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_LITE_MICRO_KERNELS_KERNEL_RUNNER_H_ +#define TENSORFLOW_LITE_MICRO_KERNELS_KERNEL_RUNNER_H_ + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/compatibility.h" +#include "tensorflow/lite/micro/simple_memory_allocator.h" + +namespace tflite { +namespace micro { + +// Helper class to perform a simulated kernel (i.e. TfLiteRegistration) lifecyle +// (init, prepare, invoke). All internal allocations are handled by this class. +// Simply pass in the registration, list of required tensors, inputs array, +// outputs array, and any pre-builtin data. Calling Invoke() will automatically +// walk the kernl and outputs will be ready on the the TfLiteTensor output +// provided during construction. +class KernelRunner { + public: + KernelRunner(const TfLiteRegistration& registration, TfLiteTensor* tensors, + int tensors_size, TfLiteIntArray* inputs, + TfLiteIntArray* outputs, void* builtin_data, + ErrorReporter* error_reporter); + + // Calls init and prepare on the kernel (i.e. TfLiteRegistration) struct. Any + // exceptions will be reported through the error_reporter and returned as a + // status code here. + TfLiteStatus InitAndPrepare(const char* init_data = nullptr); + + // Calls init, prepare, and invoke on a given TfLiteRegistration pointer. + // After successful invoke, results will be available in the output tensor as + // passed into the constructor of this class. + TfLiteStatus Invoke(); + + protected: + static TfLiteTensor* GetTensor(const struct TfLiteContext* context, + int tensor_index); + static TfLiteEvalTensor* GetEvalTensor(const struct TfLiteContext* context, + int tensor_index); + static void* AllocatePersistentBuffer(TfLiteContext* context, size_t bytes); + static TfLiteStatus RequestScratchBufferInArena(TfLiteContext* context, + size_t bytes, + int* buffer_index); + static void* GetScratchBuffer(TfLiteContext* context, int buffer_index); + static void ReportOpError(struct TfLiteContext* context, const char* format, + ...); + + private: + static constexpr int kNumScratchBuffers_ = 5; + + static constexpr int kKernelRunnerBufferSize_ = 10000; + static uint8_t kKernelRunnerBuffer_[kKernelRunnerBufferSize_]; + + SimpleMemoryAllocator* allocator_ = nullptr; + const TfLiteRegistration& registration_; + TfLiteTensor* tensors_ = nullptr; + ErrorReporter* error_reporter_ = nullptr; + + TfLiteContext context_ = {}; + TfLiteNode node_ = {}; + + int scratch_buffer_count_ = 0; + uint8_t* scratch_buffers_[kNumScratchBuffers_]; +}; + +} // namespace micro +} // namespace tflite + +#endif // TENSORFLOW_LITE_MICRO_KERNELS_KERNEL_RUNNER_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/kernel_util.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/kernel_util.cc new file mode 100644 index 00000000..1ddfc1d3 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/kernel_util.cc @@ -0,0 +1,31 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +#include "tensorflow/lite/c/common.h" + +namespace tflite { +namespace micro { + +bool HaveSameShapes(const TfLiteEvalTensor* input1, + const TfLiteEvalTensor* input2) { + TFLITE_DCHECK(input1 != nullptr); + TFLITE_DCHECK(input2 != nullptr); + return TfLiteIntArrayEqual(input1->dims, input2->dims); +} + +} // namespace micro +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/kernel_util.h b/components/tflite_micro/tensorflow/lite/micro/kernels/kernel_util.h new file mode 100644 index 00000000..530e52df --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/kernel_util.h @@ -0,0 +1,83 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_LITE_MICRO_KERNELS_KERNEL_UTIL_H_ +#define TENSORFLOW_LITE_MICRO_KERNELS_KERNEL_UTIL_H_ + +#include + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/compatibility.h" +#include "tensorflow/lite/kernels/internal/types.h" + +namespace tflite { +namespace micro { + +// Returns a mutable tensor for a given input index. is_variable must be checked +// during prepare when the full TfLiteTensor is available. +inline TfLiteEvalTensor* GetMutableEvalInput(const TfLiteContext* context, + const TfLiteNode* node, + int index) { + TFLITE_DCHECK(context != nullptr); + TFLITE_DCHECK(node != nullptr); + return context->GetEvalTensor(context, node->inputs->data[index]); +} + +// Returns the TfLiteEvalTensor struct for a given input index in a node. +inline const TfLiteEvalTensor* GetEvalInput(const TfLiteContext* context, + const TfLiteNode* node, int index) { + return GetMutableEvalInput(context, node, index); +} + +// Returns the TfLiteEvalTensor struct for a given output index in a node. +inline TfLiteEvalTensor* GetEvalOutput(const TfLiteContext* context, + const TfLiteNode* node, int index) { + TFLITE_DCHECK(context != nullptr); + TFLITE_DCHECK(node != nullptr); + return context->GetEvalTensor(context, node->outputs->data[index]); +} + +// Returns data for a TfLiteEvalTensor struct. +template +T* GetTensorData(TfLiteEvalTensor* tensor) { + return tensor != nullptr ? reinterpret_cast(tensor->data.raw) : nullptr; +} + +// Returns const data for a TfLiteEvalTensor struct. +template +const T* GetTensorData(const TfLiteEvalTensor* tensor) { + TFLITE_DCHECK(tensor != nullptr); + return reinterpret_cast(tensor->data.raw); +} + +// Returns the shape of a TfLiteEvalTensor struct. +inline const RuntimeShape GetTensorShape(const TfLiteEvalTensor* tensor) { + if (tensor == nullptr) { + return RuntimeShape(); + } + TfLiteIntArray* dims = tensor->dims; + const int dims_size = dims->size; + const int32_t* dims_data = reinterpret_cast(dims->data); + return RuntimeShape(dims_size, dims_data); +} + +// Return true if the given tensors have the same shape. +bool HaveSameShapes(const TfLiteEvalTensor* input1, + const TfLiteEvalTensor* input2); + +} // namespace micro +} // namespace tflite + +#endif // TENSORFLOW_LITE_MICRO_KERNELS_KERNEL_UTIL_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/l2norm.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/l2norm.cc new file mode 100644 index 00000000..f864efa2 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/l2norm.cc @@ -0,0 +1,155 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/reference/integer_ops/l2normalization.h" +#include "tensorflow/lite/kernels/internal/reference/l2normalization.h" +#include "tensorflow/lite/kernels/internal/tensor.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace l2norm { + +namespace { + +// This file has two implementation of L2Norm. +enum KernelType { + kReference, + kGenericOptimized, +}; + +constexpr int kInputTensor = 0; +constexpr int kOutputTensor = 0; + +} // namespace + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + TFLITE_DCHECK(node->builtin_data != nullptr); + + auto* params = reinterpret_cast(node->builtin_data); + L2NormalizationParams* data = + static_cast(node->user_data); + + TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); + TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); + + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + + TF_LITE_ENSURE(context, NumDimensions(input) <= 4); + + TF_LITE_ENSURE(context, output->type == kTfLiteFloat32 || + output->type == kTfLiteUInt8 || + output->type == kTfLiteInt8); + TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); + + if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) { + data->input_zero_point = input->params.zero_point; + } else if (output->type == kTfLiteFloat32) { + data->input_zero_point = 0; + } + + // TODO(ahentz): For some reason our implementations don't support + // activations. + TF_LITE_ENSURE_EQ(context, params->activation, kTfLiteActNone); + + return kTfLiteOk; +} + +void* Init(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, + sizeof(L2NormalizationParams)); +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + const L2NormalizationParams& data = + *(static_cast(node->user_data)); + + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + // TODO(b/143912164): instead of hardcode the epsilon here, we should read it + // from tensorflow, i.e., adding a params. + // We don't compute epsilon for quantized kernel: + // + // epsilon_float = (epsilon_quant - zp) * scale + // so + // espsilon_quant = epsilon_float / scale + zp + // We know epsilon_float is just a very small number to avoid division by + // zero error, and scale is > 1, so the integer value of epsilon for quant + // is just dominated by the zero point. + // Also, GetInvSqrtQuantizedMultiplierExp handles the scenario where the sum + // of input value squared is zero case well. + // So we don't even need to do handle the epsilon for quantized kernel case. + const float epsilon = 1e-6f; + if (output->type == kTfLiteFloat32) { + reference_ops::L2Normalization(data, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output), + epsilon); + } else if (output->type == kTfLiteUInt8) { + reference_ops::L2Normalization( + data, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } else if (output->type == kTfLiteInt8) { + const auto input_shape = tflite::micro::GetTensorShape(input); + const auto output_shape = tflite::micro::GetTensorShape(output); + const int trailing_dim = input_shape.DimensionsCount() - 1; + const int depth = + MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim); + const int outer_size = + MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape); + reference_integer_ops::L2Normalization( + data.input_zero_point, outer_size, depth, + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorData(output)); + } else { + TF_LITE_KERNEL_LOG(context, "Output type is %s, requires float.", + TfLiteTypeGetName(output->type)); + return kTfLiteError; + } + + return kTfLiteOk; +} + +} // namespace l2norm + +TfLiteRegistration Register_L2NORM_REF() { + return {/*init=*/l2norm::Init, + /*free=*/nullptr, + /*prepare=*/l2norm::Prepare, + /*invoke=*/l2norm::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +TfLiteRegistration Register_L2_NORMALIZATION() { return Register_L2NORM_REF(); } + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/logical.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/logical.cc new file mode 100644 index 00000000..f4033ba8 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/logical.cc @@ -0,0 +1,105 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/reference/binary_function.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/op_macros.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace logical { +namespace { + +// Input/output tensor index. +constexpr int kInputTensor1 = 0; +constexpr int kInputTensor2 = 1; +constexpr int kOutputTensor = 0; + +TfLiteStatus LogicalImpl(TfLiteContext* context, TfLiteNode* node, + bool (*func)(bool, bool)) { + const TfLiteEvalTensor* input1 = + tflite::micro::GetEvalInput(context, node, kInputTensor1); + const TfLiteEvalTensor* input2 = + tflite::micro::GetEvalInput(context, node, kInputTensor2); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + if (tflite::micro::HaveSameShapes(input1, input2)) { + reference_ops::BinaryFunction( + tflite::micro::GetTensorShape(input1), + tflite::micro::GetTensorData(input1), + tflite::micro::GetTensorShape(input2), + tflite::micro::GetTensorData(input2), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output), func); + } else { + reference_ops::BroadcastBinaryFunction4DSlow( + tflite::micro::GetTensorShape(input1), + tflite::micro::GetTensorData(input1), + tflite::micro::GetTensorShape(input2), + tflite::micro::GetTensorData(input2), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output), func); + } + + return kTfLiteOk; +} + +bool LogicalOr(bool x, bool y) { return x || y; } + +TfLiteStatus LogicalOrEval(TfLiteContext* context, TfLiteNode* node) { + return LogicalImpl(context, node, LogicalOr); +} + +bool LogicalAnd(bool x, bool y) { return x && y; } + +TfLiteStatus LogicalAndEval(TfLiteContext* context, TfLiteNode* node) { + return LogicalImpl(context, node, LogicalAnd); +} + +} // namespace +} // namespace logical + +TfLiteRegistration Register_LOGICAL_OR() { + // Init, Free, Prepare, Eval are satisfying the Interface required by + // TfLiteRegistration. + return {/*init=*/nullptr, + /*free=*/nullptr, + /*prepare=*/nullptr, + /*invoke=*/logical::LogicalOrEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +TfLiteRegistration Register_LOGICAL_AND() { + // Init, Free, Prepare, Eval are satisfying the Interface required by + // TfLiteRegistration. + return {/*init=*/nullptr, + /*free=*/nullptr, + /*prepare=*/nullptr, + /*invoke=*/logical::LogicalAndEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/logistic.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/logistic.cc new file mode 100644 index 00000000..7a371da2 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/logistic.cc @@ -0,0 +1,148 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/integer_ops/logistic.h" + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/reference/logistic.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/kernels/op_macros.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace activations { +namespace { +constexpr int kInputTensor = 0; +constexpr int kOutputTensor = 0; + +struct OpData { + int32_t input_zero_point; + int32_t input_range_radius; + int32_t input_multiplier; + int input_left_shift; +}; + +TfLiteStatus CalculateArithmeticOpData(TfLiteContext* context, TfLiteNode* node, + OpData* data) { + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + + TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); + if (input->type == kTfLiteInt8) { + TF_LITE_ENSURE_EQ(context, output->params.zero_point, + std::numeric_limits::min()); + + static constexpr int kInputIntegerBits = 4; + const double input_real_multiplier = + static_cast(input->params.scale) * + static_cast(1 << (31 - kInputIntegerBits)); + + data->input_zero_point = input->params.zero_point; + + const double q = std::frexp(input_real_multiplier, &data->input_left_shift); + data->input_multiplier = static_cast(TfLiteRound(q * (1ll << 31))); + + data->input_range_radius = + CalculateInputRadius(kInputIntegerBits, data->input_left_shift, 31); + } + return kTfLiteOk; +} +} // namespace + +void* LogisticInit(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(OpData)); +} + +TfLiteStatus LogisticPrepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + OpData* data = static_cast(node->user_data); + + return CalculateArithmeticOpData(context, node, data); +} + +TfLiteStatus LogisticEval(TfLiteContext* context, TfLiteNode* node) { + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + TFLITE_DCHECK(node->user_data != nullptr); + OpData* data = static_cast(node->user_data); + + if (input->type == kTfLiteFloat32) { + switch (output->type) { + case kTfLiteFloat32: { + reference_ops::Logistic(tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + return kTfLiteOk; + } + default: + TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.", + TfLiteTypeGetName(input->type), + TfLiteTypeGetName(output->type)); + return kTfLiteError; + } + } else if (input->type == kTfLiteInt8) { + switch (output->type) { + case kTfLiteInt8: { + reference_integer_ops::Logistic( + data->input_zero_point, data->input_range_radius, + data->input_multiplier, data->input_left_shift, + NumElements(input->dims), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorData(output)); + return kTfLiteOk; + } + default: + TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.", + TfLiteTypeGetName(input->type), + TfLiteTypeGetName(output->type)); + return kTfLiteError; + } + } else { + // TODO(b/141211002): Also support other data types once we have supported + // temporary tensors in TFLM. + TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.", + TfLiteTypeGetName(input->type), + TfLiteTypeGetName(output->type)); + return kTfLiteError; + } + return kTfLiteOk; +} + +} // namespace activations + +TfLiteRegistration Register_LOGISTIC() { + return {/*init=*/activations::LogisticInit, + /*free=*/nullptr, + /*prepare=*/activations::LogisticPrepare, + /*invoke=*/activations::LogisticEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/maximum_minimum.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/maximum_minimum.cc new file mode 100644 index 00000000..a7c343bf --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/maximum_minimum.cc @@ -0,0 +1,148 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/maximum_minimum.h" + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/kernels/op_macros.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace maximum_minimum { +namespace { + +// This file has a reference implementation of TFMaximum/TFMinimum. +enum KernelType { + kReference, +}; + +constexpr int kInputTensor1 = 0; +constexpr int kInputTensor2 = 1; +constexpr int kOutputTensor = 0; + +struct OpContext { + OpContext(TfLiteContext* context, TfLiteNode* node) { + input1 = tflite::micro::GetEvalInput(context, node, kInputTensor1); + input2 = tflite::micro::GetEvalInput(context, node, kInputTensor2); + output = tflite::micro::GetEvalOutput(context, node, kOutputTensor); + } + const TfLiteEvalTensor* input1; + const TfLiteEvalTensor* input2; + TfLiteEvalTensor* output; +}; + +struct MaximumOp { + template + static data_type op(data_type el1, data_type el2) { + return el1 > el2 ? el1 : el2; + } +}; + +struct MinimumOp { + template + static data_type op(data_type el1, data_type el2) { + return el1 < el2 ? el1 : el2; + } +}; + +} // namespace + +template +void TFLiteOperation(TfLiteContext* context, TfLiteNode* node, + const OpContext& op_context) { + reference_ops::MaximumMinimumBroadcastSlow( + tflite::micro::GetTensorShape(op_context.input1), + tflite::micro::GetTensorData(op_context.input1), + tflite::micro::GetTensorShape(op_context.input2), + tflite::micro::GetTensorData(op_context.input2), + tflite::micro::GetTensorShape(op_context.output), + tflite::micro::GetTensorData(op_context.output), + op_type::template op); +} + +template +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + OpContext op_context(context, node); + + if (kernel_type == kReference) { + switch (op_context.output->type) { + case kTfLiteFloat32: + TFLiteOperation(context, node, op_context); + break; + case kTfLiteUInt8: + TFLiteOperation(context, node, op_context); + break; + case kTfLiteInt8: + TFLiteOperation(context, node, op_context); + break; + case kTfLiteInt32: + TFLiteOperation(context, node, op_context); + break; + case kTfLiteInt64: + TFLiteOperation(context, node, op_context); + break; + default: + TF_LITE_KERNEL_LOG(context, + "Type %s (%d) is not supported by Maximum/Minimum.", + TfLiteTypeGetName(op_context.output->type), + op_context.output->type); + return kTfLiteError; + } + } else { + TF_LITE_KERNEL_LOG(context, + "Kernel type not supported by Maximum/Minimum."); + return kTfLiteError; + } + return kTfLiteOk; +} + +} // namespace maximum_minimum + +TfLiteRegistration Register_MAXIMUM() { + return {/*init=*/nullptr, + /*free=*/nullptr, + /*prepare=*/nullptr, + /*invoke=*/ + maximum_minimum::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +TfLiteRegistration Register_MINIMUM() { + return {/*init=*/nullptr, + /*free=*/nullptr, + /*prepare=*/nullptr, + /*invoke=*/ + maximum_minimum::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/micro_ops.h b/components/tflite_micro/tensorflow/lite/micro/kernels/micro_ops.h new file mode 100644 index 00000000..7e63f342 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/micro_ops.h @@ -0,0 +1,92 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_MICRO_KERNELS_MICRO_OPS_H_ +#define TENSORFLOW_LITE_MICRO_KERNELS_MICRO_OPS_H_ + +#include "tensorflow/lite/c/common.h" + +namespace tflite { +namespace ops { +namespace micro { + +// Forward declaration of all micro op kernel registration methods. These +// registrations are included with the standard `BuiltinOpResolver`. +// +// This header is particularly useful in cases where only a subset of ops are +// needed. In such cases, the client can selectively add only the registrations +// their model requires, using a custom `(Micro)MutableOpResolver`. Selective +// registration in turn allows the linker to strip unused kernels. + +TfLiteRegistration Register_ABS(); +TfLiteRegistration Register_ADD(); +TfLiteRegistration Register_ARG_MAX(); +TfLiteRegistration Register_ARG_MIN(); +TfLiteRegistration Register_AVERAGE_POOL_2D(); +TfLiteRegistration Register_CEIL(); +// TODO(b/160234179): Change custom OPs to also return by value. +TfLiteRegistration* Register_CIRCULAR_BUFFER(); +TfLiteRegistration Register_CONV_2D(); +TfLiteRegistration Register_CONCATENATION(); +TfLiteRegistration Register_COS(); +TfLiteRegistration Register_DEPTHWISE_CONV_2D(); +TfLiteRegistration Register_DEQUANTIZE(); +TfLiteRegistration Register_EQUAL(); +TfLiteRegistration Register_FLOOR(); +TfLiteRegistration Register_FULLY_CONNECTED(); +TfLiteRegistration Register_GREATER(); +TfLiteRegistration Register_GREATER_EQUAL(); +TfLiteRegistration Register_HARD_SWISH(); +TfLiteRegistration Register_LESS(); +TfLiteRegistration Register_LESS_EQUAL(); +TfLiteRegistration Register_LOG(); +TfLiteRegistration Register_LOGICAL_AND(); +TfLiteRegistration Register_LOGICAL_NOT(); +TfLiteRegistration Register_LOGICAL_OR(); +TfLiteRegistration Register_LOGISTIC(); +TfLiteRegistration Register_MAXIMUM(); +TfLiteRegistration Register_MAX_POOL_2D(); +TfLiteRegistration Register_MEAN(); +TfLiteRegistration Register_MINIMUM(); +TfLiteRegistration Register_MUL(); +TfLiteRegistration Register_NEG(); +TfLiteRegistration Register_NOT_EQUAL(); +TfLiteRegistration Register_PACK(); +TfLiteRegistration Register_PAD(); +TfLiteRegistration Register_PADV2(); +TfLiteRegistration Register_PRELU(); +TfLiteRegistration Register_QUANTIZE(); +TfLiteRegistration Register_RELU(); +TfLiteRegistration Register_RELU6(); +TfLiteRegistration Register_RESHAPE(); +TfLiteRegistration Register_RESIZE_NEAREST_NEIGHBOR(); +TfLiteRegistration Register_ROUND(); +TfLiteRegistration Register_RSQRT(); +TfLiteRegistration Register_SIN(); +TfLiteRegistration Register_SOFTMAX(); +TfLiteRegistration Register_SPLIT(); +TfLiteRegistration Register_SQRT(); +TfLiteRegistration Register_SQUARE(); +TfLiteRegistration Register_STRIDED_SLICE(); +TfLiteRegistration Register_SUB(); +TfLiteRegistration Register_SVDF(); +TfLiteRegistration Register_UNPACK(); +TfLiteRegistration Register_L2_NORMALIZATION(); +TfLiteRegistration Register_TANH(); + +} // namespace micro +} // namespace ops +} // namespace tflite + +#endif // TENSORFLOW_LITE_MICRO_KERNELS_MICRO_OPS_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/micro_utils.h b/components/tflite_micro/tensorflow/lite/micro/kernels/micro_utils.h new file mode 100644 index 00000000..85db263e --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/micro_utils.h @@ -0,0 +1,37 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_MICRO_KERNELS_MICRO_UTILS_H_ +#define TENSORFLOW_LITE_MICRO_KERNELS_MICRO_UTILS_H_ +namespace tflite { +namespace ops { +namespace micro { + +// Same as gtl::Greater but defined here to reduce dependencies and +// binary size for micro environment. +struct Greater { + template + bool operator()(const T& x, const T& y) const { + return x > y; + } +}; + +struct Less { + template + bool operator()(const T& x, const T& y) const { + return x < y; + } +}; + +} // namespace micro +} // namespace ops +} // namespace tflite +#endif // TENSORFLOW_LITE_MICRO_KERNELS_MICRO_UTILS_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/mul.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/mul.cc new file mode 100644 index 00000000..36e41a36 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/mul.cc @@ -0,0 +1,233 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/mul.h" + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/reference/integer_ops/mul.h" +#include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" +#include "tensorflow/lite/micro/memory_helpers.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace mul { +namespace { + +constexpr int kInput1Tensor = 0; +constexpr int kInput2Tensor = 1; +constexpr int kOutputTensor = 0; + +struct OpData { + int32_t input1_zero_point; + int32_t input2_zero_point; + + int32_t output_activation_min; + int32_t output_activation_max; + int32_t output_zero_point; + int32_t output_multiplier; + int output_shift; + + float output_activation_min_f32; + float output_activation_max_f32; +}; + +TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node, + TfLiteMulParams* params, OpData* data) { + const TfLiteTensor* input1 = GetInput(context, node, kInput1Tensor); + const TfLiteTensor* input2 = GetInput(context, node, kInput2Tensor); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + + TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); + TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); + + TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type); + + if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) { + TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized( + context, params->activation, output, &data->output_activation_min, + &data->output_activation_max)); + + double real_multiplier = static_cast(input1->params.scale) * + static_cast(input2->params.scale) / + static_cast(output->params.scale); + QuantizeMultiplier(real_multiplier, &data->output_multiplier, + &data->output_shift); + + data->input1_zero_point = input1->params.zero_point; + data->input2_zero_point = input2->params.zero_point; + data->output_zero_point = output->params.zero_point; + } else { + CalculateActivationRange(params->activation, + &data->output_activation_min_f32, + &data->output_activation_max_f32); + } + + return kTfLiteOk; +} + +} // namespace + +void EvalQuantized(TfLiteContext* context, TfLiteNode* node, const OpData* data, + const TfLiteEvalTensor* input1, + const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) { + tflite::ArithmeticParams op_params = {}; + op_params.quantized_activation_min = data->output_activation_min; + op_params.quantized_activation_max = data->output_activation_max; + op_params.float_activation_max = data->output_activation_max_f32; + op_params.input1_offset = -data->input1_zero_point; + op_params.input2_offset = -data->input2_zero_point; + op_params.output_offset = data->output_zero_point; + op_params.output_multiplier = data->output_multiplier; + op_params.output_shift = data->output_shift; + + bool need_broadcast = reference_ops::ProcessBroadcastShapes( + tflite::micro::GetTensorShape(input1), + tflite::micro::GetTensorShape(input2), &op_params); + + if (output->type == kTfLiteInt8) { + if (need_broadcast) { + reference_integer_ops::BroadcastMul4DSlow( + op_params, tflite::micro::GetTensorShape(input1), + tflite::micro::GetTensorData(input1), + tflite::micro::GetTensorShape(input2), + tflite::micro::GetTensorData(input2), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } else { + reference_integer_ops::Mul(op_params, + tflite::micro::GetTensorShape(input1), + tflite::micro::GetTensorData(input1), + tflite::micro::GetTensorShape(input2), + tflite::micro::GetTensorData(input2), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } + } else if (output->type == kTfLiteUInt8) { + if (need_broadcast) { + reference_integer_ops::BroadcastMul4DSlow( + op_params, tflite::micro::GetTensorShape(input1), + tflite::micro::GetTensorData(input1), + tflite::micro::GetTensorShape(input2), + tflite::micro::GetTensorData(input2), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } else { + reference_integer_ops::Mul(op_params, + tflite::micro::GetTensorShape(input1), + tflite::micro::GetTensorData(input1), + tflite::micro::GetTensorShape(input2), + tflite::micro::GetTensorData(input2), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } + } +} + +void EvalFloat(TfLiteContext* context, TfLiteNode* node, + TfLiteMulParams* params, const OpData* data, + const TfLiteEvalTensor* input1, const TfLiteEvalTensor* input2, + TfLiteEvalTensor* output) { + tflite::ArithmeticParams op_params = {}; + op_params.float_activation_min = data->output_activation_min_f32; + op_params.float_activation_max = data->output_activation_max_f32; + + bool need_broadcast = reference_ops::ProcessBroadcastShapes( + tflite::micro::GetTensorShape(input1), + tflite::micro::GetTensorShape(input2), &op_params); + + if (need_broadcast) { + reference_ops::BroadcastMul4DSlow( + op_params, tflite::micro::GetTensorShape(input1), + tflite::micro::GetTensorData(input1), + tflite::micro::GetTensorShape(input2), + tflite::micro::GetTensorData(input2), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } else { + reference_ops::Mul(op_params, tflite::micro::GetTensorShape(input1), + tflite::micro::GetTensorData(input1), + tflite::micro::GetTensorShape(input2), + tflite::micro::GetTensorData(input2), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } +} + +void* Init(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(OpData)); +} + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->builtin_data != nullptr); + auto* params = reinterpret_cast(node->builtin_data); + + TFLITE_DCHECK(node->user_data != nullptr); + OpData* data = static_cast(node->user_data); + + return CalculateOpData(context, node, params, data); +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->builtin_data != nullptr); + auto* params = reinterpret_cast(node->builtin_data); + + TFLITE_DCHECK(node->user_data != nullptr); + const OpData* data = static_cast(node->user_data); + + const TfLiteEvalTensor* input1 = + tflite::micro::GetEvalInput(context, node, kInput1Tensor); + const TfLiteEvalTensor* input2 = + tflite::micro::GetEvalInput(context, node, kInput2Tensor); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + switch (input1->type) { + case kTfLiteUInt8: + case kTfLiteInt8: + EvalQuantized(context, node, data, input1, input2, output); + break; + case kTfLiteFloat32: + EvalFloat(context, node, params, data, input1, input2, output); + break; + default: + TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", + TfLiteTypeGetName(input1->type), input1->type); + return kTfLiteError; + } + + return kTfLiteOk; +} +} // namespace mul + +TfLiteRegistration Register_MUL() { + return {/*init=*/mul::Init, + /*free=*/nullptr, + /*prepare=*/mul::Prepare, + /*invoke=*/mul::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/neg.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/neg.cc new file mode 100644 index 00000000..74a95ca3 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/neg.cc @@ -0,0 +1,66 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/neg.h" + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace neg { + +constexpr int kInputTensor = 0; +constexpr int kOutputTensor = 0; + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + switch (input->type) { + // TODO(wangtz): handle for kTfLiteInt8 + case kTfLiteFloat32: + reference_ops::Negate(tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + break; + default: + TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", + TfLiteTypeGetName(input->type), input->type); + return kTfLiteError; + } + return kTfLiteOk; +} + +} // namespace neg + +TfLiteRegistration Register_NEG() { + return {/*init=*/nullptr, + /*free=*/nullptr, + /*prepare=*/nullptr, + /*invoke=*/neg::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/pack.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/pack.cc new file mode 100644 index 00000000..d332fc63 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/pack.cc @@ -0,0 +1,127 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace pack { +namespace { + +constexpr int kOutputTensor = 0; + +template +TfLiteStatus PackImpl(TfLiteContext* context, TfLiteNode* node, + TfLiteEvalTensor* output, int values_count, int axis) { + const TfLiteEvalTensor* input0 = + tflite::micro::GetEvalInput(context, node, 0); + + const int dimensions = output->dims->size; + const TfLiteIntArray* input_dims = input0->dims; + const TfLiteIntArray* output_dims = output->dims; + + if (axis < 0) { + axis += dimensions; + } + + int outer_size = 1; + for (int i = 0; i < axis; ++i) { + outer_size *= output_dims->data[i]; + } + int copy_size = 1; + for (int i = axis + 1; i < dimensions; ++i) { + copy_size *= output_dims->data[i]; + } + int input_size = 1; + for (int i = 0; i < input_dims->size; ++i) { + input_size *= input_dims->data[i]; + } + TFLITE_DCHECK_EQ(input_size, copy_size * outer_size); + + T* output_data = tflite::micro::GetTensorData(output); + + for (int i = 0; i < values_count; ++i) { + const TfLiteEvalTensor* t = tflite::micro::GetEvalInput(context, node, i); + const T* input_data = tflite::micro::GetTensorData(t); + for (int k = 0; k < outer_size; ++k) { + const T* input_ptr = input_data + copy_size * k; + int loc = k * values_count * copy_size + i * copy_size; + T* output_ptr = output_data + loc; + for (int j = 0; j < copy_size; ++j) output_ptr[j] = input_ptr[j]; + } + } + + return kTfLiteOk; +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + const TfLitePackParams* data = + reinterpret_cast(node->builtin_data); + + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + switch (output->type) { + case kTfLiteFloat32: { + return PackImpl(context, node, output, data->values_count, + data->axis); + } + case kTfLiteUInt8: { + return PackImpl(context, node, output, data->values_count, + data->axis); + } + case kTfLiteInt8: { + return PackImpl(context, node, output, data->values_count, + data->axis); + } + case kTfLiteInt32: { + return PackImpl(context, node, output, data->values_count, + data->axis); + } + case kTfLiteInt64: { + return PackImpl(context, node, output, data->values_count, + data->axis); + } + default: { + TF_LITE_KERNEL_LOG(context, "Type '%s' is not supported by pack.", + TfLiteTypeGetName(output->type)); + return kTfLiteError; + } + } + + return kTfLiteOk; +} + +} // namespace +} // namespace pack + +TfLiteRegistration Register_PACK() { + return {/*init=*/nullptr, + /*free=*/nullptr, + /*prepare=*/nullptr, + /*invoke=*/pack::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/pad.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/pad.cc new file mode 100644 index 00000000..39f86cbf --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/pad.cc @@ -0,0 +1,251 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#include "tensorflow/lite/kernels/internal/reference/pad.h" + +#include + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/tensor.h" +#include "tensorflow/lite/kernels/internal/types.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/kernels/op_macros.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace pad { +namespace { + +struct OpData { + PadParams params; + int32_t output_zero_point; +}; + +} // namespace + +void* Init(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(OpData)); +} + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + OpData* data = static_cast(node->user_data); + + TF_LITE_ENSURE(context, NumInputs(node) == 2 || NumInputs(node) == 3); + TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); + + const TfLiteTensor* input = GetInput(context, node, /*index=*/0); + const TfLiteTensor* paddings = GetInput(context, node, /*index=*/1); + const TfLiteTensor* constant_values = + NumInputs(node) == 3 ? GetInput(context, node, /*index=*/2) : nullptr; + TfLiteTensor* output = GetOutput(context, node, /*index=*/0); + + TF_LITE_ENSURE_EQ(context, input->type, output->type); + + // Current implementations rely on the inputs being <= 4D. + TF_LITE_ENSURE(context, NumDimensions(input) <= + reference_ops::PadKernelMaxDimensionCount()); + + if (constant_values != nullptr) { + TF_LITE_ENSURE_EQ(context, input->type, constant_values->type); + // Ensure that constant_values is a scalar. + TF_LITE_ENSURE_EQ(context, NumElements(constant_values), 1); + } + + // There must be a pair of paddings for each output dimension. + TF_LITE_ENSURE_EQ(context, GetTensorShape(paddings).FlatSize(), + output->dims->size * 2); + + // On Micro, outputs must be properly sized by the converter. + // NOTE: This data is only available because the paddings buffer is stored in + // the flatbuffer: + TF_LITE_ENSURE(context, IsConstantTensor(paddings)); + const int32_t* paddings_data = GetTensorData(paddings); + for (int i = 0; i < output->dims->size; i++) { + int output_dim = output->dims->data[i]; + int expected_dim = + input->dims->data[i] + paddings_data[i * 2] + paddings_data[i * 2 + 1]; + TF_LITE_ENSURE_EQ(context, output_dim, expected_dim); + } + + // Calculate OpData: + data->params.resizing_category = ResizingCategory::kGenericResize; + const int paddings_total = GetTensorShape(paddings).FlatSize(); + if (paddings_total == 8 && (paddings_data[0] == 0 && paddings_data[1] == 0) && + (paddings_data[6] == 0 && paddings_data[7] == 0)) { + data->params.resizing_category = ResizingCategory::kImageStyle; + } + + const int num_input_dimensions = NumDimensions(input); + data->params.left_padding_count = num_input_dimensions; + data->params.right_padding_count = num_input_dimensions; + + for (int idx = num_input_dimensions - 1; idx >= 0; --idx) { + data->params.left_padding[idx] = paddings_data[idx * 2]; + data->params.right_padding[idx] = paddings_data[idx * 2 + 1]; + } + + if (input->type == kTfLiteInt8 || input->type == kTfLiteUInt8) { + if (constant_values == nullptr) { + // Quantized Pad requires that 0 is represented in the quantized + // range. + if (input->type == kTfLiteUInt8) { + TF_LITE_ENSURE(context, output->params.zero_point >= + std::numeric_limits::min()); + TF_LITE_ENSURE(context, output->params.zero_point <= + std::numeric_limits::max()); + } else { + TF_LITE_ENSURE(context, output->params.zero_point >= + std::numeric_limits::min()); + TF_LITE_ENSURE(context, output->params.zero_point <= + std::numeric_limits::max()); + } + } else { + // Quantized Pad requires that 'constant_values' is represented in the + // same quantized range as the input and output tensors. + TF_LITE_ENSURE_EQ(context, output->params.zero_point, + constant_values->params.zero_point); + TF_LITE_ENSURE_EQ(context, static_cast(output->params.scale), + static_cast(constant_values->params.scale)); + } + data->output_zero_point = output->params.zero_point; + } + + return kTfLiteOk; +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + const OpData* data = static_cast(node->user_data); + + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, /*index=*/0); + const TfLiteEvalTensor* constant_values = + NumInputs(node) == 3 + ? tflite::micro::GetEvalInput(context, node, /*index=*/2) + : nullptr; + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, /*index=*/0); + + switch (input->type) { + case kTfLiteFloat32: { + float pad_value = + constant_values == nullptr + ? 0.f + : *tflite::micro::GetTensorData(constant_values); + if (data->params.resizing_category == ResizingCategory::kImageStyle) { + reference_ops::PadImageStyle( + data->params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), &pad_value, + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } else { + reference_ops::Pad(data->params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + &pad_value, tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } + } break; + case kTfLiteUInt8: { + uint8_t pad_value; + if (constant_values == nullptr) { + pad_value = static_cast(data->output_zero_point); + } else { + pad_value = *tflite::micro::GetTensorData(constant_values); + } + if (data->params.resizing_category == ResizingCategory::kImageStyle) { + reference_ops::PadImageStyle( + data->params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), &pad_value, + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } else { + reference_ops::Pad(data->params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + &pad_value, tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } + } break; + case kTfLiteInt8: { + int8_t pad_value; + if (constant_values == nullptr) { + pad_value = static_cast(data->output_zero_point); + } else { + pad_value = *tflite::micro::GetTensorData(constant_values); + } + if (data->params.resizing_category == ResizingCategory::kImageStyle) { + reference_ops::PadImageStyle( + data->params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), &pad_value, + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } else { + reference_ops::Pad(data->params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + &pad_value, tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } + } break; + case kTfLiteInt32: { + int32_t pad_value = + constant_values == nullptr + ? 0 + : *tflite::micro::GetTensorData(constant_values); + reference_ops::Pad(data->params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + &pad_value, tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } break; + default: + + TF_LITE_KERNEL_LOG(context, "Type %s not currently supported by Pad.", + TfLiteTypeGetName(input->type)); + return kTfLiteError; + } +#undef TF_LITE_PAD + return kTfLiteOk; +} + +} // namespace pad + +TfLiteRegistration Register_PAD() { + return {/*init=*/pad::Init, + /*free=*/nullptr, + /*prepare=*/pad::Prepare, + /*invoke=*/pad::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +// Also register Pad as PadV2. +TfLiteRegistration Register_PADV2() { + return {/*init=*/pad::Init, + /*free=*/nullptr, + /*prepare=*/pad::Prepare, + /*invoke=*/pad::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/pooling.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/pooling.cc new file mode 100644 index 00000000..90d48aae --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/pooling.cc @@ -0,0 +1,267 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#include "tensorflow/lite/kernels/internal/reference/pooling.h" + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/kernels/internal/reference/integer_ops/pooling.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/kernels/padding.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace pooling { + +namespace { + +constexpr int kInputTensor = 0; +constexpr int kOutputTensor = 0; + +struct OpData { + TfLitePaddingValues padding; + int32_t activation_min; + int32_t activation_max; + float activation_min_f32; + float activation_max_f32; +}; + +TfLiteStatus CalculateOpData(const TfLiteContext* context, + const TfLitePoolParams* params, + const TfLiteTensor* input, + const TfLiteTensor* output, OpData* data) { + // input: batch, height, width, channel + int height = SizeOfDimension(input, 1); + int width = SizeOfDimension(input, 2); + + int out_height, out_width; + + data->padding = ComputePaddingHeightWidth( + params->stride_height, params->stride_width, + /*dilation_rate_height=*/1, + /*dilation_rate_width=*/1, height, width, params->filter_height, + params->filter_width, params->padding, &out_height, &out_width); + + return kTfLiteOk; +} + +void AverageEvalFloat(const TfLiteContext* context, const TfLiteNode* node, + const TfLitePoolParams* params, const OpData* data, + const TfLiteEvalTensor* input, TfLiteEvalTensor* output) { + PoolParams op_params; + op_params.stride_height = params->stride_height; + op_params.stride_width = params->stride_width; + op_params.filter_height = params->filter_height; + op_params.filter_width = params->filter_width; + op_params.padding_values.height = data->padding.height; + op_params.padding_values.width = data->padding.width; + op_params.float_activation_min = data->activation_min_f32; + op_params.float_activation_max = data->activation_max_f32; + reference_ops::AveragePool(op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); +} + +void AverageEvalQuantized(TfLiteContext* context, const TfLiteNode* node, + const TfLitePoolParams* params, const OpData* data, + const TfLiteEvalTensor* input, + TfLiteEvalTensor* output) { + TFLITE_DCHECK(input->type == kTfLiteUInt8 || input->type == kTfLiteInt8); + + PoolParams op_params; + op_params.stride_height = params->stride_height; + op_params.stride_width = params->stride_width; + op_params.filter_height = params->filter_height; + op_params.filter_width = params->filter_width; + op_params.padding_values.height = data->padding.height; + op_params.padding_values.width = data->padding.width; + op_params.quantized_activation_min = data->activation_min; + op_params.quantized_activation_max = data->activation_max; + + if (input->type == kTfLiteUInt8) { + reference_ops::AveragePool(op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } else { + reference_integer_ops::AveragePool( + op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } +} + +void MaxEvalFloat(TfLiteContext* context, TfLiteNode* node, + TfLitePoolParams* params, const OpData* data, + const TfLiteEvalTensor* input, TfLiteEvalTensor* output) { + tflite::PoolParams op_params; + op_params.stride_height = params->stride_height; + op_params.stride_width = params->stride_width; + op_params.filter_height = params->filter_height; + op_params.filter_width = params->filter_width; + op_params.padding_values.height = data->padding.height; + op_params.padding_values.width = data->padding.width; + op_params.float_activation_min = data->activation_min_f32; + op_params.float_activation_max = data->activation_max_f32; + reference_ops::MaxPool(op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); +} + +void MaxEvalQuantized(TfLiteContext* context, TfLiteNode* node, + TfLitePoolParams* params, const OpData* data, + const TfLiteEvalTensor* input, TfLiteEvalTensor* output) { + tflite::PoolParams op_params; + op_params.stride_height = params->stride_height; + op_params.stride_width = params->stride_width; + op_params.filter_height = params->filter_height; + op_params.filter_width = params->filter_width; + op_params.padding_values.height = data->padding.height; + op_params.padding_values.width = data->padding.width; + op_params.quantized_activation_min = data->activation_min; + op_params.quantized_activation_max = data->activation_max; + + if (input->type == kTfLiteUInt8) { + reference_ops::MaxPool(op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } else { + reference_integer_ops::MaxPool( + op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } +} +} // namespace + +TfLiteStatus AverageEval(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->builtin_data != nullptr); + auto* params = reinterpret_cast(node->builtin_data); + + TFLITE_DCHECK(node->user_data != nullptr); + const OpData* data = static_cast(node->user_data); + + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + // Inputs and outputs share the same type, guaranteed by the converter. + switch (input->type) { + case kTfLiteFloat32: + AverageEvalFloat(context, node, params, data, input, output); + break; + case kTfLiteUInt8: + case kTfLiteInt8: + AverageEvalQuantized(context, node, params, data, input, output); + break; + default: + TF_LITE_KERNEL_LOG(context, "Input type %s is not currently supported", + TfLiteTypeGetName(input->type)); + return kTfLiteError; + } + return kTfLiteOk; +} + +TfLiteStatus MaxEval(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->builtin_data != nullptr); + auto* params = reinterpret_cast(node->builtin_data); + + TFLITE_DCHECK(node->user_data != nullptr); + const OpData* data = static_cast(node->user_data); + + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + switch (input->type) { + case kTfLiteFloat32: + MaxEvalFloat(context, node, params, data, input, output); + break; + case kTfLiteUInt8: + case kTfLiteInt8: + MaxEvalQuantized(context, node, params, data, input, output); + break; + default: + TF_LITE_KERNEL_LOG(context, "Type %s not currently supported.", + TfLiteTypeGetName(input->type)); + return kTfLiteError; + } + return kTfLiteOk; +} + +void* Init(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(OpData)); +} + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->builtin_data != nullptr); + auto* params = reinterpret_cast(node->builtin_data); + + TFLITE_DCHECK(node->user_data != nullptr); + OpData* data = static_cast(node->user_data); + + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + + TF_LITE_ENSURE_STATUS(CalculateOpData(context, params, input, output, data)); + + if (input->type == kTfLiteFloat32) { + CalculateActivationRange(params->activation, &data->activation_min_f32, + &data->activation_max_f32); + } else if (input->type == kTfLiteInt8 || input->type == kTfLiteUInt8) { + CalculateActivationRangeQuantized(context, params->activation, output, + &data->activation_min, + &data->activation_max); + } + + return kTfLiteOk; +} + +} // namespace pooling + +TfLiteRegistration Register_AVERAGE_POOL_2D() { + return {/*init=*/pooling::Init, + /*free=*/nullptr, + /*prepare=*/pooling::Prepare, + /*invoke=*/pooling::AverageEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +TfLiteRegistration Register_MAX_POOL_2D() { + return {/*init=*/pooling::Init, + /*free=*/nullptr, + /*prepare=*/pooling::Prepare, + /*invoke=*/pooling::MaxEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/prelu.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/prelu.cc new file mode 100644 index 00000000..8665dbc2 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/prelu.cc @@ -0,0 +1,166 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/prelu.h" + +#include + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace activations { +namespace { + +TfLiteStatus CalculatePreluParams(const TfLiteTensor* input, + const TfLiteTensor* alpha, + TfLiteTensor* output, PreluParams* params) { + if (output->type == kTfLiteInt8 || output->type == kTfLiteUInt8 || + output->type == kTfLiteInt16) { + double real_multiplier_1 = static_cast(input->params.scale) / + static_cast(output->params.scale); + double real_multiplier_2 = static_cast(input->params.scale) * + static_cast(alpha->params.scale) / + static_cast(output->params.scale); + QuantizeMultiplier(real_multiplier_1, ¶ms->output_multiplier_1, + ¶ms->output_shift_1); + QuantizeMultiplier(real_multiplier_2, ¶ms->output_multiplier_2, + ¶ms->output_shift_2); + + params->input_offset = -input->params.zero_point; + params->alpha_offset = -alpha->params.zero_point; + params->output_offset = output->params.zero_point; + } + + return kTfLiteOk; +} + +} // namespace + +inline void BroadcastPrelu4DSlowFloat( + const RuntimeShape& unextended_input1_shape, const float* input1_data, + const RuntimeShape& unextended_input2_shape, const float* input2_data, + const RuntimeShape& unextended_output_shape, float* output_data) { + TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), 4); + TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), 4); + TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4); + const RuntimeShape output_shape = + RuntimeShape::ExtendedShape(4, unextended_output_shape); + + NdArrayDesc<4> desc1; + NdArrayDesc<4> desc2; + NdArrayDescsForElementwiseBroadcast(unextended_input1_shape, + unextended_input2_shape, &desc1, &desc2); + + for (int b = 0; b < output_shape.Dims(0); ++b) { + for (int y = 0; y < output_shape.Dims(1); ++y) { + for (int x = 0; x < output_shape.Dims(2); ++x) { + for (int c = 0; c < output_shape.Dims(3); ++c) { + auto out_idx = Offset(output_shape, b, y, x, c); + auto in1_idx = SubscriptToIndex(desc1, b, y, x, c); + auto in2_idx = SubscriptToIndex(desc2, b, y, x, c); + auto in1_val = input1_data[in1_idx]; + auto in2_val = input2_data[in2_idx]; + output_data[out_idx] = in1_val >= 0.0f ? in1_val : in1_val * in2_val; + } + } + } + } +} + +void* PreluInit(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(PreluParams)); +} + +TfLiteStatus PreluPrepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + PreluParams* params = static_cast(node->user_data); + + const TfLiteTensor* input = GetInput(context, node, 0); + const TfLiteTensor* alpha = GetInput(context, node, 1); + TfLiteTensor* output = GetOutput(context, node, 0); + + return CalculatePreluParams(input, alpha, output, params); +} + +TfLiteStatus PreluEval(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + const PreluParams& params = + *(static_cast(node->user_data)); + + const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0); + const TfLiteEvalTensor* alpha = tflite::micro::GetEvalInput(context, node, 1); + TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0); + + switch (input->type) { + case kTfLiteFloat32: { + BroadcastPrelu4DSlowFloat(tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(alpha), + tflite::micro::GetTensorData(alpha), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + return kTfLiteOk; + } break; + case kTfLiteUInt8: { + reference_ops::BroadcastPrelu4DSlow( + params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(alpha), + tflite::micro::GetTensorData(alpha), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + return kTfLiteOk; + } break; + case kTfLiteInt8: { + reference_ops::BroadcastPrelu4DSlow( + params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(alpha), + tflite::micro::GetTensorData(alpha), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + return kTfLiteOk; + } break; + default: + TF_LITE_KERNEL_LOG( + context, "Only float32 and uint8_t are supported currently, got %d.", + TfLiteTypeGetName(input->type)); + return kTfLiteError; + } +} + +} // namespace activations + +TfLiteRegistration Register_PRELU() { + return {/*init=*/activations::PreluInit, + /*free=*/nullptr, + /*prepare=*/activations::PreluPrepare, + /*invoke=*/activations::PreluEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/quantize.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/quantize.cc new file mode 100644 index 00000000..83237906 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/quantize.cc @@ -0,0 +1,178 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#include "tensorflow/lite/kernels/internal/reference/quantize.h" + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/reference/requantize.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" +#include "tensorflow/lite/micro/micro_utils.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace quantize { + +struct OpData { + tflite::QuantizationParams quantization_params; + // The scaling factor from input to output (aka the 'real multiplier') can + // be represented as a fixed point multiplier plus a left shift. + int32_t output_multiplier; + int output_shift; + + int32_t input_zero_point; +}; + +void* Init(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(OpData)); +} + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + OpData* data = static_cast(node->user_data); + + TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); + TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); + + const TfLiteTensor* input = GetInput(context, node, 0); + TfLiteTensor* output = GetOutput(context, node, 0); + + // TODO(b/128934713): Add support for fixed-point per-channel quantization. + // Currently this only support affine per-layer quantization. + TF_LITE_ENSURE_EQ(context, output->quantization.type, + kTfLiteAffineQuantization); + const auto* affine_quantization = + reinterpret_cast(output->quantization.params); + TF_LITE_ENSURE(context, affine_quantization); + TF_LITE_ENSURE(context, affine_quantization->scale); + TF_LITE_ENSURE(context, affine_quantization->scale->size == 1); + + TF_LITE_ENSURE(context, input->type == kTfLiteFloat32 || + input->type == kTfLiteInt16 || + input->type == kTfLiteInt8); + TF_LITE_ENSURE(context, + output->type == kTfLiteUInt8 || output->type == kTfLiteInt8); + + if ((input->type == kTfLiteInt16 || input->type == kTfLiteInt8) && + output->type == kTfLiteInt8) { + double effective_scale = + static_cast(input->params.scale / output->params.scale); + + QuantizeMultiplier(effective_scale, &data->output_multiplier, + &data->output_shift); + } + + data->quantization_params.zero_point = output->params.zero_point; + data->quantization_params.scale = static_cast(output->params.scale); + + data->input_zero_point = input->params.zero_point; + return kTfLiteOk; +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + OpData* data = static_cast(node->user_data); + + const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0); + TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0); + + if (input->type == kTfLiteFloat32) { + switch (output->type) { + case kTfLiteInt8: + reference_ops::AffineQuantize( + data->quantization_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + break; + case kTfLiteUInt8: + reference_ops::AffineQuantize( + data->quantization_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + break; + default: + TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.", + TfLiteTypeGetName(input->type), + TfLiteTypeGetName(output->type)); + return kTfLiteError; + } + } else if (input->type == kTfLiteInt16) { + size_t size = ElementCount(*input->dims); + switch (output->type) { + case kTfLiteInt8: + reference_ops::Requantize(tflite::micro::GetTensorData(input), + size, data->output_multiplier, + data->output_shift, data->input_zero_point, + data->quantization_params.zero_point, + tflite::micro::GetTensorData(output)); + break; + default: + TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.", + TfLiteTypeGetName(input->type), + TfLiteTypeGetName(output->type)); + return kTfLiteError; + } + } else if (input->type == kTfLiteInt8) { + // Int8 to Int8 requantization, required if the input and output tensors + // have different scales and/or zero points. + size_t size = ElementCount(*input->dims); + switch (output->type) { + case kTfLiteInt8: + reference_ops::Requantize(tflite::micro::GetTensorData(input), + size, data->output_multiplier, + data->output_shift, data->input_zero_point, + data->quantization_params.zero_point, + tflite::micro::GetTensorData(output)); + break; + default: + TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.", + TfLiteTypeGetName(input->type), + TfLiteTypeGetName(output->type)); + return kTfLiteError; + } + } else { + TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.", + TfLiteTypeGetName(input->type), + TfLiteTypeGetName(output->type)); + return kTfLiteError; + } + + return kTfLiteOk; +} + +} // namespace quantize + +// This Op (QUANTIZE) quantizes the input and produces quantized output. +// AffineQuantize takes scale and zero point and quantizes the float value to +// quantized output, in int8_t or uint8_t format. +TfLiteRegistration Register_QUANTIZE() { + return {/*init=*/quantize::Init, + /*free=*/nullptr, + /*prepare=*/quantize::Prepare, + /*invoke=*/quantize::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/reduce.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/reduce.cc new file mode 100644 index 00000000..5cae7824 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/reduce.cc @@ -0,0 +1,139 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/reduce.h" + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/internal/types.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" +#include "tensorflow/lite/micro/micro_utils.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace reduce { + +constexpr int kMaxNumberOfAxis = 4; +constexpr int kMaxNumberOfReducedAxis = 2; + +TfLiteStatus PrepareSimple(TfLiteContext* context, TfLiteNode* node) { + // Inputs Tensor (dtype depends on quantization): + // [0] = Input + // [1] = Axis + + // Outputs Tensor (dtype depends on quantization): + // [0] = Output + + // Validate number of inputs and outputs + TF_LITE_ENSURE_EQ(context, node->inputs->size, 2); + TF_LITE_ENSURE_EQ(context, node->outputs->size, 1); + + // Validate axis type + const TfLiteTensor* axis = GetInput(context, node, 1); + TF_LITE_ENSURE_TYPES_EQ(context, axis->type, kTfLiteInt32); + return kTfLiteOk; +} + +TfLiteStatus PrepareMeanOrSum(TfLiteContext* context, TfLiteNode* node) { + TF_LITE_ENSURE_OK(context, PrepareSimple(context, node)); + // TODO(b/144955155): Support uint8_t(b/144955155) and int8_t(b/144955018) + return kTfLiteOk; +} + +void ResolveAxis(const int* axis_data, int axis_count, + tflite::MeanParams* op_params) { + int i = 0; + for (; i < axis_count; ++i) { + op_params->axis[i] = static_cast(axis_data[i]); + } + for (; i < 4; ++i) { + op_params->axis[i] = 1; + } + op_params->axis_count = axis_count; +} + +TfLiteStatus EvalMean(TfLiteContext* context, TfLiteNode* node) { + const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0); + const TfLiteEvalTensor* axis = tflite::micro::GetEvalInput(context, node, 1); + TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0); + TfLiteReducerParams* params = + reinterpret_cast(node->builtin_data); + + int num_axis = static_cast(ElementCount(*axis->dims)); + int temp_index[kMaxNumberOfAxis]; + int resolved_axis[kMaxNumberOfReducedAxis]; + + switch (input->type) { + case kTfLiteFloat32: { + tflite::MeanParams op_params; + ResolveAxis(tflite::micro::GetTensorData(axis), num_axis, + &op_params); + // TODO(b/146571391): Support only 4D Input and 2D Axis for Mean until + // scratch tensor allocation has been implemented in (b/132070898) + bool is_valid_inputs = + (input->dims->size == 4 && op_params.axis_count == 2 && + ((op_params.axis[0] == 1 && op_params.axis[1] == 2) || + (op_params.axis[0] == 2 && op_params.axis[1] == 1))); + TF_LITE_ENSURE_MSG( + context, is_valid_inputs == true, + "Number of Input " + "dimensions != 4 OR the Axis is not either [1, 2] or [2, 1]"); + // TODO(b/139102329): Handle the below special case in the combined + // reference method. + // Defer to specialized implementation for 4D Mean across axes 1 & 2. + if (params->keep_dims) { + reference_ops::Mean(op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } else { + TF_LITE_ENSURE( + context, + reference_ops::Mean( + tflite::micro::GetTensorData(input), input->dims->data, + input->dims->size, tflite::micro::GetTensorData(output), + output->dims->data, output->dims->size, + tflite::micro::GetTensorData(axis), num_axis, + params->keep_dims, temp_index, resolved_axis, + tflite::micro::GetTensorData(output))); + } + } break; + default: + // TODO(b/144955155): Support uint8_t(b/144955155) and int8_t(b/144955018) + TF_LITE_ENSURE_MSG(context, false, + "Currently, only float32 input type " + "is supported."); + } + return kTfLiteOk; +} +} // namespace reduce + +TfLiteRegistration Register_MEAN() { + return {/*init=*/nullptr, + /*free=*/nullptr, + /*prepare=*/reduce::PrepareMeanOrSum, + /*invoke=*/reduce::EvalMean, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/reshape.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/reshape.cc new file mode 100644 index 00000000..a865892b --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/reshape.cc @@ -0,0 +1,116 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/kernels/op_macros.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" +#include "tensorflow/lite/micro/memory_helpers.h" +#include "tensorflow/lite/micro/micro_utils.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace reshape { + +constexpr int kInputTensor = 0; +constexpr int kOutputTensor = 0; + +TfLiteStatus ReshapeOutput(TfLiteContext* context, TfLiteNode* node) { + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + // Tensorflow's Reshape allows one of the shape components to have the + // special -1 value, meaning it will be calculated automatically based on the + // input. Here we calculate what that dimension should be so that the number + // of output elements in the same as the number of input elements. + int num_input_elements = NumElements(input); + TfLiteIntArray* output_shape = output->dims; + + if (NumInputs(node) == 1 && // Legacy scalar supported with params. + output_shape->size == 1 && output_shape->data[0] == 0) { + // Legacy tflite models use a shape parameter of [0] to indicate scalars, + // so adjust accordingly. TODO(b/111614235): Allow zero-sized buffers during + // toco conversion. + output_shape->size = 0; + } + + int num_output_elements = 1; + int stretch_dim = -1; + for (int i = 0; i < output_shape->size; ++i) { + int value = output_shape->data[i]; + if (value == -1) { + TF_LITE_ENSURE_EQ(context, stretch_dim, -1); + stretch_dim = i; + } else { + num_output_elements *= value; + } + } + if (stretch_dim != -1) { + output_shape->data[stretch_dim] = num_input_elements / num_output_elements; + num_output_elements *= output_shape->data[stretch_dim]; + } + + TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); + TF_LITE_ENSURE_EQ(context, num_input_elements, num_output_elements); + return kTfLiteOk; +} + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { + TF_LITE_ENSURE(context, NumInputs(node) == 1 || NumInputs(node) == 2); + TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); + TF_LITE_ENSURE_EQ(context, ReshapeOutput(context, node), kTfLiteOk); + return kTfLiteOk; +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + // TODO(b/162522304): storing input bytes in OpData increases some models + // significantly, possibly due to alignment issues. + size_t input_bytes; + TF_LITE_ENSURE_STATUS(TfLiteTypeSizeOf(input->type, &input_bytes)); + input_bytes *= ElementCount(*input->dims); + + // Do nothing for in-place reshape. + if (input->data.raw != output->data.raw) { + // Otherwise perform reshape with copy. + for (size_t i = 0; i < input_bytes; ++i) { + output->data.raw[i] = input->data.raw[i]; + } + } + return kTfLiteOk; +} + +} // namespace reshape + +TfLiteRegistration Register_RESHAPE() { + return {/*init=*/nullptr, + /*free=*/nullptr, + /*prepare=*/reshape::Prepare, + /*invoke=*/reshape::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/resize_nearest_neighbor.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/resize_nearest_neighbor.cc new file mode 100644 index 00000000..222cb3a0 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/resize_nearest_neighbor.cc @@ -0,0 +1,123 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/resize_nearest_neighbor.h" + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/kernels/op_macros.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace resize_nearest_neighbor { + +constexpr int kInputTensor = 0; +constexpr int kSizeTensor = 1; +constexpr int kOutputTensor = 0; + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { +#if defined(DEBUG) + TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); + TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); + + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + const TfLiteTensor* size = GetInput(context, node, kSizeTensor); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + + // Our current implementations rely on the input being 4D, + // and the size being 1D tensor with exactly 2 elements. + TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4); + TF_LITE_ENSURE_EQ(context, NumDimensions(size), 1); + TF_LITE_ENSURE_EQ(context, size->type, kTfLiteInt32); + TF_LITE_ENSURE_EQ(context, size->dims->data[0], 2); + + output->type = input->type; + + if (!IsConstantTensor(size)) { + TF_LITE_KERNEL_LOG(context, "Dynamic tensors are unsupported in tfmicro."); + return kTfLiteError; + } +#endif + return kTfLiteOk; +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + auto* params = + reinterpret_cast(node->builtin_data); + + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + const TfLiteEvalTensor* size = + tflite::micro::GetEvalInput(context, node, kSizeTensor); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + tflite::ResizeNearestNeighborParams op_params; + op_params.align_corners = params->align_corners; + op_params.half_pixel_centers = false; + + if (output->type == kTfLiteFloat32) { + reference_ops::ResizeNearestNeighbor( + op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(size), + tflite::micro::GetTensorData(size), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } else if (output->type == kTfLiteUInt8) { + reference_ops::ResizeNearestNeighbor( + op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(size), + tflite::micro::GetTensorData(size), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } else if (output->type == kTfLiteInt8) { + reference_ops::ResizeNearestNeighbor( + op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(size), + tflite::micro::GetTensorData(size), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } else { + TF_LITE_KERNEL_LOG(context, + "Output type is %d, requires float, uint8_t or int8_t.", + output->type); + return kTfLiteError; + } + + return kTfLiteOk; +} +} // namespace resize_nearest_neighbor + +TfLiteRegistration Register_RESIZE_NEAREST_NEIGHBOR() { + return {/*init=*/nullptr, + /*free=*/nullptr, + /*prepare=*/resize_nearest_neighbor::Prepare, + /*invoke=*/resize_nearest_neighbor::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/round.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/round.cc new file mode 100644 index 00000000..7b4adfc6 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/round.cc @@ -0,0 +1,74 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/round.h" + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace round { + +constexpr int kInputTensor = 0; +constexpr int kOutputTensor = 0; + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); + TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); + TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32); + TF_LITE_ENSURE_TYPES_EQ(context, output->type, input->type); + TF_LITE_ENSURE_EQ(context, output->bytes, input->bytes); + TF_LITE_ENSURE_EQ(context, output->dims->size, input->dims->size); + for (int i = 0; i < output->dims->size; ++i) { + TF_LITE_ENSURE_EQ(context, output->dims->data[i], input->dims->data[i]); + } + return kTfLiteOk; +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + reference_ops::Round(tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + + return kTfLiteOk; +} +} // namespace round + +TfLiteRegistration Register_ROUND() { + return {/*init=*/nullptr, + /*free=*/nullptr, + /*prepare=*/round::Prepare, + /*invoke=*/round::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/softmax.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/softmax.cc new file mode 100644 index 00000000..e85c1a4a --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/softmax.cc @@ -0,0 +1,169 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/softmax.h" + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/kernels/op_macros.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace activations { +namespace { + +TfLiteStatus CalculateSoftmaxParams(TfLiteContext* context, + const TfLiteTensor* input, + TfLiteTensor* output, + const TfLiteSoftmaxParams* params, + SoftmaxParams* op_data) { + if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8) { + if (input->type == kTfLiteUInt8) { + TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteUInt8); + TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); + } else { + TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteInt8); + if (output->type == kTfLiteInt16) { + TF_LITE_ENSURE_EQ(context, output->params.zero_point, -32768); + // NOTE: Current int16_t softmax output does not require symmetric + // scaling + // - so no need to verify scale here. + } else { + TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteInt8); + TF_LITE_ENSURE_EQ(context, output->params.zero_point, -128); + TF_LITE_ENSURE(context, output->params.scale == 1.f / 256); + } + } + + static const int kScaledDiffIntegerBits = 5; + + int input_left_shift; + tflite::PreprocessSoftmaxScaling( + static_cast(params->beta), + static_cast(input->params.scale), kScaledDiffIntegerBits, + &op_data->input_multiplier, &input_left_shift); + op_data->input_left_shift = input_left_shift; + op_data->diff_min = + -1.0 * tflite::CalculateInputRadius(kScaledDiffIntegerBits, + op_data->input_left_shift); + } else { + TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32); + TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteFloat32); + op_data->beta = static_cast(params->beta); + } + return kTfLiteOk; +} + +} // namespace + +// Takes a tensor and performs softmax along the last dimension. +void SoftmaxFloat(const TfLiteEvalTensor* input, TfLiteEvalTensor* output, + const SoftmaxParams& op_data) { + tflite::reference_ops::Softmax(op_data, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); +} + +void SoftmaxQuantized(const TfLiteEvalTensor* input, TfLiteEvalTensor* output, + const SoftmaxParams& op_data) { + if (input->type == kTfLiteUInt8) { + tflite::reference_ops::Softmax( + op_data, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } else { + if (output->type == kTfLiteInt16) { + tflite::reference_ops::Softmax( + op_data, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } else { + tflite::reference_ops::Softmax( + op_data, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } + } +} + +void* SoftmaxInit(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(SoftmaxParams)); +} + +TfLiteStatus SoftmaxPrepare(TfLiteContext* context, TfLiteNode* node) { + auto* params = static_cast(node->builtin_data); + + TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); + TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); + const TfLiteTensor* input = GetInput(context, node, 0); + TF_LITE_ENSURE(context, NumDimensions(input) >= 1); + + TfLiteTensor* output = GetOutput(context, node, 0); + + TFLITE_DCHECK(node->user_data != nullptr); + SoftmaxParams* data = static_cast(node->user_data); + return CalculateSoftmaxParams(context, input, output, params, data); +} + +TfLiteStatus SoftmaxEval(TfLiteContext* context, TfLiteNode* node) { + const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0); + TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0); + + TFLITE_DCHECK(node->user_data != nullptr); + SoftmaxParams* data = static_cast(node->user_data); + + switch (input->type) { + case kTfLiteFloat32: { + SoftmaxFloat(input, output, *data); + return kTfLiteOk; + } + case kTfLiteInt8: + case kTfLiteUInt8: { + SoftmaxQuantized(input, output, *data); + return kTfLiteOk; + } + default: + TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", + TfLiteTypeGetName(input->type), input->type); + return kTfLiteError; + } +} +} // namespace activations + +TfLiteRegistration Register_SOFTMAX() { + return {/*init=*/activations::SoftmaxInit, + /*free=*/nullptr, + /*prepare=*/activations::SoftmaxPrepare, + /*invoke=*/activations::SoftmaxEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/split.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/split.cc new file mode 100644 index 00000000..9bff0b70 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/split.cc @@ -0,0 +1,134 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace split { + +template +TfLiteStatus SplitImpl(TfLiteContext* context, TfLiteNode* node, + const TfLiteEvalTensor* input, int axis_value) { + const int output_count = NumOutputs(node); + const TfLiteIntArray* input_dims = input->dims; + const TfLiteEvalTensor* output0 = + tflite::micro::GetEvalOutput(context, node, 0); + const TfLiteIntArray* output_dims = output0->dims; + + const int split_dimensions = input_dims->size; + int axis = axis_value < 0 ? axis_value + split_dimensions : axis_value; + + TFLITE_DCHECK_LT(axis, split_dimensions); + TFLITE_DCHECK_EQ(output_dims->size, split_dimensions); + + int64_t split_size = output_dims->data[axis] * output_count; + + TFLITE_DCHECK_EQ(split_size, input_dims->data[axis]); + int64_t outer_size = 1; + for (int i = 0; i < axis; ++i) { + outer_size *= input_dims->data[i]; + } + + int64_t base_inner_size = 1; + for (int i = axis + 1; i < split_dimensions; ++i) { + base_inner_size *= input_dims->data[i]; + } + + const T* input_ptr = tflite::micro::GetTensorData(input); + for (int k = 0; k < outer_size; ++k) { + for (int i = 0; i < output_count; ++i) { + TfLiteEvalTensor* t = tflite::micro::GetEvalOutput(context, node, i); + T* output_data = tflite::micro::GetTensorData(t); + const int copy_size = output_dims->data[axis] * base_inner_size; + T* output_ptr = output_data + k * copy_size; + for (int j = 0; j < copy_size; ++j) output_ptr[j] = input_ptr[j]; + input_ptr += copy_size; + } + } + + return kTfLiteOk; +} + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { + const TfLiteTensor* axis = GetInput(context, node, 0); + + // Dynamic output tensors are needed if axis tensor is not constant. + // But Micro doesn't support dynamic memory allocation, so we only support + // constant axis tensor for now. + TF_LITE_ENSURE_MSG(context, IsConstantTensor(axis), + "Non constant axis tensor not supported"); + return kTfLiteOk; +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + const TfLiteEvalTensor* axis = tflite::micro::GetEvalInput(context, node, 0); + const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 1); + + int axis_value = tflite::micro::GetTensorData(axis)[0]; + if (axis_value < 0) { + axis_value += input->dims->size; + } + + TF_LITE_ENSURE(context, axis_value >= 0); + TF_LITE_ENSURE(context, axis_value < input->dims->size); + + switch (input->type) { + case kTfLiteFloat32: { + return SplitImpl(context, node, input, axis_value); + } + case kTfLiteUInt8: { + return SplitImpl(context, node, input, axis_value); + } + case kTfLiteInt8: { + return SplitImpl(context, node, input, axis_value); + } + case kTfLiteInt16: { + return SplitImpl(context, node, input, axis_value); + } + case kTfLiteInt32: { + return SplitImpl(context, node, input, axis_value); + } + default: + TF_LITE_KERNEL_LOG(context, "Type %s currently not supported.", + TfLiteTypeGetName(input->type)); + return kTfLiteError; + } +#undef TF_LITE_SPLIT + + return kTfLiteOk; +} + +} // namespace split + +TfLiteRegistration Register_SPLIT() { + return {/*init=*/nullptr, + /*free=*/nullptr, + /*prepare=*/split::Prepare, + /*invoke=*/split::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/strided_slice.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/strided_slice.cc new file mode 100644 index 00000000..2dbe6e1d --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/strided_slice.cc @@ -0,0 +1,192 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#include "tensorflow/lite/kernels/internal/reference/strided_slice.h" + +#include +#include + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/kernels/op_macros.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace strided_slice { + +constexpr int kInputTensor = 0; +constexpr int kBeginTensor = 1; +constexpr int kEndTensor = 2; +constexpr int kStridesTensor = 3; +constexpr int kOutputTensor = 0; + +struct StridedSliceContext { + StridedSliceContext(TfLiteContext* context, TfLiteNode* node) { + params = reinterpret_cast(node->builtin_data); + input = GetInput(context, node, kInputTensor); + begin = GetInput(context, node, kBeginTensor); + end = GetInput(context, node, kEndTensor); + strides = GetInput(context, node, kStridesTensor); + output = GetOutput(context, node, kOutputTensor); + dims = NumDimensions(input); + } + const TfLiteStridedSliceParams* params; + const TfLiteTensor* input; + const TfLiteTensor* begin; + const TfLiteTensor* end; + const TfLiteTensor* strides; + TfLiteTensor* output; + int dims; +}; + +// This Op only supports 1-4D cases and since we use the reference 4D +// implementation, the 1-3D tensors are mapped to 4D. +const int kMaxDim = 4; + +tflite::StridedSliceParams BuildStridedSliceParams( + StridedSliceContext* op_context) { + tflite::StridedSliceParams op_params; + op_params.start_indices_count = op_context->dims; + op_params.stop_indices_count = op_context->dims; + op_params.strides_count = op_context->dims; + + for (int i = 0; i < op_context->dims; ++i) { + op_params.start_indices[i] = GetTensorData(op_context->begin)[i]; + op_params.stop_indices[i] = GetTensorData(op_context->end)[i]; + op_params.strides[i] = GetTensorData(op_context->strides)[i]; + } + + op_params.begin_mask = op_context->params->begin_mask; + op_params.ellipsis_mask = 0; + op_params.end_mask = op_context->params->end_mask; + op_params.new_axis_mask = 0; + op_params.shrink_axis_mask = op_context->params->shrink_axis_mask; + return op_params; +} + +// Processes the indexing tensors (begin, end and strides) to resize the +// output tensor. This function is callable from both Prepare() and Eval() as +// long as the caller ensures the indexing tensors are present. +TfLiteStatus CheckOutputSize(TfLiteContext* context, + StridedSliceContext* op_context) { + using ::tflite::strided_slice::StartForAxis; + using ::tflite::strided_slice::StopForAxis; + TfLiteIntArray* output_shape = op_context->output->dims; + int shape_size = 0; + auto op_params = BuildStridedSliceParams(op_context); + auto input_shape = GetTensorShape(op_context->input); + for (int idx = 0; idx < op_context->dims; ++idx) { + int32_t stride = GetTensorData(op_context->strides)[idx]; + TF_LITE_ENSURE_MSG(context, stride != 0, "stride value has to be non-zero"); + int32_t begin = StartForAxis(op_params, input_shape, idx); + int32_t end = StopForAxis(op_params, input_shape, idx, begin); + + // When shrinking an axis, the end position does not matter (and can be + // incorrect when negative indexing is used, see Issue #19260). Always use + // begin + 1 to generate a length 1 slice, since begin has + // already been adjusted for negative indices by StartForAxis. + const bool shrink_axis = op_context->params->shrink_axis_mask & (1 << idx); + if (shrink_axis) { + end = begin + 1; + } + + // This is valid for both positive and negative strides + int32_t dim_shape = std::ceil((end - begin) / static_cast(stride)); + dim_shape = dim_shape < 0 ? 0 : dim_shape; + if (!shrink_axis) { + TF_LITE_ENSURE_EQ(context, output_shape->data[shape_size], dim_shape); + shape_size++; + } + } + TF_LITE_ENSURE_EQ(context, output_shape->size, shape_size); + return kTfLiteOk; +} + +void* Init(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(StridedSliceParams)); +} + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + StridedSliceParams* op_params = + static_cast(node->user_data); + TF_LITE_ENSURE_EQ(context, NumInputs(node), 4); + TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); + StridedSliceContext op_context(context, node); + TF_LITE_ENSURE_MSG(context, op_context.dims <= kMaxDim, + "input dim should not exceed 4"); + auto params = BuildStridedSliceParams(&op_context); + memcpy(op_params, ¶ms, sizeof(StridedSliceParams)); + return CheckOutputSize(context, &op_context); +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + const StridedSliceParams& op_params = + *(static_cast(node->user_data)); + + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + switch (output->type) { + case kTfLiteFloat32: + reference_ops::StridedSlice(op_params, + tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + break; + case kTfLiteUInt8: + reference_ops::StridedSlice( + op_params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + break; + case kTfLiteInt8: + reference_ops::StridedSlice(op_params, + tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + break; + default: + TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", + TfLiteTypeGetName(input->type), input->type); + return kTfLiteError; + } + return kTfLiteOk; +} +} // namespace strided_slice + +TfLiteRegistration Register_STRIDED_SLICE() { + return {/*init=*/strided_slice::Init, + /*free=*/nullptr, + /*prepare=*/strided_slice::Prepare, + /*invoke=*/strided_slice::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/sub.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/sub.cc new file mode 100644 index 00000000..8ba15949 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/sub.cc @@ -0,0 +1,253 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/sub.h" + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/internal/types.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/kernels/op_macros.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace sub { + +constexpr int kInputTensor1 = 0; +constexpr int kInputTensor2 = 1; +constexpr int kOutputTensor = 0; + +struct OpData { + bool requires_broadcast; + + // These fields are used in both the general 8-bit -> 8bit quantized path, + // and the special 16-bit -> 16bit quantized path + int input1_shift; + int input2_shift; + int32_t output_activation_min; + int32_t output_activation_max; + + // These fields are used only in the general 8-bit -> 8bit quantized path + int32_t input1_multiplier; + int32_t input2_multiplier; + int32_t output_multiplier; + int output_shift; + int left_shift; + int32_t input1_offset; + int32_t input2_offset; + int32_t output_offset; +}; + +TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteSubParams* params, + const TfLiteTensor* input1, + const TfLiteTensor* input2, TfLiteTensor* output, + OpData* data) { + data->requires_broadcast = !HaveSameShapes(input1, input2); + + if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) { + // 8bit -> 8bit general quantized path, with general rescalings + data->input1_offset = -input1->params.zero_point; + data->input2_offset = -input2->params.zero_point; + data->output_offset = output->params.zero_point; + data->left_shift = 20; + const float twice_max_input_scale = + 2 * std::max(input1->params.scale, input2->params.scale); + const double real_input1_multiplier = + static_cast(input1->params.scale / twice_max_input_scale); + const double real_input2_multiplier = + static_cast(input2->params.scale / twice_max_input_scale); + const double real_output_multiplier = + static_cast(twice_max_input_scale / + ((1 << data->left_shift) * output->params.scale)); + + QuantizeMultiplierSmallerThanOneExp( + real_input1_multiplier, &data->input1_multiplier, &data->input1_shift); + + QuantizeMultiplierSmallerThanOneExp( + real_input2_multiplier, &data->input2_multiplier, &data->input2_shift); + + QuantizeMultiplierSmallerThanOneExp( + real_output_multiplier, &data->output_multiplier, &data->output_shift); + + TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized( + context, params->activation, output, &data->output_activation_min, + &data->output_activation_max)); + } + + return kTfLiteOk; +} + +void* Init(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(OpData)); +} + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + TFLITE_DCHECK(node->builtin_data != nullptr); + + OpData* data = static_cast(node->user_data); + auto* params = reinterpret_cast(node->builtin_data); + + const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1); + const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + + TF_LITE_ENSURE_STATUS( + CalculateOpData(context, params, input1, input2, output, data)); + return kTfLiteOk; +} + +void EvalSub(TfLiteContext* context, TfLiteNode* node, TfLiteSubParams* params, + const OpData* data, const TfLiteEvalTensor* input1, + const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) { + float output_activation_min, output_activation_max; + CalculateActivationRange(params->activation, &output_activation_min, + &output_activation_max); + tflite::ArithmeticParams op_params; + SetActivationParams(output_activation_min, output_activation_max, &op_params); + if (data->requires_broadcast) { + tflite::reference_ops::BroadcastSubSlow( + op_params, tflite::micro::GetTensorShape(input1), + tflite::micro::GetTensorData(input1), + tflite::micro::GetTensorShape(input2), + tflite::micro::GetTensorData(input2), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } else { + tflite::reference_ops::SubWithActivation( + op_params, tflite::micro::GetTensorShape(input1), + tflite::micro::GetTensorData(input1), + tflite::micro::GetTensorShape(input2), + tflite::micro::GetTensorData(input2), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } +} + +TfLiteStatus EvalSubQuantized(TfLiteContext* context, TfLiteNode* node, + TfLiteSubParams* params, const OpData* data, + const TfLiteEvalTensor* input1, + const TfLiteEvalTensor* input2, + TfLiteEvalTensor* output) { + if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) { + tflite::ArithmeticParams op_params; + op_params.left_shift = data->left_shift; + op_params.input1_offset = data->input1_offset; + op_params.input1_multiplier = data->input1_multiplier; + op_params.input1_shift = data->input1_shift; + op_params.input2_offset = data->input2_offset; + op_params.input2_multiplier = data->input2_multiplier; + op_params.input2_shift = data->input2_shift; + op_params.output_offset = data->output_offset; + op_params.output_multiplier = data->output_multiplier; + op_params.output_shift = data->output_shift; + SetActivationParams(data->output_activation_min, + data->output_activation_max, &op_params); + bool need_broadcast = reference_ops::ProcessBroadcastShapes( + tflite::micro::GetTensorShape(input1), + tflite::micro::GetTensorShape(input2), &op_params); + + if (output->type == kTfLiteInt8) { + if (need_broadcast) { + tflite::reference_ops::BroadcastSubSlow( + op_params, tflite::micro::GetTensorShape(input1), + tflite::micro::GetTensorData(input1), + tflite::micro::GetTensorShape(input2), + tflite::micro::GetTensorData(input2), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } else { + tflite::reference_ops::Sub( + op_params, tflite::micro::GetTensorShape(input1), + tflite::micro::GetTensorData(input1), + tflite::micro::GetTensorShape(input2), + tflite::micro::GetTensorData(input2), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } + } else { + if (need_broadcast) { + tflite::reference_ops::BroadcastSubSlow( + op_params, tflite::micro::GetTensorShape(input1), + tflite::micro::GetTensorData(input1), + tflite::micro::GetTensorShape(input2), + tflite::micro::GetTensorData(input2), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } else { + tflite::reference_ops::Sub( + op_params, tflite::micro::GetTensorShape(input1), + tflite::micro::GetTensorData(input1), + tflite::micro::GetTensorShape(input2), + tflite::micro::GetTensorData(input2), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + } + } + } + + return kTfLiteOk; +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + auto* params = reinterpret_cast(node->builtin_data); + + const TfLiteEvalTensor* input1 = + tflite::micro::GetEvalInput(context, node, kInputTensor1); + const TfLiteEvalTensor* input2 = + tflite::micro::GetEvalInput(context, node, kInputTensor2); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + TFLITE_DCHECK(node->user_data != nullptr); + const OpData& data = *(static_cast(node->user_data)); + + if (output->type == kTfLiteFloat32) { + EvalSub(context, node, params, &data, input1, input2, output); + } else if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) { + TF_LITE_ENSURE_OK(context, EvalSubQuantized(context, node, params, &data, + input1, input2, output)); + } else { + TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", + TfLiteTypeGetName(output->type), output->type); + return kTfLiteError; + } + + return kTfLiteOk; +} + +} // namespace sub + +TfLiteRegistration Register_SUB() { + return {/*init=*/sub::Init, + /*free=*/nullptr, + /*prepare=*/sub::Prepare, + /*invoke=*/sub::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/svdf.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/svdf.cc new file mode 100644 index 00000000..5cb8e06f --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/svdf.cc @@ -0,0 +1,548 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/kernels/op_macros.h" +#include "tensorflow/lite/micro/kernels/activation_utils.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" +#include "tensorflow/lite/micro/micro_utils.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace svdf { +namespace { + +struct OpData { + int32_t effective_scale_1_a; + int32_t effective_scale_2_a; + // b versions of each scale are kept at int since the numbers are just the + // shift value - typically between [-32, 32]. + int effective_scale_1_b; + int effective_scale_2_b; + int scratch_tensor_index; + int scratch_output_tensor_index; + + // Cached tensor zero point values for quantized operations. + int input_zero_point; + int output_zero_point; +}; + +/** + * This version of SVDF is specific to TFLite Micro. It contains the following + * differences between the TFLite version: + * + * 1.) Scratch tensor allocation - scratch tensors must be known ahead of time + * for the Micro interpreter. + * 2.) Output dimensions - the TFLite version determines output size and runtime + * and resizes the output tensor. Micro runtime does not support tensor + * resizing. + */ +static inline void ApplyTimeWeightsBiasAndActivation( + int batch_size, int memory_size, int num_filters, int num_units, int rank, + const float* const __restrict__ weights_time_ptr, + const float* const __restrict__ bias_ptr, TfLiteFusedActivation activation, + float* const __restrict__ state_ptr, float* const __restrict__ scratch_ptr, + float* const __restrict__ output_ptr) { + // Compute matmul(activation_state, weights_time). + for (int b = 0; b < batch_size; ++b) { + // Perform batched vector dot product: + float* scratch_ptr_batch = scratch_ptr + b * num_filters; + const float* vector1_ptr = weights_time_ptr; + const float* vector2_ptr = state_ptr + b * memory_size * num_filters; + for (int i = 0; i < num_filters; ++i) { + *scratch_ptr_batch = 0.f; + for (int j = 0; j < memory_size; ++j) { + *scratch_ptr_batch += *vector1_ptr++ * *vector2_ptr++; + } + scratch_ptr_batch++; + } + } + + // Initialize output with bias if provided. + if (bias_ptr) { + // VectorBatchVectorAssign + for (int i = 0; i < batch_size; ++i) { + float* output_data = output_ptr + i * num_units; + const float* bias_data = bias_ptr; + for (int j = 0; j < num_units; ++j) { + *output_data++ = *bias_data++; + } + } + } else { + float* output_data = output_ptr; + for (int i = 0; i < batch_size * num_units; ++i) { + *output_data++ = 0.0f; + } + } + + // Reduction sum. + for (int b = 0; b < batch_size; ++b) { + float* output_ptr_batch = output_ptr + b * num_units; + float* scratch_ptr_batch = scratch_ptr + b * num_filters; + + // Reduction sum vector + for (int i = 0; i < num_units; ++i) { + for (int j = 0; j < rank; j++) { + output_ptr_batch[i] += *scratch_ptr_batch++; + } + } + } + + // Apply activation. + for (int b = 0; b < batch_size; ++b) { + float* output_ptr_batch = output_ptr + b * num_units; + for (int i = 0; i < num_units; ++i) { + *output_ptr_batch = ActivationValFloat(activation, *output_ptr_batch); + ++output_ptr_batch; + } + } +} + +inline void EvalFloatSVDF( + TfLiteContext* context, TfLiteNode* node, const TfLiteEvalTensor* input, + const TfLiteEvalTensor* weights_feature, + const TfLiteEvalTensor* weights_time, const TfLiteEvalTensor* bias, + const TfLiteSVDFParams* params, int scratch_tensor_index, + TfLiteEvalTensor* activation_state, TfLiteEvalTensor* output) { + const int rank = params->rank; + const int batch_size = input->dims->data[0]; + const int input_size = input->dims->data[1]; + const int num_filters = weights_feature->dims->data[0]; + const int num_units = num_filters / rank; + const int memory_size = weights_time->dims->data[1]; + + const float* weights_feature_ptr = + tflite::micro::GetTensorData(weights_feature); + const float* weights_time_ptr = + tflite::micro::GetTensorData(weights_time); + const float* bias_ptr = tflite::micro::GetTensorData(bias); + const float* input_ptr = tflite::micro::GetTensorData(input); + + float* state_ptr = tflite::micro::GetTensorData(activation_state); + + TFLITE_DCHECK(context != nullptr); + TFLITE_DCHECK(context->GetScratchBuffer != nullptr); + + float* scratch_ptr = static_cast( + context->GetScratchBuffer(context, scratch_tensor_index)); + + float* output_ptr = tflite::micro::GetTensorData(output); + + // Left shift the activation_state. + { + float* new_state_start = state_ptr; + const float* old_state_start = state_ptr + 1; + const float* old_state_end = + state_ptr + batch_size * num_filters * memory_size; + while (old_state_start != old_state_end) { + *new_state_start++ = *old_state_start++; + } + } + + // Note: no need to clear the latest activation, matmul is not accumulative. + + // Compute conv1d(inputs, weights_feature). + // The activation_state's rightmost column is used to save current cycle + // activation. This is achieved by starting at state_ptr[memory_size - 1] and + // having the stride equal to memory_size. + + // Perform batched matrix vector multiply operation: + { + const float* matrix = weights_feature_ptr; + const float* vector = input_ptr; + float* result = &state_ptr[memory_size - 1]; + float* result_in_batch = result; + for (int i = 0; i < batch_size; ++i) { + const float* matrix_ptr = matrix; + for (int j = 0; j < num_filters; ++j) { + float dot_prod = 0.0f; + const float* vector_in_batch = vector + i * input_size; + for (int k = 0; k < input_size; ++k) { + dot_prod += *matrix_ptr++ * *vector_in_batch++; + } + *result_in_batch = dot_prod; + result_in_batch += memory_size; + } + } + } + + ApplyTimeWeightsBiasAndActivation( + batch_size, memory_size, num_filters, num_units, rank, weights_time_ptr, + bias_ptr, params->activation, state_ptr, scratch_ptr, output_ptr); +} + +void EvalIntegerSVDF(TfLiteContext* context, TfLiteNode* node, + const TfLiteEvalTensor* input_tensor, + const TfLiteEvalTensor* weights_feature_tensor, + const TfLiteEvalTensor* weights_time_tensor, + const TfLiteEvalTensor* bias_tensor, + const TfLiteSVDFParams* params, + TfLiteEvalTensor* activation_state_tensor, + TfLiteEvalTensor* output_tensor, const OpData& data) { + const int n_rank = params->rank; + const int n_batch = input_tensor->dims->data[0]; + const int n_input = input_tensor->dims->data[1]; + const int n_filter = weights_feature_tensor->dims->data[0]; + const int n_unit = n_filter / n_rank; + const int n_memory = weights_time_tensor->dims->data[1]; + + TFLITE_DCHECK(context != nullptr); + TFLITE_DCHECK(context->GetScratchBuffer != nullptr); + + int32_t* scratch_tensor = static_cast( + context->GetScratchBuffer(context, data.scratch_tensor_index)); + int32_t* scratch_output_tensor = static_cast( + context->GetScratchBuffer(context, data.scratch_output_tensor_index)); + + // Shift states. + int16_t* const state_ptr = + tflite::micro::GetTensorData(activation_state_tensor); + + // Left shift the activation_state. + { + int16_t* new_state_start = state_ptr; + const int16_t* old_state_start = state_ptr + 1; + const int16_t* old_state_end = state_ptr + n_batch * n_filter * n_memory; + while (old_state_start != old_state_end) { + *new_state_start++ = *old_state_start++; + } + } + + // Note: no need to clear the latest activation, matmul is not accumulative. + + // Feature matmul. + { + int16_t* state = + tflite::micro::GetTensorData(activation_state_tensor); + const int8_t* input = tflite::micro::GetTensorData(input_tensor); + const int8_t* weight_feature = + tflite::micro::GetTensorData(weights_feature_tensor); + const int32_t output_max = std::numeric_limits::max(); + const int32_t output_min = std::numeric_limits::min(); + int16_t* result_in_batch = state + (n_memory - 1); + for (int b = 0; b < n_batch; b++) { + const int8_t* matrix_ptr = weight_feature; + for (int r = 0; r < n_filter; r++) { + int32_t dot_prod = 0; + const int8_t* vector_in_batch = input + b * n_input; + for (int c = 0; c < n_input; c++) { + dot_prod += + *matrix_ptr++ * (*vector_in_batch++ - data.input_zero_point); + } + dot_prod = MultiplyByQuantizedMultiplier( + dot_prod, data.effective_scale_1_a, data.effective_scale_1_b); + dot_prod = std::min(std::max(output_min, dot_prod), output_max); + // This assumes state is symmetrically quantized. Otherwise last bit of + // state should be initialized to its zero point and accumulate the + // dot_prod. + // Equivalent as the following: + // result_in_batch = zero point, which happens to be zero. + // result_in_batch += dot_prod_56. + *result_in_batch = dot_prod; + result_in_batch += n_memory; + } + } + } + + // Time. + { + for (int b = 0; b < n_batch; ++b) { + int32_t* scratch_ptr_batch = scratch_tensor + b * n_filter; + + // Perform batched vector dot product: + const int16_t* vector1_ptr = + tflite::micro::GetTensorData(weights_time_tensor); + const int16_t* vector2_ptr = + tflite::micro::GetTensorData(activation_state_tensor) + + b * n_memory * n_filter; + + for (int i = 0; i < n_filter; i++) { + *scratch_ptr_batch = 0; + for (int j = 0; j < n_memory; j++) { + *scratch_ptr_batch += *vector1_ptr++ * *vector2_ptr++; + } + scratch_ptr_batch++; + } + } + } + + // Reduce, add bias, rescale, activation. + { + // Add bias. + if (bias_tensor) { + // Vector batch assign: + const int32_t* bias_data = + tflite::micro::GetTensorData(bias_tensor); + for (int i = 0; i < n_batch; ++i) { + int32_t* output_ptr = scratch_output_tensor + i * n_unit; + const int32_t* bias_ptr = bias_data; + for (int j = 0; j < n_unit; ++j) { + *output_ptr++ = *bias_ptr++; + } + } + } else { + int32_t* output_ptr = scratch_output_tensor; + for (int i = 0; i < n_batch * n_unit; ++i) { + *output_ptr++ = 0; + } + } + + // Reduce. + for (int b = 0; b < n_batch; ++b) { + int32_t* output_temp_ptr = scratch_output_tensor + b * n_unit; + int32_t* scratch_ptr_batch = scratch_tensor + b * n_filter; + + // Reduction sum vector + for (int i = 0; i < n_unit; ++i) { + for (int j = 0; j < n_rank; ++j) { + output_temp_ptr[i] += *scratch_ptr_batch++; + } + } + } + + // Rescale. + const int32_t output_max = std::numeric_limits::max(); + const int32_t output_min = std::numeric_limits::min(); + for (int i = 0; i < n_batch * n_unit; ++i) { + int32_t x1 = scratch_output_tensor[i]; + int32_t x2 = MultiplyByQuantizedMultiplier(x1, data.effective_scale_2_a, + data.effective_scale_2_b); + int32_t x3 = x2 + data.output_zero_point; + int32_t x4 = std::min(std::max(output_min, x3), output_max); + tflite::micro::GetTensorData(output_tensor)[i] = + static_cast(x4); + } + } +} + +} // namespace + +// Input tensors. +constexpr int kInputTensor = 0; +constexpr int kWeightsFeatureTensor = 1; +constexpr int kWeightsTimeTensor = 2; +constexpr int kBiasTensor = 3; +// This is a variable tensor, and will be modified by this op. +constexpr int kInputActivationStateTensor = 4; + +// Output tensor. +constexpr int kOutputTensor = 0; + +void* Init(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(OpData)); +} + +TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->builtin_data != nullptr); + + const auto* params = static_cast(node->builtin_data); + + // Validate Tensor Inputs (dtype depends on quantization): + // [0] = Input, {2, batch_size, input_size} + // [1] = Weights Feature, {2, num_filters, input_size} + // [2] = Weights Time, {2, num_filters, memory_size} + // [3] = Bias (optional), {1, num_units} + // [4] = Activation State (variable), + // {2, batch_size, memory_size * num_filters} + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + const TfLiteTensor* weights_feature = + GetInput(context, node, kWeightsFeatureTensor); + const TfLiteTensor* weights_time = + GetInput(context, node, kWeightsTimeTensor); + const TfLiteTensor* bias = GetOptionalInputTensor(context, node, kBiasTensor); + const TfLiteTensor* activation_state = + GetInput(context, node, kInputActivationStateTensor); + + // Define input constants based on input tensor definition above: + const int rank = params->rank; + const int input_size = input->dims->data[1]; + const int batch_size = input->dims->data[0]; + const int num_filters = weights_feature->dims->data[0]; + TF_LITE_ENSURE_EQ(context, num_filters % rank, 0); + const int num_units = num_filters / rank; + const int memory_size = weights_time->dims->data[1]; + + // Validate Input Tensor: + TF_LITE_ENSURE(context, + input->type == kTfLiteFloat32 || input->type == kTfLiteInt8); + TF_LITE_ENSURE_EQ(context, NumDimensions(input), 2); + + // Validate Tensor Output: + // [0] = float/int8_t, {2, batch_size, num_units} + TF_LITE_ENSURE_EQ(context, node->outputs->size, 1); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + TF_LITE_ENSURE_EQ(context, NumDimensions(output), 2); + TF_LITE_ENSURE_EQ(context, output->dims->data[0], batch_size); + TF_LITE_ENSURE_EQ(context, output->dims->data[1], num_units); + + // Validate Weights Feature Input Tensor: + TF_LITE_ENSURE_EQ(context, NumDimensions(weights_feature), 2); + TF_LITE_ENSURE_EQ(context, weights_feature->dims->data[1], input_size); + + // Validate Weights Time Input Tensor: + TF_LITE_ENSURE_EQ(context, NumDimensions(weights_time), 2); + TF_LITE_ENSURE_EQ(context, weights_time->dims->data[0], num_filters); + TF_LITE_ENSURE_EQ(context, weights_time->dims->data[1], memory_size); + + // Validate Optional Bias Input Tensor: + if (bias != nullptr) { + TF_LITE_ENSURE_EQ(context, bias->dims->data[0], num_units); + } + + // Validate Activation State Input Tensor: + TF_LITE_ENSURE_EQ(context, NumDimensions(activation_state), 2); + TF_LITE_ENSURE_EQ(context, activation_state->dims->data[0], batch_size); + TF_LITE_ENSURE_EQ(context, activation_state->dims->data[1], + memory_size * num_filters); + // Since is_variable is not part of TFLiteEvalTensor, check is_variable here. + TF_LITE_ENSURE_EQ(context, activation_state->is_variable, true); + + TF_LITE_ENSURE_EQ(context, node->inputs->size, 5); + + TFLITE_DCHECK(node->user_data != nullptr); + OpData* data = static_cast(node->user_data); + + if (input->type == kTfLiteInt8) { + TF_LITE_ENSURE_EQ(context, weights_feature->type, kTfLiteInt8); + TF_LITE_ENSURE_EQ(context, weights_time->type, kTfLiteInt16); + TF_LITE_ENSURE_EQ(context, activation_state->type, kTfLiteInt16); + if (bias != nullptr) { + TF_LITE_ENSURE_EQ(context, bias->type, kTfLiteInt32); + } + + TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteInt8); + + const double effective_scale_1 = static_cast( + input->params.scale * weights_feature->params.scale / + activation_state->params.scale); + const double effective_scale_2 = + static_cast(activation_state->params.scale * + weights_time->params.scale / output->params.scale); + + // TODO(b/162018098): Use TF_LITE_ENSURE_NEAR when it is ready. + TF_LITE_ENSURE( + context, + std::abs(static_cast(bias->params.scale) - + static_cast(activation_state->params.scale * + weights_time->params.scale)) < 1e-5); + + QuantizeMultiplier(effective_scale_1, &(data->effective_scale_1_a), + &(data->effective_scale_1_b)); + QuantizeMultiplier(effective_scale_2, &(data->effective_scale_2_a), + &(data->effective_scale_2_b)); + + data->input_zero_point = input->params.zero_point; + data->output_zero_point = output->params.zero_point; + + TFLITE_DCHECK(context->RequestScratchBufferInArena != nullptr); + + const TfLiteStatus scratch_status = context->RequestScratchBufferInArena( + context, batch_size * num_filters * sizeof(int32_t), + &(data->scratch_tensor_index)); + TF_LITE_ENSURE_OK(context, scratch_status); + + const TfLiteStatus scratch_output_status = + context->RequestScratchBufferInArena( + context, batch_size * num_units * sizeof(int32_t), + &(data->scratch_output_tensor_index)); + TF_LITE_ENSURE_OK(context, scratch_output_status); + } else { + TF_LITE_ENSURE_EQ(context, weights_feature->type, kTfLiteFloat32); + TF_LITE_ENSURE_EQ(context, weights_time->type, kTfLiteFloat32); + TF_LITE_ENSURE_EQ(context, activation_state->type, kTfLiteFloat32); + if (bias != nullptr) { + TF_LITE_ENSURE_EQ(context, bias->type, kTfLiteFloat32); + } + TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteFloat32); + + TFLITE_DCHECK(context->RequestScratchBufferInArena != nullptr); + const TfLiteStatus scratch_status = context->RequestScratchBufferInArena( + context, batch_size * num_filters * sizeof(float), + &(data->scratch_tensor_index)); + TF_LITE_ENSURE_OK(context, scratch_status); + } + + return kTfLiteOk; +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + auto* params = reinterpret_cast(node->builtin_data); + TFLITE_DCHECK(node->user_data != nullptr); + const OpData& data = *(static_cast(node->user_data)); + + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + const TfLiteEvalTensor* weights_feature = + tflite::micro::GetEvalInput(context, node, kWeightsFeatureTensor); + const TfLiteEvalTensor* weights_time = + tflite::micro::GetEvalInput(context, node, kWeightsTimeTensor); + const TfLiteEvalTensor* bias = + (NumInputs(node) == 5) + ? tflite::micro::GetEvalInput(context, node, kBiasTensor) + : nullptr; + TfLiteEvalTensor* activation_state = tflite::micro::GetMutableEvalInput( + context, node, kInputActivationStateTensor); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + switch (weights_feature->type) { + case kTfLiteFloat32: { + EvalFloatSVDF(context, node, input, weights_feature, weights_time, bias, + params, data.scratch_tensor_index, activation_state, + output); + return kTfLiteOk; + break; + } + + case kTfLiteInt8: { + EvalIntegerSVDF(context, node, input, weights_feature, weights_time, bias, + params, activation_state, output, data); + return kTfLiteOk; + break; + } + + default: + TF_LITE_KERNEL_LOG(context, "Type %s not currently supported.", + TfLiteTypeGetName(weights_feature->type)); + return kTfLiteError; + } + return kTfLiteOk; +} + +} // namespace svdf + +TfLiteRegistration Register_SVDF() { + return {/*init=*/svdf::Init, + /*free=*/nullptr, + /*prepare=*/svdf::Prepare, + /*invoke=*/svdf::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/tanh.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/tanh.cc new file mode 100644 index 00000000..5fa32f8f --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/tanh.cc @@ -0,0 +1,154 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/kernels/internal/reference/integer_ops/tanh.h" + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/common.h" +#include "tensorflow/lite/kernels/internal/quantization_util.h" +#include "tensorflow/lite/kernels/internal/reference/tanh.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/kernels/op_macros.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" +#include "tensorflow/lite/micro/micro_utils.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace activations { +namespace { +constexpr int kInputTensor = 0; +constexpr int kOutputTensor = 0; + +struct OpData { + int32_t input_zero_point; + int32_t input_range_radius; + int32_t input_multiplier; + int input_left_shift; +}; + +void* TanhInit(TfLiteContext* context, const char* buffer, size_t length) { + TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); + return context->AllocatePersistentBuffer(context, sizeof(OpData)); +} + +TfLiteStatus CalculateArithmeticOpData(TfLiteContext* context, TfLiteNode* node, + OpData* data) { + TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); + TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + TfLiteTensor* output = GetOutput(context, node, kOutputTensor); + + TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); + + if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8) { + static constexpr int kInputIntegerBits = 4; + const double input_real_multiplier = + static_cast(input->params.scale) * + static_cast(1 << (31 - kInputIntegerBits)); + + const double q = std::frexp(input_real_multiplier, &data->input_left_shift); + data->input_multiplier = static_cast(TfLiteRound(q * (1ll << 31))); + + data->input_range_radius = + CalculateInputRadius(kInputIntegerBits, data->input_left_shift, 31); + } + return kTfLiteOk; +} + +TfLiteStatus TanhPrepare(TfLiteContext* context, TfLiteNode* node) { + TFLITE_DCHECK(node->user_data != nullptr); + + OpData* data = static_cast(node->user_data); + + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + data->input_zero_point = input->params.zero_point; + return CalculateArithmeticOpData(context, node, data); +} + +} // namespace + +TfLiteStatus TanhEval(TfLiteContext* context, TfLiteNode* node) { + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + TfLiteEvalTensor* output = + tflite::micro::GetEvalOutput(context, node, kOutputTensor); + + TFLITE_DCHECK(node->user_data != nullptr); + const OpData& data = *(static_cast(node->user_data)); + + switch (input->type) { + case kTfLiteFloat32: { + reference_ops::Tanh(tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + return kTfLiteOk; + } break; + case kTfLiteInt16: { + TanhParams params; + params.input_left_shift = data.input_left_shift; + reference_ops::Tanh(params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + return kTfLiteOk; + } break; + case kTfLiteUInt8: { + TanhParams params; + params.input_zero_point = data.input_zero_point; + params.input_range_radius = data.input_range_radius; + params.input_multiplier = data.input_multiplier; + params.input_left_shift = data.input_left_shift; + reference_ops::Tanh(params, tflite::micro::GetTensorShape(input), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorShape(output), + tflite::micro::GetTensorData(output)); + + return kTfLiteOk; + } break; + case kTfLiteInt8: { + reference_integer_ops::Tanh( + data.input_zero_point, data.input_range_radius, data.input_multiplier, + data.input_left_shift, NumElements(input->dims), + tflite::micro::GetTensorData(input), + tflite::micro::GetTensorData(output)); + return kTfLiteOk; + } break; + default: + TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.", + TfLiteTypeGetName(input->type), + TfLiteTypeGetName(output->type)); + return kTfLiteError; + } +} + +} // namespace activations + +TfLiteRegistration Register_TANH() { + return {/*init=*/activations::TanhInit, + /*free=*/nullptr, + /*prepare=*/activations::TanhPrepare, + /*invoke=*/activations::TanhEval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/kernels/unpack.cc b/components/tflite_micro/tensorflow/lite/micro/kernels/unpack.cc new file mode 100644 index 00000000..557cc57a --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/kernels/unpack.cc @@ -0,0 +1,121 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/c/builtin_op_data.h" +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/micro/kernels/kernel_util.h" + +namespace tflite { +namespace ops { +namespace micro { +namespace unpack { +namespace { + +constexpr int kInputTensor = 0; + +template +TfLiteStatus UnpackImpl(TfLiteContext* context, TfLiteNode* node, + const TfLiteEvalTensor* input, int output_count, + int axis) { + const TfLiteEvalTensor* output0 = + tflite::micro::GetEvalOutput(context, node, 0); + const TfLiteIntArray* input_dims = input->dims; + const TfLiteIntArray* output_dims = output0->dims; + const int dimensions = input_dims->size; + + if (axis < 0) { + axis += input->dims->size; + } + + TFLITE_DCHECK_LT(axis, dimensions); + + int outer_size = 1; + for (int i = 0; i < axis; ++i) { + outer_size *= input_dims->data[i]; + } + int copy_size = 1; + for (int i = axis + 1; i < dimensions; ++i) { + copy_size *= input_dims->data[i]; + } + int output_size = 1; + for (int i = 0; i < output_dims->size; ++i) { + output_size *= output_dims->data[i]; + } + TFLITE_DCHECK_EQ(output_size, copy_size * outer_size); + + const T* input_data = tflite::micro::GetTensorData(input); + + for (int i = 0; i < output_count; ++i) { + TfLiteEvalTensor* t = tflite::micro::GetEvalOutput(context, node, i); + T* output_data = tflite::micro::GetTensorData(t); + for (int k = 0; k < outer_size; ++k) { + T* output_ptr = output_data + copy_size * k; + int loc = k * output_count * copy_size + i * copy_size; + const T* input_ptr = input_data + loc; + for (int j = 0; j < copy_size; ++j) output_ptr[j] = input_ptr[j]; + } + } + + return kTfLiteOk; +} + +TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { + TfLiteUnpackParams* data = + reinterpret_cast(node->builtin_data); + + const TfLiteEvalTensor* input = + tflite::micro::GetEvalInput(context, node, kInputTensor); + + switch (input->type) { + case kTfLiteFloat32: { + return UnpackImpl(context, node, input, data->num, data->axis); + } + case kTfLiteInt32: { + return UnpackImpl(context, node, input, data->num, data->axis); + } + case kTfLiteUInt8: { + return UnpackImpl(context, node, input, data->num, data->axis); + } + case kTfLiteInt8: { + return UnpackImpl(context, node, input, data->num, data->axis); + } + default: { + TF_LITE_KERNEL_LOG(context, "Type '%s' is not supported by unpack.", + TfLiteTypeGetName(input->type)); + return kTfLiteError; + } + } + + return kTfLiteOk; +} +} // namespace +} // namespace unpack + +TfLiteRegistration Register_UNPACK() { + return {/*init=*/nullptr, + /*free=*/nullptr, + /*prepare=*/nullptr, + /*invoke=*/unpack::Eval, + /*profiling_string=*/nullptr, + /*builtin_code=*/0, + /*custom_name=*/nullptr, + /*version=*/0}; +} + +} // namespace micro +} // namespace ops +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/memory_helpers.cc b/components/tflite_micro/tensorflow/lite/micro/memory_helpers.cc new file mode 100644 index 00000000..c6180cb4 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/memory_helpers.cc @@ -0,0 +1,155 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/micro/memory_helpers.h" + +#include +#include + +#include "flatbuffers/flatbuffers.h" // from @flatbuffers +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/core/api/error_reporter.h" +#include "tensorflow/lite/core/api/flatbuffer_conversions.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/schema/schema_generated.h" + +namespace tflite { + +uint8_t* AlignPointerUp(uint8_t* data, size_t alignment) { + std::uintptr_t data_as_uintptr_t = reinterpret_cast(data); + uint8_t* aligned_result = reinterpret_cast( + ((data_as_uintptr_t + (alignment - 1)) / alignment) * alignment); + return aligned_result; +} + +uint8_t* AlignPointerDown(uint8_t* data, size_t alignment) { + std::uintptr_t data_as_uintptr_t = reinterpret_cast(data); + uint8_t* aligned_result = + reinterpret_cast((data_as_uintptr_t / alignment) * alignment); + return aligned_result; +} + +size_t AlignSizeUp(size_t size, size_t alignment) { + size_t aligned_size = (((size + (alignment - 1)) / alignment) * alignment); + return aligned_size; +} + +TfLiteStatus TfLiteTypeSizeOf(TfLiteType type, size_t* size) { + switch (type) { + case kTfLiteFloat32: + *size = sizeof(float); + break; + case kTfLiteInt16: + *size = sizeof(int16_t); + break; + case kTfLiteInt32: + *size = sizeof(int32_t); + break; + case kTfLiteUInt8: + *size = sizeof(uint8_t); + break; + case kTfLiteInt8: + *size = sizeof(int8_t); + break; + case kTfLiteInt64: + *size = sizeof(int64_t); + break; + case kTfLiteBool: + *size = sizeof(bool); + break; + case kTfLiteComplex64: + *size = sizeof(float) * 2; + break; + case kTfLiteComplex128: + *size = sizeof(double) * 2; + break; + default: + return kTfLiteError; + } + return kTfLiteOk; +} + +TfLiteStatus BytesRequiredForTensor(const tflite::Tensor& flatbuffer_tensor, + size_t* bytes, size_t* type_size, + ErrorReporter* error_reporter) { + int element_count = 1; + // If flatbuffer_tensor.shape == nullptr, then flatbuffer_tensor is a scalar + // so has 1 element. + if (flatbuffer_tensor.shape() != nullptr) { + for (size_t n = 0; n < flatbuffer_tensor.shape()->Length(); ++n) { + element_count *= flatbuffer_tensor.shape()->Get(n); + } + } + + TfLiteType tf_lite_type; + TF_LITE_ENSURE_STATUS(ConvertTensorType(flatbuffer_tensor.type(), + &tf_lite_type, error_reporter)); + TF_LITE_ENSURE_STATUS(TfLiteTypeSizeOf(tf_lite_type, type_size)); + *bytes = element_count * (*type_size); + return kTfLiteOk; +} + +TfLiteStatus TfLiteEvalTensorByteLength(const TfLiteEvalTensor* eval_tensor, + size_t* out_bytes) { + TFLITE_DCHECK(out_bytes != nullptr); + + int element_count = 1; + // If eval_tensor->dims == nullptr, then tensor is a scalar so has 1 element. + if (eval_tensor->dims != nullptr) { + for (int n = 0; n < eval_tensor->dims->size; ++n) { + element_count *= eval_tensor->dims->data[n]; + } + } + size_t type_size; + TF_LITE_ENSURE_STATUS(TfLiteTypeSizeOf(eval_tensor->type, &type_size)); + *out_bytes = element_count * type_size; + return kTfLiteOk; +} + +TfLiteStatus AllocateOutputDimensionsFromInput(TfLiteContext* context, + const TfLiteTensor* input1, + const TfLiteTensor* input2, + TfLiteTensor* output) { + const TfLiteTensor* input = nullptr; + + TF_LITE_ENSURE(context, input1->dims != nullptr); + TF_LITE_ENSURE(context, input2->dims != nullptr); + TF_LITE_ENSURE(context, output->dims->size == 0); + + input = input1->dims->size > input2->dims->size ? input1 : input2; + TF_LITE_ENSURE(context, output->type == input->type); + + size_t size = 0; + TfLiteTypeSizeOf(input->type, &size); + const int dimensions_count = tflite::GetTensorShape(input).DimensionsCount(); + for (int i = 0; i < dimensions_count; i++) { + size *= input->dims->data[i]; + } + + output->bytes = size; + + output->dims = + reinterpret_cast(context->AllocatePersistentBuffer( + context, TfLiteIntArrayGetSizeInBytes(size))); + + output->dims->size = input->dims->size; + for (int i = 0; i < dimensions_count; i++) { + output->dims->data[i] = input->dims->data[i]; + } + + return kTfLiteOk; +} + +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/memory_helpers.h b/components/tflite_micro/tensorflow/lite/micro/memory_helpers.h new file mode 100644 index 00000000..8f5526ce --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/memory_helpers.h @@ -0,0 +1,59 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_MICRO_MEMORY_HELPERS_H_ +#define TENSORFLOW_LITE_MICRO_MEMORY_HELPERS_H_ + +#include +#include + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/core/api/error_reporter.h" +#include "tensorflow/lite/schema/schema_generated.h" + +namespace tflite { + +// Returns the next pointer address aligned to the given alignment. +uint8_t* AlignPointerUp(uint8_t* data, size_t alignment); + +// Returns the previous pointer address aligned to the given alignment. +uint8_t* AlignPointerDown(uint8_t* data, size_t alignment); + +// Returns an increased size that's a multiple of alignment. +size_t AlignSizeUp(size_t size, size_t alignment); + +// Returns size in bytes for a given TfLiteType. +TfLiteStatus TfLiteTypeSizeOf(TfLiteType type, size_t* size); + +// How many bytes are needed to hold a tensor's contents. +TfLiteStatus BytesRequiredForTensor(const tflite::Tensor& flatbuffer_tensor, + size_t* bytes, size_t* type_size, + ErrorReporter* error_reporter); + +// How many bytes are used in a TfLiteEvalTensor instance. The byte length is +// returned in out_bytes. +TfLiteStatus TfLiteEvalTensorByteLength(const TfLiteEvalTensor* eval_tensor, + size_t* out_bytes); + +// Deduce output dimensions from input and allocate given size. +// Useful for operators with two inputs where the largest input should equal the +// output dimension. +TfLiteStatus AllocateOutputDimensionsFromInput(TfLiteContext* context, + const TfLiteTensor* input1, + const TfLiteTensor* input2, + TfLiteTensor* output); + +} // namespace tflite + +#endif // TENSORFLOW_LITE_MICRO_MEMORY_HELPERS_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/memory_planner/greedy_memory_planner.cc b/components/tflite_micro/tensorflow/lite/micro/memory_planner/greedy_memory_planner.cc new file mode 100644 index 00000000..39991ab7 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/memory_planner/greedy_memory_planner.cc @@ -0,0 +1,437 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/micro/memory_planner/greedy_memory_planner.h" + +namespace tflite { + +// Simple stable in-place sort function. Not time-efficient for large arrays. +// Would normally be in an anonymous namespace to keep it private, but we want +// to be able to test it externally. +void ReverseSortInPlace(int* values, int* ids, int size) { + bool any_swapped; + do { + any_swapped = false; + for (int i = 1; i < size; ++i) { + if (values[i - 1] < values[i]) { + const int value_temp = values[i - 1]; + values[i - 1] = values[i]; + values[i] = value_temp; + const int id_temp = ids[i - 1]; + ids[i - 1] = ids[i]; + ids[i] = id_temp; + any_swapped = true; + } + } + } while (any_swapped); +} + +GreedyMemoryPlanner::GreedyMemoryPlanner(unsigned char* scratch_buffer, + int scratch_buffer_size) + : buffer_count_(0), need_to_calculate_offsets_(true) { + // Allocate the arrays we need within the scratch buffer arena. + max_buffer_count_ = scratch_buffer_size / per_buffer_size(); + + unsigned char* next_free = scratch_buffer; + requirements_ = reinterpret_cast(next_free); + next_free += sizeof(BufferRequirements) * max_buffer_count_; + + buffer_sizes_sorted_ = reinterpret_cast(next_free); + next_free += sizeof(int) * max_buffer_count_; + + buffer_ids_sorted_ = reinterpret_cast(next_free); + next_free += sizeof(int) * max_buffer_count_; + + buffers_sorted_by_offset_ = reinterpret_cast(next_free); + next_free += sizeof(ListEntry) * max_buffer_count_; + + buffer_offsets_ = reinterpret_cast(next_free); +} + +GreedyMemoryPlanner::~GreedyMemoryPlanner() { + // We don't own the scratch buffer, so don't deallocate anything. +} + +TfLiteStatus GreedyMemoryPlanner::AddBuffer( + tflite::ErrorReporter* error_reporter, int size, int first_time_used, + int last_time_used) { + if (buffer_count_ >= max_buffer_count_) { + TF_LITE_REPORT_ERROR(error_reporter, "Too many buffers (max is %d)", + max_buffer_count_); + return kTfLiteError; + } + BufferRequirements* current = &requirements_[buffer_count_]; + current->size = size; + current->first_time_used = first_time_used; + current->last_time_used = last_time_used; + current->offline_offset = kOnlinePlannedBuffer; + ++buffer_count_; + need_to_calculate_offsets_ = true; + return kTfLiteOk; +} + +TfLiteStatus GreedyMemoryPlanner::AddBuffer( + tflite::ErrorReporter* error_reporter, int size, int first_time_used, + int last_time_used, int offline_offset) { + BufferRequirements* current = &requirements_[buffer_count_]; + if (AddBuffer(error_reporter, size, first_time_used, last_time_used) != + kTfLiteOk) { + return kTfLiteError; + } + current->offline_offset = offline_offset; + return kTfLiteOk; +} + +bool GreedyMemoryPlanner::DoesEntryOverlapInTime( + const GreedyMemoryPlanner::ListEntry* entry, const int first_time_used, + const int last_time_used) const { + const BufferRequirements* entry_requirements = + &requirements_[entry->requirements_index]; + if (entry_requirements->first_time_used > last_time_used) { + return false; + } + if (first_time_used > entry_requirements->last_time_used) { + return false; + } + return true; +} + +GreedyMemoryPlanner::ListEntry* +GreedyMemoryPlanner::NextSimultaneouslyActiveBuffer( + const GreedyMemoryPlanner::ListEntry* start, const int first_time_used, + const int last_time_used) { + ListEntry* result = nullptr; + ListEntry* candidate_next_entry; + if (start == nullptr) { + candidate_next_entry = &buffers_sorted_by_offset_[first_entry_index_]; + } else { + if (start->next_entry_index == -1) { + return nullptr; + } + candidate_next_entry = &buffers_sorted_by_offset_[start->next_entry_index]; + } + do { + if (DoesEntryOverlapInTime(candidate_next_entry, first_time_used, + last_time_used)) { + result = candidate_next_entry; + break; + } + if (candidate_next_entry->next_entry_index == -1) { + break; + } + candidate_next_entry = + &buffers_sorted_by_offset_[candidate_next_entry->next_entry_index]; + } while (true); + return result; +} + +void GreedyMemoryPlanner::CalculateOffsetsIfNeeded() { + if (!need_to_calculate_offsets_ || (buffer_count_ == 0)) { + return; + } + need_to_calculate_offsets_ = false; + + // Start off by ordering the buffers in descending order of size. + // This helps find a more compact layout. Intuitively, you can think + // about putting the large buffers in place first, and then the + // smaller buffers can fit in the gaps, rather than fragmenting the + // gaps with small buffers at the beginning. Add offline planned offsets + // first in the list, since they have a predetermined offset. + int idx_from_tail = buffer_count_; + int idx_from_head = 0; + for (int i = 0; i < buffer_count_; ++i) { + if (requirements_[i].offline_offset == kOnlinePlannedBuffer) { + idx_from_tail--; + buffer_sizes_sorted_[idx_from_tail] = requirements_[i].size; + buffer_ids_sorted_[idx_from_tail] = i; + buffer_offsets_[i] = -1; + } else { + buffer_sizes_sorted_[idx_from_head] = requirements_[i].size; + buffer_ids_sorted_[idx_from_head] = i; + buffer_offsets_[i] = requirements_[i].offline_offset; + idx_from_head++; + } + } + + // This sorting algorithm is naive, and may end up taking a very long time + // with hundreds of buffers. Do not sort the offline planned offsets. + ReverseSortInPlace(&buffer_sizes_sorted_[idx_from_head], + &buffer_ids_sorted_[idx_from_head], + buffer_count_ - idx_from_head); + + // Initialize the first entry to the first buffer in + // buffer_ids_sorted_. + // - If there are no offline planned offsets, the largest buffer will be + // first, and the buffers will be handled in size order. + // - If offline offsets are present, these will be handled first in order + // for the greedy algorithm to utilized gaps in the offline plan. + first_entry_index_ = 0; + next_free_entry_ = 1; + ListEntry* first_entry = &buffers_sorted_by_offset_[first_entry_index_]; + first_entry->next_entry_index = -1; // to mark the entry as end of list + int buffer_id = buffer_ids_sorted_[0]; + first_entry->requirements_index = buffer_id; + if (requirements_[buffer_id].offline_offset == kOnlinePlannedBuffer) { + buffer_offsets_[buffer_id] = 0; + } + first_entry->offset = buffer_offsets_[buffer_id]; + + // Work through the rest of the buffers to find a good gap to place each one. + for (int i = 1; i < buffer_count_; ++i) { + // The id is the order the buffer was originally added by the client. + buffer_id = buffer_ids_sorted_[i]; + // Look at what size and time range the buffer needs to be active. + BufferRequirements* wanted_requirements = &requirements_[buffer_id]; + const int wanted_size = wanted_requirements->size; + const int wanted_first_time_used = wanted_requirements->first_time_used; + const int wanted_last_time_used = wanted_requirements->last_time_used; + + // Find the first buffer that's active in our time range. All placed + // buffers are stored in the order of their starting position in the arena + // so that it's easy to find the next buffer in memory, and so the gap. + // The candidate_entry variable holds the buffer that we're considering + // placing the current buffer after. + + int candidate_offset = 0; + // Loop through the offset-ordered list of buffers, looking for gaps. + if (wanted_requirements->offline_offset == kOnlinePlannedBuffer) { + ListEntry* prior_entry = nullptr; + while (true) { + // Find out what the next active buffer is. + ListEntry* next_entry = NextSimultaneouslyActiveBuffer( + prior_entry, wanted_first_time_used, wanted_last_time_used); + + if (prior_entry) { + BufferRequirements* candidate_requirements = + &requirements_[prior_entry->requirements_index]; + const int prior_entry_offset = + prior_entry->offset + candidate_requirements->size; + if (prior_entry_offset > candidate_offset) { + candidate_offset = prior_entry_offset; + } + } + if (next_entry == nullptr) { + // We're at the end of the list, so we can always append the buffer + // here. + break; + } + // Find out how much space there is between us and the next buffer. + const int gap = next_entry->offset - candidate_offset; + if (gap >= wanted_size) { + // This entry has a big enough gap between it and the next, so + // use it! + break; + } + // The gap wasn't big enough, so move on to another candidate. + prior_entry = next_entry; + } + } else { + // Offline planned offset are to be considered constant + candidate_offset = wanted_requirements->offline_offset; + } + // At this point, we've either found a gap (possibly at the end of the + // list) and want to place the buffer there, or there are no other active + // buffers in this time range and so we can put it at offset zero. + // Record the buffer's offset in our plan. + buffer_offsets_[buffer_id] = candidate_offset; + // Add the newly-placed buffer to our offset-ordered list, so that + // subsequent passes can fit in their buffers around it. + ListEntry* new_entry = &buffers_sorted_by_offset_[next_free_entry_]; + new_entry->offset = candidate_offset; + new_entry->requirements_index = buffer_id; + const int new_entry_index = next_free_entry_; + ++next_free_entry_; + + if (first_entry->offset > candidate_offset) { + // The new entry offset is smaller than the first entry offset => + // replace the first entry + first_entry = new_entry; + first_entry->next_entry_index = first_entry_index_; + first_entry_index_ = new_entry_index; + } else { + ListEntry* current_entry = first_entry; + // Make sure that we insert the buffer at the correct place in the + // buffer-offset-ordered list + while (true) { + const int next_entry_index = current_entry->next_entry_index; + if (next_entry_index == -1) { + // We're at the end of the list, so just add the new entry here. + current_entry->next_entry_index = new_entry_index; + new_entry->next_entry_index = -1; + break; + } + // not at the end of the list -> take a look at next entry + ListEntry* next_entry = &buffers_sorted_by_offset_[next_entry_index]; + if (next_entry->offset > candidate_offset) { + // We're at the right spot to do an insertion and retain the sorting + // order, so place the new entry here. + new_entry->next_entry_index = current_entry->next_entry_index; + current_entry->next_entry_index = new_entry_index; + break; + } + current_entry = next_entry; + } + } + } +} + +size_t GreedyMemoryPlanner::GetMaximumMemorySize() { + CalculateOffsetsIfNeeded(); + if (buffer_count_ == 0) { + return 0; + } + ListEntry* entry = &buffers_sorted_by_offset_[first_entry_index_]; + size_t max_size = 0; + while (entry) { + BufferRequirements* requirements = + &requirements_[entry->requirements_index]; + // TODO(b/148246793): Update all size and offset variables types from + // int to size_t + const size_t current_size = entry->offset + requirements->size; + if (current_size > max_size) { + max_size = current_size; + } + if (entry->next_entry_index == -1) { + break; + } + entry = &buffers_sorted_by_offset_[entry->next_entry_index]; + } + return max_size; +} + +void GreedyMemoryPlanner::PrintMemoryPlan(ErrorReporter* error_reporter) { + CalculateOffsetsIfNeeded(); + + for (int i = 0; i < buffer_count_; ++i) { + TF_LITE_REPORT_ERROR( + error_reporter, + "Planner buffer ID: %d, calculated offset: %d, size required: %d, " + "first_time_created: %d, " + "last_time_used: %d", + i, buffer_offsets_[i], requirements_[i].size, + requirements_[i].first_time_used, requirements_[i].last_time_used); + } + + constexpr int kLineWidth = 80; + int max_size = kLineWidth; + int max_time = 0; + for (int i = 0; i < buffer_count_; ++i) { + BufferRequirements* requirements = &requirements_[i]; + const int offset = buffer_offsets_[i]; + const int last_time_used = requirements->last_time_used; + const int size = offset + requirements->size; + if (size > max_size) { + max_size = size; + } + if (last_time_used > max_time) { + max_time = last_time_used; + } + } + + char line[kLineWidth + 1]; + for (int t = 0; t <= max_time; ++t) { + for (int c = 0; c < kLineWidth; ++c) { + line[c] = '.'; + } + for (int i = 0; i < buffer_count_; ++i) { + BufferRequirements* requirements = &requirements_[i]; + if ((t < requirements->first_time_used) || + (t > requirements->last_time_used)) { + continue; + } + const int offset = buffer_offsets_[i]; + if (offset == -1) { + continue; + } + const int size = requirements->size; + const int line_start = (offset * kLineWidth) / max_size; + const int line_end = ((offset + size) * kLineWidth) / max_size; + for (int n = line_start; n < line_end; ++n) { + if (line[n] == '.') { + char display; + if (i < 10) { + display = '0' + i; + } else if (i < 36) { + display = 'a' + (i - 10); + } else if (i < 62) { + display = 'A' + (i - 36); + } else { + display = '*'; + } + line[n] = display; + } else { + line[n] = '!'; + } + } + } + line[kLineWidth] = 0; + TF_LITE_REPORT_ERROR(error_reporter, "%s", (const char*)line); + } +} + +int GreedyMemoryPlanner::GetBufferCount() { return buffer_count_; } + +TfLiteStatus GreedyMemoryPlanner::GetOffsetForBuffer( + tflite::ErrorReporter* error_reporter, int buffer_index, int* offset) { + CalculateOffsetsIfNeeded(); + if ((buffer_index < 0) || (buffer_index >= buffer_count_)) { + TF_LITE_REPORT_ERROR(error_reporter, + "buffer index %d is outside range 0 to %d", + buffer_index, buffer_count_); + return kTfLiteError; + } + *offset = buffer_offsets_[buffer_index]; + return kTfLiteOk; +} + +bool GreedyMemoryPlanner::DoAnyBuffersOverlap(ErrorReporter* error_reporter) { + CalculateOffsetsIfNeeded(); + bool were_overlaps_found = false; + for (int i = 0; i < buffer_count_; ++i) { + BufferRequirements* a_requirements = &requirements_[i]; + const int a_start_offset = buffer_offsets_[i]; + const int a_first_time_used = a_requirements->first_time_used; + const int a_last_time_used = a_requirements->last_time_used; + const int a_end_offset = a_start_offset + a_requirements->size; + for (int j = 0; j < buffer_count_; ++j) { + if (i == j) { + continue; + } + BufferRequirements* b_requirements = &requirements_[j]; + const int b_start_offset = buffer_offsets_[j]; + const int b_first_time_used = b_requirements->first_time_used; + const int b_last_time_used = b_requirements->last_time_used; + const int b_end_offset = b_start_offset + b_requirements->size; + if ((a_first_time_used > b_last_time_used) || + (b_first_time_used > a_last_time_used)) { + // Buffers don't overlap in time. + continue; + } + if ((a_start_offset >= b_end_offset) || + (b_start_offset >= a_end_offset)) { + // No overlap in memory. + continue; + } + were_overlaps_found = true; + TF_LITE_REPORT_ERROR( + error_reporter, "Overlap: %d (%d=>%d, %d->%d) vs %d (%d=>%d, %d->%d)", + i, a_first_time_used, a_last_time_used, a_start_offset, a_end_offset, + j, b_first_time_used, b_last_time_used, b_start_offset, b_end_offset); + } + } + return were_overlaps_found; +} + +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/memory_planner/greedy_memory_planner.h b/components/tflite_micro/tensorflow/lite/micro/memory_planner/greedy_memory_planner.h new file mode 100644 index 00000000..f5f26a8b --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/memory_planner/greedy_memory_planner.h @@ -0,0 +1,163 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_LITE_MICRO_MEMORY_PLANNER_GREEDY_MEMORY_PLANNER_H_ +#define TENSORFLOW_LITE_MICRO_MEMORY_PLANNER_GREEDY_MEMORY_PLANNER_H_ + +#include "tensorflow/lite/micro/compatibility.h" +#include "tensorflow/lite/micro/memory_planner/memory_planner.h" + +namespace tflite { + +constexpr int kOnlinePlannedBuffer = -1; + +// A memory planner that uses a greedy algorithm to arrange buffers in memory +// to minimize the overall arena size needed. +// +// The algorithm works like this: +// - The client enters the buffer information through AddBuffer(). +// - When a function like GetOffsetForBuffer() is called, the +// CalculateOffsetsIfNeeded() method is invoked. +// - If an up to date plan is not already present, one will be calculated. +// - The buffers are sorted in descending order of size. +// - The largest buffer is placed at offset zero. +// - The rest of the buffers are looped through in descending size order. +// - The other buffers that need to be in memory at the same time are found. +// - The first gap between simultaneously active buffers that the current +// buffer fits into will be used. +// - If no large-enough gap is found, the current buffer is placed after the +// last buffer that's simultaneously active. +// - This continues until all buffers are placed, and the offsets stored. +// +// This is not guaranteed to produce the best placement, since that's an +// NP-Complete problem, but in practice it should produce one that's decent. +class GreedyMemoryPlanner : public MemoryPlanner { + public: + // You need to pass in an area of memory to be used for planning. This memory + // needs to have a lifetime as long as the planner, but isn't owned by this + // object, so management should be handled by the client. This is so it can be + // stack or globally allocated if necessary on devices without dynamic memory + // allocation. How many buffers can be planned for will depend on the size of + // this scratch memory, so you should enlarge it if you see an error when + // calling AddBuffer(). The memory can be reused once you're done with the + // planner, as long as you copy the calculated offsets to another location. + // Each buffer requires about 36 bytes of scratch. + GreedyMemoryPlanner(unsigned char* scratch_buffer, int scratch_buffer_size); + ~GreedyMemoryPlanner() override; + + // Record details of a buffer we want to place. + TfLiteStatus AddBuffer(ErrorReporter* error_reporter, int size, + int first_time_used, int last_time_used) override; + + // Record details of an offline planned buffer offset we want to place. + // offline_offset is the buffer offset from the start of the arena. + TfLiteStatus AddBuffer(ErrorReporter* error_reporter, int size, + int first_time_used, int last_time_used, + int offline_offset); + + // Returns the high-water mark of used memory. This is the minimum size of a + // memory arena you'd need to allocate to hold these buffers. + size_t GetMaximumMemorySize() override; + + // How many buffers have been recorded. + int GetBufferCount() override; + + // Where a given buffer should be placed in the memory arena. + // This information is stored in the memory arena itself, so once the arena + // is used for inference, it will be overwritten. + TfLiteStatus GetOffsetForBuffer(ErrorReporter* error_reporter, + int buffer_index, int* offset) override; + + // Prints an ascii-art diagram of the buffer layout plan. + void PrintMemoryPlan(ErrorReporter* error_reporter); + + // Debug method to check whether any buffer allocations are overlapping. This + // is an O(N^2) complexity operation, so only use for testing. + bool DoAnyBuffersOverlap(ErrorReporter* error_reporter); + + // Used to store a list of buffers ordered by their offset. + struct ListEntry { + int offset; + int requirements_index; + int next_entry_index; + }; + + // Number of bytes required in order to plan a buffer. + static size_t per_buffer_size() { + const int per_buffer_size = + sizeof(BufferRequirements) + // requirements_ + sizeof(int) + // buffer_sizes_sorted_ + sizeof(int) + // buffer_ids_sorted_ + sizeof(ListEntry) + // buffers_sorted_by_offset_ + sizeof(int); // buffer_offsets_; + return per_buffer_size; + } + + private: + // Whether a buffer is active in a given time range. + bool DoesEntryOverlapInTime(const ListEntry* entry, const int first_time_used, + const int last_time_used) const; + + // Walks the list to return the next buffer that is active in a given time + // range, or a null pointer if there are none. + ListEntry* NextSimultaneouslyActiveBuffer(const ListEntry* start, + const int first_time_used, + const int last_time_used); + + // If there isn't an up to date plan, calculate a new one. + void CalculateOffsetsIfNeeded(); + + // How many buffers we can plan for, based on the arena size we're given in + // the constructor. + int max_buffer_count_; + + // The number of buffers added so far. + int buffer_count_; + + // Records the client-provided information about each buffer. + struct BufferRequirements { + int size; + int offline_offset; + int first_time_used; + int last_time_used; + }; + + // Working arrays used during the layout algorithm. + BufferRequirements* requirements_; + // buffer_sizes_sorted_ and buffer_ids_sorted_ are sorted according to: + // { + // offline planned buffers, + // online planned buffers sorted by size + // } + int* buffer_sizes_sorted_; + int* buffer_ids_sorted_; + ListEntry* buffers_sorted_by_offset_; + int next_free_entry_; // Index of the next free entry of + // buffers_sorted_by_offset_ + int first_entry_index_; // Index of the first entry (smallest offset) of + // buffers_sorted_by_offset_ + + // Stores the outcome of the plan, the location of each buffer in the arena. + int* buffer_offsets_; + + // Whether buffers have been added since the last plan was calculated. + bool need_to_calculate_offsets_; + + TF_LITE_REMOVE_VIRTUAL_DELETE +}; + +} // namespace tflite + +#endif // TENSORFLOW_LITE_MICRO_MEMORY_PLANNER_GREEDY_MEMORY_PLANNER_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/memory_planner/linear_memory_planner.cc b/components/tflite_micro/tensorflow/lite/micro/memory_planner/linear_memory_planner.cc new file mode 100644 index 00000000..d25a4f22 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/memory_planner/linear_memory_planner.cc @@ -0,0 +1,54 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/micro/memory_planner/linear_memory_planner.h" + +namespace tflite { + +LinearMemoryPlanner::LinearMemoryPlanner() + : current_buffer_count_(0), next_free_offset_(0) {} +LinearMemoryPlanner::~LinearMemoryPlanner() {} + +TfLiteStatus LinearMemoryPlanner::AddBuffer( + tflite::ErrorReporter* error_reporter, int size, int first_time_used, + int last_time_used) { + if (current_buffer_count_ >= kMaxBufferCount) { + TF_LITE_REPORT_ERROR(error_reporter, "Too many buffers (max is %d)", + kMaxBufferCount); + return kTfLiteError; + } + buffer_offsets_[current_buffer_count_] = next_free_offset_; + next_free_offset_ += size; + ++current_buffer_count_; + return kTfLiteOk; +} + +size_t LinearMemoryPlanner::GetMaximumMemorySize() { return next_free_offset_; } + +int LinearMemoryPlanner::GetBufferCount() { return current_buffer_count_; } + +TfLiteStatus LinearMemoryPlanner::GetOffsetForBuffer( + tflite::ErrorReporter* error_reporter, int buffer_index, int* offset) { + if ((buffer_index < 0) || (buffer_index >= current_buffer_count_)) { + TF_LITE_REPORT_ERROR(error_reporter, + "buffer index %d is outside range 0 to %d", + buffer_index, current_buffer_count_); + return kTfLiteError; + } + *offset = buffer_offsets_[buffer_index]; + return kTfLiteOk; +} + +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/memory_planner/linear_memory_planner.h b/components/tflite_micro/tensorflow/lite/micro/memory_planner/linear_memory_planner.h new file mode 100644 index 00000000..4d77e778 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/memory_planner/linear_memory_planner.h @@ -0,0 +1,50 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_LITE_MICRO_MEMORY_PLANNER_LINEAR_MEMORY_PLANNER_H_ +#define TENSORFLOW_LITE_MICRO_MEMORY_PLANNER_LINEAR_MEMORY_PLANNER_H_ + +#include "tensorflow/lite/micro/compatibility.h" +#include "tensorflow/lite/micro/memory_planner/memory_planner.h" + +namespace tflite { + +// The simplest possible memory planner that just lays out all buffers at +// increasing offsets without trying to reuse memory. +class LinearMemoryPlanner : public MemoryPlanner { + public: + LinearMemoryPlanner(); + ~LinearMemoryPlanner() override; + + TfLiteStatus AddBuffer(tflite::ErrorReporter* error_reporter, int size, + int first_time_used, int last_time_used) override; + + size_t GetMaximumMemorySize() override; + int GetBufferCount() override; + TfLiteStatus GetOffsetForBuffer(tflite::ErrorReporter* error_reporter, + int buffer_index, int* offset) override; + + private: + static constexpr int kMaxBufferCount = 1024; + size_t buffer_offsets_[kMaxBufferCount]; + int current_buffer_count_; + size_t next_free_offset_; + + TF_LITE_REMOVE_VIRTUAL_DELETE +}; + +} // namespace tflite + +#endif // TENSORFLOW_LITE_MICRO_MEMORY_PLANNER_LINEAR_MEMORY_PLANNER_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/memory_planner/memory_planner.h b/components/tflite_micro/tensorflow/lite/micro/memory_planner/memory_planner.h new file mode 100644 index 00000000..2c39fbe0 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/memory_planner/memory_planner.h @@ -0,0 +1,71 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_LITE_MICRO_MEMORY_PLANNER_MEMORY_PLANNER_H_ +#define TENSORFLOW_LITE_MICRO_MEMORY_PLANNER_MEMORY_PLANNER_H_ + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/core/api/error_reporter.h" + +namespace tflite { + +// Interface class for planning the layout of memory buffers during the +// execution of a graph. +// It's designed to be used by a client that iterates in any order through the +// buffers it wants to lay out, and then calls the getter functions for +// information about the calculated layout. For example: +// +// SomeMemoryPlanner planner; +// planner.AddBuffer(reporter, 100, 0, 1); // Buffer 0 +// planner.AddBuffer(reporter, 50, 2, 3); // Buffer 1 +// planner.AddBuffer(reporter, 50, 2, 3); // Buffer 2 +// +// int offset0; +// TF_EXPECT_OK(planner.GetOffsetForBuffer(reporter, 0, &offset0)); +// int offset1; +// TF_EXPECT_OK(planner.GetOffsetForBuffer(reporter, 1, &offset1)); +// int offset2; +// TF_EXPECT_OK(planner.GetOffsetForBuffer(reporter, 2, &offset2)); +// const int arena_size_needed = planner.GetMaximumMemorySize(); +// +// The goal is for applications to be able to experiment with different layout +// strategies without changing their client code, by swapping out classes that +// implement this interface.= +class MemoryPlanner { + public: + MemoryPlanner() {} + virtual ~MemoryPlanner() {} + + // Pass information about a buffer's size and lifetime to the layout + // algorithm. The order this is called implicitly assigns an index to the + // result, so the buffer information that's passed into the N-th call of + // this method will be used as the buffer_index argument to + // GetOffsetForBuffer(). + virtual TfLiteStatus AddBuffer(tflite::ErrorReporter* error_reporter, + int size, int first_time_used, + int last_time_used) = 0; + + // The largest contiguous block of memory that's needed to hold the layout. + virtual size_t GetMaximumMemorySize() = 0; + // How many buffers have been added to the planner. + virtual int GetBufferCount() = 0; + // Calculated layout offset for the N-th buffer added to the planner. + virtual TfLiteStatus GetOffsetForBuffer(tflite::ErrorReporter* error_reporter, + int buffer_index, int* offset) = 0; +}; + +} // namespace tflite + +#endif // TENSORFLOW_LITE_MICRO_MEMORY_PLANNER_MEMORY_PLANNER_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/micro_allocator.cc b/components/tflite_micro/tensorflow/lite/micro/micro_allocator.cc new file mode 100644 index 00000000..881b9b9a --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/micro_allocator.cc @@ -0,0 +1,1076 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/micro/micro_allocator.h" + +#include +#include + +#include "flatbuffers/flatbuffers.h" // from @flatbuffers +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/core/api/error_reporter.h" +#include "tensorflow/lite/core/api/flatbuffer_conversions.h" +#include "tensorflow/lite/core/api/op_resolver.h" +#include "tensorflow/lite/core/api/tensor_utils.h" +#include "tensorflow/lite/kernels/internal/compatibility.h" +#include "tensorflow/lite/micro/compatibility.h" +#include "tensorflow/lite/micro/memory_helpers.h" +#include "tensorflow/lite/micro/memory_planner/greedy_memory_planner.h" +#include "tensorflow/lite/micro/memory_planner/memory_planner.h" +#include "tensorflow/lite/micro/micro_op_resolver.h" +#include "tensorflow/lite/micro/simple_memory_allocator.h" +#include "tensorflow/lite/schema/schema_generated.h" + +namespace tflite { + +namespace { +// Used to hold information used during allocation calculations. +struct AllocationInfo { + size_t bytes; + void** output_ptr; + int first_created; + int last_used; + int32_t offline_offset; + bool needs_allocating; +}; + +// We align tensor buffers to 16-byte boundaries, since this is a common +// requirement for SIMD extensions. +constexpr int kBufferAlignment = 16; +constexpr char kOfflineMemAllocMetadata[] = "OfflineMemoryAllocation"; +const TfLiteIntArray kZeroLengthIntArray = {0, {}}; + +class MicroBuiltinDataAllocator : public BuiltinDataAllocator { + public: + explicit MicroBuiltinDataAllocator(SimpleMemoryAllocator* memory_allocator) + : memory_allocator_(memory_allocator) {} + + void* Allocate(size_t size, size_t alignment_hint) override { + return memory_allocator_->AllocateFromTail(size, alignment_hint); + } + void Deallocate(void* data) override { + // Do not deallocate, builtin data needs to be available for the life time + // of the model. + } + + private: + SimpleMemoryAllocator* memory_allocator_; + + TF_LITE_REMOVE_VIRTUAL_DELETE +}; + +#if !defined(__clang__) +// Helper function to check flatbuffer metadata correctness. This function is +// not called by default. Hence it's not linked in to the final binary code. +TfLiteStatus CheckOfflinePlannedOffsets(const Model* model, + ErrorReporter* error_reporter) { + // Suppress compile warning for unused function + (void)CheckOfflinePlannedOffsets; + + if (model->metadata()) { + for (size_t i = 0; i < model->metadata()->size(); ++i) { + auto metadata = model->metadata()->Get(i); + if (strncmp(metadata->name()->c_str(), kOfflineMemAllocMetadata, + strlen(kOfflineMemAllocMetadata)) == 0) { + auto* subgraphs = model->subgraphs(); + const SubGraph* subgraph = (*subgraphs)[0]; + const flatbuffers::Vector>* tensors = + subgraph->tensors(); + const flatbuffers::Vector>* buffers = + model->buffers(); + int nbr_tflite_tensors = tensors->size(); + auto* buffer = (*buffers)[metadata->buffer()]; + auto* array = buffer->data(); + const uint32_t* metadata_buffer = (uint32_t*)array->data(); + int version = metadata_buffer[0]; + int subgraph_idx = metadata_buffer[1]; + const int nbr_offline_offsets = metadata_buffer[2]; +#ifndef TF_LITE_STRIP_ERROR_STRINGS + int* offline_planner_offsets = (int*)&metadata_buffer[3]; +#endif + + TF_LITE_REPORT_ERROR(error_reporter, "==== Model metadata info: ====="); + TF_LITE_REPORT_ERROR(error_reporter, + "Offline planner metadata found, version %d, " + "subgraph %d, nbr offline offsets %d", + version, subgraph_idx, nbr_offline_offsets); + for (int j = 0; j < nbr_offline_offsets; ++j) { + TF_LITE_REPORT_ERROR( + error_reporter, + "Offline planner tensor index %d, offline offset: %d", j, + offline_planner_offsets[j]); + } + + if (version != 1) { + TF_LITE_REPORT_ERROR(error_reporter, "Version not supported! (%d)\n", + version); + return kTfLiteError; + } + if (subgraph_idx != 0) { + TF_LITE_REPORT_ERROR(error_reporter, + "Only 1 subgraph supported! Subgraph idx (%d)\n", + subgraph_idx); + return kTfLiteError; + } + if (nbr_tflite_tensors != nbr_offline_offsets) { + TF_LITE_REPORT_ERROR(error_reporter, + "Nbr of offline buffer offsets (%d) in metadata " + "not equal nbr tensors (%d)\n", + nbr_offline_offsets, nbr_tflite_tensors); + return kTfLiteError; + } + } + } + } + return kTfLiteOk; +} +#endif + +// A helper class to construct AllocationInfo array. This array contains the +// lifetime of tensors / scratch_buffer and will be used to calculate the memory +// plan. Methods need to be called in order from `Init`, `Add*`, to `Finish`. +class AllocationInfoBuilder { + public: + AllocationInfoBuilder(ErrorReporter* reporter, + SimpleMemoryAllocator* allocator) + : reporter_(reporter), allocator_(allocator) {} + + // Initializes the builder by allocating AllocationInfo array from the + // simple memory allocator. + TfLiteStatus Init(size_t tensor_count, size_t scratch_buffer_count) { + tensor_count_ = tensor_count; + buffer_count_ = scratch_buffer_count; + return Allocate(); + } + + // Check if model contains offline planned buffer offsets. + // - If there's no metadata available, offline_planner_offsets is not set + // - If there's metadata available, offline_planner_offsets will point to the + // first offset in the metadata buffer list. + TfLiteStatus GetOfflinePlannedOffsets( + const Model* model, const int32_t** offline_planner_offsets); + + // Add allocaiton information for the tensors. + TfLiteStatus AddTensors(const SubGraph* subgraph, + const int32_t* offline_offsets, + TfLiteEvalTensor* eval_tensors); + + // Add allocation information for the scratch buffers. + TfLiteStatus AddScratchBuffers(internal::ScratchBufferHandle* buffer_handles); + + // Returns a pointer to the built AllocationInfo array. + const AllocationInfo* Finish() const { return info_; } + size_t Size() const { return tensor_count_ + buffer_count_; } + + private: + // Allocate the output AllocationInfo array from the allocator_; + TfLiteStatus Allocate(); + + ErrorReporter* reporter_ = nullptr; + SimpleMemoryAllocator* allocator_ = nullptr; + size_t tensor_count_ = 0; + size_t buffer_count_ = 0; + AllocationInfo* info_ = nullptr; +}; + +TfLiteStatus AllocationInfoBuilder::Allocate() { + size_t bytes = sizeof(AllocationInfo) * Size(); + info_ = reinterpret_cast( + allocator_->AllocateFromTail(bytes, alignof(AllocationInfo))); + if (info_ == nullptr) { + TF_LITE_REPORT_ERROR( + reporter_, + "Failed to allocate memory for allocation_info, %d bytes required", + bytes); + return kTfLiteError; + } + return kTfLiteOk; +} + +TfLiteStatus AllocationInfoBuilder::AddTensors(const SubGraph* subgraph, + const int32_t* offline_offsets, + TfLiteEvalTensor* eval_tensors) { + TFLITE_DCHECK(eval_tensors != nullptr); + + // Set up allocation info for all tensors. + for (size_t i = 0; i < tensor_count_; ++i) { + AllocationInfo* current = &info_[i]; + current->output_ptr = &(eval_tensors[i].data.data); + + TF_LITE_ENSURE_STATUS( + TfLiteEvalTensorByteLength(&eval_tensors[i], ¤t->bytes)); + + current->first_created = -1; + current->last_used = -1; + current->needs_allocating = (eval_tensors[i].data.data == nullptr) && + (!subgraph->tensors()->Get(i)->is_variable()); + if (offline_offsets) { + current->offline_offset = offline_offsets[i]; + } else { + current->offline_offset = kOnlinePlannedBuffer; + } + } + + for (size_t i = 0; i < subgraph->inputs()->size(); ++i) { + const int tensor_index = subgraph->inputs()->Get(i); + AllocationInfo* current = &info_[tensor_index]; + current->first_created = 0; + } + + // Mark all outputs as persistent to the end of the invocation. + for (size_t i = 0; i < subgraph->outputs()->size(); ++i) { + const int tensor_index = subgraph->outputs()->Get(i); + AllocationInfo* current = &info_[tensor_index]; + current->last_used = subgraph->operators()->size() - 1; + } + + // Figure out when the first and last use of each tensor is. + for (int i = (subgraph->operators()->size() - 1); i >= 0; --i) { + const auto* op = subgraph->operators()->Get(i); + for (size_t n = 0; n < op->inputs()->size(); ++n) { + const int tensor_index = op->inputs()->Get(n); + AllocationInfo* current = &info_[tensor_index]; + if (((current->last_used == -1) || (current->last_used < i))) { + current->last_used = i; + } + } + for (size_t n = 0; n < op->outputs()->size(); ++n) { + const int tensor_index = op->outputs()->Get(n); + AllocationInfo* current = &info_[tensor_index]; + if ((current->first_created == -1) || (current->first_created > i)) { + current->first_created = i; + } + } + } + + // Work out which tensors need to be allocated. + for (size_t i = 0; i < tensor_count_; ++i) { + AllocationInfo* current = &info_[i]; + const bool is_read_only = + (current->first_created == -1) && (current->last_used != -1); + if (is_read_only) { + current->needs_allocating = false; + } + const bool has_partial_lifetime = + !is_read_only && + ((current->first_created == -1) || (current->last_used == -1)); + if (has_partial_lifetime && current->needs_allocating) { + TF_LITE_REPORT_ERROR( + reporter_, + "Logic error in memory planner, tensor %d has an invalid lifetime: " + "first_created: %d, last_used: %d", + i, current->first_created, current->last_used); + return kTfLiteError; + } + } + return kTfLiteOk; +} + +// The tensor offsets will be encoded in the metadata:[Metadata] field of the +// Model. The following encoding applies: +// +// | Metadata component | Value | +// | name:string | “OfflineMemoryAllocation†| +// | buffer:unit | Index of buffer containing memory allocation data | +// +// The buffer contents for the memory allocation is a list of 32-bit integers. +// The number of tensors, n, must be equal to the number of tensors defined in +// the model. The following encoding applies: +// +// | Offset | Value | +// | 0 | Offline allocation format version – set to 0 | +// | 1 | Subgraph index to which this allocation applies | +// | 2 | Number offsets following: n | +// | 3 | Arena byte offset of tensor #0 or -1 to allocate at runtime | +// | 4 | Arena byte offset of tensor #1 or -1 to allocate at runtime | +// | 3+(n-1) | Arena byte offset of tensor #(n-1) or -1 to allocate at runtime | +TfLiteStatus AllocationInfoBuilder::GetOfflinePlannedOffsets( + const Model* model, const int32_t** offline_planner_offsets) { + if (model->metadata()) { + for (size_t i = 0; i < model->metadata()->size(); ++i) { + auto metadata = model->metadata()->Get(i); + if (strncmp(metadata->name()->c_str(), kOfflineMemAllocMetadata, + strlen(kOfflineMemAllocMetadata)) == 0) { + const flatbuffers::Vector>* buffers = + model->buffers(); + auto* buffer = (*buffers)[metadata->buffer()]; + auto* array = buffer->data(); + const uint32_t* metadata_buffer = + reinterpret_cast(array->data()); + const size_t nbr_tensors = static_cast(metadata_buffer[2]); + *offline_planner_offsets = + reinterpret_cast(&metadata_buffer[3]); + + if (tensor_count_ != nbr_tensors) { + TF_LITE_REPORT_ERROR(reporter_, + "Nbr of offline buffer offsets (%d) in metadata " + "not equal nbr tensors (%d)\n", + nbr_tensors, tensor_count_); + return kTfLiteError; + } + } + } + } + return kTfLiteOk; +} + +TfLiteStatus AllocationInfoBuilder::AddScratchBuffers( + internal::ScratchBufferHandle* buffer_handles) { + // Set up allocation info for buffers. + for (size_t i = tensor_count_; i < tensor_count_ + buffer_count_; ++i) { + AllocationInfo* current = &info_[i]; + internal::ScratchBufferHandle* handle = + &(buffer_handles[i - tensor_count_]); + current->output_ptr = reinterpret_cast(&handle->data); + current->bytes = handle->bytes; + current->first_created = handle->node_idx; + current->last_used = handle->node_idx; + current->needs_allocating = true; + current->offline_offset = kOnlinePlannedBuffer; + } + return kTfLiteOk; +} + +TfLiteStatus CreatePlan(ErrorReporter* error_reporter, + GreedyMemoryPlanner* planner, + const AllocationInfo* allocation_info, + size_t allocation_info_size) { + // Add the tensors to our allocation plan. + for (size_t i = 0; i < allocation_info_size; ++i) { + const AllocationInfo* current = &allocation_info[i]; + if (current->needs_allocating) { + size_t aligned_bytes_required = + AlignSizeUp(current->bytes, kBufferAlignment); + if (current->offline_offset == kOnlinePlannedBuffer) { + TF_LITE_ENSURE_STATUS( + planner->AddBuffer(error_reporter, aligned_bytes_required, + current->first_created, current->last_used)); + } else { + TF_LITE_ENSURE_STATUS(planner->AddBuffer( + error_reporter, aligned_bytes_required, current->first_created, + current->last_used, current->offline_offset)); + } + } + } + return kTfLiteOk; +} + +TfLiteStatus CommitPlan(ErrorReporter* error_reporter, MemoryPlanner* planner, + uint8_t* starting_point, + const AllocationInfo* allocation_info, + size_t allocation_info_size) { + // Figure out the actual memory addresses for each buffer, based on the plan. + int planner_index = 0; + for (size_t i = 0; i < allocation_info_size; ++i) { + const AllocationInfo* current = &allocation_info[i]; + if (current->needs_allocating) { + int offset = -1; + TF_LITE_ENSURE_STATUS( + planner->GetOffsetForBuffer(error_reporter, planner_index, &offset)); + *current->output_ptr = reinterpret_cast(starting_point + offset); + ++planner_index; + } + } + return kTfLiteOk; +} +} // namespace + +namespace internal { + +// Handles architecture safe mapping of flatbuffer vectors to a TfLite*Array +// struct. Matching types are required (e.g. float and TfLiteFloatArray). +// Big-endian systems will always allocate dimension array data in the tail +// (persistent) section. +template +TfLiteStatus FlatBufferVectorToTfLiteTypeArray( + SimpleMemoryAllocator* allocator, ErrorReporter* error_reporter, + const flatbuffers::Vector* flatbuffer_array, + kTfLiteArrayType** result) { + TFLITE_DCHECK(error_reporter != nullptr); + TFLITE_DCHECK(flatbuffer_array != nullptr); + // TODO(b/159668691): Consider adding type assertion or breaking this function + // into multiple functions for each type. std::is_same is c++11 and has a + // special updated constructor in c++17 that requires a string argument. + if (FLATBUFFERS_LITTLEENDIAN) { + // On little-endian machines, TfLite*Array happens to have the same memory + // layout as flatbuffers:Vector, so we can + // reinterpret_cast the flatbuffer vector and avoid a copy and malloc. + *result = const_cast( + reinterpret_cast(flatbuffer_array)); + } else { + // Big-endian architecture can not use the same memory layout as + // flatbuffers::Vector. Allocate from the tail and + // copy values from the flatbuffer into the newly allocated chunk. + kTfLiteArrayType* array = + reinterpret_cast(allocator->AllocateFromTail( + TfLiteIntArrayGetSizeInBytes(flatbuffer_array->Length()), + alignof(kTfLiteArrayType))); + if (array == nullptr) { + TF_LITE_REPORT_ERROR( + error_reporter, + "Failed to allocate %d bytes of memory to copy an array.", + TfLiteIntArrayGetSizeInBytes(flatbuffer_array->Length())); + return kTfLiteError; + } + array->size = flatbuffer_array->Length(); + for (int i = 0; i < array->size; ++i) { + array->data[i] = flatbuffer_array->Get(i); + } + *result = array; + } + return kTfLiteOk; +} + +// Returns a pointer to any buffer associated with the flatbuffer tensor. Can +// return nullptr if no buffer is found. +void* GetFlatbufferTensorBuffer( + const tflite::Tensor& flatbuffer_tensor, + const flatbuffers::Vector>* buffers) { + // We need to figure out where the actual contents of this tensor are stored + // in memory. We'll check to see if there's a serialized buffer (pretty much + // the same as a constant op in TensorFlow) associated with this tensor first, + // and if there is update the runtime structure to point to its location in + // memory. + // First see if there's any buffer information in the serialized tensor. + // TODO(b/160894903): Add better unit tests that validate flatbuffer values. + void* out_buffer = nullptr; + if (auto* buffer = (*buffers)[flatbuffer_tensor.buffer()]) { + // If we've found a buffer, does it have any data? + if (auto* array = buffer->data()) { + // If it has any data, is the data size larger than zero? + if (array->size()) { + // We've found a buffer with valid data, so update the runtime tensor + // data structure to point to it. + out_buffer = const_cast(static_cast(array->data())); + } + } + // TODO(petewarden): It's not clear in what circumstances we could have a + // buffer in the serialized tensor, but it doesn't have any data in it. Is + // that a validly-generated file, and if so what does it mean, or is it an + // error condition? It would be good to tighten up the specification to make + // it less ambiguous. + } + return out_buffer; +} + +TfLiteStatus InitializeTfLiteTensorFromFlatbuffer( + SimpleMemoryAllocator* allocator, bool allocate_temp, + const tflite::Tensor& flatbuffer_tensor, + const flatbuffers::Vector>* buffers, + ErrorReporter* error_reporter, TfLiteTensor* result) { + TFLITE_DCHECK(result != nullptr); + + *result = {}; + // Make sure the serialized type is one we know how to deal with, and convert + // it from a flatbuffer enum into a constant used by the kernel C API. + TF_LITE_ENSURE_STATUS(ConvertTensorType(flatbuffer_tensor.type(), + &result->type, error_reporter)); + // Make sure we remember if the serialized tensor is designated as a variable. + result->is_variable = flatbuffer_tensor.is_variable(); + + result->data.data = GetFlatbufferTensorBuffer(flatbuffer_tensor, buffers); + + // TODO(petewarden): Some of these paths aren't getting enough testing + // coverage, so we should figure out some tests that exercise them. + if (result->data.data == nullptr) { + // The tensor contents haven't been set from a serialized buffer, so + // make a note that they will be allocated from memory. The actual + // allocation won't happen until later. + result->allocation_type = kTfLiteArenaRw; + } else { + // We set the data from a serialized buffer, so record tha. + result->allocation_type = kTfLiteMmapRo; + } + + // Figure out what the size in bytes of the buffer is and store it. + size_t type_size; + TF_LITE_ENSURE_STATUS(BytesRequiredForTensor( + flatbuffer_tensor, &result->bytes, &type_size, error_reporter)); + + if (flatbuffer_tensor.shape() == nullptr) { + // flatbuffer_tensor.shape() can return a nullptr in the case of a scalar + // tensor. + result->dims = const_cast(&kZeroLengthIntArray); + } else { + // TFLM doesn't allow reshaping the tensor which requires dynamic memory + // allocation so it is safe to drop the const qualifier. In the future, if + // we really want to update the tensor shape, we can always pass in a new + // TfLiteIntArray - especially we have to do so if the dimension is + TF_LITE_ENSURE_STATUS(FlatBufferVectorToTfLiteTypeArray( + allocator, error_reporter, flatbuffer_tensor.shape(), &(result->dims))); + } + + // Copy the quantization information from the serialized data. + const auto* src_quantization = flatbuffer_tensor.quantization(); + if (src_quantization && src_quantization->scale() && + (src_quantization->scale()->size() > 0) && + src_quantization->zero_point() && + (src_quantization->zero_point()->size() > 0)) { + // Always populate the TfLiteTensor.params field, even if there are + // per-channel quantization parameters. + result->params.scale = src_quantization->scale()->Get(0); + // Note that the zero_point field in the FlatBuffers schema is a 64-bit + // integer, but the zero_point field in the TfLiteQuantizationParams struct + // is a 32-bit integer. + result->params.zero_point = + static_cast(src_quantization->zero_point()->Get(0)); + + // Populate per-channel quantization params. + int channels = src_quantization->scale()->size(); + TfLiteAffineQuantization* quantization = + allocate_temp + ? reinterpret_cast( + allocator->AllocateTemp(sizeof(TfLiteAffineQuantization), + alignof(TfLiteAffineQuantization))) + : reinterpret_cast( + allocator->AllocateFromTail( + sizeof(TfLiteAffineQuantization), + alignof(TfLiteAffineQuantization))); + if (quantization == nullptr) { + TF_LITE_REPORT_ERROR(error_reporter, + "Unable to allocate TfLiteAffineQuantization.\n"); + return kTfLiteError; + } + + // TODO(b/153688719): Reduce tail allocation by using a global zero-point + // buffer. This value can not be reused from the flatbuffer since the + // zero_point is stored as a int64_t. + quantization->zero_point = + allocate_temp + ? reinterpret_cast(allocator->AllocateTemp( + TfLiteIntArrayGetSizeInBytes(channels), + alignof(TfLiteIntArray))) + : reinterpret_cast(allocator->AllocateFromTail( + TfLiteIntArrayGetSizeInBytes(channels), + alignof(TfLiteIntArray))); + if (quantization->zero_point == nullptr) { + TF_LITE_REPORT_ERROR(error_reporter, + "Unable to allocate quantization->zero_point.\n"); + return kTfLiteError; + } + + TF_LITE_ENSURE_STATUS(FlatBufferVectorToTfLiteTypeArray( + allocator, error_reporter, src_quantization->scale(), + &quantization->scale)); + + quantization->zero_point->size = channels; + int* zero_point_data = quantization->zero_point->data; + for (int i = 0; i < channels; i++) { + zero_point_data[i] = src_quantization->zero_point()->Get(i); + } + // TODO(rocky): Need to add a micro_allocator test case that fails when + // this is not copied: + quantization->quantized_dimension = src_quantization->quantized_dimension(); + + result->quantization = {kTfLiteAffineQuantization, quantization}; + } + return kTfLiteOk; +} + +TfLiteStatus InitializeTfLiteEvalTensorFromFlatbuffer( + SimpleMemoryAllocator* allocator, const tflite::Tensor& flatbuffer_tensor, + const flatbuffers::Vector>* buffers, + ErrorReporter* error_reporter, TfLiteEvalTensor* result) { + *result = {}; + // Make sure the serialized type is one we know how to deal with, and convert + // it from a flatbuffer enum into a constant used by the kernel C API. + TF_LITE_ENSURE_STATUS(ConvertTensorType(flatbuffer_tensor.type(), + &result->type, error_reporter)); + + result->data.data = GetFlatbufferTensorBuffer(flatbuffer_tensor, buffers); + + if (flatbuffer_tensor.shape() == nullptr) { + // flatbuffer_tensor.shape() can return a nullptr in the case of a scalar + // tensor. + result->dims = const_cast(&kZeroLengthIntArray); + } else { + TF_LITE_ENSURE_STATUS(FlatBufferVectorToTfLiteTypeArray( + allocator, error_reporter, flatbuffer_tensor.shape(), &(result->dims))); + } + return kTfLiteOk; +} + +} // namespace internal + +MicroAllocator::MicroAllocator(SimpleMemoryAllocator* memory_allocator, + ErrorReporter* error_reporter) + : memory_allocator_(memory_allocator), + error_reporter_(error_reporter), + model_is_allocating_(false) {} + +MicroAllocator::~MicroAllocator() {} + +MicroAllocator* MicroAllocator::Create(uint8_t* tensor_arena, size_t arena_size, + ErrorReporter* error_reporter) { + uint8_t* aligned_arena = AlignPointerUp(tensor_arena, kBufferAlignment); + if (aligned_arena != tensor_arena) { + TF_LITE_REPORT_ERROR( + error_reporter, + "%d bytes lost due to alignment. To avoid this loss, please make sure " + "the tensor_arena is 16 bytes aligned.", + aligned_arena - tensor_arena); + } + size_t aligned_arena_size = tensor_arena + arena_size - aligned_arena; + return Create(SimpleMemoryAllocator::Create(error_reporter, aligned_arena, + aligned_arena_size), + error_reporter); +} + +MicroAllocator* MicroAllocator::Create(SimpleMemoryAllocator* memory_allocator, + ErrorReporter* error_reporter) { + TFLITE_DCHECK(memory_allocator != nullptr); + TFLITE_DCHECK(error_reporter != nullptr); + + uint8_t* allocator_buffer = memory_allocator->AllocateFromTail( + sizeof(MicroAllocator), alignof(MicroAllocator)); + MicroAllocator* allocator = + new (allocator_buffer) MicroAllocator(memory_allocator, error_reporter); + return allocator; +} + +TfLiteStatus MicroAllocator::StartModelAllocation( + const Model* model, const MicroOpResolver& op_resolver, + NodeAndRegistration** node_and_registrations, + TfLiteEvalTensor** eval_tensors) { + TFLITE_DCHECK(model != nullptr); + + if (model_is_allocating_) { + TF_LITE_REPORT_ERROR(error_reporter_, + "MicroAllocator: Model allocation started before " + "finishing previously allocated model"); + return kTfLiteError; + } + + model_is_allocating_ = true; + + TF_LITE_ENSURE_STATUS(AllocateTfLiteEvalTensors(model, eval_tensors)); + TF_LITE_ENSURE_STATUS( + AllocateNodeAndRegistrations(model, node_and_registrations)); + TF_LITE_ENSURE_STATUS(PrepareNodeAndRegistrationDataFromFlatbuffer( + model, op_resolver, *node_and_registrations)); + + return kTfLiteOk; +} + +TfLiteStatus MicroAllocator::FinishModelAllocation( + const Model* model, TfLiteEvalTensor* eval_tensors) { + if (!model_is_allocating_) { + TF_LITE_REPORT_ERROR(error_reporter_, + "MicroAllocator: Model allocation finished before " + "starting allocating model"); + return kTfLiteError; + } + + const SubGraph* subgraph = GetSubGraphFromModel(model); + TFLITE_DCHECK(subgraph != nullptr); + + TF_LITE_ENSURE_STATUS(CommitStaticMemoryPlan(model, subgraph, eval_tensors)); + TF_LITE_ENSURE_STATUS(AllocateVariables(subgraph, eval_tensors)); + + model_is_allocating_ = false; + return kTfLiteOk; +} + +void* MicroAllocator::AllocatePersistentBuffer(size_t bytes) { + return memory_allocator_->AllocateFromTail(bytes, kBufferAlignment); +} + +TfLiteStatus MicroAllocator::RequestScratchBufferInArena(int node_id, + size_t bytes, + int* buffer_idx) { + // A consistency check to make sure scratch_buffer_handles_ is contiguous i.e. + // scratch_buffer_handles_ is pointing to the last allocation from memory + // allocator. + if (scratch_buffer_handles_ != nullptr && + reinterpret_cast(scratch_buffer_handles_) != + memory_allocator_->GetTail()) { + TF_LITE_REPORT_ERROR(error_reporter_, + "Internal error: AllocateFromTail can not be called " + "between two RequestScratchBufferInArena calls."); + return kTfLiteError; + } + + internal::ScratchBufferHandle* handle = + reinterpret_cast( + memory_allocator_->AllocateFromTail( + sizeof(internal::ScratchBufferHandle), + alignof(internal::ScratchBufferHandle))); + if (handle == nullptr) { + TF_LITE_REPORT_ERROR(error_reporter_, + "Failed to register scratch buffer handle for node %s", + node_id); + return kTfLiteError; + } + *handle = {}; + handle->bytes = bytes; + handle->node_idx = node_id; + *buffer_idx = scratch_buffer_count_; + scratch_buffer_count_ += 1; + // scratch_buffer_handles_ is in reverse order. The following code ensures + // that scratch_buffers[0] is pointing to the newly allocated handle. + scratch_buffer_handles_ = handle; + return kTfLiteOk; +} + +void* MicroAllocator::GetScratchBuffer(int buffer_idx) const { + if (static_cast(buffer_idx) >= scratch_buffer_count_) { + TF_LITE_REPORT_ERROR(error_reporter_, + "Buffer %d not found. %d buffers available.", + buffer_idx, scratch_buffer_count_); + return nullptr; + } + // scratch_buffer_handles_ is in reverse order. + return scratch_buffer_handles_[scratch_buffer_count_ - buffer_idx - 1].data; +} + +size_t MicroAllocator::used_bytes() const { + return memory_allocator_->GetUsedBytes(); +} + +TfLiteStatus MicroAllocator::AllocateNodeAndRegistrations( + const Model* model, NodeAndRegistration** node_and_registrations) { + TFLITE_DCHECK(node_and_registrations); + + const SubGraph* subgraph = GetSubGraphFromModel(model); + TFLITE_DCHECK(subgraph != nullptr); + + NodeAndRegistration* output = reinterpret_cast( + memory_allocator_->AllocateFromTail( + sizeof(NodeAndRegistration) * subgraph->operators()->size(), + alignof(NodeAndRegistration))); + if (output == nullptr) { + TF_LITE_REPORT_ERROR( + error_reporter_, + "Failed to allocate memory for node_and_registrations."); + return kTfLiteError; + } + *node_and_registrations = output; + return kTfLiteOk; +} + +TfLiteStatus MicroAllocator::PrepareNodeAndRegistrationDataFromFlatbuffer( + const Model* model, const MicroOpResolver& op_resolver, + NodeAndRegistration* node_and_registrations) { + TFLITE_DCHECK(model != nullptr); + TFLITE_DCHECK(node_and_registrations != nullptr); + + const SubGraph* subgraph = GetSubGraphFromModel(model); + TFLITE_DCHECK(subgraph != nullptr); + + TfLiteStatus status = kTfLiteOk; + auto* opcodes = model->operator_codes(); + MicroBuiltinDataAllocator builtin_data_allocator(memory_allocator_); + for (size_t i = 0; i < subgraph->operators()->size(); ++i) { + const auto* op = subgraph->operators()->Get(i); + const size_t index = op->opcode_index(); + if (index >= opcodes->size()) { + TF_LITE_REPORT_ERROR(error_reporter_, + "Missing registration for opcode_index %d\n", index); + return kTfLiteError; + } + auto* opcode = (*opcodes)[index]; + status = + GetRegistrationFromOpCode(opcode, op_resolver, error_reporter_, + &(node_and_registrations[i].registration)); + if (status != kTfLiteOk) { + TF_LITE_REPORT_ERROR(error_reporter_, + "Failed to get registration from op code %s\n ", + EnumNameBuiltinOperator(opcode->builtin_code())); + return status; + } + const auto* registration = node_and_registrations[i].registration; + if (registration == nullptr) { + TF_LITE_REPORT_ERROR(error_reporter_, "Skipping op for opcode_index %d\n", + index); + return kTfLiteError; + } + BuiltinOperator op_type = + static_cast(registration->builtin_code); + + const char* custom_data = nullptr; + size_t custom_data_size = 0; + unsigned char* builtin_data = nullptr; + + if (op_type == BuiltinOperator_CUSTOM) { + // Custom Ops may or may not have a non-null custom_options field. + if (op->custom_options() != nullptr) { + custom_data = + reinterpret_cast(op->custom_options()->data()); + custom_data_size = op->custom_options()->size(); + } + } else { + if (op->custom_options() != nullptr) { + TF_LITE_REPORT_ERROR( + error_reporter_, + "Unsupported behavior: found builtin operator %s with custom " + "options.\n", + EnumNameBuiltinOperator(op_type)); + return kTfLiteError; + } + + MicroOpResolver::BuiltinParseFunction parser = + op_resolver.GetOpDataParser(op_type); + if (parser == nullptr) { + TF_LITE_REPORT_ERROR(error_reporter_, "Did not find a parser for %s", + EnumNameBuiltinOperator(op_type)); + + return kTfLiteError; + } + TF_LITE_ENSURE_STATUS(parser(op, error_reporter_, &builtin_data_allocator, + (void**)(&builtin_data))); + } + + TfLiteIntArray* inputs_array; + TF_LITE_ENSURE_STATUS(internal::FlatBufferVectorToTfLiteTypeArray( + memory_allocator_, error_reporter_, op->inputs(), &inputs_array)); + + TfLiteIntArray* outputs_array; + TF_LITE_ENSURE_STATUS(internal::FlatBufferVectorToTfLiteTypeArray( + memory_allocator_, error_reporter_, op->outputs(), &outputs_array)); + + TfLiteNode* node = &(node_and_registrations[i].node); + *node = {}; + node->inputs = inputs_array; + node->outputs = outputs_array; + node->builtin_data = reinterpret_cast(builtin_data); + node->custom_initial_data = custom_data; + node->custom_initial_data_size = custom_data_size; + } + + return kTfLiteOk; +} + +TfLiteTensor* MicroAllocator::AllocatePersistentTfLiteTensor( + const Model* model, TfLiteEvalTensor* eval_tensors, int tensor_index) { + const SubGraph* subgraph = GetSubGraphFromModel(model); + TFLITE_DCHECK(subgraph != nullptr); + + // This value is allocated from persistent arena space. It is guaranteed to be + // around for the lifetime of the application. + TfLiteTensor* tensor = + AllocatePersistentTfLiteTensorInternal(model, eval_tensors, tensor_index); + + // Populate any fields from the flatbuffer, since this TfLiteTensor struct is + // allocated in the persistent section of the arena, ensure that additional + // allocations also take place in that section of the arena. + if (PopulateTfLiteTensorFromFlatbuffer(model, subgraph, tensor, tensor_index, + /*allocate_temp=*/false) != + kTfLiteOk) { + TF_LITE_REPORT_ERROR(error_reporter_, + "Failed to populate a persistent TfLiteTensor struct " + "from flatbuffer data!"); + return nullptr; + } + + if (eval_tensors != nullptr) { + // Tensor buffers that are allocated at runtime (e.g. non-weight buffers) + // and not located in the flatbuffer are stored on the pre-allocated list of + // TfLiteEvalTensors structs. These structs are the source of truth, simply + // point the corresponding buffer to the new TfLiteTensor data value. + tensor->data.data = eval_tensors[tensor_index].data.data; + } + return tensor; +} + +TfLiteTensor* MicroAllocator::AllocateTempTfLiteTensor( + const Model* model, TfLiteEvalTensor* eval_tensors, int tensor_index) { + const SubGraph* subgraph = GetSubGraphFromModel(model); + TFLITE_DCHECK(subgraph != nullptr); + + // This value is allocated from temporary arena space. It is guaranteed to be + // around for at least the scope of the calling function. Since this struct + // allocation takes place in temp space, no need to own or cleanup. + TfLiteTensor* tensor = + reinterpret_cast(memory_allocator_->AllocateTemp( + sizeof(TfLiteTensor), alignof(TfLiteTensor))); + + // Populate any fields from the flatbuffer, since this TfLiteTensor struct is + // allocated in the temp section of the arena, ensure that additional + // allocations also take place in that section of the arena. + if (PopulateTfLiteTensorFromFlatbuffer(model, subgraph, tensor, tensor_index, + /*allocate_temp=*/true) != kTfLiteOk) { + TF_LITE_REPORT_ERROR( + error_reporter_, + "Failed to populate a temp TfLiteTensor struct from flatbuffer data!"); + return nullptr; + } + + if (eval_tensors != nullptr) { + // Tensor buffers that are allocated at runtime (e.g. non-weight buffers) + // and not located in the flatbuffer are stored on the pre-allocated list of + // TfLiteEvalTensors structs. These structs are the source of truth, simply + // point the corresponding buffer to the new TfLiteTensor data value. + tensor->data.data = eval_tensors[tensor_index].data.data; + } + return tensor; +} + +void MicroAllocator::ResetTempAllocations() { + memory_allocator_->ResetTempAllocations(); +} + +TfLiteStatus MicroAllocator::AllocateTfLiteEvalTensors( + const Model* model, TfLiteEvalTensor** eval_tensors) { + TFLITE_DCHECK(eval_tensors != nullptr); + + const SubGraph* subgraph = GetSubGraphFromModel(model); + TFLITE_DCHECK(subgraph != nullptr); + + size_t alloc_count = subgraph->tensors()->size(); + TfLiteEvalTensor* tensors = + reinterpret_cast(memory_allocator_->AllocateFromTail( + sizeof(TfLiteEvalTensor) * alloc_count, alignof(TfLiteEvalTensor))); + if (tensors == nullptr) { + TF_LITE_REPORT_ERROR(error_reporter_, + "Failed to allocate memory for context->eval_tensors, " + "%d bytes required", + sizeof(TfLiteEvalTensor) * alloc_count); + return kTfLiteError; + } + + for (size_t i = 0; i < alloc_count; ++i) { + TfLiteStatus status = internal::InitializeTfLiteEvalTensorFromFlatbuffer( + memory_allocator_, *subgraph->tensors()->Get(i), model->buffers(), + error_reporter_, &tensors[i]); + if (status != kTfLiteOk) { + TF_LITE_REPORT_ERROR(error_reporter_, "Failed to initialize tensor %d", + i); + return kTfLiteError; + } + } + *eval_tensors = tensors; + return kTfLiteOk; +} + +TfLiteStatus MicroAllocator::AllocateVariables(const SubGraph* subgraph, + TfLiteEvalTensor* eval_tensors) { + for (size_t i = 0; i < subgraph->tensors()->size(); ++i) { + auto* tensor = subgraph->tensors()->Get(i); + if (tensor->is_variable()) { + size_t buffer_size; + TF_LITE_ENSURE_STATUS( + TfLiteEvalTensorByteLength(&eval_tensors[i], &buffer_size)); + + eval_tensors[i].data.data = + memory_allocator_->AllocateFromTail(buffer_size, kBufferAlignment); + + if (eval_tensors[i].data.data == nullptr) { + TF_LITE_REPORT_ERROR(error_reporter_, + "Failed to allocate variable tensor of size %d", + buffer_size); + return kTfLiteError; + } + } + } + return kTfLiteOk; +} + +TfLiteTensor* MicroAllocator::AllocatePersistentTfLiteTensorInternal( + const Model* model, TfLiteEvalTensor* eval_tensors, int tensor_index) { + return reinterpret_cast(memory_allocator_->AllocateFromTail( + sizeof(TfLiteTensor), alignof(TfLiteTensor))); +} + +TfLiteStatus MicroAllocator::PopulateTfLiteTensorFromFlatbuffer( + const Model* model, const SubGraph* subgraph, TfLiteTensor* tensor, + int tensor_index, bool allocate_temp) { + // TODO(b/160894903): This method serves as a stub to ensure quantized + // allocations in the tail can be recorded. Once all kernels have been ported + // to the new API this can be dropped. + return internal::InitializeTfLiteTensorFromFlatbuffer( + memory_allocator_, allocate_temp, *subgraph->tensors()->Get(tensor_index), + model->buffers(), error_reporter_, tensor); +} + +ErrorReporter* MicroAllocator::error_reporter() const { + return error_reporter_; +} + +const SubGraph* MicroAllocator::GetSubGraphFromModel(const Model* model) { + auto* subgraphs = model->subgraphs(); + if (subgraphs->size() != 1) { + TF_LITE_REPORT_ERROR(error_reporter_, + "Only 1 subgraph is currently supported.\n"); + return nullptr; + } + return (*subgraphs)[0]; +} + +TfLiteStatus MicroAllocator::CommitStaticMemoryPlan( + const Model* model, const SubGraph* subgraph, + TfLiteEvalTensor* eval_tensors) { + size_t head_usage = 0; + // Create static memory plan + // 1. Calculate AllocationInfo to know the lifetime of each tensor/buffer. + // 2. Add them into the planner (such as the GreedyMemoryPlanner). + // 3. Static memory planning using the planner. + // 4. Set tensor/buffer pointers based on the offsets from the previous step. + // Note that AllocationInfo is only needed for creating the plan. It will be + // thrown away when the child allocator (tmp_allocator) goes out of scope. + { + // TODO(b/162595810): Use temp allocation buffer instead of a stack + // instance: + SimpleMemoryAllocator tmp_allocator(error_reporter_, + memory_allocator_->GetBufferHead(), + memory_allocator_->GetTail()); + + AllocationInfoBuilder builder(error_reporter_, &tmp_allocator); + TF_LITE_ENSURE_STATUS( + builder.Init(subgraph->tensors()->size(), scratch_buffer_count_)); + + const int32_t* offline_planner_offsets = nullptr; + TF_LITE_ENSURE_STATUS( + builder.GetOfflinePlannedOffsets(model, &offline_planner_offsets)); + TF_LITE_ENSURE_STATUS( + builder.AddTensors(subgraph, offline_planner_offsets, eval_tensors)); + + TF_LITE_ENSURE_STATUS(builder.AddScratchBuffers(scratch_buffer_handles_)); + const AllocationInfo* allocation_info = builder.Finish(); + + // Remaining arena size that memory planner can use for calculating offsets. + size_t remaining_arena_size = + tmp_allocator.GetAvailableMemory(kBufferAlignment); + uint8_t* planner_arena = + tmp_allocator.AllocateTemp(remaining_arena_size, kBufferAlignment); + TF_LITE_ENSURE(error_reporter_, planner_arena != nullptr); + GreedyMemoryPlanner planner(planner_arena, remaining_arena_size); + TF_LITE_ENSURE_STATUS( + CreatePlan(error_reporter_, &planner, allocation_info, builder.Size())); + + size_t actual_available_arena_size = + memory_allocator_->GetAvailableMemory(kBufferAlignment); + // Make sure we have enough arena size. + if (planner.GetMaximumMemorySize() > actual_available_arena_size) { + TF_LITE_REPORT_ERROR( + error_reporter_, + "Arena size is too small for activation buffers. Needed %d but only " + "%d was available.", + planner.GetMaximumMemorySize(), actual_available_arena_size); + return kTfLiteError; + } + + // Commit the plan. + TF_LITE_ENSURE_STATUS(CommitPlan(error_reporter_, &planner, + memory_allocator_->GetBufferHead(), + allocation_info, builder.Size())); + head_usage = planner.GetMaximumMemorySize(); + } + + TF_LITE_ENSURE_STATUS( + memory_allocator_->EnsureHeadSize(head_usage, kBufferAlignment)); + return kTfLiteOk; +} + +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/micro_allocator.h b/components/tflite_micro/tensorflow/lite/micro/micro_allocator.h new file mode 100644 index 00000000..efd11b8b --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/micro_allocator.h @@ -0,0 +1,250 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. +b/160894903 +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_MICRO_MICRO_ALLOCATOR_H_ +#define TENSORFLOW_LITE_MICRO_MICRO_ALLOCATOR_H_ + +#include +#include + +#include "flatbuffers/flatbuffers.h" // from @flatbuffers +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/core/api/error_reporter.h" +#include "tensorflow/lite/micro/compatibility.h" +#include "tensorflow/lite/micro/micro_op_resolver.h" +#include "tensorflow/lite/micro/simple_memory_allocator.h" +#include "tensorflow/lite/schema/schema_generated.h" + +namespace tflite { + +// Namespace used for unittests. +namespace internal { + +// Sets up all of the data structure members for a TfLiteTensor based on the +// contents of a serialized tensor in the flatbuffer. +// TODO(b/160894903): Once all kernels have been updated to the new +// TfLiteEvalTensor API - drop the allocate_temp flag. This enables internal +// flatbuffer quantization or dimension allocations to take place in either the +// temp or tail section of the arena. +TfLiteStatus InitializeTfLiteTensorFromFlatbuffer( + SimpleMemoryAllocator* allocator, bool allocate_temp, + const tflite::Tensor& flatbuffer_tensor, + const flatbuffers::Vector>* buffers, + ErrorReporter* error_reporter, TfLiteTensor* result); + +// A handle tracking scratch buffer allocation. This handle is created by +// `RequestScratchBufferInArena`. `data` field is populated in +// `FinishModelAllocation` after static memory planning. +// TODO(b/150257460) As a future optimization, this struct could be replaced by +// a union, since once `data` is populated, `bytes` and `node_idx` is not +// needed. +typedef struct { + // Pointer to the scratch buffer. + uint8_t* data; + // Number of bytes required by the buffer. The actual allocated size might be + // greater than `bytes` due to buffer alignment. + size_t bytes; + // Node where the buffer is allocated for. This provides useful information to + // determine the lifetime of the buffer. In AllocationInfo, this buffer will + // have `before` = node_idx and `after` = node_idx. + int node_idx; +} ScratchBufferHandle; +} // namespace internal + +typedef struct { + TfLiteNode node; + const TfLiteRegistration* registration; +} NodeAndRegistration; + +// Allocator responsible for allocating memory for all intermediate tensors +// necessary to invoke a model. +// +// The lifetime of the model, tensor arena and error reporter must be at +// least as long as that of the allocator object, since the allocator needs +// them to be accessible during its entire lifetime. +// +// The MicroAllocator simply plans out additional allocations that are required +// to standup a model for inference in TF Micro. This class currently relies on +// an additional allocator - SimpleMemoryAllocator - for all allocations from an +// arena. These allocations are divided into head (non-persistent) and tail +// (persistent) regions: +// +// Memory layout to help understand how it works +// This information could change in the future version. +// ************** .memory_allocator->GetBuffer() +// Tensors/Scratch buffers (head) +// ************** .head_watermark +// unused memory +// ************** .memory_allocator->GetBuffer() + ->GetMaxBufferSize() +// - ->GetDataSize() +// persistent area (tail) +// ************** .memory_allocator->GetBuffer() + ->GetMaxBufferSize() +class MicroAllocator { + public: + // Creates a MicroAllocator instance from a given tensor arena. This arena + // will be managed by the created instance. + // Note: Please use __declspec(align(16)) to make sure tensor_arena is 16 + // bytes aligned, otherwise some head room will be wasted. + // TODO(b/157615197): Cleanup constructor + factory usage. + static MicroAllocator* Create(uint8_t* tensor_arena, size_t arena_size, + ErrorReporter* error_reporter); + + // Creates a MicroAllocator instance using the provided SimpleMemoryAllocator + // intance. This allocator instance will use the SimpleMemoryAllocator + // instance to manage allocations internally. + static MicroAllocator* Create(SimpleMemoryAllocator* memory_allocator, + ErrorReporter* error_reporter); + + // Begin allocating internal resources required for model inference. + // This method will run through the flatbuffer data supplied in the model to + // properly allocate tensor, node, and op registration data. This method is + // expected to be followed with a call to FinishModelAllocation() before + // resuming allocation with another model. All persistent tensor buffers are + // stored in the out-param eval_tensors. This value is allocated from the + // persistent memory arena and will be used to host runtime tensor buffers. + TfLiteStatus StartModelAllocation( + const Model* model, const MicroOpResolver& op_resolver, + NodeAndRegistration** node_and_registrations, + TfLiteEvalTensor** eval_tensors); + + // Finish allocating internal resources required for model inference. + // This method will plan non-persistent buffers and commit a memory plan to + // the 'head' section of the memory arena. All variable tensor data will also + // be allocated. This method should be called after assigning model resources + // in StartModelAllocation(). The eval_tensors pointer should be the value + // passed into this class during StartModelAllocation(). + TfLiteStatus FinishModelAllocation(const Model* model, + TfLiteEvalTensor* eval_tensors); + + // Allocates a TfLiteTensor struct and populates the returned value with + // properties from the model flatbuffer. This struct is allocated from + // persistent arena memory is only guaranteed for the lifetime of the + // application. The eval_tensors pointer should be the value passed into this + // class during StartModelAllocation() and contains the source-of-truth for + // buffers. + virtual TfLiteTensor* AllocatePersistentTfLiteTensor( + const Model* model, TfLiteEvalTensor* eval_tensors, int tensor_index); + + // Allocates a TfLiteTensor struct and populates the returned value with + // properties from the model flatbuffer. This struct is allocated from + // temporary arena memory is only guaranteed until a call is made to + // ResetTempAllocations(). The eval_tensors pointer should be the value passed + // into this class during StartModelAllocation() and contains the + // source-of-truth for buffers. + virtual TfLiteTensor* AllocateTempTfLiteTensor(const Model* model, + TfLiteEvalTensor* eval_tensors, + int tensor_index); + + // Resets all temporary allocations. This method should be called after a + // chain of temp allocations (e.g. chain of TfLiteTensor objects via + // AllocateTfLiteTensor()). + virtual void ResetTempAllocations(); + + // Allocates persistent buffer which has the same life time as the allocator. + // The memory is immediately available and is allocated from the tail of the + // arena. + void* AllocatePersistentBuffer(size_t bytes); + + // Register a scratch buffer of size `bytes` for Node with `node_id`. + // This method only allocates a BufferHandle holding information for memory + // planning. The buffer ptr is ready after `FinishModelAllocation` and can + // be retrieved by `GetScratchBuffer` method using the returned buffer_idx. + // Note that there should be no tail allocation between two consecutive + // `RequestScratchBufferInArena` calls. + TfLiteStatus RequestScratchBufferInArena(int node_id, size_t bytes, + int* buffer_idx); + // Returns the pointer to the planned scratch buffer. + void* GetScratchBuffer(int buffer_idx) const; + + // Returns the arena usage in bytes, only available after + // `FinishModelAllocation`. Otherwise, it will return 0. + size_t used_bytes() const; + + protected: + MicroAllocator(SimpleMemoryAllocator* memory_allocator, + ErrorReporter* error_reporter); + virtual ~MicroAllocator(); + + // Allocates an array in the arena to hold pointers to the node and + // registration pointers required to represent the inference graph of the + // model. + virtual TfLiteStatus AllocateNodeAndRegistrations( + const Model* model, NodeAndRegistration** node_and_registrations); + + // Populates node and registration pointers representing the inference graph + // of the model from values inside the flatbuffer (loaded from the TfLiteModel + // instance). Persistent data (e.g. operator data) is allocated from the + // arena. + virtual TfLiteStatus PrepareNodeAndRegistrationDataFromFlatbuffer( + const Model* model, const MicroOpResolver& op_resolver, + NodeAndRegistration* node_and_registrations); + + // Allocates the list of persistent TfLiteEvalTensors that are used for the + // "eval" phase of model inference. These structs will be the source of truth + // for all tensor buffers. Allocation results are stored in the out-param + // eval_tensors. + virtual TfLiteStatus AllocateTfLiteEvalTensors( + const Model* model, TfLiteEvalTensor** eval_tensors); + + // Allocates persistent tensor buffers for variable tensors in the subgraph. + virtual TfLiteStatus AllocateVariables(const SubGraph* subgraph, + TfLiteEvalTensor* eval_tensors); + + // TODO(b/160894903): Once all kernels have been updated to the new API drop + // this method. It is only used to record TfLiteTensor persistent allocations. + virtual TfLiteTensor* AllocatePersistentTfLiteTensorInternal( + const Model* model, TfLiteEvalTensor* eval_tensors, int tensor_index); + + // Populates a TfLiteTensor struct with data from the model flatbuffer. Any + // quantization data is allocated from either the tail (persistent) or temp + // sections of the arena based on the allocation flag. + // TODO(b/160894903): Once all kernels have been updated to the new API drop + // this function since all allocations for quantized data will take place in + // the temp section. + virtual TfLiteStatus PopulateTfLiteTensorFromFlatbuffer( + const Model* model, const SubGraph* subgraph, TfLiteTensor* tensor, + int tensor_index, bool allocate_temp); + + ErrorReporter* error_reporter() const; + + // Returns the first subgraph from the model. + const SubGraph* GetSubGraphFromModel(const Model* model); + + private: + // Commits a memory plan for all non-persistent buffer allocations in the + // 'head' section of the memory arena. The eval_tensors pointer is the list of + // pre-allocated TfLiteEvalTensor structs that will point to the buffers that + // will be allocated into the head section in this function call. + virtual TfLiteStatus CommitStaticMemoryPlan(const Model* model, + const SubGraph* subgraph, + TfLiteEvalTensor* eval_tensors); + + // A simple memory allocator that always allocate from the arena tail or head. + SimpleMemoryAllocator* memory_allocator_; + + ErrorReporter* error_reporter_; + bool model_is_allocating_; + + // In reverse order for efficiency. + // i.e. scratch_buffer_handles_[0] is the handle for the last buffer, + // corresponding to the last RequestScratchBufferInArena call. + internal::ScratchBufferHandle* scratch_buffer_handles_ = nullptr; + // How many scratch buffers have been allocated. + size_t scratch_buffer_count_ = 0; + + TF_LITE_REMOVE_VIRTUAL_DELETE +}; + +} // namespace tflite +#endif // TENSORFLOW_LITE_MICRO_MICRO_ALLOCATOR_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/micro_error_reporter.cc b/components/tflite_micro/tensorflow/lite/micro/micro_error_reporter.cc new file mode 100644 index 00000000..6d8361cd --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/micro_error_reporter.cc @@ -0,0 +1,41 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/micro/micro_error_reporter.h" + +#include + +#ifndef TF_LITE_STRIP_ERROR_STRINGS +#include "tensorflow/lite/micro/debug_log.h" +#include "tensorflow/lite/micro/micro_string.h" +#endif + +namespace tflite { + +int MicroErrorReporter::Report(const char* format, va_list args) { +#ifndef TF_LITE_STRIP_ERROR_STRINGS + // Only pulling in the implementation of this function for builds where we + // expect to make use of it to be extra cautious about not increasing the code + // size. + static constexpr int kMaxLogLen = 256; + char log_buffer[kMaxLogLen]; + MicroVsnprintf(log_buffer, kMaxLogLen, format, args); + DebugLog(log_buffer); + DebugLog("\r\n"); +#endif + return 0; +} + +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/micro_error_reporter.h b/components/tflite_micro/tensorflow/lite/micro/micro_error_reporter.h new file mode 100644 index 00000000..e2c073a4 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/micro_error_reporter.h @@ -0,0 +1,36 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_MICRO_MICRO_ERROR_REPORTER_H_ +#define TENSORFLOW_LITE_MICRO_MICRO_ERROR_REPORTER_H_ + +#include + +#include "tensorflow/lite/core/api/error_reporter.h" +#include "tensorflow/lite/micro/compatibility.h" + +namespace tflite { + +class MicroErrorReporter : public ErrorReporter { + public: + ~MicroErrorReporter() override {} + int Report(const char* format, va_list args) override; + + private: + TF_LITE_REMOVE_VIRTUAL_DELETE +}; + +} // namespace tflite + +#endif // TENSORFLOW_LITE_MICRO_MICRO_ERROR_REPORTER_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/micro_interpreter.cc b/components/tflite_micro/tensorflow/lite/micro/micro_interpreter.cc new file mode 100644 index 00000000..8c2f8e03 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/micro_interpreter.cc @@ -0,0 +1,447 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#include "tensorflow/lite/micro/micro_interpreter.h" + +#include +#include +#include + +#include "flatbuffers/flatbuffers.h" // from @flatbuffers +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/core/api/error_reporter.h" +#include "tensorflow/lite/core/api/tensor_utils.h" +#include "tensorflow/lite/micro/memory_helpers.h" +#include "tensorflow/lite/micro/micro_allocator.h" +#include "tensorflow/lite/micro/micro_op_resolver.h" +#include "tensorflow/lite/micro/micro_profiler.h" +#include "tensorflow/lite/schema/schema_generated.h" + +namespace tflite { +namespace { + +#ifndef TF_LITE_STRIP_ERROR_STRINGS +const char* OpNameFromRegistration(const TfLiteRegistration* registration) { + if (registration->builtin_code == BuiltinOperator_CUSTOM) { + return registration->custom_name; + } else { + return EnumNameBuiltinOperator(BuiltinOperator(registration->builtin_code)); + } +} +#endif // !defined(TF_LITE_STRIP_ERROR_STRINGS) + +} // namespace + +namespace internal { + +ContextHelper::ContextHelper(ErrorReporter* error_reporter, + MicroAllocator* allocator, const Model* model) + : allocator_(allocator), error_reporter_(error_reporter), model_(model) {} + +void* ContextHelper::AllocatePersistentBuffer(TfLiteContext* ctx, + size_t bytes) { + return reinterpret_cast(ctx->impl_) + ->allocator_->AllocatePersistentBuffer(bytes); +} + +TfLiteStatus ContextHelper::RequestScratchBufferInArena(TfLiteContext* ctx, + size_t bytes, + int* buffer_idx) { + ContextHelper* helper = reinterpret_cast(ctx->impl_); + return helper->allocator_->RequestScratchBufferInArena( + helper->current_node_idx_, bytes, buffer_idx); +} + +void* ContextHelper::GetScratchBuffer(TfLiteContext* ctx, int buffer_idx) { + return reinterpret_cast(ctx->impl_) + ->allocator_->GetScratchBuffer(buffer_idx); +} + +void ContextHelper::ReportOpError(struct TfLiteContext* context, + const char* format, ...) { +#ifndef TF_LITE_STRIP_ERROR_STRINGS + ContextHelper* helper = static_cast(context->impl_); + va_list args; + va_start(args, format); + TF_LITE_REPORT_ERROR(helper->error_reporter_, format, args); + va_end(args); +#endif +} + +TfLiteTensor* ContextHelper::GetTensor(const struct TfLiteContext* context, + int tensor_idx) { + ContextHelper* helper = static_cast(context->impl_); + return helper->allocator_->AllocateTempTfLiteTensor( + helper->model_, helper->eval_tensors_, tensor_idx); +} + +TfLiteEvalTensor* ContextHelper::GetEvalTensor( + const struct TfLiteContext* context, int tensor_idx) { + ContextHelper* helper = reinterpret_cast(context->impl_); + return &helper->eval_tensors_[tensor_idx]; +} + +void ContextHelper::SetNodeIndex(int idx) { current_node_idx_ = idx; } + +void ContextHelper::SetTfLiteEvalTensors(TfLiteEvalTensor* eval_tensors) { + eval_tensors_ = eval_tensors; +} + +} // namespace internal + +MicroInterpreter::MicroInterpreter(const Model* model, + const MicroOpResolver& op_resolver, + uint8_t* tensor_arena, + size_t tensor_arena_size, + ErrorReporter* error_reporter, + tflite::Profiler* profiler) + : model_(model), + op_resolver_(op_resolver), + error_reporter_(error_reporter), + allocator_(*MicroAllocator::Create(tensor_arena, tensor_arena_size, + error_reporter)), + tensors_allocated_(false), + initialization_status_(kTfLiteError), + eval_tensors_(nullptr), + context_helper_(error_reporter_, &allocator_, model), + input_tensor_(nullptr), + output_tensor_(nullptr) { + Init(profiler); +} + +MicroInterpreter::MicroInterpreter(const Model* model, + const MicroOpResolver& op_resolver, + MicroAllocator* allocator, + ErrorReporter* error_reporter, + tflite::Profiler* profiler) + : model_(model), + op_resolver_(op_resolver), + error_reporter_(error_reporter), + allocator_(*allocator), + tensors_allocated_(false), + initialization_status_(kTfLiteError), + eval_tensors_(nullptr), + context_helper_(error_reporter_, &allocator_, model), + input_tensor_(nullptr), + output_tensor_(nullptr) { + Init(profiler); +} + +MicroInterpreter::~MicroInterpreter() { + if (node_and_registrations_ != nullptr) { + for (size_t i = 0; i < subgraph_->operators()->size(); ++i) { + TfLiteNode* node = &(node_and_registrations_[i].node); + const TfLiteRegistration* registration = + node_and_registrations_[i].registration; + // registration is allocated outside the interpreter, so double check to + // make sure it's not nullptr; + if (registration != nullptr && registration->free != nullptr) { + registration->free(&context_, node->user_data); + } + } + } +} + +void MicroInterpreter::Init(tflite::Profiler* profiler) { + const flatbuffers::Vector>* subgraphs = + model_->subgraphs(); + if (subgraphs->size() != 1) { + TF_LITE_REPORT_ERROR(error_reporter_, + "Only 1 subgraph is currently supported.\n"); + initialization_status_ = kTfLiteError; + return; + } + subgraph_ = (*subgraphs)[0]; + + context_.impl_ = static_cast(&context_helper_); + context_.ReportError = context_helper_.ReportOpError; + context_.GetTensor = context_helper_.GetTensor; + context_.GetEvalTensor = context_helper_.GetEvalTensor; + context_.recommended_num_threads = 1; + context_.profiler = profiler; + + initialization_status_ = kTfLiteOk; +} + +void MicroInterpreter::CorrectTensorEndianness(TfLiteEvalTensor* tensorCorr) { + int32_t tensorSize = 1; + for (int d = 0; d < tensorCorr->dims->size; ++d) + tensorSize *= reinterpret_cast(tensorCorr->dims->data)[d]; + + switch (tensorCorr->type) { + case TfLiteType::kTfLiteFloat32: + CorrectTensorDataEndianness(tensorCorr->data.f, tensorSize); + break; + case TfLiteType::kTfLiteFloat16: + CorrectTensorDataEndianness(tensorCorr->data.f16, tensorSize); + break; + case TfLiteType::kTfLiteInt64: + CorrectTensorDataEndianness(tensorCorr->data.i64, tensorSize); + break; + case TfLiteType::kTfLiteInt32: + CorrectTensorDataEndianness(tensorCorr->data.i32, tensorSize); + break; + case TfLiteType::kTfLiteInt16: + CorrectTensorDataEndianness(tensorCorr->data.i16, tensorSize); + break; + case TfLiteType::kTfLiteComplex64: + CorrectTensorDataEndianness(tensorCorr->data.c64, tensorSize); + break; + case TfLiteType::kTfLiteComplex128: + CorrectTensorDataEndianness(tensorCorr->data.c128, tensorSize); + break; + default: + // Do nothing for other data types. + break; + } +} + +template +void MicroInterpreter::CorrectTensorDataEndianness(T* data, int32_t size) { + for (int32_t i = 0; i < size; ++i) { + data[i] = flatbuffers::EndianScalar(data[i]); + } +} + +TfLiteStatus MicroInterpreter::AllocateTensors() { + if (allocator_.StartModelAllocation(model_, op_resolver_, + &node_and_registrations_, + &eval_tensors_) != kTfLiteOk) { + TF_LITE_REPORT_ERROR(error_reporter_, + "Failed starting model allocation.\n"); + initialization_status_ = kTfLiteError; + return kTfLiteError; + } + + // Update the pointer now that TfLiteEvalTensor allocation has completed on + // the context helper. + // TODO(b/16157777): This call would not be needed if ContextHelper rolled + // into the interpreter. + context_helper_.SetTfLiteEvalTensors(eval_tensors_); + + // If the system is big endian then convert weights from the flatbuffer from + // little to big endian on startup so that it does not need to be done during + // inference. + // NOTE: This requires that the flatbuffer is held in memory which can be + // modified by this process. + if (!FLATBUFFERS_LITTLEENDIAN) { + for (size_t t = 0; t < subgraph_->tensors()->size(); ++t) { + if (auto* buffer = + (*model_->buffers())[subgraph_->tensors()->Get(t)->buffer()]) { + // If we've found a buffer, does it have any data? + if (auto* array = buffer->data()) { + // If it has any data, is the data size larger than zero? + if (array->size()) { + // Update the endianness of the corresponding eval tensor since that + // struct holds the buffer used at inference time. + CorrectTensorEndianness(&eval_tensors_[t]); + } + } + } + } + } + + // Only allow AllocatePersistentBuffer in Init stage. + context_.AllocatePersistentBuffer = context_helper_.AllocatePersistentBuffer; + context_.RequestScratchBufferInArena = nullptr; + context_.GetScratchBuffer = nullptr; + + for (size_t i = 0; i < subgraph_->operators()->size(); ++i) { + context_helper_.SetNodeIndex(i); + auto* node = &(node_and_registrations_[i].node); + auto* registration = node_and_registrations_[i].registration; + size_t init_data_size; + const char* init_data; + if (registration->builtin_code == BuiltinOperator_CUSTOM) { + init_data = reinterpret_cast(node->custom_initial_data); + init_data_size = node->custom_initial_data_size; + } else { + init_data = reinterpret_cast(node->builtin_data); + init_data_size = 0; + } + if (registration->init) { + node->user_data = + registration->init(&context_, init_data, init_data_size); + } + } + context_helper_.SetNodeIndex(-1); + + // Both AllocatePersistentBuffer and RequestScratchBufferInArena is + // available in Prepare stage. + context_.RequestScratchBufferInArena = + context_helper_.RequestScratchBufferInArena; + for (size_t i = 0; i < subgraph_->operators()->size(); ++i) { + // Set node idx to annotate the lifetime for scratch buffers. + context_helper_.SetNodeIndex(i); + auto* node = &(node_and_registrations_[i].node); + auto* registration = node_and_registrations_[i].registration; + if (registration->prepare) { + TfLiteStatus prepare_status = registration->prepare(&context_, node); + if (prepare_status != kTfLiteOk) { + TF_LITE_REPORT_ERROR( + error_reporter_, + "Node %s (number %df) failed to prepare with status %d", + OpNameFromRegistration(registration), i, prepare_status); + return kTfLiteError; + } + } + allocator_.ResetTempAllocations(); + } + context_helper_.SetNodeIndex(-1); + + // Prepare is done, we're ready for Invoke. Memory allocation is no longer + // allowed. Kernels can only fetch scratch buffers via GetScratchBuffer. + context_.AllocatePersistentBuffer = nullptr; + context_.RequestScratchBufferInArena = nullptr; + context_.GetScratchBuffer = context_helper_.GetScratchBuffer; + + TF_LITE_ENSURE_OK(&context_, + allocator_.FinishModelAllocation(model_, eval_tensors_)); + TF_LITE_ENSURE_STATUS(ResetVariableTensors()); + + tensors_allocated_ = true; + return kTfLiteOk; +} + +TfLiteStatus MicroInterpreter::Invoke() { + if (initialization_status_ != kTfLiteOk) { + TF_LITE_REPORT_ERROR(error_reporter_, + "Invoke() called after initialization failed\n"); + return kTfLiteError; + } + + // Ensure tensors are allocated before the interpreter is invoked to avoid + // difficult to debug segfaults. + if (!tensors_allocated_) { + TF_LITE_ENSURE_OK(&context_, AllocateTensors()); + } + + for (size_t i = 0; i < subgraph_->operators()->size(); ++i) { + auto* node = &(node_and_registrations_[i].node); + auto* registration = node_and_registrations_[i].registration; + + if (registration->invoke) { + TfLiteStatus invoke_status; +#ifndef NDEBUG // Omit profiler overhead from release builds. + // The case where profiler == nullptr is handled by + // ScopedOperatorProfile. + tflite::Profiler* profiler = + reinterpret_cast(context_.profiler); + ScopedOperatorProfile scoped_profiler( + profiler, OpNameFromRegistration(registration), i); +#endif + invoke_status = registration->invoke(&context_, node); + + // All TfLiteTensor structs used in the kernel are allocated from temp + // memory in the allocator. This creates a chain of allocations in the + // temp section. The call below resets the chain of allocations to + // prepare for the next call. + allocator_.ResetTempAllocations(); + + if (invoke_status == kTfLiteError) { + TF_LITE_REPORT_ERROR( + error_reporter_, + "Node %s (number %d) failed to invoke with status %d", + OpNameFromRegistration(registration), i, invoke_status); + return kTfLiteError; + } else if (invoke_status != kTfLiteOk) { + return invoke_status; + } + } + } + return kTfLiteOk; +} + +TfLiteTensor* MicroInterpreter::input(size_t index) { + const size_t length = inputs_size(); + if (index >= length) { + TF_LITE_REPORT_ERROR(error_reporter_, + "Input index %d out of range (length is %d)", index, + length); + return nullptr; + } + if (index != 0) { + TF_LITE_REPORT_ERROR( + error_reporter_, + "Input tensors not at index 0 are allocated from the " + "persistent memory arena. Repeat calls will cause excess " + "allocation!"); + return allocator_.AllocatePersistentTfLiteTensor(model_, eval_tensors_, + inputs().Get(index)); + } + if (input_tensor_ == nullptr) { + input_tensor_ = allocator_.AllocatePersistentTfLiteTensor( + model_, eval_tensors_, inputs().Get(index)); + } + return input_tensor_; +} + +TfLiteTensor* MicroInterpreter::output(size_t index) { + const size_t length = outputs_size(); + if (index >= length) { + TF_LITE_REPORT_ERROR(error_reporter_, + "Output index %d out of range (length is %d)", index, + length); + return nullptr; + } + if (index != 0) { + TF_LITE_REPORT_ERROR( + error_reporter_, + "Output tensors not at index 0 are allocated from the " + "persistent memory arena. Repeat calls will cause excess " + "allocation!"); + return allocator_.AllocatePersistentTfLiteTensor(model_, eval_tensors_, + outputs().Get(index)); + } + if (output_tensor_ == nullptr) { + // TODO(b/160894903): This API will allocate TfLiteTensor structs from + // persistent (tail) memory and cache on this pointer. + output_tensor_ = allocator_.AllocatePersistentTfLiteTensor( + model_, eval_tensors_, outputs().Get(index)); + } + return output_tensor_; +} + +TfLiteTensor* MicroInterpreter::tensor(size_t index) { + const size_t length = tensors_size(); + if (index >= length) { + TF_LITE_REPORT_ERROR(error_reporter_, + "Tensor index %d out of range (length is %d)", index, + length); + return nullptr; + } + return allocator_.AllocatePersistentTfLiteTensor(model_, eval_tensors_, + index); +} + +TfLiteStatus MicroInterpreter::ResetVariableTensors() { + for (size_t i = 0; i < subgraph_->tensors()->size(); ++i) { + auto* tensor = subgraph_->tensors()->Get(i); + if (tensor->is_variable()) { + size_t buffer_size; + TF_LITE_ENSURE_STATUS( + TfLiteEvalTensorByteLength(&eval_tensors_[i], &buffer_size)); + + int value = 0; + if (tensor->type() == tflite::TensorType_INT8) { + value = tensor->quantization()->zero_point()->Get(0); + } + memset(eval_tensors_[i].data.raw, value, buffer_size); + } + } + + return kTfLiteOk; +} + +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/micro_interpreter.h b/components/tflite_micro/tensorflow/lite/micro/micro_interpreter.h new file mode 100644 index 00000000..67d74574 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/micro_interpreter.h @@ -0,0 +1,208 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_MICRO_MICRO_INTERPRETER_H_ +#define TENSORFLOW_LITE_MICRO_MICRO_INTERPRETER_H_ + +#include +#include + +#include "flatbuffers/flatbuffers.h" // from @flatbuffers +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/core/api/error_reporter.h" +#include "tensorflow/lite/core/api/profiler.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/micro/micro_allocator.h" +#include "tensorflow/lite/micro/micro_op_resolver.h" +#include "tensorflow/lite/schema/schema_generated.h" +#include "tensorflow/lite/type_to_tflitetype.h" + +namespace tflite { + +namespace internal { + +// A helper class to encapsulate the implementation of APIs in Context. +// context->impl_ points to an instance of this class. +// Check tensorflow/lite/c/common.h for detailed descriptions. +// TODO(b/16157777): Consider rolling this class into MicroInterpreter. +class ContextHelper { + public: + explicit ContextHelper(ErrorReporter* error_reporter, + MicroAllocator* allocator, const Model* model); + + // Functions that will be assigned to function pointers on TfLiteContext: + static void* AllocatePersistentBuffer(TfLiteContext* ctx, size_t bytes); + static TfLiteStatus RequestScratchBufferInArena(TfLiteContext* ctx, + size_t bytes, + int* buffer_idx); + static void* GetScratchBuffer(TfLiteContext* ctx, int buffer_idx); + static void ReportOpError(struct TfLiteContext* context, const char* format, + ...); + static TfLiteTensor* GetTensor(const struct TfLiteContext* context, + int tensor_idx); + static TfLiteEvalTensor* GetEvalTensor(const struct TfLiteContext* context, + int tensor_idx); + + // Sets the current node index to assist with scratch buffer allocations: + void SetNodeIndex(int idx); + + // Sets the pointer to a list of TfLiteEvalTensor instances. + void SetTfLiteEvalTensors(TfLiteEvalTensor* eval_tensors); + + private: + MicroAllocator* allocator_; + ErrorReporter* error_reporter_; + const Model* model_; + TfLiteEvalTensor* eval_tensors_; + int current_node_idx_ = -1; +}; + +} // namespace internal + +class MicroInterpreter { + public: + // The lifetime of the model, op resolver, tensor arena, error reporter and + // profiler must be at least as long as that of the interpreter object, since + // the interpreter may need to access them at any time. This means that you + // should usually create them with the same scope as each other, for example + // having them all allocated on the stack as local variables through a + // top-level function. The interpreter doesn't do any deallocation of any of + // the pointed-to objects, ownership remains with the caller. + MicroInterpreter(const Model* model, const MicroOpResolver& op_resolver, + uint8_t* tensor_arena, size_t tensor_arena_size, + ErrorReporter* error_reporter, + tflite::Profiler* profiler = nullptr); + + // Create an interpreter instance using an existing MicroAllocator instance. + // This constructor should be used when creating an allocator that needs to + // have allocation handled in more than one interpreter or for recording + // allocations inside the interpreter. The lifetime of the allocator must be + // as long as that of the interpreter object. + MicroInterpreter(const Model* model, const MicroOpResolver& op_resolver, + MicroAllocator* allocator, ErrorReporter* error_reporter, + tflite::Profiler* profiler = nullptr); + + ~MicroInterpreter(); + + // Runs through the model and allocates all necessary input, output and + // intermediate tensors. + TfLiteStatus AllocateTensors(); + + // In order to support partial graph runs for strided models, this can return + // values other than kTfLiteOk and kTfLiteError. + // TODO(b/149795762): Add this to the TfLiteStatus enum. + TfLiteStatus Invoke(); + + size_t tensors_size() const { return context_.tensors_size; } + TfLiteTensor* tensor(size_t tensor_index); + template + T* typed_tensor(int tensor_index) { + if (TfLiteTensor* tensor_ptr = tensor(tensor_index)) { + if (tensor_ptr->type == typeToTfLiteType()) { + return GetTensorData(tensor_ptr); + } + } + return nullptr; + } + + TfLiteTensor* input(size_t index); + size_t inputs_size() const { return subgraph_->inputs()->Length(); } + const flatbuffers::Vector& inputs() const { + return *subgraph_->inputs(); + } + TfLiteTensor* input_tensor(size_t index) { return input(index); } + template + T* typed_input_tensor(int tensor_index) { + if (TfLiteTensor* tensor_ptr = input_tensor(tensor_index)) { + if (tensor_ptr->type == typeToTfLiteType()) { + return GetTensorData(tensor_ptr); + } + } + return nullptr; + } + + TfLiteTensor* output(size_t index); + size_t outputs_size() const { return subgraph_->outputs()->Length(); } + const flatbuffers::Vector& outputs() const { + return *subgraph_->outputs(); + } + TfLiteTensor* output_tensor(size_t index) { return output(index); } + template + T* typed_output_tensor(int tensor_index) { + if (TfLiteTensor* tensor_ptr = output_tensor(tensor_index)) { + if (tensor_ptr->type == typeToTfLiteType()) { + return GetTensorData(tensor_ptr); + } + } + return nullptr; + } + + // Reset all variable tensors to the default value. + TfLiteStatus ResetVariableTensors(); + + TfLiteStatus initialization_status() const { return initialization_status_; } + + size_t operators_size() const { return subgraph_->operators()->size(); } + + // For debugging only. + const NodeAndRegistration node_and_registration(int node_index) const { + return node_and_registrations_[node_index]; + } + + // For debugging only. + // Returns the actual used arena in bytes. This method gives the optimal arena + // size. It's only available after `AllocateTensors` has been called. + // Note that normally `tensor_arena` requires 16 bytes alignment to fully + // utilize the space. If it's not the case, the optimial arena size would be + // arena_used_bytes() + 16. + size_t arena_used_bytes() const { return allocator_.used_bytes(); } + + protected: + const MicroAllocator& allocator() const { return allocator_; } + const TfLiteContext& context() const { return context_; } + + private: + // TODO(b/158263161): Consider switching to Create() function to enable better + // error reporting during initialization. + void Init(tflite::Profiler* profiler); + + void CorrectTensorEndianness(TfLiteEvalTensor* tensorCorr); + + template + void CorrectTensorDataEndianness(T* data, int32_t size); + + NodeAndRegistration* node_and_registrations_ = nullptr; + + const Model* model_; + const MicroOpResolver& op_resolver_; + ErrorReporter* error_reporter_; + TfLiteContext context_ = {}; + MicroAllocator& allocator_; + bool tensors_allocated_; + + TfLiteStatus initialization_status_; + + const SubGraph* subgraph_; + TfLiteEvalTensor* eval_tensors_; + internal::ContextHelper context_helper_; + + // TODO(b/160894903): Clean these pointers up when all APIs are updated to new + // TfLiteEvalTensor buffers. + TfLiteTensor* input_tensor_; + TfLiteTensor* output_tensor_; +}; + +} // namespace tflite + +#endif // TENSORFLOW_LITE_MICRO_MICRO_INTERPRETER_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/micro_mutable_op_resolver.h b/components/tflite_micro/tensorflow/lite/micro/micro_mutable_op_resolver.h new file mode 100644 index 00000000..27a66a91 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/micro_mutable_op_resolver.h @@ -0,0 +1,458 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_MICRO_MICRO_MUTABLE_OP_RESOLVER_H_ +#define TENSORFLOW_LITE_MICRO_MICRO_MUTABLE_OP_RESOLVER_H_ + +#include +#include + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/core/api/error_reporter.h" +#include "tensorflow/lite/core/api/flatbuffer_conversions.h" +#include "tensorflow/lite/kernels/internal/compatibility.h" +#include "tensorflow/lite/kernels/op_macros.h" +#include "tensorflow/lite/micro/compatibility.h" +#include "tensorflow/lite/micro/kernels/micro_ops.h" +#include "tensorflow/lite/micro/micro_op_resolver.h" +#include "tensorflow/lite/schema/schema_generated.h" + +namespace tflite { + +template +class MicroMutableOpResolver : public MicroOpResolver { + public: + explicit MicroMutableOpResolver(ErrorReporter* error_reporter = nullptr) + : error_reporter_(error_reporter) {} + + const TfLiteRegistration* FindOp(tflite::BuiltinOperator op) const override { + if (op == BuiltinOperator_CUSTOM) return nullptr; + + for (unsigned int i = 0; i < registrations_len_; ++i) { + const TfLiteRegistration& registration = registrations_[i]; + if (registration.builtin_code == op) { + return ®istration; + } + } + return nullptr; + } + + const TfLiteRegistration* FindOp(const char* op) const override { + for (unsigned int i = 0; i < registrations_len_; ++i) { + const TfLiteRegistration& registration = registrations_[i]; + if ((registration.builtin_code == BuiltinOperator_CUSTOM) && + (strcmp(registration.custom_name, op) == 0)) { + return ®istration; + } + } + return nullptr; + } + + MicroOpResolver::BuiltinParseFunction GetOpDataParser( + BuiltinOperator op) const override { + TFLITE_DCHECK(num_buitin_ops_ <= tOpCount); + for (unsigned int i = 0; i < num_buitin_ops_; ++i) { + if (builtin_codes_[i] == op) return builtin_parsers_[i]; + } + return nullptr; + } + + // Registers a Custom Operator with the MicroOpResolver. + // + // Only the first call for a given name will be successful. i.e. if this + // function is called again for a previously added Custom Operator, the + // MicroOpResolver will be unchanged and this function will return + // kTfLiteError. + TfLiteStatus AddCustom(const char* name, TfLiteRegistration* registration) { + if (registrations_len_ >= tOpCount) { + if (error_reporter_) { + TF_LITE_REPORT_ERROR( + error_reporter_, + "Couldn't register custom op '%s', resolver size is too small (%d)", + name, tOpCount); + } + return kTfLiteError; + } + + if (FindOp(name) != nullptr) { + if (error_reporter_ != nullptr) { + TF_LITE_REPORT_ERROR(error_reporter_, + "Calling AddCustom for the same op more than once " + "is not supported (Op: %s).", + name); + } + return kTfLiteError; + } + + TfLiteRegistration* new_registration = ®istrations_[registrations_len_]; + registrations_len_ += 1; + + *new_registration = *registration; + new_registration->builtin_code = BuiltinOperator_CUSTOM; + new_registration->custom_name = name; + return kTfLiteOk; + } + + // The Add* functions below add the various Builtin operators to the + // MicroMutableOpResolver object. + + TfLiteStatus AddAbs() { + return AddBuiltin(BuiltinOperator_ABS, tflite::ops::micro::Register_ABS(), + ParseAbs); + } + + TfLiteStatus AddAdd() { + return AddBuiltin(BuiltinOperator_ADD, tflite::ops::micro::Register_ADD(), + ParseAdd); + } + + TfLiteStatus AddArgMax() { + return AddBuiltin(BuiltinOperator_ARG_MAX, + tflite::ops::micro::Register_ARG_MAX(), ParseArgMax); + } + + TfLiteStatus AddArgMin() { + return AddBuiltin(BuiltinOperator_ARG_MIN, + tflite::ops::micro::Register_ARG_MIN(), ParseArgMin); + } + + TfLiteStatus AddAveragePool2D() { + return AddBuiltin(BuiltinOperator_AVERAGE_POOL_2D, + tflite::ops::micro::Register_AVERAGE_POOL_2D(), + ParsePool); + } + + TfLiteStatus AddCeil() { + return AddBuiltin(BuiltinOperator_CEIL, tflite::ops::micro::Register_CEIL(), + ParseCeil); + } + + TfLiteStatus AddCircularBuffer() { + return AddCustom("CIRCULAR_BUFFER", + tflite::ops::micro::Register_CIRCULAR_BUFFER()); + } + + TfLiteStatus AddConcatenation() { + return AddBuiltin(BuiltinOperator_CONCATENATION, + tflite::ops::micro::Register_CONCATENATION(), + ParseConcatenation); + } + + TfLiteStatus AddConv2D() { + return AddBuiltin(BuiltinOperator_CONV_2D, + tflite::ops::micro::Register_CONV_2D(), ParseConv2D); + } + + TfLiteStatus AddCos() { + return AddBuiltin(BuiltinOperator_COS, tflite::ops::micro::Register_COS(), + ParseCos); + } + + TfLiteStatus AddDepthwiseConv2D() { + return AddBuiltin(BuiltinOperator_DEPTHWISE_CONV_2D, + tflite::ops::micro::Register_DEPTHWISE_CONV_2D(), + ParseDepthwiseConv2D); + } + + TfLiteStatus AddDequantize() { + return AddBuiltin(BuiltinOperator_DEQUANTIZE, + tflite::ops::micro::Register_DEQUANTIZE(), + ParseDequantize); + } + + TfLiteStatus AddEqual() { + return AddBuiltin(BuiltinOperator_EQUAL, + tflite::ops::micro::Register_EQUAL(), ParseEqual); + } + + TfLiteStatus AddFloor() { + return AddBuiltin(BuiltinOperator_FLOOR, + tflite::ops::micro::Register_FLOOR(), ParseFloor); + } + + TfLiteStatus AddFullyConnected() { + return AddBuiltin(BuiltinOperator_FULLY_CONNECTED, + tflite::ops::micro::Register_FULLY_CONNECTED(), + ParseFullyConnected); + } + + TfLiteStatus AddGreater() { + return AddBuiltin(BuiltinOperator_GREATER, + tflite::ops::micro::Register_GREATER(), ParseGreater); + } + + TfLiteStatus AddGreaterEqual() { + return AddBuiltin(BuiltinOperator_GREATER_EQUAL, + tflite::ops::micro::Register_GREATER_EQUAL(), + ParseGreaterEqual); + } + + TfLiteStatus AddHardSwish() { + return AddBuiltin(BuiltinOperator_HARD_SWISH, + tflite::ops::micro::Register_HARD_SWISH(), + ParseHardSwish); + } + + TfLiteStatus AddL2Normalization() { + return AddBuiltin(BuiltinOperator_L2_NORMALIZATION, + tflite::ops::micro::Register_L2_NORMALIZATION(), + ParseL2Normalization); + } + + TfLiteStatus AddLess() { + return AddBuiltin(BuiltinOperator_LESS, tflite::ops::micro::Register_LESS(), + ParseLess); + } + + TfLiteStatus AddLessEqual() { + return AddBuiltin(BuiltinOperator_LESS_EQUAL, + tflite::ops::micro::Register_LESS_EQUAL(), + ParseLessEqual); + } + + TfLiteStatus AddLog() { + return AddBuiltin(BuiltinOperator_LOG, tflite::ops::micro::Register_LOG(), + ParseLog); + } + + TfLiteStatus AddLogicalAnd() { + return AddBuiltin(BuiltinOperator_LOGICAL_AND, + tflite::ops::micro::Register_LOGICAL_AND(), + ParseLogicalAnd); + } + + TfLiteStatus AddLogicalNot() { + return AddBuiltin(BuiltinOperator_LOGICAL_NOT, + tflite::ops::micro::Register_LOGICAL_NOT(), + ParseLogicalNot); + } + + TfLiteStatus AddLogicalOr() { + return AddBuiltin(BuiltinOperator_LOGICAL_OR, + tflite::ops::micro::Register_LOGICAL_OR(), + ParseLogicalOr); + } + + TfLiteStatus AddLogistic() { + return AddBuiltin(BuiltinOperator_LOGISTIC, + tflite::ops::micro::Register_LOGISTIC(), ParseLogistic); + } + + TfLiteStatus AddMaximum() { + return AddBuiltin(BuiltinOperator_MAXIMUM, + tflite::ops::micro::Register_MAXIMUM(), ParseMaximum); + } + + TfLiteStatus AddMaxPool2D() { + return AddBuiltin(BuiltinOperator_MAX_POOL_2D, + tflite::ops::micro::Register_MAX_POOL_2D(), ParsePool); + } + + TfLiteStatus AddMean() { + return AddBuiltin(BuiltinOperator_MEAN, tflite::ops::micro::Register_MEAN(), + ParseReducer); + } + + TfLiteStatus AddMinimum() { + return AddBuiltin(BuiltinOperator_MINIMUM, + tflite::ops::micro::Register_MINIMUM(), ParseMinimum); + } + + TfLiteStatus AddMul() { + return AddBuiltin(BuiltinOperator_MUL, tflite::ops::micro::Register_MUL(), + ParseMul); + } + + TfLiteStatus AddNeg() { + return AddBuiltin(BuiltinOperator_NEG, tflite::ops::micro::Register_NEG(), + ParseNeg); + } + + TfLiteStatus AddNotEqual() { + return AddBuiltin(BuiltinOperator_NOT_EQUAL, + tflite::ops::micro::Register_NOT_EQUAL(), ParseNotEqual); + } + + TfLiteStatus AddPack() { + return AddBuiltin(BuiltinOperator_PACK, tflite::ops::micro::Register_PACK(), + ParsePack); + } + + TfLiteStatus AddPad() { + return AddBuiltin(BuiltinOperator_PAD, tflite::ops::micro::Register_PAD(), + ParsePad); + } + + TfLiteStatus AddPadV2() { + return AddBuiltin(BuiltinOperator_PADV2, + tflite::ops::micro::Register_PADV2(), ParsePadV2); + } + + TfLiteStatus AddPrelu() { + return AddBuiltin(BuiltinOperator_PRELU, + tflite::ops::micro::Register_PRELU(), ParsePrelu); + } + + TfLiteStatus AddQuantize() { + return AddBuiltin(BuiltinOperator_QUANTIZE, + tflite::ops::micro::Register_QUANTIZE(), ParseQuantize); + } + + TfLiteStatus AddRelu() { + return AddBuiltin(BuiltinOperator_RELU, tflite::ops::micro::Register_RELU(), + ParseRelu); + } + + TfLiteStatus AddRelu6() { + return AddBuiltin(BuiltinOperator_RELU6, + tflite::ops::micro::Register_RELU6(), ParseRelu6); + } + + TfLiteStatus AddReshape() { + return AddBuiltin(BuiltinOperator_RESHAPE, + tflite::ops::micro::Register_RESHAPE(), ParseReshape); + } + + TfLiteStatus AddResizeNearestNeighbor() { + return AddBuiltin(BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, + tflite::ops::micro::Register_RESIZE_NEAREST_NEIGHBOR(), + ParseResizeNearestNeighbor); + } + + TfLiteStatus AddRound() { + return AddBuiltin(BuiltinOperator_ROUND, + tflite::ops::micro::Register_ROUND(), ParseRound); + } + + TfLiteStatus AddRsqrt() { + return AddBuiltin(BuiltinOperator_RSQRT, + tflite::ops::micro::Register_RSQRT(), ParseRsqrt); + } + + TfLiteStatus AddSin() { + return AddBuiltin(BuiltinOperator_SIN, tflite::ops::micro::Register_SIN(), + ParseSin); + } + + TfLiteStatus AddSoftmax() { + return AddBuiltin(BuiltinOperator_SOFTMAX, + tflite::ops::micro::Register_SOFTMAX(), ParseSoftmax); + } + + TfLiteStatus AddSplit() { + return AddBuiltin(BuiltinOperator_SPLIT, + tflite::ops::micro::Register_SPLIT(), ParseSplit); + } + + TfLiteStatus AddSqrt() { + return AddBuiltin(BuiltinOperator_SQRT, tflite::ops::micro::Register_SQRT(), + ParseSqrt); + } + + TfLiteStatus AddSquare() { + return AddBuiltin(BuiltinOperator_SQUARE, + tflite::ops::micro::Register_SQUARE(), ParseSquare); + } + + TfLiteStatus AddStridedSlice() { + return AddBuiltin(BuiltinOperator_STRIDED_SLICE, + tflite::ops::micro::Register_STRIDED_SLICE(), + ParseStridedSlice); + } + + TfLiteStatus AddSub() { + return AddBuiltin(BuiltinOperator_SUB, tflite::ops::micro::Register_SUB(), + ParseSub); + } + + TfLiteStatus AddSvdf() { + return AddBuiltin(BuiltinOperator_SVDF, tflite::ops::micro::Register_SVDF(), + ParseSvdf); + } + + TfLiteStatus AddTanh() { + return AddBuiltin(BuiltinOperator_TANH, tflite::ops::micro::Register_TANH(), + ParseTanh); + } + + TfLiteStatus AddUnpack() { + return AddBuiltin(BuiltinOperator_UNPACK, + tflite::ops::micro::Register_UNPACK(), ParseUnpack); + } + + unsigned int GetRegistrationLength() { return registrations_len_; } + + private: + TfLiteStatus AddBuiltin(tflite::BuiltinOperator op, + const TfLiteRegistration& registration, + MicroOpResolver::BuiltinParseFunction parser) { + if (op == BuiltinOperator_CUSTOM) { + if (error_reporter_ != nullptr) { + TF_LITE_REPORT_ERROR(error_reporter_, + "Invalid parameter BuiltinOperator_CUSTOM to the " + "AddBuiltin function."); + } + return kTfLiteError; + } + + if (FindOp(op) != nullptr) { + if (error_reporter_ != nullptr) { + TF_LITE_REPORT_ERROR(error_reporter_, + "Calling AddBuiltin with the same op more than " + "once is not supported (Op: #%d).", + op); + } + return kTfLiteError; + } + + if (registrations_len_ >= tOpCount) { + if (error_reporter_) { + TF_LITE_REPORT_ERROR(error_reporter_, + "Couldn't register builtin op #%d, resolver size " + "is too small (%d).", + op, tOpCount); + } + return kTfLiteError; + } + + registrations_[registrations_len_] = registration; + // Strictly speaking, the builtin_code is not necessary for TFLM but filling + // it in regardless. + registrations_[registrations_len_].builtin_code = op; + registrations_len_++; + + builtin_codes_[num_buitin_ops_] = op; + builtin_parsers_[num_buitin_ops_] = parser; + num_buitin_ops_++; + + return kTfLiteOk; + } + + TfLiteRegistration registrations_[tOpCount]; + unsigned int registrations_len_ = 0; + + // Arrays (and counter) to store the builtin codes and their corresponding + // parse functions as these are registered with the Op Resolver. + BuiltinOperator builtin_codes_[tOpCount]; + MicroOpResolver::BuiltinParseFunction builtin_parsers_[tOpCount]; + unsigned int num_buitin_ops_ = 0; + + ErrorReporter* error_reporter_; + + TF_LITE_REMOVE_VIRTUAL_DELETE +}; + +}; // namespace tflite + +#endif // TENSORFLOW_LITE_MICRO_MICRO_MUTABLE_OP_RESOLVER_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/micro_op_resolver.h b/components/tflite_micro/tensorflow/lite/micro/micro_op_resolver.h new file mode 100644 index 00000000..757b6b89 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/micro_op_resolver.h @@ -0,0 +1,73 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_MICRO_MICRO_OP_RESOLVER_H_ +#define TENSORFLOW_LITE_MICRO_MICRO_OP_RESOLVER_H_ + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/core/api/error_reporter.h" +#include "tensorflow/lite/core/api/flatbuffer_conversions.h" +#include "tensorflow/lite/core/api/op_resolver.h" +#include "tensorflow/lite/schema/schema_generated.h" + +namespace tflite { + +// This is an interface for the OpResolver for TFLiteMicro. The differences from +// the TFLite OpResolver base class are to: +// * explicitly remove support for Op versions +// * allow for finer grained registration of the Builtin Ops to reduce code +// size for TFLiteMicro. +// +// We need an interface class instead of directly using MicroMutableOpResolver +// because MicroMutableOpResolver is a class template with the number of +// registered Ops as the template parameter. +class MicroOpResolver : public OpResolver { + public: + typedef TfLiteStatus (*BuiltinParseFunction)(const Operator* op, + ErrorReporter* error_reporter, + BuiltinDataAllocator* allocator, + void** builtin_data); + + // Returns the Op registration struct corresponding to the enum code from the + // flatbuffer schema. Returns nullptr if the op is not found or if op == + // BuiltinOperator_CUSTOM. + virtual const TfLiteRegistration* FindOp(BuiltinOperator op) const = 0; + + // Returns the Op registration struct corresponding to the custom operator by + // name. + virtual const TfLiteRegistration* FindOp(const char* op) const = 0; + + // This implementation exists for compatibility with the OpResolver base class + // and disregards the version parameter. + const TfLiteRegistration* FindOp(BuiltinOperator op, + int version) const final { + return FindOp(op); + } + + // This implementation exists for compatibility with the OpResolver base class + // and disregards the version parameter. + const TfLiteRegistration* FindOp(const char* op, int version) const final { + return FindOp(op); + } + + // Returns the operator specific parsing function for the OpData for a + // BuiltinOperator (if registered), else nullptr. + virtual BuiltinParseFunction GetOpDataParser(BuiltinOperator op) const = 0; + + ~MicroOpResolver() override {} +}; + +} // namespace tflite + +#endif // TENSORFLOW_LITE_MICRO_MICRO_OP_RESOLVER_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/micro_optional_debug_tools.cc b/components/tflite_micro/tensorflow/lite/micro/micro_optional_debug_tools.cc new file mode 100644 index 00000000..a2eb067a --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/micro_optional_debug_tools.cc @@ -0,0 +1,186 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#include "tensorflow/lite/micro/micro_optional_debug_tools.h" + +// `cinttypes` requires `__STDC_FORMAT_MACROS` to be defined to expose `PRId32`. +#ifndef __STDC_FORMAT_MACROS +#define __STDC_FORMAT_MACROS +#endif + +#include +#include +#include +#include +#include + +#include "flatbuffers/flatbuffers.h" // from @flatbuffers +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/micro/memory_helpers.h" +#include "tensorflow/lite/micro/micro_allocator.h" +#include "tensorflow/lite/micro/micro_interpreter.h" +#include "tensorflow/lite/schema/schema_generated.h" + +namespace tflite { +namespace { + +std::vector flatbuffersVector2StdVector( + const flatbuffers::Vector& fVector) { + std::vector stdVector; + stdVector.reserve(fVector.size()); + for (size_t i = 0; i < fVector.size(); i++) { + stdVector.push_back(fVector.Get(i)); + } + return stdVector; +} + +void PrintIntVector(const std::vector& v) { + for (const auto& it : v) { + printf(" %d", it); + } + printf("\n"); +} + +void PrintTfLiteIntVector(const TfLiteIntArray* v) { + if (!v) { + printf(" (null)\n"); + return; + } + for (int k = 0; k < v->size; k++) { + printf(" %d", v->data[k]); + } + printf("\n"); +} + +const char* TensorTypeName(TfLiteType type) { + switch (type) { + case kTfLiteNoType: + return "kTfLiteNoType"; + case kTfLiteFloat32: + return "kTfLiteFloat32"; + case kTfLiteInt32: + return "kTfLiteInt32"; + case kTfLiteUInt8: + return "kTfLiteUInt8"; + case kTfLiteInt8: + return "kTfLiteInt8"; + case kTfLiteInt64: + return "kTfLiteInt64"; + case kTfLiteString: + return "kTfLiteString"; + case kTfLiteBool: + return "kTfLiteBool"; + case kTfLiteInt16: + return "kTfLiteInt16"; + case kTfLiteComplex64: + return "kTfLiteComplex64"; + case kTfLiteComplex128: + return "kTfLiteComplex128"; + case kTfLiteFloat16: + return "kTfLiteFloat16"; + case kTfLiteFloat64: + return "kTfLiteFloat64"; + } + return "(invalid)"; +} + +const char* AllocTypeName(TfLiteAllocationType type) { + switch (type) { + case kTfLiteMemNone: + return "kTfLiteMemNone"; + case kTfLiteMmapRo: + return "kTfLiteMmapRo"; + case kTfLiteDynamic: + return "kTfLiteDynamic"; + case kTfLiteArenaRw: + return "kTfLiteArenaRw"; + case kTfLiteArenaRwPersistent: + return "kTfLiteArenaRwPersistent"; + case kTfLitePersistentRo: + return "kTfLitePersistentRo"; + } + return "(invalid)"; +} +} // namespace + +// Helper function to print model flatbuffer data. This function is not called +// by default. Hence it's not linked in to the final binary code. +void PrintModelData(const Model* model, ErrorReporter* error_reporter) { +#ifndef TF_LITE_STRIP_ERROR_STRINGS + auto* subgraphs = model->subgraphs(); + const SubGraph* subgraph = (*subgraphs)[0]; + const flatbuffers::Vector>* tensors = + subgraph->tensors(); + const flatbuffers::Vector>* buffers = + model->buffers(); + TF_LITE_REPORT_ERROR(error_reporter, "==== Model info: ====="); + for (size_t i = 0; i < tensors->size(); ++i) { + const tflite::Tensor& flatbuffer_tensor = *tensors->Get(i); + size_t type_size, tensor_size; + auto* buffer = (*buffers)[flatbuffer_tensor.buffer()]; + auto* array = buffer->data(); + int array_size = 0; + if (array) { + array_size = array->size(); + } + BytesRequiredForTensor(flatbuffer_tensor, &tensor_size, &type_size, + error_reporter); + TF_LITE_REPORT_ERROR( + error_reporter, "Tensor index: %d arena tensor %d size %d ", i, + !array_size && !flatbuffer_tensor.is_variable(), tensor_size); + } +#endif +} + +// Prints a dump of what tensors and what nodes are in the interpreter. +void PrintInterpreterState(MicroInterpreter* interpreter) { + printf("Interpreter has %zu tensors and %zu nodes\n", + interpreter->tensors_size(), interpreter->operators_size()); + printf("Inputs:"); + PrintIntVector(flatbuffersVector2StdVector(interpreter->inputs())); + printf("Outputs:"); + PrintIntVector(flatbuffersVector2StdVector(interpreter->outputs())); + printf("\n"); + + for (size_t tensor_index = 0; tensor_index < interpreter->tensors_size(); + tensor_index++) { + TfLiteTensor* tensor = interpreter->tensor(static_cast(tensor_index)); + printf("Tensor %3zu %10s %15s %10zu bytes (%4.1f MB) ", tensor_index, + TensorTypeName(tensor->type), AllocTypeName(tensor->allocation_type), + tensor->bytes, static_cast(tensor->bytes / (1 << 20))); + PrintTfLiteIntVector(tensor->dims); + } + printf("\n"); + + for (size_t node_index = 0; node_index < interpreter->operators_size(); + node_index++) { + const NodeAndRegistration node_and_reg = + interpreter->node_and_registration(static_cast(node_index)); + const TfLiteNode& node = node_and_reg.node; + const TfLiteRegistration* reg = node_and_reg.registration; + if (reg->custom_name != nullptr) { + printf("Node %3zu Operator Custom Name %s\n", node_index, + reg->custom_name); + } else { + printf("Node %3zu Operator Builtin Code %3" PRId32 " %s\n", node_index, + reg->builtin_code, EnumNamesBuiltinOperator()[reg->builtin_code]); + } + printf(" Inputs:"); + PrintTfLiteIntVector(node.inputs); + printf(" Outputs:"); + PrintTfLiteIntVector(node.outputs); + } +} + +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/micro_optional_debug_tools.h b/components/tflite_micro/tensorflow/lite/micro/micro_optional_debug_tools.h new file mode 100644 index 00000000..cc9630e6 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/micro_optional_debug_tools.h @@ -0,0 +1,30 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +// Optional debugging functionality. For small sized binaries, these are not +// needed. +#ifndef TENSORFLOW_LITE_MICRO_MICRO_OPTIONAL_DEBUG_TOOLS_H_ +#define TENSORFLOW_LITE_MICRO_MICRO_OPTIONAL_DEBUG_TOOLS_H_ + +#include "tensorflow/lite/micro/micro_interpreter.h" + +namespace tflite { +// Helper function to print model flatbuffer data. This function is not called +// by default. Hence it's not linked in to the final binary code. +void PrintModelData(const Model* model, ErrorReporter* error_reporter); +// Prints a dump of what tensors and what nodes are in the interpreter. +void PrintInterpreterState(MicroInterpreter* interpreter); +} // namespace tflite + +#endif // TENSORFLOW_LITE_MICRO_MICRO_OPTIONAL_DEBUG_TOOLS_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/micro_profiler.cc b/components/tflite_micro/tensorflow/lite/micro/micro_profiler.cc new file mode 100644 index 00000000..83fb9f64 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/micro_profiler.cc @@ -0,0 +1,42 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/micro/micro_profiler.h" + +#include "tensorflow/lite/kernels/internal/compatibility.h" +#include "tensorflow/lite/micro/micro_time.h" + +namespace tflite { + +MicroProfiler::MicroProfiler(tflite::ErrorReporter* reporter) + : reporter_(reporter) {} + +uint32_t MicroProfiler::BeginEvent(const char* tag, EventType event_type, + int64_t event_metadata1, + int64_t event_metadata2) { + start_time_ = GetCurrentTimeTicks(); + TFLITE_DCHECK(tag != nullptr); + event_tag_ = tag; + return 0; +} + +void MicroProfiler::EndEvent(uint32_t event_handle) { +#ifndef TF_LITE_STRIP_ERROR_STRINGS + int32_t end_time = GetCurrentTimeTicks(); + TF_LITE_REPORT_ERROR(reporter_, "%s took %d cycles\n", event_tag_, + end_time - start_time_); +#endif +} +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/micro_profiler.h b/components/tflite_micro/tensorflow/lite/micro/micro_profiler.h new file mode 100644 index 00000000..a3144b3a --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/micro_profiler.h @@ -0,0 +1,71 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_LITE_MICRO_MICRO_PROFILER_H_ +#define TENSORFLOW_LITE_MICRO_MICRO_PROFILER_H_ + +#include "tensorflow/lite/core/api/error_reporter.h" +#include "tensorflow/lite/core/api/profiler.h" +#include "tensorflow/lite/micro/compatibility.h" + +namespace tflite { + +// MicroProfiler creates a common way to gain fine-grained insight into runtime +// performance. Bottleck operators can be identified along with slow code +// sections. This can be used in conjunction with running the relevant micro +// benchmark to evaluate end-to-end performance. +// +// Usage example: +// MicroProfiler profiler(error_reporter); +// { +// ScopedProfile scoped_profile(profiler, tag); +// work_to_profile(); +// } +// +// This will call the following methods in order: +// int event_handle = profiler->BeginEvent(op_name, EventType::DEFAULT, 0) +// work_to_profile(); +// profiler->EndEvent(event_handle) +class MicroProfiler : public tflite::Profiler { + public: + explicit MicroProfiler(tflite::ErrorReporter* reporter); + ~MicroProfiler() override = default; + + // AddEvent is unused for Tf Micro. + void AddEvent(const char* tag, EventType event_type, uint64_t start, + uint64_t end, int64_t event_metadata1, + int64_t event_metadata2) override{}; + + // BeginEvent followed by code followed by EndEvent will profile the code + // enclosed. Multiple concurrent events are unsupported, so the return value + // is always 0. Event_metadata1 and event_metadata2 are unused. The tag + // pointer must be valid until EndEvent is called. + uint32_t BeginEvent(const char* tag, EventType event_type, + int64_t event_metadata1, + int64_t event_metadata2) override; + + // Event_handle is ignored since TF Micro does not support concurrent events. + void EndEvent(uint32_t event_handle) override; + + private: + tflite::ErrorReporter* reporter_; + int32_t start_time_; + const char* event_tag_; + TF_LITE_REMOVE_VIRTUAL_DELETE +}; + +} // namespace tflite + +#endif // TENSORFLOW_LITE_MICRO_MICRO_PROFILER_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/micro_string.cc b/components/tflite_micro/tensorflow/lite/micro/micro_string.cc new file mode 100644 index 00000000..6d6495ed --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/micro_string.cc @@ -0,0 +1,305 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +// Implements debug logging for numbers by converting them into strings and then +// calling the main DebugLog(char*) function. These are separated into a +// different file so that platforms can just implement the string output version +// of DebugLog() and then get the numerical variations without requiring any +// more code. + +#include "tensorflow/lite/micro/micro_string.h" + +#include +#include + +namespace { + +// Int formats can need up to 10 bytes for the value plus a single byte for the +// sign. +constexpr int kMaxIntCharsNeeded = 10 + 1; +// Hex formats can need up to 8 bytes for the value plus two bytes for the "0x". +constexpr int kMaxHexCharsNeeded = 8 + 2; + +// Float formats can need up to 7 bytes for the fraction plus 3 bytes for "x2^" +// plus 3 bytes for the exponent and a single sign bit. +constexpr float kMaxFloatCharsNeeded = 7 + 3 + 3 + 1; + +// All input buffers to the number conversion functions must be this long. +const int kFastToBufferSize = 48; + +// Reverses a zero-terminated string in-place. +char* ReverseStringInPlace(char* start, char* end) { + char* p1 = start; + char* p2 = end - 1; + while (p1 < p2) { + char tmp = *p1; + *p1++ = *p2; + *p2-- = tmp; + } + return start; +} + +// Appends a string to a string, in-place. You need to pass in the maximum +// string length as the second argument. +char* StrCatStr(char* main, int main_max_length, const char* to_append) { + char* current = main; + while (*current != 0) { + ++current; + } + char* current_end = main + (main_max_length - 1); + while ((*to_append != 0) && (current < current_end)) { + *current = *to_append; + ++current; + ++to_append; + } + *current = 0; + return current; +} + +// Populates the provided buffer with an ASCII representation of the number. +char* FastUInt32ToBufferLeft(uint32_t i, char* buffer, int base) { + char* start = buffer; + do { + int32_t digit = i % base; + char character; + if (digit < 10) { + character = '0' + digit; + } else { + character = 'a' + (digit - 10); + } + *buffer++ = character; + i /= base; + } while (i > 0); + *buffer = 0; + ReverseStringInPlace(start, buffer); + return buffer; +} + +// Populates the provided buffer with an ASCII representation of the number. +char* FastInt32ToBufferLeft(int32_t i, char* buffer) { + uint32_t u = i; + if (i < 0) { + *buffer++ = '-'; + u = -u; + } + return FastUInt32ToBufferLeft(u, buffer, 10); +} + +// Converts a number to a string and appends it to another. +char* StrCatInt32(char* main, int main_max_length, int32_t number) { + char number_string[kFastToBufferSize]; + FastInt32ToBufferLeft(number, number_string); + return StrCatStr(main, main_max_length, number_string); +} + +// Converts a number to a string and appends it to another. +char* StrCatUInt32(char* main, int main_max_length, uint32_t number, int base) { + char number_string[kFastToBufferSize]; + FastUInt32ToBufferLeft(number, number_string, base); + return StrCatStr(main, main_max_length, number_string); +} + +// Populates the provided buffer with ASCII representation of the float number. +// Avoids the use of any floating point instructions (since these aren't +// supported on many microcontrollers) and as a consequence prints values with +// power-of-two exponents. +char* FastFloatToBufferLeft(float f, char* buffer) { + char* current = buffer; + char* current_end = buffer + (kFastToBufferSize - 1); + // Access the bit fields of the floating point value to avoid requiring any + // float instructions. These constants are derived from IEEE 754. + const uint32_t sign_mask = 0x80000000; + const uint32_t exponent_mask = 0x7f800000; + const int32_t exponent_shift = 23; + const int32_t exponent_bias = 127; + const uint32_t fraction_mask = 0x007fffff; + const uint32_t u = *reinterpret_cast(&f); + const int32_t exponent = + ((u & exponent_mask) >> exponent_shift) - exponent_bias; + const uint32_t fraction = (u & fraction_mask); + // Expect ~0x2B1B9D3 for fraction. + if (u & sign_mask) { + *current = '-'; + current += 1; + } + *current = 0; + // These are special cases for infinities and not-a-numbers. + if (exponent == 128) { + if (fraction == 0) { + current = StrCatStr(current, (current_end - current), "Inf"); + return current; + } else { + current = StrCatStr(current, (current_end - current), "NaN"); + return current; + } + } + // 0x007fffff (8388607) represents 0.99... for the fraction, so to print the + // correct decimal digits we need to scale our value before passing it to the + // conversion function. This scale should be 10000000/8388608 = 1.1920928955. + // We can approximate this using multiply-adds and right-shifts using the + // values in this array. The 1. portion of the number string is printed out + // in a fixed way before the fraction, below. + const int32_t scale_shifts_size = 13; + const int8_t scale_shifts[13] = {3, 4, 8, 11, 13, 14, 17, + 18, 19, 20, 21, 22, 23}; + uint32_t scaled_fraction = fraction; + for (int i = 0; i < scale_shifts_size; ++i) { + scaled_fraction += (fraction >> scale_shifts[i]); + } + *current = '1'; + current += 1; + *current = '.'; + current += 1; + *current = 0; + + // Prepend leading zeros to fill in all 7 bytes of the fraction. Truncate + // zeros off the end of the fraction. Every fractional value takes 7 bytes. + // For example, 2500 would be written into the buffer as 0002500 since it + // represents .00025. + constexpr int kMaxFractionalDigits = 7; + + // Abort early if there is not enough space in the buffer. + if (current_end - current <= kMaxFractionalDigits) { + return current; + } + + // Pre-fill buffer with zeros to ensure zero-truncation works properly. + for (int i = 1; i < kMaxFractionalDigits; i++) { + *(current + i) = '0'; + } + + // Track how large the fraction is to add leading zeros. + char* previous = current; + current = StrCatUInt32(current, (current_end - current), scaled_fraction, 10); + int fraction_digits = current - previous; + int leading_zeros = kMaxFractionalDigits - fraction_digits; + + // Overwrite the null terminator from StrCatUInt32 to ensure zero-trunctaion + // works properly. + *current = '0'; + + // Shift fraction values and prepent zeros. + for (int i = 0; i < fraction_digits; i++) { + current--; + *(current + leading_zeros) = *current; + *current = '0'; + } + current += kMaxFractionalDigits; + + // Truncate trailing zeros for cleaner logs. Ensure we leave at least one + // fractional character for the case when scaled_fraction is 0. + while (*(current - 1) == '0' && (current - 1) > previous) { + current--; + } + *current = 0; + current = StrCatStr(current, (current_end - current), "*2^"); + current = StrCatInt32(current, (current_end - current), exponent); + return current; +} + +int FormatInt32(char* output, int32_t i) { + return static_cast(FastInt32ToBufferLeft(i, output) - output); +} + +int FormatUInt32(char* output, uint32_t i) { + return static_cast(FastUInt32ToBufferLeft(i, output, 10) - output); +} + +int FormatHex(char* output, uint32_t i) { + return static_cast(FastUInt32ToBufferLeft(i, output, 16) - output); +} + +int FormatFloat(char* output, float i) { + return static_cast(FastFloatToBufferLeft(i, output) - output); +} + +} // namespace + +extern "C" int MicroVsnprintf(char* output, int len, const char* format, + va_list args) { + int output_index = 0; + const char* current = format; + // One extra character must be left for the null terminator. + const int usable_length = len - 1; + while (*current != '\0' && output_index < usable_length) { + if (*current == '%') { + current++; + switch (*current) { + case 'd': + // Cut off log message if format could exceed log buffer length. + if (usable_length - output_index < kMaxIntCharsNeeded) { + output[output_index++] = '\0'; + return output_index; + } + output_index += + FormatInt32(&output[output_index], va_arg(args, int32_t)); + current++; + break; + case 'u': + if (usable_length - output_index < kMaxIntCharsNeeded) { + output[output_index++] = '\0'; + return output_index; + } + output_index += + FormatUInt32(&output[output_index], va_arg(args, uint32_t)); + current++; + break; + case 'x': + if (usable_length - output_index < kMaxHexCharsNeeded) { + output[output_index++] = '\0'; + return output_index; + } + output[output_index++] = '0'; + output[output_index++] = 'x'; + output_index += + FormatHex(&output[output_index], va_arg(args, uint32_t)); + current++; + break; + case 'f': + if (usable_length - output_index < kMaxFloatCharsNeeded) { + output[output_index++] = '\0'; + return output_index; + } + output_index += + FormatFloat(&output[output_index], va_arg(args, double)); + current++; + break; + case '%': + output[output_index++] = *current++; + break; + case 's': + char* string = va_arg(args, char*); + int string_idx = 0; + while (string_idx + output_index < usable_length && + string[string_idx] != '\0') { + output[output_index++] = string[string_idx++]; + } + current++; + } + } else { + output[output_index++] = *current++; + } + } + output[output_index++] = '\0'; + return output_index; +} + +extern "C" int MicroSnprintf(char* output, int len, const char* format, ...) { + va_list args; + va_start(args, format); + int bytes_written = MicroVsnprintf(output, len, format, args); + va_end(args); + return bytes_written; +} diff --git a/components/tflite_micro/tensorflow/lite/micro/micro_string.h b/components/tflite_micro/tensorflow/lite/micro/micro_string.h new file mode 100644 index 00000000..59303e82 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/micro_string.h @@ -0,0 +1,33 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_MICRO_MICRO_STRING_H_ +#define TENSORFLOW_LITE_MICRO_MICRO_STRING_H_ + +#include + +// Implements simple string formatting for numeric types. Returns the number of +// bytes written to output. +extern "C" { +// Functionally equivalent to vsnprintf, trimmed down for TFLite Micro. +// MicroSnprintf() is implemented using MicroVsnprintf(). +int MicroVsnprintf(char* output, int len, const char* format, va_list args); +// Functionally equavalent to snprintf, trimmed down for TFLite Micro. +// For example, MicroSnprintf(buffer, 10, "int %d", 10) will put the string +// "int 10" in the buffer. +// Floating point values are logged in exponent notation (1.XXX*2^N). +int MicroSnprintf(char* output, int len, const char* format, ...); +} + +#endif // TENSORFLOW_LITE_MICRO_MICRO_STRING_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/micro_time.cc b/components/tflite_micro/tensorflow/lite/micro/micro_time.cc new file mode 100644 index 00000000..09119de8 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/micro_time.cc @@ -0,0 +1,44 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +// Reference implementation of timer functions. Platforms are not required to +// implement these timer methods, but they are required to enable profiling. + +// On platforms that have a POSIX stack or C library, it can be written using +// methods from or clock() from . + +// To add an equivalent function for your own platform, create your own +// implementation file, and place it in a subfolder with named after the OS +// you're targeting. For example, see the Cortex M bare metal version in +// tensorflow/lite/micro/bluepill/micro_time.cc or the mbed one on +// tensorflow/lite/micro/mbed/micro_time.cc. + +#include "tensorflow/lite/micro/micro_time.h" + +namespace tflite { + +// Reference implementation of the ticks_per_second() function that's required +// for a platform to support Tensorflow Lite for Microcontrollers profiling. +// This returns 0 by default because timing is an optional feature that builds +// without errors on platforms that do not need it. +int32_t ticks_per_second() { return 0; } + +// Reference implementation of the GetCurrentTimeTicks() function that's +// required for a platform to support Tensorflow Lite for Microcontrollers +// profiling. This returns 0 by default because timing is an optional feature +// that builds without errors on platforms that do not need it. +int32_t GetCurrentTimeTicks() { return 0; } + +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/micro_time.h b/components/tflite_micro/tensorflow/lite/micro/micro_time.h new file mode 100644 index 00000000..465490a8 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/micro_time.h @@ -0,0 +1,31 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_MICRO_MICRO_TIME_H_ +#define TENSORFLOW_LITE_MICRO_MICRO_TIME_H_ + +#include + +namespace tflite { + +// These functions should be implemented by each target platform, and provide an +// accurate tick count along with how many ticks there are per second. +int32_t ticks_per_second(); + +// Return time in ticks. The meaning of a tick varies per platform. +int32_t GetCurrentTimeTicks(); + +} // namespace tflite + +#endif // TENSORFLOW_LITE_MICRO_MICRO_TIME_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/micro_utils.cc b/components/tflite_micro/tensorflow/lite/micro/micro_utils.cc new file mode 100644 index 00000000..ff885fa0 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/micro_utils.cc @@ -0,0 +1,279 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/micro/micro_utils.h" + +#include +#include +#include + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/op_macros.h" + +namespace tflite { + +namespace { + +static const uint8_t kAsymmetricUInt8Min = 0; +static const uint8_t kAsymmetricUInt8Max = UINT8_MAX; +static const uint8_t kSymmetricUInt8Min = 1; +static const uint8_t kSymmetricUInt8Max = UINT8_MAX; +static const int8_t kAsymmetricInt8Min = INT8_MIN; +static const int8_t kAsymmetricInt8Max = INT8_MAX; +static const int kSymmetricInt8Scale = kAsymmetricInt8Max; + +static const int16_t kAsymmetricInt16Min = INT16_MIN; +static const int16_t kAsymmetricInt16Max = INT16_MAX; +static const int kSymmetricInt16Scale = kAsymmetricInt16Max; + +static const int32_t kAsymmetricInt32Max = INT32_MAX; +static const int kSymmetricInt32Scale = kAsymmetricInt32Max; + +} // namespace + +int ElementCount(const TfLiteIntArray& dims) { + int result = 1; + for (int i = 0; i < dims.size; ++i) { + result *= dims.data[i]; + } + return result; +} + +// Converts a float value into an unsigned eight-bit quantized value. +uint8_t FloatToAsymmetricQuantizedUInt8(const float value, const float scale, + const int zero_point) { + int32_t result = round(value / scale) + zero_point; + if (result < kAsymmetricUInt8Min) { + result = kAsymmetricUInt8Min; + } + if (result > kAsymmetricUInt8Max) { + result = kAsymmetricUInt8Max; + } + return result; +} + +uint8_t FloatToSymmetricQuantizedUInt8(const float value, const float scale) { + int32_t result = round(value / scale); + if (result < kSymmetricUInt8Min) { + result = kSymmetricUInt8Min; + } + if (result > kSymmetricUInt8Max) { + result = kSymmetricUInt8Max; + } + return result; +} + +int8_t FloatToAsymmetricQuantizedInt8(const float value, const float scale, + const int zero_point) { + int32_t result = round(value / scale) + zero_point; + if (result < kAsymmetricInt8Min) { + result = kAsymmetricInt8Min; + } + if (result > kAsymmetricInt8Max) { + result = kAsymmetricInt8Max; + } + return result; +} + +int16_t FloatToAsymmetricQuantizedInt16(const float value, const float scale, + const int zero_point) { + int32_t result = round(value / scale) + zero_point; + if (result < kAsymmetricInt16Min) { + result = kAsymmetricInt16Min; + } + if (result > kAsymmetricInt16Max) { + result = kAsymmetricInt16Max; + } + return result; +} + +int8_t FloatToSymmetricQuantizedInt8(const float value, const float scale) { + return FloatToAsymmetricQuantizedInt8(value, scale, 0.0f); +} + +int32_t FloatToSymmetricQuantizedInt32(const float value, const float scale) { + float quantized = round(value / scale); + if (static_cast(quantized) > INT_MAX) { + quantized = static_cast(INT_MAX); + } else if (quantized < INT_MIN) { + quantized = static_cast INT_MIN; + } + + return static_cast(quantized); +} + +void AsymmetricQuantize(const float* input, int8_t* output, int num_elements, + float scale, int zero_point) { + for (int i = 0; i < num_elements; i++) { + output[i] = FloatToAsymmetricQuantizedInt8(input[i], scale, zero_point); + } +} + +void AsymmetricQuantize(const float* input, uint8_t* output, int num_elements, + float scale, int zero_point) { + for (int i = 0; i < num_elements; i++) { + output[i] = FloatToAsymmetricQuantizedUInt8(input[i], scale, zero_point); + } +} + +void AsymmetricQuantize(const float* input, int16_t* output, int num_elements, + float scale, int zero_point) { + for (int i = 0; i < num_elements; i++) { + output[i] = FloatToAsymmetricQuantizedInt16(input[i], scale, zero_point); + } +} + +void SymmetricQuantize(const float* input, int32_t* output, int num_elements, + float scale) { + for (int i = 0; i < num_elements; i++) { + output[i] = FloatToSymmetricQuantizedInt32(input[i], scale); + } +} + +void SymmetricPerChannelQuantize(const float* input, int32_t* output, + int num_elements, int num_channels, + float* scales) { + int elements_per_channel = num_elements / num_channels; + for (int i = 0; i < num_channels; i++) { + for (int j = 0; j < elements_per_channel; j++) { + output[i * elements_per_channel + j] = FloatToSymmetricQuantizedInt32( + input[i * elements_per_channel + j], scales[i]); + } + } +} + +void SignedSymmetricPerChannelQuantize(const float* values, + TfLiteIntArray* dims, + int quantized_dimension, + int8_t* quantized_values, + float* scaling_factors) { + int input_size = ElementCount(*dims); + int channel_count = dims->data[quantized_dimension]; + int per_channel_size = input_size / channel_count; + + int stride; + int channel_stride; + if (quantized_dimension == 0) { + stride = 1; + channel_stride = per_channel_size; + } else if (quantized_dimension == 3) { + stride = channel_count; + channel_stride = 1; + } else { + TF_LITE_FATAL("quantized dimension must be 0 or 3"); + } + + // Calculate scales for each channel. + for (int channel = 0; channel < channel_count; channel++) { + float min = 0; + float max = 0; + + for (int i = 0; i < per_channel_size; i++) { + int idx = channel * channel_stride + i * stride; + min = fminf(min, values[idx]); + max = fmaxf(max, values[idx]); + } + scaling_factors[channel] = + fmaxf(fabs(min), fabs(max)) / kSymmetricInt8Scale; + for (int i = 0; i < per_channel_size; i++) { + int idx = channel * channel_stride + i * stride; + const int32_t quantized_value = + static_cast(roundf(values[idx] / scaling_factors[channel])); + // Clamp: just in case some odd numeric offset. + quantized_values[idx] = fminf( + kSymmetricInt8Scale, fmaxf(-kSymmetricInt8Scale, quantized_value)); + } + } +} + +void SignedSymmetricQuantize(const float* values, TfLiteIntArray* dims, + int8_t* quantized_values, float* scaling_factor) { + int input_size = ElementCount(*dims); + + float min = 0; + float max = 0; + for (int i = 0; i < input_size; i++) { + min = fminf(min, values[i]); + max = fmaxf(max, values[i]); + } + *scaling_factor = fmaxf(fabs(min), fabs(max)) / kSymmetricInt8Scale; + for (int i = 0; i < input_size; i++) { + const int32_t quantized_value = + static_cast(roundf(values[i] / *scaling_factor)); + // Clamp: just in case some odd numeric offset. + quantized_values[i] = fminf(kSymmetricInt8Scale, + fmaxf(-kSymmetricInt8Scale, quantized_value)); + } +} + +void SignedSymmetricQuantize(const float* values, TfLiteIntArray* dims, + int16_t* quantized_values, float* scaling_factor) { + int input_size = ElementCount(*dims); + + float min = 0; + float max = 0; + for (int i = 0; i < input_size; i++) { + min = fminf(min, values[i]); + max = fmaxf(max, values[i]); + } + *scaling_factor = fmaxf(fabs(min), fabs(max)) / kSymmetricInt16Scale; + for (int i = 0; i < input_size; i++) { + const int32_t quantized_value = + static_cast(roundf(values[i] / *scaling_factor)); + // Clamp: just in case some odd numeric offset. + quantized_values[i] = fminf(kSymmetricInt16Scale, + fmaxf(-kSymmetricInt16Scale, quantized_value)); + } +} + +void SignedSymmetricQuantize(const float* values, TfLiteIntArray* dims, + int32_t* quantized_values, float* scaling_factor) { + int input_size = ElementCount(*dims); + + float min = 0; + float max = 0; + for (int i = 0; i < input_size; i++) { + min = fminf(min, values[i]); + max = fmaxf(max, values[i]); + } + + *scaling_factor = + fmaxf(fabs(min), fabs(max)) / static_cast(kSymmetricInt32Scale); + for (int i = 0; i < input_size; i++) { + const int32_t quantized_value = + static_cast(roundf(values[i] / *scaling_factor)); + // Clamp: just in case some odd numeric offset. + quantized_values[i] = fminf( + static_cast(kSymmetricInt32Scale), + fmaxf(static_cast(-kSymmetricInt32Scale), quantized_value)); + } +} + +void SymmetricQuantize(const float* values, TfLiteIntArray* dims, + uint8_t* quantized_values, float* scaling_factor) { + SignedSymmetricQuantize(values, dims, + reinterpret_cast(quantized_values), + scaling_factor); +} + +void SymmetricDequantize(const int8_t* values, const int size, + const float dequantization_scale, + float* dequantized_values) { + for (int i = 0; i < size; ++i) { + dequantized_values[i] = values[i] * dequantization_scale; + } +} + +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/micro_utils.h b/components/tflite_micro/tensorflow/lite/micro/micro_utils.h new file mode 100644 index 00000000..24aebad8 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/micro_utils.h @@ -0,0 +1,110 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_LITE_MICRO_MICRO_UTILS_H_ +#define TENSORFLOW_LITE_MICRO_MICRO_UTILS_H_ + +#include + +#include "tensorflow/lite/c/common.h" + +namespace tflite { + +// Returns number of elements in the shape array. + +int ElementCount(const TfLiteIntArray& dims); + +uint8_t FloatToAsymmetricQuantizedUInt8(const float value, const float scale, + const int zero_point); + +uint8_t FloatToSymmetricQuantizedUInt8(const float value, const float scale); + +int8_t FloatToAsymmetricQuantizedInt8(const float value, const float scale, + const int zero_point); + +int16_t FloatToAsymmetricQuantizedInt16(const float value, const float scale, + const int zero_point); + +int8_t FloatToSymmetricQuantizedInt8(const float value, const float scale); + +// Converts a float value into a signed thirty-two-bit quantized value. Note +// that values close to max int and min int may see significant error due to +// a lack of floating point granularity for large values. +int32_t FloatToSymmetricQuantizedInt32(const float value, const float scale); + +// Helper methods to quantize arrays of floats to the desired format. +// +// There are several key flavors of quantization in TfLite: +// asymmetric symmetric per channel +// int8_t | X | X | X | +// uint8_t | X | X | | +// int16_t | X | | | +// int32_t | | X | X | +// +// The per-op quantization spec can be found here: +// https://www.tensorflow.org/lite/performance/quantization_spec + +void AsymmetricQuantize(const float* input, int8_t* output, int num_elements, + float scale, int zero_point = 0); + +void AsymmetricQuantize(const float* input, uint8_t* output, int num_elements, + float scale, int zero_point = 128); + +void AsymmetricQuantize(const float* input, int16_t* output, int num_elements, + float scale, int zero_point = 0); + +void SymmetricQuantize(const float* input, int32_t* output, int num_elements, + float scale); + +void SymmetricPerChannelQuantize(const float* input, int32_t* output, + int num_elements, int num_channels, + float* scales); + +void SignedSymmetricPerChannelQuantize(const float* values, + TfLiteIntArray* dims, + int quantized_dimension, + int8_t* quantized_values, + float* scaling_factor); + +void SignedSymmetricQuantize(const float* values, TfLiteIntArray* dims, + int8_t* quantized_values, float* scaling_factor); + +void SignedSymmetricQuantize(const float* values, TfLiteIntArray* dims, + int16_t* quantized_values, float* scaling_factor); + +void SignedSymmetricQuantize(const float* values, TfLiteIntArray* dims, + int32_t* quantized_values, float* scaling_factor); + +void SymmetricQuantize(const float* values, TfLiteIntArray* dims, + uint8_t* quantized_values, float* scaling_factor); + +void SymmetricDequantize(const int8_t* values, const int size, + const float dequantization_scale, + float* dequantized_values); + +template +void AsymmetricDequantize(const T* values, const int size, + const float dequantization_scale, + int dequantization_zero_point, + float* dequantized_values) { + for (int i = 0; i < size; ++i) { + dequantized_values[i] = + (values[i] - dequantization_zero_point) * dequantization_scale; + } +} + +} // namespace tflite + +#endif // TENSORFLOW_LITE_MICRO_MICRO_UTILS_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/recording_micro_allocator.cc b/components/tflite_micro/tensorflow/lite/micro/recording_micro_allocator.cc new file mode 100644 index 00000000..7e11523f --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/recording_micro_allocator.cc @@ -0,0 +1,230 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/micro/recording_micro_allocator.h" + +#include "tensorflow/lite/core/api/error_reporter.h" +#include "tensorflow/lite/kernels/internal/compatibility.h" +#include "tensorflow/lite/micro/compatibility.h" +#include "tensorflow/lite/micro/micro_allocator.h" +#include "tensorflow/lite/micro/recording_simple_memory_allocator.h" + +namespace tflite { + +RecordingMicroAllocator::RecordingMicroAllocator( + RecordingSimpleMemoryAllocator* recording_memory_allocator, + ErrorReporter* error_reporter) + : MicroAllocator(recording_memory_allocator, error_reporter), + recording_memory_allocator_(recording_memory_allocator) {} + +RecordingMicroAllocator* RecordingMicroAllocator::Create( + uint8_t* tensor_arena, size_t arena_size, ErrorReporter* error_reporter) { + TFLITE_DCHECK(error_reporter != nullptr); + + RecordingSimpleMemoryAllocator* simple_memory_allocator = + RecordingSimpleMemoryAllocator::Create(error_reporter, tensor_arena, + arena_size); + TFLITE_DCHECK(simple_memory_allocator != nullptr); + + uint8_t* allocator_buffer = simple_memory_allocator->AllocateFromTail( + sizeof(RecordingMicroAllocator), alignof(RecordingMicroAllocator)); + RecordingMicroAllocator* allocator = new (allocator_buffer) + RecordingMicroAllocator(simple_memory_allocator, error_reporter); + return allocator; +} + +RecordedAllocation RecordingMicroAllocator::GetRecordedAllocation( + RecordedAllocationType allocation_type) const { + switch (allocation_type) { + case RecordedAllocationType::kTfLiteEvalTensorData: + return recorded_tflite_eval_tensor_data_; + case RecordedAllocationType::kPersistentTfLiteTensorData: + return recorded_persistent_tflite_tensor_data_; + case RecordedAllocationType::kPersistentTfLiteTensorQuantizationData: + return recorded_persistent_tflite_tensor_quantization_data_; + case RecordedAllocationType::kTfLiteTensorVariableBufferData: + return recorded_tflite_tensor_variable_buffer_data_; + case RecordedAllocationType::kNodeAndRegistrationArray: + return recorded_node_and_registration_array_data_; + case RecordedAllocationType::kOpData: + return recorded_op_data_; + } + TF_LITE_REPORT_ERROR(error_reporter(), "Invalid allocation type supplied: %d", + allocation_type); + return RecordedAllocation(); +} + +const RecordingSimpleMemoryAllocator* +RecordingMicroAllocator::GetSimpleMemoryAllocator() const { + return recording_memory_allocator_; +} + +void RecordingMicroAllocator::PrintAllocations() const { + TF_LITE_REPORT_ERROR( + error_reporter(), + "[RecordingMicroAllocator] Arena allocation total %d bytes", + recording_memory_allocator_->GetUsedBytes()); + TF_LITE_REPORT_ERROR( + error_reporter(), + "[RecordingMicroAllocator] Arena allocation head %d bytes", + recording_memory_allocator_->GetHeadUsedBytes()); + TF_LITE_REPORT_ERROR( + error_reporter(), + "[RecordingMicroAllocator] Arena allocation tail %d bytes", + recording_memory_allocator_->GetTailUsedBytes()); + PrintRecordedAllocation(RecordedAllocationType::kTfLiteEvalTensorData, + "TfLiteEvalTensor data", "allocations"); + PrintRecordedAllocation(RecordedAllocationType::kPersistentTfLiteTensorData, + "Persistent TfLiteTensor data", "tensors"); + PrintRecordedAllocation( + RecordedAllocationType::kPersistentTfLiteTensorQuantizationData, + "Persistent TfLiteTensor quantization data", "allocations"); + PrintRecordedAllocation( + RecordedAllocationType::kTfLiteTensorVariableBufferData, + "TfLiteTensor variable buffer data", "allocations"); + PrintRecordedAllocation(RecordedAllocationType::kNodeAndRegistrationArray, + "NodeAndRegistration struct", + "NodeAndRegistration structs"); + PrintRecordedAllocation(RecordedAllocationType::kOpData, + "Operator runtime data", "OpData structs"); +} + +void RecordingMicroAllocator::PrintRecordedAllocation( + RecordedAllocationType allocation_type, const char* allocation_name, + const char* allocation_description) const { +#ifndef TF_LITE_STRIP_ERROR_STRINGS + RecordedAllocation allocation = GetRecordedAllocation(allocation_type); + TF_LITE_REPORT_ERROR( + error_reporter(), + "[RecordingMicroAllocator] '%s' used %d bytes with alignment overhead " + "(requested %d bytes for %d %s)", + allocation_name, allocation.used_bytes, allocation.requested_bytes, + allocation.count, allocation_description); +#endif +} + +TfLiteStatus RecordingMicroAllocator::AllocateNodeAndRegistrations( + const Model* model, NodeAndRegistration** node_and_registrations) { + RecordedAllocation allocations = SnapshotAllocationUsage(); + + TfLiteStatus status = MicroAllocator::AllocateNodeAndRegistrations( + model, node_and_registrations); + + RecordAllocationUsage(allocations, + recorded_node_and_registration_array_data_); + // The allocation count in SimpleMemoryAllocator will only be 1. To provide + // better logging, decrement by 1 and add in the actual number of operators + // used in the graph: + // The allocation for this recording will always be 1. This is because the + // parent class mallocs one large allocation for the number of nodes in the + // graph (e.g. sizeof(NodeAndRegistration) * num_nodes). + // To prevent extra overhead and potential for fragmentation, manually adjust + // the accounting by decrementing by 1 and adding the actual number of nodes + // used in the graph: + recorded_node_and_registration_array_data_.count += + GetSubGraphFromModel(model)->operators()->size() - 1; + return status; +} + +TfLiteStatus +RecordingMicroAllocator::PrepareNodeAndRegistrationDataFromFlatbuffer( + const Model* model, const MicroOpResolver& op_resolver, + NodeAndRegistration* node_and_registrations) { + RecordedAllocation allocations = SnapshotAllocationUsage(); + + TfLiteStatus status = + MicroAllocator::PrepareNodeAndRegistrationDataFromFlatbuffer( + model, op_resolver, node_and_registrations); + + RecordAllocationUsage(allocations, recorded_op_data_); + return status; +} + +TfLiteStatus RecordingMicroAllocator::AllocateTfLiteEvalTensors( + const Model* model, TfLiteEvalTensor** eval_tensors) { + RecordedAllocation allocations = SnapshotAllocationUsage(); + + TfLiteStatus status = + MicroAllocator::AllocateTfLiteEvalTensors(model, eval_tensors); + + RecordAllocationUsage(allocations, recorded_tflite_eval_tensor_data_); + // The allocation for this recording will always be 1. This is because the + // parent class mallocs one large allocation for the number of tensors in the + // graph (e.g. sizeof(TfLiteEvalTensor) * num_tensors). + // To prevent extra overhead and potential for fragmentation, manually adjust + // the accounting by decrementing by 1 and adding the actual number of tensors + // used in the graph: + recorded_tflite_eval_tensor_data_.count += + GetSubGraphFromModel(model)->tensors()->size() - 1; + return status; +} + +TfLiteStatus RecordingMicroAllocator::AllocateVariables( + const SubGraph* subgraph, TfLiteEvalTensor* eval_tensors) { + RecordedAllocation allocations = SnapshotAllocationUsage(); + + TfLiteStatus status = + MicroAllocator::AllocateVariables(subgraph, eval_tensors); + + RecordAllocationUsage(allocations, + recorded_tflite_tensor_variable_buffer_data_); + return status; +} + +TfLiteTensor* RecordingMicroAllocator::AllocatePersistentTfLiteTensorInternal( + const Model* model, TfLiteEvalTensor* eval_tensors, int tensor_index) { + RecordedAllocation allocations = SnapshotAllocationUsage(); + + TfLiteTensor* result = MicroAllocator::AllocatePersistentTfLiteTensorInternal( + model, eval_tensors, tensor_index); + + RecordAllocationUsage(allocations, recorded_persistent_tflite_tensor_data_); + return result; +} + +TfLiteStatus RecordingMicroAllocator::PopulateTfLiteTensorFromFlatbuffer( + const Model* model, const SubGraph* subgraph, TfLiteTensor* tensor, + int tensor_index, bool allocate_temp) { + RecordedAllocation allocations = SnapshotAllocationUsage(); + + TfLiteStatus status = MicroAllocator::PopulateTfLiteTensorFromFlatbuffer( + model, subgraph, tensor, tensor_index, allocate_temp); + + RecordAllocationUsage(allocations, + recorded_persistent_tflite_tensor_quantization_data_); + return status; +} + +RecordedAllocation RecordingMicroAllocator::SnapshotAllocationUsage() const { + return {/*requested_bytes=*/recording_memory_allocator_->GetRequestedBytes(), + /*used_bytes=*/recording_memory_allocator_->GetUsedBytes(), + /*count=*/recording_memory_allocator_->GetAllocatedCount()}; +} + +void RecordingMicroAllocator::RecordAllocationUsage( + const RecordedAllocation& snapshotted_allocation, + RecordedAllocation& recorded_allocation) { + recorded_allocation.requested_bytes += + recording_memory_allocator_->GetRequestedBytes() - + snapshotted_allocation.requested_bytes; + recorded_allocation.used_bytes += + recording_memory_allocator_->GetUsedBytes() - + snapshotted_allocation.used_bytes; + recorded_allocation.count += + recording_memory_allocator_->GetAllocatedCount() - + snapshotted_allocation.count; +} + +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/recording_micro_allocator.h b/components/tflite_micro/tensorflow/lite/micro/recording_micro_allocator.h new file mode 100644 index 00000000..9243fec1 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/recording_micro_allocator.h @@ -0,0 +1,120 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_LITE_MICRO_RECORDING_MICRO_ALLOCATOR_H_ +#define TENSORFLOW_LITE_MICRO_RECORDING_MICRO_ALLOCATOR_H_ + +#include "tensorflow/lite/micro/compatibility.h" +#include "tensorflow/lite/micro/micro_allocator.h" +#include "tensorflow/lite/micro/recording_simple_memory_allocator.h" + +namespace tflite { + +// List of buckets currently recorded by this class. Each type keeps a list of +// allocated information during model initialization. +enum class RecordedAllocationType { + kTfLiteEvalTensorData, + kPersistentTfLiteTensorData, + kPersistentTfLiteTensorQuantizationData, + kTfLiteTensorVariableBufferData, + kNodeAndRegistrationArray, + kOpData, +}; + +// Container for holding information about allocation recordings by a given +// type. Each recording contains the number of bytes requested, the actual bytes +// allocated (can defer from requested by alignment), and the number of items +// allocated. +struct RecordedAllocation { + size_t requested_bytes; + size_t used_bytes; + size_t count; +}; + +// Utility subclass of MicroAllocator that records all allocations +// inside the arena. A summary of allocations can be logged through the +// ErrorReporter by invoking LogAllocations(). This special allocator requires +// an instance of RecordingSimpleMemoryAllocator to capture allocations in the +// head and tail. Arena allocation recording can be retrieved by type through +// the GetRecordedAllocation() function. This class should only be used for +// auditing memory usage or integration testing. +class RecordingMicroAllocator : public MicroAllocator { + public: + static RecordingMicroAllocator* Create(uint8_t* tensor_arena, + size_t arena_size, + ErrorReporter* error_reporter); + + // Returns the recorded allocations information for a given allocation type. + RecordedAllocation GetRecordedAllocation( + RecordedAllocationType allocation_type) const; + + const RecordingSimpleMemoryAllocator* GetSimpleMemoryAllocator() const; + + // Logs out through the ErrorReporter all allocation recordings by type + // defined in RecordedAllocationType. + void PrintAllocations() const; + + protected: + TfLiteStatus AllocateNodeAndRegistrations( + const Model* model, + NodeAndRegistration** node_and_registrations) override; + TfLiteStatus PrepareNodeAndRegistrationDataFromFlatbuffer( + const Model* model, const MicroOpResolver& op_resolver, + NodeAndRegistration* node_and_registrations) override; + TfLiteStatus AllocateTfLiteEvalTensors( + const Model* model, TfLiteEvalTensor** eval_tensors) override; + TfLiteStatus AllocateVariables(const SubGraph* subgraph, + TfLiteEvalTensor* eval_tensors) override; + // TODO(b/160894903): Once all kernels have been updated to the new API drop + // this method. It is only used to record TfLiteTensor persistent allocations. + TfLiteTensor* AllocatePersistentTfLiteTensorInternal( + const Model* model, TfLiteEvalTensor* eval_tensors, + int tensor_index) override; + // TODO(b/160894903): Once all kernels have been updated to the new API drop + // this function since all allocations for quantized data will take place in + // the temp section. + TfLiteStatus PopulateTfLiteTensorFromFlatbuffer(const Model* model, + const SubGraph* subgraph, + TfLiteTensor* tensor, + int tensor_index, + bool allocate_temp) override; + + private: + RecordingMicroAllocator(RecordingSimpleMemoryAllocator* memory_allocator, + ErrorReporter* error_reporter); + + void PrintRecordedAllocation(RecordedAllocationType allocation_type, + const char* allocation_name, + const char* allocation_description) const; + + RecordedAllocation SnapshotAllocationUsage() const; + void RecordAllocationUsage(const RecordedAllocation& snapshotted_allocation, + RecordedAllocation& recorded_allocation); + + const RecordingSimpleMemoryAllocator* recording_memory_allocator_; + + RecordedAllocation recorded_tflite_eval_tensor_data_ = {}; + RecordedAllocation recorded_persistent_tflite_tensor_data_ = {}; + RecordedAllocation recorded_persistent_tflite_tensor_quantization_data_ = {}; + RecordedAllocation recorded_tflite_tensor_variable_buffer_data_ = {}; + RecordedAllocation recorded_node_and_registration_array_data_ = {}; + RecordedAllocation recorded_op_data_ = {}; + + TF_LITE_REMOVE_VIRTUAL_DELETE +}; + +} // namespace tflite + +#endif // TENSORFLOW_LITE_MICRO_RECORDING_MICRO_ALLOCATOR_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/recording_micro_interpreter.h b/components/tflite_micro/tensorflow/lite/micro/recording_micro_interpreter.h new file mode 100644 index 00000000..0a579b0b --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/recording_micro_interpreter.h @@ -0,0 +1,65 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_LITE_MICRO_RECORDING_MICRO_INTERPRETER_H_ +#define TENSORFLOW_LITE_MICRO_RECORDING_MICRO_INTERPRETER_H_ + +#include "tensorflow/lite/micro/micro_interpreter.h" +#include "tensorflow/lite/micro/recording_micro_allocator.h" + +namespace tflite { + +// Utility subclass that enables internal recordings of the MicroInterpreter. +// This class should be used to audit and analyze memory arena usage for a given +// model and interpreter. +// +// After construction and the first Invoke() or AllocateTensors() call - the +// memory usage is recorded and available through the GetMicroAllocator() +// function. See RecordingMicroAlloctor for more details on what is currently +// recorded from arena allocations. +// +// It is recommended for users to increase the tensor arena size by at least 1kb +// to ensure enough additional memory is available for internal recordings. +class RecordingMicroInterpreter : public MicroInterpreter { + public: + RecordingMicroInterpreter(const Model* model, + const MicroOpResolver& op_resolver, + uint8_t* tensor_arena, size_t tensor_arena_size, + ErrorReporter* error_reporter) + : MicroInterpreter(model, op_resolver, + RecordingMicroAllocator::Create( + tensor_arena, tensor_arena_size, error_reporter), + error_reporter), + recording_micro_allocator_( + static_cast(allocator())) {} + + RecordingMicroInterpreter(const Model* model, + const MicroOpResolver& op_resolver, + RecordingMicroAllocator* allocator, + ErrorReporter* error_reporter) + : MicroInterpreter(model, op_resolver, allocator, error_reporter), + recording_micro_allocator_(*allocator) {} + + const RecordingMicroAllocator& GetMicroAllocator() const { + return recording_micro_allocator_; + } + + private: + const RecordingMicroAllocator& recording_micro_allocator_; +}; + +} // namespace tflite + +#endif // TENSORFLOW_LITE_MICRO_RECORDING_MICRO_INTERPRETER_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/recording_simple_memory_allocator.cc b/components/tflite_micro/tensorflow/lite/micro/recording_simple_memory_allocator.cc new file mode 100644 index 00000000..ef2e9f31 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/recording_simple_memory_allocator.cc @@ -0,0 +1,83 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/micro/recording_simple_memory_allocator.h" + +#include + +#include "tensorflow/lite/kernels/internal/compatibility.h" + +namespace tflite { + +RecordingSimpleMemoryAllocator::RecordingSimpleMemoryAllocator( + ErrorReporter* error_reporter, uint8_t* buffer_head, size_t buffer_size) + : SimpleMemoryAllocator(error_reporter, buffer_head, buffer_size), + requested_head_bytes_(0), + requested_tail_bytes_(0), + used_bytes_(0), + alloc_count_(0) {} + +RecordingSimpleMemoryAllocator::~RecordingSimpleMemoryAllocator() {} + +RecordingSimpleMemoryAllocator* RecordingSimpleMemoryAllocator::Create( + ErrorReporter* error_reporter, uint8_t* buffer_head, size_t buffer_size) { + TFLITE_DCHECK(error_reporter != nullptr); + TFLITE_DCHECK(buffer_head != nullptr); + RecordingSimpleMemoryAllocator tmp = + RecordingSimpleMemoryAllocator(error_reporter, buffer_head, buffer_size); + + uint8_t* allocator_buffer = + tmp.AllocateFromTail(sizeof(RecordingSimpleMemoryAllocator), + alignof(RecordingSimpleMemoryAllocator)); + // Use the default copy constructor to populate internal states. + return new (allocator_buffer) RecordingSimpleMemoryAllocator(tmp); +} + +size_t RecordingSimpleMemoryAllocator::GetRequestedBytes() const { + return requested_head_bytes_ + requested_tail_bytes_; +} + +size_t RecordingSimpleMemoryAllocator::GetUsedBytes() const { + return used_bytes_; +} + +size_t RecordingSimpleMemoryAllocator::GetAllocatedCount() const { + return alloc_count_; +} + +TfLiteStatus RecordingSimpleMemoryAllocator::EnsureHeadSize(size_t size, + size_t alignment) { + const uint8_t* previous_head = GetHead(); + TfLiteStatus status = SimpleMemoryAllocator::EnsureHeadSize(size, alignment); + if (status == kTfLiteOk) { + used_bytes_ += GetHead() - previous_head; + requested_head_bytes_ = size; + } + return status; +} + +uint8_t* RecordingSimpleMemoryAllocator::AllocateFromTail(size_t size, + size_t alignment) { + const uint8_t* previous_tail = GetTail(); + uint8_t* result = SimpleMemoryAllocator::AllocateFromTail(size, alignment); + if (result != nullptr) { + used_bytes_ += previous_tail - GetTail(); + requested_tail_bytes_ += size; + alloc_count_++; + } + return result; +} + +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/recording_simple_memory_allocator.h b/components/tflite_micro/tensorflow/lite/micro/recording_simple_memory_allocator.h new file mode 100644 index 00000000..8d3e9fb4 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/recording_simple_memory_allocator.h @@ -0,0 +1,64 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_LITE_MICRO_RECORDING_SIMPLE_MEMORY_ALLOCATOR_H_ +#define TENSORFLOW_LITE_MICRO_RECORDING_SIMPLE_MEMORY_ALLOCATOR_H_ + +#include "tensorflow/lite/micro/compatibility.h" +#include "tensorflow/lite/micro/simple_memory_allocator.h" + +namespace tflite { + +// Utility class used to log allocations of a SimpleMemoryAllocator. Should only +// be used in debug/evaluation settings or unit tests to evaluate allocation +// usage. +class RecordingSimpleMemoryAllocator : public SimpleMemoryAllocator { + public: + RecordingSimpleMemoryAllocator(ErrorReporter* error_reporter, + uint8_t* buffer_head, size_t buffer_size); + // TODO(b/157615197): Cleanup constructors/destructor and use factory + // functions. + ~RecordingSimpleMemoryAllocator() override; + + static RecordingSimpleMemoryAllocator* Create(ErrorReporter* error_reporter, + uint8_t* buffer_head, + size_t buffer_size); + + // Returns the number of bytes requested from the head or tail. + size_t GetRequestedBytes() const; + + // Returns the number of bytes actually allocated from the head or tail. This + // value will be >= to the number of requested bytes due to padding and + // alignment. + size_t GetUsedBytes() const; + + // Returns the number of alloc calls from the head or tail. + size_t GetAllocatedCount() const; + + TfLiteStatus EnsureHeadSize(size_t size, size_t alignment) override; + uint8_t* AllocateFromTail(size_t size, size_t alignment) override; + + private: + size_t requested_head_bytes_; + size_t requested_tail_bytes_; + size_t used_bytes_; + size_t alloc_count_; + + TF_LITE_REMOVE_VIRTUAL_DELETE +}; + +} // namespace tflite + +#endif // TENSORFLOW_LITE_MICRO_RECORDING_SIMPLE_MEMORY_ALLOCATOR_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/simple_memory_allocator.cc b/components/tflite_micro/tensorflow/lite/micro/simple_memory_allocator.cc new file mode 100644 index 00000000..bea1a9d7 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/simple_memory_allocator.cc @@ -0,0 +1,154 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/micro/simple_memory_allocator.h" + +#include +#include +#include + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/core/api/error_reporter.h" +#include "tensorflow/lite/kernels/internal/compatibility.h" +#include "tensorflow/lite/micro/memory_helpers.h" + +namespace tflite { + +SimpleMemoryAllocator::SimpleMemoryAllocator(ErrorReporter* error_reporter, + uint8_t* buffer_head, + uint8_t* buffer_tail) + : error_reporter_(error_reporter), + buffer_head_(buffer_head), + buffer_tail_(buffer_tail), + head_(buffer_head), + tail_(buffer_tail), + temp_(buffer_head_) {} + +SimpleMemoryAllocator::SimpleMemoryAllocator(ErrorReporter* error_reporter, + uint8_t* buffer, + size_t buffer_size) + : SimpleMemoryAllocator(error_reporter, buffer, buffer + buffer_size) {} + +/* static */ +SimpleMemoryAllocator* SimpleMemoryAllocator::Create( + ErrorReporter* error_reporter, uint8_t* buffer_head, size_t buffer_size) { + TFLITE_DCHECK(error_reporter != nullptr); + TFLITE_DCHECK(buffer_head != nullptr); + SimpleMemoryAllocator tmp = + SimpleMemoryAllocator(error_reporter, buffer_head, buffer_size); + + // Allocate enough bytes from the buffer to create a SimpleMemoryAllocator. + // The new instance will use the current adjusted tail buffer from the tmp + // allocator instance. + uint8_t* allocator_buffer = tmp.AllocateFromTail( + sizeof(SimpleMemoryAllocator), alignof(SimpleMemoryAllocator)); + // Use the default copy constructor to populate internal states. + return new (allocator_buffer) SimpleMemoryAllocator(tmp); +} + +SimpleMemoryAllocator::~SimpleMemoryAllocator() {} + +TfLiteStatus SimpleMemoryAllocator::EnsureHeadSize(size_t size, + size_t alignment) { + if (head_ != temp_) { + TF_LITE_REPORT_ERROR( + error_reporter_, + "Internal error: EnsureHeadSize() needs to be called after" + "ResetTempAllocations()."); + return kTfLiteError; + } + + uint8_t* const aligned_result = AlignPointerUp(buffer_head_, alignment); + if (aligned_result + size < head_) { + // Size is below the current head size, just return. + return kTfLiteOk; + } + + const size_t available_memory = tail_ - aligned_result; + if (available_memory < size) { + TF_LITE_REPORT_ERROR( + error_reporter_, + "Failed to adjust head size. Requested: %u, available %u, missing: %u", + size, available_memory, size - available_memory); + return kTfLiteError; + } + head_ = aligned_result + size; + temp_ = head_; + + return kTfLiteOk; +} + +uint8_t* SimpleMemoryAllocator::AllocateFromTail(size_t size, + size_t alignment) { + uint8_t* const aligned_result = AlignPointerDown(tail_ - size, alignment); + if (aligned_result < head_) { +#ifndef TF_LITE_STRIP_ERROR_STRINGS + const size_t missing_memory = head_ - aligned_result; + TF_LITE_REPORT_ERROR(error_reporter_, + "Failed to allocate tail memory. Requested: %u, " + "available %u, missing: %u", + size, size - missing_memory, missing_memory); +#endif + return nullptr; + } + tail_ = aligned_result; + return aligned_result; +} + +uint8_t* SimpleMemoryAllocator::AllocateTemp(size_t size, size_t alignment) { + uint8_t* const aligned_result = AlignPointerUp(temp_, alignment); + const size_t available_memory = tail_ - aligned_result; + if (available_memory < size) { + TF_LITE_REPORT_ERROR(error_reporter_, + "Failed to allocate temp memory. Requested: %u, " + "available %u, missing: %u", + size, available_memory, size - available_memory); + return nullptr; + } + temp_ = aligned_result + size; + return aligned_result; +} + +void SimpleMemoryAllocator::ResetTempAllocations() { temp_ = head_; } + +uint8_t* SimpleMemoryAllocator::GetHead() const { return head_; } + +uint8_t* SimpleMemoryAllocator::GetBufferHead() const { return buffer_head_; } + +uint8_t* SimpleMemoryAllocator::GetTail() const { return tail_; } + +size_t SimpleMemoryAllocator::GetHeadUsedBytes() const { + return head_ - buffer_head_; +} + +size_t SimpleMemoryAllocator::GetTailUsedBytes() const { + return buffer_tail_ - tail_; +} + +size_t SimpleMemoryAllocator::GetAvailableMemory(size_t alignment) const { + uint8_t* const aligned_head = AlignPointerUp(head_, alignment); + uint8_t* const aligned_tail = AlignPointerDown(tail_, alignment); + return aligned_tail - aligned_head; +} + +size_t SimpleMemoryAllocator::GetUsedBytes() const { + return GetBufferSize() - (tail_ - head_); +} + +size_t SimpleMemoryAllocator::GetBufferSize() const { + return buffer_tail_ - buffer_head_; +} + +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/simple_memory_allocator.h b/components/tflite_micro/tensorflow/lite/micro/simple_memory_allocator.h new file mode 100644 index 00000000..8c216f47 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/simple_memory_allocator.h @@ -0,0 +1,99 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_LITE_MICRO_SIMPLE_MEMORY_ALLOCATOR_H_ +#define TENSORFLOW_LITE_MICRO_SIMPLE_MEMORY_ALLOCATOR_H_ + +#include +#include + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/core/api/error_reporter.h" +#include "tensorflow/lite/micro/compatibility.h" + +namespace tflite { + +// TODO(petewarden): This allocator never frees up or reuses any memory, even +// though we have enough information about lifetimes of the tensors to do so. +// This makes it pretty wasteful, so we should use a more intelligent method. +class SimpleMemoryAllocator { + public: + // TODO(b/157615197): Cleanup constructors/destructor and use factory + // functions. + SimpleMemoryAllocator(ErrorReporter* error_reporter, uint8_t* buffer_head, + uint8_t* buffer_tail); + SimpleMemoryAllocator(ErrorReporter* error_reporter, uint8_t* buffer, + size_t buffer_size); + virtual ~SimpleMemoryAllocator(); + + // Creates a new SimpleMemoryAllocator from a given buffer head and size. + static SimpleMemoryAllocator* Create(ErrorReporter* error_reporter, + uint8_t* buffer_head, + size_t buffer_size); + + // Ensure that the head (lowest address and moving upwards) memory allocation + // is at least a given size. This function will only increase the head size if + // the passed in value is larger than the current head size. Calls to this + // method will also invalidate all temporary allocation values. This call will + // fail if a chain of allocations through AllocateTemp() have not been cleaned + // up with a call to ResetTempAllocations(). + virtual TfLiteStatus EnsureHeadSize(size_t size, size_t alignment); + + // Allocates memory starting at the tail of the arena (highest address and + // moving downwards). + virtual uint8_t* AllocateFromTail(size_t size, size_t alignment); + + // Allocates a temporary buffer from the head of the arena (lowest address and + // moving upwards) but does not update the actual head allocation size or + // position. The returned buffer is guaranteed until either + // ResetTempAllocations() is called or another call to AllocateFromHead(). + // Repeat calls to this function will create a chain of temp allocations. All + // calls to AllocateTemp() must end with a call to ResetTempAllocations(). If + // AllocateFromHead() is called before a call to ResetTempAllocations(), it + // will fail with an error message. + virtual uint8_t* AllocateTemp(size_t size, size_t alignment); + + // Resets a chain of temporary allocations back to the current head of the + // arena (lowest address). + virtual void ResetTempAllocations(); + + uint8_t* GetHead() const; + uint8_t* GetBufferHead() const; + uint8_t* GetTail() const; + + size_t GetHeadUsedBytes() const; + size_t GetTailUsedBytes() const; + + // Returns the number of bytes available with a given alignment. + size_t GetAvailableMemory(size_t alignment) const; + + size_t GetUsedBytes() const; + + private: + size_t GetBufferSize() const; + + ErrorReporter* error_reporter_; + uint8_t* buffer_head_; + uint8_t* buffer_tail_; + uint8_t* head_; + uint8_t* tail_; + uint8_t* temp_; + + TF_LITE_REMOVE_VIRTUAL_DELETE +}; + +} // namespace tflite + +#endif // TENSORFLOW_LITE_MICRO_SIMPLE_MEMORY_ALLOCATOR_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/test_helpers.cc b/components/tflite_micro/tensorflow/lite/micro/test_helpers.cc new file mode 100644 index 00000000..23c7ca96 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/test_helpers.cc @@ -0,0 +1,1008 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/micro/test_helpers.h" + +#include +#include +#include +#include +#include + +#include "flatbuffers/flatbuffers.h" // from @flatbuffers +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/core/api/error_reporter.h" +#include "tensorflow/lite/kernels/internal/compatibility.h" +#include "tensorflow/lite/kernels/internal/tensor_ctypes.h" +#include "tensorflow/lite/kernels/kernel_util.h" +#include "tensorflow/lite/micro/all_ops_resolver.h" +#include "tensorflow/lite/micro/micro_utils.h" +#include "tensorflow/lite/schema/schema_generated.h" + +namespace tflite { +namespace testing { +namespace { + +class StackAllocator : public flatbuffers::Allocator { + public: + StackAllocator() : data_(data_backing_), data_size_(0) {} + + uint8_t* allocate(size_t size) override { + TFLITE_DCHECK((data_size_ + size) <= kStackAllocatorSize); + uint8_t* result = data_; + data_ += size; + data_size_ += size; + return result; + } + + void deallocate(uint8_t* p, size_t) override {} + + static StackAllocator& instance() { + // Avoid using true dynamic memory allocation to be portable to bare metal. + static char inst_memory[sizeof(StackAllocator)]; + static StackAllocator* inst = new (inst_memory) StackAllocator; + return *inst; + } + + static constexpr size_t kStackAllocatorSize = 8192; + + private: + uint8_t data_backing_[kStackAllocatorSize]; + uint8_t* data_; + int data_size_; +}; + +flatbuffers::FlatBufferBuilder* BuilderInstance() { + static char inst_memory[sizeof(flatbuffers::FlatBufferBuilder)]; + static flatbuffers::FlatBufferBuilder* inst = + new (inst_memory) flatbuffers::FlatBufferBuilder( + StackAllocator::kStackAllocatorSize, &StackAllocator::instance()); + return inst; +} + +// A wrapper around FlatBuffer API to help build model easily. +class ModelBuilder { + public: + typedef int32_t Tensor; + typedef int Operator; + typedef int Node; + + // `builder` needs to be available until BuildModel is called. + explicit ModelBuilder(flatbuffers::FlatBufferBuilder* builder) + : builder_(builder) {} + + // Registers an operator that will be used in the model. + Operator RegisterOp(BuiltinOperator op, const char* custom_code, + int32_t version); + + // Adds a tensor to the model. + Tensor AddTensor(TensorType type, std::initializer_list shape) { + return AddTensorImpl(type, /* is_variable */ false, shape); + } + + // Adds a variable tensor to the model. + Tensor AddVariableTensor(TensorType type, + std::initializer_list shape) { + return AddTensorImpl(type, /* is_variable */ true, shape); + } + + // Adds a node to the model with given input and output Tensors. + Node AddNode(Operator op, std::initializer_list inputs, + std::initializer_list outputs); + + void AddMetadata(const char* description_string, + const int32_t* metadata_buffer_data, size_t num_elements); + + // Constructs the flatbuffer model using `builder_` and return a pointer to + // it. The returned model has the same lifetime as `builder_`. + const Model* BuildModel(std::initializer_list inputs, + std::initializer_list outputs); + + private: + // Adds a tensor to the model. + Tensor AddTensorImpl(TensorType type, bool is_variable, + std::initializer_list shape); + + flatbuffers::FlatBufferBuilder* builder_; + + static constexpr int kMaxOperatorCodes = 10; + flatbuffers::Offset operator_codes_[kMaxOperatorCodes]; + int next_operator_code_id_ = 0; + + static constexpr int kMaxOperators = 50; + flatbuffers::Offset operators_[kMaxOperators]; + int next_operator_id_ = 0; + + static constexpr int kMaxTensors = 50; + flatbuffers::Offset tensors_[kMaxTensors]; + + static constexpr int kMaxMetadataBuffers = 10; + + static constexpr int kMaxMetadatas = 10; + flatbuffers::Offset metadata_[kMaxMetadatas]; + + flatbuffers::Offset metadata_buffers_[kMaxMetadataBuffers]; + + int nbr_of_metadata_buffers_ = 0; + + int next_tensor_id_ = 0; +}; + +ModelBuilder::Operator ModelBuilder::RegisterOp(BuiltinOperator op, + const char* custom_code, + int32_t version) { + TFLITE_DCHECK(next_operator_code_id_ <= kMaxOperatorCodes); + operator_codes_[next_operator_code_id_] = + tflite::CreateOperatorCodeDirect(*builder_, op, custom_code, version); + next_operator_code_id_++; + return next_operator_code_id_ - 1; +} + +ModelBuilder::Node ModelBuilder::AddNode( + ModelBuilder::Operator op, + std::initializer_list inputs, + std::initializer_list outputs) { + TFLITE_DCHECK(next_operator_id_ <= kMaxOperators); + operators_[next_operator_id_] = tflite::CreateOperator( + *builder_, op, builder_->CreateVector(inputs.begin(), inputs.size()), + builder_->CreateVector(outputs.begin(), outputs.size()), + BuiltinOptions_NONE); + next_operator_id_++; + return next_operator_id_ - 1; +} + +void ModelBuilder::AddMetadata(const char* description_string, + const int32_t* metadata_buffer_data, + size_t num_elements) { + metadata_[ModelBuilder::nbr_of_metadata_buffers_] = + CreateMetadata(*builder_, builder_->CreateString(description_string), + 1 + ModelBuilder::nbr_of_metadata_buffers_); + + metadata_buffers_[nbr_of_metadata_buffers_] = tflite::CreateBuffer( + *builder_, builder_->CreateVector((uint8_t*)metadata_buffer_data, + sizeof(uint32_t) * num_elements)); + + ModelBuilder::nbr_of_metadata_buffers_++; +} + +const Model* ModelBuilder::BuildModel( + std::initializer_list inputs, + std::initializer_list outputs) { + // Model schema requires an empty buffer at idx 0. + size_t buffer_size = 1 + ModelBuilder::nbr_of_metadata_buffers_; + flatbuffers::Offset buffers[kMaxMetadataBuffers]; + buffers[0] = tflite::CreateBuffer(*builder_); + + // Place the metadata buffers first in the buffer since the indices for them + // have already been set in AddMetadata() + for (int i = 1; i < ModelBuilder::nbr_of_metadata_buffers_ + 1; ++i) { + buffers[i] = metadata_buffers_[i - 1]; + } + + // TFLM only supports single subgraph. + constexpr size_t subgraphs_size = 1; + const flatbuffers::Offset subgraphs[subgraphs_size] = { + tflite::CreateSubGraph( + *builder_, builder_->CreateVector(tensors_, next_tensor_id_), + builder_->CreateVector(inputs.begin(), inputs.size()), + builder_->CreateVector(outputs.begin(), outputs.size()), + builder_->CreateVector(operators_, next_operator_id_), + builder_->CreateString("test_subgraph"))}; + + flatbuffers::Offset model_offset; + if (ModelBuilder::nbr_of_metadata_buffers_ > 0) { + model_offset = tflite::CreateModel( + *builder_, 0, + builder_->CreateVector(operator_codes_, next_operator_code_id_), + builder_->CreateVector(subgraphs, subgraphs_size), + builder_->CreateString("teset_model"), + builder_->CreateVector(buffers, buffer_size), 0, + builder_->CreateVector(metadata_, + ModelBuilder::nbr_of_metadata_buffers_)); + } else { + model_offset = tflite::CreateModel( + *builder_, 0, + builder_->CreateVector(operator_codes_, next_operator_code_id_), + builder_->CreateVector(subgraphs, subgraphs_size), + builder_->CreateString("teset_model"), + builder_->CreateVector(buffers, buffer_size)); + } + + tflite::FinishModelBuffer(*builder_, model_offset); + void* model_pointer = builder_->GetBufferPointer(); + const Model* model = flatbuffers::GetRoot(model_pointer); + return model; +} + +ModelBuilder::Tensor ModelBuilder::AddTensorImpl( + TensorType type, bool is_variable, std::initializer_list shape) { + TFLITE_DCHECK(next_tensor_id_ <= kMaxTensors); + tensors_[next_tensor_id_] = tflite::CreateTensor( + *builder_, builder_->CreateVector(shape.begin(), shape.size()), type, + /* buffer */ 0, /* name */ 0, /* quantization */ 0, + /* is_variable */ is_variable, + /* sparsity */ 0); + next_tensor_id_++; + return next_tensor_id_ - 1; +} + +const Model* BuildSimpleStatefulModel() { + using flatbuffers::Offset; + flatbuffers::FlatBufferBuilder* fb_builder = BuilderInstance(); + + ModelBuilder model_builder(fb_builder); + + const int op_id = + model_builder.RegisterOp(BuiltinOperator_CUSTOM, "simple_stateful_op", 0); + const int input_tensor = model_builder.AddTensor(TensorType_UINT8, {3}); + const int median_tensor = model_builder.AddTensor(TensorType_UINT8, {3}); + const int invoke_count_tensor = + model_builder.AddTensor(TensorType_INT32, {1}); + + model_builder.AddNode(op_id, {input_tensor}, + {median_tensor, invoke_count_tensor}); + return model_builder.BuildModel({input_tensor}, + {median_tensor, invoke_count_tensor}); +} + +const Model* BuildSimpleModelWithBranch() { + using flatbuffers::Offset; + flatbuffers::FlatBufferBuilder* fb_builder = BuilderInstance(); + + ModelBuilder model_builder(fb_builder); + /* Model structure + | t0 + +------| + | v + | +---------+ + | | n0 | + | | | + | +---------+ + v + + | + +---------+ | t1 + | n1 | | + | | | + +---------+ | + | | + t2 | v + | +---------+ + +-->| n2 | + | | + +-------|-+ + |t3 + v + */ + const int op_id = + model_builder.RegisterOp(BuiltinOperator_CUSTOM, "mock_custom", + /* version= */ 0); + const int t0 = model_builder.AddTensor(TensorType_FLOAT32, {2, 2, 3}); + const int t1 = model_builder.AddTensor(TensorType_FLOAT32, {2, 2, 3}); + const int t2 = model_builder.AddTensor(TensorType_FLOAT32, {2, 2, 3}); + const int t3 = model_builder.AddTensor(TensorType_FLOAT32, {2, 2, 3}); + model_builder.AddNode(op_id, {t0}, {t1}); // n0 + model_builder.AddNode(op_id, {t0}, {t2}); // n1 + model_builder.AddNode(op_id, {t1, t2}, {t3}); // n2 + return model_builder.BuildModel({t0}, {t3}); +} + +const Model* BuildModelWithOfflinePlanning(int number_of_tensors, + const int32_t* metadata_buffer, + NodeConnection* node_conn, + int num_conns) { + using flatbuffers::Offset; + flatbuffers::FlatBufferBuilder* fb_builder = BuilderInstance(); + + ModelBuilder model_builder(fb_builder); + + const int op_id = + model_builder.RegisterOp(BuiltinOperator_CUSTOM, "mock_custom", + /* version= */ 0); + + for (int i = 0; i < number_of_tensors; ++i) { + model_builder.AddTensor(TensorType_FLOAT32, {2, 2, 3}); + } + + for (int i = 0; i < num_conns; ++i) { + model_builder.AddNode(op_id, node_conn[i].input, node_conn[i].output); + } + + model_builder.AddMetadata( + "OfflineMemoryAllocation", metadata_buffer, + number_of_tensors + tflite::testing::kOfflinePlannerHeaderSize); + + return model_builder.BuildModel(node_conn[0].input, + node_conn[num_conns - 1].output); +} + +const Model* BuildSimpleMockModel() { + using flatbuffers::Offset; + flatbuffers::FlatBufferBuilder* builder = BuilderInstance(); + + constexpr size_t buffer_data_size = 1; + const uint8_t buffer_data[buffer_data_size] = {21}; + constexpr size_t buffers_size = 2; + const Offset buffers[buffers_size] = { + CreateBuffer(*builder), + CreateBuffer(*builder, + builder->CreateVector(buffer_data, buffer_data_size))}; + constexpr size_t tensor_shape_size = 1; + const int32_t tensor_shape[tensor_shape_size] = {1}; + constexpr size_t tensors_size = 4; + const Offset tensors[tensors_size] = { + CreateTensor(*builder, + builder->CreateVector(tensor_shape, tensor_shape_size), + TensorType_INT32, 0, + builder->CreateString("test_input_tensor"), 0, false), + CreateTensor(*builder, + builder->CreateVector(tensor_shape, tensor_shape_size), + TensorType_UINT8, 1, + builder->CreateString("test_weight_tensor"), 0, false), + CreateTensor(*builder, + builder->CreateVector(tensor_shape, tensor_shape_size), + TensorType_INT32, 0, + builder->CreateString("test_output_tensor"), 0, false), + CreateTensor(*builder, + builder->CreateVector(tensor_shape, tensor_shape_size), + TensorType_INT32, 0, + builder->CreateString("test_output2_tensor"), 0, false), + }; + constexpr size_t inputs_size = 1; + const int32_t inputs[inputs_size] = {0}; + constexpr size_t outputs_size = 2; + const int32_t outputs[outputs_size] = {2, 3}; + constexpr size_t operator_inputs_size = 2; + const int32_t operator_inputs[operator_inputs_size] = {0, 1}; + constexpr size_t operator_outputs_size = 1; + const int32_t operator_outputs[operator_outputs_size] = {2}; + const int32_t operator2_outputs[operator_outputs_size] = {3}; + constexpr size_t operators_size = 2; + const Offset operators[operators_size] = { + CreateOperator( + *builder, 0, + builder->CreateVector(operator_inputs, operator_inputs_size), + builder->CreateVector(operator_outputs, operator_outputs_size), + BuiltinOptions_NONE), + CreateOperator( + *builder, 0, + builder->CreateVector(operator_inputs, operator_inputs_size), + builder->CreateVector(operator2_outputs, operator_outputs_size), + BuiltinOptions_NONE), + }; + constexpr size_t subgraphs_size = 1; + const Offset subgraphs[subgraphs_size] = { + CreateSubGraph(*builder, builder->CreateVector(tensors, tensors_size), + builder->CreateVector(inputs, inputs_size), + builder->CreateVector(outputs, outputs_size), + builder->CreateVector(operators, operators_size), + builder->CreateString("test_subgraph"))}; + constexpr size_t operator_codes_size = 1; + const Offset operator_codes[operator_codes_size] = { + CreateOperatorCodeDirect(*builder, BuiltinOperator_CUSTOM, "mock_custom", + 0)}; + const Offset model_offset = CreateModel( + *builder, 0, builder->CreateVector(operator_codes, operator_codes_size), + builder->CreateVector(subgraphs, subgraphs_size), + builder->CreateString("test_model"), + builder->CreateVector(buffers, buffers_size)); + FinishModelBuffer(*builder, model_offset); + void* model_pointer = builder->GetBufferPointer(); + const Model* model = flatbuffers::GetRoot(model_pointer); + return model; +} + +const Model* BuildComplexMockModel() { + using flatbuffers::Offset; + flatbuffers::FlatBufferBuilder* builder = BuilderInstance(); + + constexpr size_t buffer_data_size = 1; + const uint8_t buffer_data_1[buffer_data_size] = {21}; + const uint8_t buffer_data_2[buffer_data_size] = {21}; + const uint8_t buffer_data_3[buffer_data_size] = {21}; + constexpr size_t buffers_size = 7; + const Offset buffers[buffers_size] = { + // Op 1 buffers: + CreateBuffer(*builder), + CreateBuffer(*builder), + CreateBuffer(*builder, + builder->CreateVector(buffer_data_1, buffer_data_size)), + // Op 2 buffers: + CreateBuffer(*builder), + CreateBuffer(*builder, + builder->CreateVector(buffer_data_2, buffer_data_size)), + // Op 3 buffers: + CreateBuffer(*builder), + CreateBuffer(*builder, + builder->CreateVector(buffer_data_3, buffer_data_size)), + }; + constexpr size_t tensor_shape_size = 1; + const int32_t tensor_shape[tensor_shape_size] = {1}; + + constexpr size_t tensors_size = 10; + const Offset tensors[tensors_size] = { + // Op 1 inputs: + CreateTensor( + *builder, builder->CreateVector(tensor_shape, tensor_shape_size), + TensorType_INT32, 0, builder->CreateString("test_input_tensor_1"), 0, + false /* is_variable */), + CreateTensor( + *builder, builder->CreateVector(tensor_shape, tensor_shape_size), + TensorType_INT32, 1, builder->CreateString("test_variable_tensor_1"), + 0, true /* is_variable */), + CreateTensor( + *builder, builder->CreateVector(tensor_shape, tensor_shape_size), + TensorType_UINT8, 2, builder->CreateString("test_weight_tensor_1"), 0, + false /* is_variable */), + // Op 1 output / Op 2 input: + CreateTensor( + *builder, builder->CreateVector(tensor_shape, tensor_shape_size), + TensorType_INT32, 0, builder->CreateString("test_output_tensor_1"), 0, + false /* is_variable */), + // Op 2 inputs: + CreateTensor( + *builder, builder->CreateVector(tensor_shape, tensor_shape_size), + TensorType_INT32, 1, builder->CreateString("test_variable_tensor_2"), + 0, true /* is_variable */), + CreateTensor( + *builder, builder->CreateVector(tensor_shape, tensor_shape_size), + TensorType_UINT8, 2, builder->CreateString("test_weight_tensor_2"), 0, + false /* is_variable */), + // Op 2 output / Op 3 input: + CreateTensor( + *builder, builder->CreateVector(tensor_shape, tensor_shape_size), + TensorType_INT32, 0, builder->CreateString("test_output_tensor_2"), 0, + false /* is_variable */), + // Op 3 inputs: + CreateTensor( + *builder, builder->CreateVector(tensor_shape, tensor_shape_size), + TensorType_INT32, 1, builder->CreateString("test_variable_tensor_3"), + 0, true /* is_variable */), + CreateTensor( + *builder, builder->CreateVector(tensor_shape, tensor_shape_size), + TensorType_UINT8, 2, builder->CreateString("test_weight_tensor_3"), 0, + false /* is_variable */), + // Op 3 output: + CreateTensor( + *builder, builder->CreateVector(tensor_shape, tensor_shape_size), + TensorType_INT32, 0, builder->CreateString("test_output_tensor_3"), 0, + false /* is_variable */), + }; + + constexpr size_t operators_size = 3; + Offset operators[operators_size]; + { + // Set Op 1 attributes: + constexpr size_t operator_inputs_size = 3; + const int32_t operator_inputs[operator_inputs_size] = {0, 1, 2}; + constexpr size_t operator_outputs_size = 1; + const int32_t operator_outputs[operator_outputs_size] = {3}; + + operators[0] = {CreateOperator( + *builder, 0, + builder->CreateVector(operator_inputs, operator_inputs_size), + builder->CreateVector(operator_outputs, operator_outputs_size), + BuiltinOptions_NONE)}; + } + + { + // Set Op 2 attributes + constexpr size_t operator_inputs_size = 3; + const int32_t operator_inputs[operator_inputs_size] = {3, 4, 5}; + constexpr size_t operator_outputs_size = 1; + const int32_t operator_outputs[operator_outputs_size] = {6}; + + operators[1] = {CreateOperator( + *builder, 0, + builder->CreateVector(operator_inputs, operator_inputs_size), + builder->CreateVector(operator_outputs, operator_outputs_size), + BuiltinOptions_NONE)}; + } + + { + // Set Op 3 attributes + constexpr size_t operator_inputs_size = 3; + const int32_t operator_inputs[operator_inputs_size] = {6, 7, 8}; + constexpr size_t operator_outputs_size = 1; + const int32_t operator_outputs[operator_outputs_size] = {9}; + + operators[2] = {CreateOperator( + *builder, 0, + builder->CreateVector(operator_inputs, operator_inputs_size), + builder->CreateVector(operator_outputs, operator_outputs_size), + BuiltinOptions_NONE)}; + } + + constexpr size_t inputs_size = 1; + const int32_t inputs[inputs_size] = {0}; + constexpr size_t outputs_size = 1; + const int32_t outputs[outputs_size] = {9}; + + constexpr size_t subgraphs_size = 1; + const Offset subgraphs[subgraphs_size] = { + CreateSubGraph(*builder, builder->CreateVector(tensors, tensors_size), + builder->CreateVector(inputs, inputs_size), + builder->CreateVector(outputs, outputs_size), + builder->CreateVector(operators, operators_size), + builder->CreateString("test_subgraph"))}; + + constexpr size_t operator_codes_size = 1; + const Offset operator_codes[operator_codes_size] = { + CreateOperatorCodeDirect(*builder, BuiltinOperator_CUSTOM, "mock_custom", + 0)}; + + const Offset model_offset = CreateModel( + *builder, 0, builder->CreateVector(operator_codes, operator_codes_size), + builder->CreateVector(subgraphs, subgraphs_size), + builder->CreateString("test_model"), + builder->CreateVector(buffers, buffers_size)); + + FinishModelBuffer(*builder, model_offset); + void* model_pointer = builder->GetBufferPointer(); + const Model* model = flatbuffers::GetRoot(model_pointer); + return model; +} + +} // namespace + +const TfLiteRegistration* SimpleStatefulOp::getRegistration() { + return GetMutableRegistration(); +} + +TfLiteRegistration* SimpleStatefulOp::GetMutableRegistration() { + static TfLiteRegistration r; + r.init = Init; + r.prepare = Prepare; + r.invoke = Invoke; + return &r; +} + +void* SimpleStatefulOp::Init(TfLiteContext* context, const char* buffer, + size_t length) { + TFLITE_DCHECK(context->AllocateBufferForEval == nullptr); + TFLITE_DCHECK(context->GetScratchBuffer == nullptr); + TFLITE_DCHECK(context->RequestScratchBufferInArena == nullptr); + + void* raw = context->AllocatePersistentBuffer(context, sizeof(OpData)); + OpData* data = reinterpret_cast(raw); + *data = {}; + return raw; +} + +TfLiteStatus SimpleStatefulOp::Prepare(TfLiteContext* context, + TfLiteNode* node) { + OpData* data = reinterpret_cast(node->user_data); + + // Make sure that the input is in uint8_t with at least 1 data entry. + const TfLiteTensor* input = tflite::GetInput(context, node, kInputTensor); + if (input->type != kTfLiteUInt8) return kTfLiteError; + if (NumElements(input->dims) == 0) return kTfLiteError; + + // Allocate a temporary buffer with the same size of input for sorting. + TF_LITE_ENSURE_STATUS(context->RequestScratchBufferInArena( + context, sizeof(uint8_t) * NumElements(input->dims), + &data->sorting_buffer)); + return kTfLiteOk; +} + +TfLiteStatus SimpleStatefulOp::Invoke(TfLiteContext* context, + TfLiteNode* node) { + OpData* data = reinterpret_cast(node->user_data); + data->invoke_count += 1; + + const TfLiteTensor* input = GetInput(context, node, kInputTensor); + const uint8_t* input_data = GetTensorData(input); + int size = NumElements(input->dims); + + uint8_t* sorting_buffer = reinterpret_cast( + context->GetScratchBuffer(context, data->sorting_buffer)); + // Copy inputs data to the sorting buffer. We don't want to mutate the input + // tensor as it might be used by a another node. + for (int i = 0; i < size; i++) { + sorting_buffer[i] = input_data[i]; + } + + // In place insertion sort on `sorting_buffer`. + for (int i = 1; i < size; i++) { + for (int j = i; j > 0 && sorting_buffer[j] < sorting_buffer[j - 1]; j--) { + std::swap(sorting_buffer[j], sorting_buffer[j - 1]); + } + } + + TfLiteTensor* median = GetOutput(context, node, kMedianTensor); + uint8_t* median_data = GetTensorData(median); + TfLiteTensor* invoke_count = GetOutput(context, node, kInvokeCount); + int32_t* invoke_count_data = GetTensorData(invoke_count); + + median_data[0] = sorting_buffer[size / 2]; + invoke_count_data[0] = data->invoke_count; + return kTfLiteOk; +} + +const TfLiteRegistration* MockCustom::getRegistration() { + return GetMutableRegistration(); +} + +TfLiteRegistration* MockCustom::GetMutableRegistration() { + static TfLiteRegistration r; + r.init = Init; + r.prepare = Prepare; + r.invoke = Invoke; + r.free = Free; + return &r; +} + +void* MockCustom::Init(TfLiteContext* context, const char* buffer, + size_t length) { + // We don't support delegate in TFL micro. This is a weak check to test if + // context struct being zero-initialized. + TFLITE_DCHECK(context->ReplaceNodeSubsetsWithDelegateKernels == nullptr); + freed_ = false; + // Do nothing. + return nullptr; +} + +void MockCustom::Free(TfLiteContext* context, void* buffer) { freed_ = true; } + +TfLiteStatus MockCustom::Prepare(TfLiteContext* context, TfLiteNode* node) { + return kTfLiteOk; +} + +TfLiteStatus MockCustom::Invoke(TfLiteContext* context, TfLiteNode* node) { + const TfLiteTensor* input = tflite::GetInput(context, node, 0); + const int32_t* input_data = input->data.i32; + const TfLiteTensor* weight = tflite::GetInput(context, node, 1); + const uint8_t* weight_data = weight->data.uint8; + TfLiteTensor* output = GetOutput(context, node, 0); + int32_t* output_data = output->data.i32; + output_data[0] = + 0; // Catch output tensor sharing memory with an input tensor + output_data[0] = input_data[0] + weight_data[0]; + return kTfLiteOk; +} + +bool MockCustom::freed_ = false; + +AllOpsResolver GetOpResolver() { + AllOpsResolver op_resolver; + op_resolver.AddCustom("mock_custom", MockCustom::GetMutableRegistration()); + op_resolver.AddCustom("simple_stateful_op", + SimpleStatefulOp::GetMutableRegistration()); + + return op_resolver; +} + +const Model* GetSimpleMockModel() { + static Model* model = nullptr; + if (!model) { + model = const_cast(BuildSimpleMockModel()); + } + return model; +} + +const Model* GetComplexMockModel() { + static Model* model = nullptr; + if (!model) { + model = const_cast(BuildComplexMockModel()); + } + return model; +} + +const Model* GetSimpleModelWithBranch() { + static Model* model = nullptr; + if (!model) { + model = const_cast(BuildSimpleModelWithBranch()); + } + return model; +} + +const Model* GetModelWithOfflinePlanning(int num_tensors, + const int32_t* metadata_buffer, + NodeConnection* node_conn, + int num_conns) { + const Model* model = BuildModelWithOfflinePlanning( + num_tensors, metadata_buffer, node_conn, num_conns); + return model; +} + +const Model* GetSimpleStatefulModel() { + static Model* model = nullptr; + if (!model) { + model = const_cast(BuildSimpleStatefulModel()); + } + return model; +} + +const Tensor* Create1dFlatbufferTensor(int size, bool is_variable) { + using flatbuffers::Offset; + flatbuffers::FlatBufferBuilder* builder = BuilderInstance(); + constexpr size_t tensor_shape_size = 1; + const int32_t tensor_shape[tensor_shape_size] = {size}; + const Offset tensor_offset = CreateTensor( + *builder, builder->CreateVector(tensor_shape, tensor_shape_size), + TensorType_INT32, 0, builder->CreateString("test_tensor"), 0, + is_variable); + builder->Finish(tensor_offset); + void* tensor_pointer = builder->GetBufferPointer(); + const Tensor* tensor = flatbuffers::GetRoot(tensor_pointer); + return tensor; +} + +const Tensor* CreateQuantizedFlatbufferTensor(int size) { + using flatbuffers::Offset; + flatbuffers::FlatBufferBuilder* builder = BuilderInstance(); + const Offset quant_params = + CreateQuantizationParameters( + *builder, + /*min=*/builder->CreateVector({0.1f}), + /*max=*/builder->CreateVector({0.2f}), + /*scale=*/builder->CreateVector({0.3f}), + /*zero_point=*/builder->CreateVector({100ll})); + + constexpr size_t tensor_shape_size = 1; + const int32_t tensor_shape[tensor_shape_size] = {size}; + const Offset tensor_offset = CreateTensor( + *builder, builder->CreateVector(tensor_shape, tensor_shape_size), + TensorType_INT32, 0, builder->CreateString("test_tensor"), quant_params, + false); + builder->Finish(tensor_offset); + void* tensor_pointer = builder->GetBufferPointer(); + const Tensor* tensor = flatbuffers::GetRoot(tensor_pointer); + return tensor; +} + +const Tensor* CreateMissingQuantizationFlatbufferTensor(int size) { + using flatbuffers::Offset; + flatbuffers::FlatBufferBuilder* builder = BuilderInstance(); + const Offset quant_params = + CreateQuantizationParameters(*builder, 0, 0, 0, 0, + QuantizationDetails_NONE, 0, 0); + constexpr size_t tensor_shape_size = 1; + const int32_t tensor_shape[tensor_shape_size] = {size}; + const Offset tensor_offset = CreateTensor( + *builder, builder->CreateVector(tensor_shape, tensor_shape_size), + TensorType_INT32, 0, builder->CreateString("test_tensor"), quant_params, + false); + builder->Finish(tensor_offset); + void* tensor_pointer = builder->GetBufferPointer(); + const Tensor* tensor = flatbuffers::GetRoot(tensor_pointer); + return tensor; +} + +const flatbuffers::Vector>* +CreateFlatbufferBuffers() { + using flatbuffers::Offset; + flatbuffers::FlatBufferBuilder* builder = BuilderInstance(); + constexpr size_t buffers_size = 1; + const Offset buffers[buffers_size] = { + CreateBuffer(*builder), + }; + const flatbuffers::Offset>> + buffers_offset = builder->CreateVector(buffers, buffers_size); + builder->Finish(buffers_offset); + void* buffers_pointer = builder->GetBufferPointer(); + const flatbuffers::Vector>* result = + flatbuffers::GetRoot>>( + buffers_pointer); + return result; +} + +int TestStrcmp(const char* a, const char* b) { + if ((a == nullptr) || (b == nullptr)) { + return -1; + } + while ((*a != 0) && (*a == *b)) { + a++; + b++; + } + return *reinterpret_cast(a) - + *reinterpret_cast(b); +} + +// Wrapper to forward kernel errors to the interpreter's error reporter. +void ReportOpError(struct TfLiteContext* context, const char* format, ...) { +#ifndef TF_LITE_STRIP_ERROR_STRINGS + ErrorReporter* error_reporter = static_cast(context->impl_); + va_list args; + va_start(args, format); + TF_LITE_REPORT_ERROR(error_reporter, format, args); + va_end(args); +#endif +} + +// Create a TfLiteIntArray from an array of ints. The first element in the +// supplied array must be the size of the array expressed as an int. +TfLiteIntArray* IntArrayFromInts(const int* int_array) { + return const_cast( + reinterpret_cast(int_array)); +} + +// Create a TfLiteFloatArray from an array of floats. The first element in the +// supplied array must be the size of the array expressed as a float. +TfLiteFloatArray* FloatArrayFromFloats(const float* floats) { + static_assert(sizeof(float) == sizeof(int), + "assumes sizeof(float) == sizeof(int) to perform casting"); + int size = static_cast(floats[0]); + *reinterpret_cast(const_cast(floats)) = size; + return reinterpret_cast(const_cast(floats)); +} + +TfLiteTensor CreateTensor(TfLiteIntArray* dims, bool is_variable) { + TfLiteTensor result; + result.dims = dims; + result.params = {}; + result.quantization = {kTfLiteNoQuantization, nullptr}; + result.is_variable = is_variable; + result.allocation_type = kTfLiteMemNone; + return result; +} + +TfLiteTensor CreateFloatTensor(const float* data, TfLiteIntArray* dims, + bool is_variable) { + TfLiteTensor result = CreateTensor(dims, is_variable); + result.type = kTfLiteFloat32; + result.data.f = const_cast(data); + result.bytes = ElementCount(*dims) * sizeof(float); + return result; +} + +void PopulateFloatTensor(TfLiteTensor* tensor, float* begin, float* end) { + float* p = begin; + float* v = tensor->data.f; + while (p != end) { + *v++ = *p++; + } +} + +TfLiteTensor CreateBoolTensor(const bool* data, TfLiteIntArray* dims, + bool is_variable) { + TfLiteTensor result = CreateTensor(dims, is_variable); + result.type = kTfLiteBool; + result.data.b = const_cast(data); + result.bytes = ElementCount(*dims) * sizeof(bool); + return result; +} + +TfLiteTensor CreateInt32Tensor(const int32_t* data, TfLiteIntArray* dims, + bool is_variable) { + TfLiteTensor result = CreateTensor(dims, is_variable); + result.type = kTfLiteInt32; + result.data.i32 = const_cast(data); + result.bytes = ElementCount(*dims) * sizeof(int32_t); + return result; +} + +TfLiteTensor CreateQuantizedTensor(const uint8_t* data, TfLiteIntArray* dims, + float scale, int zero_point, + bool is_variable) { + TfLiteTensor result = CreateTensor(dims, is_variable); + result.type = kTfLiteUInt8; + result.data.uint8 = const_cast(data); + result.params = {scale, zero_point}; + result.quantization = {kTfLiteAffineQuantization, nullptr}; + result.bytes = ElementCount(*dims) * sizeof(uint8_t); + return result; +} + +TfLiteTensor CreateQuantizedTensor(const int8_t* data, TfLiteIntArray* dims, + float scale, int zero_point, + bool is_variable) { + TfLiteTensor result = CreateTensor(dims, is_variable); + result.type = kTfLiteInt8; + result.data.int8 = const_cast(data); + result.params = {scale, zero_point}; + result.quantization = {kTfLiteAffineQuantization, nullptr}; + result.bytes = ElementCount(*dims) * sizeof(int8_t); + return result; +} + +TfLiteTensor CreateQuantizedTensor(const int16_t* data, TfLiteIntArray* dims, + float scale, int zero_point, + bool is_variable) { + TfLiteTensor result = CreateTensor(dims, is_variable); + result.type = kTfLiteInt16; + result.data.i16 = const_cast(data); + result.params = {scale, zero_point}; + result.quantization = {kTfLiteAffineQuantization, nullptr}; + result.bytes = ElementCount(*dims) * sizeof(int16_t); + return result; +} + +TfLiteTensor CreateQuantizedBiasTensor(const float* data, int32_t* quantized, + TfLiteIntArray* dims, float input_scale, + float weights_scale, bool is_variable) { + float bias_scale = input_scale * weights_scale; + tflite::SymmetricQuantize(data, quantized, ElementCount(*dims), bias_scale); + TfLiteTensor result = CreateTensor(dims, is_variable); + result.type = kTfLiteInt32; + result.data.i32 = const_cast(quantized); + // Quantized int32_t tensors always have a zero point of 0, since the range of + // int32_t values is large, and because zero point costs extra cycles during + // processing. + result.params = {bias_scale, 0}; + result.quantization = {kTfLiteAffineQuantization, nullptr}; + result.bytes = ElementCount(*dims) * sizeof(int32_t); + return result; +} + +// Quantizes int32_t bias tensor with per-channel weights determined by input +// scale multiplied by weight scale for each channel. +TfLiteTensor CreatePerChannelQuantizedBiasTensor( + const float* input, int32_t* quantized, TfLiteIntArray* dims, + float input_scale, float* weight_scales, float* scales, int* zero_points, + TfLiteAffineQuantization* affine_quant, int quantized_dimension, + bool is_variable) { + int input_size = ElementCount(*dims); + int num_channels = dims->data[quantized_dimension]; + // First element is reserved for array length + zero_points[0] = num_channels; + scales[0] = static_cast(num_channels); + float* scales_array = &scales[1]; + for (int i = 0; i < num_channels; i++) { + scales_array[i] = input_scale * weight_scales[i]; + zero_points[i + 1] = 0; + } + + SymmetricPerChannelQuantize(input, quantized, input_size, num_channels, + scales_array); + + affine_quant->scale = FloatArrayFromFloats(scales); + affine_quant->zero_point = IntArrayFromInts(zero_points); + affine_quant->quantized_dimension = quantized_dimension; + + TfLiteTensor result = CreateTensor(dims, is_variable); + result.type = kTfLiteInt32; + result.data.i32 = const_cast(quantized); + result.quantization = {kTfLiteAffineQuantization, affine_quant}; + result.bytes = ElementCount(*dims) * sizeof(int32_t); + return result; +} + +TfLiteTensor CreateSymmetricPerChannelQuantizedTensor( + const float* input, int8_t* quantized, TfLiteIntArray* dims, float* scales, + int* zero_points, TfLiteAffineQuantization* affine_quant, + int quantized_dimension, bool is_variable) { + int channel_count = dims->data[quantized_dimension]; + scales[0] = static_cast(channel_count); + zero_points[0] = channel_count; + + SignedSymmetricPerChannelQuantize(input, dims, quantized_dimension, quantized, + &scales[1]); + + for (int i = 0; i < channel_count; i++) { + zero_points[i + 1] = 0; + } + + affine_quant->scale = FloatArrayFromFloats(scales); + affine_quant->zero_point = IntArrayFromInts(zero_points); + affine_quant->quantized_dimension = quantized_dimension; + + TfLiteTensor result = CreateTensor(dims, is_variable); + result.type = kTfLiteInt8; + result.data.int8 = const_cast(quantized); + result.quantization = {kTfLiteAffineQuantization, affine_quant}; + result.bytes = ElementCount(*dims) * sizeof(int8_t); + return result; +} + +size_t GetModelTensorCount(const Model* model) { + auto* subgraphs = model->subgraphs(); + if (subgraphs) { + return (*subgraphs)[0]->tensors()->size(); + } + return 0; +} + +} // namespace testing +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/test_helpers.h b/components/tflite_micro/tensorflow/lite/micro/test_helpers.h new file mode 100644 index 00000000..a7897145 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/test_helpers.h @@ -0,0 +1,186 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_LITE_MICRO_TEST_HELPERS_H_ +#define TENSORFLOW_LITE_MICRO_TEST_HELPERS_H_ + +// Useful functions for writing tests. + +#include + +#include "flatbuffers/flatbuffers.h" // from @flatbuffers +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/kernels/internal/compatibility.h" +#include "tensorflow/lite/micro/all_ops_resolver.h" +#include "tensorflow/lite/micro/micro_utils.h" +#include "tensorflow/lite/schema/schema_generated.h" + +namespace tflite { +namespace testing { + +constexpr int kOfflinePlannerHeaderSize = 3; + +struct NodeConnection_ { + std::initializer_list input; + std::initializer_list output; +}; +typedef struct NodeConnection_ NodeConnection; + +// A simple operator that returns the median of the input with the number of +// times the kernel was invoked. The implementation below is deliberately +// complicated, just to demonstrate how kernel memory planning works. +class SimpleStatefulOp { + static constexpr int kBufferNotAllocated = 0; + // Inputs: + static constexpr int kInputTensor = 0; + // Outputs: + static constexpr int kMedianTensor = 0; + static constexpr int kInvokeCount = 1; + struct OpData { + int invoke_count = 0; + int sorting_buffer = kBufferNotAllocated; + }; + + public: + static const TfLiteRegistration* getRegistration(); + static TfLiteRegistration* GetMutableRegistration(); + static void* Init(TfLiteContext* context, const char* buffer, size_t length); + static TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node); + static TfLiteStatus Invoke(TfLiteContext* context, TfLiteNode* node); +}; + +class MockCustom { + public: + static const TfLiteRegistration* getRegistration(); + static TfLiteRegistration* GetMutableRegistration(); + static void* Init(TfLiteContext* context, const char* buffer, size_t length); + static void Free(TfLiteContext* context, void* buffer); + static TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node); + static TfLiteStatus Invoke(TfLiteContext* context, TfLiteNode* node); + + static bool freed_; +}; + +// Returns an Op Resolver that can be used in the testing code. +AllOpsResolver GetOpResolver(); + +// Returns a simple example flatbuffer TensorFlow Lite model. Contains 1 input, +// 1 layer of weights, 1 output Tensor, and 1 operator. +const Model* GetSimpleMockModel(); + +// Returns a flatbuffer TensorFlow Lite model with more inputs, variable +// tensors, and operators. +const Model* GetComplexMockModel(); + +// Returns a simple flatbuffer model with two branches. +const Model* GetSimpleModelWithBranch(); + +// Returns a simple flatbuffer model with offline planned tensors +const Model* GetModelWithOfflinePlanning(int num_tensors, + const int32_t* metadata_buffer, + NodeConnection* node_conn, + int num_conns); + +// Returns a flatbuffer model with `simple_stateful_op` +const Model* GetSimpleStatefulModel(); + +// Builds a one-dimensional flatbuffer tensor of the given size. +const Tensor* Create1dFlatbufferTensor(int size, bool is_variable = false); + +// Builds a one-dimensional flatbuffer tensor of the given size with +// quantization metadata. +const Tensor* CreateQuantizedFlatbufferTensor(int size); + +// Creates a one-dimensional tensor with no quantization metadata. +const Tensor* CreateMissingQuantizationFlatbufferTensor(int size); + +// Creates a vector of flatbuffer buffers. +const flatbuffers::Vector>* +CreateFlatbufferBuffers(); + +// Performs a simple string comparison without requiring standard C library. +int TestStrcmp(const char* a, const char* b); + +// Wrapper to forward kernel errors to the interpreter's error reporter. +void ReportOpError(struct TfLiteContext* context, const char* format, ...); + +void PopulateContext(TfLiteTensor* tensors, int tensors_size, + TfLiteContext* context); + +// Create a TfLiteIntArray from an array of ints. The first element in the +// supplied array must be the size of the array expressed as an int. +TfLiteIntArray* IntArrayFromInts(const int* int_array); + +// Create a TfLiteFloatArray from an array of floats. The first element in the +// supplied array must be the size of the array expressed as a float. +TfLiteFloatArray* FloatArrayFromFloats(const float* floats); + +TfLiteTensor CreateFloatTensor(const float* data, TfLiteIntArray* dims, + bool is_variable = false); + +void PopulateFloatTensor(TfLiteTensor* tensor, float* begin, float* end); + +TfLiteTensor CreateBoolTensor(const bool* data, TfLiteIntArray* dims, + bool is_variable = false); + +TfLiteTensor CreateInt32Tensor(const int32_t*, TfLiteIntArray* dims, + bool is_variable = false); + +TfLiteTensor CreateQuantizedTensor(const uint8_t* data, TfLiteIntArray* dims, + float scale, int zero_point, + bool is_variable = false); + +TfLiteTensor CreateQuantizedTensor(const int8_t* data, TfLiteIntArray* dims, + float scale, int zero_point, + bool is_variable = false); + +TfLiteTensor CreateQuantizedTensor(const int16_t* data, TfLiteIntArray* dims, + float scale, int zero_point, + bool is_variable = false); + +template +TfLiteTensor CreateQuantizedTensor(const float* input, T* quantized, + TfLiteIntArray* dims, float scale, + int zero_point, bool is_variable = false) { + int input_size = ElementCount(*dims); + tflite::AsymmetricQuantize(input, quantized, input_size, scale, zero_point); + return CreateQuantizedTensor(quantized, dims, scale, zero_point, is_variable); +} + +TfLiteTensor CreateQuantizedBiasTensor(const float* data, int32_t* quantized, + TfLiteIntArray* dims, float input_scale, + float weights_scale, + bool is_variable = false); + +// Quantizes int32_t bias tensor with per-channel weights determined by input +// scale multiplied by weight scale for each channel. +TfLiteTensor CreatePerChannelQuantizedBiasTensor( + const float* input, int32_t* quantized, TfLiteIntArray* dims, + float input_scale, float* weight_scales, float* scales, int* zero_points, + TfLiteAffineQuantization* affine_quant, int quantized_dimension, + bool is_variable = false); + +TfLiteTensor CreateSymmetricPerChannelQuantizedTensor( + const float* input, int8_t* quantized, TfLiteIntArray* dims, float* scales, + int* zero_points, TfLiteAffineQuantization* affine_quant, + int quantized_dimension, bool is_variable = false); + +// Returns the number of tensors in the default subgraph for a tflite::Model. +size_t GetModelTensorCount(const Model* model); + +} // namespace testing +} // namespace tflite + +#endif // TENSORFLOW_LITE_MICRO_TEST_HELPERS_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/testing/micro_test.h b/components/tflite_micro/tensorflow/lite/micro/testing/micro_test.h new file mode 100644 index 00000000..0b523f34 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/testing/micro_test.h @@ -0,0 +1,241 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +// An ultra-lightweight testing framework designed for use with microcontroller +// applications. Its only dependency is on TensorFlow Lite's ErrorReporter +// interface, where log messages are output. This is designed to be usable even +// when no standard C or C++ libraries are available, and without any dynamic +// memory allocation or reliance on global constructors. +// +// To build a test, you use syntax similar to gunit, but with some extra +// decoration to create a hidden 'main' function containing each of the tests to +// be run. Your code should look something like: +// ---------------------------------------------------------------------------- +// #include "path/to/this/header" +// +// TF_LITE_MICRO_TESTS_BEGIN +// +// TF_LITE_MICRO_TEST(SomeTest) { +// TF_LITE_LOG_EXPECT_EQ(true, true); +// } +// +// TF_LITE_MICRO_TESTS_END +// ---------------------------------------------------------------------------- +// If you compile this for your platform, you'll get a normal binary that you +// should be able to run. Executing it will output logging information like this +// to stderr (or whatever equivalent is available and written to by +// ErrorReporter): +// ---------------------------------------------------------------------------- +// Testing SomeTest +// 1/1 tests passed +// ~~~ALL TESTS PASSED~~~ +// ---------------------------------------------------------------------------- +// This is designed to be human-readable, so you can just run tests manually, +// but the string "~~~ALL TESTS PASSED~~~" should only appear if all of the +// tests do pass. This makes it possible to integrate with automated test +// systems by scanning the output logs and looking for that magic value. +// +// This framework is intended to be a rudimentary alternative to no testing at +// all on systems that struggle to run more conventional approaches, so use with +// caution! + +#ifndef TENSORFLOW_LITE_MICRO_TESTING_MICRO_TEST_H_ +#define TENSORFLOW_LITE_MICRO_TESTING_MICRO_TEST_H_ + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/micro/micro_error_reporter.h" + +namespace micro_test { +extern int tests_passed; +extern int tests_failed; +extern bool is_test_complete; +extern bool did_test_fail; +extern tflite::ErrorReporter* reporter; +} // namespace micro_test + +#define TF_LITE_MICRO_TESTS_BEGIN \ + namespace micro_test { \ + int tests_passed; \ + int tests_failed; \ + bool is_test_complete; \ + bool did_test_fail; \ + tflite::ErrorReporter* reporter; \ + } \ + \ + int main(void) { \ + micro_test::tests_passed = 0; \ + micro_test::tests_failed = 0; \ + tflite::MicroErrorReporter error_reporter; \ + micro_test::reporter = &error_reporter; \ + HAL_Init(); \ + SystemClock_Config(); \ + board_init(); \ + printf("Init Successful"); + +#define TF_LITE_MICRO_TESTS_END \ + micro_test::reporter->Report( \ + "%d/%d tests passed", micro_test::tests_passed, \ + (micro_test::tests_failed + micro_test::tests_passed)); \ + if (micro_test::tests_failed == 0) { \ + micro_test::reporter->Report("~~~ALL TESTS PASSED~~~\n"); \ + } else { \ + micro_test::reporter->Report("~~~SOME TESTS FAILED~~~\n"); \ + } \ + while(1); \ + } + +// TODO(petewarden): I'm going to hell for what I'm doing to this poor for loop. +#define TF_LITE_MICRO_TEST(name) \ + micro_test::reporter->Report("Testing " #name); \ + for (micro_test::is_test_complete = false, \ + micro_test::did_test_fail = false; \ + !micro_test::is_test_complete; micro_test::is_test_complete = true, \ + micro_test::tests_passed += (micro_test::did_test_fail) ? 0 : 1, \ + micro_test::tests_failed += (micro_test::did_test_fail) ? 1 : 0) + +#define TF_LITE_MICRO_EXPECT(x) \ + do { \ + if (!(x)) { \ + micro_test::reporter->Report(#x " failed at %s:%d", __FILE__, __LINE__); \ + micro_test::did_test_fail = true; \ + } \ + } while (false) + +// TODO(b/139142772): this macro is used with types other than ints even though +// the printf specifier is %d. +#define TF_LITE_MICRO_EXPECT_EQ(x, y) \ + do { \ + auto vx = x; \ + auto vy = y; \ + if ((vx) != (vy)) { \ + micro_test::reporter->Report(#x " == " #y " failed at %s:%d (%d vs %d)", \ + __FILE__, __LINE__, static_cast(vx), \ + static_cast(vy)); \ + micro_test::did_test_fail = true; \ + } \ + } while (false) + +#define TF_LITE_MICRO_EXPECT_NE(x, y) \ + do { \ + if ((x) == (y)) { \ + micro_test::reporter->Report(#x " != " #y " failed at %s:%d", __FILE__, \ + __LINE__); \ + micro_test::did_test_fail = true; \ + } \ + } while (false) + +// TODO(wangtz): Making it more generic once needed. +#define TF_LITE_MICRO_ARRAY_ELEMENT_EXPECT_NEAR(arr1, idx1, arr2, idx2, \ + epsilon) \ + do { \ + auto delta = ((arr1)[(idx1)] > (arr2)[(idx2)]) \ + ? ((arr1)[(idx1)] - (arr2)[(idx2)]) \ + : ((arr2)[(idx2)] - (arr1)[(idx1)]); \ + if (delta > epsilon) { \ + micro_test::reporter->Report( \ + #arr1 "[%d] (%f) near " #arr2 "[%d] (%f) failed at %s:%d", \ + static_cast(idx1), static_cast((arr1)[(idx1)]), \ + static_cast(idx2), static_cast((arr2)[(idx2)]), \ + __FILE__, __LINE__); \ + micro_test::did_test_fail = true; \ + } \ + } while (false) + +#define TF_LITE_MICRO_EXPECT_NEAR(x, y, epsilon) \ + do { \ + auto vx = (x); \ + auto vy = (y); \ + auto delta = ((vx) > (vy)) ? ((vx) - (vy)) : ((vy) - (vx)); \ + if (delta > epsilon) { \ + micro_test::reporter->Report( \ + #x " (%f) near " #y " (%f) failed at %s:%d", \ + static_cast(vx), static_cast(vy), __FILE__, \ + __LINE__); \ + micro_test::did_test_fail = true; \ + } \ + } while (false) + +#define TF_LITE_MICRO_EXPECT_GT(x, y) \ + do { \ + if ((x) <= (y)) { \ + micro_test::reporter->Report(#x " > " #y " failed at %s:%d", __FILE__, \ + __LINE__); \ + micro_test::did_test_fail = true; \ + } \ + } while (false) + +#define TF_LITE_MICRO_EXPECT_LT(x, y) \ + do { \ + if ((x) >= (y)) { \ + micro_test::reporter->Report(#x " < " #y " failed at %s:%d", __FILE__, \ + __LINE__); \ + micro_test::did_test_fail = true; \ + } \ + } while (false) + +#define TF_LITE_MICRO_EXPECT_GE(x, y) \ + do { \ + if ((x) < (y)) { \ + micro_test::reporter->Report(#x " >= " #y " failed at %s:%d", __FILE__, \ + __LINE__); \ + micro_test::did_test_fail = true; \ + } \ + } while (false) + +#define TF_LITE_MICRO_EXPECT_LE(x, y) \ + do { \ + if ((x) > (y)) { \ + micro_test::reporter->Report(#x " <= " #y " failed at %s:%d", __FILE__, \ + __LINE__); \ + micro_test::did_test_fail = true; \ + } \ + } while (false) + +#define TF_LITE_MICRO_EXPECT_TRUE(x) \ + do { \ + if (!(x)) { \ + micro_test::reporter->Report(#x " was not true failed at %s:%d", \ + __FILE__, __LINE__); \ + micro_test::did_test_fail = true; \ + } \ + } while (false) + +#define TF_LITE_MICRO_EXPECT_FALSE(x) \ + do { \ + if (x) { \ + micro_test::reporter->Report(#x " was not false failed at %s:%d", \ + __FILE__, __LINE__); \ + micro_test::did_test_fail = true; \ + } \ + } while (false) + +#define TF_LITE_MICRO_FAIL(msg) \ + do { \ + micro_test::reporter->Report("FAIL: %s", msg, __FILE__, __LINE__); \ + micro_test::did_test_fail = true; \ + } while (false) + +#define TF_LITE_MICRO_EXPECT_STRING_EQ(string1, string2) \ + do { \ + for (int i = 0; string1[i] != '\0' && string2[i] != '\0'; i++) { \ + if (string1[i] != string2[i]) { \ + micro_test::reporter->Report("FAIL: %s did not match %s", string1, \ + string2, __FILE__, __LINE__); \ + micro_test::did_test_fail = true; \ + } \ + } \ + } while (false) + +#endif // TENSORFLOW_LITE_MICRO_TESTING_MICRO_TEST_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/testing/test_conv_model.cc b/components/tflite_micro/tensorflow/lite/micro/testing/test_conv_model.cc new file mode 100644 index 00000000..358479c3 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/testing/test_conv_model.cc @@ -0,0 +1,1799 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/micro/testing/test_conv_model.h" + +extern const unsigned char kTestConvModelData[] = { + 0x24, 0x00, 0x00, 0x00, 0x54, 0x46, 0x4c, 0x33, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0x00, 0x1c, 0x00, 0x04, 0x00, + 0x08, 0x00, 0x0c, 0x00, 0x10, 0x00, 0x14, 0x00, 0x00, 0x00, 0x18, 0x00, + 0x12, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0xb4, 0x52, 0x00, 0x00, + 0x3c, 0x42, 0x00, 0x00, 0x24, 0x42, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x00, + 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00, + 0x08, 0x00, 0x0c, 0x00, 0x04, 0x00, 0x08, 0x00, 0x08, 0x00, 0x00, 0x00, + 0x08, 0x00, 0x00, 0x00, 0x0e, 0x00, 0x00, 0x00, 0x13, 0x00, 0x00, 0x00, + 0x6d, 0x69, 0x6e, 0x5f, 0x72, 0x75, 0x6e, 0x74, 0x69, 0x6d, 0x65, 0x5f, + 0x76, 0x65, 0x72, 0x73, 0x69, 0x6f, 0x6e, 0x00, 0x0f, 0x00, 0x00, 0x00, + 0xd4, 0x41, 0x00, 0x00, 0xc0, 0x41, 0x00, 0x00, 0x64, 0x41, 0x00, 0x00, + 0xc0, 0x40, 0x00, 0x00, 0x7c, 0x40, 0x00, 0x00, 0x58, 0x40, 0x00, 0x00, + 0x44, 0x13, 0x00, 0x00, 0xa0, 0x12, 0x00, 0x00, 0x8c, 0x00, 0x00, 0x00, + 0x80, 0x00, 0x00, 0x00, 0x6c, 0x00, 0x00, 0x00, 0x58, 0x00, 0x00, 0x00, + 0x44, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, + 0xd6, 0xbe, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0x31, 0x2e, 0x35, 0x2e, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x94, 0xb2, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xa4, 0xb2, 0xff, 0xff, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0xb4, 0xb2, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0xc4, 0xb2, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xd4, 0xb2, 0xff, 0xff, + 0x00, 0x00, 0x00, 0x00, 0x46, 0xbf, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, + 0x00, 0x12, 0x00, 0x00, 0x7d, 0x6a, 0x24, 0xa1, 0xf6, 0xca, 0x70, 0x2f, + 0x8e, 0xb1, 0xe8, 0x15, 0x42, 0x08, 0x32, 0xf6, 0xe9, 0xfb, 0xa0, 0xda, + 0xe4, 0xf1, 0x0a, 0x9d, 0x72, 0x66, 0x88, 0x37, 0xe9, 0x9e, 0x08, 0x54, + 0x61, 0x51, 0x40, 0x93, 0x4d, 0xcf, 0xe2, 0x08, 0x36, 0xad, 0xb1, 0x8e, + 0xfc, 0xe4, 0x02, 0xd1, 0x9a, 0x1e, 0x05, 0x67, 0xa3, 0x3b, 0xa6, 0xde, + 0x5d, 0x2a, 0xcc, 0x8c, 0x3c, 0x2e, 0xd2, 0x15, 0xc2, 0x60, 0xab, 0xea, + 0x73, 0xe4, 0x88, 0xc1, 0x66, 0x21, 0xb0, 0xe5, 0x5b, 0x55, 0xda, 0x69, + 0x2d, 0x0c, 0x66, 0x07, 0x74, 0x36, 0xcd, 0x79, 0x81, 0xf9, 0x5c, 0x2c, + 0xb5, 0x93, 0xab, 0x76, 0xa1, 0x1f, 0x20, 0x90, 0x89, 0xe1, 0x41, 0xc7, + 0x32, 0xc2, 0xa3, 0x03, 0x77, 0x86, 0x79, 0xf7, 0x89, 0xc1, 0xb1, 0x42, + 0x2a, 0x75, 0xc7, 0xc1, 0x2f, 0xbb, 0xf6, 0xe8, 0x23, 0x99, 0x9b, 0x74, + 0x9c, 0xe5, 0x91, 0x15, 0xc6, 0x08, 0x0e, 0xae, 0x7c, 0xd3, 0x27, 0x54, + 0xfb, 0xa7, 0x49, 0x65, 0x52, 0x2f, 0x63, 0x33, 0x8b, 0x5f, 0x67, 0x21, + 0x25, 0xe0, 0xcf, 0x95, 0x03, 0x05, 0x19, 0x0c, 0x3d, 0xfc, 0x95, 0x42, + 0xa9, 0x26, 0x27, 0x54, 0xa3, 0x71, 0xb4, 0x70, 0x7a, 0x40, 0x0d, 0xc1, + 0x72, 0x04, 0x81, 0x3b, 0xb9, 0xb7, 0xd2, 0xc1, 0x4e, 0xf8, 0xff, 0xca, + 0x66, 0xc1, 0xbe, 0xb9, 0x09, 0xbd, 0xb9, 0x2c, 0x5b, 0x97, 0xc3, 0xa8, + 0xf6, 0xc4, 0x23, 0x93, 0x2e, 0xf6, 0xce, 0x2e, 0xdb, 0xfb, 0x8f, 0xb0, + 0xc8, 0xba, 0xfa, 0x97, 0xfd, 0xc0, 0x0a, 0xc8, 0x2c, 0xf3, 0x4c, 0x4d, + 0x8b, 0x3b, 0x47, 0x11, 0xfb, 0xe8, 0x96, 0xe3, 0xcc, 0xef, 0xe4, 0xb5, + 0x07, 0xa1, 0xb7, 0xa9, 0xf7, 0x98, 0x71, 0x59, 0x9b, 0x5a, 0x7b, 0x88, + 0xe4, 0xcf, 0x9b, 0x55, 0x26, 0xce, 0x59, 0x73, 0x66, 0x17, 0x9c, 0x74, + 0x02, 0xfc, 0x24, 0x01, 0xde, 0x44, 0x98, 0xe3, 0x8b, 0x18, 0x02, 0x42, + 0xf5, 0x0f, 0xbc, 0xcb, 0xf7, 0x37, 0xb1, 0xd5, 0xb4, 0x7c, 0x0a, 0x6a, + 0x59, 0x59, 0xc9, 0x11, 0xd8, 0x0f, 0xf9, 0xab, 0x40, 0xdd, 0x14, 0xf9, + 0x30, 0xaa, 0xf1, 0x8c, 0x6d, 0xbc, 0x4c, 0x5b, 0x71, 0x95, 0xfd, 0x41, + 0x4c, 0xf3, 0xb4, 0x7f, 0x1c, 0xb6, 0x4b, 0x12, 0x3b, 0x6e, 0xc1, 0xce, + 0x6f, 0xf8, 0x57, 0xb7, 0x5e, 0x2a, 0x36, 0x32, 0x3d, 0x85, 0xc6, 0xbf, + 0xd7, 0xab, 0x95, 0x45, 0x62, 0xae, 0xb8, 0xa6, 0x03, 0xcc, 0x21, 0x25, + 0x18, 0x5a, 0xa8, 0x03, 0x27, 0x33, 0x47, 0xb1, 0x7e, 0x0e, 0xbd, 0xc3, + 0x24, 0x25, 0x78, 0x28, 0xa4, 0xe3, 0x5b, 0x08, 0xbf, 0x04, 0xa2, 0xae, + 0x90, 0x4c, 0x96, 0x78, 0xa8, 0xb1, 0xb8, 0x54, 0x89, 0x25, 0x2d, 0x35, + 0x93, 0x95, 0xa5, 0xd3, 0x1a, 0xe6, 0x00, 0x8b, 0xfe, 0x36, 0x0f, 0xd2, + 0x6e, 0xff, 0x86, 0x93, 0x48, 0xb8, 0x08, 0x39, 0x1f, 0x3a, 0x2d, 0xe7, + 0x47, 0x5e, 0x05, 0x66, 0x7a, 0xb8, 0xe4, 0xda, 0xbc, 0x5b, 0x57, 0xdf, + 0xd9, 0x0a, 0xb9, 0x48, 0x5d, 0x0c, 0x57, 0xed, 0x8d, 0xbb, 0x8d, 0x4b, + 0x0e, 0xb8, 0xea, 0x02, 0x06, 0x2f, 0xfd, 0x28, 0x0d, 0x0b, 0xf4, 0xf4, + 0x52, 0x81, 0x77, 0x15, 0x87, 0x53, 0x28, 0xef, 0xbe, 0xc6, 0x4c, 0x45, + 0x3e, 0x1a, 0x6e, 0xbd, 0x10, 0xd8, 0x9a, 0x72, 0x1f, 0x14, 0xe2, 0x37, + 0x08, 0xaf, 0xfa, 0xce, 0xd3, 0x84, 0x23, 0x43, 0x8c, 0x5c, 0xce, 0x1b, + 0xf7, 0xf3, 0xb0, 0x3b, 0xfd, 0x33, 0xf8, 0x09, 0xf1, 0x41, 0xa5, 0xa8, + 0x86, 0x8d, 0x56, 0xde, 0xf6, 0x68, 0xe3, 0x4c, 0x97, 0xa6, 0xc3, 0x66, + 0x9b, 0xa9, 0x8a, 0xbd, 0x59, 0x45, 0xfb, 0xdf, 0xa1, 0x42, 0x10, 0x1c, + 0x55, 0x22, 0x53, 0xe1, 0x32, 0x33, 0xf9, 0xfa, 0xc2, 0x70, 0x0f, 0x49, + 0x15, 0xa7, 0x21, 0xbc, 0x56, 0x35, 0x09, 0x06, 0xe6, 0x5e, 0xc4, 0xc1, + 0x64, 0x93, 0x59, 0x3b, 0x8e, 0xb7, 0x52, 0x6c, 0x4d, 0xa1, 0xb7, 0xee, + 0x14, 0xc2, 0x01, 0x25, 0xbb, 0x5e, 0xe0, 0xc6, 0xa4, 0x4f, 0xb5, 0x20, + 0x88, 0xe0, 0xd7, 0x5e, 0x26, 0x5b, 0x9f, 0xf7, 0xb5, 0x26, 0x5b, 0xfc, + 0xf3, 0x3e, 0xf3, 0x57, 0x6f, 0x9e, 0x9e, 0x51, 0x07, 0x6e, 0xc0, 0x53, + 0x17, 0x89, 0x79, 0xf0, 0x91, 0xb2, 0x54, 0x30, 0x1f, 0x97, 0x95, 0xfc, + 0x02, 0x2d, 0x0c, 0x06, 0xb0, 0x82, 0xad, 0x20, 0xc2, 0xdc, 0x78, 0xbc, + 0xbe, 0x5b, 0x88, 0xa0, 0xdd, 0x45, 0x49, 0x26, 0xec, 0xb4, 0xa5, 0x8b, + 0x7f, 0xdd, 0x40, 0xcf, 0x9e, 0xbe, 0x46, 0x4d, 0x36, 0xab, 0x0a, 0x34, + 0x1a, 0x2a, 0xd0, 0xd3, 0x83, 0x96, 0xff, 0x88, 0xa4, 0xd8, 0x48, 0x75, + 0x2f, 0xcb, 0x3c, 0xc3, 0xbb, 0xc7, 0x2f, 0xe9, 0xf9, 0xa3, 0xde, 0x9d, + 0xbb, 0x5e, 0x37, 0x29, 0xf6, 0x75, 0xcc, 0x85, 0xeb, 0xf9, 0x73, 0xf7, + 0xdc, 0x31, 0x8c, 0x56, 0x52, 0x4a, 0x44, 0xa4, 0x2a, 0x2a, 0x51, 0x49, + 0x77, 0x6d, 0x35, 0x0a, 0xf9, 0x44, 0xaa, 0x36, 0x05, 0xef, 0x1e, 0x6b, + 0xe5, 0x65, 0x6b, 0xaa, 0xc1, 0x41, 0x9c, 0x62, 0xd0, 0x70, 0x78, 0xff, + 0x88, 0xe8, 0x5f, 0x3c, 0x2e, 0x00, 0x6c, 0xe3, 0xdb, 0xc3, 0x54, 0x66, + 0xa9, 0xf4, 0xe2, 0x4c, 0x91, 0x11, 0xc8, 0x3c, 0x39, 0x9b, 0x31, 0x81, + 0xc7, 0x11, 0x22, 0x62, 0xb7, 0x26, 0xa0, 0x0c, 0x2e, 0x6c, 0xe7, 0x34, + 0x3b, 0x1f, 0x27, 0xb3, 0xe5, 0x4f, 0xc9, 0x71, 0xb2, 0x18, 0x99, 0x59, + 0x95, 0xc6, 0x35, 0x4c, 0x5d, 0xa3, 0x59, 0xd1, 0x8b, 0x71, 0xea, 0xe7, + 0x30, 0x3f, 0xe7, 0x8c, 0x1a, 0x59, 0xeb, 0xc5, 0x5d, 0xbd, 0xe6, 0x00, + 0x67, 0x02, 0xfb, 0xca, 0x8d, 0xdf, 0x71, 0xb6, 0xed, 0xc7, 0xd2, 0xf2, + 0x72, 0x1b, 0xd3, 0x63, 0x51, 0x1f, 0x04, 0xe9, 0xf9, 0xe2, 0x38, 0x13, + 0x48, 0x63, 0x19, 0x66, 0x2b, 0x48, 0xc8, 0x1b, 0x9d, 0x19, 0x5a, 0x57, + 0x44, 0x2d, 0x30, 0xb5, 0xce, 0x3b, 0xcc, 0xae, 0xc4, 0x5e, 0x4e, 0x96, + 0x62, 0x5c, 0x53, 0x1f, 0xbf, 0xbd, 0xc8, 0x9d, 0xcf, 0x81, 0xb3, 0x1e, + 0xb0, 0x22, 0xd5, 0xbe, 0x60, 0x65, 0xd9, 0xeb, 0x11, 0x74, 0x8c, 0x24, + 0x18, 0x67, 0x45, 0xd3, 0xf8, 0x3f, 0xc5, 0xdf, 0xac, 0x65, 0xd4, 0x0c, + 0x82, 0x63, 0xd6, 0x43, 0x94, 0xa0, 0x3b, 0xff, 0x03, 0x0f, 0xbb, 0xe4, + 0x4d, 0x3b, 0x41, 0x9f, 0xf4, 0x1a, 0xa9, 0xdb, 0x15, 0x5b, 0x9a, 0x92, + 0xcb, 0xd5, 0xb8, 0x33, 0x5e, 0xea, 0x28, 0x3d, 0x2d, 0x30, 0x20, 0xcd, + 0xb6, 0x23, 0x18, 0x0e, 0x10, 0x2a, 0xa9, 0xe1, 0xad, 0xbc, 0x96, 0xd1, + 0xf9, 0xf3, 0x95, 0x4f, 0x2a, 0x0b, 0x91, 0xff, 0xf0, 0x96, 0x14, 0x00, + 0xaa, 0xfb, 0x1a, 0x44, 0x21, 0x9b, 0xe8, 0x71, 0x31, 0x9e, 0xd6, 0x58, + 0x7f, 0x02, 0x36, 0x5e, 0x92, 0x8d, 0x93, 0x99, 0xac, 0xb6, 0x87, 0x39, + 0xda, 0x47, 0xef, 0x70, 0xd4, 0xf7, 0x8d, 0x2a, 0xbd, 0x08, 0x40, 0x4d, + 0xec, 0xeb, 0x4e, 0x1b, 0x85, 0x5d, 0x55, 0x64, 0x4c, 0xf3, 0x5e, 0x8f, + 0x68, 0x1e, 0x5e, 0x64, 0xc3, 0xb8, 0x92, 0x24, 0x41, 0x98, 0x78, 0x09, + 0x85, 0x87, 0x17, 0x2c, 0x88, 0x9e, 0x62, 0x86, 0x4f, 0x44, 0x71, 0x9c, + 0xa8, 0x73, 0xb3, 0x14, 0x1f, 0x3c, 0x96, 0x6b, 0xab, 0xad, 0x43, 0xdf, + 0x67, 0x34, 0x66, 0x30, 0x1d, 0x15, 0xd3, 0xe7, 0xd5, 0x8b, 0x00, 0xaa, + 0x11, 0x77, 0xea, 0x36, 0xc9, 0x49, 0x99, 0x93, 0x01, 0x6e, 0x00, 0x4a, + 0x93, 0x08, 0x2c, 0x44, 0x01, 0x91, 0xe0, 0x91, 0xdd, 0xab, 0x70, 0x4b, + 0xe7, 0xbf, 0x2d, 0x0f, 0xd4, 0x52, 0xa0, 0xf1, 0x5d, 0xa0, 0xcc, 0xb9, + 0x1b, 0xa2, 0x62, 0xeb, 0x23, 0x1e, 0x8e, 0xbb, 0x2b, 0xb6, 0xc5, 0x3a, + 0xdf, 0x32, 0x99, 0xde, 0x2e, 0x94, 0xcf, 0x98, 0x99, 0x34, 0x59, 0x60, + 0xcf, 0x57, 0xe0, 0xb0, 0xd9, 0x89, 0xaa, 0xc2, 0x4f, 0x1e, 0x38, 0x88, + 0xca, 0x32, 0x93, 0x9b, 0xa3, 0x2b, 0x17, 0x0b, 0x40, 0x5e, 0x69, 0xbd, + 0x14, 0x15, 0xca, 0x1a, 0x21, 0xdf, 0xa8, 0x4e, 0x14, 0x5e, 0x18, 0x40, + 0xe3, 0x4e, 0x04, 0x1f, 0xe5, 0x81, 0x53, 0x11, 0xae, 0x5e, 0x30, 0xe5, + 0xda, 0xd7, 0xf1, 0x3b, 0x72, 0x1b, 0xa5, 0xe3, 0x13, 0xad, 0x40, 0x54, + 0xae, 0xf0, 0xbc, 0x2b, 0xc1, 0x1a, 0x9c, 0xdd, 0xe1, 0xd0, 0x12, 0x10, + 0xfd, 0x59, 0xce, 0x36, 0x60, 0x86, 0xa0, 0xa7, 0xee, 0xe1, 0x02, 0xe6, + 0xf8, 0xf0, 0x5c, 0x4f, 0xa3, 0xa4, 0xe4, 0x09, 0xb9, 0xc3, 0x84, 0xe3, + 0x8d, 0x97, 0x21, 0x62, 0xf3, 0x11, 0x47, 0xb1, 0x4a, 0xce, 0x5b, 0x89, + 0xde, 0x86, 0xb5, 0x0e, 0xba, 0xbc, 0x8c, 0xcf, 0x54, 0x38, 0x3a, 0xc6, + 0xaf, 0x8c, 0x4d, 0x9d, 0xff, 0x58, 0x9b, 0xe8, 0x32, 0xb7, 0xa2, 0x29, + 0xad, 0x91, 0x3a, 0xa5, 0xc7, 0x54, 0xff, 0xd8, 0x47, 0x4f, 0x8f, 0x38, + 0x91, 0x12, 0x76, 0xa3, 0x2e, 0xf7, 0xdd, 0xba, 0xa7, 0xd4, 0x49, 0xe5, + 0xd1, 0x74, 0xe9, 0x2a, 0x29, 0xe4, 0x64, 0xb9, 0x58, 0x98, 0x0c, 0xe5, + 0x1f, 0xb2, 0x0e, 0x33, 0xea, 0xf8, 0x2e, 0xb1, 0x22, 0x46, 0xc2, 0x67, + 0x2d, 0xfe, 0x2e, 0xd3, 0xcf, 0xbc, 0x64, 0x7b, 0x75, 0x24, 0x53, 0x1c, + 0x42, 0x8c, 0x0b, 0x99, 0x9e, 0xa7, 0xa6, 0xb9, 0xfb, 0x5d, 0x86, 0x9f, + 0xe9, 0x04, 0x62, 0xb2, 0x42, 0x81, 0xa2, 0x0d, 0x60, 0x83, 0x40, 0xbb, + 0x21, 0x10, 0xdf, 0xaa, 0xe6, 0x6c, 0x72, 0xc5, 0xb1, 0xad, 0x9f, 0xd2, + 0x91, 0xf8, 0xb6, 0x56, 0xfb, 0x2e, 0xb3, 0xc4, 0x12, 0xd9, 0x86, 0x29, + 0x6c, 0x55, 0x88, 0x72, 0xba, 0xfb, 0x9b, 0xb9, 0x6f, 0x2d, 0x7d, 0x75, + 0xd0, 0x9d, 0xaf, 0x44, 0xb6, 0xbd, 0x7b, 0xec, 0x78, 0xf1, 0xbf, 0x66, + 0xe8, 0x79, 0x66, 0x16, 0x5e, 0xf9, 0x68, 0x89, 0x5b, 0xde, 0x8f, 0xf9, + 0xeb, 0x04, 0x0b, 0x6a, 0x71, 0xa1, 0x3b, 0x46, 0x03, 0xb4, 0x29, 0xa9, + 0x31, 0xf4, 0xc5, 0xd3, 0x43, 0x6d, 0x88, 0x43, 0xa8, 0xef, 0xb7, 0xd7, + 0x75, 0x6b, 0x83, 0x35, 0xb6, 0x2f, 0xe0, 0x5f, 0xf2, 0x14, 0xcd, 0xd0, + 0x06, 0xb3, 0x5e, 0x8b, 0xdb, 0x86, 0x11, 0x94, 0x2f, 0xfb, 0x92, 0x19, + 0x52, 0x7f, 0xcb, 0xe5, 0x22, 0x27, 0x5f, 0xe4, 0x68, 0xb2, 0xcb, 0xc7, + 0xb8, 0xec, 0xfd, 0x9e, 0x39, 0x9c, 0x5b, 0xe4, 0xae, 0xca, 0x83, 0x19, + 0xcf, 0xf0, 0x01, 0xe3, 0xfc, 0xb0, 0x28, 0xda, 0x79, 0x84, 0xfb, 0xfe, + 0xa5, 0xb6, 0xb3, 0xd2, 0x73, 0xd3, 0x11, 0xe5, 0xdf, 0x7a, 0xd7, 0x82, + 0x78, 0x25, 0x06, 0x5b, 0x0f, 0x89, 0x9d, 0x0b, 0x9b, 0xd1, 0x1b, 0xc5, + 0xb7, 0x67, 0xef, 0x7c, 0xa2, 0xa3, 0xca, 0x27, 0xd0, 0x59, 0xb9, 0x99, + 0x86, 0xa9, 0xf6, 0x9a, 0x28, 0xf0, 0xbb, 0x42, 0xd2, 0xa0, 0xa8, 0x01, + 0x29, 0xa1, 0x0c, 0x1b, 0x33, 0x1b, 0x9c, 0xcb, 0xe4, 0x6c, 0x61, 0x0a, + 0xc4, 0xd7, 0x6c, 0xec, 0x86, 0xb3, 0xd2, 0xaa, 0x8c, 0xab, 0x1a, 0xf4, + 0x03, 0x2e, 0x2b, 0x42, 0xbe, 0xc1, 0x31, 0x1d, 0x57, 0x47, 0xdc, 0x7b, + 0xb5, 0x8f, 0x8b, 0xdf, 0x06, 0xad, 0x3f, 0xf4, 0x4f, 0xb5, 0x52, 0x07, + 0x4e, 0x25, 0xb3, 0x73, 0x34, 0x92, 0x6a, 0x89, 0x93, 0x28, 0x8b, 0x96, + 0x9d, 0xdb, 0xb4, 0x77, 0x81, 0x76, 0x86, 0xd2, 0xa5, 0x94, 0x76, 0x35, + 0xc9, 0x66, 0x4e, 0xd8, 0xc5, 0xc3, 0xc9, 0x34, 0xaf, 0xad, 0x4a, 0x7c, + 0x92, 0x24, 0xb1, 0x7d, 0x7d, 0xac, 0xf6, 0xcb, 0x8f, 0x36, 0xc1, 0xb2, + 0x63, 0x78, 0x99, 0x33, 0x23, 0x68, 0x6e, 0x71, 0x6a, 0xcc, 0x05, 0xf9, + 0x41, 0x92, 0x30, 0xf0, 0xb1, 0xb4, 0xa6, 0x46, 0x86, 0x62, 0xd9, 0xd9, + 0x94, 0x8a, 0xb2, 0x9c, 0x68, 0xff, 0xf4, 0x3a, 0x2e, 0xaf, 0xee, 0xcf, + 0x04, 0x94, 0x53, 0x35, 0x25, 0xf9, 0xaa, 0x74, 0x93, 0xf3, 0x63, 0xc0, + 0xd2, 0x22, 0x30, 0x8c, 0xde, 0xa6, 0xb1, 0xb4, 0xa1, 0x56, 0x07, 0x06, + 0x71, 0xa2, 0x9e, 0x42, 0x31, 0xa3, 0x1e, 0xa6, 0x9a, 0xbc, 0x9f, 0x5b, + 0x12, 0x3c, 0xc2, 0x74, 0xf9, 0x61, 0x71, 0xef, 0x73, 0x86, 0xc2, 0x3b, + 0x25, 0x8a, 0x31, 0x72, 0x27, 0xac, 0xa4, 0x72, 0xf3, 0xbb, 0x78, 0x2c, + 0x94, 0xed, 0xa8, 0x3a, 0x42, 0x98, 0x34, 0xda, 0x3e, 0x60, 0x1c, 0x4a, + 0xec, 0x6b, 0x4e, 0x5f, 0x2a, 0x62, 0xb9, 0xad, 0xc9, 0xd9, 0x38, 0x90, + 0xa7, 0x3b, 0xd3, 0x1a, 0xbb, 0x81, 0x0d, 0x33, 0xd9, 0x16, 0x35, 0x8e, + 0xc3, 0x88, 0x36, 0xfa, 0x3e, 0xa8, 0x4f, 0x30, 0x9d, 0xf1, 0x08, 0xea, + 0x40, 0x1b, 0x87, 0x4d, 0x23, 0x8e, 0x8e, 0xb0, 0xe2, 0xf0, 0x27, 0xc1, + 0xdc, 0x0d, 0xe2, 0x8f, 0x93, 0xef, 0x8b, 0xd1, 0x19, 0xa5, 0xbe, 0xd7, + 0x5a, 0x8a, 0x38, 0x62, 0x43, 0xba, 0x74, 0xf8, 0xae, 0x11, 0x1f, 0x1d, + 0xa4, 0x6e, 0x70, 0x94, 0x91, 0x14, 0xf4, 0xff, 0xbe, 0x39, 0xb4, 0x33, + 0xc2, 0x87, 0x74, 0x1b, 0xfd, 0x9a, 0xa8, 0x64, 0x09, 0x4b, 0x7f, 0x95, + 0x0a, 0xcb, 0x6b, 0x15, 0x54, 0x1d, 0xc6, 0x03, 0x1d, 0x1b, 0x25, 0x56, + 0x15, 0xb5, 0xd7, 0xe5, 0xd6, 0xf3, 0x28, 0xa4, 0xde, 0x1b, 0x39, 0x0d, + 0x59, 0x26, 0x12, 0xe4, 0x32, 0xf2, 0x25, 0xeb, 0xc0, 0xdb, 0x58, 0xe5, + 0xce, 0x64, 0x6f, 0x70, 0x74, 0xc1, 0xc9, 0xbd, 0x75, 0xef, 0x16, 0x02, + 0xdf, 0x27, 0x09, 0xc8, 0xb8, 0x37, 0x8f, 0x44, 0x0d, 0x58, 0x48, 0xf5, + 0xc2, 0x53, 0x21, 0x28, 0x16, 0xa4, 0x56, 0x02, 0xdf, 0xa7, 0x97, 0xa4, + 0x5c, 0x48, 0x75, 0x51, 0x89, 0x0b, 0xa7, 0x4d, 0xd9, 0x9e, 0x04, 0x4e, + 0x5d, 0x6c, 0xe5, 0x1f, 0x68, 0x88, 0xcc, 0xb7, 0x9a, 0x20, 0x05, 0x83, + 0x82, 0x6c, 0xfd, 0xdb, 0x07, 0x6c, 0xec, 0x61, 0xaa, 0x36, 0x57, 0x68, + 0x01, 0xf2, 0x70, 0xfe, 0xe6, 0x4d, 0xe1, 0xa9, 0xb6, 0xb6, 0x52, 0xe6, + 0x20, 0x52, 0x0f, 0x27, 0x9a, 0x1c, 0x2d, 0x20, 0x9b, 0xd4, 0x07, 0xd3, + 0xf6, 0x85, 0x4b, 0xf2, 0x52, 0x4d, 0x4c, 0xd7, 0xf0, 0x32, 0x5d, 0x2e, + 0xef, 0xa2, 0xd0, 0xcd, 0x48, 0x89, 0xbc, 0x9f, 0xcb, 0x37, 0x02, 0x29, + 0xa5, 0xdb, 0xab, 0xfa, 0x1d, 0xf4, 0x53, 0x78, 0x30, 0xde, 0x2c, 0x5c, + 0x35, 0x7f, 0x3d, 0xe1, 0xe0, 0xce, 0xdb, 0x13, 0xca, 0x2a, 0xae, 0xdf, + 0x1c, 0xb1, 0xb6, 0xb9, 0x6a, 0x9f, 0x28, 0xb0, 0x54, 0x5a, 0x00, 0xdd, + 0x76, 0x14, 0xfb, 0x17, 0xc2, 0x2a, 0x45, 0xa2, 0x18, 0xbb, 0x8a, 0x3e, + 0xbe, 0x0e, 0xa5, 0x1b, 0x3c, 0x70, 0x56, 0x10, 0x98, 0xec, 0xc6, 0x3a, + 0x95, 0x2a, 0x96, 0x6a, 0x44, 0xef, 0xd9, 0x9c, 0x2a, 0x45, 0xb4, 0x15, + 0xf8, 0x2e, 0x03, 0x5d, 0x8c, 0x79, 0xfb, 0xb0, 0x53, 0x71, 0xcd, 0x0d, + 0xf4, 0xe2, 0xfc, 0x3b, 0x71, 0xee, 0x30, 0xf2, 0x29, 0xd3, 0xaa, 0x18, + 0x7a, 0x45, 0x1d, 0x99, 0x6d, 0x2f, 0x1f, 0x2d, 0x32, 0x23, 0x48, 0xc2, + 0x69, 0x33, 0x3d, 0x04, 0xa7, 0xa3, 0x96, 0xb5, 0x76, 0x5b, 0x4e, 0xb7, + 0x3c, 0x10, 0x58, 0x17, 0xf4, 0x5f, 0xec, 0x51, 0x6d, 0x5a, 0x3b, 0x7f, + 0x1e, 0x0e, 0xbb, 0xbf, 0x77, 0x43, 0xf7, 0xa4, 0x57, 0xc0, 0x33, 0xac, + 0xc1, 0xe3, 0x3e, 0x1f, 0x65, 0x3c, 0x62, 0x19, 0x46, 0x2d, 0x7b, 0x2d, + 0x07, 0x44, 0x48, 0xf4, 0x91, 0xdf, 0x59, 0x32, 0x10, 0xf7, 0x12, 0xe2, + 0xe5, 0x39, 0x70, 0x37, 0xa4, 0x79, 0x9a, 0x17, 0x19, 0xe8, 0x90, 0xe7, + 0x37, 0x0d, 0xb6, 0x6d, 0x58, 0xe6, 0x7e, 0x57, 0x76, 0x8a, 0xe8, 0xd0, + 0x76, 0x30, 0x25, 0xda, 0xb6, 0xdf, 0x59, 0x3c, 0x6c, 0x20, 0x65, 0x88, + 0xd2, 0x60, 0x5e, 0x39, 0xb6, 0x6b, 0xac, 0xa2, 0x25, 0xc6, 0xa7, 0xb1, + 0x2f, 0xbb, 0x1d, 0x23, 0xee, 0x02, 0x08, 0x1d, 0xd6, 0x6c, 0x0e, 0xbc, + 0xea, 0xd2, 0xc2, 0x70, 0x34, 0xe9, 0x96, 0xd3, 0xf3, 0xf4, 0x8e, 0x94, + 0x6f, 0x86, 0x76, 0xe7, 0x38, 0x08, 0x6f, 0x47, 0xf5, 0xcd, 0xab, 0xad, + 0x7a, 0x39, 0x10, 0x9a, 0xa8, 0x44, 0xba, 0x2d, 0x7f, 0x05, 0x1e, 0xb7, + 0x44, 0xd8, 0x10, 0x05, 0xd1, 0x8d, 0x98, 0x09, 0x14, 0xbb, 0x6b, 0x2b, + 0xf7, 0xeb, 0x9f, 0xa5, 0x65, 0x4b, 0x21, 0xff, 0xaf, 0xe8, 0x2e, 0x34, + 0x52, 0x38, 0xcf, 0xd5, 0x51, 0x29, 0x2c, 0x91, 0x43, 0x3a, 0x49, 0x42, + 0xdd, 0xfb, 0x0e, 0xd2, 0x77, 0x8f, 0x65, 0x93, 0x3e, 0x52, 0x22, 0x58, + 0xd6, 0xf9, 0xd9, 0x58, 0xd4, 0x06, 0xa9, 0x0c, 0x79, 0x9f, 0x1b, 0xa5, + 0x45, 0x61, 0xd8, 0x4e, 0xbf, 0x4b, 0x51, 0xe2, 0xfb, 0x6f, 0x58, 0xee, + 0xc5, 0xa5, 0x11, 0xbd, 0x99, 0x25, 0x14, 0xac, 0x94, 0x0e, 0xd1, 0xf7, + 0x54, 0xb6, 0x05, 0x8c, 0xc3, 0x57, 0xa5, 0x3c, 0x3c, 0xa6, 0x83, 0x47, + 0x38, 0xd1, 0x6a, 0xab, 0x12, 0xc0, 0xd3, 0x7f, 0x96, 0x55, 0xd7, 0xf4, + 0x3a, 0xd0, 0x08, 0x85, 0x5f, 0x3d, 0x65, 0x8e, 0xbb, 0xea, 0x34, 0xf3, + 0x53, 0x96, 0x71, 0x08, 0x9b, 0x50, 0xe9, 0x4b, 0xce, 0x8a, 0x2f, 0xef, + 0xe4, 0xb2, 0x72, 0x68, 0xcb, 0x88, 0xa8, 0xd9, 0xd9, 0xa2, 0xfc, 0x62, + 0xe8, 0x8b, 0x23, 0x2b, 0xbc, 0xf0, 0x9e, 0xb4, 0xd0, 0x40, 0x8b, 0x45, + 0xff, 0x6d, 0x37, 0x01, 0xa6, 0x4b, 0x62, 0xe0, 0x3b, 0x4e, 0x18, 0x67, + 0xb3, 0x97, 0x04, 0xa0, 0x2a, 0xf2, 0x11, 0x79, 0x38, 0xb4, 0xb2, 0xed, + 0x64, 0xc1, 0x1e, 0xfe, 0xc4, 0xf4, 0xe2, 0x4d, 0x94, 0xb4, 0x17, 0x52, + 0x1a, 0x63, 0xe6, 0x56, 0x8a, 0x41, 0x0a, 0x5b, 0xa2, 0x1c, 0x59, 0xef, + 0x17, 0x64, 0xf9, 0xf7, 0x2c, 0xa4, 0xfd, 0x66, 0xf7, 0xe3, 0xae, 0xa0, + 0x54, 0x36, 0x64, 0x26, 0x84, 0x51, 0x49, 0xd5, 0x3a, 0x5e, 0x2c, 0xc5, + 0xca, 0xde, 0x8e, 0xe7, 0x25, 0x59, 0xb3, 0x9a, 0xb2, 0xf0, 0xff, 0xf1, + 0x83, 0xe5, 0x70, 0xc3, 0xef, 0x63, 0x66, 0x31, 0x04, 0x4d, 0x42, 0xf1, + 0xd9, 0x4c, 0x5e, 0x29, 0x92, 0x37, 0x8d, 0xd1, 0x18, 0x2a, 0x9e, 0x3c, + 0xcc, 0x05, 0xb9, 0xc4, 0xb6, 0xe7, 0x2a, 0x09, 0x3a, 0x68, 0xb5, 0x61, + 0x60, 0x36, 0x11, 0x02, 0x92, 0xf8, 0xa0, 0x56, 0x9b, 0xe8, 0xfe, 0xac, + 0x87, 0xcc, 0xaf, 0xb9, 0x62, 0xa7, 0x1e, 0x99, 0xb8, 0x9f, 0x47, 0xf7, + 0xa5, 0x12, 0x47, 0x66, 0xeb, 0xd6, 0x3a, 0x6f, 0xb3, 0x26, 0x63, 0xe2, + 0xec, 0x0c, 0xba, 0x7d, 0xc2, 0x9b, 0xb2, 0x10, 0x62, 0x03, 0x3f, 0x20, + 0xed, 0x7a, 0xce, 0x47, 0xd0, 0x50, 0x5b, 0x5c, 0x66, 0xbf, 0x01, 0x09, + 0x84, 0x0b, 0x71, 0xa8, 0x1f, 0x8d, 0xe1, 0x05, 0x09, 0xb4, 0xd5, 0x34, + 0xf1, 0xba, 0x31, 0xc6, 0x76, 0x8e, 0x00, 0x96, 0x3d, 0x6b, 0xe4, 0x66, + 0x3a, 0x22, 0xcd, 0x7f, 0x9d, 0xf8, 0x64, 0xfc, 0x76, 0x42, 0x88, 0x0e, + 0x32, 0xa5, 0xd0, 0x69, 0x56, 0xe2, 0xa5, 0x6f, 0xbb, 0xfa, 0xd8, 0xde, + 0xb4, 0x23, 0xa9, 0xc7, 0x9a, 0xc1, 0x99, 0xa7, 0x7f, 0x79, 0x58, 0xe1, + 0xe7, 0xc5, 0x56, 0x36, 0xc0, 0xfb, 0x8d, 0x8f, 0xe4, 0x6c, 0x96, 0x89, + 0xcb, 0xb0, 0xb0, 0x6e, 0xee, 0x20, 0x46, 0xd3, 0x43, 0x83, 0xac, 0x39, + 0x7c, 0x25, 0xba, 0x69, 0x3a, 0x58, 0x8a, 0x48, 0x0a, 0xf7, 0xb7, 0xfc, + 0x58, 0x7b, 0x93, 0x8b, 0xcd, 0x81, 0x7e, 0x94, 0xe0, 0xdf, 0xb1, 0xca, + 0xf6, 0x60, 0x54, 0xa9, 0x6e, 0xc6, 0x7f, 0xac, 0xfb, 0x62, 0xfe, 0xd9, + 0xd5, 0xf4, 0x6c, 0x62, 0x65, 0xf6, 0x0b, 0x24, 0x49, 0x1d, 0x55, 0xd6, + 0x4c, 0x0b, 0x5a, 0xf1, 0x2e, 0x78, 0x7a, 0x4e, 0xc1, 0xd0, 0xdb, 0xfe, + 0xd2, 0x84, 0x60, 0x68, 0x51, 0x8e, 0x3f, 0xf1, 0xa8, 0x90, 0xbf, 0xda, + 0x86, 0xda, 0x41, 0xd8, 0x90, 0x7b, 0xc3, 0xc8, 0x9e, 0xa5, 0x77, 0x06, + 0x56, 0x02, 0x13, 0x59, 0xaa, 0x89, 0xf9, 0xd5, 0x3c, 0x1d, 0xe2, 0xa9, + 0xb1, 0xc8, 0x02, 0x5a, 0x1c, 0xae, 0x72, 0x66, 0xdf, 0xb4, 0x1a, 0xb7, + 0xd2, 0x4d, 0xda, 0x4f, 0xc9, 0xed, 0x88, 0x7d, 0x9b, 0xc4, 0x4a, 0x8c, + 0x5e, 0x77, 0xaf, 0xd6, 0xd3, 0xbb, 0x38, 0xd2, 0xfa, 0x85, 0xe4, 0xdd, + 0xe7, 0x6e, 0xcb, 0x0b, 0x34, 0x1e, 0xa8, 0xfd, 0xf4, 0xd2, 0xc3, 0xdd, + 0xe0, 0xa6, 0xb1, 0x78, 0x16, 0x85, 0x2b, 0x1b, 0x22, 0xa6, 0xd5, 0x93, + 0x4f, 0xa1, 0xd5, 0x10, 0x96, 0xab, 0x38, 0xa7, 0x3c, 0xf2, 0xbd, 0xd9, + 0x7c, 0x59, 0x71, 0x25, 0x6f, 0x7c, 0xce, 0x73, 0x8e, 0x4e, 0xfb, 0x5a, + 0x30, 0x24, 0x53, 0xc5, 0xa3, 0x20, 0x13, 0x03, 0xfc, 0x7a, 0xaf, 0x1f, + 0x71, 0x5d, 0x6b, 0xce, 0x2e, 0x92, 0x16, 0x4d, 0xab, 0x96, 0x10, 0xc0, + 0xf6, 0x3c, 0xfe, 0x51, 0x89, 0x4d, 0x39, 0x45, 0x2c, 0x92, 0x5a, 0x86, + 0x24, 0xce, 0xbc, 0x75, 0xc6, 0x7f, 0x0e, 0xc2, 0xd1, 0xe7, 0x6a, 0x75, + 0x30, 0x59, 0xfb, 0xbf, 0x6b, 0xcf, 0x60, 0x90, 0x07, 0x73, 0xb1, 0x47, + 0x6e, 0x5d, 0xcd, 0x44, 0xac, 0xee, 0x2a, 0xdb, 0x16, 0x5a, 0x1a, 0xaf, + 0xba, 0xf8, 0x64, 0xdd, 0xdd, 0xed, 0x46, 0x4b, 0x67, 0xf3, 0xf8, 0x2d, + 0x22, 0xe9, 0x25, 0x74, 0x4c, 0x70, 0xe0, 0x3d, 0xbc, 0x11, 0xd3, 0x56, + 0xec, 0x86, 0x39, 0x89, 0x4c, 0xf2, 0xbc, 0x39, 0xdc, 0xde, 0x5f, 0x3b, + 0x42, 0xcb, 0xf6, 0x0c, 0x49, 0x8c, 0x66, 0x76, 0x58, 0x28, 0xe8, 0x47, + 0x59, 0x40, 0x11, 0xef, 0xb5, 0x9d, 0x93, 0xe5, 0x39, 0x56, 0x62, 0x0d, + 0xd0, 0xdd, 0xbb, 0x51, 0xff, 0x87, 0xa3, 0xd1, 0x9e, 0x0e, 0x0c, 0xbd, + 0x8e, 0xfc, 0xa5, 0x44, 0xc7, 0x6d, 0x35, 0x1d, 0x69, 0x14, 0x5b, 0x0d, + 0x45, 0xff, 0x85, 0x2d, 0xd1, 0x14, 0xf4, 0x5e, 0x5b, 0x49, 0x85, 0xad, + 0x69, 0xf1, 0x34, 0x9e, 0x7a, 0xf3, 0xed, 0x2d, 0xf2, 0x5f, 0x70, 0x5a, + 0xc1, 0xca, 0x63, 0xb5, 0xec, 0x49, 0xfc, 0x88, 0xcb, 0x0f, 0x81, 0x1d, + 0xd4, 0x2f, 0x18, 0xf6, 0xfe, 0x71, 0x51, 0xe2, 0x25, 0x71, 0x48, 0xa4, + 0xb2, 0x9f, 0x4f, 0xc0, 0xa5, 0x24, 0x12, 0x5b, 0xf8, 0xf2, 0xcf, 0x6e, + 0x52, 0x52, 0x6a, 0xee, 0x7d, 0xa5, 0x9b, 0xdb, 0x9c, 0xc9, 0x35, 0x30, + 0x1a, 0xf0, 0x7d, 0xcc, 0x98, 0x73, 0x09, 0x16, 0x8c, 0x05, 0x8d, 0x70, + 0xa3, 0x15, 0xd6, 0x7a, 0xa0, 0x7c, 0xd5, 0xcc, 0xd3, 0x29, 0x32, 0x2e, + 0xa5, 0xde, 0xf6, 0xd3, 0xa4, 0x03, 0x59, 0x6c, 0x05, 0x2d, 0x0e, 0x8b, + 0xb7, 0x1f, 0xa0, 0x57, 0x5c, 0x76, 0xde, 0x81, 0xcb, 0x64, 0xb9, 0x73, + 0xc1, 0x3b, 0x26, 0xba, 0x16, 0xdb, 0xe6, 0x40, 0x23, 0xa4, 0xe9, 0x24, + 0x48, 0xb8, 0x73, 0x23, 0x67, 0xbf, 0x26, 0xca, 0x95, 0x4f, 0xa0, 0x60, + 0x95, 0xa2, 0x0f, 0x29, 0xed, 0x5d, 0x71, 0x66, 0x94, 0xa3, 0xd0, 0x2a, + 0x4e, 0x17, 0x32, 0x18, 0xe6, 0xd6, 0x75, 0x84, 0xa5, 0x2a, 0x72, 0x18, + 0x60, 0x85, 0xde, 0x66, 0x22, 0x52, 0xf6, 0x45, 0xd6, 0xf0, 0xed, 0x93, + 0x0f, 0x5a, 0xa9, 0x12, 0x2a, 0xc4, 0xa8, 0x3d, 0x97, 0xc9, 0xc7, 0x84, + 0x71, 0x14, 0xb3, 0x54, 0xb6, 0xf7, 0x92, 0x7a, 0xc0, 0x6e, 0x02, 0xf7, + 0x48, 0xdb, 0x7c, 0xc1, 0x45, 0x21, 0xdb, 0x1b, 0x51, 0xc3, 0xea, 0xc0, + 0x19, 0x31, 0xe4, 0x6c, 0x20, 0x5f, 0x08, 0xe7, 0x88, 0xf7, 0xc0, 0x6e, + 0xee, 0x5f, 0x20, 0x33, 0x68, 0xef, 0xc5, 0x33, 0x1b, 0x40, 0x66, 0xc5, + 0xa3, 0x68, 0xdb, 0xbc, 0x8a, 0xb7, 0x54, 0xdb, 0xc7, 0xc5, 0x2c, 0x42, + 0x65, 0x51, 0xab, 0x56, 0x94, 0x73, 0xec, 0xd9, 0x95, 0xfa, 0x6a, 0x56, + 0xef, 0x22, 0x95, 0xa4, 0x75, 0x46, 0xee, 0x60, 0x8b, 0x25, 0xa6, 0x92, + 0x0a, 0x8e, 0xc1, 0x39, 0x97, 0x69, 0xa9, 0x19, 0x97, 0xf1, 0x0f, 0x61, + 0xc2, 0x40, 0x7d, 0x62, 0xe9, 0x5e, 0x22, 0x1f, 0x27, 0xe5, 0xc7, 0xe7, + 0xa4, 0x35, 0x5d, 0x90, 0xc7, 0x38, 0x38, 0x2d, 0xb0, 0x1e, 0x29, 0x0f, + 0x4f, 0x08, 0x8b, 0xdd, 0x69, 0x3c, 0x5c, 0x03, 0xbe, 0x9a, 0x76, 0xba, + 0x91, 0xf5, 0x57, 0x07, 0x39, 0xfe, 0x09, 0xfc, 0x01, 0x7b, 0x37, 0xc4, + 0x73, 0x7f, 0x76, 0x50, 0x76, 0xae, 0x6e, 0x4b, 0x22, 0x2c, 0x3b, 0xe7, + 0x77, 0x19, 0x9a, 0x92, 0x26, 0xdf, 0xc4, 0xe6, 0xd8, 0x57, 0xc1, 0x7f, + 0x65, 0x0b, 0xfb, 0xfa, 0xdd, 0xd2, 0x8c, 0xc7, 0xb1, 0x72, 0x2a, 0xb2, + 0x5a, 0xfa, 0xb2, 0x84, 0xb1, 0xec, 0x79, 0x9e, 0xde, 0xd8, 0x2f, 0xdf, + 0x3b, 0x39, 0x0b, 0xac, 0xfa, 0xb8, 0x07, 0x38, 0xff, 0x2e, 0x22, 0x2b, + 0xc9, 0x31, 0x3b, 0x09, 0x05, 0xd2, 0x06, 0xc4, 0x2d, 0x22, 0x1c, 0x21, + 0x70, 0x03, 0x93, 0xd1, 0x3a, 0x8d, 0x94, 0x60, 0xfe, 0x99, 0x13, 0xc3, + 0x00, 0x03, 0x41, 0xfa, 0x50, 0x79, 0x31, 0xeb, 0xf0, 0xf4, 0x06, 0x7a, + 0x19, 0xe8, 0x90, 0xdf, 0x61, 0x4d, 0x5f, 0xe3, 0x99, 0x1b, 0xca, 0xbf, + 0xcf, 0xae, 0xca, 0xfa, 0x84, 0x63, 0x88, 0x56, 0x1d, 0x52, 0x5a, 0x21, + 0xf9, 0xcd, 0xa3, 0x30, 0x16, 0xb9, 0x0d, 0xe1, 0x87, 0x08, 0x78, 0xa2, + 0xdb, 0x7e, 0x16, 0x82, 0x48, 0x48, 0x17, 0x1a, 0xa8, 0x3f, 0xc7, 0x4d, + 0xfd, 0x99, 0x2b, 0x36, 0xbf, 0x08, 0xb9, 0xeb, 0xa6, 0xbf, 0xb6, 0xa0, + 0x9e, 0x26, 0x15, 0xac, 0xd2, 0x65, 0xc9, 0x36, 0x41, 0xe3, 0x59, 0x4e, + 0xdc, 0x7b, 0x58, 0x3b, 0x47, 0x0b, 0xc9, 0xf3, 0xb3, 0xf9, 0x81, 0x33, + 0x39, 0xca, 0xf8, 0x97, 0x2d, 0x9b, 0x24, 0x33, 0x69, 0xbe, 0x1b, 0x81, + 0x59, 0x59, 0x17, 0xed, 0x7d, 0x5b, 0xbe, 0xda, 0xeb, 0x4e, 0x5d, 0x5d, + 0x70, 0x13, 0x3c, 0x4b, 0x4a, 0xfc, 0xa4, 0xbe, 0xa0, 0x5d, 0xa2, 0xed, + 0xe8, 0x8d, 0xf8, 0xf2, 0xa5, 0xdd, 0xd4, 0x49, 0x45, 0x04, 0xef, 0x18, + 0x9f, 0xa1, 0xf7, 0xc4, 0x3b, 0xc2, 0x6b, 0xe0, 0x45, 0xa8, 0x76, 0x39, + 0x49, 0x32, 0xec, 0xc3, 0xcb, 0x45, 0x46, 0xd2, 0x4b, 0x3a, 0x55, 0xe5, + 0xce, 0x08, 0xc4, 0x84, 0xe5, 0xd9, 0xb3, 0xf3, 0xc4, 0xa8, 0xe9, 0x88, + 0x83, 0xd5, 0x56, 0xe1, 0xa6, 0xef, 0x41, 0x55, 0xb0, 0x3f, 0xa3, 0xc1, + 0xbe, 0x3b, 0x83, 0xd6, 0x92, 0x90, 0x38, 0xd3, 0xf3, 0x75, 0xf6, 0x49, + 0x95, 0xee, 0xa9, 0xed, 0xaa, 0xf8, 0xb9, 0x14, 0x0e, 0x6a, 0x48, 0x9d, + 0xc5, 0x48, 0x3b, 0x5e, 0x61, 0xd3, 0x8c, 0x4a, 0x10, 0x12, 0x7c, 0x0a, + 0xf7, 0xaf, 0x62, 0x2d, 0xd3, 0x89, 0x8d, 0x75, 0x19, 0x6b, 0x62, 0x4b, + 0x1a, 0x04, 0xc7, 0xd3, 0x32, 0x17, 0x2f, 0x5f, 0x29, 0xfa, 0xb1, 0x8d, + 0x78, 0xe7, 0x27, 0xf6, 0x67, 0x7e, 0x17, 0xa3, 0x18, 0xdc, 0x13, 0x08, + 0x1e, 0x4b, 0xc7, 0x8e, 0xf6, 0xba, 0x90, 0xb3, 0x32, 0x42, 0x37, 0x6b, + 0x60, 0xa9, 0x23, 0xb5, 0x89, 0x57, 0x7b, 0xdb, 0x98, 0x35, 0x1f, 0x95, + 0x86, 0xa5, 0x83, 0x36, 0xd1, 0x8c, 0x8e, 0xc0, 0x77, 0x5c, 0x40, 0x8e, + 0xec, 0xdf, 0x25, 0x69, 0x0a, 0x83, 0x8f, 0xdf, 0x91, 0x52, 0x31, 0xab, + 0xd5, 0x61, 0x37, 0xbd, 0x83, 0x1d, 0x4c, 0x8b, 0xa1, 0x4a, 0x81, 0x8b, + 0xa0, 0xf4, 0x41, 0xbd, 0x54, 0x36, 0x36, 0x56, 0x6d, 0x4c, 0xe7, 0xd9, + 0xc7, 0x09, 0xd9, 0x4b, 0xf0, 0x54, 0x45, 0x3c, 0x62, 0x47, 0x17, 0x54, + 0x1f, 0x55, 0x2f, 0x74, 0xdc, 0x11, 0xe9, 0xa3, 0xb5, 0x75, 0xe9, 0x10, + 0xde, 0x62, 0xa9, 0x24, 0x39, 0xd4, 0x17, 0xbb, 0x15, 0xe4, 0x48, 0x09, + 0x26, 0x6a, 0xbd, 0x3b, 0x10, 0xa1, 0x55, 0xe5, 0x99, 0x53, 0x1e, 0xd2, + 0xee, 0x7c, 0x54, 0xd8, 0x06, 0x8b, 0x1e, 0xe7, 0x3f, 0x08, 0x38, 0x9b, + 0x2e, 0x41, 0xdf, 0x0b, 0x7e, 0x83, 0x7f, 0x04, 0x38, 0xa5, 0x1f, 0x46, + 0x8b, 0x94, 0x28, 0x9f, 0xb8, 0x8c, 0x41, 0xfe, 0x96, 0xe2, 0x24, 0xd1, + 0x97, 0xa4, 0xcb, 0xba, 0xfa, 0x19, 0xc9, 0x57, 0x30, 0x0f, 0x88, 0x58, + 0xa9, 0x67, 0x31, 0x74, 0x51, 0x34, 0x03, 0xbc, 0xff, 0x3b, 0x12, 0x61, + 0x84, 0x63, 0x74, 0xec, 0x4d, 0xda, 0xa3, 0x56, 0xc3, 0xe5, 0x5e, 0x4a, + 0x03, 0x26, 0x88, 0x1a, 0x1d, 0x7f, 0xe8, 0x3f, 0x61, 0x78, 0xb6, 0xc5, + 0x66, 0xb7, 0xb4, 0xc1, 0xe7, 0x82, 0xc1, 0x44, 0xdf, 0xf9, 0x30, 0x30, + 0xe1, 0xd0, 0xf8, 0xf5, 0x40, 0x5a, 0x72, 0x29, 0xef, 0x30, 0xe1, 0x01, + 0xca, 0x1b, 0xb0, 0xa6, 0xa3, 0x17, 0x2b, 0x58, 0x03, 0xda, 0x25, 0x0f, + 0xdc, 0x49, 0x7c, 0xc5, 0x8f, 0x2d, 0x83, 0xca, 0x43, 0x08, 0xc0, 0x36, + 0x70, 0x1e, 0x42, 0xfd, 0xac, 0x4d, 0x31, 0xcf, 0x68, 0x4a, 0xda, 0xd8, + 0xcb, 0xee, 0xaa, 0xfc, 0xcf, 0xcc, 0xe6, 0xb2, 0x77, 0x8b, 0x83, 0x5b, + 0xd5, 0x3d, 0x55, 0xba, 0x03, 0x45, 0xce, 0x51, 0x78, 0x36, 0xcb, 0xcd, + 0x9a, 0x0f, 0x58, 0xbe, 0x15, 0x10, 0xdb, 0x3f, 0x1d, 0x28, 0x27, 0x11, + 0x69, 0xca, 0x95, 0x68, 0xa8, 0xc8, 0xff, 0x0c, 0x3f, 0xd5, 0x11, 0x91, + 0x35, 0x45, 0x35, 0x9d, 0x1c, 0x58, 0xa2, 0xe5, 0xab, 0x83, 0x95, 0x10, + 0x44, 0xd4, 0xc0, 0x27, 0xf4, 0xc2, 0x72, 0x0f, 0x1a, 0x3d, 0x1c, 0xf2, + 0x7f, 0xb9, 0x54, 0xf2, 0x41, 0x24, 0xa8, 0x67, 0x30, 0xa0, 0x57, 0x67, + 0x00, 0xa8, 0x06, 0x60, 0xc3, 0x74, 0x6d, 0x54, 0x90, 0x5e, 0xad, 0x71, + 0x41, 0x50, 0xab, 0x9d, 0xba, 0x34, 0x1a, 0xfd, 0x19, 0x21, 0x0e, 0x87, + 0xb7, 0x22, 0xe6, 0xca, 0xb9, 0x0d, 0x3c, 0x4f, 0xad, 0x16, 0xf1, 0xa5, + 0x6d, 0xba, 0x6d, 0x7b, 0xbe, 0x7b, 0xe3, 0x95, 0xec, 0x1b, 0x8b, 0x6e, + 0xb0, 0xdc, 0x5c, 0xfd, 0x31, 0x73, 0x85, 0x02, 0x63, 0xc6, 0xcc, 0x04, + 0x29, 0xa5, 0xf4, 0x1f, 0xcb, 0x90, 0xf7, 0x83, 0x0d, 0x36, 0xbf, 0x31, + 0xc0, 0xfc, 0x26, 0x15, 0x87, 0xc8, 0x15, 0x88, 0xc9, 0x79, 0x11, 0x67, + 0x23, 0x53, 0xca, 0x03, 0x7a, 0x02, 0xe5, 0xfc, 0xb3, 0x38, 0xf3, 0x5d, + 0xfc, 0x91, 0x6f, 0x59, 0x26, 0xae, 0xd8, 0x45, 0xfa, 0xc4, 0x5b, 0xa2, + 0xfb, 0x2c, 0xc5, 0x36, 0xc6, 0x0d, 0x7b, 0x4e, 0xd2, 0x7f, 0x61, 0xc5, + 0xcc, 0x74, 0xd3, 0x41, 0xd4, 0x8a, 0xaf, 0xcb, 0x32, 0x50, 0xca, 0xeb, + 0x59, 0x0a, 0x05, 0x25, 0xe0, 0x5f, 0x30, 0x2b, 0x5d, 0x9b, 0xf7, 0xe8, + 0x14, 0x14, 0xb5, 0xfe, 0xd5, 0x2f, 0x94, 0x84, 0x5b, 0xc7, 0x4f, 0x82, + 0x01, 0x50, 0xbf, 0x54, 0xe2, 0x7d, 0xeb, 0x0c, 0x85, 0xc8, 0x99, 0x45, + 0x50, 0x8e, 0x4e, 0x10, 0x12, 0x01, 0x17, 0x41, 0xf3, 0x21, 0x4a, 0xee, + 0xaf, 0x0f, 0x76, 0x44, 0xe2, 0x8e, 0xf8, 0x36, 0x25, 0xab, 0x0d, 0x8f, + 0xb1, 0x0a, 0xbf, 0x63, 0x0e, 0xf2, 0x0c, 0x9d, 0x39, 0xa1, 0x98, 0x98, + 0x69, 0x91, 0xd1, 0x9b, 0xe8, 0xcf, 0x16, 0x65, 0x02, 0xc9, 0x67, 0x72, + 0x71, 0x7c, 0xfb, 0x41, 0x2d, 0xe4, 0xd3, 0xfb, 0x44, 0x8a, 0x7a, 0x88, + 0x32, 0x62, 0x26, 0x63, 0xfe, 0x5b, 0x0c, 0x4f, 0x6c, 0xad, 0x2f, 0x64, + 0x6f, 0xc9, 0xda, 0x95, 0x10, 0xbe, 0xd1, 0xfa, 0x8b, 0x67, 0x64, 0x35, + 0x2d, 0xed, 0xca, 0xf3, 0x12, 0xb7, 0x06, 0xc3, 0xa9, 0x8e, 0x3f, 0x09, + 0x4d, 0x1f, 0x50, 0x3a, 0x97, 0xb7, 0xa7, 0xce, 0x4d, 0x46, 0xf1, 0x61, + 0xc1, 0x06, 0x95, 0x0d, 0x07, 0xa2, 0xbc, 0xed, 0xeb, 0x45, 0xb4, 0x69, + 0x05, 0x7a, 0x30, 0x47, 0xa3, 0xbf, 0x81, 0xa9, 0xa7, 0xf0, 0x53, 0x36, + 0x31, 0x37, 0x13, 0xe5, 0x0e, 0xd6, 0xe6, 0xc7, 0x17, 0x17, 0x21, 0x6d, + 0x36, 0xd0, 0xf6, 0x2a, 0xea, 0x2d, 0x32, 0x0e, 0x90, 0x03, 0x30, 0x4d, + 0x30, 0x31, 0xaa, 0x79, 0x2d, 0xae, 0x2e, 0xb0, 0x13, 0xad, 0x63, 0x69, + 0x67, 0xd8, 0xf3, 0x6e, 0xa4, 0x34, 0xcf, 0x02, 0x10, 0xdd, 0x76, 0xfa, + 0xa7, 0xb0, 0x92, 0xea, 0x47, 0xbd, 0xff, 0xf9, 0xac, 0x8a, 0x1f, 0x31, + 0xf8, 0x05, 0xd4, 0xce, 0x23, 0xad, 0x32, 0x8c, 0x6c, 0x92, 0x85, 0xb9, + 0x74, 0xa6, 0xab, 0x6e, 0x76, 0xfd, 0x3e, 0x8a, 0xac, 0xa3, 0xd1, 0xb7, + 0x40, 0x53, 0x87, 0x28, 0xfc, 0xbc, 0x8a, 0x52, 0x8e, 0x2e, 0x59, 0x2c, + 0x5f, 0x3f, 0xcb, 0xd8, 0xbe, 0x37, 0xfd, 0xdc, 0xc0, 0x34, 0x85, 0x67, + 0x28, 0x9f, 0x1d, 0x05, 0x05, 0x94, 0xed, 0x6f, 0x54, 0x7a, 0x51, 0x9a, + 0xaa, 0xca, 0xe1, 0x41, 0x10, 0xf0, 0x9d, 0x38, 0x9c, 0x5e, 0x95, 0xe3, + 0x7e, 0x62, 0xe2, 0x31, 0x81, 0x28, 0x4a, 0x3c, 0x5e, 0x04, 0x11, 0xe2, + 0x6a, 0x45, 0x6f, 0x68, 0x96, 0x5b, 0xbf, 0x22, 0xd8, 0x29, 0x91, 0x76, + 0xe1, 0xb2, 0x5f, 0xfc, 0x89, 0x90, 0x87, 0xf8, 0xb8, 0x3f, 0xd5, 0x11, + 0xe7, 0x36, 0x47, 0x71, 0xb9, 0x52, 0x97, 0x8e, 0x62, 0x8b, 0x05, 0x31, + 0xe5, 0xd9, 0xa2, 0xc3, 0x1a, 0xb5, 0xda, 0xc7, 0xa5, 0x37, 0x06, 0x67, + 0x41, 0x1f, 0x6e, 0xa3, 0xc2, 0xb4, 0x96, 0x64, 0xfc, 0x46, 0x85, 0x95, + 0x4e, 0xd8, 0x2a, 0x4b, 0xaa, 0x1e, 0xec, 0xd5, 0xed, 0x81, 0x23, 0x68, + 0x0f, 0x5d, 0x0b, 0x95, 0x29, 0xd4, 0x36, 0x4d, 0x8c, 0x32, 0x73, 0x6a, + 0xb7, 0xad, 0xb8, 0x9c, 0xad, 0x76, 0x09, 0xad, 0xb9, 0xea, 0x2d, 0x17, + 0x3c, 0x33, 0x87, 0x7f, 0x62, 0x74, 0x77, 0xc9, 0xd6, 0x3d, 0x17, 0xbc, + 0xff, 0x57, 0x10, 0xec, 0x7a, 0xb7, 0x89, 0x05, 0x26, 0xf1, 0xb2, 0x53, + 0xa1, 0x91, 0xc5, 0x2a, 0xfb, 0x5a, 0xce, 0x5d, 0xd1, 0x6b, 0xbc, 0xb7, + 0x39, 0x09, 0x43, 0xdf, 0x20, 0xd3, 0xc1, 0x74, 0x8d, 0xf4, 0x0b, 0x2a, + 0xc7, 0xe8, 0xa1, 0x5f, 0xb2, 0xfe, 0x1a, 0x96, 0x3a, 0x92, 0xbc, 0x8f, + 0x85, 0xe2, 0x22, 0x73, 0x3f, 0x49, 0xb3, 0x6b, 0x90, 0xbd, 0xcb, 0x3f, + 0x36, 0x6c, 0x3d, 0xe3, 0x00, 0x00, 0x00, 0x00, 0x56, 0xd1, 0xff, 0xff, + 0x04, 0x00, 0x00, 0x00, 0x90, 0x00, 0x00, 0x00, 0x1f, 0x05, 0x81, 0x3f, + 0x25, 0x68, 0xde, 0x72, 0x88, 0x26, 0x66, 0x2d, 0xe4, 0xc8, 0x81, 0xf8, + 0x5d, 0x98, 0xa2, 0xc2, 0x02, 0x62, 0x63, 0x47, 0xe6, 0x61, 0x7f, 0xee, + 0xca, 0x3f, 0x81, 0xd7, 0x1e, 0xa9, 0xbf, 0x66, 0x59, 0x7f, 0xc3, 0x35, + 0x03, 0xae, 0xe5, 0xf2, 0x4d, 0x81, 0x82, 0x78, 0x5e, 0xaf, 0xaa, 0xd1, + 0x27, 0x41, 0x19, 0x93, 0xa8, 0x9b, 0x78, 0x4e, 0x95, 0x89, 0x7f, 0xce, + 0x49, 0xd0, 0x45, 0xb5, 0x7f, 0x1d, 0xe9, 0xee, 0x7f, 0x91, 0xf4, 0x0a, + 0x67, 0x7d, 0x75, 0xff, 0x38, 0x81, 0x27, 0x90, 0x14, 0xa5, 0x99, 0x40, + 0x5b, 0xe6, 0x9a, 0x81, 0x75, 0x22, 0x5f, 0x18, 0x81, 0x34, 0xb7, 0x54, + 0x2e, 0x8d, 0x81, 0x36, 0x0e, 0x5e, 0xc0, 0x5f, 0xd4, 0xc6, 0x34, 0x81, + 0xc8, 0xb9, 0xe2, 0xa9, 0x77, 0x81, 0x44, 0xb4, 0x06, 0x24, 0x81, 0x74, + 0x1c, 0xeb, 0xfb, 0xdd, 0x25, 0x81, 0x14, 0x09, 0x2d, 0xba, 0x11, 0x4b, + 0x07, 0x13, 0xf1, 0xae, 0x81, 0xaf, 0xa3, 0x87, 0x00, 0x00, 0x00, 0x00, + 0xf6, 0xd1, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, 0x00, 0x2d, 0x00, 0x00, + 0x8a, 0x29, 0x03, 0xe6, 0x24, 0x2a, 0xd6, 0x21, 0xb6, 0xb1, 0x2d, 0x3a, + 0xff, 0xd6, 0x27, 0xd7, 0x18, 0x42, 0xc1, 0xb4, 0xf8, 0xfd, 0xdf, 0x45, + 0x09, 0x91, 0xcb, 0xfe, 0xe9, 0xb5, 0x24, 0xf1, 0xc0, 0x69, 0xd0, 0x64, + 0xa8, 0xeb, 0x12, 0x71, 0xe3, 0xb4, 0xbe, 0xb4, 0x93, 0xbf, 0x8a, 0x8b, + 0xf3, 0x4d, 0x13, 0x3b, 0x6f, 0x6f, 0x32, 0x12, 0x98, 0x95, 0xb9, 0x63, + 0xcd, 0xa5, 0x23, 0xa4, 0xb8, 0x2e, 0x74, 0x75, 0xbc, 0xe4, 0xc7, 0x46, + 0x96, 0xd4, 0x47, 0xa0, 0x65, 0xec, 0xea, 0xcf, 0xd0, 0xdc, 0xe9, 0x8b, + 0xcc, 0x1d, 0x2f, 0x0d, 0x0a, 0x9c, 0x6e, 0x99, 0x97, 0x97, 0xcc, 0x00, + 0xd2, 0x8e, 0xbc, 0x3c, 0x9a, 0xf1, 0x32, 0x0e, 0xf3, 0xd6, 0x27, 0x1c, + 0xea, 0xab, 0xca, 0x4d, 0x69, 0x32, 0x30, 0x5f, 0x18, 0xd7, 0xb7, 0x4a, + 0xcb, 0x8e, 0xb2, 0x96, 0x39, 0xa3, 0xc7, 0x42, 0xca, 0x60, 0x9b, 0xad, + 0x8e, 0xb7, 0x54, 0x32, 0xea, 0xfd, 0x58, 0xfa, 0xf8, 0x02, 0xef, 0x2f, + 0xec, 0x3c, 0x2a, 0x1a, 0x6a, 0x08, 0xa4, 0x4b, 0xec, 0x30, 0x90, 0xaf, + 0x13, 0x98, 0xcd, 0x48, 0xfd, 0x5f, 0x56, 0x68, 0x17, 0x9e, 0x87, 0xb1, + 0x2b, 0x16, 0xd3, 0x3c, 0xe0, 0xe8, 0x0e, 0xa6, 0xc4, 0x24, 0xd3, 0x05, + 0x75, 0xda, 0x22, 0x44, 0xb5, 0x41, 0xd2, 0xa5, 0x99, 0xf1, 0x5e, 0xbe, + 0x15, 0xb7, 0x33, 0x54, 0x9a, 0x97, 0x5b, 0x35, 0x77, 0x2b, 0x18, 0x46, + 0x2f, 0x92, 0xc5, 0x97, 0x2d, 0x4c, 0xa6, 0xf8, 0x9e, 0xc3, 0xe0, 0x0a, + 0x52, 0xf9, 0x97, 0xc7, 0xd6, 0x36, 0xdd, 0x38, 0xaa, 0xf3, 0x05, 0x30, + 0xc3, 0xe5, 0xaf, 0x54, 0xdc, 0xc4, 0xf2, 0x01, 0x9e, 0xe6, 0xc1, 0x89, + 0xee, 0xd8, 0x5f, 0xfe, 0xf0, 0x70, 0x3c, 0xc4, 0x40, 0xa4, 0xd4, 0xee, + 0xaf, 0x3d, 0xe6, 0xcd, 0x31, 0x16, 0x31, 0x3b, 0xa0, 0x0e, 0xc4, 0x71, + 0xbf, 0xbd, 0x39, 0x89, 0x0f, 0x36, 0xba, 0xd8, 0xa2, 0x49, 0x01, 0xab, + 0xf4, 0x07, 0x99, 0xc7, 0xb1, 0x0c, 0x33, 0x9d, 0x71, 0xf1, 0x15, 0x4b, + 0x60, 0xe0, 0xed, 0x59, 0x0a, 0x34, 0xd9, 0xa2, 0x45, 0x99, 0x4a, 0x60, + 0xd3, 0xdc, 0x37, 0x56, 0x32, 0x4c, 0xea, 0xdc, 0xcf, 0xe6, 0x22, 0x27, + 0x17, 0xea, 0x75, 0x3f, 0x69, 0xd4, 0xcf, 0x53, 0x92, 0x98, 0xf4, 0xfe, + 0x13, 0xa8, 0xe2, 0xb2, 0x48, 0x5f, 0x64, 0xab, 0x2b, 0x61, 0x97, 0xf5, + 0xc5, 0xb6, 0xef, 0x32, 0x4e, 0x47, 0x26, 0x42, 0x48, 0x9c, 0x5b, 0x24, + 0xa3, 0xcb, 0x70, 0xc7, 0x31, 0x6c, 0xc8, 0x4d, 0x5c, 0x02, 0xca, 0x71, + 0x1e, 0x56, 0xdb, 0x27, 0x66, 0x5d, 0x4f, 0x0b, 0x09, 0x57, 0xbe, 0x72, + 0x17, 0x3b, 0xce, 0xdd, 0xd2, 0x20, 0x13, 0x67, 0x32, 0x04, 0xee, 0xc4, + 0x66, 0x23, 0x0e, 0x97, 0x5e, 0x21, 0x30, 0xb2, 0xe4, 0x16, 0x06, 0x57, + 0xc3, 0x9b, 0x29, 0x5b, 0x76, 0xd0, 0x36, 0xac, 0xe6, 0xa2, 0x91, 0x57, + 0x96, 0x4e, 0x1c, 0x6f, 0x4a, 0x03, 0x50, 0x55, 0x6d, 0xaf, 0x9a, 0x29, + 0xc9, 0x61, 0x6c, 0x18, 0x4c, 0xb9, 0xd5, 0x41, 0xf8, 0x75, 0x2b, 0xc3, + 0x0e, 0x69, 0x9f, 0x45, 0x93, 0x2f, 0xa6, 0xf9, 0x30, 0x65, 0x05, 0x13, + 0xe3, 0x00, 0x54, 0x0e, 0xa4, 0xb5, 0x89, 0x6d, 0x4d, 0x11, 0x3d, 0x2a, + 0x29, 0x99, 0xd9, 0xdf, 0x75, 0xce, 0x01, 0x21, 0xbc, 0x26, 0xb3, 0x22, + 0xf9, 0xb0, 0x45, 0x5c, 0xf8, 0xea, 0xb2, 0x08, 0x1a, 0xf7, 0xa0, 0x70, + 0x65, 0xa8, 0xab, 0xe1, 0x92, 0xcc, 0xcc, 0x1f, 0x0e, 0x36, 0x60, 0xb7, + 0xea, 0xcb, 0x3d, 0xf6, 0x98, 0xbf, 0xcd, 0x00, 0xc9, 0x16, 0x1e, 0xdb, + 0x58, 0x24, 0xb1, 0xd8, 0xaf, 0x01, 0x00, 0xfa, 0x15, 0xf4, 0x37, 0x05, + 0xd7, 0x17, 0x2a, 0xd2, 0xe8, 0xe4, 0x0c, 0x50, 0xfa, 0xe8, 0xd6, 0x99, + 0xa9, 0x58, 0x61, 0x38, 0xee, 0x22, 0x3c, 0x53, 0xcf, 0x64, 0x8e, 0xad, + 0x4d, 0xd6, 0xc3, 0xc3, 0xdd, 0xb0, 0xb3, 0xf7, 0xdd, 0x37, 0xfd, 0xf3, + 0x2b, 0x6a, 0xe2, 0xd4, 0xfc, 0x0c, 0x74, 0xca, 0x37, 0x2f, 0xd2, 0xf8, + 0x5b, 0xf1, 0x8c, 0x32, 0xa0, 0xdc, 0x2c, 0xa8, 0x36, 0x2f, 0xbe, 0x45, + 0x9b, 0x42, 0x95, 0x15, 0x5e, 0x08, 0xb1, 0x61, 0xec, 0xa2, 0xdf, 0x5f, + 0xca, 0xf8, 0x62, 0x73, 0xfd, 0x66, 0xc8, 0x51, 0x2a, 0x69, 0x3c, 0x8f, + 0x75, 0xa4, 0x6f, 0xbe, 0xc1, 0x5c, 0x66, 0xe2, 0x60, 0x92, 0xd7, 0x0e, + 0xee, 0x1b, 0xc7, 0x39, 0x8b, 0x56, 0x6c, 0xc6, 0x20, 0xfa, 0xec, 0x96, + 0xa5, 0x0f, 0x74, 0x42, 0x32, 0x12, 0x11, 0xdf, 0x02, 0xfe, 0x42, 0x1c, + 0xfe, 0xf1, 0x72, 0xaf, 0x47, 0x3b, 0x62, 0xe3, 0x27, 0x29, 0xf0, 0xec, + 0x39, 0xd2, 0xdd, 0xb6, 0xe9, 0xbe, 0x5f, 0x66, 0x67, 0x6c, 0xc9, 0xa1, + 0xf0, 0x25, 0x9a, 0x1b, 0xa8, 0xa0, 0x15, 0xcb, 0x61, 0x98, 0x98, 0xfd, + 0xef, 0xba, 0x74, 0x9b, 0x54, 0xf3, 0x6d, 0xe1, 0xa4, 0xcf, 0xb5, 0xe7, + 0xba, 0x0f, 0xd1, 0x41, 0xd8, 0x63, 0x94, 0x09, 0xcd, 0x4f, 0xb1, 0x31, + 0x49, 0x5e, 0x54, 0xb1, 0x28, 0x39, 0x8e, 0x13, 0x48, 0x2e, 0x20, 0xb0, + 0xf7, 0x18, 0x9a, 0xea, 0xf2, 0x9b, 0xde, 0x8f, 0x16, 0xc8, 0x9e, 0x31, + 0xca, 0x94, 0x28, 0x26, 0x0d, 0x8c, 0x0f, 0x09, 0x69, 0xc5, 0x2a, 0x38, + 0xae, 0x6b, 0xfb, 0x4f, 0xbb, 0xf4, 0x14, 0xea, 0x8d, 0x13, 0xc0, 0x09, + 0xe2, 0xfb, 0xfb, 0x09, 0xa1, 0xfc, 0x49, 0xff, 0x0f, 0x52, 0x3e, 0xe8, + 0xda, 0xfe, 0xe1, 0x67, 0x8f, 0x21, 0xcf, 0xaf, 0xb7, 0xe2, 0xcf, 0x09, + 0x15, 0x10, 0x51, 0x72, 0x8f, 0x42, 0x09, 0x9d, 0xea, 0x27, 0x2d, 0x25, + 0x9f, 0x54, 0x50, 0xfa, 0xdf, 0x9f, 0x41, 0xe8, 0xd2, 0x66, 0xd8, 0x28, + 0xfb, 0x8b, 0xe4, 0x42, 0x03, 0x92, 0xf9, 0xcd, 0xcc, 0xb0, 0xc0, 0x52, + 0x53, 0x6d, 0xcd, 0xed, 0x16, 0xad, 0x3c, 0x3d, 0xf9, 0x3b, 0x05, 0xbb, + 0xac, 0x9e, 0xa3, 0x4b, 0x17, 0xb4, 0xc7, 0xdd, 0xd4, 0xd3, 0x0c, 0x10, + 0x0d, 0xd8, 0x9c, 0xdb, 0xa4, 0x60, 0x06, 0x89, 0x4b, 0x06, 0x4c, 0x9f, + 0xc4, 0x47, 0xc8, 0xaf, 0xab, 0x02, 0x23, 0x89, 0x6e, 0xf2, 0x9d, 0x2b, + 0x6b, 0x9a, 0xa4, 0xee, 0x16, 0x0b, 0x3c, 0x76, 0xd4, 0xf0, 0x17, 0x90, + 0xca, 0xf5, 0xc8, 0xbf, 0xcb, 0xb1, 0x02, 0x69, 0x34, 0x71, 0x59, 0x5d, + 0x0e, 0x56, 0xd8, 0x41, 0x0a, 0xa5, 0x0a, 0x16, 0xbc, 0x93, 0x63, 0xf9, + 0xd9, 0xab, 0x3e, 0x75, 0x1e, 0xd3, 0xf3, 0x56, 0xf5, 0x14, 0xee, 0x65, + 0xf3, 0x2f, 0x72, 0x03, 0xcb, 0x69, 0x90, 0x91, 0x0d, 0x31, 0x8e, 0x3e, + 0xe9, 0xb0, 0xe6, 0x2e, 0x37, 0x5d, 0xb0, 0x38, 0x52, 0xe6, 0x23, 0x24, + 0x36, 0xb2, 0xe9, 0xa5, 0xa0, 0xae, 0xed, 0xfd, 0x95, 0xa5, 0xcf, 0x4a, + 0xe3, 0xbd, 0xe7, 0x29, 0xd0, 0x57, 0x3e, 0xf1, 0xdf, 0xc8, 0xc7, 0x26, + 0xf6, 0xc7, 0x4b, 0xc8, 0x6a, 0x4a, 0xed, 0x49, 0x60, 0x2d, 0x1c, 0xe3, + 0x8b, 0x10, 0x24, 0xfc, 0xef, 0xbb, 0x1e, 0x24, 0xbb, 0x40, 0xeb, 0x99, + 0xba, 0xe1, 0x4a, 0xd4, 0x1f, 0x69, 0x47, 0xa4, 0x8f, 0x48, 0x05, 0x17, + 0xcb, 0xee, 0x55, 0xca, 0xe5, 0xe3, 0x60, 0xec, 0xfa, 0xe6, 0xd1, 0x28, + 0xc5, 0xa8, 0x04, 0xd8, 0xce, 0x13, 0x2b, 0x99, 0x2b, 0xc7, 0x94, 0x9d, + 0xda, 0xd7, 0x6f, 0x31, 0xfe, 0xee, 0x6c, 0x9b, 0xf1, 0x70, 0xd2, 0xee, + 0xc4, 0xba, 0xb7, 0xbe, 0xd3, 0x37, 0xdc, 0x43, 0x4e, 0x30, 0x4a, 0x67, + 0xf2, 0x45, 0x29, 0xe1, 0x8b, 0xb8, 0x6d, 0xca, 0xec, 0xb9, 0xd6, 0xd3, + 0xdd, 0xcb, 0xde, 0xdb, 0xa9, 0x4d, 0xdd, 0x3d, 0x41, 0xae, 0x99, 0x89, + 0xce, 0x70, 0x50, 0x61, 0x07, 0xf3, 0xca, 0x24, 0x56, 0x76, 0x3f, 0xe0, + 0x6e, 0xbe, 0xa7, 0xc6, 0xac, 0x6c, 0xf1, 0x8c, 0xa2, 0x0e, 0xc4, 0x2a, + 0x48, 0x30, 0x8b, 0xc9, 0xc0, 0x5a, 0xb2, 0x2b, 0xbd, 0xa2, 0xcc, 0xf7, + 0x25, 0x16, 0xc3, 0xde, 0x1b, 0x8d, 0x23, 0x8c, 0xb6, 0xc4, 0xaa, 0x4a, + 0x0b, 0x66, 0x25, 0x35, 0xb3, 0x9a, 0x74, 0x27, 0x63, 0xea, 0xef, 0x92, + 0x12, 0x8c, 0x58, 0xd9, 0x3a, 0x55, 0xd6, 0x61, 0x29, 0x9f, 0xbc, 0x28, + 0xbd, 0x30, 0xcd, 0x43, 0xe6, 0x36, 0x36, 0x66, 0x20, 0x8c, 0x9e, 0x23, + 0xfe, 0x6d, 0xf0, 0xbc, 0x61, 0xcd, 0x58, 0xd8, 0xe0, 0x2e, 0xe4, 0xcf, + 0x61, 0xf7, 0xd5, 0x6b, 0x54, 0x33, 0xb3, 0x2c, 0x60, 0xa8, 0x59, 0x21, + 0x5d, 0xaa, 0x65, 0x9e, 0xdc, 0xa3, 0xc9, 0xc4, 0x9d, 0x4d, 0x95, 0x29, + 0xf6, 0x2b, 0xcd, 0xc9, 0xb9, 0x9d, 0x46, 0xa0, 0x89, 0xf4, 0x4e, 0x52, + 0x55, 0xe2, 0x13, 0x98, 0xf0, 0xef, 0x27, 0xc3, 0xc9, 0xd1, 0xe1, 0xee, + 0x07, 0x1b, 0x9d, 0x8a, 0x5b, 0x9d, 0x06, 0x26, 0x61, 0x2a, 0x55, 0x6f, + 0x54, 0x22, 0xd5, 0x06, 0x20, 0xed, 0x06, 0x4d, 0xa2, 0xb3, 0xaa, 0x4f, + 0x1f, 0x3e, 0xd2, 0x0d, 0x6a, 0xab, 0x6d, 0xee, 0x8f, 0x09, 0xb2, 0xd9, + 0x39, 0x46, 0x0f, 0xe7, 0x51, 0x70, 0x51, 0xdb, 0x09, 0xf8, 0x8e, 0xbb, + 0x06, 0x98, 0x49, 0x69, 0xb7, 0x9e, 0xa0, 0xbc, 0x16, 0x5f, 0x96, 0xad, + 0xe9, 0x76, 0x9f, 0x71, 0xe2, 0x1b, 0x91, 0x73, 0xd9, 0x74, 0x6a, 0x70, + 0x48, 0x71, 0x47, 0x3b, 0x0c, 0xd5, 0x96, 0xe3, 0x6e, 0xdb, 0xbb, 0x9c, + 0x44, 0x5c, 0xe5, 0x07, 0x73, 0x31, 0xd1, 0x55, 0x07, 0xff, 0x5f, 0xb1, + 0x55, 0x9d, 0x0d, 0xbf, 0x32, 0x53, 0xf9, 0xfe, 0xcd, 0xc8, 0xe0, 0x56, + 0x18, 0x8f, 0x4b, 0x51, 0xd1, 0x23, 0x2e, 0x9f, 0xb9, 0xee, 0xf3, 0xfd, + 0x26, 0x02, 0xf6, 0x54, 0xd5, 0x3e, 0x13, 0xc1, 0xc1, 0xe4, 0xa8, 0xb4, + 0x5f, 0x5c, 0xa0, 0x9f, 0xb5, 0x19, 0xbb, 0x4e, 0xd6, 0xf8, 0x18, 0x9b, + 0xeb, 0x9e, 0x58, 0x9d, 0x00, 0x51, 0x24, 0x28, 0x70, 0x55, 0xf7, 0xb9, + 0x5a, 0x59, 0x50, 0xc5, 0x72, 0xab, 0x6b, 0x13, 0x95, 0xfb, 0xe4, 0xc2, + 0x05, 0x96, 0xf3, 0x48, 0xef, 0x02, 0x67, 0xd5, 0x8f, 0x5b, 0x8e, 0xb6, + 0xbe, 0xc1, 0x3d, 0x8e, 0x22, 0xee, 0x49, 0xc7, 0xbe, 0xfb, 0x2d, 0x51, + 0x45, 0x44, 0xca, 0x94, 0x8e, 0xce, 0xb5, 0x9a, 0x29, 0xc7, 0x52, 0xde, + 0x2c, 0xdf, 0xcc, 0x43, 0xc7, 0xd7, 0x51, 0xb7, 0x07, 0xf0, 0x9b, 0x9d, + 0x33, 0x98, 0x62, 0xfa, 0xc9, 0x13, 0x0b, 0xcd, 0xdf, 0xbd, 0xff, 0x8e, + 0x13, 0x44, 0xda, 0x62, 0xc0, 0xd1, 0x8d, 0x57, 0x0e, 0xec, 0x53, 0x8a, + 0x04, 0xcf, 0x0f, 0x5a, 0xd7, 0x3c, 0x4b, 0x17, 0xda, 0x3b, 0xf0, 0x30, + 0xbf, 0xea, 0x40, 0xa6, 0x36, 0xed, 0xda, 0xf7, 0x40, 0x6b, 0xf1, 0x1e, + 0x61, 0xa0, 0x8b, 0x5d, 0xfa, 0xa8, 0x6a, 0xca, 0xfd, 0x6a, 0x06, 0xb4, + 0xf5, 0xb6, 0xc7, 0xbe, 0xdf, 0xac, 0x17, 0x00, 0x4a, 0x91, 0x8d, 0x97, + 0x5b, 0xc8, 0xcb, 0xd4, 0xc8, 0x20, 0x0b, 0x53, 0xee, 0x2b, 0x25, 0xb8, + 0xa1, 0x24, 0xa1, 0xa0, 0x17, 0x60, 0xd9, 0xf7, 0x2d, 0x00, 0x6c, 0x70, + 0x44, 0x0d, 0x60, 0xe7, 0x95, 0x1e, 0x8a, 0x1b, 0x29, 0xcf, 0xb5, 0xc1, + 0xbe, 0xd0, 0xe5, 0xeb, 0xd8, 0x71, 0x88, 0x34, 0xcb, 0xbd, 0x32, 0x52, + 0xa7, 0xcf, 0x6d, 0x9b, 0xef, 0xf2, 0xe4, 0x68, 0x6f, 0xfe, 0xb9, 0x17, + 0x31, 0xa0, 0x3e, 0xfc, 0xae, 0xf6, 0x54, 0xe3, 0x33, 0x24, 0xd1, 0xfc, + 0xb7, 0x37, 0x8f, 0xd3, 0x4f, 0xf2, 0x59, 0x53, 0xea, 0xaf, 0x71, 0xc5, + 0xb1, 0xdb, 0xf9, 0xed, 0xc0, 0x46, 0x56, 0xfc, 0x09, 0x90, 0xf7, 0x09, + 0x5a, 0x12, 0x71, 0xad, 0xa6, 0x0f, 0xba, 0x4c, 0x2f, 0xd7, 0x61, 0xcb, + 0xf2, 0xab, 0x44, 0x67, 0x43, 0xd0, 0x41, 0xd5, 0xba, 0xff, 0x26, 0x50, + 0x5b, 0x97, 0x91, 0xc4, 0x8f, 0x2a, 0x64, 0x3c, 0x06, 0x2e, 0x26, 0x8e, + 0x5f, 0xb1, 0xba, 0x74, 0x16, 0xeb, 0xee, 0x6e, 0xe1, 0x68, 0xcc, 0x09, + 0xed, 0xa5, 0x5d, 0xf7, 0xef, 0xd6, 0xfa, 0x9f, 0x39, 0xe1, 0x5c, 0x38, + 0xbd, 0x1b, 0xe6, 0x8a, 0xfa, 0xea, 0xbc, 0x14, 0x4c, 0x31, 0xa8, 0x9d, + 0x64, 0xa6, 0xec, 0xf0, 0xf8, 0xa2, 0x0a, 0x6c, 0xb9, 0xc5, 0x3d, 0x40, + 0x48, 0x41, 0x1d, 0xf2, 0xab, 0xd4, 0xdf, 0xfb, 0x55, 0x9e, 0xa5, 0xac, + 0xe9, 0xf0, 0x46, 0x96, 0xc5, 0x4d, 0x5f, 0x5f, 0x64, 0x00, 0x69, 0x48, + 0x0e, 0xa3, 0xb5, 0x5d, 0x45, 0xce, 0x57, 0xc4, 0x45, 0xdb, 0xc6, 0x13, + 0x4b, 0xa7, 0xa0, 0xd5, 0x31, 0xb4, 0xd4, 0x0f, 0x4f, 0x29, 0x40, 0xc0, + 0xaa, 0xb7, 0x54, 0x21, 0xd5, 0x3a, 0x01, 0xbc, 0xa8, 0x58, 0xb5, 0x3f, + 0xa6, 0x1a, 0x06, 0xb5, 0x07, 0xd3, 0xb6, 0xff, 0x6e, 0x74, 0x08, 0x16, + 0x45, 0xaf, 0xd9, 0xc5, 0x4a, 0x0d, 0xd2, 0x8a, 0xd1, 0x6c, 0xba, 0x5a, + 0xd0, 0xee, 0x57, 0x10, 0xa4, 0x1a, 0xf4, 0x92, 0x97, 0xe0, 0xd7, 0xa8, + 0xff, 0x47, 0xed, 0x56, 0x6b, 0x91, 0x77, 0x5d, 0xa6, 0xcf, 0xed, 0x96, + 0xc5, 0x5a, 0xe3, 0x0b, 0x1d, 0xc0, 0xcc, 0xa1, 0x71, 0x95, 0xa8, 0xec, + 0xef, 0x33, 0x91, 0xd6, 0x53, 0x1f, 0xef, 0x43, 0xa9, 0x42, 0x2a, 0xc7, + 0xf6, 0x15, 0x60, 0xc2, 0xde, 0xeb, 0xac, 0xf8, 0x55, 0x27, 0x14, 0xf1, + 0xf8, 0x69, 0x55, 0xc8, 0x69, 0x1f, 0xf3, 0xc2, 0x71, 0xe8, 0x75, 0xa9, + 0x1a, 0x91, 0xc5, 0x1e, 0xe3, 0x52, 0x24, 0x5f, 0x60, 0xb5, 0xf1, 0xe6, + 0xdd, 0x4b, 0x1b, 0xdd, 0x3a, 0xad, 0x58, 0x36, 0x9c, 0xb3, 0x25, 0x9e, + 0x28, 0xd4, 0x3b, 0x6a, 0x64, 0xe7, 0x57, 0x54, 0xad, 0x4d, 0x44, 0xfc, + 0x54, 0xd3, 0xa3, 0x96, 0x4e, 0xee, 0xde, 0x23, 0x30, 0x30, 0x1f, 0x57, + 0x2f, 0xd6, 0xb4, 0xfa, 0x5c, 0x1b, 0x4a, 0x1b, 0x96, 0x58, 0x9a, 0xc7, + 0x25, 0xd0, 0x9c, 0xf3, 0x2b, 0x16, 0x58, 0x62, 0x0c, 0x5b, 0x45, 0x96, + 0xb0, 0xc2, 0x3e, 0xca, 0x0a, 0xb5, 0x0f, 0x06, 0xa8, 0xa3, 0xb2, 0x0a, + 0x6a, 0xc5, 0xb7, 0xf8, 0x69, 0xfa, 0xc1, 0xa8, 0xbc, 0x17, 0x6c, 0x92, + 0x06, 0x50, 0x74, 0x4b, 0x02, 0xc8, 0x4d, 0x9c, 0x3e, 0x94, 0x6f, 0xef, + 0x3e, 0xd9, 0x71, 0xa6, 0x3a, 0x70, 0x6a, 0x14, 0x0e, 0x06, 0xbe, 0x40, + 0x2b, 0xa1, 0xbb, 0x05, 0x71, 0x05, 0xbd, 0xd5, 0x2d, 0xd9, 0xe2, 0xf6, + 0xb4, 0x32, 0x33, 0xac, 0x0f, 0x9a, 0xe3, 0xaf, 0xf4, 0x44, 0x21, 0x59, + 0x91, 0x0d, 0xd0, 0xf1, 0x47, 0x9e, 0x00, 0x38, 0xa2, 0x1d, 0x61, 0x54, + 0xd2, 0x18, 0x9d, 0xe4, 0x4f, 0xf3, 0xbd, 0x04, 0xdb, 0x4d, 0x59, 0x8c, + 0xfa, 0x12, 0xdd, 0xe4, 0xb5, 0x32, 0x3b, 0xf8, 0x93, 0xae, 0x3b, 0xa9, + 0xb3, 0xe9, 0x57, 0x30, 0x49, 0x6d, 0xaa, 0x35, 0x12, 0xce, 0x16, 0x98, + 0x3c, 0xd0, 0xed, 0xe8, 0xa6, 0xbc, 0xa6, 0xe6, 0x66, 0x0f, 0xb3, 0x12, + 0x95, 0x19, 0x56, 0x23, 0xb1, 0x30, 0x5d, 0xb3, 0x4c, 0x5f, 0x0c, 0xef, + 0x24, 0x12, 0xe0, 0x97, 0xf3, 0x3e, 0x9c, 0x49, 0xff, 0xa6, 0x6f, 0xa6, + 0xd2, 0x58, 0xbe, 0x3f, 0x30, 0xdd, 0x65, 0xd0, 0x40, 0xe1, 0xaf, 0x09, + 0xf1, 0xf4, 0x0f, 0x1a, 0xe5, 0xef, 0x51, 0x50, 0x38, 0x5d, 0xb0, 0x1e, + 0xed, 0x19, 0x8d, 0x4e, 0x20, 0xa1, 0x65, 0x07, 0x5b, 0x23, 0x0c, 0x14, + 0xd3, 0x18, 0xa3, 0xda, 0x58, 0x9f, 0x10, 0x00, 0xbd, 0xb5, 0x95, 0x07, + 0x1d, 0x0f, 0xf9, 0x2a, 0xe4, 0x35, 0x3c, 0x60, 0xad, 0xb2, 0x13, 0x3b, + 0xd5, 0x9e, 0xeb, 0xc7, 0x09, 0x6e, 0x53, 0xff, 0x95, 0xf3, 0xc1, 0x9b, + 0xcd, 0x21, 0x15, 0x3b, 0x5f, 0xfe, 0x4e, 0xaf, 0x3f, 0xf8, 0xe3, 0xa8, + 0x35, 0xee, 0x44, 0x33, 0xc7, 0x8c, 0x9c, 0x1c, 0x33, 0x55, 0x3c, 0x4a, + 0xa4, 0x35, 0xf6, 0xf0, 0x32, 0x8e, 0xed, 0x6d, 0x06, 0xff, 0x8d, 0x24, + 0x05, 0x72, 0x4c, 0xa2, 0x97, 0x25, 0x93, 0x3d, 0x79, 0x18, 0x22, 0x15, + 0xec, 0x5c, 0xc4, 0x10, 0x65, 0xec, 0x90, 0x6d, 0x28, 0xba, 0x93, 0xb5, + 0x2f, 0x53, 0xe4, 0x00, 0x9c, 0x39, 0xf5, 0x4c, 0xde, 0x51, 0x39, 0xc3, + 0xd8, 0x03, 0xc3, 0x97, 0xe1, 0xa8, 0x3e, 0x06, 0x26, 0x4d, 0xd9, 0x49, + 0x75, 0xbb, 0xd5, 0x69, 0x20, 0xfb, 0x85, 0x12, 0xc9, 0xac, 0xfc, 0x05, + 0xad, 0x57, 0xa9, 0x58, 0xcd, 0xfd, 0xbe, 0x64, 0x31, 0x50, 0x4d, 0xa4, + 0x93, 0xb6, 0x23, 0x3b, 0xfd, 0xd9, 0xdb, 0x46, 0xdd, 0x1f, 0x07, 0x54, + 0xc2, 0xc2, 0xd6, 0xad, 0xf6, 0x21, 0x39, 0xa1, 0x96, 0x53, 0x12, 0x46, + 0x5a, 0xc8, 0xf3, 0xf8, 0xe2, 0xa3, 0xd0, 0x29, 0x3f, 0x30, 0xca, 0x0b, + 0x57, 0xab, 0xcf, 0x1e, 0x08, 0x59, 0x3d, 0x41, 0x6a, 0xf7, 0xb2, 0xfc, + 0xff, 0x33, 0x46, 0xd1, 0x1a, 0xa6, 0x91, 0x54, 0xca, 0x27, 0x5a, 0x94, + 0x13, 0xf4, 0xf0, 0xcf, 0x58, 0xe0, 0x96, 0x50, 0xda, 0xe6, 0x91, 0xc7, + 0x8d, 0x14, 0x5b, 0xc1, 0xeb, 0x4a, 0x96, 0xf1, 0xa5, 0x43, 0xf6, 0x29, + 0x91, 0xb9, 0xb9, 0x67, 0x3f, 0x31, 0xd7, 0x08, 0xe6, 0x2b, 0xfb, 0x43, + 0x56, 0x39, 0x4e, 0xf9, 0x02, 0x8e, 0x96, 0x1f, 0xa3, 0x3c, 0xae, 0x55, + 0x03, 0x05, 0x9a, 0x39, 0xbe, 0xf7, 0x67, 0xa1, 0x6b, 0x2f, 0x42, 0x45, + 0x9b, 0x45, 0x8f, 0x53, 0x1f, 0x96, 0x42, 0x54, 0xd2, 0x5b, 0xf0, 0x17, + 0x94, 0x41, 0xaf, 0xd4, 0xc6, 0x37, 0x5f, 0xc0, 0xbd, 0xe3, 0x44, 0x8d, + 0xc1, 0x69, 0x64, 0x2a, 0xe7, 0x08, 0xe5, 0x18, 0x92, 0x53, 0xfc, 0xed, + 0xd3, 0x69, 0x94, 0x6b, 0x10, 0x0b, 0x5e, 0x91, 0x38, 0x4b, 0xa5, 0x19, + 0x3a, 0x6a, 0x2e, 0x5a, 0xa2, 0x6f, 0x34, 0x2c, 0x7b, 0x5d, 0x53, 0x33, + 0x77, 0x46, 0xf8, 0x4a, 0xa2, 0x8d, 0x55, 0x67, 0xa8, 0xbd, 0xc6, 0x3c, + 0x5d, 0x47, 0xeb, 0x99, 0xed, 0xdc, 0xae, 0xcf, 0xec, 0xbe, 0x40, 0x60, + 0xfc, 0x36, 0x5c, 0x93, 0x95, 0x64, 0xd8, 0x47, 0x14, 0xe2, 0x1e, 0xa2, + 0xd4, 0xd4, 0xdf, 0xd9, 0x23, 0x18, 0xf2, 0x99, 0xe8, 0xe4, 0x2a, 0x3b, + 0xec, 0x2e, 0x28, 0xa8, 0x04, 0x74, 0x04, 0xa4, 0x32, 0xa6, 0x49, 0xf9, + 0x33, 0x6c, 0xa8, 0x1d, 0xb2, 0xbb, 0x57, 0xe4, 0xcf, 0xf2, 0x9e, 0x74, + 0x8d, 0xf7, 0x22, 0xaa, 0x0d, 0x8a, 0x2f, 0x34, 0x72, 0x33, 0xec, 0xdf, + 0x46, 0x57, 0x6c, 0x97, 0x94, 0xad, 0x06, 0x88, 0xeb, 0x20, 0xec, 0x79, + 0x44, 0xe1, 0xbc, 0xf8, 0xbd, 0xeb, 0x99, 0xe3, 0xaf, 0xfe, 0xc5, 0xb5, + 0xfa, 0x31, 0x75, 0x62, 0xff, 0x2a, 0x2a, 0x1b, 0xce, 0xad, 0xa8, 0xc8, + 0x3c, 0x54, 0x23, 0xf9, 0x9e, 0x2d, 0xe2, 0xa4, 0x4f, 0x5b, 0x4d, 0xb8, + 0x4f, 0xc6, 0xb3, 0xc6, 0xef, 0x66, 0x54, 0x31, 0xab, 0xd3, 0xf0, 0xb9, + 0xfa, 0xb6, 0x15, 0xe6, 0xdb, 0x4b, 0x51, 0x4d, 0x77, 0xa5, 0x3d, 0x4e, + 0xd9, 0xc9, 0xdb, 0x95, 0x31, 0x1d, 0x4d, 0x37, 0xe0, 0x34, 0xd3, 0xf3, + 0x20, 0x6b, 0xb8, 0x16, 0x0b, 0x4e, 0x55, 0x96, 0x56, 0x1e, 0xa7, 0xe8, + 0xc6, 0x3a, 0x08, 0x49, 0xa1, 0x16, 0x46, 0xc9, 0x43, 0xcb, 0x8f, 0x28, + 0x4a, 0x78, 0xaa, 0xf9, 0x6c, 0x74, 0xc8, 0x0b, 0xce, 0x13, 0x2c, 0xef, + 0xfe, 0x73, 0x42, 0xa7, 0xbc, 0x3d, 0xc9, 0xf2, 0xaf, 0x1c, 0x32, 0xdb, + 0xb2, 0x15, 0x70, 0x6b, 0x9b, 0x6e, 0x6f, 0x6e, 0xf7, 0x95, 0xea, 0x3e, + 0xd0, 0xb1, 0x2a, 0xbe, 0x8c, 0x66, 0x4e, 0xe9, 0x29, 0xe3, 0x35, 0xde, + 0xbf, 0x44, 0xbc, 0x5e, 0x56, 0x8b, 0xb3, 0xd4, 0xdf, 0xf5, 0x4e, 0x2e, + 0xeb, 0xe6, 0x8e, 0x58, 0xe2, 0xfd, 0xe7, 0x27, 0xff, 0x07, 0x49, 0x20, + 0xdd, 0xcf, 0xe4, 0xd7, 0x5c, 0x5f, 0x1f, 0xcc, 0xeb, 0x29, 0xeb, 0x34, + 0xac, 0xd6, 0xb6, 0xf8, 0xae, 0xdf, 0x11, 0x58, 0xd5, 0xea, 0xf1, 0x76, + 0xe5, 0x4d, 0x51, 0x72, 0xd4, 0x5e, 0x1e, 0x0f, 0xfd, 0x2e, 0xbe, 0x8e, + 0x07, 0x1a, 0x1f, 0x99, 0x4d, 0x73, 0x70, 0xe1, 0x41, 0xb4, 0x20, 0x10, + 0x75, 0x0f, 0xc8, 0x69, 0x5f, 0x6c, 0x20, 0x2b, 0xc8, 0xfd, 0xe9, 0x4c, + 0xf4, 0x6f, 0x6a, 0xe0, 0x1a, 0xb5, 0xec, 0x2e, 0xf5, 0x25, 0x6d, 0x56, + 0x56, 0xb9, 0x42, 0xca, 0x70, 0x72, 0xe5, 0x41, 0x07, 0x4f, 0x41, 0x25, + 0xea, 0x0a, 0x5d, 0xe1, 0x0a, 0xd5, 0x6f, 0x35, 0x50, 0xcc, 0x27, 0x53, + 0x5f, 0x31, 0x1c, 0xee, 0xae, 0x26, 0xc8, 0xc4, 0x4f, 0x9b, 0xf5, 0xf6, + 0x4d, 0x19, 0xb9, 0xc4, 0x55, 0xcd, 0xe5, 0x8a, 0xe9, 0x45, 0xec, 0xf2, + 0xf9, 0x33, 0x4d, 0xba, 0x57, 0x8f, 0xd6, 0xf5, 0xf7, 0x92, 0xb3, 0xd3, + 0x65, 0x39, 0x07, 0x04, 0x92, 0x2f, 0x70, 0x99, 0x97, 0x96, 0x60, 0xe5, + 0x92, 0x60, 0xc3, 0x72, 0x1e, 0xc7, 0xe6, 0x1d, 0xbb, 0x5b, 0xd5, 0x64, + 0x1b, 0x36, 0x45, 0xb8, 0xcb, 0x42, 0xe7, 0x26, 0x45, 0x65, 0xc8, 0x04, + 0x1c, 0x05, 0x9b, 0x48, 0xe3, 0x93, 0x8e, 0xb2, 0x1c, 0x6a, 0xab, 0x60, + 0xc2, 0xa6, 0x1a, 0x71, 0xd5, 0x2c, 0xb8, 0xe9, 0x9e, 0x66, 0x8d, 0xb6, + 0xb1, 0x99, 0x90, 0x9c, 0x1b, 0xc9, 0x44, 0x6d, 0x31, 0xbb, 0x62, 0x6e, + 0x46, 0xcc, 0xd7, 0x47, 0x3a, 0x40, 0x63, 0x33, 0x34, 0x4f, 0x50, 0x3c, + 0x94, 0x97, 0xe9, 0xe8, 0x3a, 0xf7, 0x2d, 0x2d, 0x9c, 0xb6, 0x5d, 0x52, + 0xbd, 0xa9, 0x2d, 0x42, 0xfc, 0xe8, 0x70, 0x09, 0x48, 0xd0, 0x36, 0x0b, + 0x3d, 0x2b, 0x9f, 0xe2, 0x4c, 0xdf, 0xf3, 0x57, 0x73, 0x55, 0xf7, 0x34, + 0xb8, 0x6b, 0x44, 0x6f, 0xf6, 0x6d, 0xcf, 0x93, 0x09, 0x14, 0xac, 0x8f, + 0xde, 0xce, 0x5f, 0x05, 0x04, 0x9f, 0xc7, 0x05, 0x5f, 0xdd, 0x2e, 0xfc, + 0x53, 0xec, 0x9e, 0xdb, 0xa8, 0xa2, 0xc7, 0x53, 0x5c, 0x9a, 0x4d, 0xb6, + 0x6f, 0xa5, 0xc6, 0xf3, 0xc5, 0xa4, 0x56, 0x62, 0xdc, 0x75, 0xe4, 0x0b, + 0xb0, 0xcc, 0x38, 0xde, 0x2d, 0xbb, 0xbc, 0x0b, 0xc6, 0xab, 0xac, 0xac, + 0x46, 0xce, 0x1e, 0xe6, 0x47, 0x6c, 0x6e, 0x8e, 0x00, 0x00, 0xa0, 0xae, + 0x1e, 0x1d, 0xaa, 0x22, 0xaf, 0x34, 0xc7, 0x26, 0x37, 0x01, 0x46, 0x25, + 0x9c, 0x5f, 0x92, 0xef, 0xda, 0x07, 0x64, 0x62, 0xe4, 0xf7, 0x4c, 0xa2, + 0x41, 0xf1, 0x10, 0xe0, 0xe5, 0x73, 0x72, 0xe1, 0xf8, 0x66, 0x19, 0x58, + 0xa9, 0xdf, 0xb1, 0x41, 0xcb, 0xb3, 0xc4, 0xe6, 0x21, 0xbe, 0x17, 0x26, + 0xa9, 0x68, 0x96, 0xde, 0x5d, 0xba, 0x8f, 0x1b, 0x09, 0x00, 0x39, 0x0e, + 0xc2, 0x8d, 0x31, 0x61, 0xfe, 0x9e, 0x60, 0x05, 0xf3, 0x72, 0xdf, 0x78, + 0x14, 0x5a, 0x1b, 0x74, 0xa1, 0x23, 0xa7, 0x6e, 0x93, 0x76, 0xfa, 0x4a, + 0x73, 0xa1, 0x3b, 0xda, 0x0b, 0x06, 0xdd, 0xfc, 0x2f, 0xef, 0x0a, 0x38, + 0x03, 0xbf, 0xbb, 0x12, 0x29, 0x6b, 0xec, 0x68, 0xc7, 0xa6, 0xf9, 0x72, + 0xbc, 0xdb, 0xeb, 0x4e, 0x8f, 0x5f, 0x3a, 0xa9, 0x06, 0x4e, 0x3c, 0xf4, + 0x3b, 0xe0, 0x98, 0x9b, 0x77, 0x57, 0x0f, 0x39, 0x08, 0x43, 0x3f, 0x9b, + 0x76, 0x11, 0xd3, 0x38, 0xb6, 0x1f, 0x1e, 0xfe, 0xbb, 0x16, 0x37, 0x24, + 0x15, 0xf7, 0x8e, 0x61, 0x3d, 0xf5, 0x60, 0xab, 0x46, 0x49, 0xd6, 0xb2, + 0x8e, 0x35, 0xd5, 0x66, 0x20, 0x1f, 0xad, 0xf5, 0x95, 0xc3, 0x3e, 0xaa, + 0xda, 0x12, 0x1f, 0x33, 0xf4, 0xc0, 0xd9, 0x9e, 0x09, 0x76, 0x8b, 0x2f, + 0x35, 0xe2, 0x58, 0x09, 0x36, 0xf1, 0x03, 0xbc, 0xc2, 0x54, 0x67, 0x29, + 0x00, 0x3b, 0xf0, 0x24, 0xdf, 0xa0, 0x92, 0x71, 0xc3, 0x98, 0xe8, 0x5d, + 0xbe, 0xc7, 0xe8, 0x6f, 0x2f, 0x05, 0x89, 0x9f, 0xa1, 0x63, 0x29, 0x12, + 0x94, 0xff, 0xc7, 0x4c, 0xec, 0x98, 0x0e, 0xb8, 0xeb, 0x9e, 0x6d, 0x1e, + 0x4f, 0x4a, 0x1e, 0x41, 0xb0, 0xf9, 0x40, 0x8b, 0xdd, 0xd9, 0xa6, 0x1b, + 0xd4, 0x6d, 0xaf, 0x5b, 0x14, 0x68, 0xfd, 0x96, 0x5d, 0x0d, 0xad, 0x46, + 0x03, 0xf8, 0xd7, 0x13, 0x1d, 0xf3, 0x47, 0xbe, 0x46, 0x3d, 0xc7, 0xdd, + 0xa9, 0x60, 0x05, 0x15, 0xef, 0x9d, 0xa4, 0xb8, 0xde, 0xf2, 0x41, 0xe2, + 0x07, 0x1d, 0xcb, 0xe8, 0xf3, 0x9c, 0x9c, 0x5e, 0xcd, 0xec, 0x53, 0x39, + 0xf2, 0x62, 0x3b, 0x69, 0x3a, 0x29, 0xc7, 0xb3, 0x57, 0xce, 0x58, 0xd6, + 0x55, 0xf8, 0xc2, 0xf1, 0x16, 0xf3, 0x33, 0x3f, 0xf2, 0xaa, 0x63, 0x42, + 0x27, 0x01, 0x22, 0x5a, 0x1e, 0x8d, 0xa5, 0x33, 0x34, 0x29, 0x12, 0xf6, + 0x07, 0x22, 0xfd, 0xbb, 0x72, 0x60, 0x2a, 0xf5, 0xec, 0x71, 0xfe, 0xd7, + 0xc1, 0xf5, 0xdf, 0x97, 0x3e, 0x4a, 0x9a, 0x97, 0x6f, 0x56, 0xf1, 0xd4, + 0xba, 0x29, 0x09, 0x46, 0x3f, 0x10, 0xdc, 0x2d, 0xb2, 0x04, 0x32, 0x38, + 0xa3, 0xc7, 0x75, 0x95, 0x16, 0xd6, 0x12, 0x44, 0x7a, 0xd3, 0x18, 0xb3, + 0x51, 0x72, 0x63, 0xb8, 0xae, 0x9b, 0xf1, 0xec, 0x17, 0xe4, 0x2d, 0xed, + 0x29, 0x05, 0x63, 0xd7, 0x01, 0xf4, 0xf5, 0xc1, 0x6d, 0x13, 0x5f, 0x5c, + 0x73, 0x11, 0xc9, 0x53, 0xf4, 0xda, 0x90, 0xa2, 0x1c, 0x0b, 0x1d, 0x37, + 0x28, 0xa1, 0x06, 0x65, 0xd3, 0x49, 0x5d, 0x07, 0x1f, 0x93, 0xa9, 0x98, + 0xc5, 0xa5, 0x13, 0xc5, 0xac, 0xda, 0x64, 0x25, 0x77, 0x9a, 0xd5, 0xa9, + 0xe9, 0x3a, 0x77, 0x62, 0xac, 0xf2, 0x76, 0xf4, 0x03, 0xb6, 0x03, 0x6e, + 0xef, 0x97, 0x13, 0x1c, 0xd1, 0xb9, 0x73, 0x12, 0xf7, 0x10, 0xbd, 0x1c, + 0xa1, 0xe7, 0xed, 0xd7, 0xa0, 0xd7, 0x53, 0xa1, 0x21, 0xf1, 0x5f, 0x1e, + 0xec, 0x36, 0x0d, 0x2c, 0xce, 0x74, 0x4a, 0x0c, 0x97, 0x5a, 0x76, 0x62, + 0x18, 0x9c, 0xc3, 0xc1, 0xc4, 0x5e, 0xf1, 0xfa, 0xe6, 0x4b, 0x15, 0xda, + 0xfa, 0xfd, 0xe9, 0x98, 0x09, 0xc3, 0x67, 0x63, 0x1f, 0x28, 0x37, 0xf0, + 0x59, 0x4b, 0x4b, 0xa3, 0xd1, 0x41, 0x94, 0xa6, 0x05, 0xb0, 0x93, 0xee, + 0x41, 0xa4, 0xce, 0xee, 0xea, 0xc4, 0x43, 0x6e, 0xab, 0x65, 0x70, 0xe3, + 0x4d, 0xf1, 0x02, 0xf5, 0x0f, 0xd5, 0x5e, 0xfd, 0x03, 0xcd, 0x22, 0x27, + 0x90, 0xf4, 0x98, 0xa2, 0xc0, 0xb4, 0xd5, 0x04, 0xfa, 0x75, 0x22, 0x4c, + 0xe7, 0xdd, 0xef, 0x3a, 0x1d, 0xb6, 0x00, 0x58, 0xcd, 0x5a, 0xbc, 0x12, + 0xea, 0x5a, 0xda, 0xa9, 0x18, 0x0e, 0xff, 0x51, 0xc4, 0xaf, 0xc8, 0x95, + 0xfb, 0x92, 0xdf, 0x99, 0xc9, 0x4e, 0xfe, 0xb1, 0xb0, 0xca, 0xa1, 0xba, + 0x90, 0xc8, 0x07, 0x34, 0x52, 0x6d, 0xd8, 0x05, 0x72, 0x2e, 0xee, 0x98, + 0xc0, 0x1e, 0x25, 0xb3, 0xa2, 0xb4, 0x9c, 0xa5, 0xdc, 0xd3, 0xb1, 0xdf, + 0x17, 0xd9, 0xda, 0xe9, 0x5d, 0x41, 0xca, 0xc7, 0xe4, 0x94, 0x0d, 0x67, + 0xba, 0x9c, 0xcf, 0x52, 0xf0, 0x00, 0x54, 0xe0, 0xbd, 0x3c, 0xc7, 0xb9, + 0x6a, 0x11, 0xc6, 0xd1, 0x62, 0xc3, 0xcf, 0xc2, 0x6a, 0x44, 0xeb, 0x41, + 0x43, 0x54, 0xe2, 0xf5, 0xc4, 0x11, 0xd7, 0x6a, 0xf2, 0x76, 0xa9, 0x16, + 0xae, 0xe2, 0x11, 0xfb, 0x04, 0x3d, 0xee, 0xd1, 0x98, 0x30, 0x0b, 0x6b, + 0x8a, 0x6f, 0x45, 0xb7, 0x01, 0x64, 0x46, 0x32, 0x61, 0xd5, 0x05, 0xfa, + 0xb1, 0x14, 0x54, 0x39, 0x13, 0x9b, 0xd5, 0x1d, 0x5c, 0xad, 0xd0, 0x5e, + 0x6d, 0xb3, 0xa1, 0xb3, 0xc5, 0x8d, 0xf8, 0x12, 0xd9, 0x5f, 0x94, 0x27, + 0xdf, 0x30, 0xc8, 0x0e, 0x3a, 0x46, 0x70, 0x5c, 0x4c, 0xaa, 0x24, 0xc3, + 0x50, 0x62, 0x52, 0xc8, 0x63, 0x64, 0xc9, 0x49, 0x74, 0x1c, 0xd2, 0x49, + 0x0f, 0x20, 0x69, 0x53, 0x97, 0x34, 0xc0, 0x92, 0x48, 0x28, 0x7b, 0x64, + 0xca, 0xea, 0x07, 0x6c, 0x63, 0x3e, 0xb6, 0xdb, 0xd5, 0x52, 0x9d, 0x7a, + 0x5f, 0x46, 0xc1, 0xb9, 0x3e, 0xe2, 0xe9, 0xeb, 0x04, 0x65, 0xc0, 0x74, + 0x4b, 0x07, 0x6a, 0x19, 0x4a, 0x9d, 0x05, 0xa0, 0xba, 0xae, 0x74, 0xef, + 0x62, 0x09, 0x57, 0x36, 0xe5, 0x9c, 0x54, 0x59, 0x3d, 0x04, 0xf0, 0xfb, + 0x6f, 0x89, 0x13, 0x1f, 0x1f, 0x88, 0x03, 0x6b, 0x0c, 0xeb, 0x53, 0xac, + 0x3a, 0x18, 0xa4, 0x93, 0xcc, 0x4f, 0xf5, 0x92, 0x44, 0x23, 0x9e, 0x67, + 0xf0, 0xf5, 0x2f, 0xb9, 0xc9, 0x34, 0x76, 0x97, 0x1d, 0x94, 0x75, 0x3f, + 0x47, 0x97, 0xe0, 0x30, 0xcc, 0xff, 0xd2, 0x7a, 0x3b, 0x04, 0xa7, 0xa5, + 0x62, 0x9e, 0xe4, 0x8f, 0xd8, 0x62, 0xee, 0x1d, 0x1c, 0xff, 0xad, 0x18, + 0xc9, 0x66, 0x47, 0x36, 0xfb, 0x2e, 0x74, 0x2a, 0xe7, 0x5f, 0xb2, 0x12, + 0xd2, 0x9e, 0xae, 0x2b, 0x92, 0xb8, 0x53, 0x66, 0x22, 0x5c, 0xa8, 0xaf, + 0x4f, 0x29, 0xab, 0x64, 0x50, 0x09, 0xe9, 0x2f, 0x2e, 0x62, 0x2e, 0x0e, + 0x8a, 0xd6, 0xeb, 0xa7, 0x5d, 0x3e, 0x9e, 0xe1, 0x39, 0x52, 0x13, 0x57, + 0x54, 0x5c, 0x78, 0xed, 0xb3, 0xfc, 0x5f, 0xa1, 0xf3, 0x2a, 0x77, 0x90, + 0xa9, 0x09, 0xa1, 0x05, 0x3b, 0xa9, 0x6a, 0xf5, 0xc4, 0xfa, 0x97, 0x79, + 0x64, 0x57, 0x1a, 0xf1, 0x74, 0xe5, 0x16, 0x93, 0xa9, 0xef, 0xe6, 0xdf, + 0x36, 0xd2, 0xd0, 0xe6, 0xb8, 0xdd, 0xe9, 0x13, 0x4c, 0xcd, 0x22, 0x98, + 0xc1, 0x94, 0xbb, 0x04, 0x2a, 0x4a, 0x69, 0x10, 0x5a, 0xcb, 0x1d, 0x9e, + 0xc4, 0x3d, 0x6d, 0x0e, 0xe0, 0x12, 0xb4, 0xe1, 0x6c, 0x55, 0x6f, 0xa3, + 0xf5, 0x1b, 0x0c, 0xe5, 0x1c, 0x99, 0x8b, 0x23, 0x23, 0xbc, 0x33, 0xe4, + 0xd4, 0x15, 0xfd, 0xcc, 0x90, 0x87, 0xb5, 0x0e, 0x24, 0xba, 0x20, 0x1b, + 0xcf, 0x67, 0x98, 0x1a, 0x35, 0xe7, 0xc3, 0x95, 0x29, 0xd6, 0xd2, 0x4f, + 0xe4, 0x14, 0xd5, 0xa1, 0x93, 0xff, 0x24, 0x0e, 0xfc, 0xb7, 0xd6, 0xde, + 0x05, 0xc5, 0x2f, 0xaa, 0x92, 0xd4, 0xd8, 0xac, 0x8f, 0x67, 0x45, 0xdb, + 0x36, 0x19, 0x15, 0x09, 0x9a, 0x3f, 0x2a, 0x56, 0xd5, 0xa9, 0x26, 0xb6, + 0xcb, 0x19, 0xf3, 0x6a, 0xbb, 0xba, 0xba, 0xa3, 0x68, 0x90, 0x0f, 0xb1, + 0x98, 0x14, 0x33, 0xd8, 0x12, 0xdf, 0xef, 0xe5, 0x01, 0x93, 0xab, 0xf8, + 0x93, 0x40, 0xbd, 0xa0, 0x01, 0x34, 0x54, 0xfd, 0xa0, 0xc4, 0xc3, 0xf3, + 0x6b, 0x90, 0x30, 0xc1, 0xbe, 0xd8, 0xbb, 0xab, 0x71, 0xaa, 0xe5, 0x3b, + 0x2d, 0x5d, 0x6e, 0x00, 0x34, 0xa8, 0x02, 0x34, 0xa9, 0x67, 0x95, 0xcd, + 0xed, 0xa2, 0x25, 0x55, 0xc9, 0x03, 0x1c, 0x30, 0xe7, 0xdf, 0xe6, 0xe7, + 0x2b, 0x5a, 0x9a, 0xcd, 0xa8, 0xf0, 0x4e, 0xe4, 0xd7, 0x90, 0x5f, 0x4e, + 0xbf, 0x5d, 0x68, 0x12, 0x1c, 0x4c, 0x68, 0x03, 0x9c, 0x49, 0xcb, 0xe6, + 0xc4, 0xfd, 0xad, 0xd5, 0xa8, 0xd8, 0xda, 0x2f, 0x13, 0xbc, 0x42, 0x61, + 0xa5, 0x0a, 0x1a, 0xe9, 0x5e, 0x5c, 0x01, 0x7c, 0xca, 0x73, 0x6f, 0x32, + 0xc1, 0x96, 0x24, 0x9d, 0x12, 0x20, 0x11, 0x6a, 0xf6, 0xbc, 0xff, 0x6a, + 0xc1, 0x58, 0x0d, 0xb9, 0xad, 0xc5, 0xde, 0x69, 0x37, 0xbe, 0xd9, 0x93, + 0xcc, 0x2b, 0xe9, 0x13, 0x45, 0xa0, 0x6c, 0x3f, 0x44, 0x34, 0xaf, 0x43, + 0x6d, 0xae, 0xef, 0xb2, 0x65, 0x03, 0xc1, 0xef, 0x10, 0x1e, 0xd8, 0x6e, + 0xb5, 0xb9, 0x03, 0xd8, 0x6e, 0x2f, 0x53, 0xe6, 0xc0, 0xaf, 0x44, 0xd2, + 0xd8, 0x15, 0x56, 0x15, 0x59, 0xd6, 0xd4, 0xe4, 0x1a, 0x25, 0xd5, 0xcf, + 0xe7, 0x6a, 0x55, 0xd4, 0xf8, 0x42, 0x4c, 0xcb, 0x9a, 0x48, 0x4d, 0x27, + 0x61, 0x4c, 0x36, 0x2b, 0xcb, 0x10, 0xba, 0xf7, 0xe3, 0x23, 0x27, 0xc5, + 0x6a, 0x1b, 0x94, 0x69, 0x64, 0xb1, 0x8c, 0xdb, 0xd4, 0x0d, 0x32, 0x3e, + 0x58, 0x73, 0xa8, 0x2f, 0x3d, 0x22, 0xd9, 0x0d, 0x2a, 0x52, 0xf0, 0xdd, + 0xeb, 0x21, 0x42, 0xc7, 0x59, 0x96, 0x09, 0x93, 0x5a, 0x70, 0xc3, 0x21, + 0x5f, 0xce, 0xc2, 0xdd, 0xcf, 0x61, 0xed, 0x1c, 0xfb, 0x2f, 0x57, 0xf7, + 0x31, 0xb8, 0x3e, 0x92, 0x29, 0xd4, 0x47, 0x6a, 0x19, 0x66, 0x00, 0xc2, + 0xc4, 0x6c, 0xb5, 0xc5, 0x68, 0x24, 0xa8, 0x64, 0x26, 0x72, 0x43, 0x20, + 0x9f, 0xf1, 0x3f, 0xac, 0x64, 0xb5, 0x12, 0x26, 0x13, 0x76, 0x52, 0x05, + 0xda, 0x57, 0xe3, 0x53, 0x73, 0x30, 0x21, 0x27, 0x75, 0x8d, 0x37, 0xd1, + 0x77, 0x40, 0x97, 0x2a, 0xb7, 0x0b, 0x2e, 0x9e, 0x4c, 0x36, 0x75, 0x44, + 0x15, 0xdb, 0x96, 0x70, 0xf9, 0x33, 0x9a, 0x1e, 0x6e, 0x13, 0x05, 0x38, + 0x2c, 0xbf, 0x0a, 0xdd, 0x2b, 0x2b, 0x38, 0x77, 0xa9, 0x00, 0x2d, 0x5e, + 0xee, 0x4b, 0xf3, 0x20, 0x7a, 0x90, 0x97, 0x44, 0xdf, 0x55, 0xfd, 0x50, + 0xe3, 0x24, 0x25, 0xa9, 0xd9, 0x3f, 0x6d, 0x09, 0x32, 0x67, 0xb5, 0x43, + 0xf1, 0xc7, 0xa7, 0xfb, 0x92, 0xde, 0xc3, 0xbf, 0x64, 0x6b, 0x35, 0xda, + 0x08, 0x94, 0x68, 0xb0, 0xc8, 0x3f, 0xb5, 0x9f, 0x15, 0x05, 0xff, 0x6c, + 0xbc, 0x22, 0x61, 0xf4, 0x67, 0xf8, 0x1f, 0x2e, 0x91, 0xc8, 0x12, 0xdc, + 0xcb, 0x22, 0x05, 0xb8, 0xab, 0x0d, 0x0e, 0xd7, 0x04, 0x8e, 0x32, 0x0e, + 0xfe, 0x72, 0x79, 0xc3, 0xba, 0xd8, 0x68, 0x3e, 0x5d, 0xab, 0xa0, 0xf8, + 0x26, 0x57, 0xe4, 0x20, 0x91, 0x0a, 0xde, 0x52, 0x95, 0xbc, 0xb7, 0x71, + 0x50, 0xe4, 0x3f, 0x07, 0x4c, 0xa8, 0x6a, 0xb6, 0xa0, 0x95, 0xe2, 0x31, + 0x8f, 0x5f, 0xfa, 0xdd, 0xee, 0x02, 0x23, 0x56, 0xf1, 0xdd, 0x1a, 0xa6, + 0xa0, 0x2d, 0x46, 0x36, 0x6c, 0x79, 0xe8, 0x67, 0x43, 0xdd, 0xe7, 0x2e, + 0x25, 0xda, 0x35, 0x6f, 0x63, 0xf1, 0x2c, 0x6c, 0x61, 0xaa, 0xb7, 0x51, + 0x91, 0xa1, 0x7c, 0x54, 0x9a, 0xf6, 0x3c, 0x3f, 0xa8, 0xba, 0x4d, 0xee, + 0xb6, 0xab, 0xa5, 0x05, 0xc6, 0xb6, 0xe8, 0x2f, 0x1b, 0x99, 0xb0, 0x45, + 0x3e, 0xc3, 0x50, 0x26, 0x0b, 0x10, 0x61, 0x5a, 0xc6, 0x25, 0x2d, 0x07, + 0xb6, 0x28, 0x59, 0xf3, 0xb4, 0x02, 0x61, 0xa0, 0xd0, 0x0a, 0xae, 0xd6, + 0x3c, 0xcc, 0x5f, 0xfb, 0xc0, 0xfd, 0xeb, 0x7b, 0xe2, 0x66, 0xc5, 0x98, + 0x70, 0x50, 0x31, 0x3a, 0x12, 0x45, 0xf4, 0x1c, 0xba, 0xa6, 0x92, 0x51, + 0xae, 0x68, 0xec, 0xb0, 0x1a, 0xd9, 0x45, 0x00, 0xd6, 0x9e, 0xad, 0x64, + 0xfe, 0xd9, 0xfb, 0xcc, 0x57, 0xff, 0x9e, 0xa3, 0x71, 0xe7, 0x7a, 0xaf, + 0x26, 0x31, 0x31, 0x6a, 0x41, 0xa4, 0x4d, 0x68, 0xbc, 0xcb, 0xfa, 0xb4, + 0x3a, 0x1c, 0x3a, 0x8f, 0xcd, 0xc1, 0x95, 0xb2, 0x46, 0x72, 0xf7, 0xfc, + 0x20, 0xe2, 0x2f, 0x0f, 0xbd, 0x74, 0xe1, 0x2a, 0xd5, 0xf6, 0xe9, 0xe1, + 0x45, 0x7d, 0x95, 0xb0, 0x49, 0xce, 0xe8, 0x53, 0x69, 0x46, 0x9d, 0x03, + 0x5f, 0x15, 0x2e, 0x92, 0x4c, 0xb7, 0xf1, 0x43, 0x67, 0x8a, 0x43, 0xc6, + 0x90, 0xec, 0xb5, 0x5d, 0xd5, 0x64, 0x16, 0x6e, 0xf0, 0xad, 0x4e, 0xf0, + 0x56, 0xe8, 0x77, 0xd5, 0x47, 0x47, 0x41, 0xc9, 0x98, 0x3a, 0xcb, 0xe0, + 0x01, 0x77, 0x93, 0x15, 0xe0, 0xd3, 0x93, 0xbe, 0xe1, 0x97, 0xe0, 0x21, + 0x60, 0x2b, 0xf1, 0x4a, 0x62, 0x29, 0x11, 0xe9, 0x61, 0x55, 0xc4, 0x57, + 0x04, 0xa8, 0xb3, 0xb3, 0x61, 0xd7, 0xa6, 0xce, 0x50, 0xd2, 0xc3, 0x38, + 0xda, 0xc2, 0x23, 0x67, 0x37, 0x09, 0xa7, 0xfd, 0x29, 0xdc, 0xcc, 0x52, + 0x65, 0xea, 0x3f, 0xcc, 0x67, 0x5e, 0x3b, 0xd4, 0x59, 0x59, 0x12, 0x9b, + 0xf1, 0xd2, 0x43, 0x46, 0x54, 0xcd, 0xb9, 0xbe, 0x71, 0xb6, 0x6d, 0x6a, + 0x62, 0xc5, 0x59, 0xc1, 0x21, 0xf7, 0x4c, 0x91, 0x64, 0xe0, 0xd7, 0xd9, + 0x34, 0x60, 0x0d, 0xb2, 0x93, 0xd8, 0xd3, 0x01, 0x8b, 0xf3, 0x9c, 0x6c, + 0xff, 0x63, 0xca, 0xd2, 0xf4, 0x76, 0xe3, 0x60, 0x52, 0x5c, 0x0e, 0xa3, + 0x13, 0xc8, 0xd9, 0xa7, 0x13, 0x6d, 0x1b, 0x29, 0xc0, 0xb1, 0x54, 0x31, + 0x33, 0x55, 0x44, 0x0a, 0x0a, 0x96, 0x3f, 0xf0, 0xb2, 0x64, 0x23, 0xa1, + 0xc8, 0x08, 0x01, 0x94, 0x2f, 0xc8, 0x0a, 0xfb, 0x93, 0x38, 0xe4, 0xc1, + 0xd9, 0xea, 0x46, 0x96, 0xdd, 0x5d, 0x62, 0xfc, 0xb0, 0x4d, 0x17, 0xe8, + 0xa0, 0xd4, 0x35, 0x98, 0x65, 0xb0, 0x27, 0x97, 0xbc, 0xe8, 0x48, 0x38, + 0x90, 0x9b, 0x6e, 0xf1, 0xd2, 0x17, 0x1b, 0xbf, 0x03, 0xc6, 0xa3, 0x42, + 0xaf, 0xdc, 0x44, 0x9d, 0x9e, 0x69, 0x67, 0x33, 0x61, 0xfb, 0x96, 0xfa, + 0xff, 0xf4, 0xa8, 0x3c, 0xb6, 0x42, 0xd2, 0x4c, 0xc0, 0xa8, 0x2a, 0x4b, + 0x37, 0x78, 0x41, 0x94, 0xf6, 0x04, 0xb9, 0x54, 0xe4, 0x2b, 0xfc, 0xed, + 0xf5, 0xf7, 0x62, 0x23, 0x44, 0xc4, 0xd7, 0x5a, 0xeb, 0xc2, 0x3d, 0x4c, + 0x41, 0x22, 0xa0, 0xe3, 0x22, 0xbc, 0x91, 0x69, 0x37, 0x3f, 0x94, 0xfd, + 0x07, 0xa7, 0x6e, 0x53, 0x27, 0xdc, 0xb0, 0x14, 0x8d, 0x0a, 0x08, 0x31, + 0xba, 0xf0, 0xd0, 0xda, 0xa6, 0x7a, 0xc0, 0x4c, 0x9d, 0x3b, 0x8f, 0xee, + 0x11, 0xc7, 0x9f, 0xc9, 0xcc, 0x4c, 0x26, 0x51, 0xb4, 0x10, 0xde, 0xc2, + 0xa3, 0xe0, 0xaa, 0x7c, 0x9c, 0x27, 0x8d, 0x04, 0x8e, 0xfc, 0xe4, 0x68, + 0x93, 0xf9, 0x67, 0x28, 0xa0, 0xe6, 0xca, 0xbd, 0x5a, 0x64, 0x98, 0x9f, + 0xe3, 0x7b, 0x16, 0x5d, 0x61, 0xcc, 0x4c, 0x64, 0x04, 0x1b, 0xcc, 0xa6, + 0xa2, 0x31, 0x28, 0xa2, 0xac, 0xd0, 0xce, 0x40, 0x19, 0xe7, 0xf9, 0xea, + 0xc5, 0x98, 0x50, 0x16, 0x38, 0xad, 0x58, 0x21, 0x2e, 0x10, 0x48, 0x4f, + 0xe7, 0xc0, 0xc0, 0x6c, 0xcd, 0xe2, 0xc3, 0xcd, 0xc5, 0xfc, 0x26, 0x91, + 0xea, 0xcf, 0x52, 0x97, 0x9f, 0xdc, 0x2c, 0x45, 0xd8, 0x50, 0xf8, 0x75, + 0xa2, 0x93, 0x52, 0x2b, 0x23, 0xd3, 0x30, 0x9d, 0xa7, 0xf7, 0xbb, 0xc2, + 0xd2, 0xb7, 0x9d, 0xec, 0xf9, 0x9a, 0xec, 0x3e, 0xc0, 0xce, 0x64, 0xb8, + 0xf5, 0x41, 0x4e, 0x06, 0xa1, 0x25, 0xf2, 0x40, 0xee, 0x07, 0xec, 0x6d, + 0x9a, 0xd0, 0x5c, 0xdd, 0xe9, 0xf5, 0x56, 0xf9, 0x2e, 0xf5, 0xdb, 0x69, + 0xc9, 0x3e, 0xb5, 0x0c, 0xbc, 0x29, 0xa4, 0xa9, 0x55, 0x9b, 0xf6, 0xab, + 0x1f, 0x55, 0x9d, 0x25, 0xd2, 0xde, 0x3f, 0xa0, 0xe5, 0x1c, 0xb3, 0x90, + 0x2f, 0x6c, 0xaf, 0xb5, 0x6d, 0x23, 0x15, 0xab, 0x91, 0x55, 0x5f, 0x02, + 0x20, 0x22, 0x8e, 0xc1, 0x4a, 0x63, 0xa6, 0x5e, 0x85, 0x99, 0x58, 0xdc, + 0xde, 0xb0, 0x76, 0x9f, 0x21, 0x4d, 0xe9, 0x47, 0xcc, 0x3f, 0x02, 0x91, + 0x75, 0x67, 0xe5, 0x6a, 0x2c, 0xc3, 0x69, 0x95, 0x2d, 0x74, 0x77, 0xf7, + 0x1d, 0xe1, 0x12, 0x2b, 0xcf, 0x4c, 0x7b, 0xcf, 0xbe, 0x24, 0x1d, 0x07, + 0x34, 0xd3, 0x67, 0xa8, 0xb9, 0x76, 0x2a, 0x3e, 0xfd, 0xb5, 0xcd, 0xf6, + 0x29, 0x07, 0x4e, 0x17, 0xcf, 0x28, 0xdd, 0x90, 0x4b, 0x17, 0x24, 0x55, + 0xdc, 0x78, 0xe5, 0xf4, 0x97, 0x31, 0x3d, 0xfa, 0x96, 0xe2, 0x99, 0x61, + 0xb1, 0xcb, 0xa4, 0x7b, 0x4e, 0x5d, 0x6a, 0xf8, 0xb2, 0x79, 0xfc, 0xa9, + 0xd9, 0x27, 0x46, 0xdd, 0x52, 0xdf, 0x24, 0x66, 0x1c, 0xa6, 0xbc, 0x18, + 0x13, 0x72, 0x38, 0x53, 0xac, 0x1b, 0x67, 0x1f, 0x30, 0xae, 0x5a, 0xf3, + 0x55, 0xd0, 0xe1, 0x23, 0x9a, 0x46, 0xa4, 0xbb, 0x68, 0x73, 0x30, 0xda, + 0xb7, 0x3b, 0xff, 0xd1, 0x0d, 0xe0, 0xf7, 0xda, 0x36, 0x3a, 0x7a, 0x19, + 0xf5, 0x2e, 0xf4, 0xda, 0xa4, 0x09, 0x94, 0xb8, 0x18, 0xad, 0x6b, 0xf6, + 0x64, 0xbf, 0x2a, 0x04, 0xc6, 0xde, 0x0f, 0x45, 0x27, 0x3a, 0x3d, 0x61, + 0xf5, 0xde, 0x38, 0x1d, 0x23, 0x23, 0x70, 0x00, 0xfc, 0x0c, 0x5c, 0x96, + 0xc1, 0x21, 0x78, 0x25, 0x24, 0x71, 0xd1, 0xe2, 0xe9, 0x1a, 0x2f, 0x48, + 0x4d, 0x09, 0x24, 0x27, 0xe4, 0xe7, 0x42, 0x76, 0x92, 0x93, 0x7a, 0x62, + 0x76, 0xc6, 0xd7, 0xdf, 0xe4, 0x5e, 0x0e, 0xfc, 0x4e, 0x0a, 0x65, 0x63, + 0x51, 0x90, 0xfd, 0x92, 0x5f, 0x9a, 0x49, 0xa9, 0x6c, 0xb1, 0xb6, 0xe6, + 0xab, 0xf7, 0xb9, 0x39, 0xc0, 0xed, 0x1d, 0x65, 0x9c, 0x24, 0x21, 0xc1, + 0x0d, 0xd6, 0x9a, 0xbe, 0xd4, 0x74, 0xa2, 0x70, 0xab, 0x0b, 0x45, 0xf0, + 0xc9, 0xaa, 0xf1, 0x49, 0x0b, 0x6c, 0x20, 0xdc, 0x37, 0x2b, 0x13, 0x68, + 0x48, 0x0e, 0xd8, 0xd1, 0x67, 0xd8, 0xa3, 0x7e, 0xd7, 0xb7, 0x50, 0xc8, + 0x14, 0x58, 0x6a, 0x04, 0xa5, 0x70, 0x22, 0x2d, 0x41, 0xea, 0x28, 0xb7, + 0xf0, 0xde, 0xc4, 0xe4, 0x5b, 0x4d, 0xc1, 0x33, 0x9e, 0x14, 0x32, 0xa8, + 0x9b, 0xc8, 0xd9, 0x5b, 0x95, 0x2a, 0x91, 0x9d, 0xe8, 0x15, 0x19, 0x9b, + 0x38, 0xf3, 0x35, 0x69, 0x3e, 0xd3, 0x4b, 0xcc, 0xf2, 0x94, 0x5a, 0xaf, + 0x91, 0xa4, 0xa1, 0x03, 0x48, 0x5f, 0x6d, 0x16, 0x56, 0x03, 0x5a, 0xcb, + 0x99, 0x19, 0x45, 0x9c, 0xba, 0xc9, 0xbc, 0x5b, 0x0f, 0xf5, 0xde, 0x70, + 0xa3, 0x70, 0x0d, 0x3f, 0x3e, 0x5c, 0x4d, 0x5a, 0x1a, 0x46, 0x1b, 0x44, + 0x4a, 0x73, 0xfa, 0xb1, 0xc4, 0x42, 0x7b, 0x0c, 0x15, 0x0d, 0x35, 0xc4, + 0xa3, 0xea, 0x17, 0xa0, 0x0b, 0xfb, 0x4d, 0x1b, 0x2f, 0x96, 0x1f, 0xaa, + 0xc0, 0xad, 0xdc, 0xf3, 0xb2, 0xb1, 0x44, 0x1f, 0x39, 0xc7, 0x33, 0x18, + 0xad, 0xe1, 0x50, 0x7d, 0xf9, 0x2a, 0x90, 0xf2, 0x06, 0xce, 0x07, 0xae, + 0x9f, 0xbc, 0x4d, 0xae, 0x30, 0xdd, 0x47, 0xa2, 0xd3, 0x6d, 0x0c, 0xc6, + 0xb7, 0xae, 0xf5, 0x38, 0xa3, 0x00, 0x59, 0x6a, 0x00, 0x04, 0xd2, 0x77, + 0x0a, 0x58, 0xc9, 0xaf, 0x1b, 0x59, 0x29, 0xf3, 0xdd, 0x58, 0xcf, 0xa1, + 0x6d, 0xb4, 0x66, 0x23, 0x9f, 0x9b, 0x41, 0x2a, 0xc8, 0x28, 0x34, 0x77, + 0x3a, 0x1f, 0xa5, 0xde, 0x4b, 0x3f, 0xc7, 0x19, 0xf5, 0xdb, 0x98, 0xc4, + 0x6c, 0x2f, 0x34, 0x20, 0xc9, 0x52, 0x16, 0x60, 0xbc, 0x04, 0xd5, 0xff, + 0x4b, 0x07, 0x28, 0x5a, 0x3a, 0x48, 0x5b, 0x96, 0xee, 0x1f, 0xf1, 0xb4, + 0x9b, 0xb5, 0x64, 0xde, 0x1c, 0xd5, 0x3c, 0x1b, 0x98, 0x11, 0xc7, 0x0b, + 0x97, 0x00, 0x2f, 0x8f, 0xf9, 0x24, 0x4d, 0xba, 0x75, 0x6a, 0xce, 0xd8, + 0x7a, 0xee, 0x02, 0xd5, 0x19, 0xd6, 0x26, 0x40, 0xa7, 0x78, 0x76, 0x1a, + 0x17, 0xc2, 0xe6, 0x5a, 0x6e, 0x24, 0xb1, 0x17, 0xf8, 0x9f, 0xdc, 0x64, + 0xf0, 0x59, 0xc5, 0xfc, 0x4c, 0xbb, 0x3d, 0x3f, 0x70, 0x2c, 0x0d, 0xf5, + 0x6c, 0x96, 0x46, 0x1a, 0x1e, 0x5f, 0xd1, 0x3a, 0x00, 0x9a, 0x9d, 0x63, + 0xe6, 0xd1, 0xa2, 0x5a, 0x4a, 0x50, 0xa8, 0xd5, 0x91, 0x90, 0x69, 0x58, + 0x65, 0x00, 0xc7, 0xf1, 0xa6, 0x45, 0xfd, 0x5a, 0xe6, 0x05, 0x4b, 0xb2, + 0x3a, 0xdf, 0xa9, 0xd9, 0xe5, 0xa6, 0xe5, 0xe2, 0x5b, 0x3b, 0x2f, 0x57, + 0x6c, 0xc4, 0x06, 0xe1, 0x8e, 0x15, 0x98, 0xc8, 0x5e, 0x63, 0xba, 0x37, + 0xe6, 0x91, 0x5f, 0x1c, 0x5b, 0x77, 0xb5, 0x91, 0x07, 0x3a, 0xa6, 0x67, + 0x6d, 0xdf, 0x15, 0x62, 0x6b, 0x3b, 0xed, 0xa2, 0xc7, 0x46, 0x52, 0x8f, + 0xf2, 0x9f, 0x69, 0x00, 0xb8, 0x49, 0xcf, 0xd4, 0xf0, 0x95, 0x51, 0xda, + 0x0f, 0x4e, 0x0d, 0x11, 0x2f, 0x27, 0x73, 0xe9, 0x13, 0xcb, 0xa1, 0xfc, + 0x6b, 0x45, 0xf0, 0xfd, 0xc7, 0x17, 0xaa, 0x0c, 0xac, 0x98, 0xc4, 0x6c, + 0xf0, 0x32, 0x45, 0x67, 0xfe, 0x6f, 0x2e, 0xfb, 0xec, 0x19, 0xda, 0xbd, + 0x93, 0x5f, 0x50, 0xc2, 0x22, 0x9a, 0x3a, 0x5b, 0x31, 0xf5, 0x4e, 0x91, + 0xa6, 0xea, 0x67, 0xdd, 0x69, 0xf4, 0xd7, 0xea, 0x02, 0xbe, 0x55, 0x52, + 0xb9, 0x30, 0x21, 0xe5, 0xfc, 0x9a, 0x93, 0xd6, 0x6c, 0x33, 0x06, 0xb9, + 0xe3, 0xb0, 0x6a, 0xff, 0x9e, 0xc2, 0x5e, 0x1d, 0xd6, 0xdb, 0xa1, 0x60, + 0x34, 0x5d, 0x08, 0xf9, 0xeb, 0xd6, 0x1f, 0x90, 0xf1, 0xf4, 0x07, 0x47, + 0xbf, 0xd9, 0xc9, 0xe8, 0xcf, 0xce, 0xa5, 0x1d, 0xb0, 0xd9, 0xbe, 0xc7, + 0xfb, 0xcc, 0xac, 0x3e, 0x92, 0x59, 0x0d, 0x1d, 0x65, 0x16, 0xa3, 0xdc, + 0x9b, 0x72, 0x22, 0x46, 0x04, 0xca, 0xb3, 0x5a, 0x2f, 0x3d, 0x99, 0x5c, + 0xb5, 0xb9, 0x30, 0xe3, 0xde, 0x8c, 0xba, 0xc7, 0x4c, 0xe5, 0x34, 0x6e, + 0xf4, 0x75, 0xf4, 0x38, 0x01, 0xf1, 0x61, 0xb8, 0x2b, 0xc3, 0x6f, 0xae, + 0xd1, 0x0a, 0x9d, 0x48, 0xc9, 0xe7, 0xc3, 0xe7, 0xc9, 0xe1, 0x6f, 0x96, + 0xa0, 0xc2, 0x91, 0xfd, 0xad, 0x99, 0x48, 0xde, 0xfc, 0xa3, 0x6e, 0xe3, + 0x94, 0x0e, 0xb5, 0xf6, 0x24, 0x8b, 0xce, 0x70, 0x3c, 0xdc, 0xe2, 0x66, + 0x9f, 0xe3, 0x6b, 0xc5, 0xd1, 0x97, 0x38, 0x12, 0x46, 0x37, 0xd6, 0x9a, + 0x4c, 0x6d, 0x4a, 0x2d, 0xc3, 0x28, 0x20, 0x2f, 0x55, 0x67, 0x17, 0x71, + 0xd3, 0x5c, 0xdc, 0xa3, 0x23, 0x60, 0x25, 0x2d, 0xe0, 0xc2, 0xed, 0xee, + 0x67, 0x9f, 0x26, 0xfb, 0x2f, 0x63, 0xf2, 0x6a, 0x23, 0x45, 0x26, 0x2c, + 0x33, 0x8a, 0xf2, 0xd1, 0xb2, 0x77, 0x99, 0x98, 0xd6, 0x18, 0xfe, 0xf3, + 0xff, 0xa4, 0x36, 0x03, 0xf4, 0xf5, 0xb1, 0xca, 0xa3, 0x5f, 0xe2, 0xc6, + 0xb2, 0x55, 0x2c, 0xaa, 0x64, 0xef, 0x28, 0x3a, 0x9e, 0x98, 0x01, 0x57, + 0x49, 0x98, 0x61, 0x4f, 0x42, 0x57, 0x00, 0x19, 0xb9, 0xa8, 0xec, 0xed, + 0x2b, 0x63, 0xf3, 0x0c, 0x3a, 0x1f, 0x10, 0xab, 0xe9, 0x6e, 0x61, 0x69, + 0xd1, 0x2d, 0xf3, 0x1f, 0xaa, 0x00, 0x57, 0xe2, 0xab, 0x74, 0xcd, 0xff, + 0x97, 0x2c, 0x3b, 0x67, 0xae, 0xa3, 0xfc, 0x69, 0xa9, 0x4e, 0x42, 0x07, + 0xfc, 0xbf, 0x36, 0x1a, 0xef, 0x6d, 0x6d, 0x14, 0x61, 0x30, 0x27, 0x98, + 0xfa, 0xf8, 0xc9, 0x70, 0xb4, 0xaa, 0x53, 0x48, 0x72, 0x3f, 0x58, 0x69, + 0x8d, 0x08, 0xc8, 0x09, 0x2b, 0xfc, 0x1d, 0xa1, 0x92, 0xae, 0x62, 0xa0, + 0xea, 0x05, 0x40, 0xac, 0x9c, 0xaf, 0x0e, 0xf4, 0x1e, 0x45, 0x33, 0xee, + 0x31, 0x39, 0x08, 0x4b, 0x54, 0x02, 0x2d, 0x03, 0x1c, 0xe6, 0x2d, 0x0c, + 0xd0, 0x92, 0x44, 0xd6, 0xa1, 0x57, 0x4e, 0x17, 0xde, 0xe6, 0x4f, 0x6a, + 0x07, 0x9f, 0x58, 0xe2, 0x27, 0xdb, 0xa9, 0x0c, 0x19, 0x56, 0xa3, 0xb4, + 0xc4, 0xe8, 0xa3, 0x52, 0x9f, 0x6a, 0xc9, 0xb1, 0xda, 0xe9, 0xef, 0x12, + 0xc1, 0x6d, 0x5b, 0x04, 0x20, 0x93, 0xac, 0xf4, 0x38, 0x95, 0xdb, 0x50, + 0xa6, 0x2e, 0x5c, 0x3f, 0x2d, 0x32, 0x50, 0x03, 0x73, 0x64, 0x3a, 0xd5, + 0xfd, 0x98, 0x1c, 0x57, 0xc3, 0xe7, 0xf7, 0x14, 0x13, 0x15, 0x2a, 0xa2, + 0x5f, 0xa0, 0x67, 0xdd, 0x67, 0x00, 0x09, 0xc6, 0xfe, 0xad, 0x06, 0x4c, + 0x5e, 0x9a, 0x5b, 0x55, 0x06, 0x8c, 0x9a, 0x2a, 0x51, 0x0e, 0x4f, 0x15, + 0xcc, 0xe1, 0x53, 0x9c, 0x43, 0x37, 0xc1, 0x3e, 0x02, 0x4b, 0x98, 0x6f, + 0x9b, 0x60, 0x31, 0x2c, 0x2b, 0x9d, 0xda, 0xe0, 0x1d, 0xe4, 0x49, 0x66, + 0x65, 0x18, 0xfb, 0x24, 0x97, 0xe0, 0x2d, 0xf5, 0x44, 0x23, 0x09, 0x01, + 0xf9, 0xf5, 0x29, 0xff, 0x01, 0x36, 0xb9, 0x0e, 0x9b, 0xb3, 0x23, 0x1e, + 0xe5, 0x12, 0xbb, 0x3a, 0x04, 0x14, 0xb8, 0x23, 0x43, 0x95, 0xc1, 0x9d, + 0x57, 0x45, 0x46, 0x4c, 0x8f, 0x35, 0x25, 0x5f, 0x2b, 0xd9, 0xc6, 0xdd, + 0x61, 0xb8, 0xbb, 0x4d, 0x49, 0xef, 0x6e, 0x0c, 0x50, 0x07, 0xc9, 0x9b, + 0x2e, 0xb7, 0xbe, 0x23, 0xc3, 0xcf, 0x9d, 0xeb, 0x13, 0xc8, 0xeb, 0x72, + 0x51, 0x71, 0x69, 0x35, 0xf3, 0xce, 0x35, 0x45, 0x02, 0xba, 0x44, 0x5d, + 0xaf, 0xd0, 0xe5, 0x1d, 0x9b, 0x18, 0xbb, 0x62, 0xce, 0xaf, 0x40, 0x48, + 0x40, 0x2a, 0x5d, 0xcd, 0xa7, 0x2b, 0x8f, 0xf4, 0x4a, 0x4c, 0xe1, 0x59, + 0x40, 0x63, 0x33, 0xae, 0xd8, 0x9d, 0x4d, 0x11, 0x3d, 0x2d, 0x11, 0xc6, + 0x8c, 0xa9, 0xab, 0xa2, 0x08, 0xb8, 0xbf, 0x09, 0x66, 0xbc, 0xd7, 0xab, + 0xce, 0x0d, 0xe0, 0x9e, 0x51, 0x2f, 0x5c, 0xc7, 0x21, 0xb9, 0xcf, 0xc4, + 0x8b, 0xc0, 0x4b, 0x04, 0x1b, 0xfd, 0x43, 0xcf, 0xa4, 0x72, 0x62, 0x04, + 0x0b, 0x1f, 0x9f, 0x35, 0x9d, 0xa9, 0x19, 0x71, 0x06, 0xda, 0x03, 0x0f, + 0xcc, 0x3a, 0xf4, 0x3a, 0xaf, 0x07, 0x0f, 0xf2, 0x3e, 0x4a, 0xd3, 0x41, + 0x6a, 0x90, 0x35, 0x39, 0x4c, 0x1d, 0x2f, 0x05, 0xff, 0xcf, 0xc0, 0xbe, + 0x0f, 0xaf, 0x90, 0x4e, 0x45, 0x8c, 0x78, 0x4d, 0x6b, 0xf2, 0x47, 0x26, + 0xe9, 0x0d, 0xee, 0xd3, 0x97, 0x44, 0xaf, 0x6f, 0x95, 0x30, 0x9c, 0x08, + 0xe5, 0x18, 0x9e, 0xad, 0xd2, 0x2a, 0x0c, 0x21, 0x67, 0x50, 0x28, 0x4f, + 0x31, 0x9c, 0xee, 0xb2, 0x95, 0xbd, 0xef, 0xc0, 0xd0, 0x0d, 0xd4, 0x6e, + 0xff, 0x93, 0x12, 0xc3, 0x51, 0x41, 0xe4, 0x6c, 0x19, 0x09, 0xd7, 0x0a, + 0xe0, 0xea, 0x0a, 0xe7, 0xa8, 0x4b, 0x60, 0xd6, 0x0c, 0x4d, 0xb5, 0x29, + 0x01, 0x74, 0xf9, 0x40, 0x8c, 0x6b, 0x11, 0xf6, 0xe4, 0xc9, 0x3c, 0x1a, + 0xf7, 0xce, 0x2c, 0xd8, 0xe3, 0x0e, 0xc5, 0xb9, 0x6c, 0x40, 0x44, 0xc9, + 0x04, 0xf6, 0x5c, 0xe1, 0x9f, 0xc7, 0xe0, 0x68, 0xe7, 0x6a, 0x92, 0xe7, + 0xb2, 0x12, 0x72, 0x3f, 0xfd, 0xc3, 0x06, 0xeb, 0x0a, 0xab, 0x6d, 0xad, + 0x03, 0x0b, 0x5d, 0xcc, 0x49, 0x04, 0x52, 0x19, 0xd4, 0x9d, 0x67, 0xbf, + 0xd3, 0xf4, 0x22, 0x76, 0x99, 0x52, 0xf5, 0xb5, 0x15, 0x38, 0x58, 0x57, + 0x9a, 0xa2, 0xd1, 0xbb, 0x3a, 0x07, 0xe2, 0xd6, 0x8d, 0x69, 0x9e, 0x5c, + 0xf4, 0xba, 0xda, 0x4a, 0x4d, 0x73, 0xdc, 0x32, 0xfd, 0xe1, 0x3a, 0x16, + 0xf1, 0x09, 0x26, 0x3b, 0x2a, 0xa9, 0xa7, 0x2c, 0xd3, 0xcf, 0x6b, 0xc5, + 0xb5, 0xbc, 0x71, 0xb6, 0x9e, 0xa0, 0x6a, 0x69, 0xa5, 0xeb, 0x54, 0x87, + 0xe9, 0x4f, 0x69, 0x39, 0xc5, 0x54, 0x28, 0x55, 0xb9, 0xff, 0x5d, 0x9e, + 0x17, 0x8e, 0x8c, 0xd5, 0x14, 0x5c, 0xa7, 0x33, 0x5a, 0x2f, 0x2d, 0x37, + 0x0e, 0xf2, 0x54, 0x64, 0x9d, 0xdf, 0x49, 0xab, 0xd3, 0x0f, 0xbd, 0xad, + 0x19, 0xb9, 0xcf, 0x0f, 0x40, 0x62, 0x4b, 0x93, 0xd7, 0xf4, 0x3b, 0xee, + 0x2b, 0x97, 0xe3, 0x55, 0xb3, 0x5b, 0x3f, 0x93, 0xa5, 0xf1, 0x40, 0x99, + 0xa1, 0x69, 0xbd, 0xf3, 0xf0, 0xb1, 0x6e, 0x5c, 0xba, 0x4a, 0xc4, 0x51, + 0x8e, 0xe1, 0x5c, 0xb8, 0x92, 0xb5, 0x43, 0xc4, 0x9e, 0x38, 0x0d, 0xfb, + 0x60, 0xb3, 0xe6, 0x0f, 0x55, 0x94, 0x01, 0xaf, 0xaa, 0xc3, 0x6d, 0xea, + 0xb2, 0xfc, 0xb0, 0x06, 0x29, 0x0f, 0xd3, 0x95, 0xb9, 0xf1, 0x8b, 0xce, + 0xd3, 0x5d, 0x16, 0xbf, 0x5c, 0x24, 0xc5, 0x36, 0x98, 0x8c, 0x5b, 0x43, + 0xe7, 0xfe, 0x77, 0xda, 0xc5, 0xd8, 0xf6, 0x72, 0xba, 0xcf, 0x9c, 0x18, + 0x58, 0xb8, 0xe4, 0x1d, 0xf6, 0xfb, 0x3b, 0xb4, 0x1f, 0xea, 0xa3, 0xe3, + 0xd5, 0xbe, 0x3f, 0xd5, 0xf9, 0xc4, 0x00, 0x8e, 0x17, 0x22, 0x3d, 0x96, + 0xd8, 0xb6, 0xa5, 0xf6, 0xcd, 0x55, 0x48, 0x8b, 0x1b, 0x38, 0x9c, 0xd7, + 0x6d, 0x40, 0x2a, 0x5f, 0xcf, 0xcb, 0x67, 0xa4, 0x8c, 0xf4, 0x8f, 0x70, + 0x34, 0xeb, 0x70, 0xcd, 0xee, 0x1c, 0xbd, 0xae, 0xd1, 0xc1, 0xf8, 0x62, + 0x45, 0xb5, 0x5d, 0xe6, 0x0b, 0xd4, 0x3d, 0x23, 0xf0, 0x27, 0x44, 0x56, + 0x32, 0x4d, 0xb1, 0x6c, 0x5d, 0x33, 0x94, 0x77, 0xe3, 0xac, 0x54, 0x56, + 0x24, 0x05, 0x26, 0x4a, 0xf0, 0x59, 0xfb, 0x1f, 0xa4, 0x0f, 0xbe, 0x9e, + 0xbc, 0x76, 0x9d, 0x5a, 0xed, 0x15, 0x97, 0x4e, 0x05, 0x8a, 0x8b, 0xff, + 0xc7, 0x9b, 0x67, 0x32, 0x12, 0x41, 0x04, 0xcb, 0x24, 0xae, 0x9e, 0xcc, + 0xd6, 0xc6, 0x67, 0x53, 0xfa, 0x29, 0x37, 0x73, 0xc6, 0xdf, 0xf2, 0x56, + 0x72, 0x06, 0x03, 0xaa, 0x5d, 0x07, 0xac, 0x38, 0xb9, 0x2a, 0x61, 0x02, + 0x24, 0xcf, 0x54, 0x3f, 0x98, 0xb0, 0x5c, 0xba, 0xe3, 0x15, 0x27, 0x52, + 0x63, 0x43, 0x12, 0x62, 0x33, 0x02, 0xb8, 0x69, 0x52, 0x70, 0x6c, 0xc0, + 0x23, 0x37, 0x65, 0x4b, 0xc9, 0xea, 0x98, 0x06, 0xde, 0x3d, 0x59, 0x72, + 0x94, 0x48, 0x60, 0xeb, 0xe7, 0xaa, 0x68, 0x72, 0x22, 0x15, 0x39, 0xf0, + 0x47, 0x43, 0xeb, 0x37, 0xb1, 0x3b, 0x9e, 0x05, 0x12, 0xdb, 0x74, 0x18, + 0xfe, 0x11, 0xcb, 0xae, 0xe0, 0xed, 0x1c, 0xe3, 0x19, 0x71, 0x56, 0xa6, + 0x04, 0xe6, 0x20, 0x62, 0xfd, 0xb1, 0x57, 0x44, 0xca, 0x3f, 0xdf, 0x51, + 0x23, 0x76, 0x3b, 0x70, 0x27, 0x33, 0x62, 0x74, 0x94, 0xff, 0x70, 0xcc, + 0xd4, 0xbf, 0x67, 0x12, 0x17, 0x5f, 0x71, 0xf8, 0x8f, 0x09, 0xca, 0xb5, + 0x49, 0x38, 0xcf, 0x1f, 0x94, 0x9a, 0xe6, 0x76, 0x0e, 0xa6, 0x5a, 0x2c, + 0x36, 0x61, 0x41, 0x2d, 0x14, 0x2f, 0x35, 0xa2, 0xaa, 0x2d, 0xd5, 0x54, + 0x3c, 0x4e, 0xa0, 0x63, 0xa9, 0x9e, 0xe9, 0x65, 0x62, 0xcf, 0x5a, 0x1a, + 0xb9, 0x70, 0xf7, 0xf1, 0x8a, 0xc7, 0x19, 0x6e, 0x34, 0xa0, 0xbb, 0x1b, + 0x76, 0x9b, 0x60, 0x20, 0xfd, 0xff, 0xe1, 0x40, 0x5e, 0xd7, 0x49, 0xd3, + 0x3c, 0x0f, 0x52, 0xae, 0x37, 0x38, 0x1d, 0xd5, 0xd0, 0xe7, 0xd6, 0xfc, + 0x06, 0x3b, 0x50, 0x06, 0x9c, 0xb4, 0x37, 0x9a, 0x53, 0x09, 0x56, 0xa4, + 0xa8, 0x64, 0x70, 0xa7, 0xaf, 0xb9, 0xd9, 0x19, 0xbc, 0x5b, 0x04, 0x07, + 0x68, 0xc0, 0xa4, 0xc0, 0x3d, 0x32, 0x36, 0x94, 0x24, 0xd3, 0x36, 0x1f, + 0xfc, 0xd8, 0x26, 0x49, 0x94, 0xd2, 0x1e, 0x8b, 0x0c, 0x70, 0x6e, 0xd7, + 0xd2, 0x37, 0x8f, 0x13, 0xef, 0x41, 0xdb, 0x53, 0xb5, 0xba, 0xe5, 0xe3, + 0x0c, 0xcd, 0xa3, 0xfa, 0x74, 0x16, 0xd9, 0x42, 0x10, 0xa3, 0xe6, 0x26, + 0xd6, 0x74, 0xbc, 0x17, 0x9b, 0x2e, 0x4c, 0xe2, 0x13, 0x49, 0x0f, 0xc9, + 0xc2, 0x34, 0xae, 0x5b, 0x6b, 0x46, 0xbc, 0xc4, 0x62, 0xa0, 0x4a, 0x18, + 0x62, 0x69, 0x1c, 0xc3, 0x78, 0x36, 0xfa, 0xd9, 0x8d, 0xd0, 0xf9, 0x4f, + 0x56, 0x90, 0x4b, 0xca, 0xc4, 0xdd, 0x64, 0x2c, 0xd1, 0x3c, 0xa8, 0xbe, + 0x62, 0x8f, 0x2a, 0x11, 0x93, 0x71, 0x75, 0x70, 0x43, 0xd0, 0x5f, 0xfb, + 0x36, 0x2b, 0x35, 0x26, 0xda, 0xda, 0x25, 0x3c, 0x17, 0xf2, 0xb7, 0x36, + 0xd7, 0x8d, 0xd1, 0xbc, 0x2f, 0xe7, 0xf8, 0x55, 0x42, 0x2e, 0xe1, 0xc0, + 0x4a, 0xee, 0x3d, 0x5b, 0xc9, 0x69, 0x15, 0xc5, 0x42, 0x03, 0x2c, 0x46, + 0x02, 0x94, 0x91, 0xfb, 0x0f, 0x98, 0x8d, 0x32, 0xdf, 0x0b, 0x19, 0xda, + 0x9f, 0x96, 0x6e, 0x2d, 0xc4, 0xa1, 0x92, 0xc1, 0x73, 0x2f, 0x23, 0x9f, + 0x55, 0xc5, 0xb4, 0x8c, 0xef, 0xf3, 0xa2, 0x94, 0x8f, 0x6c, 0xd8, 0xb1, + 0x9d, 0x0d, 0x17, 0x93, 0x21, 0xd7, 0xae, 0xa8, 0x41, 0xd3, 0xf1, 0x9a, + 0xe3, 0x36, 0xca, 0x5f, 0xa4, 0xd9, 0xaf, 0x34, 0xbf, 0xe6, 0x9e, 0x4c, + 0xf0, 0xd1, 0xb0, 0x8c, 0x8e, 0x76, 0x3d, 0xb3, 0xf7, 0xd9, 0xfb, 0xbf, + 0x72, 0xae, 0xa8, 0x39, 0x00, 0xe5, 0x53, 0x17, 0x6c, 0x4e, 0x06, 0x22, + 0xc0, 0x10, 0xe7, 0x4d, 0xff, 0x75, 0x03, 0x01, 0x18, 0x46, 0xfd, 0xde, + 0x1e, 0x95, 0x46, 0xb8, 0x5b, 0x36, 0xbc, 0x1d, 0x95, 0x05, 0x8f, 0x5d, + 0x38, 0x41, 0x25, 0x2c, 0x9b, 0x34, 0x75, 0x9b, 0xf0, 0x8b, 0xaf, 0x0d, + 0x2e, 0xc2, 0x1a, 0x03, 0x61, 0xbe, 0xe8, 0x49, 0xbc, 0x9b, 0x45, 0xfb, + 0x35, 0x2b, 0x6c, 0xa1, 0x96, 0xa0, 0x08, 0x0e, 0xca, 0x01, 0xc0, 0x97, + 0xfa, 0xdf, 0x11, 0x1a, 0x0d, 0xf9, 0xc2, 0x5a, 0xe1, 0x4c, 0xb5, 0x37, + 0xff, 0x91, 0xb6, 0x96, 0xbf, 0x62, 0x04, 0x59, 0x69, 0x01, 0x68, 0x66, + 0x52, 0x66, 0x4a, 0x49, 0xe9, 0xe6, 0xe4, 0x44, 0x92, 0x5e, 0xaf, 0xf5, + 0x24, 0xdb, 0x6f, 0x21, 0xf9, 0x21, 0x58, 0x5f, 0xc4, 0xf0, 0x30, 0x90, + 0x68, 0xff, 0x58, 0x5c, 0xbd, 0x6f, 0x58, 0x77, 0xe0, 0x03, 0x68, 0x2a, + 0x1a, 0xa4, 0xd6, 0x9d, 0xd0, 0x38, 0x5a, 0xbd, 0x52, 0xa8, 0xc5, 0xf0, + 0xbc, 0xf2, 0x04, 0x49, 0x0e, 0x1b, 0x1b, 0x93, 0xc0, 0x65, 0xca, 0x05, + 0x42, 0x11, 0x03, 0xd6, 0xd5, 0x2c, 0x4c, 0xcd, 0xed, 0xb4, 0x54, 0xa4, + 0x3d, 0x46, 0x64, 0x4c, 0xc4, 0x8f, 0x0a, 0x95, 0x6a, 0x4f, 0xfb, 0x2e, + 0x1d, 0x5a, 0x8a, 0xcb, 0x31, 0x94, 0x21, 0x54, 0x51, 0xf5, 0x4e, 0x3e, + 0x32, 0x00, 0x12, 0x8e, 0x4c, 0x8c, 0x17, 0x90, 0xea, 0x8d, 0xfe, 0xc3, + 0xfe, 0x69, 0x10, 0xd9, 0x1c, 0x60, 0x91, 0xb6, 0xbb, 0x11, 0xb7, 0x77, + 0x1c, 0x69, 0xec, 0xb5, 0x28, 0x1e, 0x4b, 0xc8, 0xac, 0xe2, 0xe7, 0xe4, + 0xca, 0x1c, 0x6a, 0x16, 0xb8, 0x0a, 0x1c, 0xcb, 0xbd, 0x0e, 0x61, 0xf6, + 0x30, 0xa0, 0xb0, 0x11, 0x57, 0xd0, 0xa0, 0xe5, 0x63, 0xb4, 0x5e, 0x65, + 0x54, 0xbd, 0x2b, 0xcf, 0x92, 0xb3, 0xe2, 0xad, 0xba, 0x6b, 0xd8, 0x8b, + 0xd4, 0xc9, 0x49, 0x6b, 0xe9, 0x6f, 0x30, 0x9a, 0x8d, 0x1a, 0xd2, 0x73, + 0xed, 0x01, 0x20, 0x76, 0x59, 0x3b, 0x63, 0x15, 0xf7, 0x4a, 0x93, 0xf5, + 0xe8, 0xaa, 0x77, 0xf7, 0xee, 0x16, 0x26, 0x6d, 0x6d, 0x1e, 0xb3, 0x04, + 0xd1, 0x36, 0x6d, 0xdb, 0xe1, 0xee, 0xdf, 0x69, 0x0e, 0x28, 0x3b, 0x5a, + 0x37, 0x51, 0x61, 0x10, 0x58, 0xd0, 0x58, 0x75, 0x63, 0x5b, 0x76, 0x3e, + 0x55, 0x0a, 0x07, 0x3e, 0xfe, 0xb9, 0x6e, 0x4c, 0xfc, 0x1b, 0x8a, 0xa5, + 0x03, 0x1a, 0xb9, 0x04, 0x22, 0x60, 0x33, 0x66, 0xda, 0xb7, 0x1c, 0x3a, + 0xb6, 0x92, 0x45, 0x01, 0xc2, 0x73, 0x49, 0x6a, 0x9a, 0x54, 0x10, 0xe2, + 0x36, 0x45, 0xbd, 0x1d, 0x33, 0x2a, 0xd2, 0xc9, 0x70, 0x63, 0x39, 0xcf, + 0xf7, 0x76, 0x70, 0x37, 0xde, 0x23, 0x4c, 0xd2, 0xa1, 0x37, 0x2c, 0x52, + 0xae, 0xa3, 0xfb, 0x45, 0xd0, 0xb9, 0x46, 0x3e, 0x2a, 0xe8, 0xe9, 0x64, + 0xe1, 0x16, 0x30, 0x08, 0x36, 0xcd, 0x9e, 0x15, 0x44, 0xdd, 0x27, 0xa9, + 0x1c, 0x29, 0xf1, 0xa7, 0x20, 0x21, 0x59, 0x61, 0x4c, 0xbe, 0x5e, 0x20, + 0x36, 0xca, 0xb8, 0x6d, 0xb5, 0x0c, 0x29, 0x41, 0xa1, 0xd3, 0x8a, 0x2b, + 0x34, 0xd2, 0x5b, 0x92, 0x12, 0x1f, 0x36, 0x9f, 0x5d, 0x02, 0x2a, 0xca, + 0xac, 0x5b, 0x29, 0x8b, 0x51, 0x3a, 0x65, 0xf5, 0xdf, 0x60, 0x6c, 0x0c, + 0xa7, 0x95, 0x3d, 0x52, 0x13, 0xb4, 0xbd, 0x8c, 0xf1, 0xac, 0xba, 0x3c, + 0x24, 0x6c, 0xc0, 0xdb, 0xa8, 0x5b, 0xd4, 0xdb, 0xf5, 0xcd, 0xaf, 0xdf, + 0x2f, 0xe2, 0x71, 0xcc, 0x00, 0x3a, 0x87, 0xdc, 0x23, 0xdf, 0xa7, 0xb0, + 0xb6, 0xcb, 0xff, 0x1c, 0xe7, 0xfe, 0xa8, 0xa8, 0xea, 0xad, 0x37, 0x58, + 0xfd, 0x58, 0x01, 0xa5, 0xe4, 0x5d, 0xdf, 0x4a, 0x10, 0x0b, 0xc3, 0x5e, + 0xd1, 0x0d, 0x4c, 0x21, 0x0e, 0x51, 0x95, 0x99, 0x58, 0xdf, 0x6d, 0xa8, + 0x8e, 0xf7, 0x51, 0xa6, 0x53, 0x44, 0x6b, 0xb3, 0x00, 0x64, 0xe1, 0x6f, + 0x3d, 0x19, 0x40, 0x30, 0x46, 0x95, 0x9b, 0x39, 0xa5, 0x0d, 0x77, 0xaa, + 0xb1, 0x57, 0x57, 0x08, 0xe0, 0xab, 0xd1, 0xd5, 0x25, 0x59, 0x11, 0x2f, + 0x62, 0xbf, 0x50, 0x95, 0x02, 0x18, 0xdb, 0x2d, 0xbc, 0xdb, 0xfa, 0x3d, + 0x45, 0xab, 0xb5, 0x2e, 0x8e, 0x9b, 0x49, 0xe5, 0x50, 0xbd, 0x1f, 0x1c, + 0x64, 0xd8, 0x9d, 0x0c, 0x0c, 0xe8, 0xf3, 0x54, 0x49, 0x95, 0x3d, 0x71, + 0xa1, 0x16, 0x98, 0x08, 0x16, 0x37, 0x6a, 0x95, 0xa3, 0xaa, 0xb6, 0xf7, + 0x0e, 0x99, 0x2a, 0x0b, 0x68, 0x49, 0xd1, 0xa4, 0x33, 0x3e, 0x57, 0xfc, + 0xc3, 0x5a, 0xa9, 0x1e, 0xbf, 0xf1, 0x19, 0x2d, 0xee, 0xfa, 0x01, 0xa8, + 0x64, 0x0d, 0x74, 0x54, 0xed, 0x4d, 0xab, 0xad, 0x23, 0x25, 0xde, 0xef, + 0xb4, 0x54, 0xfe, 0x3f, 0xba, 0xe0, 0x0e, 0x76, 0x1b, 0x1a, 0xa9, 0xe3, + 0x53, 0xbd, 0xde, 0x65, 0x6b, 0x08, 0x6d, 0x71, 0x45, 0xb4, 0xf8, 0x9a, + 0x06, 0x3d, 0xae, 0x87, 0x25, 0x51, 0x9d, 0x46, 0x33, 0xf3, 0x77, 0x6d, + 0xb6, 0x5d, 0xbe, 0x08, 0xfc, 0xf5, 0x31, 0xa1, 0xd5, 0x22, 0x19, 0xcd, + 0x66, 0x82, 0x19, 0xf5, 0xf5, 0x29, 0x28, 0x83, 0xa5, 0xa3, 0x30, 0x50, + 0xa1, 0xfb, 0xf6, 0x36, 0x31, 0xbf, 0xb5, 0xc4, 0xe7, 0x99, 0xd5, 0x4f, + 0xf5, 0xb0, 0xf5, 0x9a, 0x12, 0x4e, 0x1b, 0xdb, 0x4d, 0x21, 0x6d, 0xda, + 0xeb, 0x6a, 0x11, 0x55, 0xa2, 0xe2, 0x6a, 0xe9, 0xe8, 0x01, 0xa1, 0x97, + 0x68, 0xc2, 0x30, 0xd2, 0xfa, 0x60, 0xec, 0x4d, 0x54, 0x5b, 0x9e, 0x2d, + 0x97, 0xca, 0x1b, 0xc2, 0xb2, 0x14, 0x3f, 0xaf, 0x23, 0x54, 0xe8, 0x0c, + 0x3c, 0xed, 0x50, 0x32, 0xff, 0x3a, 0x8c, 0xe6, 0xdc, 0x17, 0xad, 0x65, + 0x05, 0x35, 0x28, 0xc9, 0x77, 0x21, 0xb1, 0x9a, 0xec, 0xf1, 0xd6, 0x53, + 0xb9, 0xb3, 0xe0, 0x41, 0x11, 0x85, 0x2e, 0x1a, 0xb5, 0xad, 0xab, 0x9b, + 0xae, 0x69, 0xa0, 0xb1, 0xa0, 0x07, 0x72, 0x8f, 0x4a, 0xd9, 0x5e, 0x1f, + 0x29, 0x9e, 0x4d, 0x0b, 0x9a, 0x82, 0xfe, 0x26, 0xc5, 0x17, 0x5b, 0x51, + 0x46, 0xf2, 0xf7, 0x27, 0xba, 0x06, 0x91, 0x0e, 0xc2, 0x07, 0xb3, 0x1b, + 0x54, 0xad, 0xb5, 0xf5, 0x02, 0xc1, 0x39, 0x6a, 0x2a, 0xd7, 0x46, 0xbf, + 0x3d, 0x39, 0x4e, 0x8e, 0xb1, 0x58, 0xf4, 0x90, 0xa7, 0x08, 0x0e, 0x99, + 0x64, 0x33, 0x3e, 0x1e, 0x09, 0xb7, 0x88, 0xa0, 0x29, 0xb2, 0x0b, 0x5c, + 0x15, 0xd4, 0x36, 0x55, 0x42, 0x48, 0xe7, 0x47, 0xf9, 0xb5, 0x05, 0xcd, + 0x40, 0xde, 0x92, 0x27, 0x11, 0x3b, 0xad, 0x3e, 0x9b, 0x95, 0x38, 0xad, + 0x11, 0xd5, 0x9d, 0x1d, 0x38, 0x60, 0xde, 0x31, 0xe3, 0x40, 0xb2, 0xf2, + 0x8e, 0xb4, 0x03, 0xaa, 0x51, 0x15, 0xe4, 0x36, 0x4d, 0x43, 0x05, 0xbc, + 0x36, 0x82, 0xdf, 0xfc, 0xfd, 0x23, 0x4d, 0xad, 0x9f, 0xf4, 0xce, 0xfb, + 0xaf, 0x46, 0xb3, 0x59, 0x98, 0x91, 0x85, 0x4a, 0xa7, 0x67, 0x70, 0xbd, + 0xca, 0x12, 0x9b, 0x6b, 0x00, 0xe5, 0x82, 0x3c, 0x37, 0x99, 0x8d, 0x6b, + 0x32, 0xaf, 0x08, 0x05, 0x36, 0xd6, 0xd7, 0xfb, 0x65, 0xce, 0x4e, 0x9f, + 0xd5, 0xd1, 0x3a, 0x42, 0xb0, 0x31, 0x62, 0xd0, 0xe2, 0xe5, 0x37, 0xc1, + 0x6d, 0x8a, 0x24, 0xa4, 0x19, 0xc2, 0x59, 0x3c, 0x44, 0xef, 0x96, 0xf6, + 0x35, 0x00, 0xe7, 0xe6, 0x2e, 0x82, 0xa5, 0x4a, 0x2f, 0xa2, 0xfe, 0x1f, + 0x53, 0x52, 0x31, 0x97, 0x47, 0x37, 0x15, 0x26, 0xa7, 0x8d, 0xd3, 0x21, + 0x6a, 0x98, 0x6d, 0xf1, 0xe6, 0x29, 0xf8, 0x9d, 0xaf, 0x5f, 0x3e, 0x3a, + 0xbc, 0x65, 0xb2, 0xd8, 0x41, 0xbc, 0xd6, 0x39, 0x3c, 0xc7, 0x2f, 0x2e, + 0xa3, 0x08, 0x9a, 0x21, 0x05, 0xe0, 0x4c, 0x06, 0x4d, 0x82, 0x68, 0x5d, + 0x4a, 0x9e, 0xca, 0xee, 0x3d, 0x28, 0x45, 0x0e, 0xff, 0xdd, 0xe6, 0x46, + 0xbc, 0xf8, 0x19, 0x5b, 0xda, 0xf4, 0x14, 0xd1, 0x4f, 0x02, 0x6e, 0xf6, + 0x01, 0x2d, 0xd6, 0xb6, 0x8b, 0xf5, 0x9c, 0x4e, 0xee, 0xe7, 0xc8, 0x10, + 0x05, 0xb6, 0x6d, 0x8d, 0x49, 0xe2, 0x04, 0xec, 0x4d, 0x61, 0x67, 0xc2, + 0x19, 0x27, 0xab, 0xe1, 0x0d, 0x29, 0xab, 0xf2, 0xa0, 0xf9, 0x69, 0x0d, + 0x81, 0x29, 0x4d, 0x40, 0x6d, 0xd7, 0xda, 0xb7, 0x9e, 0x0b, 0x90, 0x9c, + 0x9b, 0xeb, 0x59, 0x2c, 0xc9, 0xa4, 0x85, 0x95, 0xe2, 0xda, 0x2d, 0xe4, + 0x60, 0x9a, 0x64, 0x21, 0xbf, 0x1d, 0x57, 0x4d, 0x3e, 0xa0, 0x35, 0x0f, + 0xce, 0xd7, 0xe1, 0x44, 0x63, 0x9e, 0xe8, 0x8e, 0xbd, 0xc8, 0xc1, 0x65, + 0xe1, 0xd2, 0x09, 0x45, 0xd3, 0xbd, 0x13, 0xb2, 0x1f, 0x46, 0x32, 0xa6, + 0xcd, 0xa3, 0x44, 0x4c, 0x52, 0xa7, 0xe7, 0x54, 0xea, 0xe6, 0xa0, 0xce, + 0x02, 0x8b, 0x69, 0xdb, 0xde, 0xef, 0x5f, 0xcb, 0x6f, 0x6e, 0x0f, 0xf5, + 0x68, 0x42, 0xf4, 0x37, 0x08, 0x1f, 0x87, 0x55, 0xb4, 0xbc, 0x8a, 0x84, + 0x84, 0x10, 0xc6, 0x36, 0x3e, 0x8a, 0x6b, 0x4e, 0xd5, 0xc8, 0x64, 0xcb, + 0xb5, 0xc0, 0xfe, 0x99, 0x66, 0xaa, 0xb1, 0x50, 0xa7, 0x70, 0xd9, 0xa6, + 0x17, 0x2d, 0xd4, 0xad, 0xdf, 0xf2, 0x2f, 0xac, 0xae, 0xae, 0x12, 0xcf, + 0x5b, 0x09, 0xf2, 0x2d, 0xb4, 0x21, 0xc9, 0xd1, 0x58, 0xdb, 0x4e, 0x9b, + 0xe0, 0x32, 0x08, 0xe4, 0x4a, 0xe6, 0x9c, 0x61, 0x25, 0x90, 0x08, 0xf2, + 0xb1, 0xc1, 0x3c, 0x25, 0x0b, 0x5a, 0x03, 0x40, 0xdb, 0x06, 0x5f, 0xd2, + 0x60, 0x8e, 0x0a, 0x5b, 0xc8, 0xa2, 0xcd, 0xac, 0xb3, 0x54, 0x0b, 0xb6, + 0x05, 0x45, 0xd7, 0xa8, 0x8a, 0xfa, 0x8a, 0xba, 0x09, 0x53, 0x81, 0xd7, + 0xf5, 0x40, 0x61, 0x46, 0xf2, 0x22, 0xe4, 0x21, 0xb4, 0x26, 0x41, 0x10, + 0x25, 0x4d, 0x93, 0xc2, 0xa2, 0xae, 0xc3, 0xaa, 0xbe, 0x71, 0xa6, 0xaa, + 0xf7, 0xb1, 0xbf, 0x02, 0x22, 0xe9, 0xd7, 0xfb, 0xaa, 0x1d, 0x5d, 0xf5, + 0xe7, 0x5b, 0x63, 0xf2, 0xe6, 0x5c, 0xd6, 0x24, 0x6d, 0xb5, 0xca, 0xa3, + 0xe7, 0x57, 0x1a, 0xa5, 0xf7, 0x95, 0xc5, 0x92, 0x51, 0x65, 0x68, 0xc5, + 0xe6, 0x27, 0xa9, 0x94, 0x8a, 0xb6, 0xec, 0x0d, 0x9c, 0x51, 0xdf, 0x22, + 0xca, 0xdf, 0x5a, 0xf5, 0xe4, 0xad, 0xf4, 0xfc, 0x1f, 0x68, 0x9f, 0xdb, + 0x40, 0x4e, 0x6a, 0x1e, 0x5a, 0xd8, 0x6c, 0xd6, 0xef, 0xad, 0x64, 0xe7, + 0xcb, 0xfc, 0x44, 0xae, 0xa5, 0x62, 0x65, 0xad, 0x2e, 0x6a, 0x46, 0xcf, + 0x0d, 0xd0, 0x46, 0x5e, 0x87, 0x37, 0xb6, 0xab, 0x70, 0x52, 0xee, 0x5a, + 0xa7, 0x13, 0xa3, 0xc3, 0x4b, 0x62, 0xe7, 0x31, 0x10, 0xed, 0x39, 0x1c, + 0x4a, 0xe3, 0xc1, 0x57, 0xcb, 0x45, 0xe4, 0x89, 0xee, 0x0e, 0x24, 0xc1, + 0xa6, 0xac, 0xd4, 0x0e, 0x9b, 0xe0, 0x26, 0x28, 0x08, 0x2b, 0xe1, 0xc9, + 0x42, 0x37, 0xa3, 0x46, 0xcc, 0x5d, 0x89, 0x10, 0x1f, 0x23, 0xcb, 0x1c, + 0x67, 0xe2, 0x6d, 0xaa, 0x66, 0xa5, 0xf5, 0xea, 0x94, 0x2b, 0x8c, 0xf6, + 0xf4, 0xd3, 0xfb, 0x9c, 0x96, 0x0a, 0x87, 0xaf, 0x5c, 0x19, 0xb4, 0x3b, + 0x26, 0xb2, 0x48, 0x55, 0x97, 0xfd, 0x3a, 0xec, 0x06, 0xe4, 0x58, 0x99, + 0x9a, 0x26, 0x4f, 0xe0, 0x9c, 0x67, 0x09, 0x05, 0x5b, 0x72, 0x8e, 0xd6, + 0xe4, 0x4e, 0xe2, 0x63, 0xb0, 0x9c, 0xf6, 0x92, 0xd3, 0x05, 0x3f, 0xb0, + 0x04, 0x5f, 0x02, 0x97, 0xf4, 0x42, 0x1d, 0x3b, 0x5c, 0x44, 0x00, 0x95, + 0x8b, 0xf5, 0x06, 0x40, 0xbd, 0xb8, 0xf7, 0x4b, 0x4a, 0xfa, 0xf0, 0x04, + 0x04, 0xd0, 0xa5, 0xb9, 0x3a, 0xa0, 0x2d, 0x0c, 0x1b, 0xec, 0x5a, 0x14, + 0xc8, 0x1d, 0x93, 0x86, 0xfd, 0x16, 0x68, 0xf8, 0x16, 0x9b, 0xb4, 0x88, + 0x99, 0x63, 0x0e, 0xd5, 0x20, 0x07, 0x43, 0x28, 0x26, 0xba, 0xf9, 0x97, + 0xed, 0x6b, 0x40, 0xb8, 0x07, 0x73, 0x59, 0xd5, 0x55, 0xa8, 0x64, 0x14, + 0x1c, 0xc5, 0xc0, 0x1f, 0x8d, 0x09, 0xae, 0x9c, 0x66, 0xa1, 0x94, 0xca, + 0x14, 0x46, 0xed, 0x46, 0x46, 0x25, 0x63, 0x5b, 0x2b, 0x95, 0x85, 0x05, + 0xc2, 0xb7, 0xeb, 0x06, 0x30, 0x5a, 0xf6, 0x22, 0x4e, 0x47, 0x1e, 0x0e, + 0x0c, 0xad, 0xd5, 0x11, 0xa8, 0x6a, 0x89, 0xd5, 0x49, 0xd4, 0xfa, 0x43, + 0xb0, 0x32, 0xb0, 0xb9, 0xb3, 0xda, 0x3f, 0x4f, 0xac, 0x4c, 0xc1, 0xa7, + 0x9f, 0xc2, 0xc2, 0x04, 0x70, 0xa2, 0x08, 0x01, 0xeb, 0x10, 0xa4, 0xa5, + 0x4c, 0xcd, 0xb3, 0x81, 0x4e, 0xbe, 0x6c, 0x51, 0x44, 0xf8, 0x82, 0xbd, + 0x42, 0x34, 0xfb, 0xdb, 0xb4, 0x32, 0xd2, 0x93, 0x63, 0x5e, 0xf6, 0x07, + 0x6e, 0x2c, 0xc2, 0xcf, 0xf4, 0x5d, 0x84, 0xe9, 0x5e, 0x5c, 0xa8, 0x39, + 0x28, 0x4a, 0xed, 0x15, 0x1b, 0xea, 0xe6, 0xde, 0x85, 0x92, 0x86, 0xe7, + 0x83, 0x4b, 0x87, 0xf7, 0x23, 0x60, 0xe2, 0x22, 0xd3, 0x32, 0x16, 0x4e, + 0x2f, 0xde, 0x01, 0x8b, 0x48, 0xea, 0xcd, 0x8a, 0x8b, 0xbc, 0xc6, 0x64, + 0xb2, 0x67, 0x47, 0xf5, 0x98, 0xf8, 0xca, 0xf1, 0x83, 0x66, 0xd7, 0x9a, + 0xef, 0xca, 0x20, 0xc2, 0xec, 0x8c, 0x38, 0xb1, 0x37, 0x13, 0x93, 0x92, + 0xba, 0xa1, 0xee, 0x6a, 0x57, 0x43, 0xaa, 0xdc, 0xdf, 0xa4, 0x3f, 0xc6, + 0xb6, 0xd6, 0x68, 0x54, 0xab, 0x36, 0xe9, 0x0f, 0x6f, 0xd5, 0xa1, 0x1b, + 0xa1, 0x02, 0xc9, 0x41, 0xef, 0x4f, 0x86, 0xcc, 0x1a, 0xfa, 0xd2, 0xdd, + 0x87, 0x04, 0xe0, 0x27, 0x38, 0xcf, 0x91, 0x95, 0xb4, 0x02, 0x10, 0x1d, + 0xc3, 0xcc, 0x6f, 0xaf, 0xbc, 0x94, 0x64, 0x47, 0xbc, 0x37, 0xde, 0xe3, + 0x2e, 0x89, 0x03, 0xb6, 0xd3, 0x28, 0x4a, 0x5e, 0x6d, 0x1e, 0xc5, 0x1a, + 0xa5, 0x0c, 0x92, 0xf7, 0xe2, 0x19, 0xe7, 0x39, 0xf0, 0xf2, 0x49, 0x8b, + 0xe6, 0x99, 0xd8, 0x4b, 0x0d, 0x6e, 0x3f, 0x57, 0x89, 0x9e, 0x0d, 0x34, + 0x4b, 0x52, 0xcd, 0x18, 0x57, 0xc7, 0x8e, 0x48, 0x03, 0x65, 0xd4, 0xdd, + 0xdf, 0x04, 0xf5, 0x39, 0x5e, 0x97, 0xbc, 0xc0, 0xc5, 0x91, 0xe7, 0x9d, + 0xbe, 0x28, 0x4c, 0xe7, 0xf4, 0xa0, 0x34, 0xee, 0xba, 0xa7, 0x8d, 0x52, + 0xc4, 0x07, 0x14, 0xd2, 0x93, 0xb0, 0x1d, 0x61, 0x53, 0x23, 0xc3, 0xe1, + 0xd2, 0xbf, 0xe1, 0xd6, 0x1f, 0x27, 0xcc, 0x8c, 0xe7, 0x0b, 0x09, 0x4f, + 0xe6, 0xa2, 0x41, 0xf4, 0x31, 0xbe, 0x95, 0x17, 0xfb, 0x50, 0xa4, 0xa4, + 0x51, 0x3c, 0x6f, 0xf8, 0x6a, 0xba, 0xac, 0xe4, 0x1e, 0x38, 0x78, 0x18, + 0x58, 0x31, 0x69, 0xc9, 0x52, 0xb0, 0xfc, 0x71, 0x54, 0xad, 0xe2, 0x8e, + 0xa2, 0xf2, 0x8e, 0x58, 0x11, 0x1d, 0xcc, 0x30, 0x74, 0x55, 0x41, 0x02, + 0x9b, 0x2a, 0x2f, 0x17, 0x97, 0xe4, 0x1a, 0xd0, 0xd5, 0x8f, 0x60, 0x10, + 0xdb, 0xc2, 0x69, 0x94, 0x0d, 0xaf, 0x44, 0xd0, 0x95, 0x3d, 0x50, 0xf4, + 0x27, 0x5e, 0xdc, 0x56, 0x5f, 0xa7, 0x4c, 0x41, 0xe5, 0x9e, 0xc8, 0x31, + 0xb0, 0x8e, 0x3f, 0xde, 0xdc, 0x42, 0x24, 0x93, 0x98, 0xce, 0x69, 0x90, + 0x98, 0x73, 0x06, 0xb9, 0x8e, 0xa4, 0x8d, 0x97, 0xb1, 0x41, 0x33, 0x64, + 0x5a, 0xae, 0xe8, 0x2f, 0x5f, 0x99, 0x64, 0x3e, 0xea, 0xd4, 0xbe, 0xa2, + 0x52, 0x2d, 0xc7, 0x56, 0x46, 0xfb, 0x33, 0xd8, 0xde, 0xe6, 0x74, 0xf6, + 0x2e, 0x2a, 0x26, 0xa1, 0x07, 0xcd, 0x3c, 0xca, 0x39, 0x74, 0x61, 0x4a, + 0x53, 0xf7, 0x8c, 0xd7, 0x3c, 0x4f, 0x4f, 0xd9, 0x14, 0x74, 0x56, 0xa8, + 0x3b, 0x3b, 0xe4, 0xe5, 0x70, 0x2e, 0xda, 0xde, 0xcd, 0x65, 0x4f, 0x2e, + 0xb6, 0x76, 0x17, 0x59, 0x6a, 0xaf, 0x0a, 0x24, 0x8c, 0x99, 0x0b, 0x2a, + 0xac, 0x46, 0x74, 0x2c, 0x3b, 0x40, 0x20, 0xad, 0x30, 0xab, 0x63, 0x34, + 0x8f, 0x30, 0x22, 0x50, 0x5c, 0xf8, 0x73, 0x21, 0x3e, 0xeb, 0x16, 0x44, + 0x30, 0xb9, 0x59, 0x0f, 0xf0, 0xe5, 0xb6, 0x6a, 0xde, 0x32, 0x03, 0x28, + 0x3c, 0xc8, 0xc2, 0x8d, 0x6b, 0x72, 0x2f, 0x3e, 0x2b, 0x99, 0xc1, 0xa6, + 0xdf, 0x5a, 0x91, 0x2d, 0x40, 0x39, 0xb2, 0x24, 0x27, 0x25, 0x26, 0x51, + 0xbb, 0xb5, 0x6a, 0x47, 0x38, 0x94, 0x2c, 0x3e, 0xa0, 0x96, 0x19, 0xf7, + 0x99, 0x0c, 0x34, 0x41, 0xb9, 0x0d, 0xad, 0x37, 0xa6, 0x0c, 0x38, 0x9c, + 0xee, 0x03, 0x68, 0x62, 0x76, 0x64, 0x18, 0x63, 0x62, 0x10, 0xd6, 0x2a, + 0xca, 0xdb, 0x73, 0x9b, 0x93, 0x35, 0x29, 0xb0, 0xec, 0x6c, 0xa8, 0x1f, + 0xa6, 0xac, 0xf8, 0xd8, 0xfa, 0x98, 0xc3, 0x02, 0xf0, 0xf5, 0x66, 0x2c, + 0xfc, 0x75, 0xc7, 0xb0, 0x76, 0xfe, 0x0f, 0x92, 0x9b, 0xce, 0xc5, 0xe8, + 0x9a, 0x5e, 0x8f, 0x16, 0x26, 0x8c, 0x97, 0x20, 0x97, 0x36, 0xca, 0x56, + 0xed, 0xf2, 0x05, 0x53, 0xf7, 0x9f, 0x23, 0xbb, 0x1e, 0xdc, 0x5a, 0x94, + 0x0b, 0x1d, 0x0e, 0x55, 0xc7, 0x34, 0xff, 0xd9, 0xa3, 0x37, 0x69, 0x63, + 0x9f, 0x00, 0x0f, 0xa1, 0x5c, 0x1f, 0x50, 0x56, 0x25, 0xf0, 0xb8, 0x0e, + 0x92, 0x70, 0xcd, 0xa0, 0xca, 0x2a, 0xce, 0xa5, 0x21, 0xe7, 0x5b, 0x10, + 0x13, 0xd5, 0x9b, 0x9f, 0x60, 0x1b, 0x3f, 0x21, 0xa9, 0x27, 0xd9, 0xeb, + 0xdc, 0xe8, 0x05, 0x8e, 0x09, 0x27, 0x4b, 0x8b, 0xb1, 0x3b, 0x07, 0xb1, + 0xe9, 0x55, 0xc4, 0xab, 0x5d, 0x74, 0x11, 0xcf, 0x98, 0x5d, 0x47, 0x58, + 0x9d, 0x08, 0xec, 0x0b, 0x31, 0x69, 0x98, 0xad, 0xd0, 0x93, 0x09, 0xc7, + 0xcc, 0xe3, 0x64, 0x67, 0xef, 0xce, 0x98, 0xf3, 0xc2, 0x69, 0xd4, 0x47, + 0x4d, 0xf7, 0x1a, 0x10, 0xa9, 0x18, 0x35, 0x94, 0xc8, 0xe1, 0xd2, 0xf5, + 0xb5, 0xb4, 0x0b, 0xd7, 0x28, 0xa8, 0x97, 0x9b, 0xbf, 0x90, 0xe5, 0xc6, + 0xde, 0xf7, 0x4f, 0x33, 0xaf, 0x36, 0xe2, 0xa8, 0x65, 0x56, 0xdd, 0xe8, + 0x79, 0xae, 0x68, 0xc1, 0xf3, 0x5b, 0x26, 0x59, 0x53, 0x00, 0x43, 0x4c, + 0x3e, 0xf9, 0x24, 0xc4, 0x8d, 0x73, 0x00, 0x6c, 0xb2, 0x97, 0x56, 0x90, + 0x42, 0xde, 0xba, 0xd6, 0x3a, 0x6d, 0x39, 0x9d, 0xbe, 0x1c, 0xca, 0x24, + 0xbb, 0xba, 0x06, 0xf0, 0x59, 0x74, 0x32, 0x99, 0x1b, 0x02, 0xad, 0xc1, + 0x8b, 0xd4, 0x0b, 0xd8, 0xb7, 0xe7, 0xbd, 0xbd, 0x68, 0x56, 0xc1, 0x1e, + 0xda, 0xa4, 0xfe, 0x6b, 0x94, 0xf3, 0xda, 0x9a, 0x33, 0x01, 0x97, 0xb6, + 0x39, 0xc4, 0xe7, 0x57, 0xee, 0xcf, 0x0e, 0xce, 0x40, 0x7a, 0xd4, 0x4d, + 0x30, 0x6a, 0x57, 0x8f, 0x97, 0x92, 0x59, 0xeb, 0xf2, 0x18, 0x8c, 0x77, + 0xd9, 0x8f, 0x72, 0xff, 0xd5, 0xb2, 0x1f, 0x2e, 0xba, 0xb6, 0x46, 0x1a, + 0x33, 0xe0, 0x74, 0x2a, 0xd7, 0xdb, 0xc7, 0x07, 0x37, 0x2f, 0x55, 0xe2, + 0x70, 0x43, 0xc2, 0xbc, 0x33, 0x03, 0xc9, 0xd4, 0x4e, 0x6e, 0x3e, 0xc9, + 0x67, 0x55, 0xf8, 0x6d, 0x63, 0x9f, 0x6b, 0x3f, 0x5b, 0xc7, 0xe9, 0xb8, + 0x31, 0x04, 0x0b, 0x71, 0x15, 0xcd, 0x34, 0xe4, 0xaf, 0x74, 0x73, 0xea, + 0xbf, 0x20, 0x00, 0x75, 0xd7, 0xa7, 0xf7, 0x9c, 0xf5, 0xa1, 0x28, 0xc7, + 0xfe, 0x6b, 0xa2, 0x36, 0xdc, 0xd4, 0xf0, 0xd7, 0x42, 0x4e, 0xe4, 0x3f, + 0x00, 0x09, 0x3c, 0x5e, 0x1f, 0xc8, 0xfd, 0xb9, 0xd8, 0x90, 0xdb, 0xf4, + 0x41, 0x0b, 0xda, 0x68, 0xe1, 0xe4, 0xb9, 0xfb, 0x36, 0x37, 0xa9, 0x5f, + 0xc9, 0xb6, 0xb8, 0xa4, 0xda, 0x41, 0xaa, 0xab, 0xa8, 0xc8, 0xd3, 0xc6, + 0x6a, 0xbe, 0x03, 0x77, 0xcc, 0x1a, 0x8d, 0x0d, 0xe8, 0xcc, 0x58, 0x46, + 0x71, 0x33, 0x19, 0x62, 0xe5, 0xc4, 0xe3, 0x4a, 0x1d, 0xf7, 0x96, 0xd4, + 0x08, 0xe5, 0xa8, 0x18, 0x40, 0x2d, 0xc5, 0xd7, 0xa7, 0x31, 0xa2, 0x5f, + 0x60, 0xde, 0x21, 0xe5, 0xaa, 0x65, 0x93, 0x0d, 0xdb, 0x55, 0x54, 0x88, + 0xbd, 0x53, 0x8e, 0xe0, 0xa6, 0x23, 0xcd, 0x1d, 0xb7, 0xbd, 0x2a, 0x8c, + 0x0e, 0x67, 0x65, 0xab, 0xda, 0xe9, 0x3b, 0x12, 0xf6, 0x97, 0x4b, 0xe8, + 0x16, 0xf7, 0x09, 0xb6, 0x45, 0x97, 0x16, 0xec, 0xd9, 0xdc, 0x8d, 0x01, + 0xba, 0xb0, 0xb6, 0xdd, 0x59, 0x60, 0xbf, 0x92, 0x92, 0xc3, 0x21, 0x41, + 0x46, 0xcb, 0x5e, 0x6e, 0x99, 0x10, 0x41, 0x45, 0x9a, 0xb9, 0xe0, 0x6d, + 0x22, 0x68, 0xd3, 0x5a, 0xaa, 0x6e, 0xb4, 0xc6, 0x42, 0xa2, 0xad, 0xf1, + 0xf7, 0x0b, 0x3d, 0x29, 0x38, 0xa2, 0x11, 0xf8, 0x57, 0x25, 0xb8, 0x8f, + 0xbc, 0x65, 0xac, 0x0d, 0xf0, 0xb7, 0x5c, 0x95, 0xfb, 0x5d, 0xdb, 0x54, + 0x3d, 0x3e, 0xd6, 0x4f, 0x2a, 0xfe, 0x43, 0xfc, 0x1c, 0xca, 0xb9, 0xb3, + 0x95, 0x06, 0x90, 0xd9, 0x5d, 0x43, 0xc4, 0xe9, 0xbb, 0x17, 0xd6, 0xaf, + 0xf2, 0xb0, 0x24, 0x9d, 0x27, 0xdf, 0xaf, 0xf7, 0x6f, 0xd1, 0x4c, 0xbe, + 0xd0, 0x1d, 0x16, 0x3f, 0xf5, 0x23, 0xdb, 0x52, 0xc4, 0x3b, 0x99, 0x3d, + 0xd5, 0xdc, 0x0b, 0x54, 0x3b, 0xfd, 0x9d, 0x36, 0xf6, 0xd9, 0x63, 0xd4, + 0xc0, 0x8f, 0x9d, 0x00, 0xa6, 0x1e, 0x41, 0x72, 0x18, 0xa6, 0xc5, 0xd0, + 0xb6, 0xdd, 0x10, 0x61, 0x45, 0xe0, 0xdc, 0xcc, 0x92, 0xd3, 0x05, 0x54, + 0x26, 0x2c, 0xcf, 0x94, 0x67, 0xa5, 0xae, 0x62, 0x97, 0x4e, 0x10, 0x2b, + 0xf4, 0x65, 0x89, 0x21, 0x98, 0xad, 0x25, 0x6a, 0x01, 0xa9, 0x4f, 0x57, + 0x2b, 0xbe, 0x3b, 0xcc, 0x34, 0x89, 0xc3, 0xd2, 0xa0, 0xc5, 0x72, 0xd9, + 0x39, 0x3f, 0x45, 0x62, 0x73, 0xda, 0xf3, 0xe7, 0xbf, 0xfd, 0xfe, 0x5b, + 0xe0, 0xc5, 0x9f, 0xf9, 0xbe, 0x2b, 0x9a, 0xf7, 0xc2, 0xe9, 0x59, 0x73, + 0xc4, 0x0a, 0xfe, 0x73, 0x5b, 0x34, 0xb9, 0xfc, 0x45, 0xb7, 0x4d, 0x39, + 0xc2, 0xcd, 0x5f, 0x33, 0x91, 0xab, 0x48, 0x57, 0x0a, 0x27, 0xf3, 0xd4, + 0xf3, 0xb4, 0x57, 0x04, 0xeb, 0x8a, 0xb2, 0xd4, 0x06, 0x60, 0x09, 0x48, + 0x58, 0xf8, 0x1f, 0x06, 0x8c, 0x2d, 0x55, 0x2b, 0x8d, 0xbb, 0x37, 0xbb, + 0xc5, 0xa3, 0x05, 0x38, 0xf7, 0x47, 0x0a, 0xd9, 0xa8, 0x5a, 0x5b, 0x75, + 0x58, 0xa3, 0x35, 0x01, 0x1a, 0x5c, 0xe3, 0x97, 0xef, 0x04, 0xd9, 0x28, + 0x93, 0xc9, 0x59, 0xfc, 0xc1, 0x9b, 0x25, 0xe8, 0x44, 0x05, 0x17, 0xdc, + 0xe1, 0xb2, 0x06, 0xd6, 0x08, 0xe0, 0x00, 0xe0, 0x06, 0xaf, 0xb6, 0xf8, + 0x63, 0x6c, 0x54, 0x29, 0x7a, 0x25, 0x0c, 0xc4, 0xe7, 0x6c, 0x2b, 0xe8, + 0xe9, 0x06, 0xa4, 0x9e, 0xb0, 0x38, 0xd4, 0xf1, 0x46, 0xb3, 0x93, 0x54, + 0xa7, 0xa1, 0xcd, 0x65, 0x43, 0xe8, 0xc3, 0x03, 0x60, 0x9c, 0x39, 0x02, + 0xea, 0xc5, 0x0c, 0x96, 0xd2, 0x05, 0x0d, 0x1f, 0xc7, 0x04, 0xc4, 0xa3, + 0xc4, 0xc0, 0xa9, 0x0b, 0xc7, 0xa1, 0x3f, 0xdc, 0x35, 0x51, 0x4d, 0xc8, + 0xc2, 0x87, 0x99, 0x3c, 0x46, 0xb3, 0x4e, 0xc9, 0xbf, 0xb3, 0x34, 0x8b, + 0xb7, 0x6f, 0xe5, 0x95, 0x9b, 0x17, 0x20, 0x56, 0xa6, 0x64, 0x4c, 0x77, + 0xdc, 0x0e, 0x28, 0xc3, 0xef, 0xf4, 0x28, 0x47, 0xd4, 0x0c, 0x6a, 0xe1, + 0x75, 0x63, 0xc9, 0xae, 0xe9, 0x36, 0x57, 0xfd, 0x08, 0x2f, 0xb2, 0x0b, + 0x48, 0xd4, 0x04, 0x24, 0x2f, 0x17, 0x03, 0x9e, 0xfe, 0xfd, 0x67, 0x0e, + 0xbe, 0x66, 0xcf, 0x2c, 0xaa, 0x4f, 0x1c, 0x32, 0x2e, 0xa0, 0xfb, 0x55, + 0x40, 0x15, 0x5d, 0x51, 0xca, 0xbe, 0xff, 0xb2, 0xb2, 0x2b, 0x47, 0xee, + 0x37, 0xc8, 0x65, 0xad, 0xda, 0xb9, 0x3a, 0x75, 0x3a, 0x98, 0x1f, 0xcf, + 0xd7, 0x48, 0x56, 0xa2, 0xed, 0xb4, 0x46, 0x60, 0x30, 0x6a, 0x19, 0x5b, + 0x38, 0xc8, 0x0d, 0x3a, 0xc3, 0xe1, 0x34, 0x6e, 0x39, 0x5f, 0xf2, 0x4d, + 0x78, 0x02, 0xba, 0x3c, 0x71, 0x70, 0x75, 0x6c, 0xb0, 0xfa, 0x38, 0xe3, + 0x6b, 0x42, 0x1e, 0x23, 0xcd, 0xe6, 0xf8, 0xc5, 0x9c, 0x24, 0x3d, 0x98, + 0xa8, 0xbb, 0x4a, 0x07, 0x8c, 0xb6, 0xfa, 0x13, 0xd0, 0xfc, 0xc5, 0xdc, + 0xb2, 0xcd, 0x65, 0x59, 0xc2, 0x3a, 0x24, 0x47, 0x1c, 0x53, 0x92, 0x57, + 0x21, 0xf3, 0x26, 0x9b, 0xe9, 0xa5, 0x95, 0x9a, 0xd6, 0xa5, 0xe2, 0xda, + 0x0e, 0xb7, 0xab, 0x9e, 0xee, 0xe3, 0xef, 0x59, 0xd2, 0x88, 0x32, 0x1f, + 0x0d, 0xbf, 0xf2, 0xa4, 0x3b, 0xd7, 0xd5, 0xf2, 0xa4, 0xae, 0x65, 0xab, + 0xb3, 0x72, 0xf6, 0x3b, 0xe8, 0xc5, 0x2b, 0xad, 0xcc, 0xbe, 0x02, 0x95, + 0x63, 0x95, 0x2c, 0x22, 0x74, 0x3a, 0x1b, 0xd5, 0xd1, 0x1d, 0xf8, 0x69, + 0x03, 0x98, 0x70, 0x66, 0x43, 0xb5, 0x6d, 0xd0, 0x27, 0x6a, 0x1c, 0xfc, + 0xf9, 0xaf, 0x71, 0x9b, 0x8c, 0xcb, 0xf8, 0xbd, 0x18, 0xad, 0x5f, 0xb7, + 0xbc, 0xfb, 0xbd, 0xde, 0xb9, 0xdc, 0x54, 0x65, 0x3b, 0xaf, 0xa7, 0x92, + 0xbe, 0x62, 0xdc, 0x25, 0x50, 0x48, 0x78, 0xd4, 0xed, 0xed, 0x96, 0x3f, + 0x53, 0xc5, 0xb5, 0x5f, 0xac, 0xa7, 0x5c, 0x92, 0xd9, 0xfe, 0x3b, 0xcd, + 0xbb, 0x29, 0xa0, 0xe0, 0x1e, 0xb0, 0x92, 0xad, 0x6b, 0x45, 0x29, 0x59, + 0xff, 0x5d, 0x5a, 0xfe, 0x8f, 0x63, 0x86, 0x6d, 0xa4, 0x4a, 0x53, 0xc4, + 0x3e, 0x39, 0xbf, 0xe5, 0x20, 0xbc, 0xd1, 0xdf, 0x59, 0x9c, 0x3a, 0x72, + 0x3b, 0x8f, 0xb2, 0x40, 0xe5, 0x9e, 0xa5, 0x02, 0x35, 0xd0, 0x4d, 0x6f, + 0x7d, 0xd5, 0x4c, 0xde, 0x51, 0x0a, 0x9a, 0x57, 0x43, 0x43, 0xe5, 0x97, + 0x95, 0x4b, 0xb2, 0x6c, 0xaf, 0x92, 0x4e, 0x52, 0x06, 0x0b, 0x72, 0x60, + 0x9e, 0x5c, 0xa1, 0xe3, 0x9b, 0xb3, 0x8c, 0x32, 0xcd, 0xc1, 0x4a, 0x88, + 0xd6, 0x3d, 0xed, 0xe8, 0x42, 0x5d, 0x53, 0xdd, 0x00, 0x52, 0x26, 0x2e, + 0xd5, 0x41, 0xf2, 0xfc, 0x51, 0x40, 0x45, 0xe4, 0x00, 0xe3, 0x1c, 0xfb, + 0x32, 0x33, 0x22, 0xed, 0x15, 0x12, 0x9b, 0xc4, 0x89, 0xd0, 0x0e, 0x95, + 0xad, 0xfd, 0x04, 0x2e, 0xee, 0x73, 0x06, 0xee, 0x23, 0xe2, 0xd3, 0x3d, + 0x44, 0x62, 0x35, 0xdc, 0x18, 0x9d, 0xf4, 0x9d, 0x92, 0x00, 0x4e, 0x8e, + 0x4e, 0x24, 0xa1, 0x2c, 0xb2, 0xb2, 0x3f, 0xfc, 0xe4, 0x27, 0x43, 0x3b, + 0x59, 0xb4, 0x13, 0xff, 0x57, 0xdf, 0x3d, 0xee, 0x1a, 0xab, 0x8c, 0x51, + 0xd9, 0x96, 0x1f, 0x2b, 0x66, 0x67, 0x42, 0xb6, 0x91, 0xfe, 0x8f, 0x4d, + 0xa6, 0xd3, 0x3b, 0x51, 0x45, 0x35, 0xab, 0xe5, 0x6e, 0x07, 0xed, 0x24, + 0x95, 0x3d, 0x6a, 0x47, 0x3f, 0x4e, 0xe4, 0x13, 0x5f, 0xfc, 0x19, 0xe8, + 0x09, 0x4b, 0x3d, 0xdf, 0x4f, 0xb4, 0xb4, 0xc1, 0x74, 0x31, 0xff, 0x13, + 0x00, 0xaf, 0x07, 0x16, 0xb6, 0x57, 0xfe, 0x6a, 0x37, 0x05, 0x62, 0x01, + 0xa0, 0xfa, 0xe2, 0xe5, 0x57, 0xcb, 0xa4, 0x5a, 0x57, 0xee, 0xd1, 0x5f, + 0x14, 0x23, 0xbe, 0xef, 0x9b, 0x91, 0x0f, 0x97, 0xa8, 0xf2, 0x36, 0xf7, + 0xc3, 0xb6, 0xbe, 0xe5, 0x59, 0x2b, 0x3c, 0xb3, 0x5d, 0x9f, 0x1e, 0x3b, + 0xd3, 0xf7, 0xee, 0x2e, 0xc0, 0x73, 0x6f, 0x2e, 0xfd, 0xc7, 0x3f, 0xfd, + 0x9c, 0xac, 0xbd, 0xa1, 0x8e, 0xcc, 0x59, 0x41, 0xa4, 0x41, 0xd3, 0x39, + 0x28, 0x67, 0x96, 0x14, 0x42, 0xc3, 0x38, 0x96, 0x0d, 0xfc, 0x68, 0x3d, + 0x2e, 0x2f, 0x46, 0x24, 0x66, 0x0d, 0xa6, 0x72, 0xc7, 0x27, 0x66, 0x3c, + 0xad, 0x55, 0xae, 0xbd, 0x34, 0xb4, 0x3b, 0x60, 0x73, 0xa5, 0xaa, 0xd4, + 0x56, 0x0b, 0x61, 0xf5, 0x5c, 0x66, 0x2e, 0x9d, 0x33, 0xfe, 0xfe, 0x7b, + 0x21, 0xbc, 0x36, 0xec, 0x0f, 0x03, 0x28, 0xa4, 0xd6, 0x05, 0x21, 0x30, + 0xf8, 0x3c, 0xd9, 0x3b, 0xaf, 0x5d, 0x92, 0x25, 0xce, 0xac, 0x28, 0xe1, + 0xd1, 0x02, 0x3c, 0x49, 0xe6, 0xed, 0xb7, 0x0e, 0xe7, 0xe7, 0x1e, 0x56, + 0xbf, 0x5d, 0xfd, 0xed, 0xdb, 0x4d, 0x63, 0x03, 0x8c, 0x06, 0x30, 0xfa, + 0x62, 0x78, 0x3f, 0x6e, 0x63, 0x1e, 0xa6, 0x4b, 0x96, 0xe9, 0xe4, 0x2d, + 0x16, 0x51, 0xf2, 0xf1, 0xa7, 0x2a, 0xeb, 0x15, 0xb5, 0xb1, 0x04, 0x9a, + 0xde, 0x77, 0xde, 0xcf, 0xcc, 0x21, 0xd9, 0x30, 0xf1, 0xea, 0xb9, 0xb0, + 0x39, 0xe1, 0x6f, 0xc7, 0x0a, 0xbd, 0x64, 0x75, 0x59, 0xbf, 0x3c, 0xbf, + 0xd0, 0xdb, 0x00, 0xfa, 0x2e, 0x36, 0xcc, 0xb5, 0xd1, 0x20, 0x46, 0xb0, + 0xd7, 0xfc, 0xb1, 0x5b, 0x54, 0x9f, 0xe2, 0xe1, 0xd0, 0x18, 0xa3, 0x51, + 0x62, 0x24, 0x0f, 0xa1, 0xa1, 0x9a, 0x47, 0x33, 0xca, 0xb9, 0x26, 0xb6, + 0x0b, 0x46, 0xd4, 0xb5, 0xc6, 0xbb, 0x72, 0x1e, 0x60, 0xeb, 0xb4, 0x9d, + 0x9f, 0x09, 0x10, 0x12, 0xce, 0x68, 0xa3, 0xb6, 0x8c, 0xce, 0xd7, 0x26, + 0x55, 0xb5, 0x90, 0x08, 0x9f, 0xf2, 0xa8, 0xc0, 0x56, 0xd8, 0xf6, 0x29, + 0x60, 0xe0, 0x73, 0x52, 0x22, 0x6f, 0x35, 0x4e, 0xe7, 0xc5, 0xa3, 0x95, + 0xcd, 0xd0, 0x8e, 0xd3, 0x95, 0xe3, 0x03, 0x04, 0x00, 0x54, 0xeb, 0xef, + 0x27, 0x11, 0xef, 0x38, 0x56, 0x6f, 0xa0, 0xe5, 0x72, 0x2a, 0x97, 0x23, + 0x56, 0xe2, 0x93, 0x21, 0x3f, 0xe2, 0xd6, 0x12, 0xcd, 0x61, 0x50, 0x44, + 0xd3, 0xe3, 0x8d, 0x3f, 0x24, 0x90, 0x6c, 0x53, 0xad, 0x1c, 0xad, 0x03, + 0x0f, 0x89, 0x63, 0xf9, 0xb9, 0xbc, 0xe2, 0x56, 0xdd, 0x16, 0xcf, 0x2d, + 0xa1, 0xda, 0xf9, 0x3f, 0xec, 0xbf, 0xb1, 0xb6, 0xe1, 0xdf, 0x3f, 0x11, + 0x02, 0x76, 0xe9, 0xe2, 0x9f, 0xa2, 0x02, 0xce, 0x3e, 0xf9, 0xcf, 0x4f, + 0xd9, 0x5f, 0x72, 0x5d, 0x51, 0xa7, 0x1d, 0x98, 0xeb, 0x8e, 0x97, 0x98, + 0x39, 0x58, 0x52, 0x11, 0xed, 0x95, 0x3c, 0x94, 0xf0, 0x6c, 0xa2, 0x3e, + 0x5f, 0x5f, 0x05, 0x98, 0xf1, 0x73, 0xab, 0xc7, 0xa8, 0x4b, 0x92, 0x73, + 0xda, 0x59, 0x1d, 0x56, 0x11, 0xc2, 0x38, 0x43, 0xdb, 0x4b, 0xbe, 0x08, + 0xdd, 0xf2, 0x5d, 0x47, 0x26, 0xdc, 0x16, 0xf9, 0x62, 0xf8, 0x92, 0x19, + 0x5c, 0x6f, 0x2b, 0xe1, 0x15, 0x66, 0xfa, 0xdb, 0x3a, 0xe0, 0x92, 0x9c, + 0x70, 0x91, 0x3f, 0xb8, 0xb0, 0x01, 0xc1, 0x44, 0xf6, 0x62, 0x47, 0x37, + 0xe9, 0xd9, 0x4c, 0x0f, 0x99, 0x6a, 0xc4, 0x60, 0x26, 0x2f, 0xc6, 0x43, + 0x50, 0x62, 0xee, 0x44, 0x21, 0xbd, 0xad, 0x50, 0x2d, 0x58, 0x78, 0xea, + 0x5a, 0x5f, 0x5c, 0xf7, 0x28, 0xa9, 0xdf, 0x0e, 0xd3, 0x67, 0xdf, 0x1f, + 0x4c, 0xd3, 0xe9, 0x5e, 0x0f, 0xa3, 0xb7, 0x56, 0xa5, 0x4e, 0x5f, 0x2a, + 0xb6, 0x14, 0x5e, 0x2f, 0x16, 0x71, 0x48, 0x59, 0x77, 0x6b, 0xf9, 0x6c, + 0x79, 0xba, 0xc4, 0x26, 0x30, 0x44, 0x61, 0x62, 0x60, 0xef, 0x35, 0x95, + 0xe3, 0x77, 0xd5, 0xc8, 0x44, 0xa4, 0xf8, 0x95, 0xba, 0xd1, 0x73, 0x6f, + 0x92, 0xf2, 0xd3, 0x98, 0x4c, 0x8f, 0xe0, 0x2e, 0x27, 0xaa, 0x2f, 0x63, + 0x00, 0x00, 0x00, 0x00, 0x06, 0xff, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, + 0x08, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0x80, 0x04, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x26, 0xff, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, 0x28, 0x00, 0x00, 0x00, + 0x0e, 0xfe, 0xff, 0xff, 0xbb, 0xfd, 0xff, 0xff, 0xe1, 0x05, 0x00, 0x00, + 0x4b, 0x0f, 0x00, 0x00, 0x8e, 0x15, 0x00, 0x00, 0x7f, 0x04, 0x00, 0x00, + 0x02, 0x02, 0x00, 0x00, 0x53, 0xe6, 0xff, 0xff, 0xa6, 0x04, 0x00, 0x00, + 0xdf, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x66, 0xff, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, + 0x80, 0x00, 0x00, 0x00, 0x7f, 0xfd, 0xff, 0xff, 0x3e, 0xf8, 0xff, 0xff, + 0xae, 0x03, 0x00, 0x00, 0x5c, 0xfe, 0xff, 0xff, 0x82, 0xfa, 0xff, 0xff, + 0xbd, 0xf8, 0xff, 0xff, 0x04, 0xfe, 0xff, 0xff, 0x8c, 0xfe, 0xff, 0xff, + 0x9b, 0xf8, 0xff, 0xff, 0x51, 0x02, 0x00, 0x00, 0x19, 0xfe, 0xff, 0xff, + 0x54, 0xfe, 0xff, 0xff, 0x8f, 0xff, 0xff, 0xff, 0xe7, 0xfd, 0xff, 0xff, + 0xc2, 0x07, 0x00, 0x00, 0x36, 0x06, 0x00, 0x00, 0x57, 0xfd, 0xff, 0xff, + 0xa3, 0x03, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x00, 0x79, 0x03, 0x00, 0x00, + 0x9b, 0xf7, 0xff, 0xff, 0xc7, 0x04, 0x00, 0x00, 0xbf, 0x06, 0x00, 0x00, + 0x86, 0xfe, 0xff, 0xff, 0x20, 0xfb, 0xff, 0xff, 0x90, 0xfc, 0xff, 0xff, + 0x16, 0x00, 0x00, 0x00, 0x8e, 0xff, 0xff, 0xff, 0xa0, 0x03, 0x00, 0x00, + 0xc7, 0xff, 0xff, 0xff, 0x51, 0x01, 0x00, 0x00, 0x24, 0xf8, 0xff, 0xff, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x06, 0x00, 0x08, 0x00, 0x04, 0x00, 0x06, 0x00, 0x00, 0x00, + 0x04, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0xee, 0x01, 0x00, 0x00, + 0xda, 0x02, 0x00, 0x00, 0xa9, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, + 0xc4, 0xfe, 0xff, 0xff, 0xfa, 0xfc, 0xff, 0xff, 0xc0, 0xff, 0xff, 0xff, + 0x6a, 0xff, 0xff, 0xff, 0x92, 0x02, 0x00, 0x00, 0xa4, 0xff, 0xff, 0xff, + 0xfd, 0xfe, 0xff, 0xff, 0x4e, 0xfd, 0xff, 0xff, 0x87, 0x00, 0x00, 0x00, + 0x19, 0xfe, 0xff, 0xff, 0x17, 0xff, 0xff, 0xff, 0xa0, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0xf4, 0xf3, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x04, 0xf4, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x0f, 0x00, 0x00, 0x00, 0x4d, 0x4c, 0x49, 0x52, + 0x20, 0x43, 0x6f, 0x6e, 0x76, 0x65, 0x72, 0x74, 0x65, 0x64, 0x2e, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0x00, + 0x18, 0x00, 0x04, 0x00, 0x08, 0x00, 0x0c, 0x00, 0x10, 0x00, 0x14, 0x00, + 0x0e, 0x00, 0x00, 0x00, 0xf8, 0x01, 0x00, 0x00, 0xec, 0x01, 0x00, 0x00, + 0xe0, 0x01, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, + 0x04, 0x00, 0x00, 0x00, 0x6d, 0x61, 0x69, 0x6e, 0x00, 0x00, 0x00, 0x00, + 0x07, 0x00, 0x00, 0x00, 0xa4, 0x01, 0x00, 0x00, 0x4c, 0x01, 0x00, 0x00, + 0xfc, 0x00, 0x00, 0x00, 0xa8, 0x00, 0x00, 0x00, 0x70, 0x00, 0x00, 0x00, + 0x38, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x82, 0xfe, 0xff, 0xff, + 0x05, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x0e, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0x00, 0x18, 0x00, 0x08, 0x00, + 0x0c, 0x00, 0x10, 0x00, 0x07, 0x00, 0x14, 0x00, 0x0e, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x08, 0x03, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, + 0x0c, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0xc8, 0xf4, 0xff, 0xff, + 0x01, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, + 0x0b, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, + 0xe6, 0xfe, 0xff, 0xff, 0x02, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x0b, 0x00, 0x00, 0x00, + 0x02, 0x00, 0x00, 0x00, 0x0a, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x0e, 0x00, 0x1a, 0x00, 0x08, 0x00, 0x0c, 0x00, 0x10, 0x00, + 0x07, 0x00, 0x14, 0x00, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05, + 0x01, 0x00, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, + 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0x00, 0x18, 0x00, 0x07, 0x00, + 0x08, 0x00, 0x0c, 0x00, 0x10, 0x00, 0x14, 0x00, 0x0e, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x01, 0x02, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, + 0x02, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x0a, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, + 0xc2, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x24, 0x00, 0x00, 0x00, + 0x18, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0xb4, 0xff, 0xff, 0xff, + 0x00, 0x00, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, + 0x08, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x0e, 0x00, 0x14, 0x00, 0x00, 0x00, 0x08, 0x00, 0x0c, 0x00, + 0x07, 0x00, 0x10, 0x00, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, + 0x30, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0x0c, 0x00, 0x10, 0x00, 0x06, 0x00, 0x08, 0x00, 0x0c, 0x00, 0x07, 0x00, + 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, + 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0a, 0x00, 0x10, 0x00, 0x04, 0x00, + 0x08, 0x00, 0x0c, 0x00, 0x0a, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, + 0x10, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x0d, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x0e, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x0d, 0x00, 0x00, 0x00, 0x0f, 0x00, 0x00, 0x00, 0xb8, 0x0d, 0x00, 0x00, + 0x64, 0x0c, 0x00, 0x00, 0x64, 0x0a, 0x00, 0x00, 0xe8, 0x09, 0x00, 0x00, + 0x9c, 0x09, 0x00, 0x00, 0x20, 0x09, 0x00, 0x00, 0x6c, 0x07, 0x00, 0x00, + 0x78, 0x04, 0x00, 0x00, 0x74, 0x03, 0x00, 0x00, 0x68, 0x02, 0x00, 0x00, + 0xbc, 0x01, 0x00, 0x00, 0x28, 0x01, 0x00, 0x00, 0xa4, 0x00, 0x00, 0x00, + 0x54, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0xc8, 0xff, 0xff, 0xff, + 0x28, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, + 0x02, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0x0a, 0x00, 0x00, 0x00, + 0x08, 0x00, 0x00, 0x00, 0x49, 0x64, 0x65, 0x6e, 0x74, 0x69, 0x74, 0x79, + 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x0a, 0x00, 0x00, 0x00, 0x14, 0x00, 0x10, 0x00, 0x04, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0c, 0x00, + 0x14, 0x00, 0x00, 0x00, 0x34, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, + 0x04, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, + 0x10, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x0c, 0x00, 0x00, 0x00, 0x63, 0x6f, 0x6e, 0x76, 0x32, 0x64, 0x5f, 0x69, + 0x6e, 0x70, 0x75, 0x74, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x30, 0xf3, 0xff, 0xff, 0x00, 0x00, 0x00, 0x09, + 0x6c, 0x00, 0x00, 0x00, 0x0d, 0x00, 0x00, 0x00, 0x50, 0x00, 0x00, 0x00, + 0x14, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, + 0xff, 0xff, 0xff, 0xff, 0x0a, 0x00, 0x00, 0x00, 0x14, 0xf3, 0xff, 0xff, + 0x2c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, + 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x13, 0xc2, 0x47, 0x3b, + 0x01, 0x00, 0x00, 0x00, 0x8d, 0xf4, 0xad, 0x3e, 0x01, 0x00, 0x00, 0x00, + 0x15, 0x00, 0xe0, 0xbe, 0x0d, 0x00, 0x00, 0x00, 0x49, 0x64, 0x65, 0x6e, + 0x74, 0x69, 0x74, 0x79, 0x5f, 0x69, 0x6e, 0x74, 0x38, 0x00, 0x00, 0x00, + 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x0a, 0x00, 0x00, 0x00, + 0xb0, 0xf3, 0xff, 0xff, 0x00, 0x00, 0x00, 0x09, 0x7c, 0x00, 0x00, 0x00, + 0x0c, 0x00, 0x00, 0x00, 0x54, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, + 0x04, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, + 0x80, 0x04, 0x00, 0x00, 0x94, 0xf3, 0xff, 0xff, 0x30, 0x00, 0x00, 0x00, + 0x24, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x6c, 0x02, 0xa5, 0x3a, + 0x01, 0x00, 0x00, 0x00, 0x6a, 0x5d, 0xa4, 0x3e, 0x01, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x1a, 0x00, 0x00, 0x00, 0x73, 0x65, 0x71, 0x75, + 0x65, 0x6e, 0x74, 0x69, 0x61, 0x6c, 0x2f, 0x66, 0x6c, 0x61, 0x74, 0x74, + 0x65, 0x6e, 0x2f, 0x52, 0x65, 0x73, 0x68, 0x61, 0x70, 0x65, 0x00, 0x00, + 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x80, 0x04, 0x00, 0x00, + 0x40, 0xf4, 0xff, 0xff, 0x00, 0x00, 0x00, 0x09, 0x8c, 0x00, 0x00, 0x00, + 0x0b, 0x00, 0x00, 0x00, 0x5c, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, + 0x04, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, + 0x06, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0x2c, 0xf4, 0xff, 0xff, 0x30, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, + 0x18, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x6c, 0x02, 0xa5, 0x3a, 0x01, 0x00, 0x00, 0x00, + 0x6a, 0x5d, 0xa4, 0x3e, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x20, 0x00, 0x00, 0x00, 0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x74, 0x69, + 0x61, 0x6c, 0x2f, 0x6d, 0x61, 0x78, 0x5f, 0x70, 0x6f, 0x6f, 0x6c, 0x69, + 0x6e, 0x67, 0x32, 0x64, 0x2f, 0x4d, 0x61, 0x78, 0x50, 0x6f, 0x6f, 0x6c, + 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x06, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0xe8, 0xf4, 0xff, 0xff, 0x00, 0x00, 0x00, 0x09, 0xec, 0x00, 0x00, 0x00, + 0x0a, 0x00, 0x00, 0x00, 0x5c, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, + 0x04, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, + 0x0c, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0xd4, 0xf4, 0xff, 0xff, 0x30, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, + 0x18, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x6c, 0x02, 0xa5, 0x3a, 0x01, 0x00, 0x00, 0x00, + 0x6a, 0x5d, 0xa4, 0x3e, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x83, 0x00, 0x00, 0x00, 0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x74, 0x69, + 0x61, 0x6c, 0x2f, 0x63, 0x6f, 0x6e, 0x76, 0x32, 0x64, 0x5f, 0x31, 0x2f, + 0x52, 0x65, 0x6c, 0x75, 0x3b, 0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x74, + 0x69, 0x61, 0x6c, 0x2f, 0x63, 0x6f, 0x6e, 0x76, 0x32, 0x64, 0x5f, 0x31, + 0x2f, 0x42, 0x69, 0x61, 0x73, 0x41, 0x64, 0x64, 0x3b, 0x73, 0x65, 0x71, + 0x75, 0x65, 0x6e, 0x74, 0x69, 0x61, 0x6c, 0x2f, 0x63, 0x6f, 0x6e, 0x76, + 0x32, 0x64, 0x5f, 0x31, 0x2f, 0x43, 0x6f, 0x6e, 0x76, 0x32, 0x44, 0x3b, + 0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x74, 0x69, 0x61, 0x6c, 0x2f, 0x63, + 0x6f, 0x6e, 0x76, 0x32, 0x64, 0x5f, 0x31, 0x2f, 0x42, 0x69, 0x61, 0x73, + 0x41, 0x64, 0x64, 0x2f, 0x52, 0x65, 0x61, 0x64, 0x56, 0x61, 0x72, 0x69, + 0x61, 0x62, 0x6c, 0x65, 0x4f, 0x70, 0x2f, 0x72, 0x65, 0x73, 0x6f, 0x75, + 0x72, 0x63, 0x65, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x0c, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0xf0, 0xf5, 0xff, 0xff, 0x00, 0x00, 0x00, 0x09, 0xe4, 0x00, 0x00, 0x00, + 0x09, 0x00, 0x00, 0x00, 0x5c, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, + 0x04, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, + 0x0e, 0x00, 0x00, 0x00, 0x0e, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0xdc, 0xf5, 0xff, 0xff, 0x30, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, + 0x18, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x15, 0xa1, 0x10, 0x3b, 0x01, 0x00, 0x00, 0x00, + 0x74, 0x10, 0x10, 0x3f, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x7b, 0x00, 0x00, 0x00, 0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x74, 0x69, + 0x61, 0x6c, 0x2f, 0x63, 0x6f, 0x6e, 0x76, 0x32, 0x64, 0x2f, 0x52, 0x65, + 0x6c, 0x75, 0x3b, 0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x74, 0x69, 0x61, + 0x6c, 0x2f, 0x63, 0x6f, 0x6e, 0x76, 0x32, 0x64, 0x2f, 0x42, 0x69, 0x61, + 0x73, 0x41, 0x64, 0x64, 0x3b, 0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x74, + 0x69, 0x61, 0x6c, 0x2f, 0x63, 0x6f, 0x6e, 0x76, 0x32, 0x64, 0x2f, 0x43, + 0x6f, 0x6e, 0x76, 0x32, 0x44, 0x3b, 0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, + 0x74, 0x69, 0x61, 0x6c, 0x2f, 0x63, 0x6f, 0x6e, 0x76, 0x32, 0x64, 0x2f, + 0x42, 0x69, 0x61, 0x73, 0x41, 0x64, 0x64, 0x2f, 0x52, 0x65, 0x61, 0x64, + 0x56, 0x61, 0x72, 0x69, 0x61, 0x62, 0x6c, 0x65, 0x4f, 0x70, 0x2f, 0x72, + 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x00, 0x04, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x0e, 0x00, 0x00, 0x00, 0x0e, 0x00, 0x00, 0x00, + 0x10, 0x00, 0x00, 0x00, 0x3a, 0xf8, 0xff, 0xff, 0x00, 0x00, 0x00, 0x09, + 0xd4, 0x02, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0xac, 0x02, 0x00, 0x00, + 0x04, 0x00, 0x00, 0x00, 0xc4, 0xf6, 0xff, 0xff, 0x1c, 0x02, 0x00, 0x00, + 0x94, 0x01, 0x00, 0x00, 0x0c, 0x01, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, + 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0xb9, 0x37, 0x74, 0x3a, 0x8b, 0xfe, 0x77, 0x3a, 0x54, 0xc7, 0x75, 0x3a, + 0xc4, 0x11, 0x78, 0x3a, 0xb9, 0x90, 0x74, 0x3a, 0x3b, 0x97, 0x7b, 0x3a, + 0xe8, 0x57, 0x75, 0x3a, 0x0c, 0x0e, 0x74, 0x3a, 0x76, 0x8b, 0x79, 0x3a, + 0x2b, 0x7b, 0x6d, 0x3a, 0x17, 0xad, 0x71, 0x3a, 0xe4, 0x9b, 0x77, 0x3a, + 0x0b, 0xab, 0x7a, 0x3a, 0x9e, 0x12, 0x75, 0x3a, 0x8c, 0xcf, 0x79, 0x3a, + 0xa0, 0x5a, 0x79, 0x3a, 0x74, 0xc3, 0x78, 0x3a, 0x0e, 0xa9, 0x74, 0x3a, + 0x6b, 0xf8, 0x6f, 0x3a, 0x53, 0xeb, 0x72, 0x3a, 0xff, 0xe2, 0x73, 0x3a, + 0x3b, 0x38, 0x78, 0x3a, 0xed, 0x9e, 0x76, 0x3a, 0x77, 0xbc, 0x6d, 0x3a, + 0x4f, 0xf5, 0x71, 0x3a, 0x17, 0xc9, 0x74, 0x3a, 0x87, 0x84, 0x6b, 0x3a, + 0x4b, 0xc5, 0x78, 0x3a, 0xdd, 0x02, 0x75, 0x3a, 0x0e, 0xcf, 0x78, 0x3a, + 0x14, 0x40, 0x75, 0x3a, 0x2e, 0xca, 0x72, 0x3a, 0x20, 0x00, 0x00, 0x00, + 0x95, 0x2f, 0xef, 0x3d, 0x47, 0x1c, 0xf0, 0x3d, 0xc5, 0xdb, 0xf3, 0x3d, + 0x2e, 0x57, 0xe7, 0x3d, 0x98, 0xa7, 0xf2, 0x3d, 0x98, 0x89, 0xe4, 0x3d, + 0x38, 0x6d, 0xf3, 0x3d, 0x3f, 0x38, 0xe2, 0x3d, 0x91, 0x6f, 0xf0, 0x3d, + 0x35, 0xa0, 0xeb, 0x3d, 0x42, 0x3d, 0xeb, 0x3d, 0xed, 0x89, 0xe7, 0x3d, + 0xb5, 0xb5, 0xf8, 0x3d, 0x79, 0x28, 0xf3, 0x3d, 0xed, 0xdb, 0xf7, 0x3d, + 0xeb, 0x67, 0xf7, 0x3d, 0xed, 0xd1, 0xf6, 0x3d, 0xbc, 0xbf, 0xf2, 0x3d, + 0x7a, 0x18, 0xee, 0x3d, 0x7c, 0x05, 0xf1, 0x3d, 0x63, 0x69, 0xe8, 0x3d, + 0xbb, 0xc0, 0xf1, 0x3d, 0xaf, 0xb1, 0xf4, 0x3d, 0xfe, 0xe0, 0xeb, 0x3d, + 0xb6, 0x60, 0xec, 0x3d, 0x8c, 0x32, 0xf0, 0x3d, 0x7e, 0xad, 0xe9, 0x3d, + 0xc0, 0xd3, 0xf6, 0x3d, 0xd7, 0x18, 0xf3, 0x3d, 0x40, 0x53, 0xf0, 0x3d, + 0x2c, 0xdc, 0xf1, 0x3d, 0x9a, 0xe4, 0xf0, 0x3d, 0x20, 0x00, 0x00, 0x00, + 0x4a, 0x4f, 0xf2, 0xbd, 0x8e, 0x0e, 0xf6, 0xbd, 0x74, 0x46, 0xec, 0xbd, + 0xa0, 0x21, 0xf6, 0xbd, 0x8e, 0x27, 0xf0, 0xbd, 0x0d, 0xa0, 0xf9, 0xbd, + 0x0c, 0x97, 0xec, 0xbd, 0xf0, 0x25, 0xf2, 0xbd, 0x5f, 0x98, 0xf7, 0xbd, + 0x27, 0x8d, 0xe8, 0xbd, 0xbd, 0xc9, 0xef, 0xbd, 0xac, 0xac, 0xf5, 0xbd, + 0x5a, 0x94, 0xed, 0xbd, 0x5a, 0x64, 0xf1, 0xbd, 0x2a, 0xa7, 0xe9, 0xbd, + 0x3c, 0x93, 0xf3, 0xbd, 0xf8, 0x2b, 0xf3, 0xbd, 0xf6, 0x35, 0xed, 0xbd, + 0x94, 0xf4, 0xed, 0xbd, 0x70, 0x94, 0xe9, 0xbd, 0x39, 0xfb, 0xf1, 0xbd, + 0xcb, 0x47, 0xf6, 0xbd, 0x88, 0xb9, 0xe7, 0xbd, 0x49, 0x62, 0xe9, 0xbd, + 0x64, 0x11, 0xf0, 0xbd, 0x85, 0xdf, 0xf2, 0xbd, 0x5c, 0x61, 0xe8, 0xbd, + 0x22, 0x46, 0xf3, 0xbd, 0x5a, 0x8e, 0xf0, 0xbd, 0x70, 0xdd, 0xf6, 0xbd, + 0x94, 0x55, 0xf3, 0xbd, 0x57, 0xba, 0xf0, 0xbd, 0x1a, 0x00, 0x00, 0x00, + 0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x74, 0x69, 0x61, 0x6c, 0x2f, 0x63, + 0x6f, 0x6e, 0x76, 0x32, 0x64, 0x5f, 0x31, 0x2f, 0x43, 0x6f, 0x6e, 0x76, + 0x32, 0x44, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0x03, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0x2a, 0xfb, 0xff, 0xff, 0x00, 0x00, 0x00, 0x09, 0x94, 0x01, 0x00, 0x00, + 0x07, 0x00, 0x00, 0x00, 0x6c, 0x01, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, + 0xb4, 0xf9, 0xff, 0xff, 0x1c, 0x01, 0x00, 0x00, 0xd4, 0x00, 0x00, 0x00, + 0x8c, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0xe6, 0x69, 0xc5, 0x3a, 0xa0, 0x8d, 0xa8, 0x3a, 0xfe, 0x5c, 0xc1, 0x3a, + 0x84, 0x01, 0xcb, 0x3a, 0xa2, 0xc2, 0xb5, 0x3a, 0x42, 0x01, 0xd1, 0x3a, + 0xd7, 0x01, 0xcc, 0x3a, 0x20, 0xd8, 0xc7, 0x3a, 0x28, 0x80, 0xa4, 0x3a, + 0xd9, 0x25, 0xbe, 0x3a, 0x39, 0x6f, 0xc4, 0x3a, 0x59, 0x6c, 0xcb, 0x3a, + 0xb8, 0x0a, 0xc2, 0x3a, 0x73, 0x3f, 0xca, 0x3a, 0xb9, 0xed, 0xc5, 0x3a, + 0xe9, 0x9f, 0xc1, 0x3a, 0x10, 0x00, 0x00, 0x00, 0x5b, 0x2e, 0x2f, 0x3e, + 0x3e, 0xd9, 0x06, 0x3e, 0x44, 0xda, 0x3f, 0x3e, 0xd3, 0x09, 0x22, 0x3e, + 0x1d, 0x57, 0x34, 0x3e, 0xa4, 0xb6, 0x44, 0x3e, 0xd3, 0x69, 0x4a, 0x3e, + 0x70, 0x48, 0x46, 0x3e, 0x28, 0x37, 0x23, 0x3e, 0xe6, 0xdb, 0x06, 0x3e, + 0x3c, 0x1d, 0x34, 0x3e, 0x36, 0xba, 0x16, 0x3e, 0x24, 0xa4, 0x34, 0x3e, + 0xf4, 0xfb, 0x37, 0x3e, 0xd6, 0x7b, 0x8a, 0x3d, 0x00, 0x85, 0xe3, 0x3d, + 0x10, 0x00, 0x00, 0x00, 0x12, 0xdf, 0x43, 0xbe, 0x85, 0x3c, 0x27, 0xbe, + 0x54, 0xcd, 0x0d, 0xbe, 0x81, 0x6b, 0x49, 0xbe, 0x33, 0xb1, 0xe7, 0xbd, + 0x3f, 0x5f, 0x4f, 0xbe, 0xa1, 0x63, 0x3e, 0xbe, 0xbb, 0xa7, 0xea, 0xbd, + 0x2d, 0x8c, 0x0e, 0xbe, 0x8d, 0xa9, 0x3c, 0xbe, 0x5b, 0xe6, 0x42, 0xbe, + 0x80, 0xd5, 0x49, 0xbe, 0xa3, 0x86, 0x40, 0xbe, 0xf4, 0xaa, 0x48, 0xbe, + 0xde, 0x61, 0x44, 0xbe, 0xa9, 0x1c, 0x40, 0xbe, 0x18, 0x00, 0x00, 0x00, + 0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x74, 0x69, 0x61, 0x6c, 0x2f, 0x63, + 0x6f, 0x6e, 0x76, 0x32, 0x64, 0x2f, 0x43, 0x6f, 0x6e, 0x76, 0x32, 0x44, + 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0x03, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0xda, 0xfc, 0xff, 0xff, 0x00, 0x00, 0x00, 0x09, 0x64, 0x00, 0x00, 0x00, + 0x06, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, + 0x64, 0xfb, 0xff, 0xff, 0x2c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0x14, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x07, 0x72, 0x1e, 0x3a, 0x01, 0x00, 0x00, 0x00, 0x32, 0xe2, 0x9b, 0x3d, + 0x01, 0x00, 0x00, 0x00, 0x23, 0x35, 0x9d, 0xbd, 0x17, 0x00, 0x00, 0x00, + 0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x74, 0x69, 0x61, 0x6c, 0x2f, 0x64, + 0x65, 0x6e, 0x73, 0x65, 0x2f, 0x4d, 0x61, 0x74, 0x4d, 0x75, 0x6c, 0x00, + 0x02, 0x00, 0x00, 0x00, 0x0a, 0x00, 0x00, 0x00, 0x80, 0x04, 0x00, 0x00, + 0x52, 0xfd, 0xff, 0xff, 0x00, 0x00, 0x00, 0x02, 0x38, 0x00, 0x00, 0x00, + 0x05, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, + 0x04, 0x00, 0x04, 0x00, 0x04, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, + 0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x74, 0x69, 0x61, 0x6c, 0x2f, 0x66, + 0x6c, 0x61, 0x74, 0x74, 0x65, 0x6e, 0x2f, 0x43, 0x6f, 0x6e, 0x73, 0x74, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, + 0x9a, 0xfd, 0xff, 0xff, 0x00, 0x00, 0x00, 0x02, 0x68, 0x00, 0x00, 0x00, + 0x04, 0x00, 0x00, 0x00, 0x28, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, + 0x8c, 0xfd, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0xfc, 0x41, 0x4c, 0x35, 0x30, 0x00, 0x00, 0x00, + 0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x74, 0x69, 0x61, 0x6c, 0x2f, 0x64, + 0x65, 0x6e, 0x73, 0x65, 0x2f, 0x42, 0x69, 0x61, 0x73, 0x41, 0x64, 0x64, + 0x2f, 0x52, 0x65, 0x61, 0x64, 0x56, 0x61, 0x72, 0x69, 0x61, 0x62, 0x6c, + 0x65, 0x4f, 0x70, 0x2f, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x0a, 0x00, 0x00, 0x00, + 0x12, 0xfe, 0xff, 0xff, 0x00, 0x00, 0x00, 0x02, 0xdc, 0x01, 0x00, 0x00, + 0x03, 0x00, 0x00, 0x00, 0x9c, 0x01, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, + 0x04, 0xfe, 0xff, 0xff, 0x0c, 0x01, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, + 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0x03, 0xf9, 0x09, 0x36, 0x3a, 0x1b, 0x0c, 0x36, 0xc6, 0xda, 0x0a, 0x36, + 0x16, 0x26, 0x0c, 0x36, 0x4b, 0x2b, 0x0a, 0x36, 0x60, 0x23, 0x0e, 0x36, + 0xd3, 0x9b, 0x0a, 0x36, 0x78, 0xe1, 0x09, 0x36, 0x78, 0xfb, 0x0c, 0x36, + 0xb6, 0x2a, 0x06, 0x36, 0x6f, 0x89, 0x08, 0x36, 0x7e, 0xe3, 0x0b, 0x36, + 0xf0, 0x9d, 0x0d, 0x36, 0xae, 0x74, 0x0a, 0x36, 0xef, 0x21, 0x0d, 0x36, + 0xe0, 0xdf, 0x0c, 0x36, 0x79, 0x8a, 0x0c, 0x36, 0x0a, 0x39, 0x0a, 0x36, + 0xbb, 0x92, 0x07, 0x36, 0x39, 0x3d, 0x09, 0x36, 0x25, 0xc9, 0x09, 0x36, + 0xd1, 0x3b, 0x0c, 0x36, 0x93, 0x54, 0x0b, 0x36, 0x9a, 0x4f, 0x06, 0x36, + 0x3c, 0xb2, 0x08, 0x36, 0x23, 0x4b, 0x0a, 0x36, 0xbe, 0x0e, 0x05, 0x36, + 0x83, 0x8b, 0x0c, 0x36, 0xc7, 0x6b, 0x0a, 0x36, 0x07, 0x91, 0x0c, 0x36, + 0x5d, 0x8e, 0x0a, 0x36, 0x7f, 0x2a, 0x09, 0x36, 0x33, 0x00, 0x00, 0x00, + 0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x74, 0x69, 0x61, 0x6c, 0x2f, 0x63, + 0x6f, 0x6e, 0x76, 0x32, 0x64, 0x5f, 0x31, 0x2f, 0x42, 0x69, 0x61, 0x73, + 0x41, 0x64, 0x64, 0x2f, 0x52, 0x65, 0x61, 0x64, 0x56, 0x61, 0x72, 0x69, + 0x61, 0x62, 0x6c, 0x65, 0x4f, 0x70, 0x2f, 0x72, 0x65, 0x73, 0x6f, 0x75, + 0x72, 0x63, 0x65, 0x00, 0x01, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x0e, 0x00, 0x18, 0x00, 0x08, 0x00, 0x07, 0x00, 0x0c, 0x00, + 0x10, 0x00, 0x14, 0x00, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, + 0x2c, 0x01, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0xec, 0x00, 0x00, 0x00, + 0x10, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x04, 0x00, 0x08, 0x00, 0x0c, 0x00, 0x00, 0x00, 0x90, 0x00, 0x00, 0x00, + 0x04, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0xe1, 0x22, 0xc6, 0x36, 0x90, 0x2b, 0xa9, 0x36, 0x2d, 0x12, 0xc2, 0x36, + 0xbc, 0xbf, 0xcb, 0x36, 0xf2, 0x6c, 0xb6, 0x36, 0x19, 0xc5, 0xd1, 0x36, + 0xff, 0xc0, 0xcc, 0x36, 0x62, 0x93, 0xc8, 0x36, 0x4c, 0x1a, 0xa5, 0x36, + 0x05, 0xd8, 0xbe, 0x36, 0x49, 0x27, 0xc5, 0x36, 0xf5, 0x2a, 0xcc, 0x36, + 0x8a, 0xc0, 0xc2, 0x36, 0xf5, 0xfc, 0xca, 0x36, 0x2f, 0xa7, 0xc6, 0x36, + 0x57, 0x55, 0xc2, 0x36, 0x31, 0x00, 0x00, 0x00, 0x73, 0x65, 0x71, 0x75, + 0x65, 0x6e, 0x74, 0x69, 0x61, 0x6c, 0x2f, 0x63, 0x6f, 0x6e, 0x76, 0x32, + 0x64, 0x2f, 0x42, 0x69, 0x61, 0x73, 0x41, 0x64, 0x64, 0x2f, 0x52, 0x65, + 0x61, 0x64, 0x56, 0x61, 0x72, 0x69, 0x61, 0x62, 0x6c, 0x65, 0x4f, 0x70, + 0x2f, 0x72, 0x65, 0x73, 0x6f, 0x75, 0x72, 0x63, 0x65, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x14, 0x00, 0x1c, 0x00, + 0x08, 0x00, 0x07, 0x00, 0x0c, 0x00, 0x10, 0x00, 0x14, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x18, 0x00, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09, + 0x88, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x68, 0x00, 0x00, 0x00, + 0x28, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, + 0xff, 0xff, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x14, 0x00, 0x04, 0x00, 0x08, 0x00, + 0x0c, 0x00, 0x10, 0x00, 0x0c, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, + 0x24, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, + 0x01, 0x00, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xf0, 0x77, 0x80, 0x3b, + 0x01, 0x00, 0x00, 0x00, 0xf0, 0xee, 0x7f, 0x3f, 0x01, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x11, 0x00, 0x00, 0x00, 0x63, 0x6f, 0x6e, 0x76, + 0x32, 0x64, 0x5f, 0x69, 0x6e, 0x70, 0x75, 0x74, 0x5f, 0x69, 0x6e, 0x74, + 0x38, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x10, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, + 0x06, 0x00, 0x00, 0x00, 0x70, 0x00, 0x00, 0x00, 0x54, 0x00, 0x00, 0x00, + 0x40, 0x00, 0x00, 0x00, 0x28, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, + 0x04, 0x00, 0x00, 0x00, 0xca, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x06, + 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x08, 0x00, 0x07, 0x00, + 0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x72, 0xe6, 0xff, 0xff, 0xff, + 0x00, 0x00, 0x00, 0x09, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, + 0x06, 0x00, 0x05, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x16, 0x0a, 0x00, + 0x0e, 0x00, 0x07, 0x00, 0x00, 0x00, 0x08, 0x00, 0x0a, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x11, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0a, 0x00, + 0x0c, 0x00, 0x07, 0x00, 0x00, 0x00, 0x08, 0x00, 0x0a, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x03, 0x03, 0x00, 0x00, 0x00}; + +const unsigned int kTestConvModelDataSize = 21344; diff --git a/components/tflite_micro/tensorflow/lite/micro/testing/test_conv_model.h b/components/tflite_micro/tensorflow/lite/micro/testing/test_conv_model.h new file mode 100644 index 00000000..2103196e --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/testing/test_conv_model.h @@ -0,0 +1,23 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#ifndef TENSORFLOW_LITE_MICRO_TESTING_TEST_CONV_MODEL_H_ +#define TENSORFLOW_LITE_MICRO_TESTING_TEST_CONV_MODEL_H_ + +// See generate_test_models.py for updating the contents of this model: +extern const unsigned char kTestConvModelData[]; +extern const unsigned int kTestConvModelDataSize; + +#endif // TENSORFLOW_LITE_MICRO_TESTING_TEST_CONV_MODEL_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/testing/test_utils.cc b/components/tflite_micro/tensorflow/lite/micro/testing/test_utils.cc new file mode 100644 index 00000000..4d931bdd --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/testing/test_utils.cc @@ -0,0 +1,240 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +#include "tensorflow/lite/micro/testing/test_utils.h" + +#include "tensorflow/lite/micro/simple_memory_allocator.h" + +namespace tflite { +namespace testing { + +namespace { +// TODO(b/141330728): Refactor out of test_utils.cc +// The variables below (and the AllocatePersistentBuffer function) are only +// needed for the kernel tests and benchmarks, i.e. where we do not have an +// interpreter object, and the fully featured MicroAllocator. +// Currently, these need to be sufficient for all the kernel_tests. If that +// becomes problematic, we can investigate allowing the arena_size to be +// specified for each call to PopulatContext. +constexpr size_t kArenaSize = 10000; +uint8_t raw_arena_[kArenaSize]; +SimpleMemoryAllocator* simple_memory_allocator_ = nullptr; +constexpr size_t kBufferAlignment = 16; + +// We store the pointer to the ith scratch buffer to implement the Request/Get +// ScratchBuffer API for the tests. scratch_buffers_[i] will be the ith scratch +// buffer and will still be allocated from within raw_arena_. +constexpr int kNumScratchBuffers = 5; +uint8_t* scratch_buffers_[kNumScratchBuffers]; +int scratch_buffer_count_ = 0; + +// Note that the context parameter in this function is only needed to match the +// signature of TfLiteContext::AllocatePersistentBuffer and isn't needed in the +// implementation because we are assuming a single global +// simple_memory_allocator_ +void* AllocatePersistentBuffer(TfLiteContext* context, size_t bytes) { + TFLITE_DCHECK(simple_memory_allocator_ != nullptr); + return simple_memory_allocator_->AllocateFromTail(bytes, kBufferAlignment); +} + +TfLiteStatus RequestScratchBufferInArena(TfLiteContext* context, size_t bytes, + int* buffer_index) { + TFLITE_DCHECK(simple_memory_allocator_ != nullptr); + TFLITE_DCHECK(buffer_index != nullptr); + + if (scratch_buffer_count_ == kNumScratchBuffers) { + TF_LITE_REPORT_ERROR( + static_cast(context->impl_), + "Exceeded the maximum number of scratch tensors allowed (%d).", + kNumScratchBuffers); + return kTfLiteError; + } + + // For tests, we allocate scratch buffers from the tail and keep them around + // for the lifetime of model. This means that the arena size in the tests will + // be more than what we would have if the scratch buffers could share memory. + scratch_buffers_[scratch_buffer_count_] = + simple_memory_allocator_->AllocateFromTail(bytes, kBufferAlignment); + TFLITE_DCHECK(scratch_buffers_[scratch_buffer_count_] != nullptr); + + *buffer_index = scratch_buffer_count_++; + return kTfLiteOk; +} + +void* GetScratchBuffer(TfLiteContext* context, int buffer_index) { + TFLITE_DCHECK(scratch_buffer_count_ <= kNumScratchBuffers); + if (buffer_index >= scratch_buffer_count_) { + return nullptr; + } + return scratch_buffers_[buffer_index]; +} + +TfLiteTensor* GetTensor(const struct TfLiteContext* context, int subgraph_idx) { + // TODO(b/160894903): Return this value from temp allocated memory. + return &context->tensors[subgraph_idx]; +} + +} // namespace + +uint8_t F2Q(float value, float min, float max) { + int32_t result = ZeroPointFromMinMax(min, max) + + (value / ScaleFromMinMax(min, max)) + 0.5f; + if (result < std::numeric_limits::min()) { + result = std::numeric_limits::min(); + } + if (result > std::numeric_limits::max()) { + result = std::numeric_limits::max(); + } + return result; +} + +// Converts a float value into a signed eight-bit quantized value. +int8_t F2QS(float value, float min, float max) { + return F2Q(value, min, max) + std::numeric_limits::min(); +} + +int32_t F2Q32(float value, float scale) { + double quantized = static_cast(value / scale); + if (quantized > std::numeric_limits::max()) { + quantized = std::numeric_limits::max(); + } else if (quantized < std::numeric_limits::min()) { + quantized = std::numeric_limits::min(); + } + return static_cast(quantized); +} + +// TODO(b/141330728): Move this method elsewhere as part clean up. +void PopulateContext(TfLiteTensor* tensors, int tensors_size, + ErrorReporter* error_reporter, TfLiteContext* context) { + simple_memory_allocator_ = + SimpleMemoryAllocator::Create(error_reporter, raw_arena_, kArenaSize); + TFLITE_DCHECK(simple_memory_allocator_ != nullptr); + scratch_buffer_count_ = 0; + + context->tensors_size = tensors_size; + context->tensors = tensors; + context->impl_ = static_cast(error_reporter); + context->GetExecutionPlan = nullptr; + context->ResizeTensor = nullptr; + context->ReportError = ReportOpError; + context->AddTensors = nullptr; + context->GetNodeAndRegistration = nullptr; + context->ReplaceNodeSubsetsWithDelegateKernels = nullptr; + context->recommended_num_threads = 1; + context->GetExternalContext = nullptr; + context->SetExternalContext = nullptr; + + context->GetTensor = GetTensor; + context->GetEvalTensor = nullptr; + + context->AllocatePersistentBuffer = AllocatePersistentBuffer; + context->RequestScratchBufferInArena = RequestScratchBufferInArena; + context->GetScratchBuffer = GetScratchBuffer; + + for (int i = 0; i < tensors_size; ++i) { + if (context->tensors[i].is_variable) { + ResetVariableTensor(&context->tensors[i]); + } + } +} + +TfLiteTensor CreateQuantizedTensor(const uint8_t* data, TfLiteIntArray* dims, + float min, float max, bool is_variable) { + TfLiteTensor result; + result.type = kTfLiteUInt8; + result.data.uint8 = const_cast(data); + result.dims = dims; + result.params = {ScaleFromMinMax(min, max), + ZeroPointFromMinMax(min, max)}; + result.allocation_type = kTfLiteMemNone; + result.bytes = ElementCount(*dims) * sizeof(uint8_t); + result.is_variable = false; + return result; +} + +TfLiteTensor CreateQuantizedTensor(const int8_t* data, TfLiteIntArray* dims, + float min, float max, bool is_variable) { + TfLiteTensor result; + result.type = kTfLiteInt8; + result.data.int8 = const_cast(data); + result.dims = dims; + result.params = {ScaleFromMinMax(min, max), + ZeroPointFromMinMax(min, max)}; + result.allocation_type = kTfLiteMemNone; + result.bytes = ElementCount(*dims) * sizeof(int8_t); + result.is_variable = is_variable; + return result; +} + +TfLiteTensor CreateQuantizedTensor(float* data, uint8_t* quantized_data, + TfLiteIntArray* dims, bool is_variable) { + TfLiteTensor result; + SymmetricQuantize(data, dims, quantized_data, &result.params.scale); + result.data.uint8 = quantized_data; + result.type = kTfLiteUInt8; + result.dims = dims; + result.params.zero_point = 128; + result.allocation_type = kTfLiteMemNone; + result.bytes = ElementCount(*dims) * sizeof(uint8_t); + result.is_variable = is_variable; + return result; +} + +TfLiteTensor CreateQuantizedTensor(float* data, int8_t* quantized_data, + TfLiteIntArray* dims, bool is_variable) { + TfLiteTensor result; + SignedSymmetricQuantize(data, dims, quantized_data, &result.params.scale); + result.data.int8 = quantized_data; + result.type = kTfLiteInt8; + result.dims = dims; + result.params.zero_point = 0; + result.allocation_type = kTfLiteMemNone; + result.bytes = ElementCount(*dims) * sizeof(int8_t); + result.is_variable = is_variable; + return result; +} + +TfLiteTensor CreateQuantizedTensor(float* data, int16_t* quantized_data, + TfLiteIntArray* dims, bool is_variable) { + TfLiteTensor result; + SignedSymmetricQuantize(data, dims, quantized_data, &result.params.scale); + result.data.i16 = quantized_data; + result.type = kTfLiteInt16; + result.dims = dims; + result.params.zero_point = 0; + result.allocation_type = kTfLiteMemNone; + result.bytes = ElementCount(*dims) * sizeof(int16_t); + result.is_variable = is_variable; + return result; +} + +TfLiteTensor CreateQuantized32Tensor(const int32_t* data, TfLiteIntArray* dims, + float scale, bool is_variable) { + TfLiteTensor result; + result.type = kTfLiteInt32; + result.data.i32 = const_cast(data); + result.dims = dims; + // Quantized int32_t tensors always have a zero point of 0, since the range of + // int32_t values is large, and because zero point costs extra cycles during + // processing. + result.params = {scale, 0}; + result.allocation_type = kTfLiteMemNone; + result.bytes = ElementCount(*dims) * sizeof(int32_t); + result.is_variable = is_variable; + return result; +} + +} // namespace testing +} // namespace tflite diff --git a/components/tflite_micro/tensorflow/lite/micro/testing/test_utils.h b/components/tflite_micro/tensorflow/lite/micro/testing/test_utils.h new file mode 100644 index 00000000..e83ac806 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/testing/test_utils.h @@ -0,0 +1,116 @@ +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_MICRO_TESTING_TEST_UTILS_H_ +#define TENSORFLOW_LITE_MICRO_TESTING_TEST_UTILS_H_ + +#include +#include +#include + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/core/api/tensor_utils.h" +#include "tensorflow/lite/micro/micro_utils.h" +#include "tensorflow/lite/micro/test_helpers.h" +#include "tensorflow/lite/micro/testing/micro_test.h" + +namespace tflite { +namespace testing { + +// Note: These methods are deprecated, do not use. See b/141332970. + + +// Derives the quantization range max from scaling factor and zero point. +template +inline float MaxFromZeroPointScale(const int zero_point, const float scale) { + return (std::numeric_limits::max() - zero_point) * scale; +} + +// Derives the quantization range min from scaling factor and zero point. +template +inline float MinFromZeroPointScale(const int zero_point, const float scale) { + return (std::numeric_limits::min() - zero_point) * scale; +} + +// Derives the quantization scaling factor from a min and max range. +template +inline float ScaleFromMinMax(const float min, const float max) { + return (max - min) / + static_cast((std::numeric_limits::max() * 1.0) - + std::numeric_limits::min()); +} + +// Derives the quantization zero point from a min and max range. +template +inline int ZeroPointFromMinMax(const float min, const float max) { + return static_cast(std::numeric_limits::min()) + + static_cast(-min / ScaleFromMinMax(min, max) + 0.5f); +} + +// Converts a float value into an unsigned eight-bit quantized value. +uint8_t F2Q(float value, float min, float max); + +// Converts a float value into a signed eight-bit quantized value. +int8_t F2QS(const float value, const float min, const float max); + +// Converts a float value into a signed thirty-two-bit quantized value. Note +// that values close to max int and min int may see significant error due to +// a lack of floating point granularity for large values. +int32_t F2Q32(const float value, const float scale); + +// TODO(b/141330728): Move this method elsewhere as part clean up. +void PopulateContext(TfLiteTensor* tensors, int tensors_size, + ErrorReporter* error_reporter, TfLiteContext* context); + +TfLiteTensor CreateQuantizedTensor(const uint8_t* data, TfLiteIntArray* dims, + float min, float max, + bool is_variable = false); + +TfLiteTensor CreateQuantizedTensor(const int8_t* data, TfLiteIntArray* dims, + float min, float max, + bool is_variable = false); + +TfLiteTensor CreateQuantizedTensor(float* data, uint8_t* quantized_data, + TfLiteIntArray* dims, + bool is_variable = false); + +TfLiteTensor CreateQuantizedTensor(float* data, int8_t* quantized_data, + TfLiteIntArray* dims, + bool is_variable = false); + +TfLiteTensor CreateQuantizedTensor(float* data, int16_t* quantized_data, + TfLiteIntArray* dims, + bool is_variable = false); + +TfLiteTensor CreateQuantized32Tensor(const int32_t* data, TfLiteIntArray* dims, + float scale, bool is_variable = false); + +template +inline TfLiteTensor CreateTensor(const input_type* data, TfLiteIntArray* dims, + bool is_variable = false) { + TfLiteTensor result; + result.type = tensor_input_type; + result.data.raw = reinterpret_cast(const_cast(data)); + result.dims = dims; + result.allocation_type = kTfLiteMemNone; + result.bytes = ElementCount(*dims) * sizeof(input_type); + result.is_variable = is_variable; + return result; +} + +} // namespace testing +} // namespace tflite + +#endif // TENSORFLOW_LITE_MICRO_TESTING_TEST_UTILS_H_ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/DSP/Include/arm_common_tables.h b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/DSP/Include/arm_common_tables.h new file mode 100644 index 00000000..e82e62d2 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/DSP/Include/arm_common_tables.h @@ -0,0 +1,528 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_common_tables.h + * Description: Extern declaration for common tables + * + * $Date: 27. January 2017 + * $Revision: V.1.5.1 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef _ARM_COMMON_TABLES_H +#define _ARM_COMMON_TABLES_H + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES) + /* Double Precision Float CFFT twiddles */ + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREV_1024) + extern const uint16_t armBitRevTable[1024]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_16) + extern const uint64_t twiddleCoefF64_16[32]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_32) + extern const uint64_t twiddleCoefF64_32[64]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_64) + extern const uint64_t twiddleCoefF64_64[128]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_128) + extern const uint64_t twiddleCoefF64_128[256]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_256) + extern const uint64_t twiddleCoefF64_256[512]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_512) + extern const uint64_t twiddleCoefF64_512[1024]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_1024) + extern const uint64_t twiddleCoefF64_1024[2048]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_2048) + extern const uint64_t twiddleCoefF64_2048[4096]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F64_4096) + extern const uint64_t twiddleCoefF64_4096[8192]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_16) + extern const float32_t twiddleCoef_16[32]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_32) + extern const float32_t twiddleCoef_32[64]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_64) + extern const float32_t twiddleCoef_64[128]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_128) + extern const float32_t twiddleCoef_128[256]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_256) + extern const float32_t twiddleCoef_256[512]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_512) + extern const float32_t twiddleCoef_512[1024]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_1024) + extern const float32_t twiddleCoef_1024[2048]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_2048) + extern const float32_t twiddleCoef_2048[4096]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F32_4096) + extern const float32_t twiddleCoef_4096[8192]; + #define twiddleCoef twiddleCoef_4096 + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + /* Q31 */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_16) + extern const q31_t twiddleCoef_16_q31[24]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_32) + extern const q31_t twiddleCoef_32_q31[48]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_64) + extern const q31_t twiddleCoef_64_q31[96]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_128) + extern const q31_t twiddleCoef_128_q31[192]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_256) + extern const q31_t twiddleCoef_256_q31[384]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_512) + extern const q31_t twiddleCoef_512_q31[768]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_1024) + extern const q31_t twiddleCoef_1024_q31[1536]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_2048) + extern const q31_t twiddleCoef_2048_q31[3072]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q31_4096) + extern const q31_t twiddleCoef_4096_q31[6144]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_16) + extern const q15_t twiddleCoef_16_q15[24]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_32) + extern const q15_t twiddleCoef_32_q15[48]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_64) + extern const q15_t twiddleCoef_64_q15[96]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_128) + extern const q15_t twiddleCoef_128_q15[192]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_256) + extern const q15_t twiddleCoef_256_q15[384]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_512) + extern const q15_t twiddleCoef_512_q15[768]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_1024) + extern const q15_t twiddleCoef_1024_q15[1536]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_2048) + extern const q15_t twiddleCoef_2048_q15[3072]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_Q15_4096) + extern const q15_t twiddleCoef_4096_q15[6144]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + /* Double Precision Float RFFT twiddles */ + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_32) + extern const uint64_t twiddleCoefF64_rfft_32[32]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_64) + extern const uint64_t twiddleCoefF64_rfft_64[64]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_128) + extern const uint64_t twiddleCoefF64_rfft_128[128]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_256) + extern const uint64_t twiddleCoefF64_rfft_256[256]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_512) + extern const uint64_t twiddleCoefF64_rfft_512[512]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_1024) + extern const uint64_t twiddleCoefF64_rfft_1024[1024]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_2048) + extern const uint64_t twiddleCoefF64_rfft_2048[2048]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_4096) + extern const uint64_t twiddleCoefF64_rfft_4096[4096]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_32) + extern const float32_t twiddleCoef_rfft_32[32]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_64) + extern const float32_t twiddleCoef_rfft_64[64]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_128) + extern const float32_t twiddleCoef_rfft_128[128]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_256) + extern const float32_t twiddleCoef_rfft_256[256]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_512) + extern const float32_t twiddleCoef_rfft_512[512]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_1024) + extern const float32_t twiddleCoef_rfft_1024[1024]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_2048) + extern const float32_t twiddleCoef_rfft_2048[2048]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F32_4096) + extern const float32_t twiddleCoef_rfft_4096[4096]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + + /* Double precision floating-point bit reversal tables */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_16) + #define ARMBITREVINDEXTABLEF64_16_TABLE_LENGTH ((uint16_t)12) + extern const uint16_t armBitRevIndexTableF64_16[ARMBITREVINDEXTABLEF64_16_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_32) + #define ARMBITREVINDEXTABLEF64_32_TABLE_LENGTH ((uint16_t)24) + extern const uint16_t armBitRevIndexTableF64_32[ARMBITREVINDEXTABLEF64_32_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_64) + #define ARMBITREVINDEXTABLEF64_64_TABLE_LENGTH ((uint16_t)56) + extern const uint16_t armBitRevIndexTableF64_64[ARMBITREVINDEXTABLEF64_64_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_128) + #define ARMBITREVINDEXTABLEF64_128_TABLE_LENGTH ((uint16_t)112) + extern const uint16_t armBitRevIndexTableF64_128[ARMBITREVINDEXTABLEF64_128_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_256) + #define ARMBITREVINDEXTABLEF64_256_TABLE_LENGTH ((uint16_t)240) + extern const uint16_t armBitRevIndexTableF64_256[ARMBITREVINDEXTABLEF64_256_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_512) + #define ARMBITREVINDEXTABLEF64_512_TABLE_LENGTH ((uint16_t)480) + extern const uint16_t armBitRevIndexTableF64_512[ARMBITREVINDEXTABLEF64_512_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_1024) + #define ARMBITREVINDEXTABLEF64_1024_TABLE_LENGTH ((uint16_t)992) + extern const uint16_t armBitRevIndexTableF64_1024[ARMBITREVINDEXTABLEF64_1024_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_2048) + #define ARMBITREVINDEXTABLEF64_2048_TABLE_LENGTH ((uint16_t)1984) + extern const uint16_t armBitRevIndexTableF64_2048[ARMBITREVINDEXTABLEF64_2048_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT64_4096) + #define ARMBITREVINDEXTABLEF64_4096_TABLE_LENGTH ((uint16_t)4032) + extern const uint16_t armBitRevIndexTableF64_4096[ARMBITREVINDEXTABLEF64_4096_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + /* floating-point bit reversal tables */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_16) + #define ARMBITREVINDEXTABLE_16_TABLE_LENGTH ((uint16_t)20) + extern const uint16_t armBitRevIndexTable16[ARMBITREVINDEXTABLE_16_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_32) + #define ARMBITREVINDEXTABLE_32_TABLE_LENGTH ((uint16_t)48) + extern const uint16_t armBitRevIndexTable32[ARMBITREVINDEXTABLE_32_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_64) + #define ARMBITREVINDEXTABLE_64_TABLE_LENGTH ((uint16_t)56) + extern const uint16_t armBitRevIndexTable64[ARMBITREVINDEXTABLE_64_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_128) + #define ARMBITREVINDEXTABLE_128_TABLE_LENGTH ((uint16_t)208) + extern const uint16_t armBitRevIndexTable128[ARMBITREVINDEXTABLE_128_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_256) + #define ARMBITREVINDEXTABLE_256_TABLE_LENGTH ((uint16_t)440) + extern const uint16_t armBitRevIndexTable256[ARMBITREVINDEXTABLE_256_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_512) + #define ARMBITREVINDEXTABLE_512_TABLE_LENGTH ((uint16_t)448) + extern const uint16_t armBitRevIndexTable512[ARMBITREVINDEXTABLE_512_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_1024) + #define ARMBITREVINDEXTABLE_1024_TABLE_LENGTH ((uint16_t)1800) + extern const uint16_t armBitRevIndexTable1024[ARMBITREVINDEXTABLE_1024_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_2048) + #define ARMBITREVINDEXTABLE_2048_TABLE_LENGTH ((uint16_t)3808) + extern const uint16_t armBitRevIndexTable2048[ARMBITREVINDEXTABLE_2048_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FLT_4096) + #define ARMBITREVINDEXTABLE_4096_TABLE_LENGTH ((uint16_t)4032) + extern const uint16_t armBitRevIndexTable4096[ARMBITREVINDEXTABLE_4096_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + + /* fixed-point bit reversal tables */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_16) + #define ARMBITREVINDEXTABLE_FIXED_16_TABLE_LENGTH ((uint16_t)12) + extern const uint16_t armBitRevIndexTable_fixed_16[ARMBITREVINDEXTABLE_FIXED_16_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_32) + #define ARMBITREVINDEXTABLE_FIXED_32_TABLE_LENGTH ((uint16_t)24) + extern const uint16_t armBitRevIndexTable_fixed_32[ARMBITREVINDEXTABLE_FIXED_32_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_64) + #define ARMBITREVINDEXTABLE_FIXED_64_TABLE_LENGTH ((uint16_t)56) + extern const uint16_t armBitRevIndexTable_fixed_64[ARMBITREVINDEXTABLE_FIXED_64_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_128) + #define ARMBITREVINDEXTABLE_FIXED_128_TABLE_LENGTH ((uint16_t)112) + extern const uint16_t armBitRevIndexTable_fixed_128[ARMBITREVINDEXTABLE_FIXED_128_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_256) + #define ARMBITREVINDEXTABLE_FIXED_256_TABLE_LENGTH ((uint16_t)240) + extern const uint16_t armBitRevIndexTable_fixed_256[ARMBITREVINDEXTABLE_FIXED_256_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_512) + #define ARMBITREVINDEXTABLE_FIXED_512_TABLE_LENGTH ((uint16_t)480) + extern const uint16_t armBitRevIndexTable_fixed_512[ARMBITREVINDEXTABLE_FIXED_512_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_1024) + #define ARMBITREVINDEXTABLE_FIXED_1024_TABLE_LENGTH ((uint16_t)992) + extern const uint16_t armBitRevIndexTable_fixed_1024[ARMBITREVINDEXTABLE_FIXED_1024_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_2048) + #define ARMBITREVINDEXTABLE_FIXED_2048_TABLE_LENGTH ((uint16_t)1984) + extern const uint16_t armBitRevIndexTable_fixed_2048[ARMBITREVINDEXTABLE_FIXED_2048_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_BITREVIDX_FXT_4096) + #define ARMBITREVINDEXTABLE_FIXED_4096_TABLE_LENGTH ((uint16_t)4032) + extern const uint16_t armBitRevIndexTable_fixed_4096[ARMBITREVINDEXTABLE_FIXED_4096_TABLE_LENGTH]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_REALCOEF_F32) + extern const float32_t realCoefA[8192]; + extern const float32_t realCoefB[8192]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_REALCOEF_Q31) + extern const q31_t realCoefAQ31[8192]; + extern const q31_t realCoefBQ31[8192]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_REALCOEF_Q15) + extern const q15_t realCoefAQ15[8192]; + extern const q15_t realCoefBQ15[8192]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_F32_128) + extern const float32_t Weights_128[256]; + extern const float32_t cos_factors_128[128]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_F32_512) + extern const float32_t Weights_512[1024]; + extern const float32_t cos_factors_512[512]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_F32_2048) + extern const float32_t Weights_2048[4096]; + extern const float32_t cos_factors_2048[2048]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_F32_8192) + extern const float32_t Weights_8192[16384]; + extern const float32_t cos_factors_8192[8192]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q15_128) + extern const q15_t WeightsQ15_128[256]; + extern const q15_t cos_factorsQ15_128[128]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q15_512) + extern const q15_t WeightsQ15_512[1024]; + extern const q15_t cos_factorsQ15_512[512]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q15_2048) + extern const q15_t WeightsQ15_2048[4096]; + extern const q15_t cos_factorsQ15_2048[2048]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q15_8192) + extern const q15_t WeightsQ15_8192[16384]; + extern const q15_t cos_factorsQ15_8192[8192]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q31_128) + extern const q31_t WeightsQ31_128[256]; + extern const q31_t cos_factorsQ31_128[128]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q31_512) + extern const q31_t WeightsQ31_512[1024]; + extern const q31_t cos_factorsQ31_512[512]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q31_2048) + extern const q31_t WeightsQ31_2048[4096]; + extern const q31_t cos_factorsQ31_2048[2048]; + #endif + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_DCT4_Q31_8192) + extern const q31_t WeightsQ31_8192[16384]; + extern const q31_t cos_factorsQ31_8192[8192]; + #endif + +#endif /* if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_TABLES) */ + +#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FAST_ALLOW_TABLES) + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_RECIP_Q15) + extern const q15_t armRecipTableQ15[64]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_RECIP_Q31) + extern const q31_t armRecipTableQ31[64]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */ + + /* Tables for Fast Math Sine and Cosine */ + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_SIN_F32) + extern const float32_t sinTable_f32[FAST_MATH_TABLE_SIZE + 1]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_SIN_Q31) + extern const q31_t sinTable_q31[FAST_MATH_TABLE_SIZE + 1]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */ + + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_SIN_Q15) + extern const q15_t sinTable_q15[FAST_MATH_TABLE_SIZE + 1]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */ + + #if defined(ARM_MATH_MVEI) + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_FAST_SQRT_Q31_MVE) + extern const q31_t sqrtTable_Q31[256]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */ + #endif + + #if defined(ARM_MATH_MVEI) + #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_FAST_SQRT_Q15_MVE) + extern const q15_t sqrtTable_Q15[256]; + #endif /* !defined(ARM_DSP_CONFIG_TABLES) defined(ARM_ALL_FAST_TABLES) */ + #endif + +#endif /* if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FAST_TABLES) */ + +#if (defined(ARM_MATH_MVEF) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE) + extern const float32_t exp_tab[8]; + extern const float32_t __logf_lut_f32[8]; +#endif /* (defined(ARM_MATH_MVEF) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE) */ + +#if (defined(ARM_MATH_MVEI) || defined(ARM_MATH_HELIUM)) +extern const unsigned char hwLUT[256]; +#endif /* (defined(ARM_MATH_MVEI) || defined(ARM_MATH_HELIUM)) */ + +#ifdef __cplusplus +} +#endif + +#endif /* ARM_COMMON_TABLES_H */ + diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/DSP/Include/arm_math.h b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/DSP/Include/arm_math.h new file mode 100644 index 00000000..a5eb4ff1 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/DSP/Include/arm_math.h @@ -0,0 +1,8955 @@ +/****************************************************************************** + * @file arm_math.h + * @brief Public header file for CMSIS DSP Library + * @version V1.7.0 + * @date 18. March 2019 + ******************************************************************************/ +/* + * Copyright (c) 2010-2019 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/** + \mainpage CMSIS DSP Software Library + * + * \section intro Introduction + * + * This user manual describes the CMSIS DSP software library, + * a suite of common signal processing functions for use on Cortex-M and Cortex-A processor + * based devices. + * + * The library is divided into a number of functions each covering a specific category: + * - Basic math functions + * - Fast math functions + * - Complex math functions + * - Filtering functions + * - Matrix functions + * - Transform functions + * - Motor control functions + * - Statistical functions + * - Support functions + * - Interpolation functions + * - Support Vector Machine functions (SVM) + * - Bayes classifier functions + * - Distance functions + * + * The library has generally separate functions for operating on 8-bit integers, 16-bit integers, + * 32-bit integer and 32-bit floating-point values. + * + * \section using Using the Library + * + * The library installer contains prebuilt versions of the libraries in the Lib folder. + * + * Here is the list of pre-built libraries : + * - arm_cortexM7lfdp_math.lib (Cortex-M7, Little endian, Double Precision Floating Point Unit) + * - arm_cortexM7bfdp_math.lib (Cortex-M7, Big endian, Double Precision Floating Point Unit) + * - arm_cortexM7lfsp_math.lib (Cortex-M7, Little endian, Single Precision Floating Point Unit) + * - arm_cortexM7bfsp_math.lib (Cortex-M7, Big endian and Single Precision Floating Point Unit on) + * - arm_cortexM7l_math.lib (Cortex-M7, Little endian) + * - arm_cortexM7b_math.lib (Cortex-M7, Big endian) + * - arm_cortexM4lf_math.lib (Cortex-M4, Little endian, Floating Point Unit) + * - arm_cortexM4bf_math.lib (Cortex-M4, Big endian, Floating Point Unit) + * - arm_cortexM4l_math.lib (Cortex-M4, Little endian) + * - arm_cortexM4b_math.lib (Cortex-M4, Big endian) + * - arm_cortexM3l_math.lib (Cortex-M3, Little endian) + * - arm_cortexM3b_math.lib (Cortex-M3, Big endian) + * - arm_cortexM0l_math.lib (Cortex-M0 / Cortex-M0+, Little endian) + * - arm_cortexM0b_math.lib (Cortex-M0 / Cortex-M0+, Big endian) + * - arm_ARMv8MBLl_math.lib (Armv8-M Baseline, Little endian) + * - arm_ARMv8MMLl_math.lib (Armv8-M Mainline, Little endian) + * - arm_ARMv8MMLlfsp_math.lib (Armv8-M Mainline, Little endian, Single Precision Floating Point Unit) + * - arm_ARMv8MMLld_math.lib (Armv8-M Mainline, Little endian, DSP instructions) + * - arm_ARMv8MMLldfsp_math.lib (Armv8-M Mainline, Little endian, DSP instructions, Single Precision Floating Point Unit) + * + * The library functions are declared in the public file arm_math.h which is placed in the Include folder. + * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single + * public header file arm_math.h for Cortex-M cores with little endian and big endian. Same header file will be used for floating point unit(FPU) variants. + * + * + * \section example Examples + * + * The library ships with a number of examples which demonstrate how to use the library functions. + * + * \section toolchain Toolchain Support + * + * The library is now tested on Fast Models building with cmake. + * Core M0, M7, A5 are tested. + * + * + * + * \section building Building the Library + * + * The library installer contains a project file to rebuild libraries on MDK toolchain in the CMSIS\\DSP\\Projects\\ARM folder. + * - arm_cortexM_math.uvprojx + * + * + * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional preprocessor macros detailed above. + * + * There is also a work in progress cmake build. The README file is giving more details. + * + * \section preprocessor Preprocessor Macros + * + * Each library project have different preprocessor macros. + * + * - ARM_MATH_BIG_ENDIAN: + * + * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets. + * + * - ARM_MATH_MATRIX_CHECK: + * + * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices + * + * - ARM_MATH_ROUNDING: + * + * Define macro ARM_MATH_ROUNDING for rounding on support functions + * + * - ARM_MATH_LOOPUNROLL: + * + * Define macro ARM_MATH_LOOPUNROLL to enable manual loop unrolling in DSP functions + * + * - ARM_MATH_NEON: + * + * Define macro ARM_MATH_NEON to enable Neon versions of the DSP functions. + * It is not enabled by default when Neon is available because performances are + * dependent on the compiler and target architecture. + * + * - ARM_MATH_NEON_EXPERIMENTAL: + * + * Define macro ARM_MATH_NEON_EXPERIMENTAL to enable experimental Neon versions of + * of some DSP functions. Experimental Neon versions currently do not have better + * performances than the scalar versions. + * + * - ARM_MATH_HELIUM: + * + * It implies the flags ARM_MATH_MVEF and ARM_MATH_MVEI and ARM_MATH_FLOAT16. + * + * - ARM_MATH_MVEF: + * + * Select Helium versions of the f32 algorithms. + * It implies ARM_MATH_FLOAT16 and ARM_MATH_MVEI. + * + * - ARM_MATH_MVEI: + * + * Select Helium versions of the int and fixed point algorithms. + * + * - ARM_MATH_MVE_FLOAT16: + * + * MVE Float16 implementations of some algorithms (Requires MVE extension). + * + *
+ * \section pack CMSIS-DSP in ARM::CMSIS Pack + * + * The following files relevant to CMSIS-DSP are present in the ARM::CMSIS Pack directories: + * |File/Folder |Content | + * |---------------------------------|------------------------------------------------------------------------| + * |\b CMSIS\\Documentation\\DSP | This documentation | + * |\b CMSIS\\DSP\\DSP_Lib_TestSuite | DSP_Lib test suite | + * |\b CMSIS\\DSP\\Examples | Example projects demonstrating the usage of the library functions | + * |\b CMSIS\\DSP\\Include | DSP_Lib include files | + * |\b CMSIS\\DSP\\Lib | DSP_Lib binaries | + * |\b CMSIS\\DSP\\Projects | Projects to rebuild DSP_Lib binaries | + * |\b CMSIS\\DSP\\Source | DSP_Lib source files | + * + *
+ * \section rev Revision History of CMSIS-DSP + * Please refer to \ref ChangeLog_pg. + */ + + +/** + * @defgroup groupMath Basic Math Functions + */ + +/** + * @defgroup groupFastMath Fast Math Functions + * This set of functions provides a fast approximation to sine, cosine, and square root. + * As compared to most of the other functions in the CMSIS math library, the fast math functions + * operate on individual values and not arrays. + * There are separate functions for Q15, Q31, and floating-point data. + * + */ + +/** + * @defgroup groupCmplxMath Complex Math Functions + * This set of functions operates on complex data vectors. + * The data in the complex arrays is stored in an interleaved fashion + * (real, imag, real, imag, ...). + * In the API functions, the number of samples in a complex array refers + * to the number of complex values; the array contains twice this number of + * real values. + */ + +/** + * @defgroup groupFilters Filtering Functions + */ + +/** + * @defgroup groupMatrix Matrix Functions + * + * This set of functions provides basic matrix math operations. + * The functions operate on matrix data structures. For example, + * the type + * definition for the floating-point matrix structure is shown + * below: + *
+ *     typedef struct
+ *     {
+ *       uint16_t numRows;     // number of rows of the matrix.
+ *       uint16_t numCols;     // number of columns of the matrix.
+ *       float32_t *pData;     // points to the data of the matrix.
+ *     } arm_matrix_instance_f32;
+ * 
+ * There are similar definitions for Q15 and Q31 data types. + * + * The structure specifies the size of the matrix and then points to + * an array of data. The array is of size numRows X numCols + * and the values are arranged in row order. That is, the + * matrix element (i, j) is stored at: + *
+ *     pData[i*numCols + j]
+ * 
+ * + * \par Init Functions + * There is an associated initialization function for each type of matrix + * data structure. + * The initialization function sets the values of the internal structure fields. + * Refer to \ref arm_mat_init_f32(), \ref arm_mat_init_q31() and \ref arm_mat_init_q15() + * for floating-point, Q31 and Q15 types, respectively. + * + * \par + * Use of the initialization function is optional. However, if initialization function is used + * then the instance structure cannot be placed into a const data section. + * To place the instance structure in a const data + * section, manually initialize the data structure. For example: + *
+ * arm_matrix_instance_f32 S = {nRows, nColumns, pData};
+ * arm_matrix_instance_q31 S = {nRows, nColumns, pData};
+ * arm_matrix_instance_q15 S = {nRows, nColumns, pData};
+ * 
+ * where nRows specifies the number of rows, nColumns + * specifies the number of columns, and pData points to the + * data array. + * + * \par Size Checking + * By default all of the matrix functions perform size checking on the input and + * output matrices. For example, the matrix addition function verifies that the + * two input matrices and the output matrix all have the same number of rows and + * columns. If the size check fails the functions return: + *
+ *     ARM_MATH_SIZE_MISMATCH
+ * 
+ * Otherwise the functions return + *
+ *     ARM_MATH_SUCCESS
+ * 
+ * There is some overhead associated with this matrix size checking. + * The matrix size checking is enabled via the \#define + *
+ *     ARM_MATH_MATRIX_CHECK
+ * 
+ * within the library project settings. By default this macro is defined + * and size checking is enabled. By changing the project settings and + * undefining this macro size checking is eliminated and the functions + * run a bit faster. With size checking disabled the functions always + * return ARM_MATH_SUCCESS. + */ + +/** + * @defgroup groupTransforms Transform Functions + */ + +/** + * @defgroup groupController Controller Functions + */ + +/** + * @defgroup groupStats Statistics Functions + */ + +/** + * @defgroup groupSupport Support Functions + */ + +/** + * @defgroup groupInterpolation Interpolation Functions + * These functions perform 1- and 2-dimensional interpolation of data. + * Linear interpolation is used for 1-dimensional data and + * bilinear interpolation is used for 2-dimensional data. + */ + +/** + * @defgroup groupExamples Examples + */ + +/** + * @defgroup groupSVM SVM Functions + * This set of functions is implementing SVM classification on 2 classes. + * The training must be done from scikit-learn. The parameters can be easily + * generated from the scikit-learn object. Some examples are given in + * DSP/Testing/PatternGeneration/SVM.py + * + * If more than 2 classes are needed, the functions in this folder + * will have to be used, as building blocks, to do multi-class classification. + * + * No multi-class classification is provided in this SVM folder. + * + */ + + +/** + * @defgroup groupBayes Bayesian estimators + * + * Implement the naive gaussian Bayes estimator. + * The training must be done from scikit-learn. + * + * The parameters can be easily + * generated from the scikit-learn object. Some examples are given in + * DSP/Testing/PatternGeneration/Bayes.py + */ + +/** + * @defgroup groupDistance Distance functions + * + * Distance functions for use with clustering algorithms. + * There are distance functions for float vectors and boolean vectors. + * + */ + + +#ifndef _ARM_MATH_H +#define _ARM_MATH_H + +#ifdef __cplusplus +extern "C" +{ +#endif + +/* Compiler specific diagnostic adjustment */ +#if defined ( __CC_ARM ) + +#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) + +#elif defined ( __GNUC__ ) + #pragma GCC diagnostic push + #pragma GCC diagnostic ignored "-Wsign-conversion" + #pragma GCC diagnostic ignored "-Wconversion" + #pragma GCC diagnostic ignored "-Wunused-parameter" + +#elif defined ( __ICCARM__ ) + +#elif defined ( __TI_ARM__ ) + +#elif defined ( __CSMC__ ) + +#elif defined ( __TASKING__ ) + +#elif defined ( _MSC_VER ) + +#else + #error Unknown compiler +#endif + + +/* Included for instrinsics definitions */ +#if defined (_MSC_VER ) +#include +#define __STATIC_FORCEINLINE static __forceinline +#define __STATIC_INLINE static __inline +#define __ALIGNED(x) __declspec(align(x)) + +#elif defined (__GNUC_PYTHON__) +#include +#define __ALIGNED(x) __attribute__((aligned(x))) +#define __STATIC_FORCEINLINE static __attribute__((inline)) +#define __STATIC_INLINE static __attribute__((inline)) +#pragma GCC diagnostic ignored "-Wunused-function" +#pragma GCC diagnostic ignored "-Wattributes" + +#else +#include "cmsis_compiler.h" +#endif + + + +#include +#include +#include +#include + +/* evaluate ARM DSP feature */ +#if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1)) + #define ARM_MATH_DSP 1 +#endif + +#if defined(ARM_MATH_NEON) +#include +#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC + #if !defined(ARM_MATH_NEON_FLOAT16) + #define ARM_MATH_NEON_FLOAT16 + #endif +#endif +#endif + +#if !defined(ARM_MATH_AUTOVECTORIZE) + +#if __ARM_FEATURE_MVE + #if !defined(ARM_MATH_MVEI) + #define ARM_MATH_MVEI + #endif +#endif + +#if (__ARM_FEATURE_MVE & 2) + #if !defined(ARM_MATH_MVEF) + #define ARM_MATH_MVEF + #endif + #if !defined(ARM_MATH_MVE_FLOAT16) + /* HW Float16 not yet well supported on gcc for M55 */ + #if !defined(__CMSIS_GCC_H) + #define ARM_MATH_MVE_FLOAT16 + #endif + #endif +#endif + +#endif /*!defined(ARM_MATH_AUTOVECTORIZE)*/ + + +#if defined (ARM_MATH_HELIUM) + #if !defined(ARM_MATH_MVEF) + #define ARM_MATH_MVEF + #endif + + #if !defined(ARM_MATH_MVEI) + #define ARM_MATH_MVEI + #endif + + #if !defined(ARM_MATH_MVE_FLOAT16) + /* HW Float16 not yet well supported on gcc for M55 */ + #if !defined(__CMSIS_GCC_H) + #define ARM_MATH_MVE_FLOAT16 + #endif + #endif +#endif + +#ifdef __cplusplus +} +#endif + +#if __ARM_FEATURE_MVE +#include +#endif + +#ifdef __cplusplus +extern "C" +{ +#endif + /** + * @brief 8-bit fractional data type in 1.7 format. + */ + typedef int8_t q7_t; + + /** + * @brief 16-bit fractional data type in 1.15 format. + */ + typedef int16_t q15_t; + + /** + * @brief 32-bit fractional data type in 1.31 format. + */ + typedef int32_t q31_t; + + /** + * @brief 64-bit fractional data type in 1.63 format. + */ + typedef int64_t q63_t; + + /** + * @brief 32-bit floating-point type definition. + */ + typedef float float32_t; + + /** + * @brief 64-bit floating-point type definition. + */ + typedef double float64_t; + + /** + * @brief vector types + */ +#if defined(ARM_MATH_NEON) || defined (ARM_MATH_MVEI) + /** + * @brief 64-bit fractional 128-bit vector data type in 1.63 format + */ + typedef int64x2_t q63x2_t; + + /** + * @brief 32-bit fractional 128-bit vector data type in 1.31 format. + */ + typedef int32x4_t q31x4_t; + + /** + * @brief 16-bit fractional 128-bit vector data type with 16-bit alignement in 1.15 format. + */ + typedef __ALIGNED(2) int16x8_t q15x8_t; + + /** + * @brief 8-bit fractional 128-bit vector data type with 8-bit alignement in 1.7 format. + */ + typedef __ALIGNED(1) int8x16_t q7x16_t; + + /** + * @brief 32-bit fractional 128-bit vector pair data type in 1.31 format. + */ + typedef int32x4x2_t q31x4x2_t; + + /** + * @brief 32-bit fractional 128-bit vector quadruplet data type in 1.31 format. + */ + typedef int32x4x4_t q31x4x4_t; + + /** + * @brief 16-bit fractional 128-bit vector pair data type in 1.15 format. + */ + typedef int16x8x2_t q15x8x2_t; + + /** + * @brief 16-bit fractional 128-bit vector quadruplet data type in 1.15 format. + */ + typedef int16x8x4_t q15x8x4_t; + + /** + * @brief 8-bit fractional 128-bit vector pair data type in 1.7 format. + */ + typedef int8x16x2_t q7x16x2_t; + + /** + * @brief 8-bit fractional 128-bit vector quadruplet data type in 1.7 format. + */ + typedef int8x16x4_t q7x16x4_t; + + /** + * @brief 32-bit fractional data type in 9.23 format. + */ + typedef int32_t q23_t; + + /** + * @brief 32-bit fractional 128-bit vector data type in 9.23 format. + */ + typedef int32x4_t q23x4_t; + + /** + * @brief 64-bit status 128-bit vector data type. + */ + typedef int64x2_t status64x2_t; + + /** + * @brief 32-bit status 128-bit vector data type. + */ + typedef int32x4_t status32x4_t; + + /** + * @brief 16-bit status 128-bit vector data type. + */ + typedef int16x8_t status16x8_t; + + /** + * @brief 8-bit status 128-bit vector data type. + */ + typedef int8x16_t status8x16_t; + + +#endif + +#if defined(ARM_MATH_NEON) || defined(ARM_MATH_MVEF) /* floating point vector*/ + /** + * @brief 32-bit floating-point 128-bit vector type + */ + typedef float32x4_t f32x4_t; + + /** + * @brief 32-bit floating-point 128-bit vector pair data type + */ + typedef float32x4x2_t f32x4x2_t; + + /** + * @brief 32-bit floating-point 128-bit vector quadruplet data type + */ + typedef float32x4x4_t f32x4x4_t; + + /** + * @brief 32-bit ubiquitous 128-bit vector data type + */ + typedef union _any32x4_t + { + float32x4_t f; + int32x4_t i; + } any32x4_t; + +#endif + +#if defined(ARM_MATH_NEON) + /** + * @brief 32-bit fractional 64-bit vector data type in 1.31 format. + */ + typedef int32x2_t q31x2_t; + + /** + * @brief 16-bit fractional 64-bit vector data type in 1.15 format. + */ + typedef __ALIGNED(2) int16x4_t q15x4_t; + + /** + * @brief 8-bit fractional 64-bit vector data type in 1.7 format. + */ + typedef __ALIGNED(1) int8x8_t q7x8_t; + + /** + * @brief 32-bit float 64-bit vector data type. + */ + typedef float32x2_t f32x2_t; + + /** + * @brief 32-bit floating-point 128-bit vector triplet data type + */ + typedef float32x4x3_t f32x4x3_t; + + + /** + * @brief 32-bit fractional 128-bit vector triplet data type in 1.31 format + */ + typedef int32x4x3_t q31x4x3_t; + + /** + * @brief 16-bit fractional 128-bit vector triplet data type in 1.15 format + */ + typedef int16x8x3_t q15x8x3_t; + + /** + * @brief 8-bit fractional 128-bit vector triplet data type in 1.7 format + */ + typedef int8x16x3_t q7x16x3_t; + + /** + * @brief 32-bit floating-point 64-bit vector pair data type + */ + typedef float32x2x2_t f32x2x2_t; + + /** + * @brief 32-bit floating-point 64-bit vector triplet data type + */ + typedef float32x2x3_t f32x2x3_t; + + /** + * @brief 32-bit floating-point 64-bit vector quadruplet data type + */ + typedef float32x2x4_t f32x2x4_t; + + + /** + * @brief 32-bit fractional 64-bit vector pair data type in 1.31 format + */ + typedef int32x2x2_t q31x2x2_t; + + /** + * @brief 32-bit fractional 64-bit vector triplet data type in 1.31 format + */ + typedef int32x2x3_t q31x2x3_t; + + /** + * @brief 32-bit fractional 64-bit vector quadruplet data type in 1.31 format + */ + typedef int32x4x3_t q31x2x4_t; + + /** + * @brief 16-bit fractional 64-bit vector pair data type in 1.15 format + */ + typedef int16x4x2_t q15x4x2_t; + + /** + * @brief 16-bit fractional 64-bit vector triplet data type in 1.15 format + */ + typedef int16x4x2_t q15x4x3_t; + + /** + * @brief 16-bit fractional 64-bit vector quadruplet data type in 1.15 format + */ + typedef int16x4x3_t q15x4x4_t; + + /** + * @brief 8-bit fractional 64-bit vector pair data type in 1.7 format + */ + typedef int8x8x2_t q7x8x2_t; + + /** + * @brief 8-bit fractional 64-bit vector triplet data type in 1.7 format + */ + typedef int8x8x3_t q7x8x3_t; + + /** + * @brief 8-bit fractional 64-bit vector quadruplet data type in 1.7 format + */ + typedef int8x8x4_t q7x8x4_t; + + /** + * @brief 32-bit ubiquitous 64-bit vector data type + */ + typedef union _any32x2_t + { + float32x2_t f; + int32x2_t i; + } any32x2_t; + + + /** + * @brief 32-bit status 64-bit vector data type. + */ + typedef int32x4_t status32x2_t; + + /** + * @brief 16-bit status 64-bit vector data type. + */ + typedef int16x8_t status16x4_t; + + /** + * @brief 8-bit status 64-bit vector data type. + */ + typedef int8x16_t status8x8_t; + +#endif + + + + + +#define F64_MAX ((float64_t)DBL_MAX) +#define F32_MAX ((float32_t)FLT_MAX) + + + +#define F64_MIN (-DBL_MAX) +#define F32_MIN (-FLT_MAX) + + + +#define F64_ABSMAX ((float64_t)DBL_MAX) +#define F32_ABSMAX ((float32_t)FLT_MAX) + + + +#define F64_ABSMIN ((float64_t)0.0) +#define F32_ABSMIN ((float32_t)0.0) + + +#define Q31_MAX ((q31_t)(0x7FFFFFFFL)) +#define Q15_MAX ((q15_t)(0x7FFF)) +#define Q7_MAX ((q7_t)(0x7F)) +#define Q31_MIN ((q31_t)(0x80000000L)) +#define Q15_MIN ((q15_t)(0x8000)) +#define Q7_MIN ((q7_t)(0x80)) + +#define Q31_ABSMAX ((q31_t)(0x7FFFFFFFL)) +#define Q15_ABSMAX ((q15_t)(0x7FFF)) +#define Q7_ABSMAX ((q7_t)(0x7F)) +#define Q31_ABSMIN ((q31_t)0) +#define Q15_ABSMIN ((q15_t)0) +#define Q7_ABSMIN ((q7_t)0) + + + + /** + * @brief Macros required for reciprocal calculation in Normalized LMS + */ + +#define DELTA_Q31 ((q31_t)(0x100)) +#define DELTA_Q15 ((q15_t)0x5) +#define INDEX_MASK 0x0000003F +#ifndef PI + #define PI 3.14159265358979f +#endif + + /** + * @brief Macros required for SINE and COSINE Fast math approximations + */ + +#define FAST_MATH_TABLE_SIZE 512 +#define FAST_MATH_Q31_SHIFT (32 - 10) +#define FAST_MATH_Q15_SHIFT (16 - 10) +#define CONTROLLER_Q31_SHIFT (32 - 9) +#define TABLE_SPACING_Q31 0x400000 +#define TABLE_SPACING_Q15 0x80 + + /** + * @brief Macros required for SINE and COSINE Controller functions + */ + /* 1.31(q31) Fixed value of 2/360 */ + /* -1 to +1 is divided into 360 values so total spacing is (2/360) */ +#define INPUT_SPACING 0xB60B61 + + /** + * @brief Macros for complex numbers + */ + + /* Dimension C vector space */ + #define CMPLX_DIM 2 + + /** + * @brief Error status returned by some functions in the library. + */ + + typedef enum + { + ARM_MATH_SUCCESS = 0, /**< No error */ + ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */ + ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */ + ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation */ + ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */ + ARM_MATH_SINGULAR = -5, /**< Input matrix is singular and cannot be inverted */ + ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */ + } arm_status; + + +/** + @brief definition to read/write two 16 bit values. + @deprecated + */ +#if defined ( __CC_ARM ) + #define __SIMD32_TYPE int32_t __packed +#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) + #define __SIMD32_TYPE int32_t +#elif defined ( __GNUC__ ) + #define __SIMD32_TYPE int32_t +#elif defined ( __ICCARM__ ) + #define __SIMD32_TYPE int32_t __packed +#elif defined ( __TI_ARM__ ) + #define __SIMD32_TYPE int32_t +#elif defined ( __CSMC__ ) + #define __SIMD32_TYPE int32_t +#elif defined ( __TASKING__ ) + #define __SIMD32_TYPE __un(aligned) int32_t +#elif defined(_MSC_VER ) + #define __SIMD32_TYPE int32_t +#else + #error Unknown compiler +#endif + +#define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr)) +#define __SIMD32_CONST(addr) ( (__SIMD32_TYPE * ) (addr)) +#define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE * ) (addr)) +#define __SIMD64(addr) (*( int64_t **) & (addr)) + +#define STEP(x) (x) <= 0 ? 0 : 1 +#define SQ(x) ((x) * (x)) + +/* SIMD replacement */ + + +/** + @brief Read 2 Q15 from Q15 pointer. + @param[in] pQ15 points to input value + @return Q31 value + */ +__STATIC_FORCEINLINE q31_t read_q15x2 ( + q15_t * pQ15) +{ + q31_t val; + +#ifdef __ARM_FEATURE_UNALIGNED + memcpy (&val, pQ15, 4); +#else + val = (pQ15[1] << 16) | (pQ15[0] & 0x0FFFF) ; +#endif + + return (val); +} + +/** + @brief Read 2 Q15 from Q15 pointer and increment pointer afterwards. + @param[in] pQ15 points to input value + @return Q31 value + */ +__STATIC_FORCEINLINE q31_t read_q15x2_ia ( + q15_t ** pQ15) +{ + q31_t val; + +#ifdef __ARM_FEATURE_UNALIGNED + memcpy (&val, *pQ15, 4); +#else + val = ((*pQ15)[1] << 16) | ((*pQ15)[0] & 0x0FFFF); +#endif + + *pQ15 += 2; + return (val); +} + +/** + @brief Read 2 Q15 from Q15 pointer and decrement pointer afterwards. + @param[in] pQ15 points to input value + @return Q31 value + */ +__STATIC_FORCEINLINE q31_t read_q15x2_da ( + q15_t ** pQ15) +{ + q31_t val; + +#ifdef __ARM_FEATURE_UNALIGNED + memcpy (&val, *pQ15, 4); +#else + val = ((*pQ15)[1] << 16) | ((*pQ15)[0] & 0x0FFFF); +#endif + + *pQ15 -= 2; + return (val); +} + +/** + @brief Write 2 Q15 to Q15 pointer and increment pointer afterwards. + @param[in] pQ15 points to input value + @param[in] value Q31 value + @return none + */ +__STATIC_FORCEINLINE void write_q15x2_ia ( + q15_t ** pQ15, + q31_t value) +{ + q31_t val = value; +#ifdef __ARM_FEATURE_UNALIGNED + memcpy (*pQ15, &val, 4); +#else + (*pQ15)[0] = (val & 0x0FFFF); + (*pQ15)[1] = (val >> 16) & 0x0FFFF; +#endif + + *pQ15 += 2; +} + +/** + @brief Write 2 Q15 to Q15 pointer. + @param[in] pQ15 points to input value + @param[in] value Q31 value + @return none + */ +__STATIC_FORCEINLINE void write_q15x2 ( + q15_t * pQ15, + q31_t value) +{ + q31_t val = value; + +#ifdef __ARM_FEATURE_UNALIGNED + memcpy (pQ15, &val, 4); +#else + pQ15[0] = val & 0x0FFFF; + pQ15[1] = val >> 16; +#endif +} + + +/** + @brief Read 4 Q7 from Q7 pointer and increment pointer afterwards. + @param[in] pQ7 points to input value + @return Q31 value + */ +__STATIC_FORCEINLINE q31_t read_q7x4_ia ( + q7_t ** pQ7) +{ + q31_t val; + + +#ifdef __ARM_FEATURE_UNALIGNED + memcpy (&val, *pQ7, 4); +#else + val =(((*pQ7)[3] & 0x0FF) << 24) | (((*pQ7)[2] & 0x0FF) << 16) | (((*pQ7)[1] & 0x0FF) << 8) | ((*pQ7)[0] & 0x0FF); +#endif + + *pQ7 += 4; + + return (val); +} + +/** + @brief Read 4 Q7 from Q7 pointer and decrement pointer afterwards. + @param[in] pQ7 points to input value + @return Q31 value + */ +__STATIC_FORCEINLINE q31_t read_q7x4_da ( + q7_t ** pQ7) +{ + q31_t val; +#ifdef __ARM_FEATURE_UNALIGNED + memcpy (&val, *pQ7, 4); +#else + val = ((((*pQ7)[3]) & 0x0FF) << 24) | ((((*pQ7)[2]) & 0x0FF) << 16) | ((((*pQ7)[1]) & 0x0FF) << 8) | ((*pQ7)[0] & 0x0FF); +#endif + *pQ7 -= 4; + + return (val); +} + +/** + @brief Write 4 Q7 to Q7 pointer and increment pointer afterwards. + @param[in] pQ7 points to input value + @param[in] value Q31 value + @return none + */ +__STATIC_FORCEINLINE void write_q7x4_ia ( + q7_t ** pQ7, + q31_t value) +{ + q31_t val = value; +#ifdef __ARM_FEATURE_UNALIGNED + memcpy (*pQ7, &val, 4); +#else + (*pQ7)[0] = val & 0x0FF; + (*pQ7)[1] = (val >> 8) & 0x0FF; + (*pQ7)[2] = (val >> 16) & 0x0FF; + (*pQ7)[3] = (val >> 24) & 0x0FF; + +#endif + *pQ7 += 4; +} + +/* + +Normally those kind of definitions are in a compiler file +in Core or Core_A. + +But for MSVC compiler it is a bit special. The goal is very specific +to CMSIS-DSP and only to allow the use of this library from other +systems like Python or Matlab. + +MSVC is not going to be used to cross-compile to ARM. So, having a MSVC +compiler file in Core or Core_A would not make sense. + +*/ +#if defined ( _MSC_VER ) || defined(__GNUC_PYTHON__) + __STATIC_FORCEINLINE uint8_t __CLZ(uint32_t data) + { + if (data == 0U) { return 32U; } + + uint32_t count = 0U; + uint32_t mask = 0x80000000U; + + while ((data & mask) == 0U) + { + count += 1U; + mask = mask >> 1U; + } + return count; + } + + __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat) + { + if ((sat >= 1U) && (sat <= 32U)) + { + const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U); + const int32_t min = -1 - max ; + if (val > max) + { + return max; + } + else if (val < min) + { + return min; + } + } + return val; + } + + __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat) + { + if (sat <= 31U) + { + const uint32_t max = ((1U << sat) - 1U); + if (val > (int32_t)max) + { + return max; + } + else if (val < 0) + { + return 0U; + } + } + return (uint32_t)val; + } +#endif + +#ifndef ARM_MATH_DSP + /** + * @brief definition to pack two 16 bit values. + */ + #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \ + (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) ) + #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \ + (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) ) +#endif + + /** + * @brief definition to pack four 8 bit values. + */ +#ifndef ARM_MATH_BIG_ENDIAN + #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \ + (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \ + (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \ + (((int32_t)(v3) << 24) & (int32_t)0xFF000000) ) +#else + #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \ + (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \ + (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \ + (((int32_t)(v0) << 24) & (int32_t)0xFF000000) ) +#endif + + + /** + * @brief Clips Q63 to Q31 values. + */ + __STATIC_FORCEINLINE q31_t clip_q63_to_q31( + q63_t x) + { + return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? + ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x; + } + + /** + * @brief Clips Q63 to Q15 values. + */ + __STATIC_FORCEINLINE q15_t clip_q63_to_q15( + q63_t x) + { + return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? + ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15); + } + + /** + * @brief Clips Q31 to Q7 values. + */ + __STATIC_FORCEINLINE q7_t clip_q31_to_q7( + q31_t x) + { + return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ? + ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x; + } + + /** + * @brief Clips Q31 to Q15 values. + */ + __STATIC_FORCEINLINE q15_t clip_q31_to_q15( + q31_t x) + { + return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ? + ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x; + } + + /** + * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format. + */ + __STATIC_FORCEINLINE q63_t mult32x64( + q63_t x, + q31_t y) + { + return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) + + (((q63_t) (x >> 32) * y) ) ); + } + + /** + * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type. + */ + __STATIC_FORCEINLINE uint32_t arm_recip_q31( + q31_t in, + q31_t * dst, + const q31_t * pRecipTable) + { + q31_t out; + uint32_t tempVal; + uint32_t index, i; + uint32_t signBits; + + if (in > 0) + { + signBits = ((uint32_t) (__CLZ( in) - 1)); + } + else + { + signBits = ((uint32_t) (__CLZ(-in) - 1)); + } + + /* Convert input sample to 1.31 format */ + in = (in << signBits); + + /* calculation of index for initial approximated Val */ + index = (uint32_t)(in >> 24); + index = (index & INDEX_MASK); + + /* 1.31 with exp 1 */ + out = pRecipTable[index]; + + /* calculation of reciprocal value */ + /* running approximation for two iterations */ + for (i = 0U; i < 2U; i++) + { + tempVal = (uint32_t) (((q63_t) in * out) >> 31); + tempVal = 0x7FFFFFFFu - tempVal; + /* 1.31 with exp 1 */ + /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */ + out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30); + } + + /* write output */ + *dst = out; + + /* return num of signbits of out = 1/in value */ + return (signBits + 1U); + } + + + /** + * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type. + */ + __STATIC_FORCEINLINE uint32_t arm_recip_q15( + q15_t in, + q15_t * dst, + const q15_t * pRecipTable) + { + q15_t out = 0; + uint32_t tempVal = 0; + uint32_t index = 0, i = 0; + uint32_t signBits = 0; + + if (in > 0) + { + signBits = ((uint32_t)(__CLZ( in) - 17)); + } + else + { + signBits = ((uint32_t)(__CLZ(-in) - 17)); + } + + /* Convert input sample to 1.15 format */ + in = (in << signBits); + + /* calculation of index for initial approximated Val */ + index = (uint32_t)(in >> 8); + index = (index & INDEX_MASK); + + /* 1.15 with exp 1 */ + out = pRecipTable[index]; + + /* calculation of reciprocal value */ + /* running approximation for two iterations */ + for (i = 0U; i < 2U; i++) + { + tempVal = (uint32_t) (((q31_t) in * out) >> 15); + tempVal = 0x7FFFu - tempVal; + /* 1.15 with exp 1 */ + out = (q15_t) (((q31_t) out * tempVal) >> 14); + /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */ + } + + /* write output */ + *dst = out; + + /* return num of signbits of out = 1/in value */ + return (signBits + 1); + } + +/** + * @brief Integer exponentiation + * @param[in] x value + * @param[in] nb integer exponent >= 1 + * @return x^nb + * + */ +__STATIC_INLINE float32_t arm_exponent_f32(float32_t x, int32_t nb) +{ + float32_t r = x; + nb --; + while(nb > 0) + { + r = r * x; + nb--; + } + return(r); +} + +/** + * @brief 64-bit to 32-bit unsigned normalization + * @param[in] in is input unsigned long long value + * @param[out] normalized is the 32-bit normalized value + * @param[out] norm is norm scale + */ +__STATIC_INLINE void arm_norm_64_to_32u(uint64_t in, int32_t * normalized, int32_t *norm) +{ + int32_t n1; + int32_t hi = (int32_t) (in >> 32); + int32_t lo = (int32_t) ((in << 32) >> 32); + + n1 = __CLZ(hi) - 32; + if (!n1) + { + /* + * input fits in 32-bit + */ + n1 = __CLZ(lo); + if (!n1) + { + /* + * MSB set, need to scale down by 1 + */ + *norm = -1; + *normalized = (((uint32_t) lo) >> 1); + } else + { + if (n1 == 32) + { + /* + * input is zero + */ + *norm = 0; + *normalized = 0; + } else + { + /* + * 32-bit normalization + */ + *norm = n1 - 1; + *normalized = lo << *norm; + } + } + } else + { + /* + * input fits in 64-bit + */ + n1 = 1 - n1; + *norm = -n1; + /* + * 64 bit normalization + */ + *normalized = (((uint32_t) lo) >> n1) | (hi << (32 - n1)); + } +} + +__STATIC_INLINE q31_t arm_div_q63_to_q31(q63_t num, q31_t den) +{ + q31_t result; + uint64_t absNum; + int32_t normalized; + int32_t norm; + + /* + * if sum fits in 32bits + * avoid costly 64-bit division + */ + absNum = num > 0 ? num : -num; + arm_norm_64_to_32u(absNum, &normalized, &norm); + if (norm > 0) + /* + * 32-bit division + */ + result = (q31_t) num / den; + else + /* + * 64-bit division + */ + result = (q31_t) (num / den); + + return result; +} + + +/* + * @brief C custom defined intrinsic functions + */ +#if !defined (ARM_MATH_DSP) + + /* + * @brief C custom defined QADD8 + */ + __STATIC_FORCEINLINE uint32_t __QADD8( + uint32_t x, + uint32_t y) + { + q31_t r, s, t, u; + + r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; + s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; + t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; + u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; + + return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); + } + + + /* + * @brief C custom defined QSUB8 + */ + __STATIC_FORCEINLINE uint32_t __QSUB8( + uint32_t x, + uint32_t y) + { + q31_t r, s, t, u; + + r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; + s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; + t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; + u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; + + return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); + } + + + /* + * @brief C custom defined QADD16 + */ + __STATIC_FORCEINLINE uint32_t __QADD16( + uint32_t x, + uint32_t y) + { +/* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */ + q31_t r = 0, s = 0; + + r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; + s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); + } + + + /* + * @brief C custom defined SHADD16 + */ + __STATIC_FORCEINLINE uint32_t __SHADD16( + uint32_t x, + uint32_t y) + { + q31_t r, s; + + r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; + s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); + } + + + /* + * @brief C custom defined QSUB16 + */ + __STATIC_FORCEINLINE uint32_t __QSUB16( + uint32_t x, + uint32_t y) + { + q31_t r, s; + + r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; + s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); + } + + + /* + * @brief C custom defined SHSUB16 + */ + __STATIC_FORCEINLINE uint32_t __SHSUB16( + uint32_t x, + uint32_t y) + { + q31_t r, s; + + r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; + s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); + } + + + /* + * @brief C custom defined QASX + */ + __STATIC_FORCEINLINE uint32_t __QASX( + uint32_t x, + uint32_t y) + { + q31_t r, s; + + r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; + s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); + } + + + /* + * @brief C custom defined SHASX + */ + __STATIC_FORCEINLINE uint32_t __SHASX( + uint32_t x, + uint32_t y) + { + q31_t r, s; + + r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; + s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); + } + + + /* + * @brief C custom defined QSAX + */ + __STATIC_FORCEINLINE uint32_t __QSAX( + uint32_t x, + uint32_t y) + { + q31_t r, s; + + r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; + s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); + } + + + /* + * @brief C custom defined SHSAX + */ + __STATIC_FORCEINLINE uint32_t __SHSAX( + uint32_t x, + uint32_t y) + { + q31_t r, s; + + r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; + s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; + + return ((uint32_t)((s << 16) | (r ))); + } + + + /* + * @brief C custom defined SMUSDX + */ + __STATIC_FORCEINLINE uint32_t __SMUSDX( + uint32_t x, + uint32_t y) + { + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - + ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); + } + + /* + * @brief C custom defined SMUADX + */ + __STATIC_FORCEINLINE uint32_t __SMUADX( + uint32_t x, + uint32_t y) + { + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + + ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); + } + + + /* + * @brief C custom defined QADD + */ + __STATIC_FORCEINLINE int32_t __QADD( + int32_t x, + int32_t y) + { + return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y))); + } + + + /* + * @brief C custom defined QSUB + */ + __STATIC_FORCEINLINE int32_t __QSUB( + int32_t x, + int32_t y) + { + return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y))); + } + + + /* + * @brief C custom defined SMLAD + */ + __STATIC_FORCEINLINE uint32_t __SMLAD( + uint32_t x, + uint32_t y, + uint32_t sum) + { + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + + ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + + ( ((q31_t)sum ) ) )); + } + + + /* + * @brief C custom defined SMLADX + */ + __STATIC_FORCEINLINE uint32_t __SMLADX( + uint32_t x, + uint32_t y, + uint32_t sum) + { + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + + ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + + ( ((q31_t)sum ) ) )); + } + + + /* + * @brief C custom defined SMLSDX + */ + __STATIC_FORCEINLINE uint32_t __SMLSDX( + uint32_t x, + uint32_t y, + uint32_t sum) + { + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - + ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + + ( ((q31_t)sum ) ) )); + } + + + /* + * @brief C custom defined SMLALD + */ + __STATIC_FORCEINLINE uint64_t __SMLALD( + uint32_t x, + uint32_t y, + uint64_t sum) + { +/* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */ + return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + + ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + + ( ((q63_t)sum ) ) )); + } + + + /* + * @brief C custom defined SMLALDX + */ + __STATIC_FORCEINLINE uint64_t __SMLALDX( + uint32_t x, + uint32_t y, + uint64_t sum) + { +/* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */ + return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + + ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + + ( ((q63_t)sum ) ) )); + } + + + /* + * @brief C custom defined SMUAD + */ + __STATIC_FORCEINLINE uint32_t __SMUAD( + uint32_t x, + uint32_t y) + { + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + + ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); + } + + + /* + * @brief C custom defined SMUSD + */ + __STATIC_FORCEINLINE uint32_t __SMUSD( + uint32_t x, + uint32_t y) + { + return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) - + ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); + } + + + /* + * @brief C custom defined SXTB16 + */ + __STATIC_FORCEINLINE uint32_t __SXTB16( + uint32_t x) + { + return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) | + ((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) )); + } + + /* + * @brief C custom defined SMMLA + */ + __STATIC_FORCEINLINE int32_t __SMMLA( + int32_t x, + int32_t y, + int32_t sum) + { + return (sum + (int32_t) (((int64_t) x * y) >> 32)); + } + +#endif /* !defined (ARM_MATH_DSP) */ + + + /** + * @brief Instance structure for the Q7 FIR filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of filter coefficients in the filter. */ + q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + const q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + } arm_fir_instance_q7; + + /** + * @brief Instance structure for the Q15 FIR filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of filter coefficients in the filter. */ + q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + } arm_fir_instance_q15; + + /** + * @brief Instance structure for the Q31 FIR filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of filter coefficients in the filter. */ + q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + } arm_fir_instance_q31; + + /** + * @brief Instance structure for the floating-point FIR filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of filter coefficients in the filter. */ + float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + } arm_fir_instance_f32; + + /** + * @brief Processing function for the Q7 FIR filter. + * @param[in] S points to an instance of the Q7 FIR filter structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_fir_q7( + const arm_fir_instance_q7 * S, + const q7_t * pSrc, + q7_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the Q7 FIR filter. + * @param[in,out] S points to an instance of the Q7 FIR structure. + * @param[in] numTaps Number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of samples that are processed. + * + * For the MVE version, the coefficient length must be a multiple of 16. + * You can pad with zeros if you have less coefficients. + */ + void arm_fir_init_q7( + arm_fir_instance_q7 * S, + uint16_t numTaps, + const q7_t * pCoeffs, + q7_t * pState, + uint32_t blockSize); + + /** + * @brief Processing function for the Q15 FIR filter. + * @param[in] S points to an instance of the Q15 FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_fir_q15( + const arm_fir_instance_q15 * S, + const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Processing function for the fast Q15 FIR filter (fast version). + * @param[in] S points to an instance of the Q15 FIR filter structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_fir_fast_q15( + const arm_fir_instance_q15 * S, + const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the Q15 FIR filter. + * @param[in,out] S points to an instance of the Q15 FIR filter structure. + * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of samples that are processed at a time. + * @return The function returns either + * ARM_MATH_SUCCESS if initialization was successful or + * ARM_MATH_ARGUMENT_ERROR if numTaps is not a supported value. + * + * For the MVE version, the coefficient length must be a multiple of 8. + * You can pad with zeros if you have less coefficients. + * + */ + arm_status arm_fir_init_q15( + arm_fir_instance_q15 * S, + uint16_t numTaps, + const q15_t * pCoeffs, + q15_t * pState, + uint32_t blockSize); + + /** + * @brief Processing function for the Q31 FIR filter. + * @param[in] S points to an instance of the Q31 FIR filter structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_fir_q31( + const arm_fir_instance_q31 * S, + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief Processing function for the fast Q31 FIR filter (fast version). + * @param[in] S points to an instance of the Q31 FIR filter structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_fir_fast_q31( + const arm_fir_instance_q31 * S, + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the Q31 FIR filter. + * @param[in,out] S points to an instance of the Q31 FIR structure. + * @param[in] numTaps Number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of samples that are processed at a time. + * + * For the MVE version, the coefficient length must be a multiple of 4. + * You can pad with zeros if you have less coefficients. + */ + void arm_fir_init_q31( + arm_fir_instance_q31 * S, + uint16_t numTaps, + const q31_t * pCoeffs, + q31_t * pState, + uint32_t blockSize); + + /** + * @brief Processing function for the floating-point FIR filter. + * @param[in] S points to an instance of the floating-point FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_fir_f32( + const arm_fir_instance_f32 * S, + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the floating-point FIR filter. + * @param[in,out] S points to an instance of the floating-point FIR filter structure. + * @param[in] numTaps Number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of samples that are processed at a time. + */ + void arm_fir_init_f32( + arm_fir_instance_f32 * S, + uint16_t numTaps, + const float32_t * pCoeffs, + float32_t * pState, + uint32_t blockSize); + + /** + * @brief Instance structure for the Q15 Biquad cascade filter. + */ + typedef struct + { + int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ + const q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ + int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ + } arm_biquad_casd_df1_inst_q15; + + /** + * @brief Instance structure for the Q31 Biquad cascade filter. + */ + typedef struct + { + uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ + const q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ + uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ + } arm_biquad_casd_df1_inst_q31; + + /** + * @brief Instance structure for the floating-point Biquad cascade filter. + */ + typedef struct + { + uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ + const float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ + } arm_biquad_casd_df1_inst_f32; + +#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) + /** + * @brief Instance structure for the modified Biquad coefs required by vectorized code. + */ + typedef struct + { + float32_t coeffs[8][4]; /**< Points to the array of modified coefficients. The array is of length 32. There is one per stage */ + } arm_biquad_mod_coef_f32; +#endif + + /** + * @brief Processing function for the Q15 Biquad cascade filter. + * @param[in] S points to an instance of the Q15 Biquad cascade structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_biquad_cascade_df1_q15( + const arm_biquad_casd_df1_inst_q15 * S, + const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the Q15 Biquad cascade filter. + * @param[in,out] S points to an instance of the Q15 Biquad cascade structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format + */ + void arm_biquad_cascade_df1_init_q15( + arm_biquad_casd_df1_inst_q15 * S, + uint8_t numStages, + const q15_t * pCoeffs, + q15_t * pState, + int8_t postShift); + + /** + * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4. + * @param[in] S points to an instance of the Q15 Biquad cascade structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_biquad_cascade_df1_fast_q15( + const arm_biquad_casd_df1_inst_q15 * S, + const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + /** + * @brief Processing function for the Q31 Biquad cascade filter + * @param[in] S points to an instance of the Q31 Biquad cascade structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_biquad_cascade_df1_q31( + const arm_biquad_casd_df1_inst_q31 * S, + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4. + * @param[in] S points to an instance of the Q31 Biquad cascade structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_biquad_cascade_df1_fast_q31( + const arm_biquad_casd_df1_inst_q31 * S, + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the Q31 Biquad cascade filter. + * @param[in,out] S points to an instance of the Q31 Biquad cascade structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format + */ + void arm_biquad_cascade_df1_init_q31( + arm_biquad_casd_df1_inst_q31 * S, + uint8_t numStages, + const q31_t * pCoeffs, + q31_t * pState, + int8_t postShift); + + /** + * @brief Processing function for the floating-point Biquad cascade filter. + * @param[in] S points to an instance of the floating-point Biquad cascade structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_biquad_cascade_df1_f32( + const arm_biquad_casd_df1_inst_f32 * S, + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the floating-point Biquad cascade filter. + * @param[in,out] S points to an instance of the floating-point Biquad cascade structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pCoeffsMod points to the modified filter coefficients (only MVE version). + * @param[in] pState points to the state buffer. + */ +#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) + void arm_biquad_cascade_df1_mve_init_f32( + arm_biquad_casd_df1_inst_f32 * S, + uint8_t numStages, + const float32_t * pCoeffs, + arm_biquad_mod_coef_f32 * pCoeffsMod, + float32_t * pState); +#endif + + void arm_biquad_cascade_df1_init_f32( + arm_biquad_casd_df1_inst_f32 * S, + uint8_t numStages, + const float32_t * pCoeffs, + float32_t * pState); + + + /** + * @brief Compute the logical bitwise AND of two fixed-point vectors. + * @param[in] pSrcA points to input vector A + * @param[in] pSrcB points to input vector B + * @param[out] pDst points to output vector + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_and_u16( + const uint16_t * pSrcA, + const uint16_t * pSrcB, + uint16_t * pDst, + uint32_t blockSize); + + /** + * @brief Compute the logical bitwise AND of two fixed-point vectors. + * @param[in] pSrcA points to input vector A + * @param[in] pSrcB points to input vector B + * @param[out] pDst points to output vector + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_and_u32( + const uint32_t * pSrcA, + const uint32_t * pSrcB, + uint32_t * pDst, + uint32_t blockSize); + + /** + * @brief Compute the logical bitwise AND of two fixed-point vectors. + * @param[in] pSrcA points to input vector A + * @param[in] pSrcB points to input vector B + * @param[out] pDst points to output vector + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_and_u8( + const uint8_t * pSrcA, + const uint8_t * pSrcB, + uint8_t * pDst, + uint32_t blockSize); + + /** + * @brief Compute the logical bitwise OR of two fixed-point vectors. + * @param[in] pSrcA points to input vector A + * @param[in] pSrcB points to input vector B + * @param[out] pDst points to output vector + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_or_u16( + const uint16_t * pSrcA, + const uint16_t * pSrcB, + uint16_t * pDst, + uint32_t blockSize); + + /** + * @brief Compute the logical bitwise OR of two fixed-point vectors. + * @param[in] pSrcA points to input vector A + * @param[in] pSrcB points to input vector B + * @param[out] pDst points to output vector + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_or_u32( + const uint32_t * pSrcA, + const uint32_t * pSrcB, + uint32_t * pDst, + uint32_t blockSize); + + /** + * @brief Compute the logical bitwise OR of two fixed-point vectors. + * @param[in] pSrcA points to input vector A + * @param[in] pSrcB points to input vector B + * @param[out] pDst points to output vector + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_or_u8( + const uint8_t * pSrcA, + const uint8_t * pSrcB, + uint8_t * pDst, + uint32_t blockSize); + + /** + * @brief Compute the logical bitwise NOT of a fixed-point vector. + * @param[in] pSrc points to input vector + * @param[out] pDst points to output vector + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_not_u16( + const uint16_t * pSrc, + uint16_t * pDst, + uint32_t blockSize); + + /** + * @brief Compute the logical bitwise NOT of a fixed-point vector. + * @param[in] pSrc points to input vector + * @param[out] pDst points to output vector + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_not_u32( + const uint32_t * pSrc, + uint32_t * pDst, + uint32_t blockSize); + + /** + * @brief Compute the logical bitwise NOT of a fixed-point vector. + * @param[in] pSrc points to input vector + * @param[out] pDst points to output vector + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_not_u8( + const uint8_t * pSrc, + uint8_t * pDst, + uint32_t blockSize); + +/** + * @brief Compute the logical bitwise XOR of two fixed-point vectors. + * @param[in] pSrcA points to input vector A + * @param[in] pSrcB points to input vector B + * @param[out] pDst points to output vector + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_xor_u16( + const uint16_t * pSrcA, + const uint16_t * pSrcB, + uint16_t * pDst, + uint32_t blockSize); + + /** + * @brief Compute the logical bitwise XOR of two fixed-point vectors. + * @param[in] pSrcA points to input vector A + * @param[in] pSrcB points to input vector B + * @param[out] pDst points to output vector + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_xor_u32( + const uint32_t * pSrcA, + const uint32_t * pSrcB, + uint32_t * pDst, + uint32_t blockSize); + + /** + * @brief Compute the logical bitwise XOR of two fixed-point vectors. + * @param[in] pSrcA points to input vector A + * @param[in] pSrcB points to input vector B + * @param[out] pDst points to output vector + * @param[in] blockSize number of samples in each vector + * @return none + */ + void arm_xor_u8( + const uint8_t * pSrcA, + const uint8_t * pSrcB, + uint8_t * pDst, + uint32_t blockSize); + + /** + * @brief Struct for specifying sorting algorithm + */ + typedef enum + { + ARM_SORT_BITONIC = 0, + /**< Bitonic sort */ + ARM_SORT_BUBBLE = 1, + /**< Bubble sort */ + ARM_SORT_HEAP = 2, + /**< Heap sort */ + ARM_SORT_INSERTION = 3, + /**< Insertion sort */ + ARM_SORT_QUICK = 4, + /**< Quick sort */ + ARM_SORT_SELECTION = 5 + /**< Selection sort */ + } arm_sort_alg; + + /** + * @brief Struct for specifying sorting algorithm + */ + typedef enum + { + ARM_SORT_DESCENDING = 0, + /**< Descending order (9 to 0) */ + ARM_SORT_ASCENDING = 1 + /**< Ascending order (0 to 9) */ + } arm_sort_dir; + + /** + * @brief Instance structure for the sorting algorithms. + */ + typedef struct + { + arm_sort_alg alg; /**< Sorting algorithm selected */ + arm_sort_dir dir; /**< Sorting order (direction) */ + } arm_sort_instance_f32; + + /** + * @param[in] S points to an instance of the sorting structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_sort_f32( + const arm_sort_instance_f32 * S, + float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + /** + * @param[in,out] S points to an instance of the sorting structure. + * @param[in] alg Selected algorithm. + * @param[in] dir Sorting order. + */ + void arm_sort_init_f32( + arm_sort_instance_f32 * S, + arm_sort_alg alg, + arm_sort_dir dir); + + /** + * @brief Instance structure for the sorting algorithms. + */ + typedef struct + { + arm_sort_dir dir; /**< Sorting order (direction) */ + float32_t * buffer; /**< Working buffer */ + } arm_merge_sort_instance_f32; + + /** + * @param[in] S points to an instance of the sorting structure. + * @param[in,out] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ + void arm_merge_sort_f32( + const arm_merge_sort_instance_f32 * S, + float32_t *pSrc, + float32_t *pDst, + uint32_t blockSize); + + /** + * @param[in,out] S points to an instance of the sorting structure. + * @param[in] dir Sorting order. + * @param[in] buffer Working buffer. + */ + void arm_merge_sort_init_f32( + arm_merge_sort_instance_f32 * S, + arm_sort_dir dir, + float32_t * buffer); + + /** + * @brief Struct for specifying cubic spline type + */ + typedef enum + { + ARM_SPLINE_NATURAL = 0, /**< Natural spline */ + ARM_SPLINE_PARABOLIC_RUNOUT = 1 /**< Parabolic runout spline */ + } arm_spline_type; + + /** + * @brief Instance structure for the floating-point cubic spline interpolation. + */ + typedef struct + { + arm_spline_type type; /**< Type (boundary conditions) */ + const float32_t * x; /**< x values */ + const float32_t * y; /**< y values */ + uint32_t n_x; /**< Number of known data points */ + float32_t * coeffs; /**< Coefficients buffer (b,c, and d) */ + } arm_spline_instance_f32; + + /** + * @brief Processing function for the floating-point cubic spline interpolation. + * @param[in] S points to an instance of the floating-point spline structure. + * @param[in] xq points to the x values ot the interpolated data points. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples of output data. + */ + void arm_spline_f32( + arm_spline_instance_f32 * S, + const float32_t * xq, + float32_t * pDst, + uint32_t blockSize); + + /** + * @brief Initialization function for the floating-point cubic spline interpolation. + * @param[in,out] S points to an instance of the floating-point spline structure. + * @param[in] type type of cubic spline interpolation (boundary conditions) + * @param[in] x points to the x values of the known data points. + * @param[in] y points to the y values of the known data points. + * @param[in] n number of known data points. + * @param[in] coeffs coefficients array for b, c, and d + * @param[in] tempBuffer buffer array for internal computations + */ + void arm_spline_init_f32( + arm_spline_instance_f32 * S, + arm_spline_type type, + const float32_t * x, + const float32_t * y, + uint32_t n, + float32_t * coeffs, + float32_t * tempBuffer); + + /** + * @brief Instance structure for the floating-point matrix structure. + */ + typedef struct + { + uint16_t numRows; /**< number of rows of the matrix. */ + uint16_t numCols; /**< number of columns of the matrix. */ + float32_t *pData; /**< points to the data of the matrix. */ + } arm_matrix_instance_f32; + + /** + * @brief Instance structure for the floating-point matrix structure. + */ + typedef struct + { + uint16_t numRows; /**< number of rows of the matrix. */ + uint16_t numCols; /**< number of columns of the matrix. */ + float64_t *pData; /**< points to the data of the matrix. */ + } arm_matrix_instance_f64; + + /** + * @brief Instance structure for the Q15 matrix structure. + */ + typedef struct + { + uint16_t numRows; /**< number of rows of the matrix. */ + uint16_t numCols; /**< number of columns of the matrix. */ + q15_t *pData; /**< points to the data of the matrix. */ + } arm_matrix_instance_q15; + + /** + * @brief Instance structure for the Q31 matrix structure. + */ + typedef struct + { + uint16_t numRows; /**< number of rows of the matrix. */ + uint16_t numCols; /**< number of columns of the matrix. */ + q31_t *pData; /**< points to the data of the matrix. */ + } arm_matrix_instance_q31; + + /** + * @brief Floating-point matrix addition. + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + */ +arm_status arm_mat_add_f32( + const arm_matrix_instance_f32 * pSrcA, + const arm_matrix_instance_f32 * pSrcB, + arm_matrix_instance_f32 * pDst); + + /** + * @brief Q15 matrix addition. + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + */ +arm_status arm_mat_add_q15( + const arm_matrix_instance_q15 * pSrcA, + const arm_matrix_instance_q15 * pSrcB, + arm_matrix_instance_q15 * pDst); + + /** + * @brief Q31 matrix addition. + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + */ +arm_status arm_mat_add_q31( + const arm_matrix_instance_q31 * pSrcA, + const arm_matrix_instance_q31 * pSrcB, + arm_matrix_instance_q31 * pDst); + + /** + * @brief Floating-point, complex, matrix multiplication. + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + */ +arm_status arm_mat_cmplx_mult_f32( + const arm_matrix_instance_f32 * pSrcA, + const arm_matrix_instance_f32 * pSrcB, + arm_matrix_instance_f32 * pDst); + + /** + * @brief Q15, complex, matrix multiplication. + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + */ +arm_status arm_mat_cmplx_mult_q15( + const arm_matrix_instance_q15 * pSrcA, + const arm_matrix_instance_q15 * pSrcB, + arm_matrix_instance_q15 * pDst, + q15_t * pScratch); + + /** + * @brief Q31, complex, matrix multiplication. + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + */ +arm_status arm_mat_cmplx_mult_q31( + const arm_matrix_instance_q31 * pSrcA, + const arm_matrix_instance_q31 * pSrcB, + arm_matrix_instance_q31 * pDst); + + /** + * @brief Floating-point matrix transpose. + * @param[in] pSrc points to the input matrix + * @param[out] pDst points to the output matrix + * @return The function returns either ARM_MATH_SIZE_MISMATCH + * or ARM_MATH_SUCCESS based on the outcome of size checking. + */ +arm_status arm_mat_trans_f32( + const arm_matrix_instance_f32 * pSrc, + arm_matrix_instance_f32 * pDst); + + /** + * @brief Q15 matrix transpose. + * @param[in] pSrc points to the input matrix + * @param[out] pDst points to the output matrix + * @return The function returns either ARM_MATH_SIZE_MISMATCH + * or ARM_MATH_SUCCESS based on the outcome of size checking. + */ +arm_status arm_mat_trans_q15( + const arm_matrix_instance_q15 * pSrc, + arm_matrix_instance_q15 * pDst); + + /** + * @brief Q31 matrix transpose. + * @param[in] pSrc points to the input matrix + * @param[out] pDst points to the output matrix + * @return The function returns either ARM_MATH_SIZE_MISMATCH + * or ARM_MATH_SUCCESS based on the outcome of size checking. + */ +arm_status arm_mat_trans_q31( + const arm_matrix_instance_q31 * pSrc, + arm_matrix_instance_q31 * pDst); + + /** + * @brief Floating-point matrix multiplication + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + */ +arm_status arm_mat_mult_f32( + const arm_matrix_instance_f32 * pSrcA, + const arm_matrix_instance_f32 * pSrcB, + arm_matrix_instance_f32 * pDst); + + /** + * @brief Q15 matrix multiplication + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @param[in] pState points to the array for storing intermediate results + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + */ +arm_status arm_mat_mult_q15( + const arm_matrix_instance_q15 * pSrcA, + const arm_matrix_instance_q15 * pSrcB, + arm_matrix_instance_q15 * pDst, + q15_t * pState); + + /** + * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @param[in] pState points to the array for storing intermediate results + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + */ +arm_status arm_mat_mult_fast_q15( + const arm_matrix_instance_q15 * pSrcA, + const arm_matrix_instance_q15 * pSrcB, + arm_matrix_instance_q15 * pDst, + q15_t * pState); + + /** + * @brief Q31 matrix multiplication + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + */ +arm_status arm_mat_mult_q31( + const arm_matrix_instance_q31 * pSrcA, + const arm_matrix_instance_q31 * pSrcB, + arm_matrix_instance_q31 * pDst); + + /** + * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + */ +arm_status arm_mat_mult_fast_q31( + const arm_matrix_instance_q31 * pSrcA, + const arm_matrix_instance_q31 * pSrcB, + arm_matrix_instance_q31 * pDst); + + /** + * @brief Floating-point matrix subtraction + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + */ +arm_status arm_mat_sub_f32( + const arm_matrix_instance_f32 * pSrcA, + const arm_matrix_instance_f32 * pSrcB, + arm_matrix_instance_f32 * pDst); + + /** + * @brief Q15 matrix subtraction + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + */ +arm_status arm_mat_sub_q15( + const arm_matrix_instance_q15 * pSrcA, + const arm_matrix_instance_q15 * pSrcB, + arm_matrix_instance_q15 * pDst); + + /** + * @brief Q31 matrix subtraction + * @param[in] pSrcA points to the first input matrix structure + * @param[in] pSrcB points to the second input matrix structure + * @param[out] pDst points to output matrix structure + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + */ +arm_status arm_mat_sub_q31( + const arm_matrix_instance_q31 * pSrcA, + const arm_matrix_instance_q31 * pSrcB, + arm_matrix_instance_q31 * pDst); + + /** + * @brief Floating-point matrix scaling. + * @param[in] pSrc points to the input matrix + * @param[in] scale scale factor + * @param[out] pDst points to the output matrix + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + */ +arm_status arm_mat_scale_f32( + const arm_matrix_instance_f32 * pSrc, + float32_t scale, + arm_matrix_instance_f32 * pDst); + + /** + * @brief Q15 matrix scaling. + * @param[in] pSrc points to input matrix + * @param[in] scaleFract fractional portion of the scale factor + * @param[in] shift number of bits to shift the result by + * @param[out] pDst points to output matrix + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + */ +arm_status arm_mat_scale_q15( + const arm_matrix_instance_q15 * pSrc, + q15_t scaleFract, + int32_t shift, + arm_matrix_instance_q15 * pDst); + + /** + * @brief Q31 matrix scaling. + * @param[in] pSrc points to input matrix + * @param[in] scaleFract fractional portion of the scale factor + * @param[in] shift number of bits to shift the result by + * @param[out] pDst points to output matrix structure + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + */ +arm_status arm_mat_scale_q31( + const arm_matrix_instance_q31 * pSrc, + q31_t scaleFract, + int32_t shift, + arm_matrix_instance_q31 * pDst); + + /** + * @brief Q31 matrix initialization. + * @param[in,out] S points to an instance of the floating-point matrix structure. + * @param[in] nRows number of rows in the matrix. + * @param[in] nColumns number of columns in the matrix. + * @param[in] pData points to the matrix data array. + */ +void arm_mat_init_q31( + arm_matrix_instance_q31 * S, + uint16_t nRows, + uint16_t nColumns, + q31_t * pData); + + /** + * @brief Q15 matrix initialization. + * @param[in,out] S points to an instance of the floating-point matrix structure. + * @param[in] nRows number of rows in the matrix. + * @param[in] nColumns number of columns in the matrix. + * @param[in] pData points to the matrix data array. + */ +void arm_mat_init_q15( + arm_matrix_instance_q15 * S, + uint16_t nRows, + uint16_t nColumns, + q15_t * pData); + + /** + * @brief Floating-point matrix initialization. + * @param[in,out] S points to an instance of the floating-point matrix structure. + * @param[in] nRows number of rows in the matrix. + * @param[in] nColumns number of columns in the matrix. + * @param[in] pData points to the matrix data array. + */ +void arm_mat_init_f32( + arm_matrix_instance_f32 * S, + uint16_t nRows, + uint16_t nColumns, + float32_t * pData); + + + /** + * @brief Instance structure for the Q15 PID Control. + */ + typedef struct + { + q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ +#if !defined (ARM_MATH_DSP) + q15_t A1; + q15_t A2; +#else + q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/ +#endif + q15_t state[3]; /**< The state array of length 3. */ + q15_t Kp; /**< The proportional gain. */ + q15_t Ki; /**< The integral gain. */ + q15_t Kd; /**< The derivative gain. */ + } arm_pid_instance_q15; + + /** + * @brief Instance structure for the Q31 PID Control. + */ + typedef struct + { + q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ + q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ + q31_t A2; /**< The derived gain, A2 = Kd . */ + q31_t state[3]; /**< The state array of length 3. */ + q31_t Kp; /**< The proportional gain. */ + q31_t Ki; /**< The integral gain. */ + q31_t Kd; /**< The derivative gain. */ + } arm_pid_instance_q31; + + /** + * @brief Instance structure for the floating-point PID Control. + */ + typedef struct + { + float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ + float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ + float32_t A2; /**< The derived gain, A2 = Kd . */ + float32_t state[3]; /**< The state array of length 3. */ + float32_t Kp; /**< The proportional gain. */ + float32_t Ki; /**< The integral gain. */ + float32_t Kd; /**< The derivative gain. */ + } arm_pid_instance_f32; + + + + /** + * @brief Initialization function for the floating-point PID Control. + * @param[in,out] S points to an instance of the PID structure. + * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. + */ + void arm_pid_init_f32( + arm_pid_instance_f32 * S, + int32_t resetStateFlag); + + + /** + * @brief Reset function for the floating-point PID Control. + * @param[in,out] S is an instance of the floating-point PID Control structure + */ + void arm_pid_reset_f32( + arm_pid_instance_f32 * S); + + + /** + * @brief Initialization function for the Q31 PID Control. + * @param[in,out] S points to an instance of the Q15 PID structure. + * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. + */ + void arm_pid_init_q31( + arm_pid_instance_q31 * S, + int32_t resetStateFlag); + + + /** + * @brief Reset function for the Q31 PID Control. + * @param[in,out] S points to an instance of the Q31 PID Control structure + */ + + void arm_pid_reset_q31( + arm_pid_instance_q31 * S); + + + /** + * @brief Initialization function for the Q15 PID Control. + * @param[in,out] S points to an instance of the Q15 PID structure. + * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. + */ + void arm_pid_init_q15( + arm_pid_instance_q15 * S, + int32_t resetStateFlag); + + + /** + * @brief Reset function for the Q15 PID Control. + * @param[in,out] S points to an instance of the q15 PID Control structure + */ + void arm_pid_reset_q15( + arm_pid_instance_q15 * S); + + + /** + * @brief Instance structure for the floating-point Linear Interpolate function. + */ + typedef struct + { + uint32_t nValues; /**< nValues */ + float32_t x1; /**< x1 */ + float32_t xSpacing; /**< xSpacing */ + float32_t *pYData; /**< pointer to the table of Y values */ + } arm_linear_interp_instance_f32; + + /** + * @brief Instance structure for the floating-point bilinear interpolation function. + */ + typedef struct + { + uint16_t numRows; /**< number of rows in the data table. */ + uint16_t numCols; /**< number of columns in the data table. */ + float32_t *pData; /**< points to the data table. */ + } arm_bilinear_interp_instance_f32; + + /** + * @brief Instance structure for the Q31 bilinear interpolation function. + */ + typedef struct + { + uint16_t numRows; /**< number of rows in the data table. */ + uint16_t numCols; /**< number of columns in the data table. */ + q31_t *pData; /**< points to the data table. */ + } arm_bilinear_interp_instance_q31; + + /** + * @brief Instance structure for the Q15 bilinear interpolation function. + */ + typedef struct + { + uint16_t numRows; /**< number of rows in the data table. */ + uint16_t numCols; /**< number of columns in the data table. */ + q15_t *pData; /**< points to the data table. */ + } arm_bilinear_interp_instance_q15; + + /** + * @brief Instance structure for the Q15 bilinear interpolation function. + */ + typedef struct + { + uint16_t numRows; /**< number of rows in the data table. */ + uint16_t numCols; /**< number of columns in the data table. */ + q7_t *pData; /**< points to the data table. */ + } arm_bilinear_interp_instance_q7; + + + /** + * @brief Q7 vector multiplication. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_mult_q7( + const q7_t * pSrcA, + const q7_t * pSrcB, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Q15 vector multiplication. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_mult_q15( + const q15_t * pSrcA, + const q15_t * pSrcB, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Q31 vector multiplication. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_mult_q31( + const q31_t * pSrcA, + const q31_t * pSrcB, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Floating-point vector multiplication. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_mult_f32( + const float32_t * pSrcA, + const float32_t * pSrcB, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @brief Instance structure for the Q15 CFFT/CIFFT function. + */ + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ + uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ + const q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ + } arm_cfft_radix2_instance_q15; + +/* Deprecated */ + arm_status arm_cfft_radix2_init_q15( + arm_cfft_radix2_instance_q15 * S, + uint16_t fftLen, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + +/* Deprecated */ + void arm_cfft_radix2_q15( + const arm_cfft_radix2_instance_q15 * S, + q15_t * pSrc); + + + /** + * @brief Instance structure for the Q15 CFFT/CIFFT function. + */ + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ + uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ + const q15_t *pTwiddle; /**< points to the twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ + } arm_cfft_radix4_instance_q15; + +/* Deprecated */ + arm_status arm_cfft_radix4_init_q15( + arm_cfft_radix4_instance_q15 * S, + uint16_t fftLen, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + +/* Deprecated */ + void arm_cfft_radix4_q15( + const arm_cfft_radix4_instance_q15 * S, + q15_t * pSrc); + + /** + * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function. + */ + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ + uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ + const q31_t *pTwiddle; /**< points to the Twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ + } arm_cfft_radix2_instance_q31; + +/* Deprecated */ + arm_status arm_cfft_radix2_init_q31( + arm_cfft_radix2_instance_q31 * S, + uint16_t fftLen, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + +/* Deprecated */ + void arm_cfft_radix2_q31( + const arm_cfft_radix2_instance_q31 * S, + q31_t * pSrc); + + /** + * @brief Instance structure for the Q31 CFFT/CIFFT function. + */ + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ + uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ + const q31_t *pTwiddle; /**< points to the twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ + } arm_cfft_radix4_instance_q31; + +/* Deprecated */ + void arm_cfft_radix4_q31( + const arm_cfft_radix4_instance_q31 * S, + q31_t * pSrc); + +/* Deprecated */ + arm_status arm_cfft_radix4_init_q31( + arm_cfft_radix4_instance_q31 * S, + uint16_t fftLen, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + + /** + * @brief Instance structure for the floating-point CFFT/CIFFT function. + */ + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ + uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ + const float32_t *pTwiddle; /**< points to the Twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ + float32_t onebyfftLen; /**< value of 1/fftLen. */ + } arm_cfft_radix2_instance_f32; + + +/* Deprecated */ + arm_status arm_cfft_radix2_init_f32( + arm_cfft_radix2_instance_f32 * S, + uint16_t fftLen, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + +/* Deprecated */ + void arm_cfft_radix2_f32( + const arm_cfft_radix2_instance_f32 * S, + float32_t * pSrc); + + /** + * @brief Instance structure for the floating-point CFFT/CIFFT function. + */ + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ + uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ + const float32_t *pTwiddle; /**< points to the Twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ + float32_t onebyfftLen; /**< value of 1/fftLen. */ + } arm_cfft_radix4_instance_f32; + + + +/* Deprecated */ + arm_status arm_cfft_radix4_init_f32( + arm_cfft_radix4_instance_f32 * S, + uint16_t fftLen, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + +/* Deprecated */ + void arm_cfft_radix4_f32( + const arm_cfft_radix4_instance_f32 * S, + float32_t * pSrc); + + /** + * @brief Instance structure for the fixed-point CFFT/CIFFT function. + */ + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + const q15_t *pTwiddle; /**< points to the Twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t bitRevLength; /**< bit reversal table length. */ +#if defined(ARM_MATH_MVEI) + const uint32_t *rearranged_twiddle_tab_stride1_arr; /**< Per stage reordered twiddle pointer (offset 1) */ \ + const uint32_t *rearranged_twiddle_tab_stride2_arr; /**< Per stage reordered twiddle pointer (offset 2) */ \ + const uint32_t *rearranged_twiddle_tab_stride3_arr; /**< Per stage reordered twiddle pointer (offset 3) */ \ + const q15_t *rearranged_twiddle_stride1; /**< reordered twiddle offset 1 storage */ \ + const q15_t *rearranged_twiddle_stride2; /**< reordered twiddle offset 2 storage */ \ + const q15_t *rearranged_twiddle_stride3; +#endif + } arm_cfft_instance_q15; + +arm_status arm_cfft_init_q15( + arm_cfft_instance_q15 * S, + uint16_t fftLen); + +void arm_cfft_q15( + const arm_cfft_instance_q15 * S, + q15_t * p1, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + + /** + * @brief Instance structure for the fixed-point CFFT/CIFFT function. + */ + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + const q31_t *pTwiddle; /**< points to the Twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t bitRevLength; /**< bit reversal table length. */ +#if defined(ARM_MATH_MVEI) + const uint32_t *rearranged_twiddle_tab_stride1_arr; /**< Per stage reordered twiddle pointer (offset 1) */ \ + const uint32_t *rearranged_twiddle_tab_stride2_arr; /**< Per stage reordered twiddle pointer (offset 2) */ \ + const uint32_t *rearranged_twiddle_tab_stride3_arr; /**< Per stage reordered twiddle pointer (offset 3) */ \ + const q31_t *rearranged_twiddle_stride1; /**< reordered twiddle offset 1 storage */ \ + const q31_t *rearranged_twiddle_stride2; /**< reordered twiddle offset 2 storage */ \ + const q31_t *rearranged_twiddle_stride3; +#endif + } arm_cfft_instance_q31; + +arm_status arm_cfft_init_q31( + arm_cfft_instance_q31 * S, + uint16_t fftLen); + +void arm_cfft_q31( + const arm_cfft_instance_q31 * S, + q31_t * p1, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + + /** + * @brief Instance structure for the floating-point CFFT/CIFFT function. + */ + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + const float32_t *pTwiddle; /**< points to the Twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t bitRevLength; /**< bit reversal table length. */ +#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) + const uint32_t *rearranged_twiddle_tab_stride1_arr; /**< Per stage reordered twiddle pointer (offset 1) */ \ + const uint32_t *rearranged_twiddle_tab_stride2_arr; /**< Per stage reordered twiddle pointer (offset 2) */ \ + const uint32_t *rearranged_twiddle_tab_stride3_arr; /**< Per stage reordered twiddle pointer (offset 3) */ \ + const float32_t *rearranged_twiddle_stride1; /**< reordered twiddle offset 1 storage */ \ + const float32_t *rearranged_twiddle_stride2; /**< reordered twiddle offset 2 storage */ \ + const float32_t *rearranged_twiddle_stride3; +#endif + } arm_cfft_instance_f32; + + + + arm_status arm_cfft_init_f32( + arm_cfft_instance_f32 * S, + uint16_t fftLen); + + void arm_cfft_f32( + const arm_cfft_instance_f32 * S, + float32_t * p1, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + + + /** + * @brief Instance structure for the Double Precision Floating-point CFFT/CIFFT function. + */ + typedef struct + { + uint16_t fftLen; /**< length of the FFT. */ + const float64_t *pTwiddle; /**< points to the Twiddle factor table. */ + const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ + uint16_t bitRevLength; /**< bit reversal table length. */ + } arm_cfft_instance_f64; + + arm_status arm_cfft_init_f64( + arm_cfft_instance_f64 * S, + uint16_t fftLen); + + void arm_cfft_f64( + const arm_cfft_instance_f64 * S, + float64_t * p1, + uint8_t ifftFlag, + uint8_t bitReverseFlag); + + /** + * @brief Instance structure for the Q15 RFFT/RIFFT function. + */ + typedef struct + { + uint32_t fftLenReal; /**< length of the real FFT. */ + uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ + uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ + uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + const q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ + const q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ +#if defined(ARM_MATH_MVEI) + arm_cfft_instance_q15 cfftInst; +#else + const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */ +#endif + } arm_rfft_instance_q15; + + arm_status arm_rfft_init_q15( + arm_rfft_instance_q15 * S, + uint32_t fftLenReal, + uint32_t ifftFlagR, + uint32_t bitReverseFlag); + + void arm_rfft_q15( + const arm_rfft_instance_q15 * S, + q15_t * pSrc, + q15_t * pDst); + + /** + * @brief Instance structure for the Q31 RFFT/RIFFT function. + */ + typedef struct + { + uint32_t fftLenReal; /**< length of the real FFT. */ + uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ + uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ + uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + const q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ + const q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ +#if defined(ARM_MATH_MVEI) + arm_cfft_instance_q31 cfftInst; +#else + const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */ +#endif + } arm_rfft_instance_q31; + + arm_status arm_rfft_init_q31( + arm_rfft_instance_q31 * S, + uint32_t fftLenReal, + uint32_t ifftFlagR, + uint32_t bitReverseFlag); + + void arm_rfft_q31( + const arm_rfft_instance_q31 * S, + q31_t * pSrc, + q31_t * pDst); + + /** + * @brief Instance structure for the floating-point RFFT/RIFFT function. + */ + typedef struct + { + uint32_t fftLenReal; /**< length of the real FFT. */ + uint16_t fftLenBy2; /**< length of the complex FFT. */ + uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ + uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ + uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ + const float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ + const float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ + arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ + } arm_rfft_instance_f32; + + arm_status arm_rfft_init_f32( + arm_rfft_instance_f32 * S, + arm_cfft_radix4_instance_f32 * S_CFFT, + uint32_t fftLenReal, + uint32_t ifftFlagR, + uint32_t bitReverseFlag); + + void arm_rfft_f32( + const arm_rfft_instance_f32 * S, + float32_t * pSrc, + float32_t * pDst); + + /** + * @brief Instance structure for the Double Precision Floating-point RFFT/RIFFT function. + */ +typedef struct + { + arm_cfft_instance_f64 Sint; /**< Internal CFFT structure. */ + uint16_t fftLenRFFT; /**< length of the real sequence */ + const float64_t * pTwiddleRFFT; /**< Twiddle factors real stage */ + } arm_rfft_fast_instance_f64 ; + +arm_status arm_rfft_fast_init_f64 ( + arm_rfft_fast_instance_f64 * S, + uint16_t fftLen); + + +void arm_rfft_fast_f64( + arm_rfft_fast_instance_f64 * S, + float64_t * p, float64_t * pOut, + uint8_t ifftFlag); + + + /** + * @brief Instance structure for the floating-point RFFT/RIFFT function. + */ +typedef struct + { + arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */ + uint16_t fftLenRFFT; /**< length of the real sequence */ + const float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */ + } arm_rfft_fast_instance_f32 ; + +arm_status arm_rfft_fast_init_f32 ( + arm_rfft_fast_instance_f32 * S, + uint16_t fftLen); + + + void arm_rfft_fast_f32( + const arm_rfft_fast_instance_f32 * S, + float32_t * p, float32_t * pOut, + uint8_t ifftFlag); + + /** + * @brief Instance structure for the floating-point DCT4/IDCT4 function. + */ + typedef struct + { + uint16_t N; /**< length of the DCT4. */ + uint16_t Nby2; /**< half of the length of the DCT4. */ + float32_t normalize; /**< normalizing factor. */ + const float32_t *pTwiddle; /**< points to the twiddle factor table. */ + const float32_t *pCosFactor; /**< points to the cosFactor table. */ + arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */ + arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ + } arm_dct4_instance_f32; + + + /** + * @brief Initialization function for the floating-point DCT4/IDCT4. + * @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure. + * @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure. + * @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure. + * @param[in] N length of the DCT4. + * @param[in] Nby2 half of the length of the DCT4. + * @param[in] normalize normalizing factor. + * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLenReal is not a supported transform length. + */ + arm_status arm_dct4_init_f32( + arm_dct4_instance_f32 * S, + arm_rfft_instance_f32 * S_RFFT, + arm_cfft_radix4_instance_f32 * S_CFFT, + uint16_t N, + uint16_t Nby2, + float32_t normalize); + + + /** + * @brief Processing function for the floating-point DCT4/IDCT4. + * @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure. + * @param[in] pState points to state buffer. + * @param[in,out] pInlineBuffer points to the in-place input and output buffer. + */ + void arm_dct4_f32( + const arm_dct4_instance_f32 * S, + float32_t * pState, + float32_t * pInlineBuffer); + + + /** + * @brief Instance structure for the Q31 DCT4/IDCT4 function. + */ + typedef struct + { + uint16_t N; /**< length of the DCT4. */ + uint16_t Nby2; /**< half of the length of the DCT4. */ + q31_t normalize; /**< normalizing factor. */ + const q31_t *pTwiddle; /**< points to the twiddle factor table. */ + const q31_t *pCosFactor; /**< points to the cosFactor table. */ + arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */ + arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */ + } arm_dct4_instance_q31; + + + /** + * @brief Initialization function for the Q31 DCT4/IDCT4. + * @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure. + * @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure + * @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure + * @param[in] N length of the DCT4. + * @param[in] Nby2 half of the length of the DCT4. + * @param[in] normalize normalizing factor. + * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if N is not a supported transform length. + */ + arm_status arm_dct4_init_q31( + arm_dct4_instance_q31 * S, + arm_rfft_instance_q31 * S_RFFT, + arm_cfft_radix4_instance_q31 * S_CFFT, + uint16_t N, + uint16_t Nby2, + q31_t normalize); + + + /** + * @brief Processing function for the Q31 DCT4/IDCT4. + * @param[in] S points to an instance of the Q31 DCT4 structure. + * @param[in] pState points to state buffer. + * @param[in,out] pInlineBuffer points to the in-place input and output buffer. + */ + void arm_dct4_q31( + const arm_dct4_instance_q31 * S, + q31_t * pState, + q31_t * pInlineBuffer); + + + /** + * @brief Instance structure for the Q15 DCT4/IDCT4 function. + */ + typedef struct + { + uint16_t N; /**< length of the DCT4. */ + uint16_t Nby2; /**< half of the length of the DCT4. */ + q15_t normalize; /**< normalizing factor. */ + const q15_t *pTwiddle; /**< points to the twiddle factor table. */ + const q15_t *pCosFactor; /**< points to the cosFactor table. */ + arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */ + arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */ + } arm_dct4_instance_q15; + + + /** + * @brief Initialization function for the Q15 DCT4/IDCT4. + * @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure. + * @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure. + * @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure. + * @param[in] N length of the DCT4. + * @param[in] Nby2 half of the length of the DCT4. + * @param[in] normalize normalizing factor. + * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if N is not a supported transform length. + */ + arm_status arm_dct4_init_q15( + arm_dct4_instance_q15 * S, + arm_rfft_instance_q15 * S_RFFT, + arm_cfft_radix4_instance_q15 * S_CFFT, + uint16_t N, + uint16_t Nby2, + q15_t normalize); + + + /** + * @brief Processing function for the Q15 DCT4/IDCT4. + * @param[in] S points to an instance of the Q15 DCT4 structure. + * @param[in] pState points to state buffer. + * @param[in,out] pInlineBuffer points to the in-place input and output buffer. + */ + void arm_dct4_q15( + const arm_dct4_instance_q15 * S, + q15_t * pState, + q15_t * pInlineBuffer); + + + /** + * @brief Floating-point vector addition. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_add_f32( + const float32_t * pSrcA, + const float32_t * pSrcB, + float32_t * pDst, + uint32_t blockSize); + + + + /** + * @brief Q7 vector addition. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_add_q7( + const q7_t * pSrcA, + const q7_t * pSrcB, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Q15 vector addition. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_add_q15( + const q15_t * pSrcA, + const q15_t * pSrcB, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Q31 vector addition. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_add_q31( + const q31_t * pSrcA, + const q31_t * pSrcB, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Floating-point vector subtraction. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_sub_f32( + const float32_t * pSrcA, + const float32_t * pSrcB, + float32_t * pDst, + uint32_t blockSize); + + + + /** + * @brief Q7 vector subtraction. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_sub_q7( + const q7_t * pSrcA, + const q7_t * pSrcB, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Q15 vector subtraction. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_sub_q15( + const q15_t * pSrcA, + const q15_t * pSrcB, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Q31 vector subtraction. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in each vector + */ + void arm_sub_q31( + const q31_t * pSrcA, + const q31_t * pSrcB, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Multiplies a floating-point vector by a scalar. + * @param[in] pSrc points to the input vector + * @param[in] scale scale factor to be applied + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_scale_f32( + const float32_t * pSrc, + float32_t scale, + float32_t * pDst, + uint32_t blockSize); + + + + /** + * @brief Multiplies a Q7 vector by a scalar. + * @param[in] pSrc points to the input vector + * @param[in] scaleFract fractional portion of the scale value + * @param[in] shift number of bits to shift the result by + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_scale_q7( + const q7_t * pSrc, + q7_t scaleFract, + int8_t shift, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Multiplies a Q15 vector by a scalar. + * @param[in] pSrc points to the input vector + * @param[in] scaleFract fractional portion of the scale value + * @param[in] shift number of bits to shift the result by + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_scale_q15( + const q15_t * pSrc, + q15_t scaleFract, + int8_t shift, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Multiplies a Q31 vector by a scalar. + * @param[in] pSrc points to the input vector + * @param[in] scaleFract fractional portion of the scale value + * @param[in] shift number of bits to shift the result by + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_scale_q31( + const q31_t * pSrc, + q31_t scaleFract, + int8_t shift, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Q7 vector absolute value. + * @param[in] pSrc points to the input buffer + * @param[out] pDst points to the output buffer + * @param[in] blockSize number of samples in each vector + */ + void arm_abs_q7( + const q7_t * pSrc, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Floating-point vector absolute value. + * @param[in] pSrc points to the input buffer + * @param[out] pDst points to the output buffer + * @param[in] blockSize number of samples in each vector + */ + void arm_abs_f32( + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + + + /** + * @brief Q15 vector absolute value. + * @param[in] pSrc points to the input buffer + * @param[out] pDst points to the output buffer + * @param[in] blockSize number of samples in each vector + */ + void arm_abs_q15( + const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Q31 vector absolute value. + * @param[in] pSrc points to the input buffer + * @param[out] pDst points to the output buffer + * @param[in] blockSize number of samples in each vector + */ + void arm_abs_q31( + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Dot product of floating-point vectors. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[out] result output result returned here + */ + void arm_dot_prod_f32( + const float32_t * pSrcA, + const float32_t * pSrcB, + uint32_t blockSize, + float32_t * result); + + + + /** + * @brief Dot product of Q7 vectors. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[out] result output result returned here + */ + void arm_dot_prod_q7( + const q7_t * pSrcA, + const q7_t * pSrcB, + uint32_t blockSize, + q31_t * result); + + + /** + * @brief Dot product of Q15 vectors. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[out] result output result returned here + */ + void arm_dot_prod_q15( + const q15_t * pSrcA, + const q15_t * pSrcB, + uint32_t blockSize, + q63_t * result); + + + /** + * @brief Dot product of Q31 vectors. + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[out] result output result returned here + */ + void arm_dot_prod_q31( + const q31_t * pSrcA, + const q31_t * pSrcB, + uint32_t blockSize, + q63_t * result); + + + /** + * @brief Shifts the elements of a Q7 vector a specified number of bits. + * @param[in] pSrc points to the input vector + * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_shift_q7( + const q7_t * pSrc, + int8_t shiftBits, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Shifts the elements of a Q15 vector a specified number of bits. + * @param[in] pSrc points to the input vector + * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_shift_q15( + const q15_t * pSrc, + int8_t shiftBits, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Shifts the elements of a Q31 vector a specified number of bits. + * @param[in] pSrc points to the input vector + * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_shift_q31( + const q31_t * pSrc, + int8_t shiftBits, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Adds a constant offset to a floating-point vector. + * @param[in] pSrc points to the input vector + * @param[in] offset is the offset to be added + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_offset_f32( + const float32_t * pSrc, + float32_t offset, + float32_t * pDst, + uint32_t blockSize); + + + + /** + * @brief Adds a constant offset to a Q7 vector. + * @param[in] pSrc points to the input vector + * @param[in] offset is the offset to be added + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_offset_q7( + const q7_t * pSrc, + q7_t offset, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Adds a constant offset to a Q15 vector. + * @param[in] pSrc points to the input vector + * @param[in] offset is the offset to be added + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_offset_q15( + const q15_t * pSrc, + q15_t offset, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Adds a constant offset to a Q31 vector. + * @param[in] pSrc points to the input vector + * @param[in] offset is the offset to be added + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_offset_q31( + const q31_t * pSrc, + q31_t offset, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Negates the elements of a floating-point vector. + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_negate_f32( + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @brief Negates the elements of a Q7 vector. + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_negate_q7( + const q7_t * pSrc, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Negates the elements of a Q15 vector. + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_negate_q15( + const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Negates the elements of a Q31 vector. + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] blockSize number of samples in the vector + */ + void arm_negate_q31( + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Copies the elements of a floating-point vector. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process + */ + void arm_copy_f32( + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @brief Copies the elements of a Q7 vector. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process + */ + void arm_copy_q7( + const q7_t * pSrc, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Copies the elements of a Q15 vector. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process + */ + void arm_copy_q15( + const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Copies the elements of a Q31 vector. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process + */ + void arm_copy_q31( + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Fills a constant value into a floating-point vector. + * @param[in] value input value to be filled + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process + */ + void arm_fill_f32( + float32_t value, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @brief Fills a constant value into a Q7 vector. + * @param[in] value input value to be filled + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process + */ + void arm_fill_q7( + q7_t value, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Fills a constant value into a Q15 vector. + * @param[in] value input value to be filled + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process + */ + void arm_fill_q15( + q15_t value, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Fills a constant value into a Q31 vector. + * @param[in] value input value to be filled + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process + */ + void arm_fill_q31( + q31_t value, + q31_t * pDst, + uint32_t blockSize); + + +/** + * @brief Convolution of floating-point sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. + */ + void arm_conv_f32( + const float32_t * pSrcA, + uint32_t srcALen, + const float32_t * pSrcB, + uint32_t srcBLen, + float32_t * pDst); + + + /** + * @brief Convolution of Q15 sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). + */ + void arm_conv_opt_q15( + const q15_t * pSrcA, + uint32_t srcALen, + const q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + q15_t * pScratch1, + q15_t * pScratch2); + + +/** + * @brief Convolution of Q15 sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. + */ + void arm_conv_q15( + const q15_t * pSrcA, + uint32_t srcALen, + const q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst); + + + /** + * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + */ + void arm_conv_fast_q15( + const q15_t * pSrcA, + uint32_t srcALen, + const q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst); + + + /** + * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). + */ + void arm_conv_fast_opt_q15( + const q15_t * pSrcA, + uint32_t srcALen, + const q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + q15_t * pScratch1, + q15_t * pScratch2); + + + /** + * @brief Convolution of Q31 sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + */ + void arm_conv_q31( + const q31_t * pSrcA, + uint32_t srcALen, + const q31_t * pSrcB, + uint32_t srcBLen, + q31_t * pDst); + + + /** + * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + */ + void arm_conv_fast_q31( + const q31_t * pSrcA, + uint32_t srcALen, + const q31_t * pSrcB, + uint32_t srcBLen, + q31_t * pDst); + + + /** + * @brief Convolution of Q7 sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). + */ + void arm_conv_opt_q7( + const q7_t * pSrcA, + uint32_t srcALen, + const q7_t * pSrcB, + uint32_t srcBLen, + q7_t * pDst, + q15_t * pScratch1, + q15_t * pScratch2); + + + /** + * @brief Convolution of Q7 sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. + */ + void arm_conv_q7( + const q7_t * pSrcA, + uint32_t srcALen, + const q7_t * pSrcB, + uint32_t srcBLen, + q7_t * pDst); + + + /** + * @brief Partial convolution of floating-point sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + arm_status arm_conv_partial_f32( + const float32_t * pSrcA, + uint32_t srcALen, + const float32_t * pSrcB, + uint32_t srcBLen, + float32_t * pDst, + uint32_t firstIndex, + uint32_t numPoints); + + + /** + * @brief Partial convolution of Q15 sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + arm_status arm_conv_partial_opt_q15( + const q15_t * pSrcA, + uint32_t srcALen, + const q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + uint32_t firstIndex, + uint32_t numPoints, + q15_t * pScratch1, + q15_t * pScratch2); + + + /** + * @brief Partial convolution of Q15 sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + arm_status arm_conv_partial_q15( + const q15_t * pSrcA, + uint32_t srcALen, + const q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + uint32_t firstIndex, + uint32_t numPoints); + + + /** + * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + arm_status arm_conv_partial_fast_q15( + const q15_t * pSrcA, + uint32_t srcALen, + const q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + uint32_t firstIndex, + uint32_t numPoints); + + + /** + * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + arm_status arm_conv_partial_fast_opt_q15( + const q15_t * pSrcA, + uint32_t srcALen, + const q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + uint32_t firstIndex, + uint32_t numPoints, + q15_t * pScratch1, + q15_t * pScratch2); + + + /** + * @brief Partial convolution of Q31 sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + arm_status arm_conv_partial_q31( + const q31_t * pSrcA, + uint32_t srcALen, + const q31_t * pSrcB, + uint32_t srcBLen, + q31_t * pDst, + uint32_t firstIndex, + uint32_t numPoints); + + + /** + * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + arm_status arm_conv_partial_fast_q31( + const q31_t * pSrcA, + uint32_t srcALen, + const q31_t * pSrcB, + uint32_t srcBLen, + q31_t * pDst, + uint32_t firstIndex, + uint32_t numPoints); + + + /** + * @brief Partial convolution of Q7 sequences + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + arm_status arm_conv_partial_opt_q7( + const q7_t * pSrcA, + uint32_t srcALen, + const q7_t * pSrcB, + uint32_t srcBLen, + q7_t * pDst, + uint32_t firstIndex, + uint32_t numPoints, + q15_t * pScratch1, + q15_t * pScratch2); + + +/** + * @brief Partial convolution of Q7 sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data + * @param[in] firstIndex is the first output sample to start with. + * @param[in] numPoints is the number of output points to be computed. + * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. + */ + arm_status arm_conv_partial_q7( + const q7_t * pSrcA, + uint32_t srcALen, + const q7_t * pSrcB, + uint32_t srcBLen, + q7_t * pDst, + uint32_t firstIndex, + uint32_t numPoints); + + + /** + * @brief Instance structure for the Q15 FIR decimator. + */ + typedef struct + { + uint8_t M; /**< decimation factor. */ + uint16_t numTaps; /**< number of coefficients in the filter. */ + const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + } arm_fir_decimate_instance_q15; + + /** + * @brief Instance structure for the Q31 FIR decimator. + */ + typedef struct + { + uint8_t M; /**< decimation factor. */ + uint16_t numTaps; /**< number of coefficients in the filter. */ + const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + } arm_fir_decimate_instance_q31; + +/** + @brief Instance structure for floating-point FIR decimator. + */ +typedef struct + { + uint8_t M; /**< decimation factor. */ + uint16_t numTaps; /**< number of coefficients in the filter. */ + const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + } arm_fir_decimate_instance_f32; + + +/** + @brief Processing function for floating-point FIR decimator. + @param[in] S points to an instance of the floating-point FIR decimator structure + @param[in] pSrc points to the block of input data + @param[out] pDst points to the block of output data + @param[in] blockSize number of samples to process + */ +void arm_fir_decimate_f32( + const arm_fir_decimate_instance_f32 * S, + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + +/** + @brief Initialization function for the floating-point FIR decimator. + @param[in,out] S points to an instance of the floating-point FIR decimator structure + @param[in] numTaps number of coefficients in the filter + @param[in] M decimation factor + @param[in] pCoeffs points to the filter coefficients + @param[in] pState points to the state buffer + @param[in] blockSize number of input samples to process per call + @return execution status + - \ref ARM_MATH_SUCCESS : Operation successful + - \ref ARM_MATH_LENGTH_ERROR : blockSize is not a multiple of M + */ +arm_status arm_fir_decimate_init_f32( + arm_fir_decimate_instance_f32 * S, + uint16_t numTaps, + uint8_t M, + const float32_t * pCoeffs, + float32_t * pState, + uint32_t blockSize); + + + /** + * @brief Processing function for the Q15 FIR decimator. + * @param[in] S points to an instance of the Q15 FIR decimator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of input samples to process per call. + */ + void arm_fir_decimate_q15( + const arm_fir_decimate_instance_q15 * S, + const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. + * @param[in] S points to an instance of the Q15 FIR decimator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of input samples to process per call. + */ + void arm_fir_decimate_fast_q15( + const arm_fir_decimate_instance_q15 * S, + const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Initialization function for the Q15 FIR decimator. + * @param[in,out] S points to an instance of the Q15 FIR decimator structure. + * @param[in] numTaps number of coefficients in the filter. + * @param[in] M decimation factor. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. + * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if + * blockSize is not a multiple of M. + */ + arm_status arm_fir_decimate_init_q15( + arm_fir_decimate_instance_q15 * S, + uint16_t numTaps, + uint8_t M, + const q15_t * pCoeffs, + q15_t * pState, + uint32_t blockSize); + + + /** + * @brief Processing function for the Q31 FIR decimator. + * @param[in] S points to an instance of the Q31 FIR decimator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of input samples to process per call. + */ + void arm_fir_decimate_q31( + const arm_fir_decimate_instance_q31 * S, + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + /** + * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. + * @param[in] S points to an instance of the Q31 FIR decimator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of input samples to process per call. + */ + void arm_fir_decimate_fast_q31( + const arm_fir_decimate_instance_q31 * S, + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Initialization function for the Q31 FIR decimator. + * @param[in,out] S points to an instance of the Q31 FIR decimator structure. + * @param[in] numTaps number of coefficients in the filter. + * @param[in] M decimation factor. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. + * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if + * blockSize is not a multiple of M. + */ + arm_status arm_fir_decimate_init_q31( + arm_fir_decimate_instance_q31 * S, + uint16_t numTaps, + uint8_t M, + const q31_t * pCoeffs, + q31_t * pState, + uint32_t blockSize); + + + /** + * @brief Instance structure for the Q15 FIR interpolator. + */ + typedef struct + { + uint8_t L; /**< upsample factor. */ + uint16_t phaseLength; /**< length of each polyphase filter component. */ + const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ + q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ + } arm_fir_interpolate_instance_q15; + + /** + * @brief Instance structure for the Q31 FIR interpolator. + */ + typedef struct + { + uint8_t L; /**< upsample factor. */ + uint16_t phaseLength; /**< length of each polyphase filter component. */ + const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ + q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ + } arm_fir_interpolate_instance_q31; + + /** + * @brief Instance structure for the floating-point FIR interpolator. + */ + typedef struct + { + uint8_t L; /**< upsample factor. */ + uint16_t phaseLength; /**< length of each polyphase filter component. */ + const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ + float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */ + } arm_fir_interpolate_instance_f32; + + + /** + * @brief Processing function for the Q15 FIR interpolator. + * @param[in] S points to an instance of the Q15 FIR interpolator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of input samples to process per call. + */ + void arm_fir_interpolate_q15( + const arm_fir_interpolate_instance_q15 * S, + const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Initialization function for the Q15 FIR interpolator. + * @param[in,out] S points to an instance of the Q15 FIR interpolator structure. + * @param[in] L upsample factor. + * @param[in] numTaps number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficient buffer. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. + * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if + * the filter length numTaps is not a multiple of the interpolation factor L. + */ + arm_status arm_fir_interpolate_init_q15( + arm_fir_interpolate_instance_q15 * S, + uint8_t L, + uint16_t numTaps, + const q15_t * pCoeffs, + q15_t * pState, + uint32_t blockSize); + + + /** + * @brief Processing function for the Q31 FIR interpolator. + * @param[in] S points to an instance of the Q15 FIR interpolator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of input samples to process per call. + */ + void arm_fir_interpolate_q31( + const arm_fir_interpolate_instance_q31 * S, + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Initialization function for the Q31 FIR interpolator. + * @param[in,out] S points to an instance of the Q31 FIR interpolator structure. + * @param[in] L upsample factor. + * @param[in] numTaps number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficient buffer. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. + * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if + * the filter length numTaps is not a multiple of the interpolation factor L. + */ + arm_status arm_fir_interpolate_init_q31( + arm_fir_interpolate_instance_q31 * S, + uint8_t L, + uint16_t numTaps, + const q31_t * pCoeffs, + q31_t * pState, + uint32_t blockSize); + + + /** + * @brief Processing function for the floating-point FIR interpolator. + * @param[in] S points to an instance of the floating-point FIR interpolator structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of input samples to process per call. + */ + void arm_fir_interpolate_f32( + const arm_fir_interpolate_instance_f32 * S, + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @brief Initialization function for the floating-point FIR interpolator. + * @param[in,out] S points to an instance of the floating-point FIR interpolator structure. + * @param[in] L upsample factor. + * @param[in] numTaps number of filter coefficients in the filter. + * @param[in] pCoeffs points to the filter coefficient buffer. + * @param[in] pState points to the state buffer. + * @param[in] blockSize number of input samples to process per call. + * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if + * the filter length numTaps is not a multiple of the interpolation factor L. + */ + arm_status arm_fir_interpolate_init_f32( + arm_fir_interpolate_instance_f32 * S, + uint8_t L, + uint16_t numTaps, + const float32_t * pCoeffs, + float32_t * pState, + uint32_t blockSize); + + + /** + * @brief Instance structure for the high precision Q31 Biquad cascade filter. + */ + typedef struct + { + uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ + const q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ + uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */ + } arm_biquad_cas_df1_32x64_ins_q31; + + + /** + * @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ + void arm_biquad_cas_df1_32x64_q31( + const arm_biquad_cas_df1_32x64_ins_q31 * S, + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format + */ + void arm_biquad_cas_df1_32x64_init_q31( + arm_biquad_cas_df1_32x64_ins_q31 * S, + uint8_t numStages, + const q31_t * pCoeffs, + q63_t * pState, + uint8_t postShift); + + + /** + * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. + */ + typedef struct + { + uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ + const float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ + } arm_biquad_cascade_df2T_instance_f32; + + /** + * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. + */ + typedef struct + { + uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ + const float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ + } arm_biquad_cascade_stereo_df2T_instance_f32; + + /** + * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. + */ + typedef struct + { + uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ + float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ + const float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ + } arm_biquad_cascade_df2T_instance_f64; + + + /** + * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. + * @param[in] S points to an instance of the filter data structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ + void arm_biquad_cascade_df2T_f32( + const arm_biquad_cascade_df2T_instance_f32 * S, + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels + * @param[in] S points to an instance of the filter data structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ + void arm_biquad_cascade_stereo_df2T_f32( + const arm_biquad_cascade_stereo_df2T_instance_f32 * S, + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. + * @param[in] S points to an instance of the filter data structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ + void arm_biquad_cascade_df2T_f64( + const arm_biquad_cascade_df2T_instance_f64 * S, + const float64_t * pSrc, + float64_t * pDst, + uint32_t blockSize); + + +#if defined(ARM_MATH_NEON) +void arm_biquad_cascade_df2T_compute_coefs_f32( + arm_biquad_cascade_df2T_instance_f32 * S, + uint8_t numStages, + float32_t * pCoeffs); +#endif + /** + * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. + * @param[in,out] S points to an instance of the filter data structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + */ + void arm_biquad_cascade_df2T_init_f32( + arm_biquad_cascade_df2T_instance_f32 * S, + uint8_t numStages, + const float32_t * pCoeffs, + float32_t * pState); + + + /** + * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. + * @param[in,out] S points to an instance of the filter data structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + */ + void arm_biquad_cascade_stereo_df2T_init_f32( + arm_biquad_cascade_stereo_df2T_instance_f32 * S, + uint8_t numStages, + const float32_t * pCoeffs, + float32_t * pState); + + + /** + * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. + * @param[in,out] S points to an instance of the filter data structure. + * @param[in] numStages number of 2nd order stages in the filter. + * @param[in] pCoeffs points to the filter coefficients. + * @param[in] pState points to the state buffer. + */ + void arm_biquad_cascade_df2T_init_f64( + arm_biquad_cascade_df2T_instance_f64 * S, + uint8_t numStages, + const float64_t * pCoeffs, + float64_t * pState); + + + /** + * @brief Instance structure for the Q15 FIR lattice filter. + */ + typedef struct + { + uint16_t numStages; /**< number of filter stages. */ + q15_t *pState; /**< points to the state variable array. The array is of length numStages. */ + const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ + } arm_fir_lattice_instance_q15; + + /** + * @brief Instance structure for the Q31 FIR lattice filter. + */ + typedef struct + { + uint16_t numStages; /**< number of filter stages. */ + q31_t *pState; /**< points to the state variable array. The array is of length numStages. */ + const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ + } arm_fir_lattice_instance_q31; + + /** + * @brief Instance structure for the floating-point FIR lattice filter. + */ + typedef struct + { + uint16_t numStages; /**< number of filter stages. */ + float32_t *pState; /**< points to the state variable array. The array is of length numStages. */ + const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ + } arm_fir_lattice_instance_f32; + + + /** + * @brief Initialization function for the Q15 FIR lattice filter. + * @param[in] S points to an instance of the Q15 FIR lattice structure. + * @param[in] numStages number of filter stages. + * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. + * @param[in] pState points to the state buffer. The array is of length numStages. + */ + void arm_fir_lattice_init_q15( + arm_fir_lattice_instance_q15 * S, + uint16_t numStages, + const q15_t * pCoeffs, + q15_t * pState); + + + /** + * @brief Processing function for the Q15 FIR lattice filter. + * @param[in] S points to an instance of the Q15 FIR lattice structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_fir_lattice_q15( + const arm_fir_lattice_instance_q15 * S, + const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Initialization function for the Q31 FIR lattice filter. + * @param[in] S points to an instance of the Q31 FIR lattice structure. + * @param[in] numStages number of filter stages. + * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. + * @param[in] pState points to the state buffer. The array is of length numStages. + */ + void arm_fir_lattice_init_q31( + arm_fir_lattice_instance_q31 * S, + uint16_t numStages, + const q31_t * pCoeffs, + q31_t * pState); + + + /** + * @brief Processing function for the Q31 FIR lattice filter. + * @param[in] S points to an instance of the Q31 FIR lattice structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ + void arm_fir_lattice_q31( + const arm_fir_lattice_instance_q31 * S, + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + +/** + * @brief Initialization function for the floating-point FIR lattice filter. + * @param[in] S points to an instance of the floating-point FIR lattice structure. + * @param[in] numStages number of filter stages. + * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. + * @param[in] pState points to the state buffer. The array is of length numStages. + */ + void arm_fir_lattice_init_f32( + arm_fir_lattice_instance_f32 * S, + uint16_t numStages, + const float32_t * pCoeffs, + float32_t * pState); + + + /** + * @brief Processing function for the floating-point FIR lattice filter. + * @param[in] S points to an instance of the floating-point FIR lattice structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] blockSize number of samples to process. + */ + void arm_fir_lattice_f32( + const arm_fir_lattice_instance_f32 * S, + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @brief Instance structure for the Q15 IIR lattice filter. + */ + typedef struct + { + uint16_t numStages; /**< number of stages in the filter. */ + q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ + q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ + q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ + } arm_iir_lattice_instance_q15; + + /** + * @brief Instance structure for the Q31 IIR lattice filter. + */ + typedef struct + { + uint16_t numStages; /**< number of stages in the filter. */ + q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ + q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ + q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ + } arm_iir_lattice_instance_q31; + + /** + * @brief Instance structure for the floating-point IIR lattice filter. + */ + typedef struct + { + uint16_t numStages; /**< number of stages in the filter. */ + float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ + float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ + float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ + } arm_iir_lattice_instance_f32; + + + /** + * @brief Processing function for the floating-point IIR lattice filter. + * @param[in] S points to an instance of the floating-point IIR lattice structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_iir_lattice_f32( + const arm_iir_lattice_instance_f32 * S, + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @brief Initialization function for the floating-point IIR lattice filter. + * @param[in] S points to an instance of the floating-point IIR lattice structure. + * @param[in] numStages number of stages in the filter. + * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. + * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. + * @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1. + * @param[in] blockSize number of samples to process. + */ + void arm_iir_lattice_init_f32( + arm_iir_lattice_instance_f32 * S, + uint16_t numStages, + float32_t * pkCoeffs, + float32_t * pvCoeffs, + float32_t * pState, + uint32_t blockSize); + + + /** + * @brief Processing function for the Q31 IIR lattice filter. + * @param[in] S points to an instance of the Q31 IIR lattice structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_iir_lattice_q31( + const arm_iir_lattice_instance_q31 * S, + const q31_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Initialization function for the Q31 IIR lattice filter. + * @param[in] S points to an instance of the Q31 IIR lattice structure. + * @param[in] numStages number of stages in the filter. + * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. + * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. + * @param[in] pState points to the state buffer. The array is of length numStages+blockSize. + * @param[in] blockSize number of samples to process. + */ + void arm_iir_lattice_init_q31( + arm_iir_lattice_instance_q31 * S, + uint16_t numStages, + q31_t * pkCoeffs, + q31_t * pvCoeffs, + q31_t * pState, + uint32_t blockSize); + + + /** + * @brief Processing function for the Q15 IIR lattice filter. + * @param[in] S points to an instance of the Q15 IIR lattice structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples to process. + */ + void arm_iir_lattice_q15( + const arm_iir_lattice_instance_q15 * S, + const q15_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + +/** + * @brief Initialization function for the Q15 IIR lattice filter. + * @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure. + * @param[in] numStages number of stages in the filter. + * @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages. + * @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1. + * @param[in] pState points to state buffer. The array is of length numStages+blockSize. + * @param[in] blockSize number of samples to process per call. + */ + void arm_iir_lattice_init_q15( + arm_iir_lattice_instance_q15 * S, + uint16_t numStages, + q15_t * pkCoeffs, + q15_t * pvCoeffs, + q15_t * pState, + uint32_t blockSize); + + + /** + * @brief Instance structure for the floating-point LMS filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + float32_t mu; /**< step size that controls filter coefficient updates. */ + } arm_lms_instance_f32; + + + /** + * @brief Processing function for floating-point LMS filter. + * @param[in] S points to an instance of the floating-point LMS filter structure. + * @param[in] pSrc points to the block of input data. + * @param[in] pRef points to the block of reference data. + * @param[out] pOut points to the block of output data. + * @param[out] pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + */ + void arm_lms_f32( + const arm_lms_instance_f32 * S, + const float32_t * pSrc, + float32_t * pRef, + float32_t * pOut, + float32_t * pErr, + uint32_t blockSize); + + + /** + * @brief Initialization function for floating-point LMS filter. + * @param[in] S points to an instance of the floating-point LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] pCoeffs points to the coefficient buffer. + * @param[in] pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + */ + void arm_lms_init_f32( + arm_lms_instance_f32 * S, + uint16_t numTaps, + float32_t * pCoeffs, + float32_t * pState, + float32_t mu, + uint32_t blockSize); + + + /** + * @brief Instance structure for the Q15 LMS filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + q15_t mu; /**< step size that controls filter coefficient updates. */ + uint32_t postShift; /**< bit shift applied to coefficients. */ + } arm_lms_instance_q15; + + + /** + * @brief Initialization function for the Q15 LMS filter. + * @param[in] S points to an instance of the Q15 LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] pCoeffs points to the coefficient buffer. + * @param[in] pState points to the state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + * @param[in] postShift bit shift applied to coefficients. + */ + void arm_lms_init_q15( + arm_lms_instance_q15 * S, + uint16_t numTaps, + q15_t * pCoeffs, + q15_t * pState, + q15_t mu, + uint32_t blockSize, + uint32_t postShift); + + + /** + * @brief Processing function for Q15 LMS filter. + * @param[in] S points to an instance of the Q15 LMS filter structure. + * @param[in] pSrc points to the block of input data. + * @param[in] pRef points to the block of reference data. + * @param[out] pOut points to the block of output data. + * @param[out] pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + */ + void arm_lms_q15( + const arm_lms_instance_q15 * S, + const q15_t * pSrc, + q15_t * pRef, + q15_t * pOut, + q15_t * pErr, + uint32_t blockSize); + + + /** + * @brief Instance structure for the Q31 LMS filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + q31_t mu; /**< step size that controls filter coefficient updates. */ + uint32_t postShift; /**< bit shift applied to coefficients. */ + } arm_lms_instance_q31; + + + /** + * @brief Processing function for Q31 LMS filter. + * @param[in] S points to an instance of the Q15 LMS filter structure. + * @param[in] pSrc points to the block of input data. + * @param[in] pRef points to the block of reference data. + * @param[out] pOut points to the block of output data. + * @param[out] pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + */ + void arm_lms_q31( + const arm_lms_instance_q31 * S, + const q31_t * pSrc, + q31_t * pRef, + q31_t * pOut, + q31_t * pErr, + uint32_t blockSize); + + + /** + * @brief Initialization function for Q31 LMS filter. + * @param[in] S points to an instance of the Q31 LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] pCoeffs points to coefficient buffer. + * @param[in] pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + * @param[in] postShift bit shift applied to coefficients. + */ + void arm_lms_init_q31( + arm_lms_instance_q31 * S, + uint16_t numTaps, + q31_t * pCoeffs, + q31_t * pState, + q31_t mu, + uint32_t blockSize, + uint32_t postShift); + + + /** + * @brief Instance structure for the floating-point normalized LMS filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + float32_t mu; /**< step size that control filter coefficient updates. */ + float32_t energy; /**< saves previous frame energy. */ + float32_t x0; /**< saves previous input sample. */ + } arm_lms_norm_instance_f32; + + + /** + * @brief Processing function for floating-point normalized LMS filter. + * @param[in] S points to an instance of the floating-point normalized LMS filter structure. + * @param[in] pSrc points to the block of input data. + * @param[in] pRef points to the block of reference data. + * @param[out] pOut points to the block of output data. + * @param[out] pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + */ + void arm_lms_norm_f32( + arm_lms_norm_instance_f32 * S, + const float32_t * pSrc, + float32_t * pRef, + float32_t * pOut, + float32_t * pErr, + uint32_t blockSize); + + + /** + * @brief Initialization function for floating-point normalized LMS filter. + * @param[in] S points to an instance of the floating-point LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] pCoeffs points to coefficient buffer. + * @param[in] pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + */ + void arm_lms_norm_init_f32( + arm_lms_norm_instance_f32 * S, + uint16_t numTaps, + float32_t * pCoeffs, + float32_t * pState, + float32_t mu, + uint32_t blockSize); + + + /** + * @brief Instance structure for the Q31 normalized LMS filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + q31_t mu; /**< step size that controls filter coefficient updates. */ + uint8_t postShift; /**< bit shift applied to coefficients. */ + const q31_t *recipTable; /**< points to the reciprocal initial value table. */ + q31_t energy; /**< saves previous frame energy. */ + q31_t x0; /**< saves previous input sample. */ + } arm_lms_norm_instance_q31; + + + /** + * @brief Processing function for Q31 normalized LMS filter. + * @param[in] S points to an instance of the Q31 normalized LMS filter structure. + * @param[in] pSrc points to the block of input data. + * @param[in] pRef points to the block of reference data. + * @param[out] pOut points to the block of output data. + * @param[out] pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + */ + void arm_lms_norm_q31( + arm_lms_norm_instance_q31 * S, + const q31_t * pSrc, + q31_t * pRef, + q31_t * pOut, + q31_t * pErr, + uint32_t blockSize); + + + /** + * @brief Initialization function for Q31 normalized LMS filter. + * @param[in] S points to an instance of the Q31 normalized LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] pCoeffs points to coefficient buffer. + * @param[in] pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + * @param[in] postShift bit shift applied to coefficients. + */ + void arm_lms_norm_init_q31( + arm_lms_norm_instance_q31 * S, + uint16_t numTaps, + q31_t * pCoeffs, + q31_t * pState, + q31_t mu, + uint32_t blockSize, + uint8_t postShift); + + + /** + * @brief Instance structure for the Q15 normalized LMS filter. + */ + typedef struct + { + uint16_t numTaps; /**< Number of coefficients in the filter. */ + q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ + q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ + q15_t mu; /**< step size that controls filter coefficient updates. */ + uint8_t postShift; /**< bit shift applied to coefficients. */ + const q15_t *recipTable; /**< Points to the reciprocal initial value table. */ + q15_t energy; /**< saves previous frame energy. */ + q15_t x0; /**< saves previous input sample. */ + } arm_lms_norm_instance_q15; + + + /** + * @brief Processing function for Q15 normalized LMS filter. + * @param[in] S points to an instance of the Q15 normalized LMS filter structure. + * @param[in] pSrc points to the block of input data. + * @param[in] pRef points to the block of reference data. + * @param[out] pOut points to the block of output data. + * @param[out] pErr points to the block of error data. + * @param[in] blockSize number of samples to process. + */ + void arm_lms_norm_q15( + arm_lms_norm_instance_q15 * S, + const q15_t * pSrc, + q15_t * pRef, + q15_t * pOut, + q15_t * pErr, + uint32_t blockSize); + + + /** + * @brief Initialization function for Q15 normalized LMS filter. + * @param[in] S points to an instance of the Q15 normalized LMS filter structure. + * @param[in] numTaps number of filter coefficients. + * @param[in] pCoeffs points to coefficient buffer. + * @param[in] pState points to state buffer. + * @param[in] mu step size that controls filter coefficient updates. + * @param[in] blockSize number of samples to process. + * @param[in] postShift bit shift applied to coefficients. + */ + void arm_lms_norm_init_q15( + arm_lms_norm_instance_q15 * S, + uint16_t numTaps, + q15_t * pCoeffs, + q15_t * pState, + q15_t mu, + uint32_t blockSize, + uint8_t postShift); + + + /** + * @brief Correlation of floating-point sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + */ + void arm_correlate_f32( + const float32_t * pSrcA, + uint32_t srcALen, + const float32_t * pSrcB, + uint32_t srcBLen, + float32_t * pDst); + + +/** + @brief Correlation of Q15 sequences + @param[in] pSrcA points to the first input sequence + @param[in] srcALen length of the first input sequence + @param[in] pSrcB points to the second input sequence + @param[in] srcBLen length of the second input sequence + @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. +*/ +void arm_correlate_opt_q15( + const q15_t * pSrcA, + uint32_t srcALen, + const q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + q15_t * pScratch); + + +/** + @brief Correlation of Q15 sequences. + @param[in] pSrcA points to the first input sequence + @param[in] srcALen length of the first input sequence + @param[in] pSrcB points to the second input sequence + @param[in] srcBLen length of the second input sequence + @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + */ + void arm_correlate_q15( + const q15_t * pSrcA, + uint32_t srcALen, + const q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst); + + +/** + @brief Correlation of Q15 sequences (fast version). + @param[in] pSrcA points to the first input sequence + @param[in] srcALen length of the first input sequence + @param[in] pSrcB points to the second input sequence + @param[in] srcBLen length of the second input sequence + @param[out] pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1. + @return none + */ +void arm_correlate_fast_q15( + const q15_t * pSrcA, + uint32_t srcALen, + const q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst); + + +/** + @brief Correlation of Q15 sequences (fast version). + @param[in] pSrcA points to the first input sequence. + @param[in] srcALen length of the first input sequence. + @param[in] pSrcB points to the second input sequence. + @param[in] srcBLen length of the second input sequence. + @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + */ +void arm_correlate_fast_opt_q15( + const q15_t * pSrcA, + uint32_t srcALen, + const q15_t * pSrcB, + uint32_t srcBLen, + q15_t * pDst, + q15_t * pScratch); + + + /** + * @brief Correlation of Q31 sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + */ + void arm_correlate_q31( + const q31_t * pSrcA, + uint32_t srcALen, + const q31_t * pSrcB, + uint32_t srcBLen, + q31_t * pDst); + + +/** + @brief Correlation of Q31 sequences (fast version). + @param[in] pSrcA points to the first input sequence + @param[in] srcALen length of the first input sequence + @param[in] pSrcB points to the second input sequence + @param[in] srcBLen length of the second input sequence + @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + */ +void arm_correlate_fast_q31( + const q31_t * pSrcA, + uint32_t srcALen, + const q31_t * pSrcB, + uint32_t srcBLen, + q31_t * pDst); + + + /** + * @brief Correlation of Q7 sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. + * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). + */ + void arm_correlate_opt_q7( + const q7_t * pSrcA, + uint32_t srcALen, + const q7_t * pSrcB, + uint32_t srcBLen, + q7_t * pDst, + q15_t * pScratch1, + q15_t * pScratch2); + + + /** + * @brief Correlation of Q7 sequences. + * @param[in] pSrcA points to the first input sequence. + * @param[in] srcALen length of the first input sequence. + * @param[in] pSrcB points to the second input sequence. + * @param[in] srcBLen length of the second input sequence. + * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. + */ + void arm_correlate_q7( + const q7_t * pSrcA, + uint32_t srcALen, + const q7_t * pSrcB, + uint32_t srcBLen, + q7_t * pDst); + + + /** + * @brief Instance structure for the floating-point sparse FIR filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ + float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ + const float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ + int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ + } arm_fir_sparse_instance_f32; + + /** + * @brief Instance structure for the Q31 sparse FIR filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ + q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ + const q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ + int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ + } arm_fir_sparse_instance_q31; + + /** + * @brief Instance structure for the Q15 sparse FIR filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ + q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ + const q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ + int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ + } arm_fir_sparse_instance_q15; + + /** + * @brief Instance structure for the Q7 sparse FIR filter. + */ + typedef struct + { + uint16_t numTaps; /**< number of coefficients in the filter. */ + uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ + q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ + const q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ + uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ + int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ + } arm_fir_sparse_instance_q7; + + + /** + * @brief Processing function for the floating-point sparse FIR filter. + * @param[in] S points to an instance of the floating-point sparse FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] pScratchIn points to a temporary buffer of size blockSize. + * @param[in] blockSize number of input samples to process per call. + */ + void arm_fir_sparse_f32( + arm_fir_sparse_instance_f32 * S, + const float32_t * pSrc, + float32_t * pDst, + float32_t * pScratchIn, + uint32_t blockSize); + + + /** + * @brief Initialization function for the floating-point sparse FIR filter. + * @param[in,out] S points to an instance of the floating-point sparse FIR structure. + * @param[in] numTaps number of nonzero coefficients in the filter. + * @param[in] pCoeffs points to the array of filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] pTapDelay points to the array of offset times. + * @param[in] maxDelay maximum offset time supported. + * @param[in] blockSize number of samples that will be processed per block. + */ + void arm_fir_sparse_init_f32( + arm_fir_sparse_instance_f32 * S, + uint16_t numTaps, + const float32_t * pCoeffs, + float32_t * pState, + int32_t * pTapDelay, + uint16_t maxDelay, + uint32_t blockSize); + + + /** + * @brief Processing function for the Q31 sparse FIR filter. + * @param[in] S points to an instance of the Q31 sparse FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] pScratchIn points to a temporary buffer of size blockSize. + * @param[in] blockSize number of input samples to process per call. + */ + void arm_fir_sparse_q31( + arm_fir_sparse_instance_q31 * S, + const q31_t * pSrc, + q31_t * pDst, + q31_t * pScratchIn, + uint32_t blockSize); + + + /** + * @brief Initialization function for the Q31 sparse FIR filter. + * @param[in,out] S points to an instance of the Q31 sparse FIR structure. + * @param[in] numTaps number of nonzero coefficients in the filter. + * @param[in] pCoeffs points to the array of filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] pTapDelay points to the array of offset times. + * @param[in] maxDelay maximum offset time supported. + * @param[in] blockSize number of samples that will be processed per block. + */ + void arm_fir_sparse_init_q31( + arm_fir_sparse_instance_q31 * S, + uint16_t numTaps, + const q31_t * pCoeffs, + q31_t * pState, + int32_t * pTapDelay, + uint16_t maxDelay, + uint32_t blockSize); + + + /** + * @brief Processing function for the Q15 sparse FIR filter. + * @param[in] S points to an instance of the Q15 sparse FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] pScratchIn points to a temporary buffer of size blockSize. + * @param[in] pScratchOut points to a temporary buffer of size blockSize. + * @param[in] blockSize number of input samples to process per call. + */ + void arm_fir_sparse_q15( + arm_fir_sparse_instance_q15 * S, + const q15_t * pSrc, + q15_t * pDst, + q15_t * pScratchIn, + q31_t * pScratchOut, + uint32_t blockSize); + + + /** + * @brief Initialization function for the Q15 sparse FIR filter. + * @param[in,out] S points to an instance of the Q15 sparse FIR structure. + * @param[in] numTaps number of nonzero coefficients in the filter. + * @param[in] pCoeffs points to the array of filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] pTapDelay points to the array of offset times. + * @param[in] maxDelay maximum offset time supported. + * @param[in] blockSize number of samples that will be processed per block. + */ + void arm_fir_sparse_init_q15( + arm_fir_sparse_instance_q15 * S, + uint16_t numTaps, + const q15_t * pCoeffs, + q15_t * pState, + int32_t * pTapDelay, + uint16_t maxDelay, + uint32_t blockSize); + + + /** + * @brief Processing function for the Q7 sparse FIR filter. + * @param[in] S points to an instance of the Q7 sparse FIR structure. + * @param[in] pSrc points to the block of input data. + * @param[out] pDst points to the block of output data + * @param[in] pScratchIn points to a temporary buffer of size blockSize. + * @param[in] pScratchOut points to a temporary buffer of size blockSize. + * @param[in] blockSize number of input samples to process per call. + */ + void arm_fir_sparse_q7( + arm_fir_sparse_instance_q7 * S, + const q7_t * pSrc, + q7_t * pDst, + q7_t * pScratchIn, + q31_t * pScratchOut, + uint32_t blockSize); + + + /** + * @brief Initialization function for the Q7 sparse FIR filter. + * @param[in,out] S points to an instance of the Q7 sparse FIR structure. + * @param[in] numTaps number of nonzero coefficients in the filter. + * @param[in] pCoeffs points to the array of filter coefficients. + * @param[in] pState points to the state buffer. + * @param[in] pTapDelay points to the array of offset times. + * @param[in] maxDelay maximum offset time supported. + * @param[in] blockSize number of samples that will be processed per block. + */ + void arm_fir_sparse_init_q7( + arm_fir_sparse_instance_q7 * S, + uint16_t numTaps, + const q7_t * pCoeffs, + q7_t * pState, + int32_t * pTapDelay, + uint16_t maxDelay, + uint32_t blockSize); + + + /** + * @brief Floating-point sin_cos function. + * @param[in] theta input value in degrees + * @param[out] pSinVal points to the processed sine output. + * @param[out] pCosVal points to the processed cos output. + */ + void arm_sin_cos_f32( + float32_t theta, + float32_t * pSinVal, + float32_t * pCosVal); + + + /** + * @brief Q31 sin_cos function. + * @param[in] theta scaled input value in degrees + * @param[out] pSinVal points to the processed sine output. + * @param[out] pCosVal points to the processed cosine output. + */ + void arm_sin_cos_q31( + q31_t theta, + q31_t * pSinVal, + q31_t * pCosVal); + + + /** + * @brief Floating-point complex conjugate. + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ + void arm_cmplx_conj_f32( + const float32_t * pSrc, + float32_t * pDst, + uint32_t numSamples); + + /** + * @brief Q31 complex conjugate. + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ + void arm_cmplx_conj_q31( + const q31_t * pSrc, + q31_t * pDst, + uint32_t numSamples); + + + /** + * @brief Q15 complex conjugate. + * @param[in] pSrc points to the input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ + void arm_cmplx_conj_q15( + const q15_t * pSrc, + q15_t * pDst, + uint32_t numSamples); + + + /** + * @brief Floating-point complex magnitude squared + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ + void arm_cmplx_mag_squared_f32( + const float32_t * pSrc, + float32_t * pDst, + uint32_t numSamples); + + + /** + * @brief Q31 complex magnitude squared + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ + void arm_cmplx_mag_squared_q31( + const q31_t * pSrc, + q31_t * pDst, + uint32_t numSamples); + + + /** + * @brief Q15 complex magnitude squared + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ + void arm_cmplx_mag_squared_q15( + const q15_t * pSrc, + q15_t * pDst, + uint32_t numSamples); + + + /** + * @ingroup groupController + */ + + /** + * @defgroup PID PID Motor Control + * + * A Proportional Integral Derivative (PID) controller is a generic feedback control + * loop mechanism widely used in industrial control systems. + * A PID controller is the most commonly used type of feedback controller. + * + * This set of functions implements (PID) controllers + * for Q15, Q31, and floating-point data types. The functions operate on a single sample + * of data and each call to the function returns a single processed value. + * S points to an instance of the PID control data structure. in + * is the input sample value. The functions return the output value. + * + * \par Algorithm: + *
+   *    y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
+   *    A0 = Kp + Ki + Kd
+   *    A1 = (-Kp ) - (2 * Kd )
+   *    A2 = Kd
+   * 
+ * + * \par + * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant + * + * \par + * \image html PID.gif "Proportional Integral Derivative Controller" + * + * \par + * The PID controller calculates an "error" value as the difference between + * the measured output and the reference input. + * The controller attempts to minimize the error by adjusting the process control inputs. + * The proportional value determines the reaction to the current error, + * the integral value determines the reaction based on the sum of recent errors, + * and the derivative value determines the reaction based on the rate at which the error has been changing. + * + * \par Instance Structure + * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure. + * A separate instance structure must be defined for each PID Controller. + * There are separate instance structure declarations for each of the 3 supported data types. + * + * \par Reset Functions + * There is also an associated reset function for each data type which clears the state array. + * + * \par Initialization Functions + * There is also an associated initialization function for each data type. + * The initialization function performs the following operations: + * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains. + * - Zeros out the values in the state buffer. + * + * \par + * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function. + * + * \par Fixed-Point Behavior + * Care must be taken when using the fixed-point versions of the PID Controller functions. + * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. + * Refer to the function specific documentation below for usage guidelines. + */ + + /** + * @addtogroup PID + * @{ + */ + + /** + * @brief Process function for the floating-point PID Control. + * @param[in,out] S is an instance of the floating-point PID Control structure + * @param[in] in input sample to process + * @return processed output sample. + */ + __STATIC_FORCEINLINE float32_t arm_pid_f32( + arm_pid_instance_f32 * S, + float32_t in) + { + float32_t out; + + /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */ + out = (S->A0 * in) + + (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]); + + /* Update state */ + S->state[1] = S->state[0]; + S->state[0] = in; + S->state[2] = out; + + /* return to application */ + return (out); + + } + +/** + @brief Process function for the Q31 PID Control. + @param[in,out] S points to an instance of the Q31 PID Control structure + @param[in] in input sample to process + @return processed output sample. + + \par Scaling and Overflow Behavior + The function is implemented using an internal 64-bit accumulator. + The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. + Thus, if the accumulator result overflows it wraps around rather than clip. + In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. + After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. + */ +__STATIC_FORCEINLINE q31_t arm_pid_q31( + arm_pid_instance_q31 * S, + q31_t in) + { + q63_t acc; + q31_t out; + + /* acc = A0 * x[n] */ + acc = (q63_t) S->A0 * in; + + /* acc += A1 * x[n-1] */ + acc += (q63_t) S->A1 * S->state[0]; + + /* acc += A2 * x[n-2] */ + acc += (q63_t) S->A2 * S->state[1]; + + /* convert output to 1.31 format to add y[n-1] */ + out = (q31_t) (acc >> 31U); + + /* out += y[n-1] */ + out += S->state[2]; + + /* Update state */ + S->state[1] = S->state[0]; + S->state[0] = in; + S->state[2] = out; + + /* return to application */ + return (out); + } + + +/** + @brief Process function for the Q15 PID Control. + @param[in,out] S points to an instance of the Q15 PID Control structure + @param[in] in input sample to process + @return processed output sample. + + \par Scaling and Overflow Behavior + The function is implemented using a 64-bit internal accumulator. + Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result. + The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. + There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. + After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. + Lastly, the accumulator is saturated to yield a result in 1.15 format. + */ +__STATIC_FORCEINLINE q15_t arm_pid_q15( + arm_pid_instance_q15 * S, + q15_t in) + { + q63_t acc; + q15_t out; + +#if defined (ARM_MATH_DSP) + /* Implementation of PID controller */ + + /* acc = A0 * x[n] */ + acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in); + + /* acc += A1 * x[n-1] + A2 * x[n-2] */ + acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)read_q15x2 (S->state), (uint64_t)acc); +#else + /* acc = A0 * x[n] */ + acc = ((q31_t) S->A0) * in; + + /* acc += A1 * x[n-1] + A2 * x[n-2] */ + acc += (q31_t) S->A1 * S->state[0]; + acc += (q31_t) S->A2 * S->state[1]; +#endif + + /* acc += y[n-1] */ + acc += (q31_t) S->state[2] << 15; + + /* saturate the output */ + out = (q15_t) (__SSAT((q31_t)(acc >> 15), 16)); + + /* Update state */ + S->state[1] = S->state[0]; + S->state[0] = in; + S->state[2] = out; + + /* return to application */ + return (out); + } + + /** + * @} end of PID group + */ + + + /** + * @brief Floating-point matrix inverse. + * @param[in] src points to the instance of the input floating-point matrix structure. + * @param[out] dst points to the instance of the output floating-point matrix structure. + * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. + * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. + */ + arm_status arm_mat_inverse_f32( + const arm_matrix_instance_f32 * src, + arm_matrix_instance_f32 * dst); + + + /** + * @brief Floating-point matrix inverse. + * @param[in] src points to the instance of the input floating-point matrix structure. + * @param[out] dst points to the instance of the output floating-point matrix structure. + * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. + * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. + */ + arm_status arm_mat_inverse_f64( + const arm_matrix_instance_f64 * src, + arm_matrix_instance_f64 * dst); + + + + /** + * @ingroup groupController + */ + + /** + * @defgroup clarke Vector Clarke Transform + * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector. + * Generally the Clarke transform uses three-phase currents Ia, Ib and Ic to calculate currents + * in the two-phase orthogonal stator axis Ialpha and Ibeta. + * When Ialpha is superposed with Ia as shown in the figure below + * \image html clarke.gif Stator current space vector and its components in (a,b). + * and Ia + Ib + Ic = 0, in this condition Ialpha and Ibeta + * can be calculated using only Ia and Ib. + * + * The function operates on a single sample of data and each call to the function returns the processed output. + * The library provides separate functions for Q31 and floating-point data types. + * \par Algorithm + * \image html clarkeFormula.gif + * where Ia and Ib are the instantaneous stator phases and + * pIalpha and pIbeta are the two coordinates of time invariant vector. + * \par Fixed-Point Behavior + * Care must be taken when using the Q31 version of the Clarke transform. + * In particular, the overflow and saturation behavior of the accumulator used must be considered. + * Refer to the function specific documentation below for usage guidelines. + */ + + /** + * @addtogroup clarke + * @{ + */ + + /** + * + * @brief Floating-point Clarke transform + * @param[in] Ia input three-phase coordinate a + * @param[in] Ib input three-phase coordinate b + * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha + * @param[out] pIbeta points to output two-phase orthogonal vector axis beta + * @return none + */ + __STATIC_FORCEINLINE void arm_clarke_f32( + float32_t Ia, + float32_t Ib, + float32_t * pIalpha, + float32_t * pIbeta) + { + /* Calculate pIalpha using the equation, pIalpha = Ia */ + *pIalpha = Ia; + + /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */ + *pIbeta = (0.57735026919f * Ia + 1.15470053838f * Ib); + } + + +/** + @brief Clarke transform for Q31 version + @param[in] Ia input three-phase coordinate a + @param[in] Ib input three-phase coordinate b + @param[out] pIalpha points to output two-phase orthogonal vector axis alpha + @param[out] pIbeta points to output two-phase orthogonal vector axis beta + @return none + + \par Scaling and Overflow Behavior + The function is implemented using an internal 32-bit accumulator. + The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. + There is saturation on the addition, hence there is no risk of overflow. + */ +__STATIC_FORCEINLINE void arm_clarke_q31( + q31_t Ia, + q31_t Ib, + q31_t * pIalpha, + q31_t * pIbeta) + { + q31_t product1, product2; /* Temporary variables used to store intermediate results */ + + /* Calculating pIalpha from Ia by equation pIalpha = Ia */ + *pIalpha = Ia; + + /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */ + product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30); + + /* Intermediate product is calculated by (2/sqrt(3) * Ib) */ + product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30); + + /* pIbeta is calculated by adding the intermediate products */ + *pIbeta = __QADD(product1, product2); + } + + /** + * @} end of clarke group + */ + + + /** + * @ingroup groupController + */ + + /** + * @defgroup inv_clarke Vector Inverse Clarke Transform + * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases. + * + * The function operates on a single sample of data and each call to the function returns the processed output. + * The library provides separate functions for Q31 and floating-point data types. + * \par Algorithm + * \image html clarkeInvFormula.gif + * where pIa and pIb are the instantaneous stator phases and + * Ialpha and Ibeta are the two coordinates of time invariant vector. + * \par Fixed-Point Behavior + * Care must be taken when using the Q31 version of the Clarke transform. + * In particular, the overflow and saturation behavior of the accumulator used must be considered. + * Refer to the function specific documentation below for usage guidelines. + */ + + /** + * @addtogroup inv_clarke + * @{ + */ + + /** + * @brief Floating-point Inverse Clarke transform + * @param[in] Ialpha input two-phase orthogonal vector axis alpha + * @param[in] Ibeta input two-phase orthogonal vector axis beta + * @param[out] pIa points to output three-phase coordinate a + * @param[out] pIb points to output three-phase coordinate b + * @return none + */ + __STATIC_FORCEINLINE void arm_inv_clarke_f32( + float32_t Ialpha, + float32_t Ibeta, + float32_t * pIa, + float32_t * pIb) + { + /* Calculating pIa from Ialpha by equation pIa = Ialpha */ + *pIa = Ialpha; + + /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */ + *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta; + } + + +/** + @brief Inverse Clarke transform for Q31 version + @param[in] Ialpha input two-phase orthogonal vector axis alpha + @param[in] Ibeta input two-phase orthogonal vector axis beta + @param[out] pIa points to output three-phase coordinate a + @param[out] pIb points to output three-phase coordinate b + @return none + + \par Scaling and Overflow Behavior + The function is implemented using an internal 32-bit accumulator. + The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. + There is saturation on the subtraction, hence there is no risk of overflow. + */ +__STATIC_FORCEINLINE void arm_inv_clarke_q31( + q31_t Ialpha, + q31_t Ibeta, + q31_t * pIa, + q31_t * pIb) + { + q31_t product1, product2; /* Temporary variables used to store intermediate results */ + + /* Calculating pIa from Ialpha by equation pIa = Ialpha */ + *pIa = Ialpha; + + /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */ + product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31); + + /* Intermediate product is calculated by (1/sqrt(3) * pIb) */ + product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31); + + /* pIb is calculated by subtracting the products */ + *pIb = __QSUB(product2, product1); + } + + /** + * @} end of inv_clarke group + */ + + + + /** + * @ingroup groupController + */ + + /** + * @defgroup park Vector Park Transform + * + * Forward Park transform converts the input two-coordinate vector to flux and torque components. + * The Park transform can be used to realize the transformation of the Ialpha and the Ibeta currents + * from the stationary to the moving reference frame and control the spatial relationship between + * the stator vector current and rotor flux vector. + * If we consider the d axis aligned with the rotor flux, the diagram below shows the + * current vector and the relationship from the two reference frames: + * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame" + * + * The function operates on a single sample of data and each call to the function returns the processed output. + * The library provides separate functions for Q31 and floating-point data types. + * \par Algorithm + * \image html parkFormula.gif + * where Ialpha and Ibeta are the stator vector components, + * pId and pIq are rotor vector components and cosVal and sinVal are the + * cosine and sine values of theta (rotor flux position). + * \par Fixed-Point Behavior + * Care must be taken when using the Q31 version of the Park transform. + * In particular, the overflow and saturation behavior of the accumulator used must be considered. + * Refer to the function specific documentation below for usage guidelines. + */ + + /** + * @addtogroup park + * @{ + */ + + /** + * @brief Floating-point Park transform + * @param[in] Ialpha input two-phase vector coordinate alpha + * @param[in] Ibeta input two-phase vector coordinate beta + * @param[out] pId points to output rotor reference frame d + * @param[out] pIq points to output rotor reference frame q + * @param[in] sinVal sine value of rotation angle theta + * @param[in] cosVal cosine value of rotation angle theta + * @return none + * + * The function implements the forward Park transform. + * + */ + __STATIC_FORCEINLINE void arm_park_f32( + float32_t Ialpha, + float32_t Ibeta, + float32_t * pId, + float32_t * pIq, + float32_t sinVal, + float32_t cosVal) + { + /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */ + *pId = Ialpha * cosVal + Ibeta * sinVal; + + /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */ + *pIq = -Ialpha * sinVal + Ibeta * cosVal; + } + + +/** + @brief Park transform for Q31 version + @param[in] Ialpha input two-phase vector coordinate alpha + @param[in] Ibeta input two-phase vector coordinate beta + @param[out] pId points to output rotor reference frame d + @param[out] pIq points to output rotor reference frame q + @param[in] sinVal sine value of rotation angle theta + @param[in] cosVal cosine value of rotation angle theta + @return none + + \par Scaling and Overflow Behavior + The function is implemented using an internal 32-bit accumulator. + The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. + There is saturation on the addition and subtraction, hence there is no risk of overflow. + */ +__STATIC_FORCEINLINE void arm_park_q31( + q31_t Ialpha, + q31_t Ibeta, + q31_t * pId, + q31_t * pIq, + q31_t sinVal, + q31_t cosVal) + { + q31_t product1, product2; /* Temporary variables used to store intermediate results */ + q31_t product3, product4; /* Temporary variables used to store intermediate results */ + + /* Intermediate product is calculated by (Ialpha * cosVal) */ + product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31); + + /* Intermediate product is calculated by (Ibeta * sinVal) */ + product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31); + + + /* Intermediate product is calculated by (Ialpha * sinVal) */ + product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31); + + /* Intermediate product is calculated by (Ibeta * cosVal) */ + product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31); + + /* Calculate pId by adding the two intermediate products 1 and 2 */ + *pId = __QADD(product1, product2); + + /* Calculate pIq by subtracting the two intermediate products 3 from 4 */ + *pIq = __QSUB(product4, product3); + } + + /** + * @} end of park group + */ + + + /** + * @ingroup groupController + */ + + /** + * @defgroup inv_park Vector Inverse Park transform + * Inverse Park transform converts the input flux and torque components to two-coordinate vector. + * + * The function operates on a single sample of data and each call to the function returns the processed output. + * The library provides separate functions for Q31 and floating-point data types. + * \par Algorithm + * \image html parkInvFormula.gif + * where pIalpha and pIbeta are the stator vector components, + * Id and Iq are rotor vector components and cosVal and sinVal are the + * cosine and sine values of theta (rotor flux position). + * \par Fixed-Point Behavior + * Care must be taken when using the Q31 version of the Park transform. + * In particular, the overflow and saturation behavior of the accumulator used must be considered. + * Refer to the function specific documentation below for usage guidelines. + */ + + /** + * @addtogroup inv_park + * @{ + */ + + /** + * @brief Floating-point Inverse Park transform + * @param[in] Id input coordinate of rotor reference frame d + * @param[in] Iq input coordinate of rotor reference frame q + * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha + * @param[out] pIbeta points to output two-phase orthogonal vector axis beta + * @param[in] sinVal sine value of rotation angle theta + * @param[in] cosVal cosine value of rotation angle theta + * @return none + */ + __STATIC_FORCEINLINE void arm_inv_park_f32( + float32_t Id, + float32_t Iq, + float32_t * pIalpha, + float32_t * pIbeta, + float32_t sinVal, + float32_t cosVal) + { + /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */ + *pIalpha = Id * cosVal - Iq * sinVal; + + /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */ + *pIbeta = Id * sinVal + Iq * cosVal; + } + + +/** + @brief Inverse Park transform for Q31 version + @param[in] Id input coordinate of rotor reference frame d + @param[in] Iq input coordinate of rotor reference frame q + @param[out] pIalpha points to output two-phase orthogonal vector axis alpha + @param[out] pIbeta points to output two-phase orthogonal vector axis beta + @param[in] sinVal sine value of rotation angle theta + @param[in] cosVal cosine value of rotation angle theta + @return none + + @par Scaling and Overflow Behavior + The function is implemented using an internal 32-bit accumulator. + The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. + There is saturation on the addition, hence there is no risk of overflow. + */ +__STATIC_FORCEINLINE void arm_inv_park_q31( + q31_t Id, + q31_t Iq, + q31_t * pIalpha, + q31_t * pIbeta, + q31_t sinVal, + q31_t cosVal) + { + q31_t product1, product2; /* Temporary variables used to store intermediate results */ + q31_t product3, product4; /* Temporary variables used to store intermediate results */ + + /* Intermediate product is calculated by (Id * cosVal) */ + product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31); + + /* Intermediate product is calculated by (Iq * sinVal) */ + product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31); + + + /* Intermediate product is calculated by (Id * sinVal) */ + product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31); + + /* Intermediate product is calculated by (Iq * cosVal) */ + product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31); + + /* Calculate pIalpha by using the two intermediate products 1 and 2 */ + *pIalpha = __QSUB(product1, product2); + + /* Calculate pIbeta by using the two intermediate products 3 and 4 */ + *pIbeta = __QADD(product4, product3); + } + + /** + * @} end of Inverse park group + */ + + + /** + * @ingroup groupInterpolation + */ + + /** + * @defgroup LinearInterpolate Linear Interpolation + * + * Linear interpolation is a method of curve fitting using linear polynomials. + * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line + * + * \par + * \image html LinearInterp.gif "Linear interpolation" + * + * \par + * A Linear Interpolate function calculates an output value(y), for the input(x) + * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values) + * + * \par Algorithm: + *
+   *       y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
+   *       where x0, x1 are nearest values of input x
+   *             y0, y1 are nearest values to output y
+   * 
+ * + * \par + * This set of functions implements Linear interpolation process + * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single + * sample of data and each call to the function returns a single processed value. + * S points to an instance of the Linear Interpolate function data structure. + * x is the input sample value. The functions returns the output value. + * + * \par + * if x is outside of the table boundary, Linear interpolation returns first value of the table + * if x is below input range and returns last value of table if x is above range. + */ + + /** + * @addtogroup LinearInterpolate + * @{ + */ + + /** + * @brief Process function for the floating-point Linear Interpolation Function. + * @param[in,out] S is an instance of the floating-point Linear Interpolation structure + * @param[in] x input sample to process + * @return y processed output sample. + * + */ + __STATIC_FORCEINLINE float32_t arm_linear_interp_f32( + arm_linear_interp_instance_f32 * S, + float32_t x) + { + float32_t y; + float32_t x0, x1; /* Nearest input values */ + float32_t y0, y1; /* Nearest output values */ + float32_t xSpacing = S->xSpacing; /* spacing between input values */ + int32_t i; /* Index variable */ + float32_t *pYData = S->pYData; /* pointer to output table */ + + /* Calculation of index */ + i = (int32_t) ((x - S->x1) / xSpacing); + + if (i < 0) + { + /* Iniatilize output for below specified range as least output value of table */ + y = pYData[0]; + } + else if ((uint32_t)i >= (S->nValues - 1)) + { + /* Iniatilize output for above specified range as last output value of table */ + y = pYData[S->nValues - 1]; + } + else + { + /* Calculation of nearest input values */ + x0 = S->x1 + i * xSpacing; + x1 = S->x1 + (i + 1) * xSpacing; + + /* Read of nearest output values */ + y0 = pYData[i]; + y1 = pYData[i + 1]; + + /* Calculation of output */ + y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0)); + + } + + /* returns output value */ + return (y); + } + + + /** + * + * @brief Process function for the Q31 Linear Interpolation Function. + * @param[in] pYData pointer to Q31 Linear Interpolation table + * @param[in] x input sample to process + * @param[in] nValues number of table values + * @return y processed output sample. + * + * \par + * Input sample x is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. + * This function can support maximum of table size 2^12. + * + */ + __STATIC_FORCEINLINE q31_t arm_linear_interp_q31( + q31_t * pYData, + q31_t x, + uint32_t nValues) + { + q31_t y; /* output */ + q31_t y0, y1; /* Nearest output values */ + q31_t fract; /* fractional part */ + int32_t index; /* Index to read nearest output values */ + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + index = ((x & (q31_t)0xFFF00000) >> 20); + + if (index >= (int32_t)(nValues - 1)) + { + return (pYData[nValues - 1]); + } + else if (index < 0) + { + return (pYData[0]); + } + else + { + /* 20 bits for the fractional part */ + /* shift left by 11 to keep fract in 1.31 format */ + fract = (x & 0x000FFFFF) << 11; + + /* Read two nearest output values from the index in 1.31(q31) format */ + y0 = pYData[index]; + y1 = pYData[index + 1]; + + /* Calculation of y0 * (1-fract) and y is in 2.30 format */ + y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32)); + + /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */ + y += ((q31_t) (((q63_t) y1 * fract) >> 32)); + + /* Convert y to 1.31 format */ + return (y << 1U); + } + } + + + /** + * + * @brief Process function for the Q15 Linear Interpolation Function. + * @param[in] pYData pointer to Q15 Linear Interpolation table + * @param[in] x input sample to process + * @param[in] nValues number of table values + * @return y processed output sample. + * + * \par + * Input sample x is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. + * This function can support maximum of table size 2^12. + * + */ + __STATIC_FORCEINLINE q15_t arm_linear_interp_q15( + q15_t * pYData, + q31_t x, + uint32_t nValues) + { + q63_t y; /* output */ + q15_t y0, y1; /* Nearest output values */ + q31_t fract; /* fractional part */ + int32_t index; /* Index to read nearest output values */ + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + index = ((x & (int32_t)0xFFF00000) >> 20); + + if (index >= (int32_t)(nValues - 1)) + { + return (pYData[nValues - 1]); + } + else if (index < 0) + { + return (pYData[0]); + } + else + { + /* 20 bits for the fractional part */ + /* fract is in 12.20 format */ + fract = (x & 0x000FFFFF); + + /* Read two nearest output values from the index */ + y0 = pYData[index]; + y1 = pYData[index + 1]; + + /* Calculation of y0 * (1-fract) and y is in 13.35 format */ + y = ((q63_t) y0 * (0xFFFFF - fract)); + + /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */ + y += ((q63_t) y1 * (fract)); + + /* convert y to 1.15 format */ + return (q15_t) (y >> 20); + } + } + + + /** + * + * @brief Process function for the Q7 Linear Interpolation Function. + * @param[in] pYData pointer to Q7 Linear Interpolation table + * @param[in] x input sample to process + * @param[in] nValues number of table values + * @return y processed output sample. + * + * \par + * Input sample x is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. + * This function can support maximum of table size 2^12. + */ + __STATIC_FORCEINLINE q7_t arm_linear_interp_q7( + q7_t * pYData, + q31_t x, + uint32_t nValues) + { + q31_t y; /* output */ + q7_t y0, y1; /* Nearest output values */ + q31_t fract; /* fractional part */ + uint32_t index; /* Index to read nearest output values */ + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + if (x < 0) + { + return (pYData[0]); + } + index = (x >> 20) & 0xfff; + + if (index >= (nValues - 1)) + { + return (pYData[nValues - 1]); + } + else + { + /* 20 bits for the fractional part */ + /* fract is in 12.20 format */ + fract = (x & 0x000FFFFF); + + /* Read two nearest output values from the index and are in 1.7(q7) format */ + y0 = pYData[index]; + y1 = pYData[index + 1]; + + /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */ + y = ((y0 * (0xFFFFF - fract))); + + /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */ + y += (y1 * fract); + + /* convert y to 1.7(q7) format */ + return (q7_t) (y >> 20); + } + } + + /** + * @} end of LinearInterpolate group + */ + + /** + * @brief Fast approximation to the trigonometric sine function for floating-point data. + * @param[in] x input value in radians. + * @return sin(x). + */ + float32_t arm_sin_f32( + float32_t x); + + + /** + * @brief Fast approximation to the trigonometric sine function for Q31 data. + * @param[in] x Scaled input value in radians. + * @return sin(x). + */ + q31_t arm_sin_q31( + q31_t x); + + + /** + * @brief Fast approximation to the trigonometric sine function for Q15 data. + * @param[in] x Scaled input value in radians. + * @return sin(x). + */ + q15_t arm_sin_q15( + q15_t x); + + + /** + * @brief Fast approximation to the trigonometric cosine function for floating-point data. + * @param[in] x input value in radians. + * @return cos(x). + */ + float32_t arm_cos_f32( + float32_t x); + + + /** + * @brief Fast approximation to the trigonometric cosine function for Q31 data. + * @param[in] x Scaled input value in radians. + * @return cos(x). + */ + q31_t arm_cos_q31( + q31_t x); + + + /** + * @brief Fast approximation to the trigonometric cosine function for Q15 data. + * @param[in] x Scaled input value in radians. + * @return cos(x). + */ + q15_t arm_cos_q15( + q15_t x); + + +/** + @brief Floating-point vector of log values. + @param[in] pSrc points to the input vector + @param[out] pDst points to the output vector + @param[in] blockSize number of samples in each vector + @return none + */ + void arm_vlog_f32( + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + +/** + @brief Floating-point vector of exp values. + @param[in] pSrc points to the input vector + @param[out] pDst points to the output vector + @param[in] blockSize number of samples in each vector + @return none + */ + void arm_vexp_f32( + const float32_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + /** + * @ingroup groupFastMath + */ + + + /** + * @defgroup SQRT Square Root + * + * Computes the square root of a number. + * There are separate functions for Q15, Q31, and floating-point data types. + * The square root function is computed using the Newton-Raphson algorithm. + * This is an iterative algorithm of the form: + *
+   *      x1 = x0 - f(x0)/f'(x0)
+   * 
+ * where x1 is the current estimate, + * x0 is the previous estimate, and + * f'(x0) is the derivative of f() evaluated at x0. + * For the square root function, the algorithm reduces to: + *
+   *     x0 = in/2                         [initial guess]
+   *     x1 = 1/2 * ( x0 + in / x0)        [each iteration]
+   * 
+ */ + + + /** + * @addtogroup SQRT + * @{ + */ + +/** + @brief Floating-point square root function. + @param[in] in input value + @param[out] pOut square root of input value + @return execution status + - \ref ARM_MATH_SUCCESS : input value is positive + - \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0 + */ +__STATIC_FORCEINLINE arm_status arm_sqrt_f32( + float32_t in, + float32_t * pOut) + { + if (in >= 0.0f) + { +#if defined ( __CC_ARM ) + #if defined __TARGET_FPU_VFP + *pOut = __sqrtf(in); + #else + *pOut = sqrtf(in); + #endif + +#elif defined ( __ICCARM__ ) + #if defined __ARMVFP__ + __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in)); + #else + *pOut = sqrtf(in); + #endif + +#else + *pOut = sqrtf(in); +#endif + + return (ARM_MATH_SUCCESS); + } + else + { + *pOut = 0.0f; + return (ARM_MATH_ARGUMENT_ERROR); + } + } + + +/** + @brief Q31 square root function. + @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF + @param[out] pOut points to square root of input value + @return execution status + - \ref ARM_MATH_SUCCESS : input value is positive + - \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0 + */ +arm_status arm_sqrt_q31( + q31_t in, + q31_t * pOut); + + +/** + @brief Q15 square root function. + @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF + @param[out] pOut points to square root of input value + @return execution status + - \ref ARM_MATH_SUCCESS : input value is positive + - \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0 + */ +arm_status arm_sqrt_q15( + q15_t in, + q15_t * pOut); + + /** + * @brief Vector Floating-point square root function. + * @param[in] pIn input vector. + * @param[out] pOut vector of square roots of input elements. + * @param[in] len length of input vector. + * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if + * in is negative value and returns zero output for negative values. + */ + void arm_vsqrt_f32( + float32_t * pIn, + float32_t * pOut, + uint16_t len); + + void arm_vsqrt_q31( + q31_t * pIn, + q31_t * pOut, + uint16_t len); + + void arm_vsqrt_q15( + q15_t * pIn, + q15_t * pOut, + uint16_t len); + + /** + * @} end of SQRT group + */ + + + /** + * @brief floating-point Circular write function. + */ + __STATIC_FORCEINLINE void arm_circularWrite_f32( + int32_t * circBuffer, + int32_t L, + uint16_t * writeOffset, + int32_t bufferInc, + const int32_t * src, + int32_t srcInc, + uint32_t blockSize) + { + uint32_t i = 0U; + int32_t wOffset; + + /* Copy the value of Index pointer that points + * to the current location where the input samples to be copied */ + wOffset = *writeOffset; + + /* Loop over the blockSize */ + i = blockSize; + + while (i > 0U) + { + /* copy the input sample to the circular buffer */ + circBuffer[wOffset] = *src; + + /* Update the input pointer */ + src += srcInc; + + /* Circularly update wOffset. Watch out for positive and negative value */ + wOffset += bufferInc; + if (wOffset >= L) + wOffset -= L; + + /* Decrement the loop counter */ + i--; + } + + /* Update the index pointer */ + *writeOffset = (uint16_t)wOffset; + } + + + + /** + * @brief floating-point Circular Read function. + */ + __STATIC_FORCEINLINE void arm_circularRead_f32( + int32_t * circBuffer, + int32_t L, + int32_t * readOffset, + int32_t bufferInc, + int32_t * dst, + int32_t * dst_base, + int32_t dst_length, + int32_t dstInc, + uint32_t blockSize) + { + uint32_t i = 0U; + int32_t rOffset; + int32_t* dst_end; + + /* Copy the value of Index pointer that points + * to the current location from where the input samples to be read */ + rOffset = *readOffset; + dst_end = dst_base + dst_length; + + /* Loop over the blockSize */ + i = blockSize; + + while (i > 0U) + { + /* copy the sample from the circular buffer to the destination buffer */ + *dst = circBuffer[rOffset]; + + /* Update the input pointer */ + dst += dstInc; + + if (dst == dst_end) + { + dst = dst_base; + } + + /* Circularly update rOffset. Watch out for positive and negative value */ + rOffset += bufferInc; + + if (rOffset >= L) + { + rOffset -= L; + } + + /* Decrement the loop counter */ + i--; + } + + /* Update the index pointer */ + *readOffset = rOffset; + } + + + /** + * @brief Q15 Circular write function. + */ + __STATIC_FORCEINLINE void arm_circularWrite_q15( + q15_t * circBuffer, + int32_t L, + uint16_t * writeOffset, + int32_t bufferInc, + const q15_t * src, + int32_t srcInc, + uint32_t blockSize) + { + uint32_t i = 0U; + int32_t wOffset; + + /* Copy the value of Index pointer that points + * to the current location where the input samples to be copied */ + wOffset = *writeOffset; + + /* Loop over the blockSize */ + i = blockSize; + + while (i > 0U) + { + /* copy the input sample to the circular buffer */ + circBuffer[wOffset] = *src; + + /* Update the input pointer */ + src += srcInc; + + /* Circularly update wOffset. Watch out for positive and negative value */ + wOffset += bufferInc; + if (wOffset >= L) + wOffset -= L; + + /* Decrement the loop counter */ + i--; + } + + /* Update the index pointer */ + *writeOffset = (uint16_t)wOffset; + } + + + /** + * @brief Q15 Circular Read function. + */ + __STATIC_FORCEINLINE void arm_circularRead_q15( + q15_t * circBuffer, + int32_t L, + int32_t * readOffset, + int32_t bufferInc, + q15_t * dst, + q15_t * dst_base, + int32_t dst_length, + int32_t dstInc, + uint32_t blockSize) + { + uint32_t i = 0; + int32_t rOffset; + q15_t* dst_end; + + /* Copy the value of Index pointer that points + * to the current location from where the input samples to be read */ + rOffset = *readOffset; + + dst_end = dst_base + dst_length; + + /* Loop over the blockSize */ + i = blockSize; + + while (i > 0U) + { + /* copy the sample from the circular buffer to the destination buffer */ + *dst = circBuffer[rOffset]; + + /* Update the input pointer */ + dst += dstInc; + + if (dst == dst_end) + { + dst = dst_base; + } + + /* Circularly update wOffset. Watch out for positive and negative value */ + rOffset += bufferInc; + + if (rOffset >= L) + { + rOffset -= L; + } + + /* Decrement the loop counter */ + i--; + } + + /* Update the index pointer */ + *readOffset = rOffset; + } + + + /** + * @brief Q7 Circular write function. + */ + __STATIC_FORCEINLINE void arm_circularWrite_q7( + q7_t * circBuffer, + int32_t L, + uint16_t * writeOffset, + int32_t bufferInc, + const q7_t * src, + int32_t srcInc, + uint32_t blockSize) + { + uint32_t i = 0U; + int32_t wOffset; + + /* Copy the value of Index pointer that points + * to the current location where the input samples to be copied */ + wOffset = *writeOffset; + + /* Loop over the blockSize */ + i = blockSize; + + while (i > 0U) + { + /* copy the input sample to the circular buffer */ + circBuffer[wOffset] = *src; + + /* Update the input pointer */ + src += srcInc; + + /* Circularly update wOffset. Watch out for positive and negative value */ + wOffset += bufferInc; + if (wOffset >= L) + wOffset -= L; + + /* Decrement the loop counter */ + i--; + } + + /* Update the index pointer */ + *writeOffset = (uint16_t)wOffset; + } + + + /** + * @brief Q7 Circular Read function. + */ + __STATIC_FORCEINLINE void arm_circularRead_q7( + q7_t * circBuffer, + int32_t L, + int32_t * readOffset, + int32_t bufferInc, + q7_t * dst, + q7_t * dst_base, + int32_t dst_length, + int32_t dstInc, + uint32_t blockSize) + { + uint32_t i = 0; + int32_t rOffset; + q7_t* dst_end; + + /* Copy the value of Index pointer that points + * to the current location from where the input samples to be read */ + rOffset = *readOffset; + + dst_end = dst_base + dst_length; + + /* Loop over the blockSize */ + i = blockSize; + + while (i > 0U) + { + /* copy the sample from the circular buffer to the destination buffer */ + *dst = circBuffer[rOffset]; + + /* Update the input pointer */ + dst += dstInc; + + if (dst == dst_end) + { + dst = dst_base; + } + + /* Circularly update rOffset. Watch out for positive and negative value */ + rOffset += bufferInc; + + if (rOffset >= L) + { + rOffset -= L; + } + + /* Decrement the loop counter */ + i--; + } + + /* Update the index pointer */ + *readOffset = rOffset; + } + + + /** + * @brief Sum of the squares of the elements of a Q31 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_power_q31( + const q31_t * pSrc, + uint32_t blockSize, + q63_t * pResult); + + + /** + * @brief Sum of the squares of the elements of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_power_f32( + const float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult); + + + /** + * @brief Sum of the squares of the elements of a Q15 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_power_q15( + const q15_t * pSrc, + uint32_t blockSize, + q63_t * pResult); + + + /** + * @brief Sum of the squares of the elements of a Q7 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_power_q7( + const q7_t * pSrc, + uint32_t blockSize, + q31_t * pResult); + + + /** + * @brief Mean value of a Q7 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_mean_q7( + const q7_t * pSrc, + uint32_t blockSize, + q7_t * pResult); + + + /** + * @brief Mean value of a Q15 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_mean_q15( + const q15_t * pSrc, + uint32_t blockSize, + q15_t * pResult); + + + /** + * @brief Mean value of a Q31 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_mean_q31( + const q31_t * pSrc, + uint32_t blockSize, + q31_t * pResult); + + + /** + * @brief Mean value of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_mean_f32( + const float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult); + + + /** + * @brief Variance of the elements of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_var_f32( + const float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult); + + + /** + * @brief Variance of the elements of a Q31 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_var_q31( + const q31_t * pSrc, + uint32_t blockSize, + q31_t * pResult); + + + /** + * @brief Variance of the elements of a Q15 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_var_q15( + const q15_t * pSrc, + uint32_t blockSize, + q15_t * pResult); + + + /** + * @brief Root Mean Square of the elements of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_rms_f32( + const float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult); + + + /** + * @brief Root Mean Square of the elements of a Q31 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_rms_q31( + const q31_t * pSrc, + uint32_t blockSize, + q31_t * pResult); + + + /** + * @brief Root Mean Square of the elements of a Q15 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_rms_q15( + const q15_t * pSrc, + uint32_t blockSize, + q15_t * pResult); + + + /** + * @brief Standard deviation of the elements of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_std_f32( + const float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult); + + + /** + * @brief Standard deviation of the elements of a Q31 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_std_q31( + const q31_t * pSrc, + uint32_t blockSize, + q31_t * pResult); + + + /** + * @brief Standard deviation of the elements of a Q15 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output value. + */ + void arm_std_q15( + const q15_t * pSrc, + uint32_t blockSize, + q15_t * pResult); + + + /** + * @brief Floating-point complex magnitude + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ + void arm_cmplx_mag_f32( + const float32_t * pSrc, + float32_t * pDst, + uint32_t numSamples); + + + /** + * @brief Q31 complex magnitude + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ + void arm_cmplx_mag_q31( + const q31_t * pSrc, + q31_t * pDst, + uint32_t numSamples); + + + /** + * @brief Q15 complex magnitude + * @param[in] pSrc points to the complex input vector + * @param[out] pDst points to the real output vector + * @param[in] numSamples number of complex samples in the input vector + */ + void arm_cmplx_mag_q15( + const q15_t * pSrc, + q15_t * pDst, + uint32_t numSamples); + + + /** + * @brief Q15 complex dot product + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] numSamples number of complex samples in each vector + * @param[out] realResult real part of the result returned here + * @param[out] imagResult imaginary part of the result returned here + */ + void arm_cmplx_dot_prod_q15( + const q15_t * pSrcA, + const q15_t * pSrcB, + uint32_t numSamples, + q31_t * realResult, + q31_t * imagResult); + + + /** + * @brief Q31 complex dot product + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] numSamples number of complex samples in each vector + * @param[out] realResult real part of the result returned here + * @param[out] imagResult imaginary part of the result returned here + */ + void arm_cmplx_dot_prod_q31( + const q31_t * pSrcA, + const q31_t * pSrcB, + uint32_t numSamples, + q63_t * realResult, + q63_t * imagResult); + + + /** + * @brief Floating-point complex dot product + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] numSamples number of complex samples in each vector + * @param[out] realResult real part of the result returned here + * @param[out] imagResult imaginary part of the result returned here + */ + void arm_cmplx_dot_prod_f32( + const float32_t * pSrcA, + const float32_t * pSrcB, + uint32_t numSamples, + float32_t * realResult, + float32_t * imagResult); + + + /** + * @brief Q15 complex-by-real multiplication + * @param[in] pSrcCmplx points to the complex input vector + * @param[in] pSrcReal points to the real input vector + * @param[out] pCmplxDst points to the complex output vector + * @param[in] numSamples number of samples in each vector + */ + void arm_cmplx_mult_real_q15( + const q15_t * pSrcCmplx, + const q15_t * pSrcReal, + q15_t * pCmplxDst, + uint32_t numSamples); + + + /** + * @brief Q31 complex-by-real multiplication + * @param[in] pSrcCmplx points to the complex input vector + * @param[in] pSrcReal points to the real input vector + * @param[out] pCmplxDst points to the complex output vector + * @param[in] numSamples number of samples in each vector + */ + void arm_cmplx_mult_real_q31( + const q31_t * pSrcCmplx, + const q31_t * pSrcReal, + q31_t * pCmplxDst, + uint32_t numSamples); + + + /** + * @brief Floating-point complex-by-real multiplication + * @param[in] pSrcCmplx points to the complex input vector + * @param[in] pSrcReal points to the real input vector + * @param[out] pCmplxDst points to the complex output vector + * @param[in] numSamples number of samples in each vector + */ + void arm_cmplx_mult_real_f32( + const float32_t * pSrcCmplx, + const float32_t * pSrcReal, + float32_t * pCmplxDst, + uint32_t numSamples); + + + /** + * @brief Minimum value of a Q7 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] result is output pointer + * @param[in] index is the array index of the minimum value in the input buffer. + */ + void arm_min_q7( + const q7_t * pSrc, + uint32_t blockSize, + q7_t * result, + uint32_t * index); + + + /** + * @brief Minimum value of a Q15 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output pointer + * @param[in] pIndex is the array index of the minimum value in the input buffer. + */ + void arm_min_q15( + const q15_t * pSrc, + uint32_t blockSize, + q15_t * pResult, + uint32_t * pIndex); + + + /** + * @brief Minimum value of a Q31 vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output pointer + * @param[out] pIndex is the array index of the minimum value in the input buffer. + */ + void arm_min_q31( + const q31_t * pSrc, + uint32_t blockSize, + q31_t * pResult, + uint32_t * pIndex); + + + /** + * @brief Minimum value of a floating-point vector. + * @param[in] pSrc is input pointer + * @param[in] blockSize is the number of samples to process + * @param[out] pResult is output pointer + * @param[out] pIndex is the array index of the minimum value in the input buffer. + */ + void arm_min_f32( + const float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult, + uint32_t * pIndex); + + +/** + * @brief Maximum value of a Q7 vector. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + * @param[out] pIndex index of maximum value returned here + */ + void arm_max_q7( + const q7_t * pSrc, + uint32_t blockSize, + q7_t * pResult, + uint32_t * pIndex); + + +/** + * @brief Maximum value of a Q15 vector. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + * @param[out] pIndex index of maximum value returned here + */ + void arm_max_q15( + const q15_t * pSrc, + uint32_t blockSize, + q15_t * pResult, + uint32_t * pIndex); + + +/** + * @brief Maximum value of a Q31 vector. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + * @param[out] pIndex index of maximum value returned here + */ + void arm_max_q31( + const q31_t * pSrc, + uint32_t blockSize, + q31_t * pResult, + uint32_t * pIndex); + + +/** + * @brief Maximum value of a floating-point vector. + * @param[in] pSrc points to the input buffer + * @param[in] blockSize length of the input vector + * @param[out] pResult maximum value returned here + * @param[out] pIndex index of maximum value returned here + */ + void arm_max_f32( + const float32_t * pSrc, + uint32_t blockSize, + float32_t * pResult, + uint32_t * pIndex); + + /** + @brief Maximum value of a floating-point vector. + @param[in] pSrc points to the input vector + @param[in] blockSize number of samples in input vector + @param[out] pResult maximum value returned here + @return none + */ + void arm_max_no_idx_f32( + const float32_t *pSrc, + uint32_t blockSize, + float32_t *pResult); + + /** + * @brief Q15 complex-by-complex multiplication + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ + void arm_cmplx_mult_cmplx_q15( + const q15_t * pSrcA, + const q15_t * pSrcB, + q15_t * pDst, + uint32_t numSamples); + + + /** + * @brief Q31 complex-by-complex multiplication + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ + void arm_cmplx_mult_cmplx_q31( + const q31_t * pSrcA, + const q31_t * pSrcB, + q31_t * pDst, + uint32_t numSamples); + + + /** + * @brief Floating-point complex-by-complex multiplication + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[out] pDst points to the output vector + * @param[in] numSamples number of complex samples in each vector + */ + void arm_cmplx_mult_cmplx_f32( + const float32_t * pSrcA, + const float32_t * pSrcB, + float32_t * pDst, + uint32_t numSamples); + + + /** + * @brief Converts the elements of the floating-point vector to Q31 vector. + * @param[in] pSrc points to the floating-point input vector + * @param[out] pDst points to the Q31 output vector + * @param[in] blockSize length of the input vector + */ + void arm_float_to_q31( + const float32_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the floating-point vector to Q15 vector. + * @param[in] pSrc points to the floating-point input vector + * @param[out] pDst points to the Q15 output vector + * @param[in] blockSize length of the input vector + */ + void arm_float_to_q15( + const float32_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the floating-point vector to Q7 vector. + * @param[in] pSrc points to the floating-point input vector + * @param[out] pDst points to the Q7 output vector + * @param[in] blockSize length of the input vector + */ + void arm_float_to_q7( + const float32_t * pSrc, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the Q31 vector to floating-point vector. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process + */ + void arm_q31_to_float( + const q31_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the Q31 vector to Q15 vector. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process + */ + void arm_q31_to_q15( + const q31_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the Q31 vector to Q7 vector. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process + */ + void arm_q31_to_q7( + const q31_t * pSrc, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the Q15 vector to floating-point vector. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process + */ + void arm_q15_to_float( + const q15_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the Q15 vector to Q31 vector. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process + */ + void arm_q15_to_q31( + const q15_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the Q15 vector to Q7 vector. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process + */ + void arm_q15_to_q7( + const q15_t * pSrc, + q7_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the Q7 vector to floating-point vector. + * @param[in] pSrc is input pointer + * @param[out] pDst is output pointer + * @param[in] blockSize is the number of samples to process + */ + void arm_q7_to_float( + const q7_t * pSrc, + float32_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the Q7 vector to Q31 vector. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process + */ + void arm_q7_to_q31( + const q7_t * pSrc, + q31_t * pDst, + uint32_t blockSize); + + + /** + * @brief Converts the elements of the Q7 vector to Q15 vector. + * @param[in] pSrc input pointer + * @param[out] pDst output pointer + * @param[in] blockSize number of samples to process + */ + void arm_q7_to_q15( + const q7_t * pSrc, + q15_t * pDst, + uint32_t blockSize); + +/** + * @brief Struct for specifying SVM Kernel + */ +typedef enum +{ + ARM_ML_KERNEL_LINEAR = 0, + /**< Linear kernel */ + ARM_ML_KERNEL_POLYNOMIAL = 1, + /**< Polynomial kernel */ + ARM_ML_KERNEL_RBF = 2, + /**< Radial Basis Function kernel */ + ARM_ML_KERNEL_SIGMOID = 3 + /**< Sigmoid kernel */ +} arm_ml_kernel_type; + + +/** + * @brief Instance structure for linear SVM prediction function. + */ +typedef struct +{ + uint32_t nbOfSupportVectors; /**< Number of support vectors */ + uint32_t vectorDimension; /**< Dimension of vector space */ + float32_t intercept; /**< Intercept */ + const float32_t *dualCoefficients; /**< Dual coefficients */ + const float32_t *supportVectors; /**< Support vectors */ + const int32_t *classes; /**< The two SVM classes */ +} arm_svm_linear_instance_f32; + + +/** + * @brief Instance structure for polynomial SVM prediction function. + */ +typedef struct +{ + uint32_t nbOfSupportVectors; /**< Number of support vectors */ + uint32_t vectorDimension; /**< Dimension of vector space */ + float32_t intercept; /**< Intercept */ + const float32_t *dualCoefficients; /**< Dual coefficients */ + const float32_t *supportVectors; /**< Support vectors */ + const int32_t *classes; /**< The two SVM classes */ + int32_t degree; /**< Polynomial degree */ + float32_t coef0; /**< Polynomial constant */ + float32_t gamma; /**< Gamma factor */ +} arm_svm_polynomial_instance_f32; + +/** + * @brief Instance structure for rbf SVM prediction function. + */ +typedef struct +{ + uint32_t nbOfSupportVectors; /**< Number of support vectors */ + uint32_t vectorDimension; /**< Dimension of vector space */ + float32_t intercept; /**< Intercept */ + const float32_t *dualCoefficients; /**< Dual coefficients */ + const float32_t *supportVectors; /**< Support vectors */ + const int32_t *classes; /**< The two SVM classes */ + float32_t gamma; /**< Gamma factor */ +} arm_svm_rbf_instance_f32; + +/** + * @brief Instance structure for sigmoid SVM prediction function. + */ +typedef struct +{ + uint32_t nbOfSupportVectors; /**< Number of support vectors */ + uint32_t vectorDimension; /**< Dimension of vector space */ + float32_t intercept; /**< Intercept */ + const float32_t *dualCoefficients; /**< Dual coefficients */ + const float32_t *supportVectors; /**< Support vectors */ + const int32_t *classes; /**< The two SVM classes */ + float32_t coef0; /**< Independant constant */ + float32_t gamma; /**< Gamma factor */ +} arm_svm_sigmoid_instance_f32; + +/** + * @brief SVM linear instance init function + * @param[in] S Parameters for SVM functions + * @param[in] nbOfSupportVectors Number of support vectors + * @param[in] vectorDimension Dimension of vector space + * @param[in] intercept Intercept + * @param[in] dualCoefficients Array of dual coefficients + * @param[in] supportVectors Array of support vectors + * @param[in] classes Array of 2 classes ID + * @return none. + * + */ + + +void arm_svm_linear_init_f32(arm_svm_linear_instance_f32 *S, + uint32_t nbOfSupportVectors, + uint32_t vectorDimension, + float32_t intercept, + const float32_t *dualCoefficients, + const float32_t *supportVectors, + const int32_t *classes); + +/** + * @brief SVM linear prediction + * @param[in] S Pointer to an instance of the linear SVM structure. + * @param[in] in Pointer to input vector + * @param[out] pResult Decision value + * @return none. + * + */ + +void arm_svm_linear_predict_f32(const arm_svm_linear_instance_f32 *S, + const float32_t * in, + int32_t * pResult); + + +/** + * @brief SVM polynomial instance init function + * @param[in] S points to an instance of the polynomial SVM structure. + * @param[in] nbOfSupportVectors Number of support vectors + * @param[in] vectorDimension Dimension of vector space + * @param[in] intercept Intercept + * @param[in] dualCoefficients Array of dual coefficients + * @param[in] supportVectors Array of support vectors + * @param[in] classes Array of 2 classes ID + * @param[in] degree Polynomial degree + * @param[in] coef0 coeff0 (scikit-learn terminology) + * @param[in] gamma gamma (scikit-learn terminology) + * @return none. + * + */ + + +void arm_svm_polynomial_init_f32(arm_svm_polynomial_instance_f32 *S, + uint32_t nbOfSupportVectors, + uint32_t vectorDimension, + float32_t intercept, + const float32_t *dualCoefficients, + const float32_t *supportVectors, + const int32_t *classes, + int32_t degree, + float32_t coef0, + float32_t gamma + ); + +/** + * @brief SVM polynomial prediction + * @param[in] S Pointer to an instance of the polynomial SVM structure. + * @param[in] in Pointer to input vector + * @param[out] pResult Decision value + * @return none. + * + */ +void arm_svm_polynomial_predict_f32(const arm_svm_polynomial_instance_f32 *S, + const float32_t * in, + int32_t * pResult); + + +/** + * @brief SVM radial basis function instance init function + * @param[in] S points to an instance of the polynomial SVM structure. + * @param[in] nbOfSupportVectors Number of support vectors + * @param[in] vectorDimension Dimension of vector space + * @param[in] intercept Intercept + * @param[in] dualCoefficients Array of dual coefficients + * @param[in] supportVectors Array of support vectors + * @param[in] classes Array of 2 classes ID + * @param[in] gamma gamma (scikit-learn terminology) + * @return none. + * + */ + +void arm_svm_rbf_init_f32(arm_svm_rbf_instance_f32 *S, + uint32_t nbOfSupportVectors, + uint32_t vectorDimension, + float32_t intercept, + const float32_t *dualCoefficients, + const float32_t *supportVectors, + const int32_t *classes, + float32_t gamma + ); + +/** + * @brief SVM rbf prediction + * @param[in] S Pointer to an instance of the rbf SVM structure. + * @param[in] in Pointer to input vector + * @param[out] pResult decision value + * @return none. + * + */ +void arm_svm_rbf_predict_f32(const arm_svm_rbf_instance_f32 *S, + const float32_t * in, + int32_t * pResult); + +/** + * @brief SVM sigmoid instance init function + * @param[in] S points to an instance of the rbf SVM structure. + * @param[in] nbOfSupportVectors Number of support vectors + * @param[in] vectorDimension Dimension of vector space + * @param[in] intercept Intercept + * @param[in] dualCoefficients Array of dual coefficients + * @param[in] supportVectors Array of support vectors + * @param[in] classes Array of 2 classes ID + * @param[in] coef0 coeff0 (scikit-learn terminology) + * @param[in] gamma gamma (scikit-learn terminology) + * @return none. + * + */ + +void arm_svm_sigmoid_init_f32(arm_svm_sigmoid_instance_f32 *S, + uint32_t nbOfSupportVectors, + uint32_t vectorDimension, + float32_t intercept, + const float32_t *dualCoefficients, + const float32_t *supportVectors, + const int32_t *classes, + float32_t coef0, + float32_t gamma + ); + +/** + * @brief SVM sigmoid prediction + * @param[in] S Pointer to an instance of the rbf SVM structure. + * @param[in] in Pointer to input vector + * @param[out] pResult Decision value + * @return none. + * + */ +void arm_svm_sigmoid_predict_f32(const arm_svm_sigmoid_instance_f32 *S, + const float32_t * in, + int32_t * pResult); + + + +/** + * @brief Instance structure for Naive Gaussian Bayesian estimator. + */ +typedef struct +{ + uint32_t vectorDimension; /**< Dimension of vector space */ + uint32_t numberOfClasses; /**< Number of different classes */ + const float32_t *theta; /**< Mean values for the Gaussians */ + const float32_t *sigma; /**< Variances for the Gaussians */ + const float32_t *classPriors; /**< Class prior probabilities */ + float32_t epsilon; /**< Additive value to variances */ +} arm_gaussian_naive_bayes_instance_f32; + +/** + * @brief Naive Gaussian Bayesian Estimator + * + * @param[in] S points to a naive bayes instance structure + * @param[in] in points to the elements of the input vector. + * @param[in] pBuffer points to a buffer of length numberOfClasses + * @return The predicted class + * + */ + + +uint32_t arm_gaussian_naive_bayes_predict_f32(const arm_gaussian_naive_bayes_instance_f32 *S, + const float32_t * in, + float32_t *pBuffer); + +/** + * @brief Computation of the LogSumExp + * + * In probabilistic computations, the dynamic of the probability values can be very + * wide because they come from gaussian functions. + * To avoid underflow and overflow issues, the values are represented by their log. + * In this representation, multiplying the original exp values is easy : their logs are added. + * But adding the original exp values is requiring some special handling and it is the + * goal of the LogSumExp function. + * + * If the values are x1...xn, the function is computing: + * + * ln(exp(x1) + ... + exp(xn)) and the computation is done in such a way that + * rounding issues are minimised. + * + * The max xm of the values is extracted and the function is computing: + * xm + ln(exp(x1 - xm) + ... + exp(xn - xm)) + * + * @param[in] *in Pointer to an array of input values. + * @param[in] blockSize Number of samples in the input array. + * @return LogSumExp + * + */ + + +float32_t arm_logsumexp_f32(const float32_t *in, uint32_t blockSize); + +/** + * @brief Dot product with log arithmetic + * + * Vectors are containing the log of the samples + * + * @param[in] pSrcA points to the first input vector + * @param[in] pSrcB points to the second input vector + * @param[in] blockSize number of samples in each vector + * @param[in] pTmpBuffer temporary buffer of length blockSize + * @return The log of the dot product . + * + */ + + +float32_t arm_logsumexp_dot_prod_f32(const float32_t * pSrcA, + const float32_t * pSrcB, + uint32_t blockSize, + float32_t *pTmpBuffer); + +/** + * @brief Entropy + * + * @param[in] pSrcA Array of input values. + * @param[in] blockSize Number of samples in the input array. + * @return Entropy -Sum(p ln p) + * + */ + + +float32_t arm_entropy_f32(const float32_t * pSrcA,uint32_t blockSize); + + +/** + * @brief Entropy + * + * @param[in] pSrcA Array of input values. + * @param[in] blockSize Number of samples in the input array. + * @return Entropy -Sum(p ln p) + * + */ + + +float64_t arm_entropy_f64(const float64_t * pSrcA, uint32_t blockSize); + + +/** + * @brief Kullback-Leibler + * + * @param[in] pSrcA Pointer to an array of input values for probability distribution A. + * @param[in] pSrcB Pointer to an array of input values for probability distribution B. + * @param[in] blockSize Number of samples in the input array. + * @return Kullback-Leibler Divergence D(A || B) + * + */ +float32_t arm_kullback_leibler_f32(const float32_t * pSrcA + ,const float32_t * pSrcB + ,uint32_t blockSize); + + +/** + * @brief Kullback-Leibler + * + * @param[in] pSrcA Pointer to an array of input values for probability distribution A. + * @param[in] pSrcB Pointer to an array of input values for probability distribution B. + * @param[in] blockSize Number of samples in the input array. + * @return Kullback-Leibler Divergence D(A || B) + * + */ +float64_t arm_kullback_leibler_f64(const float64_t * pSrcA, + const float64_t * pSrcB, + uint32_t blockSize); + + +/** + * @brief Weighted sum + * + * + * @param[in] *in Array of input values. + * @param[in] *weigths Weights + * @param[in] blockSize Number of samples in the input array. + * @return Weighted sum + * + */ +float32_t arm_weighted_sum_f32(const float32_t *in + , const float32_t *weigths + , uint32_t blockSize); + + +/** + * @brief Barycenter + * + * + * @param[in] in List of vectors + * @param[in] weights Weights of the vectors + * @param[out] out Barycenter + * @param[in] nbVectors Number of vectors + * @param[in] vecDim Dimension of space (vector dimension) + * @return None + * + */ +void arm_barycenter_f32(const float32_t *in + , const float32_t *weights + , float32_t *out + , uint32_t nbVectors + , uint32_t vecDim); + +/** + * @brief Euclidean distance between two vectors + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ + +float32_t arm_euclidean_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize); + +/** + * @brief Bray-Curtis distance between two vectors + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ +float32_t arm_braycurtis_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize); + +/** + * @brief Canberra distance between two vectors + * + * This function may divide by zero when samples pA[i] and pB[i] are both zero. + * The result of the computation will be correct. So the division per zero may be + * ignored. + * + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ +float32_t arm_canberra_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize); + + +/** + * @brief Chebyshev distance between two vectors + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ +float32_t arm_chebyshev_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize); + + +/** + * @brief Cityblock (Manhattan) distance between two vectors + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ +float32_t arm_cityblock_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize); + +/** + * @brief Correlation distance between two vectors + * + * The input vectors are modified in place ! + * + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ +float32_t arm_correlation_distance_f32(float32_t *pA,float32_t *pB, uint32_t blockSize); + +/** + * @brief Cosine distance between two vectors + * + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ + +float32_t arm_cosine_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize); + +/** + * @brief Jensen-Shannon distance between two vectors + * + * This function is assuming that elements of second vector are > 0 + * and 0 only when the corresponding element of first vector is 0. + * Otherwise the result of the computation does not make sense + * and for speed reasons, the cases returning NaN or Infinity are not + * managed. + * + * When the function is computing x log (x / y) with x 0 and y 0, + * it will compute the right value (0) but a division per zero will occur + * and shoudl be ignored in client code. + * + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] blockSize vector length + * @return distance + * + */ + +float32_t arm_jensenshannon_distance_f32(const float32_t *pA,const float32_t *pB,uint32_t blockSize); + +/** + * @brief Minkowski distance between two vectors + * + * @param[in] pA First vector + * @param[in] pB Second vector + * @param[in] n Norm order (>= 2) + * @param[in] blockSize vector length + * @return distance + * + */ + + + +float32_t arm_minkowski_distance_f32(const float32_t *pA,const float32_t *pB, int32_t order, uint32_t blockSize); + +/** + * @brief Dice distance between two vectors + * + * @param[in] pA First vector of packed booleans + * @param[in] pB Second vector of packed booleans + * @param[in] order Distance order + * @param[in] blockSize Number of samples + * @return distance + * + */ + + +float32_t arm_dice_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); + +/** + * @brief Hamming distance between two vectors + * + * @param[in] pA First vector of packed booleans + * @param[in] pB Second vector of packed booleans + * @param[in] numberOfBools Number of booleans + * @return distance + * + */ + +float32_t arm_hamming_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); + +/** + * @brief Jaccard distance between two vectors + * + * @param[in] pA First vector of packed booleans + * @param[in] pB Second vector of packed booleans + * @param[in] numberOfBools Number of booleans + * @return distance + * + */ + +float32_t arm_jaccard_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); + +/** + * @brief Kulsinski distance between two vectors + * + * @param[in] pA First vector of packed booleans + * @param[in] pB Second vector of packed booleans + * @param[in] numberOfBools Number of booleans + * @return distance + * + */ + +float32_t arm_kulsinski_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); + +/** + * @brief Roger Stanimoto distance between two vectors + * + * @param[in] pA First vector of packed booleans + * @param[in] pB Second vector of packed booleans + * @param[in] numberOfBools Number of booleans + * @return distance + * + */ + +float32_t arm_rogerstanimoto_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); + +/** + * @brief Russell-Rao distance between two vectors + * + * @param[in] pA First vector of packed booleans + * @param[in] pB Second vector of packed booleans + * @param[in] numberOfBools Number of booleans + * @return distance + * + */ + +float32_t arm_russellrao_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); + +/** + * @brief Sokal-Michener distance between two vectors + * + * @param[in] pA First vector of packed booleans + * @param[in] pB Second vector of packed booleans + * @param[in] numberOfBools Number of booleans + * @return distance + * + */ + +float32_t arm_sokalmichener_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); + +/** + * @brief Sokal-Sneath distance between two vectors + * + * @param[in] pA First vector of packed booleans + * @param[in] pB Second vector of packed booleans + * @param[in] numberOfBools Number of booleans + * @return distance + * + */ + +float32_t arm_sokalsneath_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); + +/** + * @brief Yule distance between two vectors + * + * @param[in] pA First vector of packed booleans + * @param[in] pB Second vector of packed booleans + * @param[in] numberOfBools Number of booleans + * @return distance + * + */ + +float32_t arm_yule_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools); + + + /** + * @ingroup groupInterpolation + */ + + /** + * @defgroup BilinearInterpolate Bilinear Interpolation + * + * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid. + * The underlying function f(x, y) is sampled on a regular grid and the interpolation process + * determines values between the grid points. + * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension. + * Bilinear interpolation is often used in image processing to rescale images. + * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types. + * + * Algorithm + * \par + * The instance structure used by the bilinear interpolation functions describes a two dimensional data table. + * For floating-point, the instance structure is defined as: + *
+   *   typedef struct
+   *   {
+   *     uint16_t numRows;
+   *     uint16_t numCols;
+   *     float32_t *pData;
+   * } arm_bilinear_interp_instance_f32;
+   * 
+ * + * \par + * where numRows specifies the number of rows in the table; + * numCols specifies the number of columns in the table; + * and pData points to an array of size numRows*numCols values. + * The data table pTable is organized in row order and the supplied data values fall on integer indexes. + * That is, table element (x,y) is located at pTable[x + y*numCols] where x and y are integers. + * + * \par + * Let (x, y) specify the desired interpolation point. Then define: + *
+   *     XF = floor(x)
+   *     YF = floor(y)
+   * 
+ * \par + * The interpolated output point is computed as: + *
+   *  f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
+   *           + f(XF+1, YF) * (x-XF)*(1-(y-YF))
+   *           + f(XF, YF+1) * (1-(x-XF))*(y-YF)
+   *           + f(XF+1, YF+1) * (x-XF)*(y-YF)
+   * 
+ * Note that the coordinates (x, y) contain integer and fractional components. + * The integer components specify which portion of the table to use while the + * fractional components control the interpolation processor. + * + * \par + * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output. + */ + + + /** + * @addtogroup BilinearInterpolate + * @{ + */ + + /** + * @brief Floating-point bilinear interpolation. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate. + * @param[in] Y interpolation coordinate. + * @return out interpolated value. + */ + __STATIC_FORCEINLINE float32_t arm_bilinear_interp_f32( + const arm_bilinear_interp_instance_f32 * S, + float32_t X, + float32_t Y) + { + float32_t out; + float32_t f00, f01, f10, f11; + float32_t *pData = S->pData; + int32_t xIndex, yIndex, index; + float32_t xdiff, ydiff; + float32_t b1, b2, b3, b4; + + xIndex = (int32_t) X; + yIndex = (int32_t) Y; + + /* Care taken for table outside boundary */ + /* Returns zero output when values are outside table boundary */ + if (xIndex < 0 || xIndex > (S->numCols - 2) || yIndex < 0 || yIndex > (S->numRows - 2)) + { + return (0); + } + + /* Calculation of index for two nearest points in X-direction */ + index = (xIndex ) + (yIndex ) * S->numCols; + + + /* Read two nearest points in X-direction */ + f00 = pData[index]; + f01 = pData[index + 1]; + + /* Calculation of index for two nearest points in Y-direction */ + index = (xIndex ) + (yIndex+1) * S->numCols; + + + /* Read two nearest points in Y-direction */ + f10 = pData[index]; + f11 = pData[index + 1]; + + /* Calculation of intermediate values */ + b1 = f00; + b2 = f01 - f00; + b3 = f10 - f00; + b4 = f00 - f01 - f10 + f11; + + /* Calculation of fractional part in X */ + xdiff = X - xIndex; + + /* Calculation of fractional part in Y */ + ydiff = Y - yIndex; + + /* Calculation of bi-linear interpolated output */ + out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff; + + /* return to application */ + return (out); + } + + + /** + * @brief Q31 bilinear interpolation. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. + * @return out interpolated value. + */ + __STATIC_FORCEINLINE q31_t arm_bilinear_interp_q31( + arm_bilinear_interp_instance_q31 * S, + q31_t X, + q31_t Y) + { + q31_t out; /* Temporary output */ + q31_t acc = 0; /* output */ + q31_t xfract, yfract; /* X, Y fractional parts */ + q31_t x1, x2, y1, y2; /* Nearest output values */ + int32_t rI, cI; /* Row and column indices */ + q31_t *pYData = S->pData; /* pointer to output table values */ + uint32_t nCols = S->numCols; /* num of rows */ + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + rI = ((X & (q31_t)0xFFF00000) >> 20); + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + cI = ((Y & (q31_t)0xFFF00000) >> 20); + + /* Care taken for table outside boundary */ + /* Returns zero output when values are outside table boundary */ + if (rI < 0 || rI > (S->numCols - 2) || cI < 0 || cI > (S->numRows - 2)) + { + return (0); + } + + /* 20 bits for the fractional part */ + /* shift left xfract by 11 to keep 1.31 format */ + xfract = (X & 0x000FFFFF) << 11U; + + /* Read two nearest output values from the index */ + x1 = pYData[(rI) + (int32_t)nCols * (cI) ]; + x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1]; + + /* 20 bits for the fractional part */ + /* shift left yfract by 11 to keep 1.31 format */ + yfract = (Y & 0x000FFFFF) << 11U; + + /* Read two nearest output values from the index */ + y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ]; + y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1]; + + /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */ + out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); + acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32)); + + /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */ + out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32)); + acc += ((q31_t) ((q63_t) out * (xfract) >> 32)); + + /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */ + out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32)); + acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); + + /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */ + out = ((q31_t) ((q63_t) y2 * (xfract) >> 32)); + acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); + + /* Convert acc to 1.31(q31) format */ + return ((q31_t)(acc << 2)); + } + + + /** + * @brief Q15 bilinear interpolation. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. + * @return out interpolated value. + */ + __STATIC_FORCEINLINE q15_t arm_bilinear_interp_q15( + arm_bilinear_interp_instance_q15 * S, + q31_t X, + q31_t Y) + { + q63_t acc = 0; /* output */ + q31_t out; /* Temporary output */ + q15_t x1, x2, y1, y2; /* Nearest output values */ + q31_t xfract, yfract; /* X, Y fractional parts */ + int32_t rI, cI; /* Row and column indices */ + q15_t *pYData = S->pData; /* pointer to output table values */ + uint32_t nCols = S->numCols; /* num of rows */ + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + rI = ((X & (q31_t)0xFFF00000) >> 20); + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + cI = ((Y & (q31_t)0xFFF00000) >> 20); + + /* Care taken for table outside boundary */ + /* Returns zero output when values are outside table boundary */ + if (rI < 0 || rI > (S->numCols - 2) || cI < 0 || cI > (S->numRows - 2)) + { + return (0); + } + + /* 20 bits for the fractional part */ + /* xfract should be in 12.20 format */ + xfract = (X & 0x000FFFFF); + + /* Read two nearest output values from the index */ + x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; + x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; + + /* 20 bits for the fractional part */ + /* yfract should be in 12.20 format */ + yfract = (Y & 0x000FFFFF); + + /* Read two nearest output values from the index */ + y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; + y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; + + /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */ + + /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */ + /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */ + out = (q31_t) (((q63_t) x1 * (0x0FFFFF - xfract)) >> 4U); + acc = ((q63_t) out * (0x0FFFFF - yfract)); + + /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */ + out = (q31_t) (((q63_t) x2 * (0x0FFFFF - yfract)) >> 4U); + acc += ((q63_t) out * (xfract)); + + /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */ + out = (q31_t) (((q63_t) y1 * (0x0FFFFF - xfract)) >> 4U); + acc += ((q63_t) out * (yfract)); + + /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */ + out = (q31_t) (((q63_t) y2 * (xfract)) >> 4U); + acc += ((q63_t) out * (yfract)); + + /* acc is in 13.51 format and down shift acc by 36 times */ + /* Convert out to 1.15 format */ + return ((q15_t)(acc >> 36)); + } + + + /** + * @brief Q7 bilinear interpolation. + * @param[in,out] S points to an instance of the interpolation structure. + * @param[in] X interpolation coordinate in 12.20 format. + * @param[in] Y interpolation coordinate in 12.20 format. + * @return out interpolated value. + */ + __STATIC_FORCEINLINE q7_t arm_bilinear_interp_q7( + arm_bilinear_interp_instance_q7 * S, + q31_t X, + q31_t Y) + { + q63_t acc = 0; /* output */ + q31_t out; /* Temporary output */ + q31_t xfract, yfract; /* X, Y fractional parts */ + q7_t x1, x2, y1, y2; /* Nearest output values */ + int32_t rI, cI; /* Row and column indices */ + q7_t *pYData = S->pData; /* pointer to output table values */ + uint32_t nCols = S->numCols; /* num of rows */ + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + rI = ((X & (q31_t)0xFFF00000) >> 20); + + /* Input is in 12.20 format */ + /* 12 bits for the table index */ + /* Index value calculation */ + cI = ((Y & (q31_t)0xFFF00000) >> 20); + + /* Care taken for table outside boundary */ + /* Returns zero output when values are outside table boundary */ + if (rI < 0 || rI > (S->numCols - 2) || cI < 0 || cI > (S->numRows - 2)) + { + return (0); + } + + /* 20 bits for the fractional part */ + /* xfract should be in 12.20 format */ + xfract = (X & (q31_t)0x000FFFFF); + + /* Read two nearest output values from the index */ + x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; + x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; + + /* 20 bits for the fractional part */ + /* yfract should be in 12.20 format */ + yfract = (Y & (q31_t)0x000FFFFF); + + /* Read two nearest output values from the index */ + y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; + y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; + + /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */ + out = ((x1 * (0xFFFFF - xfract))); + acc = (((q63_t) out * (0xFFFFF - yfract))); + + /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */ + out = ((x2 * (0xFFFFF - yfract))); + acc += (((q63_t) out * (xfract))); + + /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */ + out = ((y1 * (0xFFFFF - xfract))); + acc += (((q63_t) out * (yfract))); + + /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */ + out = ((y2 * (yfract))); + acc += (((q63_t) out * (xfract))); + + /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */ + return ((q7_t)(acc >> 40)); + } + + /** + * @} end of BilinearInterpolate group + */ + + +/* SMMLAR */ +#define multAcc_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32) + +/* SMMLSR */ +#define multSub_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32) + +/* SMMULR */ +#define mult_32x32_keep32_R(a, x, y) \ + a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32) + +/* SMMLA */ +#define multAcc_32x32_keep32(a, x, y) \ + a += (q31_t) (((q63_t) x * y) >> 32) + +/* SMMLS */ +#define multSub_32x32_keep32(a, x, y) \ + a -= (q31_t) (((q63_t) x * y) >> 32) + +/* SMMUL */ +#define mult_32x32_keep32(a, x, y) \ + a = (q31_t) (((q63_t) x * y ) >> 32) + + +#if defined ( __CC_ARM ) + /* Enter low optimization region - place directly above function definition */ + #if defined( __ARM_ARCH_7EM__ ) + #define LOW_OPTIMIZATION_ENTER \ + _Pragma ("push") \ + _Pragma ("O1") + #else + #define LOW_OPTIMIZATION_ENTER + #endif + + /* Exit low optimization region - place directly after end of function definition */ + #if defined ( __ARM_ARCH_7EM__ ) + #define LOW_OPTIMIZATION_EXIT \ + _Pragma ("pop") + #else + #define LOW_OPTIMIZATION_EXIT + #endif + + /* Enter low optimization region - place directly above function definition */ + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + + /* Exit low optimization region - place directly after end of function definition */ + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined (__ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) + #define LOW_OPTIMIZATION_ENTER + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined ( __GNUC__ ) + #define LOW_OPTIMIZATION_ENTER \ + __attribute__(( optimize("-O1") )) + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined ( __ICCARM__ ) + /* Enter low optimization region - place directly above function definition */ + #if defined ( __ARM_ARCH_7EM__ ) + #define LOW_OPTIMIZATION_ENTER \ + _Pragma ("optimize=low") + #else + #define LOW_OPTIMIZATION_ENTER + #endif + + /* Exit low optimization region - place directly after end of function definition */ + #define LOW_OPTIMIZATION_EXIT + + /* Enter low optimization region - place directly above function definition */ + #if defined ( __ARM_ARCH_7EM__ ) + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \ + _Pragma ("optimize=low") + #else + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #endif + + /* Exit low optimization region - place directly after end of function definition */ + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined ( __TI_ARM__ ) + #define LOW_OPTIMIZATION_ENTER + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined ( __CSMC__ ) + #define LOW_OPTIMIZATION_ENTER + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined ( __TASKING__ ) + #define LOW_OPTIMIZATION_ENTER + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT + +#elif defined ( _MSC_VER ) || defined(__GNUC_PYTHON__) + #define LOW_OPTIMIZATION_ENTER + #define LOW_OPTIMIZATION_EXIT + #define IAR_ONLY_LOW_OPTIMIZATION_ENTER + #define IAR_ONLY_LOW_OPTIMIZATION_EXIT +#endif + + + +/* Compiler specific diagnostic adjustment */ +#if defined ( __CC_ARM ) + +#elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) + +#elif defined ( __GNUC__ ) +#pragma GCC diagnostic pop + +#elif defined ( __ICCARM__ ) + +#elif defined ( __TI_ARM__ ) + +#elif defined ( __CSMC__ ) + +#elif defined ( __TASKING__ ) + +#elif defined ( _MSC_VER ) + +#else + #error Unknown compiler +#endif + +#ifdef __cplusplus +} +#endif + + +#endif /* _ARM_MATH_H */ + +/** + * + * End of file. + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/DSP/Include/cmsis_armclang.h b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/DSP/Include/cmsis_armclang.h new file mode 100644 index 00000000..90de9dbf --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/DSP/Include/cmsis_armclang.h @@ -0,0 +1,1467 @@ +/**************************************************************************//** + * @file cmsis_armclang.h + * @brief CMSIS compiler armclang (Arm Compiler 6) header file + * @version V5.3.1 + * @date 26. March 2020 + ******************************************************************************/ +/* + * Copyright (c) 2009-2020 Arm Limited. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/*lint -esym(9058, IRQn)*/ /* disable MISRA 2012 Rule 2.4 for IRQn */ + +#ifndef __CMSIS_ARMCLANG_H +#define __CMSIS_ARMCLANG_H + +#pragma clang system_header /* treat file as system include file */ + +#ifndef __ARM_COMPAT_H +#include /* Compatibility header for Arm Compiler 5 intrinsics */ +#endif + +/* CMSIS compiler specific defines */ +#ifndef __ASM + #define __ASM __asm +#endif +#ifndef __INLINE + #define __INLINE __inline +#endif +#ifndef __STATIC_INLINE + #define __STATIC_INLINE static __inline +#endif +#ifndef __STATIC_FORCEINLINE + #define __STATIC_FORCEINLINE __attribute__((always_inline)) static __inline +#endif +#ifndef __NO_RETURN + #define __NO_RETURN __attribute__((__noreturn__)) +#endif +#ifndef __USED + #define __USED __attribute__((used)) +#endif +#ifndef __WEAK + #define __WEAK __attribute__((weak)) +#endif +#ifndef __PACKED + #define __PACKED __attribute__((packed, aligned(1))) +#endif +#ifndef __PACKED_STRUCT + #define __PACKED_STRUCT struct __attribute__((packed, aligned(1))) +#endif +#ifndef __PACKED_UNION + #define __PACKED_UNION union __attribute__((packed, aligned(1))) +#endif +#ifndef __UNALIGNED_UINT32 /* deprecated */ + #pragma clang diagnostic push + #pragma clang diagnostic ignored "-Wpacked" +/*lint -esym(9058, T_UINT32)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32 */ + struct __attribute__((packed)) T_UINT32 { uint32_t v; }; + #pragma clang diagnostic pop + #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v) +#endif +#ifndef __UNALIGNED_UINT16_WRITE + #pragma clang diagnostic push + #pragma clang diagnostic ignored "-Wpacked" +/*lint -esym(9058, T_UINT16_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_WRITE */ + __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; }; + #pragma clang diagnostic pop + #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val)) +#endif +#ifndef __UNALIGNED_UINT16_READ + #pragma clang diagnostic push + #pragma clang diagnostic ignored "-Wpacked" +/*lint -esym(9058, T_UINT16_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_READ */ + __PACKED_STRUCT T_UINT16_READ { uint16_t v; }; + #pragma clang diagnostic pop + #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v) +#endif +#ifndef __UNALIGNED_UINT32_WRITE + #pragma clang diagnostic push + #pragma clang diagnostic ignored "-Wpacked" +/*lint -esym(9058, T_UINT32_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_WRITE */ + __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; }; + #pragma clang diagnostic pop + #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val)) +#endif +#ifndef __UNALIGNED_UINT32_READ + #pragma clang diagnostic push + #pragma clang diagnostic ignored "-Wpacked" +/*lint -esym(9058, T_UINT32_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_READ */ + __PACKED_STRUCT T_UINT32_READ { uint32_t v; }; + #pragma clang diagnostic pop + #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v) +#endif +#ifndef __ALIGNED + #define __ALIGNED(x) __attribute__((aligned(x))) +#endif +#ifndef __RESTRICT + #define __RESTRICT __restrict +#endif +#ifndef __COMPILER_BARRIER + #define __COMPILER_BARRIER() __ASM volatile("":::"memory") +#endif + +/* ######################### Startup and Lowlevel Init ######################## */ + +#ifndef __PROGRAM_START +#define __PROGRAM_START __main +#endif + +#ifndef __INITIAL_SP +#define __INITIAL_SP Image$$ARM_LIB_STACK$$ZI$$Limit +#endif + +#ifndef __STACK_LIMIT +#define __STACK_LIMIT Image$$ARM_LIB_STACK$$ZI$$Base +#endif + +#ifndef __VECTOR_TABLE +#define __VECTOR_TABLE __Vectors +#endif + +#ifndef __VECTOR_TABLE_ATTRIBUTE +#define __VECTOR_TABLE_ATTRIBUTE __attribute__((used, section("RESET"))) +#endif + +/* ########################### Core Function Access ########################### */ +/** \ingroup CMSIS_Core_FunctionInterface + \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions + @{ + */ + +/** + \brief Enable IRQ Interrupts + \details Enables IRQ interrupts by clearing the I-bit in the CPSR. + Can only be executed in Privileged modes. + */ +/* intrinsic void __enable_irq(); see arm_compat.h */ + + +/** + \brief Disable IRQ Interrupts + \details Disables IRQ interrupts by setting the I-bit in the CPSR. + Can only be executed in Privileged modes. + */ +/* intrinsic void __disable_irq(); see arm_compat.h */ + + +/** + \brief Get Control Register + \details Returns the content of the Control Register. + \return Control Register value + */ +__STATIC_FORCEINLINE uint32_t __get_CONTROL(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, control" : "=r" (result) ); + return(result); +} + + +#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) +/** + \brief Get Control Register (non-secure) + \details Returns the content of the non-secure Control Register when in secure mode. + \return non-secure Control Register value + */ +__STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, control_ns" : "=r" (result) ); + return(result); +} +#endif + + +/** + \brief Set Control Register + \details Writes the given value to the Control Register. + \param [in] control Control Register value to set + */ +__STATIC_FORCEINLINE void __set_CONTROL(uint32_t control) +{ + __ASM volatile ("MSR control, %0" : : "r" (control) : "memory"); +} + + +#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) +/** + \brief Set Control Register (non-secure) + \details Writes the given value to the non-secure Control Register when in secure state. + \param [in] control Control Register value to set + */ +__STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control) +{ + __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory"); +} +#endif + + +/** + \brief Get IPSR Register + \details Returns the content of the IPSR Register. + \return IPSR Register value + */ +__STATIC_FORCEINLINE uint32_t __get_IPSR(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, ipsr" : "=r" (result) ); + return(result); +} + + +/** + \brief Get APSR Register + \details Returns the content of the APSR Register. + \return APSR Register value + */ +__STATIC_FORCEINLINE uint32_t __get_APSR(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, apsr" : "=r" (result) ); + return(result); +} + + +/** + \brief Get xPSR Register + \details Returns the content of the xPSR Register. + \return xPSR Register value + */ +__STATIC_FORCEINLINE uint32_t __get_xPSR(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, xpsr" : "=r" (result) ); + return(result); +} + + +/** + \brief Get Process Stack Pointer + \details Returns the current value of the Process Stack Pointer (PSP). + \return PSP Register value + */ +__STATIC_FORCEINLINE uint32_t __get_PSP(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, psp" : "=r" (result) ); + return(result); +} + + +#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) +/** + \brief Get Process Stack Pointer (non-secure) + \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state. + \return PSP Register value + */ +__STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, psp_ns" : "=r" (result) ); + return(result); +} +#endif + + +/** + \brief Set Process Stack Pointer + \details Assigns the given value to the Process Stack Pointer (PSP). + \param [in] topOfProcStack Process Stack Pointer value to set + */ +__STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack) +{ + __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : ); +} + + +#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) +/** + \brief Set Process Stack Pointer (non-secure) + \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state. + \param [in] topOfProcStack Process Stack Pointer value to set + */ +__STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack) +{ + __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : ); +} +#endif + + +/** + \brief Get Main Stack Pointer + \details Returns the current value of the Main Stack Pointer (MSP). + \return MSP Register value + */ +__STATIC_FORCEINLINE uint32_t __get_MSP(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, msp" : "=r" (result) ); + return(result); +} + + +#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) +/** + \brief Get Main Stack Pointer (non-secure) + \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state. + \return MSP Register value + */ +__STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, msp_ns" : "=r" (result) ); + return(result); +} +#endif + + +/** + \brief Set Main Stack Pointer + \details Assigns the given value to the Main Stack Pointer (MSP). + \param [in] topOfMainStack Main Stack Pointer value to set + */ +__STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack) +{ + __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : ); +} + + +#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) +/** + \brief Set Main Stack Pointer (non-secure) + \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state. + \param [in] topOfMainStack Main Stack Pointer value to set + */ +__STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack) +{ + __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : ); +} +#endif + + +#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) +/** + \brief Get Stack Pointer (non-secure) + \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state. + \return SP Register value + */ +__STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, sp_ns" : "=r" (result) ); + return(result); +} + + +/** + \brief Set Stack Pointer (non-secure) + \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state. + \param [in] topOfStack Stack Pointer value to set + */ +__STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack) +{ + __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : ); +} +#endif + + +/** + \brief Get Priority Mask + \details Returns the current state of the priority mask bit from the Priority Mask Register. + \return Priority Mask value + */ +__STATIC_FORCEINLINE uint32_t __get_PRIMASK(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, primask" : "=r" (result) ); + return(result); +} + + +#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) +/** + \brief Get Priority Mask (non-secure) + \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state. + \return Priority Mask value + */ +__STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, primask_ns" : "=r" (result) ); + return(result); +} +#endif + + +/** + \brief Set Priority Mask + \details Assigns the given value to the Priority Mask Register. + \param [in] priMask Priority Mask + */ +__STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask) +{ + __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory"); +} + + +#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) +/** + \brief Set Priority Mask (non-secure) + \details Assigns the given value to the non-secure Priority Mask Register when in secure state. + \param [in] priMask Priority Mask + */ +__STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask) +{ + __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory"); +} +#endif + + +#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ + (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ + (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ + (defined (__ARM_ARCH_8_1M_MAIN__) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) +/** + \brief Enable FIQ + \details Enables FIQ interrupts by clearing the F-bit in the CPSR. + Can only be executed in Privileged modes. + */ +#define __enable_fault_irq __enable_fiq /* see arm_compat.h */ + + +/** + \brief Disable FIQ + \details Disables FIQ interrupts by setting the F-bit in the CPSR. + Can only be executed in Privileged modes. + */ +#define __disable_fault_irq __disable_fiq /* see arm_compat.h */ + + +/** + \brief Get Base Priority + \details Returns the current value of the Base Priority register. + \return Base Priority register value + */ +__STATIC_FORCEINLINE uint32_t __get_BASEPRI(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, basepri" : "=r" (result) ); + return(result); +} + + +#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) +/** + \brief Get Base Priority (non-secure) + \details Returns the current value of the non-secure Base Priority register when in secure state. + \return Base Priority register value + */ +__STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) ); + return(result); +} +#endif + + +/** + \brief Set Base Priority + \details Assigns the given value to the Base Priority register. + \param [in] basePri Base Priority value to set + */ +__STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri) +{ + __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory"); +} + + +#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) +/** + \brief Set Base Priority (non-secure) + \details Assigns the given value to the non-secure Base Priority register when in secure state. + \param [in] basePri Base Priority value to set + */ +__STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri) +{ + __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory"); +} +#endif + + +/** + \brief Set Base Priority with condition + \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled, + or the new value increases the BASEPRI priority level. + \param [in] basePri Base Priority value to set + */ +__STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri) +{ + __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory"); +} + + +/** + \brief Get Fault Mask + \details Returns the current value of the Fault Mask register. + \return Fault Mask register value + */ +__STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, faultmask" : "=r" (result) ); + return(result); +} + + +#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) +/** + \brief Get Fault Mask (non-secure) + \details Returns the current value of the non-secure Fault Mask register when in secure state. + \return Fault Mask register value + */ +__STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void) +{ + uint32_t result; + + __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) ); + return(result); +} +#endif + + +/** + \brief Set Fault Mask + \details Assigns the given value to the Fault Mask register. + \param [in] faultMask Fault Mask value to set + */ +__STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask) +{ + __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory"); +} + + +#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) +/** + \brief Set Fault Mask (non-secure) + \details Assigns the given value to the non-secure Fault Mask register when in secure state. + \param [in] faultMask Fault Mask value to set + */ +__STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask) +{ + __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory"); +} +#endif + +#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ + (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ + (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ + (defined (__ARM_ARCH_8_1M_MAIN__) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) */ + + +#if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ + (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) || \ + (defined (__ARM_ARCH_8_1M_MAIN__) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) + +/** + \brief Get Process Stack Pointer Limit + Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure + Stack Pointer Limit register hence zero is returned always in non-secure + mode. + + \details Returns the current value of the Process Stack Pointer Limit (PSPLIM). + \return PSPLIM Register value + */ +__STATIC_FORCEINLINE uint32_t __get_PSPLIM(void) +{ +#if (!((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ + (defined (__ARM_ARCH_8_1M_MAIN__ ) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) && \ + (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) + // without main extensions, the non-secure PSPLIM is RAZ/WI + return 0U; +#else + uint32_t result; + __ASM volatile ("MRS %0, psplim" : "=r" (result) ); + return result; +#endif +} + +#if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3)) +/** + \brief Get Process Stack Pointer Limit (non-secure) + Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure + Stack Pointer Limit register hence zero is returned always in non-secure + mode. + + \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state. + \return PSPLIM Register value + */ +__STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void) +{ +#if (!((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ + (defined (__ARM_ARCH_8_1M_MAIN__ ) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) ) + // without main extensions, the non-secure PSPLIM is RAZ/WI + return 0U; +#else + uint32_t result; + __ASM volatile ("MRS %0, psplim_ns" : "=r" (result) ); + return result; +#endif +} +#endif + + +/** + \brief Set Process Stack Pointer Limit + Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure + Stack Pointer Limit register hence the write is silently ignored in non-secure + mode. + + \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM). + \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set + */ +__STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit) +{ +#if (!((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ + (defined (__ARM_ARCH_8_1M_MAIN__ ) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) && \ + (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) + // without main extensions, the non-secure PSPLIM is RAZ/WI + (void)ProcStackPtrLimit; +#else + __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit)); +#endif +} + + +#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) +/** + \brief Set Process Stack Pointer (non-secure) + Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure + Stack Pointer Limit register hence the write is silently ignored in non-secure + mode. + + \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state. + \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set + */ +__STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit) +{ +#if (!((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ + (defined (__ARM_ARCH_8_1M_MAIN__ ) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) ) + // without main extensions, the non-secure PSPLIM is RAZ/WI + (void)ProcStackPtrLimit; +#else + __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit)); +#endif +} +#endif + + +/** + \brief Get Main Stack Pointer Limit + Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure + Stack Pointer Limit register hence zero is returned always. + + \details Returns the current value of the Main Stack Pointer Limit (MSPLIM). + \return MSPLIM Register value + */ +__STATIC_FORCEINLINE uint32_t __get_MSPLIM(void) +{ +#if (!((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ + (defined (__ARM_ARCH_8_1M_MAIN__ ) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) && \ + (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) + // without main extensions, the non-secure MSPLIM is RAZ/WI + return 0U; +#else + uint32_t result; + __ASM volatile ("MRS %0, msplim" : "=r" (result) ); + return result; +#endif +} + + +#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) +/** + \brief Get Main Stack Pointer Limit (non-secure) + Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure + Stack Pointer Limit register hence zero is returned always. + + \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state. + \return MSPLIM Register value + */ +__STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void) +{ +#if (!((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ + (defined (__ARM_ARCH_8_1M_MAIN__ ) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) ) + // without main extensions, the non-secure MSPLIM is RAZ/WI + return 0U; +#else + uint32_t result; + __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) ); + return result; +#endif +} +#endif + + +/** + \brief Set Main Stack Pointer Limit + Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure + Stack Pointer Limit register hence the write is silently ignored. + + \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM). + \param [in] MainStackPtrLimit Main Stack Pointer Limit value to set + */ +__STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit) +{ +#if (!((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ + (defined (__ARM_ARCH_8_1M_MAIN__ ) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) && \ + (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) + // without main extensions, the non-secure MSPLIM is RAZ/WI + (void)MainStackPtrLimit; +#else + __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit)); +#endif +} + + +#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) +/** + \brief Set Main Stack Pointer Limit (non-secure) + Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure + Stack Pointer Limit register hence the write is silently ignored. + + \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state. + \param [in] MainStackPtrLimit Main Stack Pointer value to set + */ +__STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit) +{ +#if (!((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ + (defined (__ARM_ARCH_8_1M_MAIN__ ) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) ) + // without main extensions, the non-secure MSPLIM is RAZ/WI + (void)MainStackPtrLimit; +#else + __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit)); +#endif +} +#endif + +#endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ + (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) || \ + (defined (__ARM_ARCH_8_1M_MAIN__) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) */ + +/** + \brief Get FPSCR + \details Returns the current value of the Floating Point Status/Control register. + \return Floating Point Status/Control register value + */ +#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ + (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) +#define __get_FPSCR (uint32_t)__builtin_arm_get_fpscr +#else +#define __get_FPSCR() ((uint32_t)0U) +#endif + +/** + \brief Set FPSCR + \details Assigns the given value to the Floating Point Status/Control register. + \param [in] fpscr Floating Point Status/Control value to set + */ +#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ + (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) +#define __set_FPSCR __builtin_arm_set_fpscr +#else +#define __set_FPSCR(x) ((void)(x)) +#endif + + +/*@} end of CMSIS_Core_RegAccFunctions */ + + +/* ########################## Core Instruction Access ######################### */ +/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface + Access to dedicated instructions + @{ +*/ + +/* Define macros for porting to both thumb1 and thumb2. + * For thumb1, use low register (r0-r7), specified by constraint "l" + * Otherwise, use general registers, specified by constraint "r" */ +#if defined (__thumb__) && !defined (__thumb2__) +#define __CMSIS_GCC_OUT_REG(r) "=l" (r) +#define __CMSIS_GCC_RW_REG(r) "+l" (r) +#define __CMSIS_GCC_USE_REG(r) "l" (r) +#else +#define __CMSIS_GCC_OUT_REG(r) "=r" (r) +#define __CMSIS_GCC_RW_REG(r) "+r" (r) +#define __CMSIS_GCC_USE_REG(r) "r" (r) +#endif + +/** + \brief No Operation + \details No Operation does nothing. This instruction can be used for code alignment purposes. + */ +#define __NOP __builtin_arm_nop + +/** + \brief Wait For Interrupt + \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs. + */ +#define __WFI __builtin_arm_wfi + + +/** + \brief Wait For Event + \details Wait For Event is a hint instruction that permits the processor to enter + a low-power state until one of a number of events occurs. + */ +#define __WFE __builtin_arm_wfe + + +/** + \brief Send Event + \details Send Event is a hint instruction. It causes an event to be signaled to the CPU. + */ +#define __SEV __builtin_arm_sev + + +/** + \brief Instruction Synchronization Barrier + \details Instruction Synchronization Barrier flushes the pipeline in the processor, + so that all instructions following the ISB are fetched from cache or memory, + after the instruction has been completed. + */ +#define __ISB() __builtin_arm_isb(0xF) + +/** + \brief Data Synchronization Barrier + \details Acts as a special kind of Data Memory Barrier. + It completes when all explicit memory accesses before this instruction complete. + */ +#define __DSB() __builtin_arm_dsb(0xF) + + +/** + \brief Data Memory Barrier + \details Ensures the apparent order of the explicit memory operations before + and after the instruction, without ensuring their completion. + */ +#define __DMB() __builtin_arm_dmb(0xF) + + +/** + \brief Reverse byte order (32 bit) + \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412. + \param [in] value Value to reverse + \return Reversed value + */ +#define __REV(value) __builtin_bswap32(value) + + +/** + \brief Reverse byte order (16 bit) + \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856. + \param [in] value Value to reverse + \return Reversed value + */ +#define __REV16(value) __ROR(__REV(value), 16) + + +/** + \brief Reverse byte order (16 bit) + \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000. + \param [in] value Value to reverse + \return Reversed value + */ +#define __REVSH(value) (int16_t)__builtin_bswap16(value) + + +/** + \brief Rotate Right in unsigned value (32 bit) + \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits. + \param [in] op1 Value to rotate + \param [in] op2 Number of Bits to rotate + \return Rotated value + */ +__STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2) +{ + op2 %= 32U; + if (op2 == 0U) + { + return op1; + } + return (op1 >> op2) | (op1 << (32U - op2)); +} + + +/** + \brief Breakpoint + \details Causes the processor to enter Debug state. + Debug tools can use this to investigate system state when the instruction at a particular address is reached. + \param [in] value is ignored by the processor. + If required, a debugger can use it to store additional information about the breakpoint. + */ +#define __BKPT(value) __ASM volatile ("bkpt "#value) + + +/** + \brief Reverse bit order of value + \details Reverses the bit order of the given value. + \param [in] value Value to reverse + \return Reversed value + */ +#define __RBIT __builtin_arm_rbit + +/** + \brief Count leading zeros + \details Counts the number of leading zeros of a data value. + \param [in] value Value to count the leading zeros + \return number of leading zeros in value + */ +__STATIC_FORCEINLINE uint8_t __CLZ(uint32_t value) +{ + /* Even though __builtin_clz produces a CLZ instruction on ARM, formally + __builtin_clz(0) is undefined behaviour, so handle this case specially. + This guarantees ARM-compatible results if happening to compile on a non-ARM + target, and ensures the compiler doesn't decide to activate any + optimisations using the logic "value was passed to __builtin_clz, so it + is non-zero". + ARM Compiler 6.10 and possibly earlier will optimise this test away, leaving a + single CLZ instruction. + */ + if (value == 0U) + { + return 32U; + } + return __builtin_clz(value); +} + + +#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ + (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ + (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ + (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) || \ + (defined (__ARM_ARCH_8_1M_MAIN__) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) + +/** + \brief LDR Exclusive (8 bit) + \details Executes a exclusive LDR instruction for 8 bit value. + \param [in] ptr Pointer to data + \return value of type uint8_t at (*ptr) + */ +#define __LDREXB (uint8_t)__builtin_arm_ldrex + + +/** + \brief LDR Exclusive (16 bit) + \details Executes a exclusive LDR instruction for 16 bit values. + \param [in] ptr Pointer to data + \return value of type uint16_t at (*ptr) + */ +#define __LDREXH (uint16_t)__builtin_arm_ldrex + + +/** + \brief LDR Exclusive (32 bit) + \details Executes a exclusive LDR instruction for 32 bit values. + \param [in] ptr Pointer to data + \return value of type uint32_t at (*ptr) + */ +#define __LDREXW (uint32_t)__builtin_arm_ldrex + + +/** + \brief STR Exclusive (8 bit) + \details Executes a exclusive STR instruction for 8 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + \return 0 Function succeeded + \return 1 Function failed + */ +#define __STREXB (uint32_t)__builtin_arm_strex + + +/** + \brief STR Exclusive (16 bit) + \details Executes a exclusive STR instruction for 16 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + \return 0 Function succeeded + \return 1 Function failed + */ +#define __STREXH (uint32_t)__builtin_arm_strex + + +/** + \brief STR Exclusive (32 bit) + \details Executes a exclusive STR instruction for 32 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + \return 0 Function succeeded + \return 1 Function failed + */ +#define __STREXW (uint32_t)__builtin_arm_strex + + +/** + \brief Remove the exclusive lock + \details Removes the exclusive lock which is created by LDREX. + */ +#define __CLREX __builtin_arm_clrex + +#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ + (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ + (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ + (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) || \ + (defined (__ARM_ARCH_8_1M_MAIN__) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) */ + + +#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ + (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ + (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ + (defined (__ARM_ARCH_8_1M_MAIN__) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) + +/** + \brief Signed Saturate + \details Saturates a signed value. + \param [in] value Value to be saturated + \param [in] sat Bit position to saturate to (1..32) + \return Saturated value + */ +#define __SSAT __builtin_arm_ssat + + +/** + \brief Unsigned Saturate + \details Saturates an unsigned value. + \param [in] value Value to be saturated + \param [in] sat Bit position to saturate to (0..31) + \return Saturated value + */ +#define __USAT __builtin_arm_usat + + +/** + \brief Rotate Right with Extend (32 bit) + \details Moves each bit of a bitstring right by one bit. + The carry input is shifted in at the left end of the bitstring. + \param [in] value Value to rotate + \return Rotated value + */ +__STATIC_FORCEINLINE uint32_t __RRX(uint32_t value) +{ + uint32_t result; + + __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); + return(result); +} + + +/** + \brief LDRT Unprivileged (8 bit) + \details Executes a Unprivileged LDRT instruction for 8 bit value. + \param [in] ptr Pointer to data + \return value of type uint8_t at (*ptr) + */ +__STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr) +{ + uint32_t result; + + __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) ); + return ((uint8_t) result); /* Add explicit type cast here */ +} + + +/** + \brief LDRT Unprivileged (16 bit) + \details Executes a Unprivileged LDRT instruction for 16 bit values. + \param [in] ptr Pointer to data + \return value of type uint16_t at (*ptr) + */ +__STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr) +{ + uint32_t result; + + __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) ); + return ((uint16_t) result); /* Add explicit type cast here */ +} + + +/** + \brief LDRT Unprivileged (32 bit) + \details Executes a Unprivileged LDRT instruction for 32 bit values. + \param [in] ptr Pointer to data + \return value of type uint32_t at (*ptr) + */ +__STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr) +{ + uint32_t result; + + __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) ); + return(result); +} + + +/** + \brief STRT Unprivileged (8 bit) + \details Executes a Unprivileged STRT instruction for 8 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + */ +__STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr) +{ + __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); +} + + +/** + \brief STRT Unprivileged (16 bit) + \details Executes a Unprivileged STRT instruction for 16 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + */ +__STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr) +{ + __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); +} + + +/** + \brief STRT Unprivileged (32 bit) + \details Executes a Unprivileged STRT instruction for 32 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + */ +__STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr) +{ + __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) ); +} + +#else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ + (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ + (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ + (defined (__ARM_ARCH_8_1M_MAIN__) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) */ + +/** + \brief Signed Saturate + \details Saturates a signed value. + \param [in] value Value to be saturated + \param [in] sat Bit position to saturate to (1..32) + \return Saturated value + */ +__STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat) +{ + if ((sat >= 1U) && (sat <= 32U)) + { + const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U); + const int32_t min = -1 - max ; + if (val > max) + { + return max; + } + else if (val < min) + { + return min; + } + } + return val; +} + +/** + \brief Unsigned Saturate + \details Saturates an unsigned value. + \param [in] value Value to be saturated + \param [in] sat Bit position to saturate to (0..31) + \return Saturated value + */ +__STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat) +{ + if (sat <= 31U) + { + const uint32_t max = ((1U << sat) - 1U); + if (val > (int32_t)max) + { + return max; + } + else if (val < 0) + { + return 0U; + } + } + return (uint32_t)val; +} + +#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ + (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ + (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ + (defined (__ARM_ARCH_8_1M_MAIN__) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) */ + + +#if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ + (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) || \ + (defined (__ARM_ARCH_8_1M_MAIN__) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) + +/** + \brief Load-Acquire (8 bit) + \details Executes a LDAB instruction for 8 bit value. + \param [in] ptr Pointer to data + \return value of type uint8_t at (*ptr) + */ +__STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr) +{ + uint32_t result; + + __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" ); + return ((uint8_t) result); +} + + +/** + \brief Load-Acquire (16 bit) + \details Executes a LDAH instruction for 16 bit values. + \param [in] ptr Pointer to data + \return value of type uint16_t at (*ptr) + */ +__STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr) +{ + uint32_t result; + + __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" ); + return ((uint16_t) result); +} + + +/** + \brief Load-Acquire (32 bit) + \details Executes a LDA instruction for 32 bit values. + \param [in] ptr Pointer to data + \return value of type uint32_t at (*ptr) + */ +__STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr) +{ + uint32_t result; + + __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" ); + return(result); +} + + +/** + \brief Store-Release (8 bit) + \details Executes a STLB instruction for 8 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + */ +__STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr) +{ + __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" ); +} + + +/** + \brief Store-Release (16 bit) + \details Executes a STLH instruction for 16 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + */ +__STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr) +{ + __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" ); +} + + +/** + \brief Store-Release (32 bit) + \details Executes a STL instruction for 32 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + */ +__STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr) +{ + __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" ); +} + + +/** + \brief Load-Acquire Exclusive (8 bit) + \details Executes a LDAB exclusive instruction for 8 bit value. + \param [in] ptr Pointer to data + \return value of type uint8_t at (*ptr) + */ +#define __LDAEXB (uint8_t)__builtin_arm_ldaex + + +/** + \brief Load-Acquire Exclusive (16 bit) + \details Executes a LDAH exclusive instruction for 16 bit values. + \param [in] ptr Pointer to data + \return value of type uint16_t at (*ptr) + */ +#define __LDAEXH (uint16_t)__builtin_arm_ldaex + + +/** + \brief Load-Acquire Exclusive (32 bit) + \details Executes a LDA exclusive instruction for 32 bit values. + \param [in] ptr Pointer to data + \return value of type uint32_t at (*ptr) + */ +#define __LDAEX (uint32_t)__builtin_arm_ldaex + + +/** + \brief Store-Release Exclusive (8 bit) + \details Executes a STLB exclusive instruction for 8 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + \return 0 Function succeeded + \return 1 Function failed + */ +#define __STLEXB (uint32_t)__builtin_arm_stlex + + +/** + \brief Store-Release Exclusive (16 bit) + \details Executes a STLH exclusive instruction for 16 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + \return 0 Function succeeded + \return 1 Function failed + */ +#define __STLEXH (uint32_t)__builtin_arm_stlex + + +/** + \brief Store-Release Exclusive (32 bit) + \details Executes a STL exclusive instruction for 32 bit values. + \param [in] value Value to store + \param [in] ptr Pointer to location + \return 0 Function succeeded + \return 1 Function failed + */ +#define __STLEX (uint32_t)__builtin_arm_stlex + +#endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ + (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) || \ + (defined (__ARM_ARCH_8_1M_MAIN__) && (__ARM_ARCH_8_1M_MAIN__ == 1)) ) */ + +/*@}*/ /* end of group CMSIS_Core_InstructionInterface */ + + +/* ################### Compiler specific Intrinsics ########################### */ +/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics + Access to dedicated SIMD instructions + @{ +*/ + +#if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1)) + +#define __SADD8 __builtin_arm_sadd8 +#define __QADD8 __builtin_arm_qadd8 +#define __SHADD8 __builtin_arm_shadd8 +#define __UADD8 __builtin_arm_uadd8 +#define __UQADD8 __builtin_arm_uqadd8 +#define __UHADD8 __builtin_arm_uhadd8 +#define __SSUB8 __builtin_arm_ssub8 +#define __QSUB8 __builtin_arm_qsub8 +#define __SHSUB8 __builtin_arm_shsub8 +#define __USUB8 __builtin_arm_usub8 +#define __UQSUB8 __builtin_arm_uqsub8 +#define __UHSUB8 __builtin_arm_uhsub8 +#define __SADD16 __builtin_arm_sadd16 +#define __QADD16 __builtin_arm_qadd16 +#define __SHADD16 __builtin_arm_shadd16 +#define __UADD16 __builtin_arm_uadd16 +#define __UQADD16 __builtin_arm_uqadd16 +#define __UHADD16 __builtin_arm_uhadd16 +#define __SSUB16 __builtin_arm_ssub16 +#define __QSUB16 __builtin_arm_qsub16 +#define __SHSUB16 __builtin_arm_shsub16 +#define __USUB16 __builtin_arm_usub16 +#define __UQSUB16 __builtin_arm_uqsub16 +#define __UHSUB16 __builtin_arm_uhsub16 +#define __SASX __builtin_arm_sasx +#define __QASX __builtin_arm_qasx +#define __SHASX __builtin_arm_shasx +#define __UASX __builtin_arm_uasx +#define __UQASX __builtin_arm_uqasx +#define __UHASX __builtin_arm_uhasx +#define __SSAX __builtin_arm_ssax +#define __QSAX __builtin_arm_qsax +#define __SHSAX __builtin_arm_shsax +#define __USAX __builtin_arm_usax +#define __UQSAX __builtin_arm_uqsax +#define __UHSAX __builtin_arm_uhsax +#define __USAD8 __builtin_arm_usad8 +#define __USADA8 __builtin_arm_usada8 +#define __SSAT16 __builtin_arm_ssat16 +#define __USAT16 __builtin_arm_usat16 +#define __UXTB16 __builtin_arm_uxtb16 +#define __UXTAB16 __builtin_arm_uxtab16 +#define __SXTB16 __builtin_arm_sxtb16 +#define __SXTAB16 __builtin_arm_sxtab16 +#define __SMUAD __builtin_arm_smuad +#define __SMUADX __builtin_arm_smuadx +#define __SMLAD __builtin_arm_smlad +#define __SMLADX __builtin_arm_smladx +#define __SMLALD __builtin_arm_smlald +#define __SMLALDX __builtin_arm_smlaldx +#define __SMUSD __builtin_arm_smusd +#define __SMUSDX __builtin_arm_smusdx +#define __SMLSD __builtin_arm_smlsd +#define __SMLSDX __builtin_arm_smlsdx +#define __SMLSLD __builtin_arm_smlsld +#define __SMLSLDX __builtin_arm_smlsldx +#define __SEL __builtin_arm_sel +#define __QADD __builtin_arm_qadd +#define __QSUB __builtin_arm_qsub + +#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \ + ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) ) + +#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \ + ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) ) + +#define __SXTB16_RORn(ARG1, ARG2) __SXTB16(__ROR(ARG1, ARG2)) + +__STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3) +{ + int32_t result; + + __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) ); + return(result); +} + +#endif /* (__ARM_FEATURE_DSP == 1) */ +/*@} end of group CMSIS_SIMD_intrinsics */ + + +#endif /* __CMSIS_ARMCLANG_H */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/DSP/Include/cmsis_compiler.h b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/DSP/Include/cmsis_compiler.h new file mode 100644 index 00000000..adbf296f --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/DSP/Include/cmsis_compiler.h @@ -0,0 +1,283 @@ +/**************************************************************************//** + * @file cmsis_compiler.h + * @brief CMSIS compiler generic header file + * @version V5.1.0 + * @date 09. October 2018 + ******************************************************************************/ +/* + * Copyright (c) 2009-2018 Arm Limited. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef __CMSIS_COMPILER_H +#define __CMSIS_COMPILER_H + +#include + +/* + * Arm Compiler 4/5 + */ +#if defined ( __CC_ARM ) + #include "cmsis_armcc.h" + + +/* + * Arm Compiler 6.6 LTM (armclang) + */ +#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) && (__ARMCC_VERSION < 6100100) + #include "cmsis_armclang_ltm.h" + + /* + * Arm Compiler above 6.10.1 (armclang) + */ +#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6100100) + #include "cmsis_armclang.h" + + +/* + * GNU Compiler + */ +#elif defined ( __GNUC__ ) + #include "cmsis_gcc.h" + + +/* + * IAR Compiler + */ +#elif defined ( __ICCARM__ ) + #include + + +/* + * TI Arm Compiler + */ +#elif defined ( __TI_ARM__ ) + #include + + #ifndef __ASM + #define __ASM __asm + #endif + #ifndef __INLINE + #define __INLINE inline + #endif + #ifndef __STATIC_INLINE + #define __STATIC_INLINE static inline + #endif + #ifndef __STATIC_FORCEINLINE + #define __STATIC_FORCEINLINE __STATIC_INLINE + #endif + #ifndef __NO_RETURN + #define __NO_RETURN __attribute__((noreturn)) + #endif + #ifndef __USED + #define __USED __attribute__((used)) + #endif + #ifndef __WEAK + #define __WEAK __attribute__((weak)) + #endif + #ifndef __PACKED + #define __PACKED __attribute__((packed)) + #endif + #ifndef __PACKED_STRUCT + #define __PACKED_STRUCT struct __attribute__((packed)) + #endif + #ifndef __PACKED_UNION + #define __PACKED_UNION union __attribute__((packed)) + #endif + #ifndef __UNALIGNED_UINT32 /* deprecated */ + struct __attribute__((packed)) T_UINT32 { uint32_t v; }; + #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v) + #endif + #ifndef __UNALIGNED_UINT16_WRITE + __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; }; + #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void*)(addr))->v) = (val)) + #endif + #ifndef __UNALIGNED_UINT16_READ + __PACKED_STRUCT T_UINT16_READ { uint16_t v; }; + #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v) + #endif + #ifndef __UNALIGNED_UINT32_WRITE + __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; }; + #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val)) + #endif + #ifndef __UNALIGNED_UINT32_READ + __PACKED_STRUCT T_UINT32_READ { uint32_t v; }; + #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v) + #endif + #ifndef __ALIGNED + #define __ALIGNED(x) __attribute__((aligned(x))) + #endif + #ifndef __RESTRICT + #define __RESTRICT __restrict + #endif + #ifndef __COMPILER_BARRIER + #warning No compiler specific solution for __COMPILER_BARRIER. __COMPILER_BARRIER is ignored. + #define __COMPILER_BARRIER() (void)0 + #endif + + +/* + * TASKING Compiler + */ +#elif defined ( __TASKING__ ) + /* + * The CMSIS functions have been implemented as intrinsics in the compiler. + * Please use "carm -?i" to get an up to date list of all intrinsics, + * Including the CMSIS ones. + */ + + #ifndef __ASM + #define __ASM __asm + #endif + #ifndef __INLINE + #define __INLINE inline + #endif + #ifndef __STATIC_INLINE + #define __STATIC_INLINE static inline + #endif + #ifndef __STATIC_FORCEINLINE + #define __STATIC_FORCEINLINE __STATIC_INLINE + #endif + #ifndef __NO_RETURN + #define __NO_RETURN __attribute__((noreturn)) + #endif + #ifndef __USED + #define __USED __attribute__((used)) + #endif + #ifndef __WEAK + #define __WEAK __attribute__((weak)) + #endif + #ifndef __PACKED + #define __PACKED __packed__ + #endif + #ifndef __PACKED_STRUCT + #define __PACKED_STRUCT struct __packed__ + #endif + #ifndef __PACKED_UNION + #define __PACKED_UNION union __packed__ + #endif + #ifndef __UNALIGNED_UINT32 /* deprecated */ + struct __packed__ T_UINT32 { uint32_t v; }; + #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v) + #endif + #ifndef __UNALIGNED_UINT16_WRITE + __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; }; + #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val)) + #endif + #ifndef __UNALIGNED_UINT16_READ + __PACKED_STRUCT T_UINT16_READ { uint16_t v; }; + #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v) + #endif + #ifndef __UNALIGNED_UINT32_WRITE + __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; }; + #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val)) + #endif + #ifndef __UNALIGNED_UINT32_READ + __PACKED_STRUCT T_UINT32_READ { uint32_t v; }; + #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v) + #endif + #ifndef __ALIGNED + #define __ALIGNED(x) __align(x) + #endif + #ifndef __RESTRICT + #warning No compiler specific solution for __RESTRICT. __RESTRICT is ignored. + #define __RESTRICT + #endif + #ifndef __COMPILER_BARRIER + #warning No compiler specific solution for __COMPILER_BARRIER. __COMPILER_BARRIER is ignored. + #define __COMPILER_BARRIER() (void)0 + #endif + + +/* + * COSMIC Compiler + */ +#elif defined ( __CSMC__ ) + #include + + #ifndef __ASM + #define __ASM _asm + #endif + #ifndef __INLINE + #define __INLINE inline + #endif + #ifndef __STATIC_INLINE + #define __STATIC_INLINE static inline + #endif + #ifndef __STATIC_FORCEINLINE + #define __STATIC_FORCEINLINE __STATIC_INLINE + #endif + #ifndef __NO_RETURN + // NO RETURN is automatically detected hence no warning here + #define __NO_RETURN + #endif + #ifndef __USED + #warning No compiler specific solution for __USED. __USED is ignored. + #define __USED + #endif + #ifndef __WEAK + #define __WEAK __weak + #endif + #ifndef __PACKED + #define __PACKED @packed + #endif + #ifndef __PACKED_STRUCT + #define __PACKED_STRUCT @packed struct + #endif + #ifndef __PACKED_UNION + #define __PACKED_UNION @packed union + #endif + #ifndef __UNALIGNED_UINT32 /* deprecated */ + @packed struct T_UINT32 { uint32_t v; }; + #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v) + #endif + #ifndef __UNALIGNED_UINT16_WRITE + __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; }; + #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val)) + #endif + #ifndef __UNALIGNED_UINT16_READ + __PACKED_STRUCT T_UINT16_READ { uint16_t v; }; + #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v) + #endif + #ifndef __UNALIGNED_UINT32_WRITE + __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; }; + #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val)) + #endif + #ifndef __UNALIGNED_UINT32_READ + __PACKED_STRUCT T_UINT32_READ { uint32_t v; }; + #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v) + #endif + #ifndef __ALIGNED + #warning No compiler specific solution for __ALIGNED. __ALIGNED is ignored. + #define __ALIGNED(x) + #endif + #ifndef __RESTRICT + #warning No compiler specific solution for __RESTRICT. __RESTRICT is ignored. + #define __RESTRICT + #endif + #ifndef __COMPILER_BARRIER + #warning No compiler specific solution for __COMPILER_BARRIER. __COMPILER_BARRIER is ignored. + #define __COMPILER_BARRIER() (void)0 + #endif + + +#else + #error Unknown compiler. +#endif + + +#endif /* __CMSIS_COMPILER_H */ + diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Include/arm_nn_tables.h b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Include/arm_nn_tables.h new file mode 100644 index 00000000..d6880699 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Include/arm_nn_tables.h @@ -0,0 +1,56 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nn_tables.h + * Description: Extern declaration for NN tables + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef _ARM_NN_TABLES_H +#define _ARM_NN_TABLES_H + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" + +/** +* @brief tables for various activation functions +* +*/ + +extern const q15_t sigmoidTable_q15[256]; +extern const q7_t sigmoidTable_q7[256]; + +extern const q7_t tanhTable_q7[256]; +extern const q15_t tanhTable_q15[256]; + + /** + * @brief 2-way tables for various activation functions + * + * 2-way table, H table for value larger than 1/4 + * L table for value smaller than 1/4, H table for remaining + * We have this only for the q15_t version. It does not make + * sense to have it for q7_t type + */ +extern const q15_t sigmoidHTable_q15[192]; +extern const q15_t sigmoidLTable_q15[128]; + +#endif /* ARM_NN_TABLES_H */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Include/arm_nn_types.h b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Include/arm_nn_types.h new file mode 100644 index 00000000..4b216c93 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Include/arm_nn_types.h @@ -0,0 +1,120 @@ +/* + * Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nn_types.h + * Description: Public header file to contain the CMSIS-NN structs for the + * TensorFlowLite micro compliant functions + * + * $Date: April 23, 2020 + * $Revision: V.0.5.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ + + +#ifndef _ARM_NN_TYPES_H +#define _ARM_NN_TYPES_H + +/** CMSIS-NN object to contain the width and height of a tile */ +typedef struct +{ + int32_t w; /**< Width */ + int32_t h; /**< Height */ +} cmsis_nn_tile; + +/** CMSIS-NN object used for the function context. */ +typedef struct +{ + void *buf; /**< Pointer to a buffer needed for the optimization */ + int32_t size; /**< Buffer size */ +} cmsis_nn_context; + +/** CMSIS-NN object to contain the dimensions of the tensors */ +typedef struct +{ + int32_t n; /**< Generic dimension to contain either the batch size or output channels. Please refer to the function documentation for more information */ + int32_t h; /**< Height */ + int32_t w; /**< Width */ + int32_t c; /**< Input channels */ +} cmsis_nn_dims; + +/** CMSIS-NN object for the per-channel quantization parameters */ +typedef struct +{ + int32_t *multiplier; /**< Multiplier values */ + int32_t *shift; /**< Shift values */ +} cmsis_nn_per_channel_quant_params; + +/** CMSIS-NN object for the per-tensor quantization parameters */ +typedef struct +{ + int32_t multiplier; /**< Multiplier value */ + int32_t shift; /**< Shift value */ +} cmsis_nn_per_tensor_quant_params; + +/** CMSIS-NN object for the quantized Relu activation */ +typedef struct +{ + int32_t min; /**< Min value used to clamp the result */ + int32_t max; /**< Max value used to clamp the result */ +} cmsis_nn_activation; + +/** CMSIS-NN object for the convolution layer parameters */ +typedef struct +{ + int32_t input_offset; /**< Zero value for the input tensor */ + int32_t output_offset; /**< Zero value for the output tensor */ + cmsis_nn_tile stride; + cmsis_nn_tile padding; + cmsis_nn_tile dilation; + cmsis_nn_activation activation; +} cmsis_nn_conv_params; + +/** CMSIS-NN object for Depthwise convolution layer parameters */ +typedef struct +{ + int32_t input_offset; /**< Zero value for the input tensor */ + int32_t output_offset; /**< Zero value for the output tensor */ + int32_t ch_mult; /**< Channel Multiplier. ch_mult * in_ch = out_ch */ + cmsis_nn_tile stride; + cmsis_nn_tile padding; + cmsis_nn_tile dilation; + cmsis_nn_activation activation; +} cmsis_nn_dw_conv_params; +/** CMSIS-NN object for pooling layer parameters */ +typedef struct +{ + cmsis_nn_tile stride; + cmsis_nn_tile padding; + cmsis_nn_activation activation; +} cmsis_nn_pool_params; + +/** CMSIS-NN object for Fully Connected layer parameters */ +typedef struct +{ + int32_t input_offset; /**< Zero value for the input tensor */ + int32_t filter_offset; /**< Zero value for the filter tensor */ + int32_t output_offset; /**< Zero value for the output tensor */ + cmsis_nn_activation activation; +} cmsis_nn_fc_params; + +#endif // _ARM_NN_TYPES_H + + diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Include/arm_nnfunctions.h b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Include/arm_nnfunctions.h new file mode 100644 index 00000000..1ddc46fc --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Include/arm_nnfunctions.h @@ -0,0 +1,2068 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nnfunctions.h + * Description: Public header file for CMSIS NN Library + * + * $Date: June 11, 2020 + * $Revision: V.6.0.1 + * + * Target Processor: Cortex-M CPUs + * -------------------------------------------------------------------- */ + +/** + \mainpage CMSIS NN Software Library + * + * Introduction + * ------------ + * + * This user manual describes the CMSIS NN software library, + * a collection of efficient neural network kernels developed to maximize the + * performance and minimize the memory footprint of neural networks on Cortex-M processor cores. + * + * The library is divided into a number of functions each covering a specific category: + * - Convolution Functions + * - Activation Functions + * - Fully-connected Layer Functions + * - Pooling Functions + * - Softmax Functions + * - Basic math Functions + * + * The library has separate functions for operating on different weight and activation data + * types including 8-bit integers (q7_t) and 16-bit integers (q15_t). The descrition of the + * kernels are included in the function description. The implementation details are also + * described in this paper [1]. + * + * Function Classification + * -------- + * The functions can be classified into two segments + * - Legacy functions supporting ARM's internal symmetric quantization(8 bits). + * - Functions that support TensorFlow Lite framework with symmetric quantization(8 bits). + * + * The legacy functions can be identified with their suffix of _q7 or _q15 and are no new development is done there. The article in [2] describes in detail + * how to run a network using the legacy functions. + * + * The functions supporting TensorFlow Lite framework is identified by the _s8 suffix and can be invoked from TFL micro. The functions are bit exact to + * TensorFlow Lite. Refer to the TensorFlow's documentation in [3] on how to run a TensorFlow Lite model using optimized CMSIS-NN kernels. + * + * Block Diagram + * -------- + * \image html CMSIS-NN-OVERVIEW.PNG + * + * Examples + * -------- + * + * The library ships with a number of examples which demonstrate how to use the library functions. + * + * Pre-processor Macros + * ------------ + * + * Each library project have different pre-processor macros. + * + * - ARM_MATH_DSP: + * + * Define macro ARM_MATH_DSP, If the silicon supports DSP instructions(DSP extension). + * + * - ARM_MATH_MVEI: + * + * Define macro ARM_MATH_MVEI, If the silicon supports M-Profile Vector Extension. + + * - ARM_MATH_AUTOVECTORIZE + * Used in conjucture with ARM_MATH_MVEI to let the compiler auto vectorize for the functions that uses inline assembly. + * It does not affect functions that use C or intrinsics. + * - ARM_MATH_BIG_ENDIAN: + * + * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. This is supported only for the legacy functions i.e, functions targetted at + * TensorFlow Lite do not support big endianness. By default library builds for little endian targets. + * + * - ARM_NN_TRUNCATE: + * + * Define macro ARM_NN_TRUNCATE to use floor instead of round-to-the-nearest-int for the computation. + * + * Upcoming Interface Change + * -------- + * Starting from the 1.4.0 next release, CMSIS-NN will gradually switch to a new API interface to: + * + * -# have a stable API + * -# avoid passing many variables by value + * -# improve security + * -# improve validation + * -# improve code readability + * + * The upcoming API interface change will be based on "struct" and only affect the TensorFlowLite micro compliant APIs [4] (functions with _s8 suffix) + * + * Below you can find a snapshot of how the new API interface will look like (names can change) + * + * i.e. arm_convolve_1x1_s8_fast + * + * Current API interface | New API interface proposal + * ------------- | ------------- + * const q7_t *input | const cmsis_nn_context &ctx + * const uint16_t input_x | const cmsis_nn_conv_params ¶ms + * const uint16_t input_y | const cmsis_nn_dims &input_dims + * const uint16_t input_ch | const q7_t *input_data + * const uint16_t input_batches | const cmsis_nn_dims &filter_dims + * const q7_t *kernel | const q7_t *filter_data + * const uint16_t output_ch | const cmsis_nn_dims &bias_dims + * const uint16_t pad_x | const q31_t *bias_data + * const uint16_t pad_y | const cmsis_nn_dims &output_dims + * const uint16_t stride_x | q7_t *output_data + * const uint16_t stride_y |
+ * const int32_t *bias |
+ * q7_t *output |
+ * const int32_t *output_shift |
+ * const int32_t *output_mult |
+ * const int32_t out_offset |
+ * const int32_t input_offset |
+ * const int32_t out_activation_min |
+ * const int32_t out_activation_max |
+ * const uint16_t output_x |
+ * const uint16_t output_y |
+ * q15_t *buffer_a |
+ * + * Copyright Notice + * ------------ + * + * Copyright (C) 2010-2019 Arm Limited. All rights reserved. + * + * [1] CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs https://arxiv.org/abs/1801.06601 + * + * [2] Converting a Neural Network for Arm Cortex-M with CMSIS-NN + * https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/converting-a-neural-network-for-arm-cortex-m-with-cmsis-nn/single-page + * [3] https://www.tensorflow.org/lite/microcontrollers/library + * + * [4] https://github.com/ARM-software/CMSIS_5/tree/develop/CMSIS/NN#legacy-vs-tfl-micro-compliant-apis + */ + +/** + * @defgroup groupNN Neural Network Functions + * A collection of functions to perform basic operations for neural network layers. Functions with a _s8 suffix support + * TensorFlow Lite framework. + */ + +#ifndef _ARM_NNFUNCTIONS_H +#define _ARM_NNFUNCTIONS_H + +#include "arm_nnsupportfunctions.h" +#include "cmsis/CMSIS/NN/Include/arm_nn_tables.h" +#include "arm_nn_types.h" + +#define USE_INTRINSIC + +//#define ARM_NN_TRUNCATE /* This config the rounding model to floor or round to the nearest int */ + +#ifdef __cplusplus +extern "C" +{ +#endif + +/** + * @defgroup NNConv Convolution Functions + * + * Collection of convolution, depthwise convolution functions and their variants. + * + * The convolution is implemented in 2 steps: im2col and GEMM + * + * im2col is a process of converting each patch of image data into + * a column. After im2col, the convolution is computed as matrix-matrix + * multiplication. + * + * To reduce the memory footprint, the im2col is performed partially. + * Each iteration, only a few column (i.e., patches) are generated and + * computed with GEMM kernels similar to CMSIS-DSP arm_mat_mult functions. + * + */ + + /** + * @brief s8 convolution layer wrapper function with the main purpose to call the optimal kernel available in cmsis-nn to perform the convolution. + * + * @param[in, out] ctx Function context that contains the additional buffer if required by the implementation. + arm_convolve_wrapper_s8_get_buffer_size will return the buffer_size if required + * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...). + * Range of conv_params->input_offset : [-127, 128] + * Range of conv_params->output_offset : [-128, 127] + * @param[in] quant_params Per-channel quantization info. + * It contains the multiplier and shift values to be applied to each output channel + * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] + * @param[in] input_data Input (activation) data pointer. Data type: int8 + * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the spatial filter dimensions + * @param[in] filter_data Filter data pointer. Data type: int8 + * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] + * @param[in] bias_data Bias data pointer. Data type: int32 + * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] + * @param[out] output_data Output data pointer. Data type: int8 + * + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH if argument constraints fail. or, + * ARM_MATH_SUCCESS on successful completion. + * + */ + arm_status arm_convolve_wrapper_s8(const cmsis_nn_context* ctx, + const cmsis_nn_conv_params* conv_params, + const cmsis_nn_per_channel_quant_params* quant_params, + const cmsis_nn_dims* input_dims, + const q7_t *input_data, + const cmsis_nn_dims* filter_dims, + const q7_t *filter_data, + const cmsis_nn_dims* bias_dims, + const int32_t *bias_data, + const cmsis_nn_dims* output_dims, + q7_t *output_data); + + /** + * @brief Get the required buffer size for arm_convolve_wrapper_s8 + * + * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...). + * Range of conv_params->input_offset : [-127, 128] + * Range of conv_params->output_offset : [-128, 127] + * @param[in] input_dims Input (activation) dimensions. Format: [N, H, W, C_IN] + * @param[in] filter_dims Filter dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the spatial filter dimensions + * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] + * + * @return The function returns required buffer size(bytes) + * + */ + int32_t arm_convolve_wrapper_s8_get_buffer_size(const cmsis_nn_conv_params* conv_params, + const cmsis_nn_dims* input_dims, + const cmsis_nn_dims* filter_dims, + const cmsis_nn_dims* output_dims); + + /** + * @brief Basic s8 convolution function + * @param[in, out] ctx Function context that contains the additional buffer if required by the implementation. + arm_convolve_s8_get_buffer_size will return the buffer_size if required + * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...). + * Range of conv_params->input_offset : [-127, 128] + * Range of conv_params->output_offset : [-128, 127] + * @param[in] quant_params Per-channel quantization info. + * It contains the multiplier and shift values to be applied to each output channel + * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] + * @param[in] input_data Input (activation) data pointer. Data type: int8 + * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the spatial filter dimensions + * @param[in] filter_data Filter data pointer. Data type: int8 + * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] + * @param[in] bias_data Bias data pointer. Data type: int32 + * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] + * @param[out] output_data Output data pointer. Data type: int8 + + * @return The function returns ARM_MATH_SUCCESS + * + * @details + * 1. Supported framework: TensorFlow Lite micro + * 2. q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs. + * 3. Additional memory is required for optimization. Refer to argument 'ctx' for details. + * + */ + arm_status arm_convolve_s8(const cmsis_nn_context* ctx, + const cmsis_nn_conv_params* conv_params, + const cmsis_nn_per_channel_quant_params* quant_params, + const cmsis_nn_dims* input_dims, + const q7_t *input_data, + const cmsis_nn_dims* filter_dims, + const q7_t *filter_data, + const cmsis_nn_dims* bias_dims, + const int32_t *bias_data, + const cmsis_nn_dims* output_dims, + q7_t *output_data); + + /** + * @brief Get the required buffer size for s8 convolution function + * + * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] + * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the spatial filter dimensions + * @return The function returns required buffer size(bytes) + * + */ + int32_t arm_convolve_s8_get_buffer_size(const cmsis_nn_dims* input_dims, + const cmsis_nn_dims* filter_dims); + + /** + * @brief Basic Q7 convolution function + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimension + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns ARM_MATH_SUCCESS + * + */ + arm_status arm_convolve_HWC_q7_basic(const q7_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out, + q15_t * bufferA, + q7_t * bufferB); + + /** + * @brief Basic Q7 convolution function (non-square shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimension x + * @param[in] dim_im_in_y input tensor dimension y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding size x + * @param[in] padding_y padding size y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns ARM_MATH_SUCCESS + */ + arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + q15_t * bufferA, + q7_t * bufferB); + + /** + * @brief Basic Q15 convolution function + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimension + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns ARM_MATH_SUCCESS + * + */ + arm_status arm_convolve_HWC_q15_basic(const q15_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const q15_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const q15_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q15_t * Im_out, + const uint16_t dim_im_out, + q15_t * bufferA, + q7_t * bufferB); + + /** + * @brief Fast Q7 convolution function + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimension + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + * + * This function is the version with full list of optimization tricks, but with + * some contraints: + * ch_im_in is multiple of 4 + * ch_im_out is multiple of 2 + */ + arm_status arm_convolve_HWC_q7_fast(const q7_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out, + q15_t * bufferA, + q7_t * bufferB); + + /** + * @brief Fast Q7 convolution function (non-sqaure shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimension x + * @param[in] dim_im_in_y input tensor dimension y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding size x + * @param[in] padding_y padding size y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + * + * This function is the version with full list of optimization tricks, but with + * some contraints: + * ch_im_in is multiple of 4 + * ch_im_out is multiple of 2 + */ + + arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + q15_t * bufferA, + q7_t * bufferB); + + /** + * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimension x + * @param[in] dim_im_in_y input tensor dimension y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding size x + * @param[in] padding_y padding size y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH if argument constraints fail. or, + * ARM_MATH_SUCCESS on successful completion. + * + * This function implement convolution with 1x1 kernel size (i.e., dim_kernel_x=1 + * and dim_kernel_y=1). It can be used for + * second half of MobileNets after depthwise separable convolution. + * + * This function is the version with full list of optimization tricks, but with + * some contraints: + * ch_im_in is multiple of 4 + * ch_im_out is multiple of 2 + */ + arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + q15_t * bufferA, + q7_t * bufferB); + + /** + * @brief Fast s8 version for 1x1 convolution (non-square shape) + * + * @param[in, out] ctx Function context that contains the additional buffer if required by the implementation. + arm_convolve_1x1_s8_fast_get_buffer_size will return the buffer_size if required + * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...). + * Range of conv_params->input_offset : [-127, 128] + * Range of conv_params->output_offset : [-128, 127] + * @param[in] quant_params Per-channel quantization info. + * It contains the multiplier and shift values to be applied to each output channel + * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] + * @param[in] input_data Input (activation) data pointer. Data type: int8 + * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, 1, 1, C_IN] + * @param[in] filter_data Filter data pointer. Data type: int8 + * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] + * @param[in] bias_data Bias data pointer. Data type: int32 + * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] + * @param[out] output_data Output data pointer. Data type: int8 + * + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH if argument constraints fail. or, + * ARM_MATH_SUCCESS on successful completion. + * + * @details + * - Supported framework : TensorFlow Lite Micro + * - The following constrains on the arguments apply + * -# input_dims->c is a multiple of 4 + * -# conv_params->padding.w = conv_params->padding.h = 0 + * -# conv_params->stride.w = conv_params->stride.h = 1 + * + */ + arm_status arm_convolve_1x1_s8_fast(const cmsis_nn_context* ctx, + const cmsis_nn_conv_params* conv_params, + const cmsis_nn_per_channel_quant_params* quant_params, + const cmsis_nn_dims* input_dims, + const q7_t *input_data, + const cmsis_nn_dims* filter_dims, + const q7_t *filter_data, + const cmsis_nn_dims* bias_dims, + const int32_t *bias_data, + const cmsis_nn_dims* output_dims, + q7_t *output_data); + + /** + * @brief Get the required buffer size for arm_convolve_1x1_s8_fast + * + * @param[in] input_dims Input (activation) dimensions + * @return The function returns the required buffer size in bytes + * + */ + int32_t arm_convolve_1x1_s8_fast_get_buffer_size(const cmsis_nn_dims* input_dims); + + /** + * @brief 1xn convolution + * + * @param[in, out] ctx Function context that contains the additional buffer if required by the implementation. + arm_convolve_1_x_n_s8_get_buffer_size will return the buffer_size if required + * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...). + * Range of conv_params->input_offset : [-127, 128] + * Range of conv_params->output_offset : [-128, 127] + * @param[in] quant_params Per-channel quantization info. + * It contains the multiplier and shift values to be applied to each output channel + * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] + * @param[in] input_data Input (activation) data pointer. Data type: int8 + * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, 1, WK, C_IN] where WK is the horizontal spatial filter dimension + * @param[in] filter_data Filter data pointer. Data type: int8 + * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] + * @param[in] bias_data Bias data pointer. Data type: int32 + * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] + * @param[out] output_data Output data pointer. Data type: int8 + * + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH if argument constraints fail. or, + * ARM_MATH_SUCCESS on successful completion. + * + * @details + * - Supported framework : TensorFlow Lite Micro + * - The following constrains on the arguments apply + * -# input_dims->n equals 1 + * -# ouput_dims->w is a multiple of 4 + * -# Explicit constraints(since it is for 1xN convolution) + * -## input_dims->h equals 1 + * -## output_dims->h equals 1 + * -## filter_dims->h equals 1 + *@todo Remove constraint on output_dims->w to make the function generic. + * + */ + arm_status arm_convolve_1_x_n_s8(const cmsis_nn_context* ctx, + const cmsis_nn_conv_params* conv_params, + const cmsis_nn_per_channel_quant_params* quant_params, + const cmsis_nn_dims* input_dims, + const q7_t *input_data, + const cmsis_nn_dims* filter_dims, + const q7_t *filter_data, + const cmsis_nn_dims* bias_dims, + const int32_t *bias_data, + const cmsis_nn_dims* output_dims, + q7_t *output_data); + + /** + * @brief Get the required additional buffer size for 1xn convolution + * + * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] + * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, 1, WK, C_IN] where WK is the horizontal spatial filter dimension + * @return The function returns required buffer size(bytes) + * + */ + int32_t arm_convolve_1_x_n_s8_get_buffer_size(const cmsis_nn_dims* input_dims, + const cmsis_nn_dims* filter_dims); + + /** + * @brief Q7 version of convolution for RGB image + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimension + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + * + * This kernel is written exclusively for convolution with ch_im_in + * equals 3. This applies on the first layer of CNNs which has input + * image with RGB format. + */ + + arm_status arm_convolve_HWC_q7_RGB(const q7_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out, + q15_t * bufferA, + q7_t * bufferB); + + /** + * @brief Fast Q15 convolution function + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimension + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + * + * This function is the version with full list of optimization tricks, but with + * some contraints: + * ch_im_in is multiple of 2 + * ch_im_out is multiple of 2 + */ + + arm_status arm_convolve_HWC_q15_fast(const q15_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const q15_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const q15_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q15_t * Im_out, + const uint16_t dim_im_out, + q15_t * bufferA, + q7_t * bufferB); + + /** + * @brief Fast Q15 convolution function (non-sqaure shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimension x + * @param[in] dim_im_in_y input tensor dimension y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding size x + * @param[in] padding_y padding size y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + * + * @details + * + * Buffer size: + * + * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel + * + * bufferB size: 0 + * + * Input dimension constraints: + * + * ch_im_in is multiple of 2 + * + * ch_im_out is multipe of 2 + * + */ + + arm_status + arm_convolve_HWC_q15_fast_nonsquare(const q15_t * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const q15_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const q15_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q15_t * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + q15_t * bufferA, + q7_t * bufferB); + + /** + * @brief Q7 depthwise separable convolution function + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimension + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + * + * This function is the version with full list of optimization tricks, but with + * some contraints: + * ch_im_in is multiple of 2 + * ch_im_out is multiple of 2 + */ + + arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out, + q15_t * bufferA, + q7_t * bufferB); + + /** + * @brief Q7 depthwise separable convolution function (non-square shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimension x + * @param[in] dim_im_in_y input tensor dimension y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding sizes x + * @param[in] padding_y padding sizes y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + * + * This function is the version with full list of optimization tricks, but with + * some contraints: + * ch_im_in is multiple of 2 + * ch_im_out is multiple of 2 + */ + arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + q15_t * bufferA, + q7_t * bufferB); + + /** + * @brief Wrapper function to pick the right optimized s8 depthwise convolution function + * + * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function + * definition file to see if an additional buffer is required. + * Optional function {API}_get_buffer_size() provides the buffer + * size if required. + * @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...) + * dw_conv_params->dilation is not used. + * Range of dw_conv_params->input_offset : [-127, 128] + * Range of dw_conv_params->output_offset : [-128, 127] + * @param[in] quant_params Per-channel quantization info. + * It contains the multiplier and shift values to be applied to each + * output channel + * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN] + * Batch argument N is not used and assumed to be 1. + * @param[in] input_data Input (activation) data pointer. Data type: int8 + * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT] + * @param[in] filter_data Filter data pointer. Data type: int8 + * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] + * @param[in] bias_data Bias data pointer. Data type: int32 + * @param[in] output_dims Output tensor dimensions. Format: [1, H, W, C_OUT] + * @param[in, out] output_data Output data pointer. Data type: int8 + * @return The function returns + * ARM_MATH_SUCCESS - Successful completion. + * + * @details + * - Supported framework: TensorFlow Lite + * - Picks one of the the following functions + * -# arm_depthwise_conv_s8() + * -# arm_depthwise_conv_3x3_s8() - Cortex-M CPUs with DSP extension only + * -# arm_depthwise_conv_s8_opt() + * - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs. + * - Check details of arm_depthwise_conv_s8_opt() for potential data that can be accessed outside of the boundary. + */ + arm_status arm_depthwise_conv_wrapper_s8(const cmsis_nn_context *ctx, + const cmsis_nn_dw_conv_params *dw_conv_params, + const cmsis_nn_per_channel_quant_params *quant_params, + const cmsis_nn_dims *input_dims, + const q7_t *input_data, + const cmsis_nn_dims *filter_dims, + const q7_t *filter_data, + const cmsis_nn_dims *bias_dims, + const int32_t *bias_data, + const cmsis_nn_dims *output_dims, + q7_t *output_data); + + /** + * @brief Get size of additional buffer required by arm_depthwise_conv_wrapper_s8() + * + * @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...) + * dw_conv_params->dilation is not used. + * Range of dw_conv_params->input_offset : [-127, 128] + * Range of dw_conv_params->input_offset : [-128, 127] + * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN] + * Batch argument N is not used and assumed to be 1. + * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT] + * @param[in] output_dims Output tensor dimensions. Format: [1, H, W, C_OUT] + * @return Size of additional memory required for optimizations in bytes. + * + */ + int32_t arm_depthwise_conv_wrapper_s8_get_buffer_size(const cmsis_nn_dw_conv_params *dw_conv_params, + const cmsis_nn_dims *input_dims, + const cmsis_nn_dims *filter_dims, + const cmsis_nn_dims *output_dims); + + /** + * @brief Basic s8 depthwise convolution function that doesn't have any constraints on the input dimensions. + * + * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function + * definition file to see if an additional buffer is required. + * Optional function {API}_get_buffer_size() provides the buffer + * size if an additional buffer is required. + * exists if additional memory is. + * @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...) + * dw_conv_params->dilation is not used. + * Range of dw_conv_params->input_offset : [-127, 128] + * Range of dw_conv_params->input_offset : [-128, 127] + * @param[in] quant_params Per-channel quantization info. + * It contains the multiplier and shift values to be applied to each + * output channel + * @param[in] input_dims Input (activation) tensor dimensions. Format: [1, H, W, C_IN] + * Batch argument N is not used. + * @param[in] input_data Input (activation) data pointer. Data type: int8 + * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT] + * @param[in] filter_data Filter data pointer. Data type: int8 + * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] + * @param[in] bias_data Bias data pointer. Data type: int32 + * @param[in] output_dims Output tensor dimensions. Format: [1, H, W, C_OUT] + * @param[in, out] output_data Output data pointer. Data type: int8 + * @return The function returns ARM_MATH_SUCCESS + * + * @details + * - Supported framework: TensorFlow Lite + * - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs. + */ + arm_status arm_depthwise_conv_s8(const cmsis_nn_context *ctx, + const cmsis_nn_dw_conv_params *dw_conv_params, + const cmsis_nn_per_channel_quant_params *quant_params, + const cmsis_nn_dims *input_dims, + const q7_t *input_data, + const cmsis_nn_dims *filter_dims, + const q7_t *filter_data, + const cmsis_nn_dims *bias_dims, + const int32_t *bias_data, + const cmsis_nn_dims *output_dims, + q7_t *output_data); + + /** + * @brief Optimized s8 depthwise convolution function for 3x3 kernel size with some constraints on + * the input arguments(documented below). Refer arm_depthwise_conv_s8() for function + * argument details. + * + * @return The function returns one of the following + * ARM_MATH_SIZE_MISMATCH - Unsupported dimension of tensors + * ARM_MATH_ARGUMENT_ERROR - Unsupported pad size along the x axis + * ARM_MATH_SUCCESS - Successful operation + * + * @details + * - Supported framework : TensorFlow Lite Micro + * - The following constrains on the arguments apply + * -# Number of input channel equals number of output channels + * -# Filter height and width equals 3 + * -# Padding along x is either 0 or 1. + * + */ + arm_status arm_depthwise_conv_3x3_s8(const cmsis_nn_context *ctx, + const cmsis_nn_dw_conv_params *dw_conv_params, + const cmsis_nn_per_channel_quant_params *quant_params, + const cmsis_nn_dims *input_dims, + const q7_t *input_data, + const cmsis_nn_dims *filter_dims, + const q7_t *filter_data, + const cmsis_nn_dims *bias_dims, + const int32_t *bias_data, + const cmsis_nn_dims *output_dims, + q7_t *output_data); + + /** + * @brief Optimized s8 depthwise convolution function with constraint that in_channel equals out_channel. + * Refer arm_depthwise_conv_s8() for function argument details. + * + * @return The function returns one of the following + * ARM_MATH_SIZE_MISMATCH - input channel != output channel or + * ch_mult != 1 + * ARM_MATH_SUCCESS - Successful operation + * + * @note If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read out + * for the following if MVE optimizations(Arm Helium Technology) are used. + * - Output shift + * - Output multiplier + * - Output bias + * - kernel + * @details + * - Supported framework: TensorFlow Lite + * - The following constrains on the arguments apply + * -# Number of input channel equals number of output channels or ch_mult equals 1 + * - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs. + * - Reccomended when number of channels is 4 or greater. + * + */ + arm_status arm_depthwise_conv_s8_opt(const cmsis_nn_context *ctx, + const cmsis_nn_dw_conv_params *dw_conv_params, + const cmsis_nn_per_channel_quant_params *quant_params, + const cmsis_nn_dims *input_dims, + const q7_t *input_data, + const cmsis_nn_dims *filter_dims, + const q7_t *filter_data, + const cmsis_nn_dims *bias_dims, + const int32_t *bias_data, + const cmsis_nn_dims *output_dims, + q7_t *output_data); + + /** + * @brief Get the required buffer size for optimized s8 depthwise convolution + * function with constraint that in_channel equals out_channel. + * @param[in] input_dims Input (activation) tensor dimensions. Format: [1, H, W, C_IN] + * Batch argument N is not used. + * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT] + * @return The function returns required buffer size in bytes + * + */ + int32_t arm_depthwise_conv_s8_opt_get_buffer_size(const cmsis_nn_dims* input_dims, + const cmsis_nn_dims* filter_dims); + + /** + * @defgroup FC Fully-connected Layer Functions + * + * Collection of fully-connected and matrix multiplication functions. + * + * Fully-connected layer is basically a matrix-vector multiplication + * with bias. The matrix is the weights and the input/output vectors + * are the activation values. Supported {weight, activation} precisions + * include {8-bit, 8-bit}, {16-bit, 16-bit}, and {8-bit, 16-bit}. + * + * Here we have two types of kernel functions. The basic function + * implements the function using regular GEMV approach. The opt functions + * operates with weights in interleaved formats. + * + */ + + /** + * @brief Q7 basic fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns ARM_MATH_SUCCESS + * + */ + + arm_status arm_fully_connected_q7(const q7_t * pV, + const q7_t * pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t * bias, + q7_t * pOut, + q15_t * vec_buffer); + + /** + * @brief Basic s8 Fully Connected function. + * + * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function + * definition file to see if an additional buffer is required. + * Optional function {API}_get_buffer_size() provides the buffer + * size if an additional buffer is required. + * @param[in] fc_params Fully Connected layer parameters (e.g. strides, dilations, pads,...) + * Range of fc_params->input_offset : [-127, 128] + * Range of fc_params->filter_offset : [-127, 128] + * Range of fc_params->output_offset : [-128, 127] + * @param[in] quant_params Per-tensor quantization info. + * It contains the multiplier and shift values to be applied to the output tensor. + * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] + * Input dimension is taken as Nx(H * W * C_IN) + * @param[in] input_data Input (activation) data pointer. Data type: int8 + * @param[in] filter_dims Two dimensional filter dimensions. Format: [N, C] + * N : accumulation depth and equals (H * W * C_IN) from input_dims + * C : output depth and equals C_OUT in output_dims + * H & W : Not used + * @param[in] filter_data Filter data pointer. Data type: int8 + * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] + * N, H, W : Not used + * @param[in] bias_data Bias data pointer. Data type: int32 + * @param[in] output_dims Output tensor dimensions. Format: [N, C_OUT] + * N : Batches + * C_OUT : Output depth + * H & W : Not used. + * @param[in, out] output_data Output data pointer. Data type: int8 + * @return The function returns ARM_MATH_SUCCESS + * + * @details + * - Supported framework: TensorFlow Lite + * - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs. + */ + arm_status + arm_fully_connected_s8(const cmsis_nn_context *ctx, + const cmsis_nn_fc_params *fc_params, + const cmsis_nn_per_tensor_quant_params *quant_params, + const cmsis_nn_dims *input_dims, + const q7_t *input_data, + const cmsis_nn_dims *filter_dims, + const q7_t *filter_data, + const cmsis_nn_dims *bias_dims, + const int32_t *bias_data, + const cmsis_nn_dims *output_dims, + q7_t *output_data); + + /** + * @brief Get the required buffer size for S8 basic fully-connected and + * matrix multiplication layer function for TF Lite + * @param[in] filter_dims dimension of filter + * @return The function returns required buffer size in bytes + * + */ + int32_t arm_fully_connected_s8_get_buffer_size(const cmsis_nn_dims *filter_dims); + + /** + * @brief Q7 opt fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns ARM_MATH_SUCCESS + * + */ + + arm_status arm_fully_connected_q7_opt(const q7_t * pV, + const q7_t * pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t * bias, + q7_t * pOut, + q15_t * vec_buffer); + + /** + * @brief Q15 basic fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns ARM_MATH_SUCCESS + * + */ + + arm_status arm_fully_connected_q15(const q15_t * pV, + const q15_t * pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q15_t * bias, + q15_t * pOut, + q15_t * vec_buffer); + + /** + * @brief Q15 opt fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns ARM_MATH_SUCCESS + * + */ + + arm_status arm_fully_connected_q15_opt(const q15_t * pV, + const q15_t * pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q15_t * bias, + q15_t * pOut, + q15_t * vec_buffer); + + /** + * @brief Mixed Q15-Q7 fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns ARM_MATH_SUCCESS + * + */ + + arm_status arm_fully_connected_mat_q7_vec_q15(const q15_t * pV, + const q7_t * pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t * bias, + q15_t * pOut, + q15_t * vec_buffer); + + /** + * @brief Mixed Q15-Q7 opt fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns ARM_MATH_SUCCESS + * + */ + + arm_status arm_fully_connected_mat_q7_vec_q15_opt(const q15_t * pV, + const q7_t * pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t * bias, + q15_t * pOut, + q15_t * vec_buffer); + +/** + * @brief Matrix-Multiplication Kernels for Convolution + * + * These functions are used within convolution layer functions for + * matrix multiplication. + * + * The implementation is similar to CMSIS-DSP arm_mat_mult functions + * with one Q7 and one Q15 operands. The Q15 operand is the im2col + * output which is always with 2 columns. + * + */ + + /** + * @brief Matrix-multiplication function for convolution + * @param[in] pA pointer to operand A + * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors + * @param[in] ch_im_out numRow of A + * @param[in] numCol_A numCol of A + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias the bias + * @param[in,out] pOut pointer to output + * @return The function returns the incremented output pointer + */ + + q7_t *arm_nn_mat_mult_kernel_q7_q15(const q7_t * pA, + const q15_t * pInBuffer, + const uint16_t ch_im_out, + const uint16_t numCol_A, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t * bias, + q7_t * pOut); + /** + * @brief Matrix-multiplication function for convolution with per-channel requantization. + * @param[in] input_a pointer to operand A + * @param[in] input_b pointer to operand B, always consists of 2 vectors. + * @param[in] output_ch number of rows of A + * @param[in] out_shift pointer to per output channel requantization shift parameter. + * @param[in] out_mult pointer to per output channel requantization multiplier parameter. + * @param[in] out_offset output tensor offset. + * @param[in] activation_min minimum value to clamp the output to. Range : int8 + * @param[in] activation_max maximum value to clamp the output to. Range : int8 + * @param[in] num_col_a number of columns of A + * @param[in] output_bias per output channel bias. Range : int32 + * @param[in,out] out_0 pointer to output + * @return The function returns one of the two + * 1. The incremented output pointer for a successful operation or + * 2. NULL if implementation is not available. + * + * @details This function does the matrix multiplication of weight matrix for all output channels + * with 2 columns from im2col and produces two elements/output_channel. The outputs are + * clamped in the range provided by activation min and max. + * Supported framework: TensorFlow Lite micro. + */ + q7_t *arm_nn_mat_mult_kernel_s8_s16(const q7_t *input_a, + const q15_t *input_b, + const uint16_t output_ch, + const int32_t *out_shift, + const int32_t *out_mult, + const int32_t out_offset, + const int16_t activation_min, + const int16_t activation_max, + const uint16_t num_col_a, + const int32_t *const output_bias, + q7_t *out_0); + + /** + * @brief Matrix-multiplication of re-ordered input B with A. + * + * @details For arguments, refer arm_nn_mat_mult_kernel_s8_s16. The re-ordering is a consequence + * of sign extension done by the SXTB16 command on input_b. The outputs are clamped in the range + * provided by activation min and max. + * * @details + * - Supported framework : TensorFlow Lite Micro + * - The following constrains on the arguments apply + * -# num_col_a is a multiple of 4 + * -# output_ch is a multiple of 2 + * + */ + q7_t *arm_nn_mat_mult_kernel_s8_s16_reordered(const q7_t *input_a, + const q15_t *input_b, + const uint16_t output_ch, + const int32_t *out_shift, + const int32_t *out_mult, + const int32_t out_offset, + const int16_t activation_min, + const int16_t activation_max, + const uint16_t num_col_a, + const int32_t *const output_bias, + q7_t *out_0); + + /** + * @brief Matrix-multiplication function for convolution with reordered columns + * @param[in] pA pointer to operand A + * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors + * @param[in] ch_im_out numRow of A + * @param[in] numCol_A numCol of A + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias the bias + * @param[in,out] pOut pointer to output + * @return The function returns the incremented output pointer + * + * @details This function assumes that data in pInBuffer are reordered + */ + q7_t *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t * pA, + const q15_t * pInBuffer, + const uint16_t ch_im_out, + const uint16_t numCol_A, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t * bias, + q7_t * pOut); + +#ifdef __cplusplus +} +#endif + +/* + * Other functions + * These layers are typically not timing critical + * Basic implementation is supported here + */ + +#ifdef __cplusplus +extern "C" +{ +#endif + +/** + * @defgroup BasicMath Basic math functions + * + * Element wise add and multiplication functions. + * + */ + +/** + * @brief s8 element wise add of two vectors + * @param[in] input_1_vect pointer to input vector 1 + * @param[in] input_2_vect pointer to input vector 2 + * @param[in] input_1_offset offset for input 1. Range: Range: -127 to 128 + * @param[in] input_1_mult multiplier for input 1 + * @param[in] input_1_shift shift for input 1 + * @param[in] input_2_offset offset for input 2. Range: Range: -127 to 128 + * @param[in] input_2_mult multiplier for input 2 + * @param[in] input_2_shift shift for input 2 + * @param[in] left_shift input left shift + * @param[in,out] output pointer to output vector + * @param[in] out_offset output offset + * @param[in] out_mult output multiplier + * @param[in] out_shift output shift + * @param[in] out_activation_min minimum value to clamp output to + * @param[in] out_activation_max maximum value to clamp output to + * @param[in] block_size number of samples + * @return The function returns ARM_MATH_SUCCESS + */ + arm_status arm_elementwise_add_s8(const int8_t *input_1_vect, + const int8_t *input_2_vect, + const int32_t input_1_offset, + const int32_t input_1_mult, + const int32_t input_1_shift, + const int32_t input_2_offset, + const int32_t input_2_mult, + const int32_t input_2_shift, + const int32_t left_shift, + int8_t *output, + const int32_t out_offset, + const int32_t out_mult, + const int32_t out_shift, + const int32_t out_activation_min, + const int32_t out_activation_max, + const uint32_t block_size); + +/** + * @brief s8 element wise multiplication + * @param[in] input_1_vect pointer to input vector 1 + * @param[in] input_2_vect pointer to input vector 2 + * @param[in] input_1_offset offset for input 1. Range: Range: -127 to 128 + * @param[in] input_2_offset offset for input 2. Range: Range: -127 to 128 + * @param[in,out] output pointer to output vector + * @param[in] out_offset output offset + * @param[in] out_mult output multiplier + * @param[in] out_shift output shift + * @param[in] out_activation_min minimum value to clamp output to + * @param[in] out_activation_max maximum value to clamp output to + * @param[in] block_size number of samples + * @return The function returns ARM_MATH_SUCCESS + * + * @details Supported framework: TensorFlow Lite micro + */ + arm_status arm_elementwise_mul_s8(const int8_t *input_1_vect, + const int8_t *input_2_vect, + const int32_t input_1_offset, + const int32_t input_2_offset, + int8_t *output, + const int32_t out_offset, + const int32_t out_mult, + const int32_t out_shift, + const int32_t out_activation_min, + const int32_t out_activation_max, + const uint32_t block_size); +/** + * @defgroup Acti Activation Functions + * + * Perform activation layers, including ReLU (Rectified Linear Unit), + * sigmoid and tanh + * + */ + + /** + * @brief Q7 RELU function + * @param[in,out] data pointer to input + * @param[in] size number of elements + * @return none. + */ + + void arm_relu_q7(q7_t *data, uint16_t size); + + /** + * @brief s8 ReLU6 function + * @param[in,out] data pointer to input + * @param[in] size number of elements + */ + + void arm_relu6_s8(q7_t *data, uint16_t size); + + /** + * @brief Q15 RELU function + * @param[in,out] data pointer to input + * @param[in] size number of elements + * @return none. + */ + + void arm_relu_q15(q15_t *data, uint16_t size); + + /** + * @brief Q7 neural network activation function using direct table look-up + * @param[in,out] data pointer to input + * @param[in] size number of elements + * @param[in] int_width bit-width of the integer part, assume to be smaller than 3 + * @param[in] type type of activation functions + * @return none. + */ + + void arm_nn_activations_direct_q7(q7_t * data, uint16_t size, uint16_t int_width, + arm_nn_activation_type type); + + /** + * @brief Q15 neural network activation function using direct table look-up + * @param[in,out] data pointer to input + * @param[in] size number of elements + * @param[in] int_width bit-width of the integer part, assume to be smaller than 3 + * @param[in] type type of activation functions + * @return none. + * + * @details + * + * This is the direct table look-up approach. + * + * Assume here the integer part of the fixed-point is <= 3. + * More than 3 just not making much sense, makes no difference with + * saturation followed by any of these activation functions. + */ + + void arm_nn_activations_direct_q15(q15_t * data, uint16_t size, uint16_t int_width, + arm_nn_activation_type type); + +/** + * @defgroup Pooling Pooling Functions + * + * Perform pooling functions, including max pooling and average pooling + * + */ + + /** + * @brief Q7 max pooling function + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimension + * @param[in] ch_im_in number of input tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] Im_out pointer to output tensor + * @return none. + * + */ + + void arm_maxpool_q7_HWC(q7_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const uint16_t dim_im_out, + q7_t * bufferA, + q7_t * Im_out); + + /** + * @brief Q7 average pooling function + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimension + * @param[in] ch_im_in number of input tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] Im_out pointer to output tensor + * @return none. + * + */ + + void arm_avepool_q7_HWC(q7_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const uint16_t dim_im_out, + q7_t * bufferA, + q7_t * Im_out); + + /** + * @brief s8 average pooling function. + * + * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function + * definition file to see if an additional buffer is required. + * Optional function {API}_get_buffer_size() provides the buffer + * size if an additional buffer is required. + * @param[in] pool_params Pooling parameters + * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN] + * Argument 'N' is not used. + * @param[in] input_data Input (activation) data pointer. Data type: int8 + * @param[in] filter_dims Filter tensor dimensions. Format: [H, W] + * Argument N and C are not used. + * @param[in] output_dims Output tensor dimensions. Format: [H, W, C_OUT] + * Argument N is not used. + * C_OUT equals C_IN. + * @param[in, out] output_data Output data pointer. Data type: int8 + * @return The function returns + * ARM_MATH_SUCCESS - Successful operation + * + * @details + * - Supported Framework: TensorFlow Lite + * + */ + arm_status arm_avgpool_s8(const cmsis_nn_context *ctx, + const cmsis_nn_pool_params *pool_params, + const cmsis_nn_dims *input_dims, + const q7_t *input_data, + const cmsis_nn_dims *filter_dims, + const cmsis_nn_dims *output_dims, + q7_t *output_data); + + /** + * @brief Get the required buffer size for S8 average pooling function + * @param[in] dim_dst_width output tensor dimension + * @param[in] ch_src number of input tensor channels + * @return The function returns required buffer size in bytes + * + */ + int32_t arm_avgpool_s8_get_buffer_size(const int dim_dst_width, + const int ch_src); + + /** + * @brief s8 max pooling function. + * + * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function + * definition file to see if an additional buffer is required. + * Optional function {API}_get_buffer_size() provides the buffer + * size if an additional buffer is required. + * @param[in] pool_params Pooling parameters + * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN] + * Argument 'N' is not used. + * @param[in] input_data Input (activation) data pointer. Data type: int8 + * @param[in] filter_dims Filter tensor dimensions. Format: [H, W] + * Argument N and C are not used. + * @param[in] output_dims Output tensor dimensions. Format: [H, W, C_OUT] + * Argument N is not used. + * C_OUT equals C_IN. + * @param[in, out] output_data Output data pointer. Data type: int8 + * @return The function returns + * ARM_MATH_SUCCESS - Successful operation + * + * @details + * - Supported Framework: TensorFlow Lite + * + */ + arm_status arm_max_pool_s8(const cmsis_nn_context *ctx, + const cmsis_nn_pool_params *pool_params, + const cmsis_nn_dims *input_dims, + const q7_t *input_data, + const cmsis_nn_dims *filter_dims, + const cmsis_nn_dims *output_dims, + q7_t *output_data); +/** + * @defgroup Softmax Softmax Functions + * + * EXP(2) based softmax functions. + * + */ + + /** + * @brief Q7 softmax function + * @param[in] vec_in pointer to input vector + * @param[in] dim_vec input vector dimension + * @param[out] p_out pointer to output vector + * + * @note This function is an optimized version which is not bit-accurate with + * TensorFlow Lite's kernel + * + */ + +void arm_softmax_q7(const q7_t * vec_in, const uint16_t dim_vec, q7_t * p_out); + + /** + * @brief Q7 softmax function with batch parameter + * @param[in] vec_in pointer to input vector + * @param[in] nb_batches number of batches + * @param[in] dim_vec input vector dimension + * @param[out] p_out pointer to output vector + * @return none. + * + * @note This function is an optimized version which is not bit-accurate with + * TensorFlow Lite's kernel + * + */ + +void arm_softmax_with_batch_q7(const q7_t * vec_in, const uint16_t nb_batches,const uint16_t dim_vec, q7_t * p_out ); + /** + * @brief Q15 softmax function + * @param[in] vec_in pointer to input vector + * @param[in] dim_vec input vector dimension + * @param[out] p_out pointer to output vector + * @return none. + * + * @note This function is an optimized version which is not bit-accurate with + * TensorFlow Lite's kernel + * + */ + +void arm_softmax_q15(const q15_t * vec_in, const uint16_t dim_vec, q15_t * p_out); + + /** + * @brief S8 softmax function + * @param[in] input Pointer to the input tensor + * @param[in] num_rows Number of rows in the input tensor + * @param[in] row_size Number of elements in each input row + * @param[in] mult Input quantization multiplier + * @param[in] shift Input quantization shift within the range [0, 31] + * @param[in] diff_min Minimum difference with max in row. Used to check if + * the quantized exponential operation can be performed + * @param[out] output Pointer to the output tensor + * + * @note Supported framework: TensorFlow Lite micro (bit-accurate) + * + */ + +void arm_softmax_s8(const int8_t *input, + const int32_t num_rows, + const int32_t row_size, + const int32_t mult, + const int32_t shift, + const int32_t diff_min, + int8_t *output); + + /** + * @brief U8 softmax function + * @param[in] input Pointer to the input tensor + * @param[in] num_rows Number of rows in the input tensor + * @param[in] row_size Number of elements in each input row + * @param[in] mult Input quantization multiplier + * @param[in] shift Input quantization shift within the range [0, 31] + * @param[in] diff_min Minimum difference with max in row. Used to check if + * the quantized exponential operation can be performed + * @param[out] output Pointer to the output tensor + * + * @note Supported framework: TensorFlow Lite micro (bit-accurate) + * + */ + +void arm_softmax_u8(const uint8_t *input, + const int32_t num_rows, + const int32_t row_size, + const int32_t mult, + const int32_t shift, + const int32_t diff_min, + uint8_t *output); + + /** + * @brief uint8 depthwise convolution function with asymmetric quantization + * Unless specified otherwise, arguments are mandatory. + * + * @param[in] input Pointer to input tensor + * @param[in] input_x Width of input tensor + * @param[in] input_y Height of input tensor + * @param[in] input_ch Channels in input tensor + * @param[in] kernel Pointer to kernel weights + * @param[in] kernel_x Width of kernel + * @param[in] kernel_y Height of kernel + * @param[in] ch_mult Number of channel multiplier + * @param[in] pad_x Padding sizes x + * @param[in] pad_y Padding sizes y + * @param[in] stride_x stride along the width + * @param[in] stride_y stride along the height + * @param[in] dilation_x Dilation along width. Not used and intended for future enhancement. + * @param[in] dilation_y Dilation along height. Not used and intended for future enhancement. + * @param[in] bias Pointer to optional bias values. If no bias is + * availble, NULL is expected + * @param[in] input_offset Input tensor zero offset + * @param[in] filter_offset Kernel tensor zero offset + * @param[in] output_offset Output tensor zero offset + * @param[in,out] output Pointer to output tensor + * @param[in] output_x Width of output tensor + * @param[in] output_y Height of output tensor + * @param[in] output_activation_min Minimum value to clamp the output to. Range : {0, 255} + * @param[in] output_activation_max Minimum value to clamp the output to. Range : {0, 255} + * @param[in] out_shift Amount of right-shift for output + * @param[in] out_mult Output multiplier for requantization + * @return The function returns the following + * ARM_MATH_SUCCESS - Successful operation + * + */ + arm_status arm_depthwise_conv_u8_basic_ver1(const uint8_t *input, + const uint16_t input_x, + const uint16_t input_y, + const uint16_t input_ch, + const uint8_t *kernel, + const uint16_t kernel_x, + const uint16_t kernel_y, + const int16_t ch_mult, + const int16_t pad_x, + const int16_t pad_y, + const int16_t stride_x, + const int16_t stride_y, + const int16_t dilation_x, + const int16_t dilation_y, + const int32_t *bias, + const int32_t input_offset, + const int32_t filter_offset, + const int32_t output_offset, + uint8_t *output, + const uint16_t output_x, + const uint16_t output_y, + const int32_t output_activation_min, + const int32_t output_activation_max, + const int32_t out_shift, + const int32_t out_mult); + +/** + * @defgroup Reshape Reshape Functions + * + */ + + /** + * @brief Reshape a s8 vector into another with different shape + * @param[in] input points to the s8 input vector + * @param[out] output points to the s8 output vector + * @param[in] total_size total size of the input and output vectors in bytes + * + * @note The output is expected to be in a memory area that does not overlap with the input's + * + */ + void arm_reshape_s8(const int8_t *input, + int8_t *output, + const uint32_t total_size); + +/** + * @defgroup Concatenation Concatenation Functions + * + */ + + /** + * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the X axis + * This function should be called for each input tensor to concatenate. The argument offset_x + * will be used to store the input tensor in the correct position in the output tensor + * + * i.e. offset_x = 0 + * for(i = 0 i < num_input_tensors; ++i) + * { + * arm_concatenation_s8_x(&input[i], ..., &output, ..., ..., offset_x) + * offset_x += input_x[i] + * } + * + * This function assumes that the output tensor has: + * -# The same height of the input tensor + * -# The same number of channels of the input tensor + * -# The same batch size of the input tensor + * + * Unless specified otherwise, arguments are mandatory. + * + * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because does not involve any arithmetic operation + * + * @param[in] input Pointer to input tensor + * @param[in] input_x Width of input tensor + * @param[in] input_y Height of input tensor + * @param[in] input_z Channels in input tensor + * @param[in] input_w Batch size in input tensor + * @param[out] output Pointer to output tensor + * @param[in] output_x Width of output tensor + * @param[in] offset_x The offset (in number of elements) on the X axis to start concatenating the input tensor + * It is user responsibility to provide the correct value + * + * Input constraints + * offset_x is less than output_x + * + */ + void arm_concatenation_s8_x(const int8_t *input, + const uint16_t input_x, + const uint16_t input_y, + const uint16_t input_z, + const uint16_t input_w, + int8_t *output, + const uint16_t output_x, + const uint32_t offset_x); + + /** + * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the Y axis + * This function should be called for each input tensor to concatenate. The argument offset_y + * will be used to store the input tensor in the correct position in the output tensor + * + * i.e. offset_y = 0 + * for(i = 0 i < num_input_tensors; ++i) + * { + * arm_concatenation_s8_y(&input[i], ..., &output, ..., ..., offset_y) + * offset_y += input_y[i] + * } + * + * This function assumes that the output tensor has: + * -# The same width of the input tensor + * -# The same number of channels of the input tensor + * -# The same batch size of the input tensor + * + * Unless specified otherwise, arguments are mandatory. + * + * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because does not involve any arithmetic operation + * + * @param[in] input Pointer to input tensor + * @param[in] input_x Width of input tensor + * @param[in] input_y Height of input tensor + * @param[in] input_z Channels in input tensor + * @param[in] input_w Batch size in input tensor + * @param[out] output Pointer to output tensor + * @param[in] output_y Height of output tensor + * @param[in] offset_y The offset on the Y axis to start concatenating the input tensor + * It is user responsibility to provide the correct value + * + * Input constraints + * offset_y is less than output_y + * + */ + void arm_concatenation_s8_y(const int8_t *input, + const uint16_t input_x, + const uint16_t input_y, + const uint16_t input_z, + const uint16_t input_w, + int8_t *output, + const uint16_t output_y, + const uint32_t offset_y); + + /** + * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the Z axis + * This function should be called for each input tensor to concatenate. The argument offset_z + * will be used to store the input tensor in the correct position in the output tensor + * + * i.e. offset_z = 0 + * for(i = 0 i < num_input_tensors; ++i) + * { + * arm_concatenation_s8_z(&input[i], ..., &output, ..., ..., offset_z) + * offset_z += input_z[i] + * } + * + * This function assumes that the output tensor has: + * -# The same width of the input tensor + * -# The same height of the input tensor + * -# The same batch size of the input tensor + * + * Unless specified otherwise, arguments are mandatory. + * + * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because does not involve any arithmetic operation + * + * @param[in] input Pointer to input tensor + * @param[in] input_x Width of input tensor + * @param[in] input_y Height of input tensor + * @param[in] input_z Channels in input tensor + * @param[in] input_w Batch size in input tensor + * @param[out] output Pointer to output tensor + * @param[in] output_z Channels in output tensor + * @param[in] offset_z The offset on the Z axis to start concatenating the input tensor + * It is user responsibility to provide the correct value + * + * Input constraints + * offset_z is less than output_z + * + */ + void arm_concatenation_s8_z(const int8_t *input, + const uint16_t input_x, + const uint16_t input_y, + const uint16_t input_z, + const uint16_t input_w, + int8_t *output, + const uint16_t output_z, + const uint32_t offset_z); + + /** + * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the W axis (Batch size) + * This function should be called for each input tensor to concatenate. The argument offset_w + * will be used to store the input tensor in the correct position in the output tensor + * + * i.e. offset_w = 0 + * for(i = 0 i < num_input_tensors; ++i) + * { + * arm_concatenation_s8_w(&input[i], ..., &output, ..., ..., offset_w) + * offset_w += input_w[i] + * } + * + * This function assumes that the output tensor has: + * -# The same width of the input tensor + * -# The same height of the input tensor + * -# The same number o channels of the input tensor + * + * Unless specified otherwise, arguments are mandatory. + * + * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because does not involve any arithmetic operation + * + * @param[in] input Pointer to input tensor + * @param[in] input_x Width of input tensor + * @param[in] input_y Height of input tensor + * @param[in] input_z Channels in input tensor + * @param[in] input_w Batch size in input tensor + * @param[out] output Pointer to output tensor + * @param[in] offset_w The offset on the W axis to start concatenating the input tensor + * It is user responsibility to provide the correct value + * + */ + void arm_concatenation_s8_w(const int8_t *input, + const uint16_t input_x, + const uint16_t input_y, + const uint16_t input_z, + const uint16_t input_w, + int8_t *output, + const uint32_t offset_w); +#ifdef __cplusplus +} +#endif + +#endif diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Include/arm_nnsupportfunctions.h b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Include/arm_nnsupportfunctions.h new file mode 100644 index 00000000..c14f382b --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Include/arm_nnsupportfunctions.h @@ -0,0 +1,905 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nnsupportfunctions.h + * Description: Public header file of support functions for CMSIS NN Library + * + * $Date: May 11, 2020 + * $Revision: V.4.0.4 + * + * Target Processor: Cortex-M CPUs + * -------------------------------------------------------------------- */ + +#ifndef _ARM_NNSUPPORTFUNCTIONS_H_ +#define _ARM_NNSUPPORTFUNCTIONS_H_ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/DSP/Include/arm_common_tables.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + +#define LEFT_SHIFT(_shift) (_shift > 0 ? _shift : 0) +#define RIGHT_SHIFT(_shift) (_shift > 0 ? 0 : -_shift) +#define MASK_IF_ZERO(x) (x) == 0 ? ~0 : 0 +#define MASK_IF_NON_ZERO(x) (x) != 0 ? ~0 : 0 +#define SELECT_USING_MASK(mask, a, b) ((mask) & (a)) ^ (~(mask) & (b)) + +#define MAX(A,B) ((A) > (B) ? (A) : (B)) +#define MIN(A,B) ((A) < (B) ? (A) : (B)) +#define CLAMP(x, h, l) MAX(MIN((x), (h)), (l)) + +/** + * @brief Union for SIMD access of q31/q15/q7 types + */ +union arm_nnword +{ + q31_t word; + /**< q31 type */ + q15_t half_words[2]; + /**< q15 type */ + q7_t bytes[4]; + /**< q7 type */ +}; + +/** + * @brief Struct for specifying activation function types + * + */ +typedef enum +{ + ARM_SIGMOID = 0, + /**< Sigmoid activation function */ + ARM_TANH = 1, + /**< Tanh activation function */ +} arm_nn_activation_type; + +/** + * @defgroup nndata_convert Neural Network Data Conversion Functions + * + * Perform data type conversion in-between neural network operations + * + */ + +/** + * @brief Converts the elements of the q7 vector to q15 vector without left-shift + * @param[in] *pSrc points to the q7 input vector + * @param[out] *pDst points to the q15 output vector + * @param[in] blockSize length of the input vector + * + */ +void arm_q7_to_q15_no_shift(const q7_t *pSrc, q15_t *pDst, uint32_t blockSize); + +/** + * @brief Non-saturating addition of elements of a q7 vector + * @param[in] *input Pointer to the q7 input vector + * @param[out] *output Pointer to the q31 output variable. + * @param[in] block_size length of the input vector + * \par Description: + * + * 2^24 samples can be added without saturating the result. + * + * The equation used for the conversion process is: + * + *
+ *  sum = input[0] + input[1] + .. + input[block_size -1]
+ * 
+ * + * */ +void arm_nn_add_q7(const q7_t *input, q31_t *output, uint32_t block_size); + +/** + * @brief Converts the elements of the q7 vector to reordered q15 vector without left-shift + * @param[in] *pSrc points to the q7 input vector + * @param[out] *pDst points to the q15 output vector + * @param[in] blockSize length of the input vector + * @return none. + * + */ +void arm_q7_to_q15_reordered_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize); + +/** + * @brief Converts the elements from a q7 vector to a q15 vector with an added offset + * @param[in] src pointer to the q7 input vector + * @param[out] dst pointer to the q15 output vector + * @param[in] block_size length of the input vector + * @param[in] offset q7 offset to be added to each input vector element. + * + * \par Description: + * + * The equation used for the conversion process is: + * + *
+ *  dst[n] = (q15_t) src[n] + offset;   0 <= n < block_size.
+ * 
+ * + */ +void arm_q7_to_q15_with_offset(const q7_t *src, q15_t *dst, uint32_t block_size, q15_t offset); + +/** + * @brief Converts the elements of the q7 vector to reordered q15 vector with an added offset + * @param[in] src pointer to the q7 input vector + * @param[out] dst pointer to the q15 output vector + * @param[in] block_size length of the input vector + * @param[in] offset offset to be added to each input vector element. + * @return none. + * + * @details This function does the q7 to q15 expansion with re-ordering of bytes. Re-ordering is a consequence of + * the sign extension intrinsic(DSP extension). The tail (i.e., last (N % 4) elements) retains its original + * order. + * + */ +void arm_q7_to_q15_reordered_with_offset(const q7_t *src, q15_t *dst, uint32_t block_size, q15_t offset); + +/** + * @brief Converts the elements from a q7 vector and accumulate to a q15 vector + * @param[in] *src points to the q7 input vector + * @param[out] *dst points to the q15 output vector + * @param[in] block_size length of the input vector + * + * \par Description: + * + * The equation used for the conversion process is: + * + *
+ *  dst[n] += (q15_t) src[n] ;   0 <= n < block_size.
+ * 
+ * + */ +void arm_nn_accumulate_q7_to_q15(q15_t *dst, const q7_t *src, uint32_t block_size); + +/** + * @brief Depthwise conv on an im2col buffer where the input channel equals output channel. + * @param[in] row pointer to row + * @param[in] col pointer to im2col buffer, always consists of 2 columns. + * @param[in] num_ch number of channels + * @param[in] out_shift pointer to per output channel requantization shift parameter. + * @param[in] out_mult pointer to per output channel requantization multiplier parameter. + * @param[in] out_offset output tensor offset. + * @param[in] activation_min minimum value to clamp the output to. Range : int8 + * @param[in] activation_max maximum value to clamp the output to. Range : int8 + * @param[in] kernel_size number of elements in one column. + * @param[in] output_bias per output channel bias. Range : int32 + * @param[out] out pointer to output + * @return The function returns one of the two + * 1. The incremented output pointer for a successful operation or + * 2. NULL if implementation is not available. + * + * @details Supported framework: TensorFlow Lite micro. + */ +q7_t *arm_nn_depthwise_conv_s8_core(const q7_t *row, + const q15_t *col, + const uint16_t num_ch, + const int32_t *out_shift, + const int32_t *out_mult, + const int32_t out_offset, + const int32_t activation_min, + const int32_t activation_max, + const uint16_t kernel_size, + const int32_t *const output_bias, + q7_t *out); + +/** + * @brief General Matrix-multiplication function with per-channel requantization. + * @param[in] input_row pointer to row operand + * @param[in] input_col pointer to col operand + * @param[in] output_ch number of rows of input_row + * @param[in] col_batches number of column batches. Range: 1 to 4 + * @param[in] output_shift pointer to per output channel requantization shift parameter. + * @param[in] output_mult pointer to per output channel requantization multiplier parameter. + * @param[in] out_offset output tensor offset. + * @param[in] col_offset input tensor(col) offset. + * @param[in] row_offset kernel offset(row). Not used. + * @param[in] out_activation_min minimum value to clamp the output to. Range : int8 + * @param[in] out_activation_max maximum value to clamp the output to. Range : int8 + * @param[in] row_len number of elements in each row + * @param[in] bias per output channel bias. Range : int32 + * @param[in,out] out pointer to output + * @return The function returns one of the two + * 1. The incremented output pointer for a successful operation or + * 2. NULL if implementation is not available. + * + * @details Supported framework: TensorFlow Lite +*/ +q7_t *arm_nn_mat_mult_s8(const q7_t *input_row, + const q7_t *input_col, + const uint16_t output_ch, + const uint16_t col_batches, + const int32_t *output_shift, + const int32_t *output_mult, + const int32_t out_offset, + const int32_t col_offset, + const int32_t row_offset, + const int16_t out_activation_min, + const int16_t out_activation_max, + const uint16_t row_len, + const int32_t *const bias, + q7_t *out); + +/** + * @brief General Matrix-multiplication without requantization for one row & one column + * @param[in] row_elements number of row elements + * @param[in] row_base pointer to row operand + * @param[in] col_base pointer to col operand + * @param[out] sum_col pointer to store sum of column elements + * @param[out] output pointer to store result of multiply-accumulate + * @return The function returns the multiply-accumulated result of the row by column. + * + * @details Pseudo-code + * *output = 0 + * sum_col = 0 + * for (i = 0; i < row_elements; i++) + * *output += row_base[i] * col_base[i] + * sum_col += col_base[i] + * +*/ +arm_status arm_nn_mat_mul_core_1x_s8(int32_t row_elements, + const int8_t *row_base, + const int8_t *col_base, + int32_t *const sum_col, + int32_t *const output); + +/** + * @brief General Matrix-multiplication without requantization for four rows and one column + * @param[in] row_elements number of row elements + * @param[in] offset offset between rows. Can be the same as row_elements. + * For e.g, in a 1x1 conv scenario with stride as 1. + * @param[in] row_base pointer to row operand + * @param[in] col_base pointer to col operand + * @param[out] sum_col pointer to store sum of column elements + * @param[out] output pointer to store result(4 int32's) of multiply-accumulate + * @return The function returns the multiply-accumulated result of the row by column + * + * @details Pseudo-code + * output[0] = 0 + * .. + * output[3] = 0 + * sum_col = 0 + * for (i = 0; i < row_elements; i++) + * output[0] += row_base[i] * col_base[i] + * .. + * output[3] += row_base[i + (row_elements * 3)] * col_base[i] + * sum_col += col_base[i] +*/ +arm_status arm_nn_mat_mul_core_4x_s8(const int32_t row_elements, + const int32_t offset, + const int8_t *row_base, + const int8_t *col_base, + int32_t *const sum_col, + int32_t *const output); + +/** +* @brief General Matrix-multiplication function with per-channel requantization. +* This function assumes: +* - LHS input matrix NOT transposed (nt) +* - RHS input matrix transposed (t) +* +* @note This operation also performs the broadcast bias addition before the requantization +* +* @param[in] lhs Pointer to the LHS input matrix +* @param[in] rhs Pointer to the RHS input matrix +* @param[in] bias Pointer to the bias vector. The length of this vector is equal to the number of output columns (or RHS input rows) +* @param[out] dst Pointer to the output matrix with "m" rows and "n" columns +* @param[in] dst_multipliers Pointer to the multipliers vector needed for the per-channel requantization. The length of this vector is equal to +* the number of output columns (or RHS input rows) +* @param[in] dst_shifts Pointer to the shifts vector needed for the per-channel requantization. The length of this vector is equal to +* the number of output columns (or RHS input rows) +* @param[in] lhs_rows Number of LHS input rows +* @param[in] rhs_rows Number of RHS input rows +* @param[in] rhs_cols Number of LHS/RHS input columns +* @param[in] lhs_offset Offset to be applied to the LHS input value +* @param[in] dst_offset Offset to be applied the output result +* @param[in] activation_min Minimum value to clamp down the output. Range : int8 +* @param[in] activation_max Maximum value to clamp up the output. Range : int8 +* +* @return The function returns ARM_MATH_SUCCESS +* +*/ +arm_status arm_nn_mat_mult_nt_t_s8(const q7_t *lhs, + const q7_t *rhs, + const q31_t *bias, + q7_t *dst, + const int32_t *dst_multipliers, + const int32_t *dst_shifts, + const int32_t lhs_rows, + const int32_t rhs_rows, + const int32_t rhs_cols, + const int32_t lhs_offset, + const int32_t dst_offset, + const int32_t activation_min, + const int32_t activation_max); + +/** + * @brief s8 Vector by Matrix (transposed) multiplication + * + * @param[in] lhs Input left-hand side vector + * @param[in] rhs Input right-hand side matrix (transposed) + * @param[in] bias Input bias + * @param[out] dst Output vector + * @param[in] lhs_offset Offset to be added to the input values of the left-hand side vector. Range: -127 to 128 + * @param[in] rhs_offset Offset to be added to the input values of the right-hand side matrix. Range: -127 to 128 + * @param[in] dst_offset Offset to be added to the output values. Range: -127 to 128 + * @param[in] dst_multiplier Output multiplier + * @param[in] dst_shift Output shift + * @param[in] rhs_cols Number of columns in the right-hand side input matrix + * @param[in] rhs_rows Number of rows in the right-hand side input matrix + * @param[in] activation_min Minimum value to clamp the output to. Range: int8 + * @param[in] activation_max Maximum value to clamp the output to. Range: int8 + * + * @return The function returns ARM_MATH_SUCCESS + * + */ +arm_status arm_nn_vec_mat_mult_t_s8(const q7_t *lhs, + const q7_t *rhs, + const q31_t *bias, + q7_t *dst, + const int32_t lhs_offset, + const int32_t rhs_offset, + const int32_t dst_offset, + const int32_t dst_multiplier, + const int32_t dst_shift, + const int32_t rhs_cols, + const int32_t rhs_rows, + const int32_t activation_min, + const int32_t activation_max); + +/** + * @brief Depthwise convolution of transposed rhs matrix with 4 lhs matrices. To be used in padded cases where + * the padding is -lhs_offset(Range: int8). Dimensions are the same for lhs and rhs. + * + * @param[in] lhs Input left-hand side matrix + * @param[in] rhs Input right-hand side matrix (transposed) + * @param[in] lhs_offset LHS matrix offset(input offset). Range: -127 to 128 + * @param[in] num_ch Number of channels in LHS/RHS + * @param[in] out_shift Per channel output shift. Length of vector is equal to number of channels + * @param[in] out_mult Per channel output multiplier. Length of vector is equal to number of channels + * @param[in] out_offset Offset to be added to the output values. Range: -127 to 128 + * @param[in] activation_min Minimum value to clamp the output to. Range: int8 + * @param[in] activation_max Maximum value to clamp the output to. Range: int8 + * @param[in] row_x_col (row_dimension * col_dimension) of LHS/RHS matrix + * @param[in] output_bias Per channel output bias. Length of vector is equal to number of channels + * @param[in] out Output pointer + * + * @return The function returns one of the two + * - Updated output pointer if an implementaiton is available + * - NULL if no implementation is available. + * + * @note If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read out + * for the following. + * - Output shift + * - Output multiplier + * - Output bias + * - rhs + */ +q7_t *arm_nn_depthwise_conv_nt_t_padded_s8(const q7_t *lhs, + const q7_t *rhs, + const int32_t lhs_offset, + const uint16_t num_ch, + const int32_t *out_shift, + const int32_t *out_mult, + const int32_t out_offset, + const int32_t activation_min, + const int32_t activation_max, + const uint16_t row_x_col, + const int32_t *const output_bias, + q7_t *out); + +/** + * @brief Depthwise convolution of transposed rhs matrix with 4 lhs matrices. To be used in non-padded cases. + * Dimensions are the same for lhs and rhs. + * + * @param[in] lhs Input left-hand side matrix + * @param[in] rhs Input right-hand side matrix (transposed) + * @param[in] lhs_offset LHS matrix offset(input offset). Range: -127 to 128 + * @param[in] num_ch Number of channels in LHS/RHS + * @param[in] out_shift Per channel output shift. Length of vector is equal to number of channels. + * @param[in] out_mult Per channel output multiplier. Length of vector is equal to number of channels. + * @param[in] out_offset Offset to be added to the output values. Range: -127 to 128 + * @param[in] activation_min Minimum value to clamp the output to. Range: int8 + * @param[in] activation_max Maximum value to clamp the output to. Range: int8 + * @param[in] row_x_col (row_dimension * col_dimension) of LHS/RHS matrix + * @param[in] output_bias Per channel output bias. Length of vector is equal to number of channels. + * @param[in] out Output pointer + * + * @return The function returns one of the two + * - Updated output pointer if an implementaiton is available + * - NULL if no implementation is available. + * + * @note If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read out + * for the following. + * - Output shift + * - Output multiplier + * - Output bias + * - rhs + */ +q7_t *arm_nn_depthwise_conv_nt_t_s8(const q7_t *lhs, + const q7_t *rhs, + const int32_t lhs_offset, + const uint16_t num_ch, + const int32_t *out_shift, + const int32_t *out_mult, + const int32_t out_offset, + const int32_t activation_min, + const int32_t activation_max, + const uint16_t row_x_col, + const int32_t *const output_bias, + q7_t *out); + +/** + @brief Read 2 q15 elements and post increment pointer. + @param[in] in_q15 Pointer to pointer that holds address of input. + @return q31 value + */ +__STATIC_FORCEINLINE q31_t arm_nn_read_q15x2_ia(const q15_t **in_q15) +{ + q31_t val; + + memcpy(&val, *in_q15, 4); + *in_q15 += 2; + + return (val); +} + +/** + @brief Read 4 q7 from q7 pointer and post increment pointer. + @param[in] in_q7 Pointer to pointer that holds address of input. + @return q31 value + */ +__STATIC_FORCEINLINE q31_t arm_nn_read_q7x4_ia(const q7_t **in_q7) +{ + q31_t val; + memcpy(&val, *in_q7, 4); + *in_q7 += 4; + + return (val); +} + +/** + @brief Read 2 q15 from q15 pointer. + @param[in] in_q15 pointer to address of input. + @return q31 value + */ +__STATIC_FORCEINLINE q31_t arm_nn_read_q15x2(const q15_t *in_q15) +{ + q31_t val; + memcpy(&val, in_q15, 4); + + return (val); +} + +/** + @brief Read 4 q7 values. + @param[in] in_q7 pointer to address of input. + @return q31 value + */ +__STATIC_FORCEINLINE q31_t arm_nn_read_q7x4(const q7_t *in_q7) +{ + q31_t val; + memcpy(&val, in_q7, 4); + + return (val); +} + +/** + * @brief memset optimized for MVE + * @param[in, out] dst Destination pointer + * @param[in] val Value to set + * @param[in] block_size Number of bytes to copy. + * + */ +__STATIC_FORCEINLINE void arm_memset_q7(q7_t *dst, + const q7_t val, + uint32_t block_size) +{ +#if defined(ARM_MATH_MVEI) + __asm volatile ( + " vdup.8 q0, %[set_val] \n" + " wlstp.8 lr, %[cnt], 1f \n" + "2: \n" + " vstrb.8 q0, [%[in]], 16 \n" + " letp lr, 2b \n" + "1: \n" + :[in] "+r"(dst) + :[cnt] "r"(block_size), [set_val] "r"(val) + :"q0", "memory", "r14"); +#else + memset(dst, val, block_size); +#endif +} + +#if defined (ARM_MATH_DSP) + +/** + * @brief read and expand one q7 word into two q15 words + */ + +__STATIC_FORCEINLINE const q7_t *read_and_pad(const q7_t *source, q31_t * out1, q31_t * out2) +{ + q31_t inA = arm_nn_read_q7x4_ia(&source); + q31_t inAbuf1 = __SXTB16(__ROR((uint32_t)inA, 8)); + q31_t inAbuf2 = __SXTB16(inA); + +#ifndef ARM_MATH_BIG_ENDIAN + *out2 = (int32_t) (__PKHTB (inAbuf1, inAbuf2, 16)); + *out1 = (int32_t) (__PKHBT (inAbuf2, inAbuf1, 16)); +#else + *out1 = (int32_t) (__PKHTB(inAbuf1, inAbuf2, 16)); + *out2 = (int32_t) (__PKHBT(inAbuf2, inAbuf1, 16)); +#endif + + return source; +} + +/** + * @brief read and expand one q7 word into two q15 words with reordering + */ + +__STATIC_FORCEINLINE const q7_t *read_and_pad_reordered(const q7_t *source, q31_t * out1, q31_t * out2) +{ + q31_t inA = arm_nn_read_q7x4_ia(&source); +#ifndef ARM_MATH_BIG_ENDIAN + *out2 = __SXTB16(__ROR((uint32_t)inA, 8)); + *out1 = __SXTB16(inA); +#else + *out1 = __SXTB16(__ROR((uint32_t)inA, 8)); + *out2 = __SXTB16(inA); +#endif + + return source; +} + +/** + * @brief read and expand one q7 word into two q15 words with reordering and add an offset + */ +__STATIC_FORCEINLINE const q7_t *read_and_pad_reordered_with_offset(const q7_t *source, q31_t * out1, q31_t * out2, q31_t offset) +{ + q31_t inA = arm_nn_read_q7x4_ia(&source); + +#ifndef ARM_MATH_BIG_ENDIAN + *out2 = __SXTB16(__ROR((uint32_t)inA, 8)); + *out1 = __SXTB16(inA); +#else + *out1 = __SXTB16(__ROR((uint32_t)inA, 8)); + *out2 = __SXTB16(inA); +#endif + *out1 = __QADD16(*out1,offset); + *out2 = __QADD16(*out2,offset); + + return source; +} + +#endif + + + +/** + * @defgroup NNBasicMath Basic Math Functions for Neural Network Computation + * + * Basic Math Functions for Neural Network Computation + * + */ + +/** + * @brief q7 vector multiplication with variable output shifts + * @param[in] *pSrcA pointer to the first input vector + * @param[in] *pSrcB pointer to the second input vector + * @param[out] *pDst pointer to the output vector + * @param[in] out_shift amount of right-shift for output + * @param[in] blockSize number of samples in each vector + * @return none. + * + * Scaling and Overflow Behavior: + * \par + * The function uses saturating arithmetic. + * Results outside of the allowable q15 range [0x8000 0x7FFF] will be saturated. + */ + +void arm_nn_mult_q15( + q15_t * pSrcA, + q15_t * pSrcB, + q15_t * pDst, + const uint16_t out_shift, + uint32_t blockSize); + +/** + * @brief q7 vector multiplication with variable output shifts + * @param[in] *pSrcA pointer to the first input vector + * @param[in] *pSrcB pointer to the second input vector + * @param[out] *pDst pointer to the output vector + * @param[in] out_shift amount of right-shift for output + * @param[in] blockSize number of samples in each vector + * @return none. + * + * Scaling and Overflow Behavior: + * \par + * The function uses saturating arithmetic. + * Results outside of the allowable q7 range [0x80 0x7F] will be saturated. + */ + +void arm_nn_mult_q7( + q7_t * pSrcA, + q7_t * pSrcB, + q7_t * pDst, + const uint16_t out_shift, + uint32_t blockSize); + +/** + * @brief macro for adding rounding offset + */ +#ifndef ARM_NN_TRUNCATE + #define NN_ROUND(out_shift) ( (0x1u << out_shift) >> 1 ) +#else + #define NN_ROUND(out_shift) 0 +#endif + +// Macros for shortening quantization functions' names and avoid long lines +#define MUL_SAT(a, b) arm_nn_sat_doubling_high_mult((a), (b)) +#define MUL_SAT_MVE(a, b) arm_sat_doubling_high_mult_mve_32x4((a), (b)) +#define MUL_POW2(a, b) arm_nn_mult_by_power_of_two((a), (b)) + + +#define DIV_POW2(a, b) arm_nn_divide_by_power_of_two((a), (b)) +#define DIV_POW2_MVE(a, b) arm_divide_by_power_of_two_mve((a), (b)) + + +#define EXP_ON_NEG(x) arm_nn_exp_on_negative_values((x)) +#define ONE_OVER1(x) arm_nn_one_over_one_plus_x_for_x_in_0_1((x)) + +/** + * @brief Saturating doubling high multiply. Result matches + * NEON instruction VQRDMULH. + * @param[in] m1 Multiplicand + * @param[in] m2 Multiplier + * @return Result of multiplication. + * + */ +__STATIC_FORCEINLINE q31_t arm_nn_sat_doubling_high_mult(const q31_t m1, const q31_t m2) +{ + q31_t result = 0; + // Rounding offset to add for a right shift of 31 + q63_t mult = 1 << 30; + + if ((m1 < 0) ^ (m2 < 0)) + { + mult = 1 - mult; + } + // Gets resolved as a SMLAL instruction + mult = mult + (q63_t)m1 * m2; + + // Utilize all of the upper 32 bits. This is the doubling step + // as well. + result = (int32_t) (mult / (1ll << 31)); + + if ((m1 == m2) && (m1 == (int32_t)Q31_MIN)) + { + result = Q31_MAX; + } + return result; +} + +/** + * @brief Rounding divide by power of two. + * @param[in] dividend - Dividend + * @param[in] exponent - Divisor = power(2, exponent) + * Range: [0, 31] + * @return Rounded result of division. Midpoint is rounded away from zero. + * + */ +__STATIC_FORCEINLINE q31_t arm_nn_divide_by_power_of_two(const q31_t dividend, const q31_t exponent) +{ + q31_t result = 0; + const q31_t remainder_mask = (1 << exponent) - 1; + int32_t remainder = remainder_mask & dividend; + + // Basic division + result = dividend >> exponent; + + // Adjust 'result' for rounding (mid point away from zero) + q31_t threshold = remainder_mask >> 1; + if (result < 0) + { + threshold++; + } + if (remainder > threshold) + { + result++; + } + + return result; +} + +/** + * @brief Requantize a given value. + * @param[in] val Value to be requantized + * @param[in] multiplier multiplier + * @param[in] shift left or right shift for 'val * multiplier' + * + * @return Returns (val * multiplier)/(2 ^ shift) + * + */ +__STATIC_FORCEINLINE q31_t arm_nn_requantize(const q31_t val, const q31_t multiplier, const q31_t shift) +{ + return arm_nn_divide_by_power_of_two(arm_nn_sat_doubling_high_mult(val * (1 << LEFT_SHIFT(shift)), multiplier), + RIGHT_SHIFT(shift)); +} + +/** + * @brief memcpy optimized for MVE + * @param[in, out] dst Destination pointer + * @param[in] src Source pointer. + * @param[in] block_size Number of bytes to copy. + * + */ +__STATIC_FORCEINLINE void arm_memcpy_q7(q7_t *__RESTRICT dst, + const q7_t *__RESTRICT src, + uint32_t block_size) +{ +#if defined(ARM_MATH_MVEI) + __asm volatile ( + " wlstp.8 lr, %[cnt], 1f \n" + "2: \n" + " vldrb.8 q0, [%[in]], 16 \n" + " vstrb.8 q0, [%[out]], 16 \n" + " letp lr, 2b \n" + "1: \n" + :[in] "+r"(src) + ,[out] "+r"(dst) + :[cnt] "r"(block_size) + :"q0", "memory", "r14"); +#else + memcpy(dst, src, block_size); +#endif +} + +#if defined(ARM_MATH_MVEI) +/** + * @brief Vector saturating doubling high multiply returning high half. + * @param[in] m1 Multiplicand + * @param[in] m2 Multiplier + * @return Result of multiplication. + * + */ +__STATIC_FORCEINLINE int32x4_t arm_sat_doubling_high_mult_mve(const int32x4_t m1, const q31_t m2) +{ + return vqrdmulhq_n_s32(m1, m2); +} + +/** + * @brief Vector rounding divide by power of two. + * @param[in] dividend - Dividend vector + * @param[in] exponent - Divisor = power(2, exponent) + * Range: [0, 31] + * @return Rounded result of division. Midpoint is rounded away from zero. + * + */ +__STATIC_FORCEINLINE int32x4_t arm_divide_by_power_of_two_mve(const int32x4_t dividend, const q31_t exponent) +{ + const int32x4_t shift = vdupq_n_s32(-exponent); + const int32x4_t fixup = vshrq_n_s32(vandq_s32(dividend, shift), 31); + const int32x4_t fixed_up_dividend = vqaddq_s32(dividend, fixup); + return vrshlq_s32(fixed_up_dividend, shift); +} + +/** + * @brief Requantize a given vector. + * @param[in] val Vector to be requantized + * @param[in] multiplier multiplier + * @param[in] shift shift + * + * @return Returns (val * multiplier)/(2 ^ shift) + * + */ +__STATIC_FORCEINLINE int32x4_t arm_requantize_mve(const int32x4_t val, const q31_t multiplier, const q31_t shift) +{ + return arm_divide_by_power_of_two_mve( + arm_sat_doubling_high_mult_mve(vshlq_s32(val, vdupq_n_s32(LEFT_SHIFT(shift))), multiplier), + RIGHT_SHIFT(shift)); +} + +__STATIC_FORCEINLINE int32x4_t arm_sat_doubling_high_mult_mve_32x4(const int32x4_t m1, const int32x4_t m2) +{ + return vqrdmulhq_s32(m1, m2); +} + +__STATIC_FORCEINLINE int32x4_t arm_divide_by_power_of_two_mve_32x4(const int32x4_t dividend, const int32x4_t exponent) +{ + const int32x4_t shift = -exponent; + const int32x4_t fixup = vshrq_n_s32(vandq_s32(dividend, shift), 31); + const int32x4_t fixed_up_dividend = vqaddq_s32(dividend, fixup); + return vrshlq_s32(fixed_up_dividend, shift); +} + +__STATIC_FORCEINLINE int32x4_t arm_requantize_mve_32x4(const int32x4_t val, const int32x4_t multiplier, const int32x4_t shift) +{ + const int32x4_t zz = vdupq_n_s32(0); + const mve_pred16_t p = vcmpgtq_n_s32(shift, 0); + + const int32x4_t left_shift = vpselq_s32(shift, zz, p); + const int32x4_t right_shift = -vpselq_s32(zz, shift, p); + + return arm_divide_by_power_of_two_mve_32x4(arm_sat_doubling_high_mult_mve_32x4(vshlq_s32(val, left_shift), multiplier), right_shift); +} +#endif + +// @note The following functions are used only for softmax layer, scaled bits = 5 assumed + +__STATIC_FORCEINLINE int32_t arm_nn_exp_on_negative_values(int32_t val) +{ + int32_t mask = 0; + int32_t shift = 24; + + const int32_t val_mod_minus_quarter = (val & ((1 << shift) - 1)) - (1 << shift); + const int32_t remainder = val_mod_minus_quarter - val; + const int32_t x = (val_mod_minus_quarter << 5) + (1 << 28); + const int32_t x2 = MUL_SAT(x, x); + + int32_t result = 1895147668 + MUL_SAT(1895147668, x + + DIV_POW2(MUL_SAT(DIV_POW2(MUL_SAT(x2, x2), 2) + MUL_SAT(x2, x), 715827883) + x2, 1)); + +#define SELECT_IF_NON_ZERO(x) \ +{ \ + mask = MASK_IF_NON_ZERO(remainder & (1 << shift++)); \ + result = SELECT_USING_MASK(mask, MUL_SAT(result, x), result); \ +} + + SELECT_IF_NON_ZERO(1672461947) + SELECT_IF_NON_ZERO(1302514674) + SELECT_IF_NON_ZERO(790015084) + SELECT_IF_NON_ZERO(290630308) + SELECT_IF_NON_ZERO(39332535) + SELECT_IF_NON_ZERO(720401) + SELECT_IF_NON_ZERO(242) + +#undef SELECT_IF_NON_ZERO + + mask = MASK_IF_ZERO(val); + return SELECT_USING_MASK(mask, Q31_MAX, result); +} + +__STATIC_FORCEINLINE q31_t arm_nn_mult_by_power_of_two(const int32_t val, const int32_t exp) +{ + const int32_t thresh = ((1 << (31 - exp)) - 1); + int32_t result = val << exp; + result = SELECT_USING_MASK(MASK_IF_NON_ZERO(val > thresh), Q31_MAX, result); + result = SELECT_USING_MASK(MASK_IF_NON_ZERO(val < -thresh), Q31_MIN, result); + return result; +} + +__STATIC_FORCEINLINE int32_t arm_nn_one_over_one_plus_x_for_x_in_0_1(int32_t val) +{ + const int64_t sum = (int64_t)val + (int64_t)Q31_MAX; + const int32_t half_denominator = (int32_t)((sum + (sum >= 0 ? 1 : -1)) / 2L); + int32_t x = 1515870810 + MUL_SAT(half_denominator, -1010580540); + + const int32_t shift = (1 << 29); + x += MUL_POW2(MUL_SAT(x, shift - MUL_SAT(half_denominator, x)), 2); + x += MUL_POW2(MUL_SAT(x, shift - MUL_SAT(half_denominator, x)), 2); + x += MUL_POW2(MUL_SAT(x, shift - MUL_SAT(half_denominator, x)), 2); + + return MUL_POW2(x, 1); +} + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ActivationFunctions/arm_nn_activations_q15.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ActivationFunctions/arm_nn_activations_q15.c new file mode 100644 index 00000000..69c68777 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ActivationFunctions/arm_nn_activations_q15.c @@ -0,0 +1,97 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nn_activations_q15.c + * Description: Q15 neural network activation function using direct table look-up + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/DSP/Include/arm_common_tables.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup Acti + * @{ + */ + +/** + * @brief neural network activation function using direct table look-up + * + * @note Refer header file for details. + * + */ + +void arm_nn_activations_direct_q15(q15_t * data, uint16_t size, uint16_t int_width, arm_nn_activation_type type) +{ + uint16_t i = size; + q15_t *pIn = data; + q15_t *pOut = data; + uint16_t shift_size = 8 + 3 - int_width; + uint32_t bit_mask = 0x7FF >> int_width; + uint32_t full_frac = bit_mask + 1; + const q15_t *lookup_table; + + switch (type) + { + case ARM_SIGMOID: + lookup_table = sigmoidTable_q15; + break; + case ARM_TANH: + default: + lookup_table = tanhTable_q15; + break; + } + + while (i) + { + q15_t out; + q15_t in = *pIn++; + q15_t frac = (uint32_t) in & bit_mask; + q15_t value = lookup_table[(uint8_t)(in >> shift_size)]; + if ((in >> shift_size) != 0x7f) + { + q15_t value2 = lookup_table[(uint8_t)(1 + ((uint8_t)(in >> shift_size)))]; + /* doing the interpolation here for better accuracy */ + out = ((q31_t) (full_frac - frac) * value + (q31_t) value2 * frac) >> shift_size; + } else + { + /* the largest positive value does not have a right side for linear interpolation */ + out = value; + } + + *pOut++ = out; + i--; + } + +} + +/** + * @} end of Acti group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ActivationFunctions/arm_nn_activations_q7.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ActivationFunctions/arm_nn_activations_q7.c new file mode 100644 index 00000000..19476ed5 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ActivationFunctions/arm_nn_activations_q7.c @@ -0,0 +1,90 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nn_activations_q7.c + * Description: Q7 neural network activation function using direct table look-up + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/DSP/Include/arm_common_tables.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup Acti + * @{ + */ + + /** + * @brief Q7 neural network activation function using direct table look-up + * @param[in,out] data pointer to input + * @param[in] size number of elements + * @param[in] int_width bit-width of the integer part, assume to be smaller than 3 + * @param[in] type type of activation functions + * + * @details + * + * This is the direct table look-up approach. + * + * Assume here the integer part of the fixed-point is <= 3. + * More than 3 just not making much sense, makes no difference with + * saturation followed by any of these activation functions. + */ + +void arm_nn_activations_direct_q7(q7_t * data, uint16_t size, uint16_t int_width, arm_nn_activation_type type) +{ + uint16_t i = size; + q7_t *pIn = data; + q7_t *pOut = data; + q7_t in; + q7_t out; + uint16_t shift_size = 3 - int_width; + const q7_t *lookup_table; + switch (type) + { + case ARM_SIGMOID: + lookup_table = sigmoidTable_q7; + break; + case ARM_TANH: + default: + lookup_table = tanhTable_q7; + break; + } + while (i) + { + in = *pIn++; + out = lookup_table[(uint8_t) (in >> shift_size)]; + *pOut++ = out; + i--; + } +} + +/** + * @} end of Acti group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ActivationFunctions/arm_relu6_s8.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ActivationFunctions/arm_relu6_s8.c new file mode 100644 index 00000000..63f29f48 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ActivationFunctions/arm_relu6_s8.c @@ -0,0 +1,65 @@ +/* + * Copyright (C) 2010-2019 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_relu6_s8.c + * Description: Basic s8 version of ReLU6 + * + * $Date: Spetember 2019 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup Acti + * @{ + */ + + /* + * Basic ReLU6 function + * + * Refer to header file for details. + * + */ + +void arm_relu6_s8(q7_t *data, uint16_t size) +{ + int32_t i; + + for (i = 0; i < size; i++) + { + int32_t ip = data[i]; + + ip = MAX(ip, 0); + data[i] = MIN(ip, 6); + } +} + +/** + * @} end of Acti group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ActivationFunctions/arm_relu_q15.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ActivationFunctions/arm_relu_q15.c new file mode 100644 index 00000000..be5450de --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ActivationFunctions/arm_relu_q15.c @@ -0,0 +1,104 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_relu_q15.c + * Description: Q15 version of ReLU + * + * $Date: February 27, 2020 + * $Revision: V.1.0.1 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup Acti + * @{ + */ + +/** + * @brief Q15 RELU function + * @param[in,out] data pointer to input + * @param[in] size number of elements + * + * @details + * + * Optimized relu with QSUB instructions. + * + */ + +void arm_relu_q15(q15_t *data, uint16_t size) +{ + +#if defined(ARM_MATH_DSP) + /* Run the following code for M cores with DSP extension */ + + uint16_t i = size >> 1; + q15_t *input = data; + q15_t *output = data; + q31_t in; + q31_t buf; + q31_t mask; + + while (i) + { + in = read_q15x2_ia(&input); + + /* extract the first bit */ + buf = __ROR(in & 0x80008000, 15); + + /* if MSB=1, mask will be 0xFF, 0x0 otherwise */ + mask = __QSUB16(0x00000000, buf); + + write_q15x2_ia(&output, in & (~mask)); + i--; + } + + if (size & 0x1) + { + if (*input < 0) + { + *input = 0; + } + input++; + } +#else + /* Run the following code as reference implementation for M cores without DSP extension */ + uint16_t i; + + for (i = 0; i < size; i++) + { + if (data[i] < 0) + data[i] = 0; + } + +#endif /* ARM_MATH_DSP */ +} + +/** + * @} end of Acti group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ActivationFunctions/arm_relu_q7.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ActivationFunctions/arm_relu_q7.c new file mode 100644 index 00000000..724d7b49 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ActivationFunctions/arm_relu_q7.c @@ -0,0 +1,109 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_relu_q7.c + * Description: Q7 version of ReLU + * + * $Date: May 29, 2020 + * $Revision: V.1.0.2 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup Acti + * @{ + */ + + /** + * @brief Q7 RELU function + * @param[in,out] data pointer to input + * @param[in] size number of elements + * + * @details + * + * Optimized relu with QSUB instructions. + * + */ + +void arm_relu_q7(q7_t *data, uint16_t size) +{ + +#if defined(ARM_MATH_DSP) + /* Run the following code for M cores with DSP extension */ + + uint16_t i = size >> 2; + q7_t *input = data; + q7_t *output = data; + q31_t in; + q31_t buf; + q31_t mask; + + while (i) + { + in = read_q7x4_ia(&input); + + /* extract the first bit */ + buf = (int32_t)__ROR((uint32_t)in & 0x80808080, 7); + + /* if MSB=1, mask will be 0xFF, 0x0 otherwise */ + mask = __QSUB8(0x00000000, buf); + + write_q7x4_ia(&output, in & (~mask)); + + i--; + } + + i = size & 0x3; + while (i) + { + if (*input < 0) + { + *input = 0; + } + input++; + i--; + } + +#else + /* Run the following code as reference implementation for cores without DSP extension */ + + uint16_t i; + + for (i = 0; i < size; i++) + { + if (data[i] < 0) + data[i] = 0; + } + +#endif +} + +/** + * @} end of Acti group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/BasicMathFunctions/arm_elementwise_add_s8.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/BasicMathFunctions/arm_elementwise_add_s8.c new file mode 100644 index 00000000..0ab9e975 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/BasicMathFunctions/arm_elementwise_add_s8.c @@ -0,0 +1,252 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_elementwise_add_s8 + * Description: Element wise add + * + * $Date: February 27, 2020 + * $Revision: V.2.0.1 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" +#include "cmsis/CMSIS/NN/Include/arm_nnsupportfunctions.h" +#if defined(ARM_MATH_MVEI) +#include "arm_helium_utils.h" +#endif + +#if defined(ARM_MATH_MVEI) +#define SAT_INPUT_VECT(__INPUT_V, __MULT, __SHIFT) \ + __INPUT_V = arm_sat_doubling_high_mult_mve(__INPUT_V, __MULT); \ + __INPUT_V = arm_divide_by_power_of_two_mve(__INPUT_V, -__SHIFT); +#endif + +#define SAT_INPUT(__INPUT, __MULT, __SHIFT) \ + __INPUT = arm_nn_sat_doubling_high_mult(__INPUT, __MULT); \ + __INPUT = arm_nn_divide_by_power_of_two(__INPUT, -__SHIFT); + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup BasicMath + * @{ + */ + +/* + * s8 element wise add + * + * Refer header file for details. + * + */ + +/* Note: __SHIFT is expected to be <=0 */ + + +arm_status +arm_elementwise_add_s8(const int8_t *input_1_vect, + const int8_t *input_2_vect, + const int32_t input_1_offset, + const int32_t input_1_mult, + const int32_t input_1_shift, + const int32_t input_2_offset, + const int32_t input_2_mult, + const int32_t input_2_shift, + const int32_t left_shift, + int8_t *output, + const int32_t out_offset, + const int32_t out_mult, + const int32_t out_shift, + const int32_t out_activation_min, + const int32_t out_activation_max, + const uint32_t block_size) +{ +#if defined(ARM_MATH_MVEI) + int32_t count = (int32_t)block_size; + + while (count > 0) + { + int32x4_t vect_1; + int32x4_t vect_2; + + mve_pred16_t p = vctp32q((uint32_t)count); + + vect_1 = vldrbq_z_s32(input_1_vect, p); + vect_2 = vldrbq_z_s32(input_2_vect, p); + + vect_1 = vaddq_s32(vect_1, vdupq_n_s32(input_1_offset)); + vect_2 = vaddq_s32(vect_2, vdupq_n_s32(input_2_offset)); + + vect_1 = vshlq_r_s32(vect_1, left_shift); + vect_2 = vshlq_r_s32(vect_2, left_shift); + + SAT_INPUT_VECT(vect_1, input_1_mult, input_1_shift); + SAT_INPUT_VECT(vect_2, input_2_mult, input_2_shift); + + vect_1 = vaddq_s32(vect_1, vect_2); + SAT_INPUT_VECT(vect_1, out_mult, out_shift); + + vect_1 = vaddq_n_s32(vect_1, out_offset); + + vect_1 = vmaxq_s32(vect_1, vdupq_n_s32(out_activation_min)); + vect_1 = vminq_s32(vect_1, vdupq_n_s32(out_activation_max)); + + input_1_vect += 4; + input_2_vect += 4; + vstrbq_p_s32(output, vect_1, p); + + output += 4; + count -= 4; + } +#else + uint32_t loop_count; + int32_t input_1; + int32_t input_2; + int32_t sum; + +#if defined(ARM_MATH_DSP) + int32_t a_1, b_1, a_2, b_2; + + int32_t offset_1_packed, offset_2_packed; + + int8_t r1, r2, r3, r4; + + offset_1_packed = (input_1_offset << 16U) | (input_1_offset & 0x0FFFFL); + offset_2_packed = (input_2_offset << 16U) | (input_2_offset & 0x0FFFFL); + + loop_count = block_size >> 2; + + while (loop_count > 0U) + { + /* 4 outputs are calculated in one loop. The order of calculation is follows the order of output sign extension + intrinsic */ + input_1_vect = read_and_pad_reordered(input_1_vect, &b_1, &a_1); + input_2_vect = read_and_pad_reordered(input_2_vect, &b_2, &a_2); + + a_1 = __SADD16(a_1, offset_1_packed); + b_1 = __SADD16(b_1, offset_1_packed); + + a_2 = __SADD16(a_2, offset_2_packed); + b_2 = __SADD16(b_2, offset_2_packed); + + /* Sum 1 */ + input_1 = (int16_t)(b_1 & 0x0FFFFL) << left_shift; + SAT_INPUT(input_1, input_1_mult, input_1_shift); + + input_2 = (int16_t)(b_2 & 0x0FFFFL) << left_shift; + SAT_INPUT(input_2, input_2_mult, input_2_shift); + + sum = input_1 + input_2; + SAT_INPUT(sum, out_mult, out_shift); + sum += out_offset; + sum = MAX(sum, out_activation_min); + sum = MIN(sum, out_activation_max); + r1 = (q7_t)sum; + + /* Sum 3 */ + input_1 = (int16_t)((b_1 >> 16) & 0x0FFFFL) << left_shift; + SAT_INPUT(input_1, input_1_mult, input_1_shift); + + input_2 = (int16_t)((b_2 >> 16) & 0x0FFFFL) << left_shift; + SAT_INPUT(input_2, input_2_mult, input_2_shift); + + sum = input_1 + input_2; + SAT_INPUT(sum, out_mult, out_shift); + sum += out_offset; + sum = MAX(sum, out_activation_min); + sum = MIN(sum, out_activation_max); + r3 = (q7_t)sum; + + /* Sum 2 */ + input_1 = (int16_t)(a_1 & 0x0FFFFL) << left_shift; + SAT_INPUT(input_1, input_1_mult, input_1_shift); + + input_2 = (int16_t)(a_2 & 0x0FFFFL) << left_shift; + SAT_INPUT(input_2, input_2_mult, input_2_shift); + + sum = input_1 + input_2; + SAT_INPUT(sum, out_mult, out_shift); + sum += out_offset; + sum = MAX(sum, out_activation_min); + sum = MIN(sum, out_activation_max); + r2 = (q7_t)sum; + + /* Sum 4 */ + input_1 = (int16_t)((a_1 >> 16) & 0x0FFFFL) << left_shift; + SAT_INPUT(input_1, input_1_mult, input_1_shift); + + input_2 = (int16_t)((a_2 >> 16) & 0x0FFFFL) << left_shift; + SAT_INPUT(input_2, input_2_mult, input_2_shift); + + sum = input_1 + input_2; + SAT_INPUT(sum, out_mult, out_shift); + sum += out_offset; + sum = MAX(sum, out_activation_min); + sum = MIN(sum, out_activation_max); + r4 = (q7_t)sum; + + write_q7x4_ia(&output, __PACKq7(r1, r2, r3, r4)); + + loop_count--; + } + + loop_count = block_size & 0x3; +#else + loop_count = block_size; +#endif + + while (loop_count > 0U) + { + /* C = A + B */ + + input_1 = (*input_1_vect++ + input_1_offset) << left_shift; + input_2 = (*input_2_vect++ + input_2_offset) << left_shift; + + input_1 = arm_nn_sat_doubling_high_mult(input_1, input_1_mult); + input_1 = arm_nn_divide_by_power_of_two(input_1, -input_1_shift); + + input_2 = arm_nn_sat_doubling_high_mult(input_2, input_2_mult); + input_2 = arm_nn_divide_by_power_of_two(input_2, -input_2_shift); + + sum = input_1 + input_2; + SAT_INPUT(sum, out_mult, out_shift); + sum += out_offset; + + sum = MAX(sum, out_activation_min); + sum = MIN(sum, out_activation_max); + + *output++ = (q7_t)sum; + + /* Decrement loop counter */ + loop_count--; + } + +#endif /* ARM_MATH_MVEI */ + + return (ARM_MATH_SUCCESS); +} + +/** + * @} end of BasicMath group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/BasicMathFunctions/arm_elementwise_mul_s8.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/BasicMathFunctions/arm_elementwise_mul_s8.c new file mode 100644 index 00000000..55303b77 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/BasicMathFunctions/arm_elementwise_mul_s8.c @@ -0,0 +1,202 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_elementwise_mul_s8 + * Description: Element wise multiplication + * + * $Date: May 29, 2020 + * $Revision: V.1.0.3 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" +#include "cmsis/CMSIS/NN/Include/arm_nnsupportfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup BasicMath + * @{ + */ + +/** + * @brief s8 element wise multiplication of two vectors + * + * @note Refer header file for details. + * + */ + +arm_status +arm_elementwise_mul_s8(const int8_t *input_1_vect, + const int8_t *input_2_vect, + const int32_t input_1_offset, + const int32_t input_2_offset, + int8_t *output, + const int32_t out_offset, + const int32_t out_mult, + const int32_t out_shift, + const int32_t out_activation_min, + const int32_t out_activation_max, + const uint32_t block_size) +{ + + int32_t loop_count; +#if defined(ARM_MATH_MVEI) + + loop_count = (block_size + 3) / 4; + uint32_t num_elements = block_size; + + for (int i = 0; i < loop_count; i++) + { + mve_pred16_t p = vctp32q(num_elements); + + int32x4_t input_1 = vldrbq_z_s32(input_1_vect, p); + input_1 = vaddq_n_s32(input_1, input_1_offset); + + int32x4_t input_2 = vldrbq_z_s32(input_2_vect, p); + input_2 = vaddq_n_s32(input_2, input_2_offset); + + int32x4_t res_0 = vmulq_s32(input_1, input_2); + + res_0 = arm_requantize_mve_32x4(res_0, vdupq_n_s32(out_mult), vdupq_n_s32(out_shift)); + + res_0 += vdupq_n_s32(out_offset); + + res_0 = vmaxq_s32(res_0, vdupq_n_s32(out_activation_min)); + res_0 = vminq_s32(res_0, vdupq_n_s32(out_activation_max)); + + vstrbq_p_s32(output, res_0, p); + input_1_vect += 4; + input_2_vect += 4; + output += 4; + num_elements -= 4; + } + +#else + int32_t input_1; + int32_t input_2; + int32_t mul_res; + +#if defined(ARM_MATH_DSP) + int32_t a_1, b_1, a_2, b_2; + + int32_t offset_1_packed, offset_2_packed; + + int8_t r1, r2, r3, r4; + + offset_1_packed = (input_1_offset << 16U) | (input_1_offset & 0x0FFFFL); + offset_2_packed = (input_2_offset << 16U) | (input_2_offset & 0x0FFFFL); + + loop_count = block_size >> 2; + + while (loop_count > 0U) + { + /* 4 outputs are calculated in one loop. The order of calculation is follows the order of output sign extension + intrinsic */ + input_1_vect = read_and_pad_reordered(input_1_vect, &b_1, &a_1); + input_2_vect = read_and_pad_reordered(input_2_vect, &b_2, &a_2); + + a_1 = __SADD16(a_1, offset_1_packed); + b_1 = __SADD16(b_1, offset_1_packed); + + a_2 = __SADD16(a_2, offset_2_packed); + b_2 = __SADD16(b_2, offset_2_packed); + + /* Mul 1 */ + input_1 = (int16_t)(b_1 & 0x0FFFFL); + input_2 = (int16_t)(b_2 & 0x0FFFFL); + + mul_res = input_1 * input_2; + mul_res = arm_nn_requantize(mul_res, out_mult, out_shift) + out_offset; + + mul_res = MAX(mul_res, out_activation_min); + mul_res = MIN(mul_res, out_activation_max); + r1 = (q7_t)mul_res; + + /* Mul 3 */ + input_1 = (int16_t)((b_1 >> 16U) & 0x0FFFFL); + input_2 = (int16_t)((b_2 >> 16U) & 0x0FFFFL); + + mul_res = input_1 * input_2; + mul_res = arm_nn_requantize(mul_res, out_mult, out_shift) + out_offset; + mul_res = MAX(mul_res, out_activation_min); + mul_res = MIN(mul_res, out_activation_max); + r3 = (q7_t)mul_res; + + /* Mul 2 */ + input_1 = (int16_t)(a_1 & 0x0FFFFL); + input_2 = (int16_t)(a_2 & 0x0FFFFL); + + mul_res = input_1 * input_2; + mul_res = arm_nn_requantize(mul_res, out_mult, out_shift) + out_offset; + mul_res = MAX(mul_res, out_activation_min); + mul_res = MIN(mul_res, out_activation_max); + r2 = (q7_t)mul_res; + + /* Mul 4 */ + input_1 = (int16_t)((a_1 >> 16U) & 0x0FFFFL); + input_2 = (int16_t)((a_2 >> 16U) & 0x0FFFFL); + + mul_res = input_1 * input_2; + mul_res = arm_nn_requantize(mul_res, out_mult, out_shift) + out_offset; + mul_res = MAX(mul_res, out_activation_min); + mul_res = MIN(mul_res, out_activation_max); + r4 = (q7_t)mul_res; + + write_q7x4_ia(&output, __PACKq7(r1, r2, r3, r4)); + + loop_count--; + } + + loop_count = block_size & 0x3; +#else + loop_count = block_size; +#endif + + while (loop_count > 0U) + { + /* C = A * B */ + + input_1 = *input_1_vect++ + input_1_offset; + input_2 = *input_2_vect++ + input_2_offset; + + mul_res = input_1 * input_2; + mul_res = arm_nn_requantize(mul_res, out_mult, out_shift) + out_offset; + + mul_res = MAX(mul_res, out_activation_min); + mul_res = MIN(mul_res, out_activation_max); + + *output++ = (q7_t)mul_res; + + /* Decrement loop counter */ + loop_count--; + } +#endif + return ARM_MATH_SUCCESS; +} + +/** + * @} end of BasicMath group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConcatenationFunctions/arm_concatenation_s8_w.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConcatenationFunctions/arm_concatenation_s8_w.c new file mode 100644 index 00000000..20b68bc7 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConcatenationFunctions/arm_concatenation_s8_w.c @@ -0,0 +1,65 @@ +/* + * Copyright (C) 2010-2019 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_concatenation_s8_w.c + * Description: s8 version of concatenation along the W axis + * + * $Date: October 2019 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup Concatenation + * @{ + */ + + /* + * s8 version of concatenation along the W axis + * + * Refer to header file for details. + * + */ +void arm_concatenation_s8_w(const int8_t *input, + const uint16_t input_x, + const uint16_t input_y, + const uint16_t input_z, + const uint16_t input_w, + int8_t *output, + const uint32_t offset_w) +{ + const uint32_t input_copy_size = input_x * input_y * input_z * input_w; + + output += offset_w * (input_x * input_y * input_z); + + memcpy(output, input, input_copy_size); +} + +/** + * @} end of Concatenation group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConcatenationFunctions/arm_concatenation_s8_x.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConcatenationFunctions/arm_concatenation_s8_x.c new file mode 100644 index 00000000..b1ff364a --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConcatenationFunctions/arm_concatenation_s8_x.c @@ -0,0 +1,74 @@ +/* + * Copyright (C) 2010-2019 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_concatenation_s8_x.c + * Description: s8 version of concatenation along the X axis + * + * $Date: October 2019 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup Concatenation + * @{ + */ + + /* + * s8 version of concatenation along the X axis + * + * Refer to header file for details. + * + */ +void arm_concatenation_s8_x(const int8_t *input, + const uint16_t input_x, + const uint16_t input_y, + const uint16_t input_z, + const uint16_t input_w, + int8_t *output, + const uint16_t output_x, + const uint32_t offset_x) +{ + const uint32_t num_iterations = input_y * input_z * input_w; + + output += offset_x; + + uint32_t i; + + // Copy per row + for (i = 0; i < num_iterations; ++i) + { + memcpy(output, input, input_x); + input += input_x; + output += output_x; + } +} + +/** + * @} end of Concatenation group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConcatenationFunctions/arm_concatenation_s8_y.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConcatenationFunctions/arm_concatenation_s8_y.c new file mode 100644 index 00000000..47913687 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConcatenationFunctions/arm_concatenation_s8_y.c @@ -0,0 +1,75 @@ +/* + * Copyright (C) 2010-2019 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_concatenation_s8_y.c + * Description: s8 version of concatenation along the Y axis + * + * $Date: October 2019 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup Concatenation + * @{ + */ + + /* + * s8 version of concatenation along the Y axis + * + * Refer to header file for details. + * + */ +void arm_concatenation_s8_y(const int8_t *input, + const uint16_t input_x, + const uint16_t input_y, + const uint16_t input_z, + const uint16_t input_w, + int8_t *output, + const uint16_t output_y, + const uint32_t offset_y) +{ + const uint32_t num_iterations = input_z * input_w; + const uint32_t input_copy_size = input_x * input_y; + const uint32_t output_stride = input_x * output_y; + + output += offset_y * input_x; + uint32_t i; + + // Copy per tile + for (i = 0; i < num_iterations; ++i) + { + memcpy(output, input, input_copy_size); + input += input_copy_size; + output += output_stride; + } +} + +/** + * @} end of Concatenation group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConcatenationFunctions/arm_concatenation_s8_z.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConcatenationFunctions/arm_concatenation_s8_z.c new file mode 100644 index 00000000..0d0bf500 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConcatenationFunctions/arm_concatenation_s8_z.c @@ -0,0 +1,74 @@ +/* + * Copyright (C) 2010-2019 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_concatenation_s8_z.c + * Description: s8 version of concatenation along the Z axis + * + * $Date: October 2019 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup Concatenation + * @{ + */ + + /* + * s8 version of concatenation along the Z axis + * + * Refer to header file for details. + * + */ +void arm_concatenation_s8_z(const int8_t *input, + const uint16_t input_x, + const uint16_t input_y, + const uint16_t input_z, + const uint16_t input_w, + int8_t *output, + const uint16_t output_z, + const uint32_t offset_z) +{ + const uint32_t input_copy_size = input_x * input_y * input_z; + const uint32_t output_stride = input_x * input_y * output_z; + + output += offset_z * (input_x * input_y); + + uint32_t i; + + for (i = 0; i < input_w; ++i) + { + memcpy(output, input, input_copy_size); + input += input_copy_size; + output += output_stride; + } +} + +/** + * @} end of Concatenation group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1_x_n_s8.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1_x_n_s8.c new file mode 100644 index 00000000..f2af65bb --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1_x_n_s8.c @@ -0,0 +1,199 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_convolve_1_x_n_s8.c + * Description: s8 version of 1xN convolution using symmetric quantization. + * + * $Date: May 18, 2020 + * $Revision: V.2.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nn_types.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" +#include "cmsis/CMSIS/NN/Include/arm_nnsupportfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + +/* + * 1xN s8 convolution function. + * + * Refer header file for details. + * + */ + +arm_status arm_convolve_1_x_n_s8(const cmsis_nn_context* ctx, + const cmsis_nn_conv_params* conv_params, + const cmsis_nn_per_channel_quant_params* quant_params, + const cmsis_nn_dims* input_dims, + const q7_t *input_data, + const cmsis_nn_dims* filter_dims, + const q7_t *filter_data, + const cmsis_nn_dims* bias_dims, + const int32_t *bias_data, + const cmsis_nn_dims* output_dims, + q7_t *output_data) +{ + (void)bias_dims; + arm_status status = ARM_MATH_SUCCESS; + if (output_dims->w % 4 != 0) + { + status = ARM_MATH_SIZE_MISMATCH; + goto out; + } + +#if defined(ARM_MATH_MVEI) + q15_t *buffer_a = (q15_t *)ctx->buf; + + const uint16_t input_x = input_dims->w; + const uint16_t kernel_x = filter_dims->w; + const uint16_t output_x = output_dims->w; + const uint16_t output_ch = output_dims->c; + const uint16_t input_ch = input_dims->c; + const uint16_t pad_x = conv_params->padding.w; + const uint16_t stride_x = conv_params->stride.w; + + const int32_t input_offset = conv_params->input_offset; + const int32_t out_offset = conv_params->output_offset; + const int32_t out_activation_min = conv_params->activation.min; + const int32_t out_activation_max = conv_params->activation.max; + int32_t *output_mult = quant_params->multiplier; + int32_t *output_shift = quant_params->shift; + + for (int i_out_x = 0; i_out_x <= (output_x - 4); i_out_x += 4) + { + int32_t input_begin_idx[4]; + int32_t ker_begin_idx[4]; + int32_t ker_end_idx[4]; + + for (int i = 0; i < 4; i++) + { + const int32_t est_input_x_idx = stride_x * (i_out_x + i) - pad_x; + input_begin_idx[i] = MAX(0, est_input_x_idx); + ker_begin_idx[i] = MAX(0, -est_input_x_idx); + ker_end_idx[i] = MIN(kernel_x, input_x - est_input_x_idx); + } + + for (int i_out_ch = 0; i_out_ch < output_ch; i_out_ch++) + { + int32x4_t s_offset; + int32_t acc[4]; + if ((ker_begin_idx[0] != 0) || (ker_end_idx[3] != kernel_x)) + { + int32_t sum_row[4]; + + (void)arm_nn_mat_mul_core_1x_s8((ker_end_idx[0] - ker_begin_idx[0]) * input_ch, + input_data + input_begin_idx[0] * input_ch, + filter_data + (input_ch * kernel_x * i_out_ch) + (ker_begin_idx[0] * input_ch), + &sum_row[0], + &acc[0]); + (void)arm_nn_mat_mul_core_1x_s8((ker_end_idx[1] - ker_begin_idx[1]) * input_ch, + input_data + input_begin_idx[1] * input_ch, + filter_data + (input_ch * kernel_x * i_out_ch) + (ker_begin_idx[1] * input_ch), + &sum_row[1], + &acc[1]); + + (void)arm_nn_mat_mul_core_1x_s8((ker_end_idx[2] - ker_begin_idx[2]) * input_ch, + input_data + input_begin_idx[2] * input_ch, + filter_data + (input_ch * kernel_x * i_out_ch) + (ker_begin_idx[2] * input_ch), + &sum_row[2], + &acc[2]); + + (void)arm_nn_mat_mul_core_1x_s8((ker_end_idx[3] - ker_begin_idx[3]) * input_ch, + input_data + input_begin_idx[3] * input_ch, + filter_data + (input_ch * kernel_x * i_out_ch) + (ker_begin_idx[3] * input_ch), + &sum_row[3], + &acc[3]); + + s_offset = vldrwq_s32(sum_row); + } + else + { + int32_t sum_row; + (void)arm_nn_mat_mul_core_4x_s8(kernel_x * input_ch, + stride_x * input_ch, + input_data + input_begin_idx[0] * input_ch, + filter_data + (input_ch * kernel_x * i_out_ch), + &sum_row, + acc); + + s_offset = vdupq_n_s32(sum_row); + } + int32x4_t res = vldrwq_s32(acc); + s_offset = vmulq_n_s32(s_offset, input_offset); + + res = vaddq_n_s32(res, bias_data[i_out_ch]); + res = vaddq_s32(res, s_offset); + res = arm_requantize_mve(res, output_mult[i_out_ch], output_shift[i_out_ch]); + res = vaddq_n_s32(res, out_offset); + + res = vmaxq_s32(res, vdupq_n_s32(out_activation_min)); + res = vminq_s32(res, vdupq_n_s32(out_activation_max)); + + const uint32x4_t scatter_offset = {0, output_ch, output_ch * 2, output_ch * 3}; + vstrbq_scatter_offset_s32(output_data, scatter_offset, res); + output_data++; + } + output_data += (3 * output_ch); + } + +#else + status = arm_convolve_s8(ctx, + conv_params, + quant_params, + input_dims, + input_data, + filter_dims, + filter_data, + bias_dims, + bias_data, + output_dims, + output_data); +#endif + +out: + /* Return to application */ + return status; +} + +int32_t arm_convolve_1_x_n_s8_get_buffer_size(const cmsis_nn_dims* input_dims, + const cmsis_nn_dims* filter_dims) +{ +#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI) + return (2 * input_dims->c * filter_dims->w * filter_dims->h) * sizeof(int16_t); +#else + (void)input_dims; + (void)filter_dims; + return 0; +#endif +} + +/** + * @} end of NNConv group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1x1_HWC_q7_fast_nonsquare.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1x1_HWC_q7_fast_nonsquare.c new file mode 100644 index 00000000..0725e615 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1x1_HWC_q7_fast_nonsquare.c @@ -0,0 +1,236 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_convolve_1x1_HWC_q7_fast_nonsquare.c + * Description: Fast Q7 version of 1x1 convolution (non-square shape) + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + +/** + * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimention x + * @param[in] dim_im_in_y input tensor dimention y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding size x + * @param[in] padding_y padding size y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + * + * This function is optimized for convolution with 1x1 kernel size (i.e., dim_kernel_x=1 + * and dim_kernel_y=1). It can be used for the second half of MobileNets [1] after depthwise + * separable convolution. + * + * This function is the version with full list of optimization tricks, but with + * some contraints: + * ch_im_in is multiple of 4 + * ch_im_out is multiple of 2 + * + * [1] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications + * https://arxiv.org/abs/1704.04861 + */ + +arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + q15_t * bufferA, + q7_t * bufferB) +{ + (void)bufferB; +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + (void)dim_im_in_y; + int16_t i_out_y, i_out_x; + int16_t i_ch_out; + + /* ----------------------- + * Here we use bufferA as q15_t internally as computation are done with q15_t level + * im2col are done to output in q15_t format from q7_t input + */ + + q15_t *pBuffer = bufferA; + q7_t *pOut = Im_out; + + if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1 + || padding_x != 0 || padding_y != 0 || stride_x != 1 || stride_y != 1) + { + /* check if the input dimension meets the constraints */ + return ARM_MATH_SIZE_MISMATCH; + } + + for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) + { + /* This part implements the im2col function */ + arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_out_y * dim_im_in_x + i_out_x) * ch_im_in, pBuffer, + ch_im_in); + pBuffer += ch_im_in; + + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in, bias_shift, out_shift, bias, pOut); + /* counter reset */ + pBuffer = bufferA; + } + } + } + + /* check if there is left-over for compute */ + if (pBuffer != bufferA) + { + const q7_t *pA = wt; + for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++) + { + q31_t sum = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift); + const q15_t *pB = bufferA; + /* basically each time it process 4 entries */ + uint16_t colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2; + + while (colCnt) + { + + q31_t inA1, inA2; + q31_t inB1, inB2; + + pA = read_and_pad_reordered(pA, &inA1, &inA2); + + inB1 = arm_nn_read_q15x2_ia(&pB); + sum = __SMLAD(inA1, inB1, sum); + inB2 = arm_nn_read_q15x2_ia(&pB); + + sum = __SMLAD(inA2, inB2, sum); + + colCnt--; + } + colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x3; + while (colCnt) + { + q7_t inA1 = *pA++; + q15_t inB1 = *pB++; + sum += inA1 * inB1; + colCnt--; + } + *pOut = (q7_t) __SSAT((sum >> out_shift), 8); + pOut++; + + } + + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + + int i, j, k, l, m, n; + int conv_out; + int in_row, in_col; + + if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0 || dim_kernel_x != 1 || dim_kernel_y != 1 + || padding_x != 0 || padding_y != 0 || stride_x != 1 || stride_y != 1) + { + /* check if the input dimension meets the constraints */ + return ARM_MATH_SIZE_MISMATCH; + } + + for (i = 0; i < ch_im_out; i++) + { + for (j = 0; j < dim_im_out_y; j++) + { + for (k = 0; k < dim_im_out_x; k++) + { + conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); + for (m = 0; m < dim_kernel_y; m++) + { + for (n = 0; n < dim_kernel_x; n++) + { + // if-for implementation + in_row = stride_y * j + m - padding_y; + in_col = stride_x * k + n - padding_x; + if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) + { + for (l = 0; l < ch_im_in; l++) + { + conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] * + wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_y + n) * ch_im_in + l]; + } + } + } + } + Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); + } + } + } + +#endif /* ARM_MATH_DSP */ + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNConv group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1x1_s8_fast.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1x1_s8_fast.c new file mode 100644 index 00000000..75e4c8e3 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1x1_s8_fast.c @@ -0,0 +1,182 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_convolve_1x1_s8_fast.c + * Description: Fast q7 version of 1x1 convolution (non-square shape) + * + * $Date: May 29, 2020 + * $Revision: V.2.0.1 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" +#include "cmsis/CMSIS/NN/Include/arm_nn_types.h" + +#define DIM_KER_X (1U) +#define DIM_KER_Y (1U) + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + +/* + * Fast s8 version for 1x1 convolution (non-square shape) + * + * Refer header file for details. + * + */ + +arm_status arm_convolve_1x1_s8_fast(const cmsis_nn_context *ctx, + const cmsis_nn_conv_params *conv_params, + const cmsis_nn_per_channel_quant_params *quant_params, + const cmsis_nn_dims *input_dims, + const q7_t *input_data, + const cmsis_nn_dims *filter_dims, + const q7_t *filter_data, + const cmsis_nn_dims *bias_dims, + const int32_t *bias_data, + const cmsis_nn_dims *output_dims, + q7_t *output_data) +{ + if (input_dims->c % 4 != 0 || + conv_params->padding.w != 0 || conv_params->padding.h != 0 || + conv_params->stride.w != 1 || conv_params->stride.h != 1) + { + return ARM_MATH_SIZE_MISMATCH; + } + + (void)ctx; + (void)filter_dims; + (void)bias_dims; + +#if defined(ARM_MATH_MVEI) + + const int32_t col_len = input_dims->w * input_dims->h * input_dims->n; + const int32_t output_ch = output_dims->c; + const int32_t input_ch = input_dims->c; + const int32_t input_offset = conv_params->input_offset; + const int32_t out_offset = conv_params->output_offset; + const int32_t out_activation_min = conv_params->activation.min; + const int32_t out_activation_max = conv_params->activation.max; + int32_t *output_mult = quant_params->multiplier; + int32_t *output_shift = quant_params->shift; + + for (int i_items = 0; i_items <= (col_len - 4); i_items += 4) + { + for (int i_out_ch = 0; i_out_ch < output_ch; i_out_ch++) + { + int32_t sum_row = 0; + int32_t temp_out[4]; + + (void)arm_nn_mat_mul_core_4x_s8(input_ch, + input_ch, + input_data + i_items * input_ch, + filter_data + i_out_ch * input_ch, + &sum_row, + temp_out); + int32x4_t res = vldrwq_s32(temp_out); + + res = vaddq_n_s32(res, bias_data[i_out_ch]); + sum_row = sum_row * input_offset; + res = vaddq_n_s32(res, sum_row); + res = arm_requantize_mve(res, output_mult[i_out_ch], output_shift[i_out_ch]); + res = vaddq_n_s32(res, out_offset); + + res = vmaxq_s32(res, vdupq_n_s32(out_activation_min)); + res = vminq_s32(res, vdupq_n_s32(out_activation_max)); + + const uint32x4_t scatter_offset = {0, (uint32_t)output_ch, + (uint32_t)output_ch * 2, + (uint32_t)output_ch * 3}; + vstrbq_scatter_offset_s32(output_data, scatter_offset, res); + output_data++; + } + output_data += (3 * output_ch); + } + + /* Handle left over elements */ + for (int i_items = (col_len & ~0x3); i_items < col_len; i_items++) + { + for (int i_out_ch = 0; i_out_ch < output_ch; i_out_ch++) + { + int32_t sum_row = 0; + + int32_t acc; + (void)arm_nn_mat_mul_core_1x_s8(input_ch, + input_data + i_items * input_ch, + filter_data + i_out_ch * input_ch, + &sum_row, + &acc); + + acc += bias_data[i_out_ch]; + sum_row = (sum_row * input_offset); + acc += sum_row; + acc = arm_nn_requantize(acc, output_mult[i_out_ch], output_shift[i_out_ch]); + acc += out_offset; + + acc = MAX(acc, out_activation_min); + acc = MIN(acc, out_activation_max); + *output_data++ = acc; + } + } + +#else + /* Run the following code as reference implementation for Cortex-M processors with or without DSP extension */ + + const int32_t lhs_rows = input_dims->w * input_dims->h * input_dims->n; + const int32_t rhs_rows = output_dims->c; + const int32_t rhs_cols = input_dims->c; + + arm_nn_mat_mult_nt_t_s8(input_data, + filter_data, + bias_data, + output_data, + quant_params->multiplier, + quant_params->shift, + lhs_rows, + rhs_rows, + rhs_cols, + conv_params->input_offset, + conv_params->output_offset, + conv_params->activation.min, + conv_params->activation.max); + +#endif + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +int32_t arm_convolve_1x1_s8_fast_get_buffer_size(const cmsis_nn_dims *input_dims) +{ + (void)input_dims; + return 0; +} + +/** + * @} end of NNConv group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_basic.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_basic.c new file mode 100644 index 00000000..d7d25f44 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_basic.c @@ -0,0 +1,207 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_convolve_HWC_q15_basic.c + * Description: Q15 version of convolution + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + + /** + * @brief Basic Q15 convolution function + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimention + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns ARM_MATH_SUCCESS + * + * @details + * + * Buffer size: + * + * bufferA size: ch_im_in*dim_kernel*dim_kernel + * + * bufferB size: 0 + * + * This basic version is designed to work for any input tensor and weight + * dimension. + */ + +arm_status +arm_convolve_HWC_q15_basic(const q15_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const q15_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const q15_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q15_t * Im_out, + const uint16_t dim_im_out, + q15_t * bufferA, + q7_t * bufferB) +{ + (void)bufferB; +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + int16_t i_out_y, i_out_x, i_ker_y, i_ker_x; + + uint16_t im2col_out_pixel_index = 0; + q15_t *pBuffer = bufferA; + q15_t *pOut = Im_out; + q15_t *im_buffer = bufferA; + const q15_t *pA; + int i; + + /* This part implements the im2col function */ + for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) + { + for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) + { + for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) + { + /* Filling 0 for out-of-bound paddings */ + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */ + memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in); + } + pBuffer += ch_im_in; + } + } + + pA = wt; + for (i = 0; i < ch_im_out; i++) + { + q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + const q15_t *pB = im_buffer; + uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 2; + while (colCnt) + { + q31_t inA1 = arm_nn_read_q15x2_ia(&pA); + q31_t inB1 = arm_nn_read_q15x2_ia(&pB); + q31_t inA2 = arm_nn_read_q15x2_ia(&pA); + q31_t inB2 = arm_nn_read_q15x2_ia(&pB); + + sum = __SMLAD(inA1, inB1, sum); + sum = __SMLAD(inA2, inB2, sum); + + colCnt--; + } + colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3; + while (colCnt) + { + q15_t inA1 = *pA++; + q15_t inB1 = *pB++; + sum += inA1 * inB1; + colCnt--; + } + *pOut = (q15_t) __SSAT((sum >> out_shift), 16); + pOut++; + } + + /* counter reset */ + pBuffer = im_buffer; + im2col_out_pixel_index++; + } + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + int i, j, k, l, m, n; + int conv_out; + int in_row, in_col; + + for (i = 0; i < ch_im_out; i++) + { + for (j = 0; j < dim_im_out; j++) + { + for (k = 0; k < dim_im_out; k++) + { + conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + for (m = 0; m < dim_kernel; m++) + { + for (n = 0; n < dim_kernel; n++) + { + in_row = stride * j + m - padding; + in_col = stride * k + n - padding; + if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) + { + for (l = 0; l < ch_im_in; l++) + { + conv_out += + Im_in[(in_row * dim_im_in + in_col) * ch_im_in + + l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + + n) * ch_im_in + l]; + } + } + } + } + Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16); + } + } + } + +#endif /* ARM_MATH_DSP */ + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNConv group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast.c new file mode 100644 index 00000000..221d64f0 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast.c @@ -0,0 +1,255 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_convolve_HWC_q15_fast.c + * Description: Fast Q15 version of convolution + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + + /** + * @brief Fast Q15 convolution function + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimention + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + * + * @details + * + * Buffer size: + * + * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel + * + * bufferB size: 0 + * + * Input dimension constraints: + * + * ch_im_in is multiple of 2 + * + * ch_im_out is multipe of 2 + * + */ + +arm_status +arm_convolve_HWC_q15_fast(const q15_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const q15_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const q15_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q15_t * Im_out, + const uint16_t dim_im_out, + q15_t * bufferA, + q7_t * bufferB) +{ + (void)bufferB; +#if defined (ARM_MATH_DSP) + int16_t i_out_y, i_out_x, i_ker_y, i_ker_x; + + q15_t *pBuffer = bufferA; + q15_t *im_buffer = bufferA; + q15_t *pOut = Im_out; + + if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0) + { + /* check if the input dimension meets the constraints */ + return ARM_MATH_SIZE_MISMATCH; + } + + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + /* This part implements the im2col function */ + for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) + { + for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) + { + for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) + { + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */ + memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in); + } + pBuffer += ch_im_in; + } + } + + if (i_out_x & 0x1) + { + int i; + /* initialize the matrix pointers for A */ + const q15_t *pA = wt; + + /* set up the second output pointers */ + q15_t *pOut2 = pOut + ch_im_out; + + /* this loop over rows in A */ + for (i = 0; i < ch_im_out; i += 2) + { + /* setup pointers for B */ + const q15_t *pB = im_buffer; + const q15_t *pB2 = pB + ch_im_in * dim_kernel * dim_kernel; + + /* aling the second pointer for A */ + const q15_t *pA2 = pA + ch_im_in * dim_kernel * dim_kernel; + + /* init the sum with bias */ + q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 1; + /* accumulate over the vector */ + while (colCnt) + { + q31_t inA1 = arm_nn_read_q15x2_ia(&pA); + q31_t inB1 = arm_nn_read_q15x2_ia(&pB); + q31_t inA2 = arm_nn_read_q15x2_ia(&pA2); + q31_t inB2 = arm_nn_read_q15x2_ia(&pB2); + + sum = __SMLAD(inA1, inB1, sum); + sum2 = __SMLAD(inA1, inB2, sum2); + sum3 = __SMLAD(inA2, inB1, sum3); + sum4 = __SMLAD(inA2, inB2, sum4); + + colCnt--; + } /* while over colCnt */ + colCnt = ch_im_in * dim_kernel * dim_kernel & 0x1; + while (colCnt) + { + q15_t inA1 = *pA++; + q15_t inB1 = *pB++; + q15_t inA2 = *pA2++; + q15_t inB2 = *pB2++; + + sum += inA1 * inB1; + sum2 += inA1 * inB2; + sum3 += inA2 * inB1; + sum4 += inA2 * inB2; + colCnt--; + } /* while over colCnt */ + *pOut++ = (q15_t) __SSAT(sum >> out_shift, 16); + *pOut++ = (q15_t) __SSAT(sum3 >> out_shift, 16); + *pOut2++ = (q15_t) __SSAT(sum2 >> out_shift, 16); + *pOut2++ = (q15_t) __SSAT(sum4 >> out_shift, 16); + + /* skip the row computed with A2 */ + pA += ch_im_in * dim_kernel * dim_kernel; + } /* for over ch_im_out */ + + pOut += ch_im_out; + /* counter reset */ + pBuffer = im_buffer; + } + } + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + int i, j, k, l, m, n; + int conv_out; + int in_row, in_col; + + if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0) + { + /* check if the input dimension meets the constraints */ + return ARM_MATH_SIZE_MISMATCH; + } + + for (i = 0; i < ch_im_out; i++) + { + for (j = 0; j < dim_im_out; j++) + { + for (k = 0; k < dim_im_out; k++) + { + conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + for (m = 0; m < dim_kernel; m++) + { + for (n = 0; n < dim_kernel; n++) + { + in_row = stride * j + m - padding; + in_col = stride * k + n - padding; + if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) + { + for (l = 0; l < ch_im_in; l++) + { + conv_out += + Im_in[(in_row * dim_im_in + in_col) * ch_im_in + + l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + + n) * ch_im_in + l]; + } + } + } + } + Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16); + } + } + } + +#endif /* ARM_MATH_DSP */ + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNConv group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast_nonsquare.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast_nonsquare.c new file mode 100644 index 00000000..8b1fdc7d --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast_nonsquare.c @@ -0,0 +1,265 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_convolve_HWC_q15_fast.c + * Description: Fast Q15 version of convolution + * + * $Date: 24. May 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + + /** + * @brief Fast Q15 convolution function (non-sqaure shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimention x + * @param[in] dim_im_in_y input tensor dimention y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding size x + * @param[in] padding_y padding size y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + * + * @details + * + * Buffer size: + * + * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel + * + * bufferB size: 0 + * + * Input dimension constraints: + * + * ch_im_in is multiple of 2 + * + * ch_im_out is multipe of 2 + * + */ + +arm_status +arm_convolve_HWC_q15_fast_nonsquare(const q15_t * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const q15_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const q15_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q15_t * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + q15_t * bufferA, + q7_t * bufferB) +{ + (void)bufferB; +#if defined (ARM_MATH_DSP) + int16_t i_out_y, i_out_x, i_ker_y, i_ker_x; + + q15_t *pBuffer = bufferA; + q15_t *im_buffer = bufferA; + q15_t *pOut = Im_out; + + if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0) + { + /* check if the input dimension meets the constraints */ + return ARM_MATH_SIZE_MISMATCH; + } + + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + /* This part implements the im2col function */ + for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) + { + for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; i_ker_y++) + { + for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) + { + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */ + memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in); + } + pBuffer += ch_im_in; + } + } + + if (i_out_x & 0x1) + { + int i; + /* initialize the matrix pointers for A */ + const q15_t *pA = wt; + + /* set up the second output pointers */ + q15_t *pOut2 = pOut + ch_im_out; + + /* this loop over rows in A */ + for (i = 0; i < ch_im_out; i += 2) + { + /* setup pointers for B */ + const q15_t *pB = im_buffer; + const q15_t *pB2 = pB + ch_im_in * dim_kernel_y * dim_kernel_x; + + /* aling the second pointer for A */ + const q15_t *pA2 = pA + ch_im_in * dim_kernel_y * dim_kernel_x; + + /* init the sum with bias */ + q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = ch_im_in * dim_kernel_y * dim_kernel_x >> 1; + /* accumulate over the vector */ + while (colCnt) + { + q31_t inA1 = arm_nn_read_q15x2_ia(&pA); + q31_t inB1 = arm_nn_read_q15x2_ia(&pB); + q31_t inA2 = arm_nn_read_q15x2_ia(&pA2); + q31_t inB2 = arm_nn_read_q15x2_ia(&pB2); + + sum = __SMLAD(inA1, inB1, sum); + sum2 = __SMLAD(inA1, inB2, sum2); + sum3 = __SMLAD(inA2, inB1, sum3); + sum4 = __SMLAD(inA2, inB2, sum4); + + colCnt--; + } /* while over colCnt */ + colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x1; + while (colCnt) + { + q15_t inA1 = *pA++; + q15_t inB1 = *pB++; + q15_t inA2 = *pA2++; + q15_t inB2 = *pB2++; + + sum += inA1 * inB1; + sum2 += inA1 * inB2; + sum3 += inA2 * inB1; + sum4 += inA2 * inB2; + colCnt--; + } /* while over colCnt */ + *pOut++ = (q15_t) __SSAT(sum >> out_shift, 16); + *pOut++ = (q15_t) __SSAT(sum3 >> out_shift, 16); + *pOut2++ = (q15_t) __SSAT(sum2 >> out_shift, 16); + *pOut2++ = (q15_t) __SSAT(sum4 >> out_shift, 16); + + /* skip the row computed with A2 */ + pA += ch_im_in * dim_kernel_y * dim_kernel_x; + } /* for over ch_im_out */ + + pOut += ch_im_out; + /* counter reset */ + pBuffer = im_buffer; + } + } + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + int i, j, k, l, m, n; + int conv_out; + int in_row, in_col; + + if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0) + { + /* check if the input dimension meets the constraints */ + return ARM_MATH_SIZE_MISMATCH; + } + + for (i = 0; i < ch_im_out; i++) + { + for (j = 0; j < dim_im_out_y; j++) + { + for (k = 0; k < dim_im_out_x; k++) + { + conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + for (m = 0; m < dim_kernel_y; m++) + { + for (n = 0; n < dim_kernel_x; n++) + { + in_row = stride_y * j + m - padding_y; + in_col = stride_x * k + n - padding_x; + if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) + { + for (l = 0; l < ch_im_in; l++) + { + conv_out += + Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + + l] * wt[i * ch_im_in * dim_kernel_x * dim_kernel_y + (m * dim_kernel_x + + n) * ch_im_in + l]; + } + } + } + } + Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16); + } + } + } + +#endif /* ARM_MATH_DSP */ + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNConv group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_RGB.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_RGB.c new file mode 100644 index 00000000..912f8347 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_RGB.c @@ -0,0 +1,279 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_convolve_HWC_q7_RGB.c + * Description: Q7 version of convolution for RGB image + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + + /** + * @brief Q7 convolution function for RGB image + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimention + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + * + * @details + * + * Buffer size: + * + * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel + * + * bufferB size: 0 + * + * Input dimension constraints: + * + * ch_im_in equals 3 + * + * This kernel is written exclusively for convolution with ch_im_in + * equals 3. This applies on the first layer of CNNs which has input + * image with RGB format. + */ + +arm_status +arm_convolve_HWC_q7_RGB(const q7_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, const uint16_t dim_im_out, q15_t * bufferA, q7_t * bufferB) +{ + (void)bufferB; +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + int16_t i_out_y, i_out_x, i_ker_y, i_ker_x; + + /* + * Here we use bufferA as q15_t internally as computation are done with q15_t level + * im2col are done to output in q15_t format from q7_t input + */ + q15_t *pBuffer = bufferA; + q7_t *pOut = Im_out; + + // check if number of input channels is 3 + if (ch_im_in != 3) + { + return ARM_MATH_SIZE_MISMATCH; + } + // This part implements the im2col function + for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) + { + for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) + { + for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) + { + /* Equivalent to arm_fill_q15(0, pBuffer, ch_im_in) with assumption: ch_im_in = 3 */ + *__SIMD32(pBuffer) = 0x0; + *(pBuffer + 2) = 0; + pBuffer += 3; + } else + { + /* + * Equivalent to: + * arm_q7_to_q15_no_shift( (q7_t*)Im_in+(i_ker_y*dim_im_in+i_ker_x)*3, pBuffer, 3); + */ + + const q7_t *pPixel = Im_in + (i_ker_y * dim_im_in + i_ker_x) * 3; + q31_t buf = arm_nn_read_q7x4(pPixel); + + union arm_nnword top; + union arm_nnword bottom; + + top.word = __SXTB16(buf); + bottom.word = __SXTB16(__ROR(buf, 8)); + +#ifndef ARM_MATH_BIG_ENDIAN + /* + * little-endian, | omit | 3rd | 2nd | 1st | + * MSB LSB + * top | 3rd | 1st |; bottom | omit | 2nd | + * + * version 1, need to swap 2nd and 3rd weight + * *__SIMD32(pBuffer) = top.word; + * *(pBuffer+2) = bottom.half_words[0]; + * + * version 2, no weight shuffling required + */ + *pBuffer++ = top.half_words[0]; + *__SIMD32(pBuffer) = __PKHBT(bottom.word, top.word, 0); +#else + /* + * big-endian, | 1st | 2nd | 3rd | omit | + * MSB LSB + * top | 2nd | omit |; bottom | 1st | 3rd | + * + * version 1, need to swap 2nd and 3rd weight + * *__SIMD32(pBuffer) = bottom.word; + * *(pBuffer+2) = top.half_words[1]; + * + * version 2, no weight shuffling required + */ + *pBuffer++ = bottom.half_words[0]; + *__SIMD32(pBuffer) = __PKHTB(top.word, bottom.word, 0); +#endif + pBuffer += 2; + } + } + } + + if (pBuffer == bufferA + 2 * 3 * dim_kernel * dim_kernel) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15(wt, bufferA, + ch_im_out, + 3 * dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); + + /* counter reset */ + pBuffer = bufferA; + } + } + } + + /* left-over because odd number of output pixels */ + if (pBuffer != bufferA) + { + const q7_t *pA = wt; + int i; + + for (i = 0; i < ch_im_out; i++) + { + q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + q15_t *pB = bufferA; + /* basically each time it process 4 entries */ + uint16_t colCnt = 3 * dim_kernel * dim_kernel >> 2; + + while (colCnt) + { + + q31_t inA1, inA2; + q31_t inB1, inB2; + + pA = read_and_pad(pA, &inA1, &inA2); + + inB1 = arm_nn_read_q15x2_ia((const q15_t **)&pB); + sum = __SMLAD(inA1, inB1, sum); + inB2 = arm_nn_read_q15x2_ia((const q15_t **)&pB); + sum = __SMLAD(inA2, inB2, sum); + + colCnt--; + } + colCnt = 3 * dim_kernel * dim_kernel & 0x3; + while (colCnt) + { + q7_t inA1 = *pA++; + q15_t inB1 = *pB++; + sum += inA1 * inB1; + colCnt--; + } + *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); + } + } +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + + int i, j, k, l, m, n; + int conv_out; + int in_row, in_col; + + // check if number of input channels is 3 + if (ch_im_in != 3) + { + return ARM_MATH_SIZE_MISMATCH; + } + + for (i = 0; i < ch_im_out; i++) + { + for (j = 0; j < dim_im_out; j++) + { + for (k = 0; k < dim_im_out; k++) + { + conv_out = (bias[i] << bias_shift) + NN_ROUND(out_shift); + for (m = 0; m < dim_kernel; m++) + { + for (n = 0; n < dim_kernel; n++) + { + /* if-for implementation */ + in_row = stride * j + m - padding; + in_col = stride * k + n - padding; + if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) + { + for (l = 0; l < ch_im_in; l++) + { + conv_out += + Im_in[(in_row * dim_im_in + in_col) * ch_im_in + + l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + + n) * ch_im_in + l]; + } + } + } + } + Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); + } + } + } + +#endif /* ARM_MATH_DSP */ + + /* Return to application */ + return (ARM_MATH_SUCCESS); +} + +/** + * @} end of NNConv group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic.c new file mode 100644 index 00000000..2e6147b0 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic.c @@ -0,0 +1,231 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_convolve_HWC_q7_basic.c + * Description: Q7 version of convolution + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + + /** + * @brief Basic Q7 convolution function + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimention + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns ARM_MATH_SUCCESS + * + * @details + * + * Buffer size: + * + * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel + * + * bufferB size: 0 + * + * This basic version is designed to work for any input tensor and weight + * dimension. + */ + +arm_status +arm_convolve_HWC_q7_basic(const q7_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out, + q15_t * bufferA, + q7_t * bufferB) +{ + (void)bufferB; +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + int16_t i_out_y, i_out_x, i_ker_y, i_ker_x; + + /* + * Here we use bufferA as q15_t internally as computation are done with q15_t level + * im2col are done to output in q15_t format from q7_t input + */ + q15_t *pBuffer = bufferA; + q7_t *pOut = Im_out; + + /* This part implements the im2col function */ + for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) + { + for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) + { + for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) + { + /* Filling 0 for out-of-bound paddings */ + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + /* Copying the pixel data to column */ + arm_q7_to_q15_no_shift((q7_t *) + Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); + } + pBuffer += ch_im_in; + } + } + + /* Computation is filed for every 2 columns */ + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15(wt, bufferA, + ch_im_out, + ch_im_in * + dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); + + /* counter reset */ + pBuffer = bufferA; + } + } + } + + /* left-over because odd number of output pixels */ + if (pBuffer != bufferA) + { + const q7_t *pA = wt; + int i; + + for (i = 0; i < ch_im_out; i++) + { + /* Load the accumulator with bias first */ + q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + + /* Point to the beging of the im2col buffer */ + const q15_t *pB = bufferA; + + /* Each time it process 4 entries */ + uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 2; + + while (colCnt) + { + q31_t inA1, inA2; + q31_t inB1, inB2; + + pA = read_and_pad(pA, &inA1, &inA2); + + inB1 = arm_nn_read_q15x2_ia(&pB); + sum = __SMLAD(inA1, inB1, sum); + inB2 = arm_nn_read_q15x2_ia(&pB); + + sum = __SMLAD(inA2, inB2, sum); + + colCnt--; + } + colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3; + while (colCnt) + { + q7_t inA1 = *pA++; + q15_t inB1 = *pB++; + sum += inA1 * inB1; + colCnt--; + } + *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); + } + } +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + + int i, j, k, l, m, n; + int conv_out; + int in_row, in_col; + + for (i = 0; i < ch_im_out; i++) + { + for (j = 0; j < dim_im_out; j++) + { + for (k = 0; k < dim_im_out; k++) + { + conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + for (m = 0; m < dim_kernel; m++) + { + for (n = 0; n < dim_kernel; n++) + { + // if-for implementation + in_row = stride * j + m - padding; + in_col = stride * k + n - padding; + if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) + { + for (l = 0; l < ch_im_in; l++) + { + conv_out += + Im_in[(in_row * dim_im_in + in_col) * ch_im_in + + l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + + n) * ch_im_in + l]; + } + } + } + } + Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); + } + } + } + +#endif /* ARM_MATH_DSP */ + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNConv group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic_nonsquare.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic_nonsquare.c new file mode 100644 index 00000000..d50318db --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_basic_nonsquare.c @@ -0,0 +1,229 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_convolve_HWC_q7_basic.c + * Description: Q7 version of convolution + * + * $Date: 13. July 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + + /** + * @brief Basic Q7 convolution function (non-sqaure shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimention x + * @param[in] dim_im_in_y input tensor dimention y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding size x + * @param[in] padding_y padding size y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns ARM_MATH_SUCCESS + */ + +arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + q15_t * bufferA, + q7_t * bufferB) +{ + (void)bufferB; +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + int16_t i_out_y, i_out_x, i_ker_y, i_ker_x; + + /* + * Here we use bufferA as q15_t internally as computation are done with q15_t level + * im2col are done to output in q15_t format from q7_t input + */ + q15_t *pBuffer = bufferA; + q7_t *pOut = Im_out; + + /* This part implements the im2col function */ + for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) + { + for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; i_ker_y++) + { + for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) + { + /* Filling 0 for out-of-bound paddings */ + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + /* Copying the pixel data to column */ + arm_q7_to_q15_no_shift((q7_t *) + Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in); + } + pBuffer += ch_im_in; + } + } + + /* Computation is filed for every 2 columns */ + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_y * dim_kernel_x) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15(wt, bufferA, + ch_im_out, + ch_im_in * + dim_kernel_y * dim_kernel_x, bias_shift, out_shift, bias, pOut); + + /* counter reset */ + pBuffer = bufferA; + } + } + } + + /* left-over because odd number of output pixels */ + if (pBuffer != bufferA) + { + const q7_t *pA = wt; + int i; + + for (i = 0; i < ch_im_out; i++) + { + /* Load the accumulator with bias first */ + q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + + /* Point to the beging of the im2col buffer */ + const q15_t *pB = bufferA; + + /* Each time it process 4 entries */ + uint16_t colCnt = ch_im_in * dim_kernel_y * dim_kernel_x >> 2; + + while (colCnt) + { + q31_t inA1, inA2; + q31_t inB1, inB2; + + pA = read_and_pad(pA, &inA1, &inA2); + + inB1 = arm_nn_read_q15x2_ia(&pB); + sum = __SMLAD(inA1, inB1, sum); + inB2 = arm_nn_read_q15x2_ia(&pB); + + sum = __SMLAD(inA2, inB2, sum); + + colCnt--; + } + colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x3; + while (colCnt) + { + q7_t inA1 = *pA++; + q15_t inB1 = *pB++; + sum += inA1 * inB1; + colCnt--; + } + *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); + } + } +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + + int i, j, k, l, m, n; + int conv_out; + int in_row, in_col; + + for (i = 0; i < ch_im_out; i++) + { + for (j = 0; j < dim_im_out_y; j++) + { + for (k = 0; k < dim_im_out_x; k++) + { + conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + for (m = 0; m < dim_kernel_y; m++) + { + for (n = 0; n < dim_kernel_x; n++) + { + // if-for implementation + in_row = stride_y * j + m - padding_y; + in_col = stride_x * k + n - padding_x; + if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) + { + for (l = 0; l < ch_im_in; l++) + { + conv_out += + Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] * + wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + + (m * dim_kernel_x + n) * ch_im_in + l]; + } + } + } + } + Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); + } + } + } + +#endif /* ARM_MATH_DSP */ + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNConv group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast.c new file mode 100644 index 00000000..0352d6f8 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast.c @@ -0,0 +1,408 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_convolve_HWC_q7_fast.c + * Description: Fast Q7 version of convolution + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + + /** + * @brief Fast Q7 convolution function + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimention + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + * + * @details + * + * Buffer size: + * + * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel + * + * bufferB size: 0 + * + * Input dimension constraints: + * + * ch_im_in is multiple of 4 ( because of the SIMD32 read and swap ) + * + * ch_im_out is multipe of 2 ( bacause 2x2 mat_mult kernel ) + * + * The im2col converts the Q7 tensor input into Q15 column, which is stored in + * bufferA. There is reordering happenning during this im2col process with + * arm_q7_to_q15_reordered_no_shift. For every four elements, the second and + * third elements are swapped. + * + * The computation kernel arm_nn_mat_mult_kernel_q7_q15_reordered does the + * GEMM computation with the reordered columns. + * + * To speed-up the determination of the padding condition, we split the + * computation into 3x3 parts, i.e., {top, mid, bottom} X {left, mid, right}. + * This reduces the total number of boundary condition checks and improves + * the data copying performance. + */ + +arm_status +arm_convolve_HWC_q7_fast(const q7_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out, + q15_t * bufferA, + q7_t * bufferB) +{ + (void)bufferB; +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + int16_t i_out_y, i_out_x, i_ker_y, i_ker_x; + + /* + * Here we use bufferA as q15_t internally as computation are done with q15_t level + * im2col are done to output in q15_t format from q7_t input + */ + + q15_t *pBuffer = bufferA; + q7_t *pOut = Im_out; + + if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0) + { + /* check if the input dimension meets the constraints */ + return ARM_MATH_SIZE_MISMATCH; + } + + /* + * Here we split the entire matrix into three regions depending on the padding situation + * Top: i_out_y from 0 to padding - 1 + * Middle: i_out_y from padding to dim_im_out-padding-1 + * Bottom: i_out_y from dim_im_out-padding to dim_im_out-1 + */ + + /* top part */ + for (i_out_y = 0; i_out_y < padding; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) + { + /* This part implements the im2col function */ + for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) + { + for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) + { + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + arm_q7_to_q15_reordered_no_shift + ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); + } + pBuffer += ch_im_in; + } + } + + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15_reordered(wt, + bufferA, + ch_im_out, + ch_im_in + * + dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); + /* counter reset */ + pBuffer = bufferA; + } + } + } + + /* middle part, here we also divide the x into left, mid and right */ + for (; i_out_y < dim_im_out - padding; i_out_y++) + { + + /* left part */ + for (i_out_x = 0; i_out_x < padding; i_out_x++) + { + /* This part implements the im2col function */ + for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) + { + for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) + { + if (i_ker_x < 0 || i_ker_x >= dim_im_in) + { + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + arm_q7_to_q15_reordered_no_shift + ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); + } + pBuffer += ch_im_in; + } + } + + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15_reordered(wt, + bufferA, + ch_im_out, + ch_im_in + * + dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); + /* counter reset */ + pBuffer = bufferA; + } + } + + /* mid part */ + for (; i_out_x < dim_im_out - padding; i_out_x++) + { + /* This part implements the im2col function */ + for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) + { + arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + + + (i_ker_y * + dim_im_in + + i_out_x * + stride - padding) * ch_im_in, pBuffer, ch_im_in * dim_kernel); + pBuffer += ch_im_in * dim_kernel; + } + + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15_reordered(wt, + bufferA, + ch_im_out, + ch_im_in + * + dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); + /* counter reset */ + pBuffer = bufferA; + } + } + + /* right part */ + for (; i_out_x < dim_im_out; i_out_x++) + { + /* This part implements the im2col function */ + for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) + { + for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) + { + if (i_ker_x < 0 || i_ker_x >= dim_im_in) + { + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + arm_q7_to_q15_reordered_no_shift + ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); + } + pBuffer += ch_im_in; + } + } + + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15_reordered(wt, + bufferA, + ch_im_out, + ch_im_in + * + dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); + /* counter reset */ + pBuffer = bufferA; + } + } + } + + for (; i_out_y < dim_im_out; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) + { + /* This part implements the im2col function */ + for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) + { + for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) + { + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + arm_q7_to_q15_reordered_no_shift + ((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); + } + pBuffer += ch_im_in; + } + } + + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel * dim_kernel) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15_reordered(wt, + bufferA, + ch_im_out, + ch_im_in + * + dim_kernel * dim_kernel, bias_shift, out_shift, bias, pOut); + /* counter reset */ + pBuffer = bufferA; + } + } + } + + /* check if there is left-over for compute */ + if (pBuffer != bufferA) + { + const q7_t *pA = wt; + int i; + + for (i = 0; i < ch_im_out; i++) + { + q31_t sum = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift); + const q15_t *pB = bufferA; + /* each time it process 4 entries */ + uint16_t colCnt = ch_im_in * dim_kernel * dim_kernel >> 2; + + while (colCnt) + { + + q31_t inA1, inA2; + q31_t inB1, inB2; + + pA = read_and_pad_reordered(pA, &inA1, &inA2); + + inB1 = arm_nn_read_q15x2_ia(&pB); + sum = __SMLAD(inA1, inB1, sum); + inB2 = arm_nn_read_q15x2_ia(&pB); + sum = __SMLAD(inA2, inB2, sum); + + colCnt--; + } + colCnt = ch_im_in * dim_kernel * dim_kernel & 0x3; + while (colCnt) + { + q7_t inA1 = *pA++; + q15_t inB1 = *pB++; + sum += inA1 * inB1; + colCnt--; + } + *pOut = (q7_t) __SSAT((sum >> out_shift), 8); + pOut++; + + } + + } +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + + int i, j, k, l, m, n; + int conv_out; + int in_row, in_col; + + if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0) + { + /* check if the input dimension meets the constraints */ + return ARM_MATH_SIZE_MISMATCH; + } + + for (i = 0; i < ch_im_out; i++) + { + for (j = 0; j < dim_im_out; j++) + { + for (k = 0; k < dim_im_out; k++) + { + conv_out = (bias[i] << bias_shift) + NN_ROUND(out_shift); + for (m = 0; m < dim_kernel; m++) + { + for (n = 0; n < dim_kernel; n++) + { + // if-for implementation + in_row = stride * j + m - padding; + in_col = stride * k + n - padding; + if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) + { + for (l = 0; l < ch_im_in; l++) + { + conv_out += + Im_in[(in_row * dim_im_in + in_col) * ch_im_in + + l] * wt[i * ch_im_in * dim_kernel * dim_kernel + (m * dim_kernel + + n) * ch_im_in + l]; + } + } + } + } + Im_out[i + (j * dim_im_out + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); + } + } + } + +#endif /* ARM_MATH_DSP */ + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNConv group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast_nonsquare.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast_nonsquare.c new file mode 100644 index 00000000..31b4fdc2 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast_nonsquare.c @@ -0,0 +1,379 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_convolve_HWC_q7_fast_nonsquare.c + * Description: Fast Q7 version of convolution (non-sqaure shape) + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + +/** + * @brief Fast Q7 convolution function (non-sqaure shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimention x + * @param[in] dim_im_in_y input tensor dimention y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding size x + * @param[in] padding_y padding size y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + * + * This function is the version with full list of optimization tricks, but with + * some contraints: + * ch_im_in is multiple of 4 + * ch_im_out is multiple of 2 + */ + +arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + q15_t * bufferA, + q7_t * bufferB) +{ + (void)bufferB; +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + int16_t i_out_y, i_out_x, i_ker_y, i_ker_x; + + /* ----------------------- + * Here we use bufferA as q15_t internally as computation are done with q15_t level + * im2col are done to output in q15_t format from q7_t input + */ + + q15_t *pBuffer = bufferA; + q7_t *pOut = Im_out; + + if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0) + { + /* check if the input dimension meets the constraints */ + return ARM_MATH_SIZE_MISMATCH; + } + + /* + * Here we split the entire matrix into three regions depending on the padding situation + * Top: i_out_y from 0 to padding - 1 + * Middle: i_out_y from padding to dim_im_out-padding-1 + * Bottom: i_out_y from dim_im_out-padding to dim_im_out-1 + */ + + /* top part */ + for (i_out_y = 0; i_out_y < padding_y; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) + { + /* This part implements the im2col function */ + for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; + i_ker_y++) + { + for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; + i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) + { + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, + pBuffer, ch_im_in); + } + pBuffer += ch_im_in; + } + } + + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, + bias_shift, out_shift, bias, pOut); + /* counter reset */ + pBuffer = bufferA; + } + } + } + + /* middle part, here we also divide the x into left, mid and right */ + for (; i_out_y < dim_im_out_y - padding_y; i_out_y++) + { + + /* left part */ + for (i_out_x = 0; i_out_x < padding_x; i_out_x++) + { + /* This part implements the im2col function */ + for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; + i_ker_y++) + { + for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; + i_ker_x++) + { + if (i_ker_x < 0 || i_ker_x >= dim_im_in_x) + { + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, + pBuffer, ch_im_in); + } + pBuffer += ch_im_in; + } + } + + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, + bias_shift, out_shift, bias, pOut); + /* counter reset */ + pBuffer = bufferA; + } + } + + /* mid part */ + for (; i_out_x < dim_im_out_x - padding_x; i_out_x++) + { + /* This part implements the im2col function */ + for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; + i_ker_y++) + { + arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + + (i_ker_y * dim_im_in_x + i_out_x * stride_x - padding_x) * ch_im_in, + pBuffer, ch_im_in * dim_kernel_x); + pBuffer += ch_im_in * dim_kernel_x; + } + + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, + bias_shift, out_shift, bias, pOut); + /* counter reset */ + pBuffer = bufferA; + } + } + + /* right part */ + for (; i_out_x < dim_im_out_x; i_out_x++) + { + /* This part implements the im2col function */ + for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; + i_ker_y++) + { + for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; + i_ker_x++) + { + if (i_ker_x < 0 || i_ker_x >= dim_im_in_x) + { + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, + pBuffer, ch_im_in); + } + pBuffer += ch_im_in; + } + } + + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, + bias_shift, out_shift, bias, pOut); + /* counter reset */ + pBuffer = bufferA; + } + } + } + + for (; i_out_y < dim_im_out_y; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) + { + /* This part implements the im2col function */ + for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; + i_ker_y++) + { + for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; + i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) + { + /* arm_fill_q15(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, sizeof(q15_t)*ch_im_in); + } else + { + arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, + pBuffer, ch_im_in); + } + pBuffer += ch_im_in; + } + } + + if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y) + { + pOut = + arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y, + bias_shift, out_shift, bias, pOut); + /* counter reset */ + pBuffer = bufferA; + } + } + } + + /* check if there is left-over for compute */ + if (pBuffer != bufferA) + { + const q7_t *pA = wt; + int i; + for (i = 0; i < ch_im_out; i++) + { + q31_t sum = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); + const q15_t *pB = bufferA; + /* basically each time it process 4 entries */ + uint16_t colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2; + + while (colCnt) + { + + q31_t inA1, inA2; + q31_t inB1, inB2; + + pA = read_and_pad_reordered(pA, &inA1, &inA2); + + inB1 = arm_nn_read_q15x2_ia(&pB); + sum = __SMLAD(inA1, inB1, sum); + inB2 = arm_nn_read_q15x2_ia(&pB); + sum = __SMLAD(inA2, inB2, sum); + + colCnt--; + } + colCnt = (ch_im_in * dim_kernel_y * dim_kernel_x) & 0x3; + while (colCnt) + { + q7_t inA1 = *pA++; + q15_t inB1 = *pB++; + sum += inA1 * inB1; + colCnt--; + } + *pOut = (q7_t) __SSAT((sum >> out_shift), 8); + pOut++; + + } + + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + int i, j, k, l, m, n; + int conv_out; + int in_row, in_col; + + if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0) + { + /* check if the input dimension meets the constraints */ + return ARM_MATH_SIZE_MISMATCH; + } + + for (i = 0; i < ch_im_out; i++) + { + for (j = 0; j < dim_im_out_y; j++) + { + for (k = 0; k < dim_im_out_x; k++) + { + conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); + for (m = 0; m < dim_kernel_y; m++) + { + for (n = 0; n < dim_kernel_x; n++) + { + /* if-for implementation */ + in_row = stride_y * j + m - padding_y; + in_col = stride_x * k + n - padding_x; + if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) + { + for (l = 0; l < ch_im_in; l++) + { + conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] * + wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_x + n) * ch_im_in + l]; + } + } + } + } + Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); + } + } + } + + +#endif /* ARM_MATH_DSP */ + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNConv group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_s8.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_s8.c new file mode 100644 index 00000000..fd304734 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_s8.c @@ -0,0 +1,372 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_convolve_s8.c + * Description: s8 version of convolution using symmetric quantization. + * + * $Date: May 29, 2020 + * $Revision: V.2.0.1 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nn_types.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" +#include "cmsis/CMSIS/NN/Include/arm_nnsupportfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + +/* + * Basic s8 convolution function. + * + * Refer header file for details. Optimal use case for the DSP/MVE implementation is when input and output channels + * are multiples of 4 or atleast greater than 4. + * + */ + +arm_status arm_convolve_s8(const cmsis_nn_context* ctx, + const cmsis_nn_conv_params* conv_params, + const cmsis_nn_per_channel_quant_params* quant_params, + const cmsis_nn_dims* input_dims, + const q7_t *input_data, + const cmsis_nn_dims* filter_dims, + const q7_t *filter_data, + const cmsis_nn_dims* bias_dims, + const int32_t *bias_data, + const cmsis_nn_dims* output_dims, + q7_t *output_data) +{ + q15_t *buffer_a = (q15_t *)ctx->buf; + + const uint16_t input_batches = input_dims->n; + const uint16_t input_x = input_dims->w; + const uint16_t input_y = input_dims->h; + const uint16_t input_ch = input_dims->c; + const uint16_t kernel_x = filter_dims->w; + const uint16_t kernel_y = filter_dims->h; + const uint16_t output_x = output_dims->w; + const uint16_t output_y = output_dims->h; + const uint16_t output_ch = output_dims->c; + + const uint16_t pad_x = conv_params->padding.w; + const uint16_t pad_y = conv_params->padding.h; + const uint16_t stride_x = conv_params->stride.w; + const uint16_t stride_y = conv_params->stride.h; + + const int32_t input_offset = conv_params->input_offset; + const int32_t out_offset = conv_params->output_offset; + const int32_t out_activation_min = conv_params->activation.min; + const int32_t out_activation_max = conv_params->activation.max; + int32_t *output_mult = quant_params->multiplier; + int32_t *output_shift = quant_params->shift; + + int i_batch; + for (i_batch = 0; i_batch < input_batches; i_batch++) + { +#if defined(ARM_MATH_MVEI) + (void)bias_dims; + /* Generate upto four columns from the input tensor a GEMM computation */ + q7_t *im2col_buf = (q7_t *)buffer_a; + q7_t *out = output_data; + int32_t buffer_fill_cnt = 0; + int32_t padded = 0; + const int32_t num_elem = kernel_x * kernel_y * input_ch; + + /* This part implements the im2col function */ + for (int i_out_y = 0; i_out_y < output_y; i_out_y++) + { + for (int i_out_x = 0; i_out_x < output_x; i_out_x++) + { + for (int i_ker_y = i_out_y * stride_y - pad_y; i_ker_y < i_out_y * stride_y - pad_y + kernel_y; i_ker_y++) + { + for (int i_ker_x = i_out_x * stride_x - pad_x; i_ker_x < i_out_x * stride_x - pad_x + kernel_x; i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= input_y || i_ker_x < 0 || i_ker_x >= input_x) + { + memset(im2col_buf, (int8_t)-input_offset, sizeof(q7_t) * input_ch); + padded = 1; + } + else + { + arm_memcpy_q7(im2col_buf, input_data + (i_ker_y * input_x + i_ker_x) * input_ch, input_ch); + } + im2col_buf += input_ch; + } + } + + buffer_fill_cnt++; + + /* Computation is filed for every 4 columns */ + if (buffer_fill_cnt == 4 && (padded == 0)) + { + buffer_fill_cnt = 0; + for (int i_out_ch = 0; i_out_ch < output_ch; i_out_ch++) + { + int32_t sum_row; + int32_t acc[4]; + + (void)arm_nn_mat_mul_core_4x_s8(num_elem, + num_elem, + (q7_t *)buffer_a, + filter_data + num_elem * i_out_ch, + &sum_row, + acc); + int32x4_t s_offset = vdupq_n_s32(sum_row); + + int32x4_t res = vldrwq_s32(acc); + s_offset = vmulq_n_s32(s_offset, input_offset); + + res = vaddq_n_s32(res, bias_data[i_out_ch]); + res = vaddq_s32(res, s_offset); + res = arm_requantize_mve(res, output_mult[i_out_ch], output_shift[i_out_ch]); + res = vaddq_n_s32(res, out_offset); + + res = vmaxq_s32(res, vdupq_n_s32(out_activation_min)); + res = vminq_s32(res, vdupq_n_s32(out_activation_max)); + + const uint32x4_t scatter_offset = {0, output_ch, output_ch * 2, output_ch * 3}; + vstrbq_scatter_offset_s32(out, scatter_offset, res); + out++; + } + out += (3 * output_ch); + im2col_buf = (q7_t *)buffer_a; + } + else if (buffer_fill_cnt == 4 && (padded != 0)) + { + buffer_fill_cnt = 0; + out = arm_nn_mat_mult_s8(filter_data, + (q7_t *)buffer_a, + output_ch, + 4, + output_shift, + output_mult, + out_offset, + input_offset, + 0, + out_activation_min, + out_activation_max, + num_elem, + bias_data, + out); + + im2col_buf = (q7_t *)buffer_a; + padded = 0; + } + } + } + /* Handle left over columns */ + if (buffer_fill_cnt != 0) + { + out = arm_nn_mat_mult_s8(filter_data, + (q7_t *)buffer_a, + output_ch, + buffer_fill_cnt, + output_shift, + output_mult, + out_offset, + input_offset, + 0, + out_activation_min, + out_activation_max, + num_elem, + bias_data, + out); + } + +#elif defined(ARM_MATH_DSP) + (void)bias_dims; + int32_t i_out_y, i_out_x, i_ker_y, i_ker_x; + + /* Generate two columns from the input tensor a GEMM computation */ + q15_t *two_column_buf = buffer_a; + q7_t *out = output_data; + + /* This part implements the im2col function */ + for (i_out_y = 0; i_out_y < output_y; i_out_y++) + { + for (i_out_x = 0; i_out_x < output_x; i_out_x++) + { + for (i_ker_y = i_out_y * stride_y - pad_y; i_ker_y < i_out_y * stride_y - pad_y + kernel_y; i_ker_y++) + { + for (i_ker_x = i_out_x * stride_x - pad_x; i_ker_x < i_out_x * stride_x - pad_x + kernel_x; i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= input_y || i_ker_x < 0 || i_ker_x >= input_x) + { + /* Filling 0 for out-of-bound paddings */ + memset(two_column_buf, 0, sizeof(q15_t) * input_ch); + } + else + { + /* Copying the pixel data to column */ + arm_q7_to_q15_with_offset(input_data + (i_ker_y * input_x + i_ker_x) * input_ch, two_column_buf, input_ch, input_offset); + } + two_column_buf += input_ch; + } + } + + /* Computation is filed for every 2 columns */ + if (two_column_buf == buffer_a + 2 * input_ch * kernel_y * kernel_x) + { + out = + arm_nn_mat_mult_kernel_s8_s16(filter_data, + buffer_a, + output_ch, + output_shift, + output_mult, + out_offset, + out_activation_min, + out_activation_max, + input_ch * kernel_y * kernel_x, + bias_data, + out); + + /* counter reset */ + two_column_buf = buffer_a; + } + } + } + + /* left-over because odd number of output pixels */ + if (two_column_buf != buffer_a) + { + const q7_t *ker_a = filter_data; + int i; + + for (i = 0; i < output_ch; i++) + { + /* Load the accumulator with bias first */ + q31_t sum = bias_data[i]; + + /* Point to the beginning of the im2col buffer where the input is available as a rearranged column */ + const q15_t *ip_as_col = buffer_a; + + /* 4 multiply and accumulates are done in one loop. */ + uint16_t col_count = (input_ch * kernel_y * kernel_x) >> 2; + + while (col_count) + { + q31_t ker_a1, ker_a2; + q31_t ip_b1, ip_b2; + + ker_a = read_and_pad(ker_a, &ker_a1, &ker_a2); + + ip_b1 = arm_nn_read_q15x2_ia(&ip_as_col); + sum = __SMLAD(ker_a1, ip_b1, sum); + ip_b2 = arm_nn_read_q15x2_ia(&ip_as_col); + sum = __SMLAD(ker_a2, ip_b2, sum); + + col_count--; + } + /* Handle left over mac */ + col_count = input_ch * kernel_y * kernel_x & 0x3; + while (col_count) + { + q7_t ker_a1 = *ker_a++; + q15_t ip_b1 = *ip_as_col++; + sum += ker_a1 * ip_b1; + col_count--; + } + + sum = arm_nn_requantize(sum, output_mult[i], output_shift[i]); + sum += out_offset; + sum = MAX(sum, out_activation_min); + sum = MIN(sum, out_activation_max); + *out++ = (q7_t)sum; + } + } +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + (void)buffer_a; + int32_t i_out_ch, i_out_y, i_out_x, i_input_ch, i_ker_y, i_ker_x; + int32_t conv_out; + + for (i_out_ch = 0; i_out_ch < output_ch; i_out_ch++) + { + for (i_out_y = 0; i_out_y < output_y; i_out_y++) + { + for (i_out_x = 0; i_out_x < output_x; i_out_x++) + { + conv_out = bias_data[i_out_ch]; + + const int32_t base_idx_y = stride_y * i_out_y - pad_y; + const int32_t base_idx_x = stride_x * i_out_x - pad_x; + + const int32_t ker_y_start = MAX(0, -base_idx_y); + const int32_t ker_x_start = MAX(0, -base_idx_x); + + const int32_t ker_y_end = MIN(kernel_y, input_y - base_idx_y); + const int32_t ker_x_end = MIN(kernel_x, input_x - base_idx_x); + + for (i_ker_y = ker_y_start; i_ker_y < ker_y_end; i_ker_y++) + { + for (i_ker_x = ker_x_start; i_ker_x < ker_x_end; i_ker_x++) + { + const int32_t in_row = base_idx_y + i_ker_y; + const int32_t in_col = base_idx_x + i_ker_x; + for (i_input_ch = 0; i_input_ch < input_ch; i_input_ch++) + { + conv_out += + (input_data[(in_row * input_x + in_col) * input_ch + i_input_ch] + input_offset) * + filter_data[i_out_ch * input_ch * kernel_y * kernel_x + + (i_ker_y * kernel_x + i_ker_x) * input_ch + i_input_ch]; + } + } + } + conv_out = arm_nn_requantize(conv_out, output_mult[i_out_ch], output_shift[i_out_ch]); + conv_out += out_offset; + conv_out = MAX(conv_out, out_activation_min); + conv_out = MIN(conv_out, out_activation_max); + output_data[i_out_ch + (i_out_y * output_x + i_out_x) * output_ch] = (int8_t)conv_out; + } + } + } +#endif + /* Advance to the next batch */ + input_data += (input_x * input_y * input_ch); + output_data += (output_x * output_y * output_ch); + } + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +int32_t arm_convolve_s8_get_buffer_size(const cmsis_nn_dims* input_dims, + const cmsis_nn_dims* filter_dims) +{ +#if defined(ARM_MATH_DSP) + return (2 * input_dims->c * filter_dims->w * filter_dims->h) * (int32_t)sizeof(int16_t); +#else + (void)input_dims; + (void)filter_dims; + return 0; +#endif +} + +/** + * @} end of NNConv group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_wrapper_s8.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_wrapper_s8.c new file mode 100644 index 00000000..5cef066c --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_wrapper_s8.c @@ -0,0 +1,148 @@ +/* + * Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_convolve_wrapper_s8.c + * Description: s8 convolution layer wrapper function with the main purpose to call the optimal kernel available in cmsis-nn to perform the convolution. + * + * $Date: May 18, 2020 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" +#include "cmsis/CMSIS/NN/Include/arm_nn_types.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + +/* + * Convolution layer + * + * Refer header file for details. + * + */ + +arm_status arm_convolve_wrapper_s8(const cmsis_nn_context* ctx, + const cmsis_nn_conv_params* conv_params, + const cmsis_nn_per_channel_quant_params* quant_params, + const cmsis_nn_dims* input_dims, + const q7_t *input_data, + const cmsis_nn_dims* filter_dims, + const q7_t *filter_data, + const cmsis_nn_dims* bias_dims, + const int32_t *bias_data, + const cmsis_nn_dims* output_dims, + q7_t *output_data) +{ + if ((conv_params->padding.w == 0) && + (conv_params->padding.h == 0) && + (input_dims->c % 4 == 0) && + (conv_params->stride.w == 1) && + (conv_params->stride.h == 1) && + (filter_dims->w == 1) && + (filter_dims->h == 1)) + { + return arm_convolve_1x1_s8_fast(ctx, + conv_params, + quant_params, + input_dims, + input_data, + filter_dims, + filter_data, + bias_dims, + bias_data, + output_dims, + output_data); + } + else if ((output_dims->h == 1) && + (input_dims->h == 1) && + (filter_dims->h == 1) && + (output_dims->w % 4 == 0) && + (input_dims->n == 1)) + { + return arm_convolve_1_x_n_s8(ctx, + conv_params, + quant_params, + input_dims, + input_data, + filter_dims, + filter_data, + bias_dims, + bias_data, + output_dims, + output_data); + } + else + { + return arm_convolve_s8(ctx, + conv_params, + quant_params, + input_dims, + input_data, + filter_dims, + filter_data, + bias_dims, + bias_data, + output_dims, + output_data); + } +} + +int32_t arm_convolve_wrapper_s8_get_buffer_size(const cmsis_nn_conv_params* conv_params, + const cmsis_nn_dims* input_dims, + const cmsis_nn_dims* filter_dims, + const cmsis_nn_dims* output_dims) +{ + if ((conv_params->padding.w == 0) && + (conv_params->padding.h == 0) && + (input_dims->c % 4 == 0) && + (conv_params->stride.w == 1) && + (conv_params->stride.h == 1) && + (filter_dims->w == 1) && + (filter_dims->h == 1)) + { + return arm_convolve_1x1_s8_fast_get_buffer_size(input_dims); + } + else if ((output_dims->h == 1) && + (input_dims->h == 1) && + (filter_dims->h == 1) && + (output_dims->w % 4 == 0) && + (input_dims->n == 1)) + { + return arm_convolve_1_x_n_s8_get_buffer_size(input_dims, filter_dims); + } + else + { + return arm_convolve_s8_get_buffer_size(input_dims, filter_dims); + } +} + +/** + * @} end of NNConv group + */ + diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_3x3_s8.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_3x3_s8.c new file mode 100644 index 00000000..5705b4bb --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_3x3_s8.c @@ -0,0 +1,213 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_depthwise_conv_3x3_s8.c + * Description: Optimized s8 depthwise convolution function for channel + * multiplier of 1 and 3x3 kernel size. + * + * $Date: May 14, 2020 + * $Revision: V.2.0.0 + * + * Target Processor: Cortex-M CPUs + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnsupportfunctions.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + +/* + * Optimized s8 depthwise convolution function with constraint that + * in_channel == out_channel and kernel_x == kernel_y == 3 with pads at most 1 + * + * Refer prototype header file for details. + * + */ + +arm_status arm_depthwise_conv_3x3_s8(const cmsis_nn_context *ctx, + const cmsis_nn_dw_conv_params *dw_conv_params, + const cmsis_nn_per_channel_quant_params *quant_params, + const cmsis_nn_dims *input_dims, + const q7_t *input, + const cmsis_nn_dims *filter_dims, + const q7_t *kernel, + const cmsis_nn_dims *bias_dims, + const int32_t *bias, + const cmsis_nn_dims *output_dims, + q7_t *output) +{ + (void)ctx; + (void)bias_dims; + + const int32_t input_x = input_dims->w; + const int32_t input_y = input_dims->h; + const int32_t input_ch = input_dims->c; + const int32_t output_ch = output_dims->c; + const int32_t pad_x = dw_conv_params->padding.w; + const int32_t pad_y = dw_conv_params->padding.h; + const int32_t stride_x = dw_conv_params->stride.w; + const int32_t stride_y = dw_conv_params->stride.h; + const int32_t *output_shift = quant_params->shift; + const int32_t *output_mult = quant_params->multiplier; + const int32_t output_x = output_dims->w; + const int32_t output_y = output_dims->h; + const int32_t output_offset = dw_conv_params->output_offset; + const int32_t input_offset = dw_conv_params->input_offset; + const int32_t output_activation_min = dw_conv_params->activation.min; + const int32_t output_activation_max = dw_conv_params->activation.max; + + /* Check input constraints input_ch == output_ch */ + if (input_ch != output_ch) + { + return ARM_MATH_SIZE_MISMATCH; + } + /* Check input constraints pad_x <= 1 */ + if (pad_x > 1 || filter_dims->w != 3 || filter_dims->h != 3) + { + return ARM_MATH_ARGUMENT_ERROR; + } + + for (int32_t in_h = -pad_y, out_h = 0, out_idx = 0; out_h < output_y; in_h += stride_y, ++out_h) + { + for (int32_t in_w = -pad_x, out_w = 0, ker_h_start = MAX(0, -in_h); out_w < output_x; in_w += stride_x, ++out_w) + { + int32_t in_ch = 0; + int32_t ker_w_start = MAX(0, -in_w); + + for (; in_ch <= (input_ch - 4); in_ch += 4) + { + int32_t out_buff0 = bias[in_ch + 0]; + int32_t out_buff1 = bias[in_ch + 1]; + int32_t out_buff2 = bias[in_ch + 2]; + int32_t out_buff3 = bias[in_ch + 3]; + + const int8_t *input_ptr = input + (in_h + ker_h_start) * (input_ch * input_x) + in_w * input_ch + in_ch; + const int8_t *kernel_ptr = kernel + ker_h_start * (input_ch * 3) + in_ch; + + for (int32_t ker_h = ker_h_start; ker_h < MIN(3, input_y - in_h); ++ker_h) + { + int32_t in_val = 0; + int32_t ker_val = 0; + + if (ker_w_start == 0) + { + in_val = arm_nn_read_q7x4(input_ptr); + ker_val = arm_nn_read_q7x4(kernel_ptr); + + out_buff0 += ((int8_t)in_val + input_offset) * (int8_t)ker_val; + out_buff1 += ((int8_t)(in_val >> 8) + input_offset) * (int8_t)(ker_val >> 8); + out_buff2 += ((int8_t)(in_val >> 16) + input_offset) * (int8_t)(ker_val >> 16); + out_buff3 += ((int8_t)(in_val >> 24) + input_offset) * (int8_t)(ker_val >> 24); + } + + in_val = arm_nn_read_q7x4(input_ptr + input_ch); + ker_val = arm_nn_read_q7x4(kernel_ptr + input_ch); + + out_buff0 += ((int8_t)in_val + input_offset) * (int8_t)ker_val; + out_buff1 += ((int8_t)(in_val >> 8) + input_offset) * (int8_t)(ker_val >> 8); + out_buff2 += ((int8_t)(in_val >> 16) + input_offset) * (int8_t)(ker_val >> 16); + out_buff3 += ((int8_t)(in_val >> 24) + input_offset) * (int8_t)(ker_val >> 24); + + if ((input_x - in_w) >= 3) + { + in_val = arm_nn_read_q7x4(input_ptr + (input_ch << 1)); + ker_val = arm_nn_read_q7x4(kernel_ptr + (input_ch << 1)); + + out_buff0 += ((int8_t)in_val + input_offset) * (int8_t)ker_val; + out_buff1 += ((int8_t)(in_val >> 8) + input_offset) * (int8_t)(ker_val >> 8); + out_buff2 += ((int8_t)(in_val >> 16) + input_offset) * (int8_t)(ker_val >> 16); + out_buff3 += ((int8_t)(in_val >> 24) + input_offset) * (int8_t)(ker_val >> 24); + } + + input_ptr += (input_ch * input_x); + kernel_ptr += (input_ch * 3); + } + + out_buff0 = arm_nn_requantize(out_buff0, output_mult[in_ch + 0], output_shift[in_ch + 0]); + out_buff1 = arm_nn_requantize(out_buff1, output_mult[in_ch + 1], output_shift[in_ch + 1]); + out_buff2 = arm_nn_requantize(out_buff2, output_mult[in_ch + 2], output_shift[in_ch + 2]); + out_buff3 = arm_nn_requantize(out_buff3, output_mult[in_ch + 3], output_shift[in_ch + 3]); + + out_buff0 += output_offset; + out_buff1 += output_offset; + out_buff2 += output_offset; + out_buff3 += output_offset; + + out_buff0 = MIN(MAX(out_buff0, output_activation_min), output_activation_max); + out_buff1 = MIN(MAX(out_buff1, output_activation_min), output_activation_max); + out_buff2 = MIN(MAX(out_buff2, output_activation_min), output_activation_max); + out_buff3 = MIN(MAX(out_buff3, output_activation_min), output_activation_max); + + output[out_idx++] = (int8_t)out_buff0; + output[out_idx++] = (int8_t)out_buff1; + output[out_idx++] = (int8_t)out_buff2; + output[out_idx++] = (int8_t)out_buff3; + } + + // Leftover + for (; in_ch < input_ch; ++in_ch) + { + int32_t out_buff = bias[in_ch]; + + const int8_t *input_ptr = input + (in_h + ker_h_start) * (input_ch * input_x) + in_w * input_ch + in_ch; + const int8_t *kernel_ptr = kernel + ker_h_start * (input_ch * 3) + in_ch; + + for (int32_t ker_h = ker_h_start; ker_h < MIN(3, input_y - in_h); ++ker_h) + { + if (ker_w_start == 0) + { + out_buff += (*(input_ptr) + input_offset) * *(kernel_ptr); + } + + out_buff += (*(input_ptr + input_ch) + input_offset) * *(kernel_ptr + input_ch); + + if ((input_x - in_w) >= 3) + { + out_buff += (*(input_ptr + (input_ch << 1)) + input_offset) * *(kernel_ptr + (input_ch << 1)); + } + + input_ptr += (input_ch * input_x); + kernel_ptr += (input_ch * 3); + } + + out_buff = arm_nn_requantize(out_buff, output_mult[in_ch], output_shift[in_ch]); + out_buff += output_offset; + out_buff = MIN(MAX(out_buff, output_activation_min), output_activation_max); + output[out_idx++] = (int8_t)out_buff; + } + } + } + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNConv group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_s8.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_s8.c new file mode 100644 index 00000000..4819a0cc --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_s8.c @@ -0,0 +1,249 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_depthwise_conv_s8.c + * Description: s8 version of depthwise convolution. + * + * $Date: May 14, 2020 + * $Revision: V.2.0.0 + * + * Target Processor: Cortex-M CPUs + * + * -------------------------------------------------------------------- */ +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" +#include "cmsis/CMSIS/NN/Include/arm_nnsupportfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + +static void depthwise_conv_s8_mult_4(const int8_t *input, + const int32_t input_x, + const int32_t input_y, + const int32_t input_ch, + const int8_t *kernel, + const int32_t output_ch, + const int32_t ch_mult, + const int32_t kernel_x, + const int32_t kernel_y, + const int32_t pad_x, + const int32_t pad_y, + const int32_t stride_x, + const int32_t stride_y, + const int32_t *bias, + int8_t *output, + const int32_t *output_shift, + const int32_t *output_mult, + const int32_t output_x, + const int32_t output_y, + const int32_t output_offset, + const int32_t input_offset, + const int32_t output_activation_min, + const int32_t output_activation_max) +{ + for (int32_t in_h = -pad_y, out_h = 0, out_idx = 0; out_h < output_y; in_h += stride_y, ++out_h) + { + for (int32_t in_w = -pad_x, out_w = 0, ker_h_start = MAX(0, -in_h); out_w < output_x; in_w += stride_x, ++out_w) + { + for (int32_t in_ch = 0, out_ch = 0, ker_w_start = MAX(0, -in_w); out_ch < output_ch; ++in_ch, out_ch += ch_mult) + { + for (int mult_tile = 0; mult_tile < ch_mult; mult_tile += 4) + { + int32_t out_buff[4]; + + out_buff[0] = bias[out_ch + 0 + mult_tile]; + out_buff[1] = bias[out_ch + 1 + mult_tile]; + out_buff[2] = bias[out_ch + 2 + mult_tile]; + out_buff[3] = bias[out_ch + 3 + mult_tile]; + + for (int32_t ker_h = ker_h_start; ker_h < MIN(kernel_y, input_y - in_h); ++ker_h) + { + int32_t ker_idx = ker_h * (output_ch * kernel_x) + ker_w_start * output_ch + out_ch; + int32_t in_idx = (in_h + ker_h) * (input_ch * input_x) + in_w * input_ch + in_ch; + + for (int32_t ker_w = ker_w_start; ker_w < MIN(kernel_x, input_x - in_w); ++ker_w, ker_idx += output_ch) + { + int32_t in_val = input[in_idx + ker_w * input_ch] + input_offset; + out_buff[0] += in_val * kernel[ker_idx + 0 + mult_tile]; + out_buff[1] += in_val * kernel[ker_idx + 1 + mult_tile]; + out_buff[2] += in_val * kernel[ker_idx + 2 + mult_tile]; + out_buff[3] += in_val * kernel[ker_idx + 3 + mult_tile]; + } + } +#if defined(ARM_MATH_MVEI) + (void)out_idx; + int32x4_t res = vldrwq_s32(out_buff); + res = arm_requantize_mve_32x4(res, vldrwq_s32(&output_mult[out_ch + mult_tile]), vldrwq_s32(&output_shift[out_ch + mult_tile])); + res = vaddq_n_s32(res, output_offset); + + res = vmaxq_s32(res, vdupq_n_s32(output_activation_min)); + res = vminq_s32(res, vdupq_n_s32(output_activation_max)); + vstrbq_s32(output, res); + output += 4; +#else + out_buff[0] = arm_nn_requantize(out_buff[0], output_mult[out_ch + 0 + mult_tile], output_shift[out_ch + 0 + mult_tile]); + out_buff[1] = arm_nn_requantize(out_buff[1], output_mult[out_ch + 1 + mult_tile], output_shift[out_ch + 1 + mult_tile]); + out_buff[2] = arm_nn_requantize(out_buff[2], output_mult[out_ch + 2 + mult_tile], output_shift[out_ch + 2 + mult_tile]); + out_buff[3] = arm_nn_requantize(out_buff[3], output_mult[out_ch + 3 + mult_tile], output_shift[out_ch + 3 + mult_tile]); + + out_buff[0] += output_offset; + out_buff[1] += output_offset; + out_buff[2] += output_offset; + out_buff[3] += output_offset; + + out_buff[0] = MIN(MAX(out_buff[0], output_activation_min), output_activation_max); + out_buff[1] = MIN(MAX(out_buff[1], output_activation_min), output_activation_max); + out_buff[2] = MIN(MAX(out_buff[2], output_activation_min), output_activation_max); + out_buff[3] = MIN(MAX(out_buff[3], output_activation_min), output_activation_max); + + output[out_idx++] = (int8_t)out_buff[0]; + output[out_idx++] = (int8_t)out_buff[1]; + output[out_idx++] = (int8_t)out_buff[2]; + output[out_idx++] = (int8_t)out_buff[3]; + +#endif + } + } + } + } +} + +static void depthwise_conv_s8_generic(const q7_t *input, + const uint16_t input_x, + const uint16_t input_y, + const uint16_t input_ch, + const q7_t *kernel, + const uint16_t output_ch, + const uint16_t ch_mult, + const uint16_t kernel_x, + const uint16_t kernel_y, + const uint16_t pad_x, + const uint16_t pad_y, + const uint16_t stride_x, + const uint16_t stride_y, + const int32_t *bias, + q7_t *output, + const int32_t *output_shift, + const int32_t *output_mult, + const uint16_t output_x, + const uint16_t output_y, + const int32_t output_offset, + const int32_t input_offset, + const int32_t output_activation_min, + const int32_t output_activation_max) +{ + (void)output_ch; + int i_out = 0; + for (int i_out_y = 0; i_out_y < output_y; i_out_y++) + { + const int16_t base_idx_y = (i_out_y * stride_y) - pad_y; + for (int i_out_x = 0; i_out_x < output_x; i_out_x++) + { + const int16_t base_idx_x = (i_out_x * stride_x) - pad_x; + for (int i_input_ch = 0; i_input_ch < input_ch; i_input_ch++) + { + for (int i_ch_mult = 0; i_ch_mult < ch_mult; i_ch_mult++) + { + const int idx_out_ch = i_ch_mult + i_input_ch * ch_mult; + int32_t acc_0; + /* Condition for kernel start dimension: (base_idx_ + ker__start) >= 0 */ + const int ker_y_start = MAX(0, -base_idx_y); + const int ker_x_start = MAX(0, -base_idx_x); + /* Condition for kernel end dimension: (base_idx_ + ker__end) < input_ */ + const int ker_y_end = MIN(kernel_y, input_y - base_idx_y); + const int ker_x_end = MIN(kernel_x, input_x - base_idx_x); + acc_0 = bias[idx_out_ch]; + + for (int i_ker_y = ker_y_start; i_ker_y < ker_y_end; i_ker_y++) + { + const int32_t idx_y = base_idx_y + i_ker_y; + for (int i_ker_x = ker_x_start; i_ker_x < ker_x_end; i_ker_x++) + { + const int32_t idx_x = base_idx_x + i_ker_x; + int32_t idx_0 = (idx_y * input_x + idx_x) * input_ch + i_input_ch; + int32_t ker_idx_0 = (i_ker_y * kernel_x + i_ker_x) * (input_ch * ch_mult) + idx_out_ch; + + acc_0 += (input[idx_0] + input_offset) * kernel[ker_idx_0]; + } + } + + /* Requantize and clamp output to provided range */ + acc_0 = arm_nn_requantize(acc_0, output_mult[idx_out_ch], output_shift[idx_out_ch]); + acc_0 += output_offset; + acc_0 = MAX(acc_0, output_activation_min); + acc_0 = MIN(acc_0, output_activation_max); + + output[i_out++] = acc_0; + } + } + } + } +} + +/* + * Basic s8 depthwise convolution function. + * + * Refer header file for details. + * Optimization using DSP extension is not available for the generic case where channel multiplier is > 1. + * + */ +arm_status arm_depthwise_conv_s8(const cmsis_nn_context *ctx, + const cmsis_nn_dw_conv_params *dw_conv_params, + const cmsis_nn_per_channel_quant_params *quant_params, + const cmsis_nn_dims *input_dims, + const q7_t *input, + const cmsis_nn_dims *filter_dims, + const q7_t *kernel, + const cmsis_nn_dims *bias_dims, + const int32_t *bias, + const cmsis_nn_dims *output_dims, + q7_t *output) +{ + (void)dw_conv_params->dilation; + (void)ctx; + + if (dw_conv_params->ch_mult % 4 == 0) + { + depthwise_conv_s8_mult_4(input, input_dims->w, input_dims->h, input_dims->c, kernel, output_dims->c, dw_conv_params->ch_mult, filter_dims->w, filter_dims->h, + dw_conv_params->padding.w, dw_conv_params->padding.h, dw_conv_params->stride.w, dw_conv_params->stride.h, bias, output, + quant_params->shift, quant_params->multiplier, output_dims->w, output_dims->h, dw_conv_params->output_offset, + dw_conv_params->input_offset, dw_conv_params->activation.min, dw_conv_params->activation.max); + } + else + { + depthwise_conv_s8_generic(input, input_dims->w, input_dims->h, input_dims->c, kernel, output_dims->c, dw_conv_params->ch_mult, filter_dims->w, filter_dims->h, + dw_conv_params->padding.w, dw_conv_params->padding.h, dw_conv_params->stride.w, dw_conv_params->stride.h, bias, output, + quant_params->shift, quant_params->multiplier, output_dims->w, output_dims->h, dw_conv_params->output_offset, + dw_conv_params->input_offset, dw_conv_params->activation.min, dw_conv_params->activation.max); + } + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNConv group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_s8_opt.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_s8_opt.c new file mode 100644 index 00000000..3587b9c9 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_s8_opt.c @@ -0,0 +1,425 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_depthwise_conv_s8_opt.c + * Description: Optimized s8 depthwise separable convolution function for + * channel multiplier of 1. + * + * $Date: May 29, 2020 + * $Revision: V.2.0.1 + * + * Target Processor: Cortex-M CPUs + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnsupportfunctions.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + +/* + * Optimized s8 depthwise convolution function with constraint that in_channel equals out_channel + * + * Refer prototype header file for details. + * + */ + +arm_status arm_depthwise_conv_s8_opt(const cmsis_nn_context *ctx, + const cmsis_nn_dw_conv_params *dw_conv_params, + const cmsis_nn_per_channel_quant_params *quant_params, + const cmsis_nn_dims *input_dims, + const q7_t *input, + const cmsis_nn_dims *filter_dims, + const q7_t *kernel, + const cmsis_nn_dims *bias_dims, + const int32_t *bias, + const cmsis_nn_dims *output_dims, + q7_t *output) +{ + const int32_t input_x = input_dims->w; + const int32_t input_y = input_dims->h; + const int32_t input_ch = input_dims->c; + const int32_t output_ch = output_dims->c; + const int32_t kernel_x = filter_dims->w; + const int32_t kernel_y = filter_dims->h; + const int32_t pad_x = dw_conv_params->padding.w; + const int32_t pad_y = dw_conv_params->padding.h; + const int32_t stride_x = dw_conv_params->stride.w; + const int32_t stride_y = dw_conv_params->stride.h; + const int32_t *output_shift = quant_params->shift; + const int32_t *output_mult = quant_params->multiplier; + const int32_t output_x = output_dims->w; + const int32_t output_y = output_dims->h; + const int32_t output_offset = dw_conv_params->output_offset; + const int32_t input_offset = dw_conv_params->input_offset; + const int32_t output_activation_min = dw_conv_params->activation.min; + const int32_t output_activation_max = dw_conv_params->activation.max; + q15_t *buffer_a = (q15_t *)ctx->buf; + + /* Check input constraints input_ch == output_ch */ + if (input_ch != output_ch) + { + return ARM_MATH_SIZE_MISMATCH; + } +#ifdef ARM_MATH_MVEI + (void)bias_dims; + /* Generate two columns from the input tensor */ + q7_t *lhs_buffer = (q7_t *)buffer_a; + q7_t *out = output; + int padded = 0; + int buffer_count = 0; + const int32_t kernel_size = kernel_x * kernel_y; + + /* This part implements the im2col function */ + for (int i_out_y = 0, base_idx_y = -pad_y; i_out_y < output_y; base_idx_y += stride_y, i_out_y++) + { + for (int i_out_x = 0, base_idx_x = -pad_x; i_out_x < output_x; base_idx_x += stride_x, i_out_x++) + { + for (int i_ker_y = base_idx_y; i_ker_y < base_idx_y + kernel_y; i_ker_y++) + { + for (int i_ker_x = base_idx_x; i_ker_x < base_idx_x + kernel_x; i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= input_y || i_ker_x < 0 || i_ker_x >= input_x) + { + arm_memset_q7(lhs_buffer, (int8_t)-input_offset, (uint32_t)input_ch); + padded = 1; + } + else + { + arm_memcpy_q7(lhs_buffer, input + (i_ker_y * input_x + i_ker_x) * input_ch, (uint32_t)input_ch); + } + lhs_buffer += input_ch; + } + } + buffer_count++; + + if (buffer_count == 4) + { + lhs_buffer = (q7_t *)buffer_a; + if (padded == 0) + { + out = arm_nn_depthwise_conv_nt_t_s8(lhs_buffer, + kernel, + input_offset, + input_ch, + output_shift, + output_mult, + output_offset, + output_activation_min, + output_activation_max, + kernel_size, + bias, + out); + } + else + { + out = arm_nn_depthwise_conv_nt_t_padded_s8(lhs_buffer, + kernel, + input_offset, + input_ch, + output_shift, + output_mult, + output_offset, + output_activation_min, + output_activation_max, + kernel_size, + bias, + out); + padded = 0; + } + buffer_count = 0; + } + } + } + + /* Handle left over buffers */ + lhs_buffer = (q7_t *)buffer_a; + + for (int i_buf = 0; i_buf < buffer_count; i_buf++) + { + int32_t loop_count = (input_ch + 3) / 4; + + int32_t num_ch_to_process = input_ch; + for (int i_loop_cnt = 0, offset = 0; i_loop_cnt < loop_count; + num_ch_to_process -= 4, offset += 4, i_loop_cnt++) + { + const int8_t *col_0 = lhs_buffer + (kernel_size * input_ch * i_buf) + offset; + const int8_t *row_0 = kernel + offset; + int32x4_t out_0 = vldrwq_s32(&bias[offset]); + + for (int i_ker = 0; i_ker < kernel_size; i_ker++) + { + const int32x4_t ker_0 = vldrbq_s32(row_0); + + int32x4_t ip_0 = vldrbq_s32(col_0); + ip_0 = vaddq_n_s32(ip_0, input_offset); + out_0 += vmulq_s32(ip_0, ker_0); + + col_0 += input_ch; + row_0 += input_ch; + } + + const int32x4_t mult = vldrwq_s32(&output_mult[offset]); + const int32x4_t shift = vldrwq_s32(&output_shift[offset]); + + out_0 = arm_requantize_mve_32x4(out_0, mult, shift); + out_0 = vaddq_n_s32(out_0, output_offset); + out_0 = vmaxq_s32(out_0, vdupq_n_s32(output_activation_min)); + out_0 = vminq_s32(out_0, vdupq_n_s32(output_activation_max)); + mve_pred16_t p = vctp32q((uint32_t)num_ch_to_process); + vstrbq_p_s32(out, out_0, p); + + out += 4; + } + + const int tail_ch = input_ch & 0x3; + if (tail_ch != 0) + { + out -= (4 - tail_ch); + } + } + +#elif defined(ARM_MATH_DSP) + (void)bias_dims; + /* Run the following code in cores using DSP extension */ + q15_t *const col_buffer_start = buffer_a; + q15_t *col_buffer = col_buffer_start; + const int32_t *const bias_start_pos = bias; + const q31_t *const out_mult_start_pos = output_mult; + const q31_t *const out_shift_start_pos = output_shift; + uint16_t row_count; + uint16_t row_shift; + + for (int i_out_y = 0; i_out_y < output_y; i_out_y++) + { + const int16_t base_idx_y = (i_out_y * stride_y) - pad_y; + for (int i_out_x = 0; i_out_x < output_x; i_out_x++) + { + const int16_t base_idx_x = (i_out_x * stride_x) - pad_x; + + /* Out of bounds is only considered for the y axis as it provides a contiguous zero'ing opportunity than along + the x axis */ + const int ker_y_start = MAX(0, -base_idx_y); + /* Condition for kernel end dimension: (base_idx_y + ker_y_end) < input_y */ + const int ker_y_end = MIN(kernel_y, input_y - base_idx_y); + + int32_t index = 0; + if (ker_y_start != 0) + { + memset(&col_buffer[index], 0, (kernel_x * input_ch) * ker_y_start * sizeof(q15_t)); + index += (kernel_x * input_ch) * ker_y_start; + } + + for (int i_ker_y = ker_y_start; i_ker_y < ker_y_end; i_ker_y++) + { + const int32_t idx_y = base_idx_y + i_ker_y; + + for (int i_ker_x = 0; i_ker_x < kernel_x; i_ker_x++) + { + const int32_t idx_x = base_idx_x + i_ker_x; + if (idx_x < 0 || idx_x >= input_x) + { + memset(&col_buffer[index], 0, input_ch * sizeof(q15_t)); + } + else + { + arm_q7_to_q15_with_offset((q7_t *)input + (idx_y * input_x + idx_x) * input_ch, &col_buffer[index], input_ch, input_offset); + } + index += input_ch; + } + } + + const int diff = kernel_y - ker_y_end; + if (diff != 0) + { + memset(&col_buffer[index], 0, (kernel_x * input_ch) * diff * sizeof(q15_t)); + } + + row_count = output_ch / 4; + row_shift = 0; + bias = bias_start_pos; + output_mult = out_mult_start_pos; + output_shift = out_shift_start_pos; + + while (row_count) + { + q31_t sum = *bias++; + q31_t sum_2 = *bias++; + q31_t sum_3 = *bias++; + q31_t sum_4 = *bias++; + + uint16_t col_count = (kernel_x * kernel_y) / 2; + q15_t *col_pos = col_buffer_start + row_shift; + const q7_t *row_pos = kernel + row_shift; + row_shift += 4; + + while (col_count) + { + /* General idea is to read 4 + 4 (input, kernel) pair and re-arrange them in the right order to + use in a SMLAD instruction . One run of this loop produces 4 partial outputs with 8 MACs. */ + /* Note: variable names can be improved here to align with rows and columns. */ + q31_t ip_a1, ip_a2, ip_b1, ip_b2, op_a, op_b, op_c; + /* Read 4 weights */ + ip_b1 = arm_nn_read_q7x4(row_pos); + ip_a1 = arm_nn_read_q7x4(row_pos + input_ch); + op_a = arm_nn_read_q15x2(col_pos); + op_b = arm_nn_read_q15x2(col_pos + input_ch); + + ip_a2 = __SXTB16(ip_b1); + ip_b1 = __SXTB16(__ROR(ip_b1, 8)); + + ip_b2 = __SXTB16(ip_a1); + ip_a1 = __SXTB16(__ROR(ip_a1, 8)); + + op_c = __PKHBT(op_b, op_a, 16); + op_a = __PKHTB(op_b, op_a, 16); + op_b = __PKHBT(ip_b2, ip_a2, 16); + sum = __SMLAD(op_c, op_b, sum); + + op_b = __PKHBT(ip_b1, ip_a1, 16); + sum_2 = __SMLAD(op_a, op_b, sum_2); + + op_a = arm_nn_read_q15x2(col_pos + 2); + op_b = arm_nn_read_q15x2(col_pos + input_ch + 2); + + op_c = __PKHBT(op_b, op_a, 16); + op_a = __PKHTB(op_b, op_a, 16); + op_b = __PKHTB(ip_a2, ip_b2, 16); + sum_3 = __SMLAD(op_c, op_b, sum_3); + + op_b = __PKHTB(ip_a1, ip_b1, 16); + sum_4 = __SMLAD(op_a, op_b, sum_4); + + row_pos += input_ch << 1; + col_pos += input_ch << 1; + col_count--; + } + + col_count = (kernel_x * kernel_y) & 0x1; + while (col_count) + { + sum += row_pos[0] * col_pos[0]; + sum_2 += row_pos[1] * col_pos[1]; + sum_3 += row_pos[2] * col_pos[2]; + sum_4 += row_pos[3] * col_pos[3]; + + row_pos += input_ch; + col_pos += input_ch; + + col_count--; + } + sum = arm_nn_requantize(sum, *output_mult++, *output_shift++); + sum += output_offset; + sum = MAX(sum, output_activation_min); + sum = MIN(sum, output_activation_max); + *output++ = (q7_t)sum; + + sum_2 = arm_nn_requantize(sum_2, *output_mult++, *output_shift++); + sum_2 += output_offset; + sum_2 = MAX(sum_2, output_activation_min); + sum_2 = MIN(sum_2, output_activation_max); + *output++ = (q7_t)sum_2; + sum_3 = arm_nn_requantize(sum_3, *output_mult++, *output_shift++); + sum_3 += output_offset; + sum_3 = MAX(sum_3, output_activation_min); + sum_3 = MIN(sum_3, output_activation_max); + *output++ = (q7_t)sum_3; + + sum_4 = arm_nn_requantize(sum_4, *output_mult++, *output_shift++); + sum_4 += output_offset; + sum_4 = MAX(sum_4, output_activation_min); + sum_4 = MIN(sum_4, output_activation_max); + *output++ = (q7_t)sum_4; + + row_count--; + } + + row_count = output_ch & 0x3; + while (row_count) + { + q15_t *col_pos = col_buffer_start + row_shift; + const q7_t *row_pos = kernel + row_shift; + q31_t sum = *bias++; + const uint16_t col_count = (kernel_x * kernel_y); + row_shift += 1; + + for (int i = 0; i < col_count; i++) + { + sum += row_pos[i * input_ch] * col_pos[i * input_ch]; + } + sum = arm_nn_requantize(sum, *output_mult++, *output_shift++); + sum += output_offset; + sum = MAX(sum, output_activation_min); + sum = MIN(sum, output_activation_max); + *output++ = (q7_t)sum; + + row_count--; + } + + // clear counter and pointers + col_buffer = col_buffer_start; + } + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + return arm_depthwise_conv_s8(ctx, + dw_conv_params, + quant_params, + input_dims, + input, + filter_dims, + kernel, + bias_dims, + bias, + output_dims, + output); +#endif /* ARM_MATH_MVEI | ARM_MATH_DSP */ + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +int32_t arm_depthwise_conv_s8_opt_get_buffer_size(const cmsis_nn_dims *input_dims, + const cmsis_nn_dims *filter_dims) +{ +#if defined(ARM_MATH_MVEI) + /* The + 4 accounts for out of bounds read of the lhs buffers in the *_nt_t_* functions. */ + return (2 * input_dims->c * filter_dims->w * filter_dims->h) * (int32_t)sizeof(int16_t) + 4; +#elif defined(ARM_MATH_DSP) + return (input_dims->c * filter_dims->w * filter_dims->h) * sizeof(int16_t); +#else + (void)input_dims; + (void)filter_dims; + return 0; +#endif +} + +/** + * @} end of NNConv group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_u8_basic_ver1.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_u8_basic_ver1.c new file mode 100644 index 00000000..d5fa36c6 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_u8_basic_ver1.c @@ -0,0 +1,294 @@ +/* + * Copyright (C) 2010-2019 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_depthwise_conv_u8_basic_ver1.c + * Description: u8 depthwise convolution function + * + * $Date: May 29, 2020 + * $Revision: V.1.1.0 + * + * Target : Cortex-M CPUs + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + +static void depthwise_conv_u8_mult_4(const uint8_t *input, + const int32_t input_x, + const int32_t input_y, + const int32_t input_ch, + const uint8_t *kernel, + const int32_t output_ch, + const int32_t ch_mult, + const int32_t kernel_x, + const int32_t kernel_y, + const int32_t pad_x, + const int32_t pad_y, + const int32_t stride_x, + const int32_t stride_y, + const int32_t *bias, + uint8_t *output, + const int32_t output_shift, + const int32_t output_mult, + const int32_t output_x, + const int32_t output_y, + const int32_t output_offset, + const int32_t input_offset, + const int32_t filter_offset, + const int32_t output_activation_min, + const int32_t output_activation_max) +{ + for (int32_t in_h = -pad_y, out_h = 0, out_idx = 0; out_h < output_y; in_h += stride_y, ++out_h) + { + for (int32_t in_w = -pad_x, out_w = 0, ker_h_start = MAX(0, -in_h); out_w < output_x; in_w += stride_x, ++out_w) + { + for (int32_t in_ch = 0, out_ch = 0, ker_w_start = MAX(0, -in_w); out_ch < output_ch; ++in_ch, out_ch += ch_mult) + { + for (int mult_tile = 0; mult_tile < ch_mult; mult_tile += 4) + { + int32_t out_buff[4]; + + out_buff[0] = 0; + out_buff[1] = 0; + out_buff[2] = 0; + out_buff[3] = 0; + + for (int32_t ker_h = ker_h_start; ker_h < MIN(kernel_y, input_y - in_h); ++ker_h) + { + int32_t ker_idx = ker_h * (output_ch * kernel_x) + ker_w_start * output_ch + out_ch; + int32_t in_idx = (in_h + ker_h) * (input_ch * input_x) + in_w * input_ch + in_ch; + + for (int32_t ker_w = ker_w_start; ker_w < MIN(kernel_x, input_x - in_w); ++ker_w, ker_idx += output_ch) + { + int32_t in_val = input[in_idx + ker_w * input_ch] + input_offset; + out_buff[0] += in_val * (kernel[ker_idx + 0 + mult_tile] + filter_offset); + out_buff[1] += in_val * (kernel[ker_idx + 1 + mult_tile] + filter_offset); + out_buff[2] += in_val * (kernel[ker_idx + 2 + mult_tile] + filter_offset); + out_buff[3] += in_val * (kernel[ker_idx + 3 + mult_tile] + filter_offset); + } + } + + if (bias != NULL) + { + out_buff[0] += bias[out_ch + 0 + mult_tile]; + out_buff[1] += bias[out_ch + 1 + mult_tile]; + out_buff[2] += bias[out_ch + 2 + mult_tile]; + out_buff[3] += bias[out_ch + 3 + mult_tile]; + } + out_buff[0] = arm_nn_requantize(out_buff[0], output_mult, output_shift); + out_buff[1] = arm_nn_requantize(out_buff[1], output_mult, output_shift); + out_buff[2] = arm_nn_requantize(out_buff[2], output_mult, output_shift); + out_buff[3] = arm_nn_requantize(out_buff[3], output_mult, output_shift); + + out_buff[0] += output_offset; + out_buff[1] += output_offset; + out_buff[2] += output_offset; + out_buff[3] += output_offset; + + out_buff[0] = MIN(MAX(out_buff[0], output_activation_min), output_activation_max); + out_buff[1] = MIN(MAX(out_buff[1], output_activation_min), output_activation_max); + out_buff[2] = MIN(MAX(out_buff[2], output_activation_min), output_activation_max); + out_buff[3] = MIN(MAX(out_buff[3], output_activation_min), output_activation_max); + + output[out_idx++] = (uint8_t)out_buff[0]; + output[out_idx++] = (uint8_t)out_buff[1]; + output[out_idx++] = (uint8_t)out_buff[2]; + output[out_idx++] = (uint8_t)out_buff[3]; + } + } + } + } +} + +static void depthwise_conv_u8_generic(const uint8_t *input, + const int32_t input_x, + const int32_t input_y, + const int32_t input_ch, + const uint8_t *kernel, + const int32_t output_ch, + const int32_t ch_mult, + const int32_t kernel_x, + const int32_t kernel_y, + const int32_t pad_x, + const int32_t pad_y, + const int32_t stride_x, + const int32_t stride_y, + const int32_t *bias, + uint8_t *output, + const int32_t output_shift, + const int32_t output_mult, + const int32_t output_x, + const int32_t output_y, + const int32_t output_offset, + const int32_t input_offset, + const int32_t filter_offset, + const int32_t output_activation_min, + const int32_t output_activation_max) +{ + (void)output_ch; + int i_out = 0; + for (int i_out_y = 0; i_out_y < output_y; i_out_y++) + { + const int16_t base_idx_y = (i_out_y * stride_y) - pad_y; + for (int i_out_x = 0; i_out_x < output_x; i_out_x++) + { + const int16_t base_idx_x = (i_out_x * stride_x) - pad_x; + for (int i_input_ch = 0; i_input_ch < input_ch; i_input_ch++) + { + for (int i_ch_mult = 0; i_ch_mult < ch_mult; i_ch_mult++) + { + const int idx_out_ch = i_ch_mult + i_input_ch * ch_mult; + int32_t acc_0; + /* Condition for kernel start dimension: (base_idx_ + ker__start) >= 0 */ + const int ker_y_start = MAX(0, -base_idx_y); + const int ker_x_start = MAX(0, -base_idx_x); + /* Condition for kernel end dimension: (base_idx_ + ker__end) < input_ */ + const int ker_y_end = MIN(kernel_y, input_y - base_idx_y); + const int ker_x_end = MIN(kernel_x, input_x - base_idx_x); + acc_0 = 0; + + for (int i_ker_y = ker_y_start; i_ker_y < ker_y_end; i_ker_y++) + { + const int32_t idx_y = base_idx_y + i_ker_y; + for (int i_ker_x = ker_x_start; i_ker_x < ker_x_end; i_ker_x++) + { + const int32_t idx_x = base_idx_x + i_ker_x; + int32_t idx_0 = (idx_y * input_x + idx_x) * input_ch + i_input_ch; + int32_t ker_idx_0 = (i_ker_y * kernel_x + i_ker_x) * (input_ch * ch_mult) + idx_out_ch; + + acc_0 += (input[idx_0] + input_offset) * (kernel[ker_idx_0] + filter_offset); + } + } + if (bias != NULL) + { + acc_0 += bias[idx_out_ch]; + } + + /* Requantize and clamp output to provided range */ + acc_0 = arm_nn_requantize(acc_0, output_mult, output_shift); + acc_0 += output_offset; + acc_0 = MAX(acc_0, output_activation_min); + acc_0 = MIN(acc_0, output_activation_max); + + output[i_out++] = acc_0; + } + } + } + } +} + +/** + * @brief uint8 depthwise convolution function with asymmetric quantization + * + * @param[in] input Pointer to input tensor + * @param[in] input_x Width of input tensor + * @param[in] input_y Height of input tensor + * @param[in] input_ch Channels in input tensor + * @param[in] kernel Pointer to kernel weights + * @param[in] kernel_x Width of kernel + * @param[in] kernel_y Height of kernel + * @param[in] ch_mult Number of channel multiplier + * @param[in] pad_x Padding sizes x + * @param[in] pad_y Padding sizes y + * @param[in] stride_x Convolution stride along the width + * @param[in] stride_y Convolution stride along the height + * @param[in] dilation_x Dilation along width. Not used and intended for future enhancement. + * @param[in] dilation_y Dilation along height. Not used and intended for future enhancement. + * @param[in] bias Pointer to optional bias values. If no bias is + * availble, NULL is expected + * @param[in] input_offset Input tensor zero offset + * @param[in] filter_offset Kernel tensor zero offset + * @param[in] output_offset Output tensor zero offset + * @param[in,out] output Pointer to output tensor + * @param[in] output_x Width of output tensor + * @param[in] output_y Height of output tensor + * @param[in] output_activation_min Minimum value to clamp the output to. Range : {0, 255} + * @param[in] output_activation_max Minimum value to clamp the output to. Range : {0, 255} + * @param[in] output_shift Amount of right-shift for output + * @param[in] output_mult Output multiplier for requantization + * @return The function returns one of the following + * ARM_MATH_SIZE_MISMATCH - Not supported dimension of tensors + * ARM_MATH_SUCCESS - Successful operation + * ARM_MATH_ARGUMENT_ERROR - Implementation not available + * + * + */ + +arm_status arm_depthwise_conv_u8_basic_ver1(const uint8_t *input, + const uint16_t input_x, + const uint16_t input_y, + const uint16_t input_ch, + const uint8_t *kernel, + const uint16_t kernel_x, + const uint16_t kernel_y, + const int16_t ch_mult, + const int16_t pad_x, + const int16_t pad_y, + const int16_t stride_x, + const int16_t stride_y, + const int16_t dilation_x, + const int16_t dilation_y, + const int32_t *bias, + const int32_t input_offset, + const int32_t filter_offset, + const int32_t output_offset, + uint8_t *output, + const uint16_t output_x, + const uint16_t output_y, + const int32_t output_activation_min, + const int32_t output_activation_max, + const int32_t output_shift, + const int32_t output_mult) +{ + (void)dilation_x; + (void)dilation_y; + + if (ch_mult % 4 == 0) + { + depthwise_conv_u8_mult_4(input, input_x, input_y, input_ch, kernel, ch_mult * input_ch, ch_mult, + kernel_x, kernel_y, pad_x, pad_y, stride_x, stride_y, bias, output, + output_shift, output_mult, output_x, output_y, output_offset, input_offset, + filter_offset, output_activation_min, output_activation_max); + } + else + { + depthwise_conv_u8_generic(input, input_x, input_y, input_ch, kernel, ch_mult * input_ch, ch_mult, + kernel_x, kernel_y, pad_x, pad_y, stride_x, stride_y, bias, + output, output_shift, output_mult, output_x, output_y, output_offset, + input_offset, filter_offset, output_activation_min, output_activation_max); + } + + /* Return to application */ + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNConv group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_wrapper_s8.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_wrapper_s8.c new file mode 100644 index 00000000..42d425f0 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_wrapper_s8.c @@ -0,0 +1,133 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_depthwise_conv_wrapper_s8.c + * Description: Wrapper API to select appropriate depthwise conv API based + * on dimensions. + * + * $Date: May 29, 2020 + * $Revision: V.1.0.1 + * + * Target Processor: Cortex-M CPUs + * + * -------------------------------------------------------------------- */ +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" +#include "cmsis/CMSIS/NN/Include/arm_nnsupportfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + +/* + * s8 Depthwise conv wrapper function + * + * Refer header file for details. + * + */ +arm_status arm_depthwise_conv_wrapper_s8(const cmsis_nn_context *ctx, + const cmsis_nn_dw_conv_params *dw_conv_params, + const cmsis_nn_per_channel_quant_params *quant_params, + const cmsis_nn_dims *input_dims, + const q7_t *input, + const cmsis_nn_dims *filter_dims, + const q7_t *filter, + const cmsis_nn_dims *bias_dims, + const int32_t *bias, + const cmsis_nn_dims *output_dims, + q7_t *output) +{ + arm_status status = ARM_MATH_SUCCESS; + if (1 == dw_conv_params->ch_mult) + { +#if !defined(ARM_MATH_MVEI) + if ((filter_dims->w == 3) && (filter_dims->h == 3) && (dw_conv_params->padding.h <= 1)) + { + status = arm_depthwise_conv_3x3_s8(ctx, + dw_conv_params, + quant_params, + input_dims, + input, + filter_dims, + filter, + bias_dims, + bias, + output_dims, + output); + } + else +#endif + { + status = arm_depthwise_conv_s8_opt(ctx, + dw_conv_params, + quant_params, + input_dims, + input, + filter_dims, + filter, + bias_dims, + bias, + output_dims, + output); + } + } + else + { + status = arm_depthwise_conv_s8(ctx, + dw_conv_params, + quant_params, + input_dims, + input, + filter_dims, + filter, + bias_dims, + bias, + output_dims, + output); + } + + /* Return to application */ + return status; +} + +int32_t arm_depthwise_conv_wrapper_s8_get_buffer_size(const cmsis_nn_dw_conv_params *dw_conv_params, + const cmsis_nn_dims *input_dims, + const cmsis_nn_dims *filter_dims, + const cmsis_nn_dims *output_dims) +{ + (void)dw_conv_params; + int32_t size = 0; + + if (input_dims->c == output_dims->c) + { + size = arm_depthwise_conv_s8_opt_get_buffer_size(input_dims, filter_dims); + } + + return size; +} + +/** + * @} end of NNConv group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7.c new file mode 100644 index 00000000..2767ff47 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7.c @@ -0,0 +1,418 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_depthwise_separable_conv_HWC_q7.c + * Description: Q7 depthwise separable convolution function + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + +/** + * @brief Q7 depthwise separable convolution function + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimention + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + * + * @details + * + * Buffer size: + * + * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel + * + * bufferB size: 0 + * + * Input dimension constraints: + * + * ch_im_in equals ch_im_out + * + * Implementation: + * There are 3 nested loop here: + * Inner loop: calculate each output value with MAC instruction over an accumulator + * Mid loop: loop over different output channel + * Outer loop: loop over different output (x, y) + */ + +arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out, + q15_t * bufferA, + q7_t * bufferB) +{ + (void)bufferB; +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + int16_t i_out_y, i_out_x; + int16_t i_ker_y, i_ker_x; + q7_t *colBuffer = (q7_t *) bufferA; + q7_t *pBuffer = colBuffer; + const q7_t *pBias = bias; + q7_t *pOut = Im_out; + uint16_t rowCnt; + uint16_t row_shift; + + /* do some checking here, basically ch_im_in == ch_im_out */ + if (ch_im_in != ch_im_out) + { + return ARM_MATH_SIZE_MISMATCH; + } + + for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) + { + /* we first do im2col here */ + for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++) + { + for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in) + { + /* arm_fill_q7(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, ch_im_in); + } else + { + /* arm_copy_q7((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */ + memcpy(pBuffer, (q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, ch_im_in); + } + pBuffer += ch_im_in; + } + } + + /* we will do the computation here for each channel */ + rowCnt = ch_im_out >> 2; + row_shift = 0; + pBias = bias; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = (dim_kernel * dim_kernel) >> 1; + q7_t *pB = colBuffer + row_shift; + const q7_t *pA = wt + row_shift; + row_shift += 4; + +#ifdef USE_INTRINSIC + +#ifndef ARM_MATH_BIG_ENDIAN + + while (colCnt) + { + q31_t inA1, inA2, inB1, inB2, opA, opB; + + inB1 = arm_nn_read_q7x4(pB); + pB += ch_im_in; + opB = arm_nn_read_q7x4(pB); + pB += ch_im_in; + inB2 = __PKHTB(opB, inB1, 16); + inB1 = __PKHBT(inB1, opB, 16); + inA1 = arm_nn_read_q7x4(pA); + pA += ch_im_in; + opB = arm_nn_read_q7x4(pA); + pA += ch_im_in; + inA2 = __PKHTB(opB, inA1, 16); + inA1 = __PKHBT(inA1, opB, 16); + opA = __SXTB16(inA1); + opB = __SXTB16(inB1); + sum = __SMLAD(opA, opB, sum); + opA = __SXTB16(__ROR(inA1, 8)); + opB = __SXTB16(__ROR(inB1, 8)); + sum2 = __SMLAD(opA, opB, sum2); + opA = __SXTB16(inA2); + opB = __SXTB16(inB2); + sum3 = __SMLAD(opA, opB, sum3); + opA = __SXTB16(__ROR(inA2, 8)); + opB = __SXTB16(__ROR(inB2, 8)); + sum4 = __SMLAD(opA, opB, sum4); + colCnt--; + } +#else + + while (colCnt) + { + q31_t inA1, inA2, inB1, inB2, opA, opB; + + inB1 = arm_nn_read_q7x4(pB); + pB += ch_im_in; + opB = arm_nn_read_q7x4(pB); + pB += ch_im_in; + inB2 = __PKHBT(opB, inB1, 16); + inB1 = __PKHTB(inB1, opB, 16); + inA1 = arm_nn_read_q7x4(pA); + pA += ch_im_in; + opB = arm_nn_read_q7x4(pA); + pA += ch_im_in; + inA2 = __PKHBT(opB, inA1, 16); + inA1 = __PKHTB(inA1, opB, 16); + opA = __SXTB16(inA1); + opB = __SXTB16(inB1); + sum2 = __SMLAD(opA, opB, sum2); + opA = __SXTB16(__ROR(inA1, 8)); + opB = __SXTB16(__ROR(inB1, 8)); + sum = __SMLAD(opA, opB, sum); + opA = __SXTB16(inA2); + opB = __SXTB16(inB2); + sum4 = __SMLAD(opA, opB, sum4); + opA = __SXTB16(__ROR(inA2, 8)); + opB = __SXTB16(__ROR(inB2, 8)); + sum3 = __SMLAD(opA, opB, sum3); + colCnt--; + } + +#endif /* ARM_MATH_BIG_ENDIAN */ + +#else + +#ifndef ARM_MATH_BIG_ENDIAN + /* + * r0 r1 r2 r3 r4 r5 + * inA1, inA2, inB1, inB2, opA, opB + */ + + asm volatile ("COL_LOOP_%=:\n" + "ldr.w r2, [%[pB], #0]\n" + "add.w %[pB], %[pB], %[ch_im_in]\n" + "ldr.w r5, [%[pB], #0]\n" + "add.w %[pB], %[pB], %[ch_im_in]\n" + "pkhtb r3, r5, r2, ASR #16\n" + "pkhbt r2, r2, r5, LSL #16\n" + "ldr.w r0, [%[pA], #0]\n" + "add.w %[pA], %[pA], %[ch_im_in]\n" + "ldr.w r5, [%[pA], #0]\n" + "add.w %[pA], %[pA], %[ch_im_in]\n" + "pkhtb r1, r5, r0, ASR #16\n" + "pkhbt r0, r0, r5, LSL #16\n" + "sxtb16 r4, r0\n" + "sxtb16 r5, r2\n" + "smlad %[sum], r4, r5, %[sum]\n" + "mov.w r4, r0, ror #8\n" + "mov.w r5, r2, ror #8\n" + "sxtb16 r4, r4\n" + "sxtb16 r5, r5\n" + "smlad %[sum2], r4, r5, %[sum2]\n" + "sxtb16 r4, r1\n" + "sxtb16 r5, r3\n" + "smlad %[sum3], r4, r5, %[sum3]\n" + "mov.w r4, r1, ror #8\n" + "mov.w r5, r3, ror #8\n" + "sxtb16 r4, r4\n" + "sxtb16 r5, r5\n" + "smlad %[sum4], r4, r5, %[sum4]\n" + "subs %[colCnt], #1\n" + "bne COL_LOOP_%=\n":[sum] + "+r"(sum),[sum2] "+r"(sum2), + [sum3] "+r"(sum3), + [sum4] "+r"(sum4),[pB] "+r"(pB), + [pA] "+r"(pA):[colCnt] + "r"(colCnt),[ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5"); +#else + /* + * r0 r1 r2 r3 r4 r5 + * inA1, inA2, inB1, inB2, opA, opB + */ + asm volatile ("COL_LOOP_%=:\n" + "ldr.w r2, [%[pB], #0]\n" + "add.w %[pB], %[pB], %[ch_im_in]\n" + "ldr.w r5, [%[pB], #0]\n" + "add.w %[pB], %[pB], %[ch_im_in]\n" + "pkhbt r3, r5, r2, LSL #16\n" + "pkhtb r2, r2, r5, ASR #16\n" + "ldr.w r0, [%[pA], #0]\n" + "add.w %[pA], %[pA], %[ch_im_in]\n" + "ldr.w r5, [%[pA], #0]\n" + "add.w %[pA], %[pA], %[ch_im_in]\n" + "pkhbt r1, r5, r0, LSL #16\n" + "pkhtb r0, r0, r5, ASR #16\n" + "sxtb16 r4, r0\n" + "sxtb16 r5, r2\n" + "smlad %[sum2], r4, r5, %[sum2]\n" + "mov.w r4, r0, ror #8\n" + "mov.w r5, r2, ror #8\n" + "sxtb16 r4, r4\n" + "sxtb16 r5, r5\n" + "smlad %[sum], r4, r5, %[sum]\n" + "sxtb16 r4, r1\n" + "sxtb16 r5, r3\n" + "smlad %[sum4], r4, r5, %[sum4]\n" + "mov.w r4, r1, ror #8\n" + "mov.w r5, r3, ror #8\n" + "sxtb16 r4, r4\n" + "sxtb16 r5, r5\n" + "smlad %[sum3], r4, r5, %[sum3]\n" + "subs %[colCnt], #1\n" + "bne COL_LOOP_%=\n":[sum] + "+r"(sum),[sum2] "+r"(sum2), + [sum3] "+r"(sum3), + [sum4] "+r"(sum4),[pB] "+r"(pB), + [pA] "+r"(pA):[colCnt] + "r"(colCnt),[ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5"); + +#endif /* ARM_MATH_BIG_ENDIAN */ + +#endif /* USE_INTRINSIC */ + + colCnt = (dim_kernel * dim_kernel) & 0x1; + while (colCnt) + { + union arm_nnword inA, inB; + inA.word = arm_nn_read_q7x4(pA); + pA += ch_im_in; + inB.word = arm_nn_read_q7x4(pB); + pB += ch_im_in; + sum += inA.bytes[0] * inB.bytes[0]; + sum2 += inA.bytes[1] * inB.bytes[1]; + sum3 += inA.bytes[2] * inB.bytes[2]; + sum4 += inA.bytes[3] * inB.bytes[3]; + colCnt--; + } + + *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); + *pOut++ = (q7_t) __SSAT((sum2 >> out_shift), 8); + *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8); + *pOut++ = (q7_t) __SSAT((sum4 >> out_shift), 8); + + rowCnt--; + } + + rowCnt = ch_im_out & 0x3; + while (rowCnt) + { + q7_t *pB = colBuffer + row_shift; + const q7_t *pA = wt + row_shift; + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + uint16_t colCnt = (dim_kernel * dim_kernel); + + row_shift += 1; + + while (colCnt) + { + q7_t A1 = *pA; + q7_t B1 = *pB; + pA += ch_im_in; + pB += ch_im_in; + sum += A1 * B1; + + colCnt--; + } + *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); + rowCnt--; + } + + /* clear counter and pointers */ + pBuffer = colBuffer; + } + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + int i_out_y, i_out_x, i_ch_out, i_ker_x, i_ker_y; + int conv_out; + + /* do some checking here, basically ch_im_in == ch_im_out */ + if (ch_im_in != ch_im_out) + { + return ARM_MATH_SIZE_MISMATCH; + } + + for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++) + { + for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++) + { + // for each output + conv_out = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift); + for (i_ker_y = 0; i_ker_y < dim_kernel; i_ker_y++) + { + for (i_ker_x = 0; i_ker_x < dim_kernel; i_ker_x++) + { + int in_row = stride * i_out_y + i_ker_y - padding; + int in_col = stride * i_out_x + i_ker_x - padding; + if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in) + { + conv_out += + Im_in[(in_row * + dim_im_in + + in_col) * + ch_im_in + + i_ch_out] * wt[(i_ker_y * dim_kernel + i_ker_x) * ch_im_out + i_ch_out]; + } + } + } + Im_out[(i_out_y * dim_im_out + + i_out_x) * ch_im_out + i_ch_out] = (q7_t) __SSAT((conv_out >> out_shift), 8); + } + } + } + +#endif /* ARM_MATH_DSP */ + + /* Return to application */ + return ARM_MATH_SUCCESS; + +} + +/** + * @} end of NNConv group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7_nonsquare.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7_nonsquare.c new file mode 100644 index 00000000..adeb8c45 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_separable_conv_HWC_q7_nonsquare.c @@ -0,0 +1,413 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_depthwise_separable_conv_HWC_q7_nonsquare.c + * Description: Q7 depthwise separable convolution function (non-square shape) + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup NNConv + * @{ + */ + +/** + * @brief Q7 depthwise separable convolution function (non-square shape) + * @param[in] Im_in pointer to input tensor + * @param[in] dim_im_in_x input tensor dimention x + * @param[in] dim_im_in_y input tensor dimention y + * @param[in] ch_im_in number of input tensor channels + * @param[in] wt pointer to kernel weights + * @param[in] ch_im_out number of filters, i.e., output tensor channels + * @param[in] dim_kernel_x filter kernel size x + * @param[in] dim_kernel_y filter kernel size y + * @param[in] padding_x padding sizes x + * @param[in] padding_y padding sizes y + * @param[in] stride_x convolution stride x + * @param[in] stride_y convolution stride y + * @param[in] bias pointer to bias + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in,out] Im_out pointer to output tensor + * @param[in] dim_im_out_x output tensor dimension x + * @param[in] dim_im_out_y output tensor dimension y + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] bufferB pointer to buffer space for output + * @return The function returns either + * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. + * + * This function is the version with full list of optimization tricks, but with + * some contraints: + * ch_im_in is equal to ch_im_out + * + */ + +arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t * Im_in, + const uint16_t dim_im_in_x, + const uint16_t dim_im_in_y, + const uint16_t ch_im_in, + const q7_t * wt, + const uint16_t ch_im_out, + const uint16_t dim_kernel_x, + const uint16_t dim_kernel_y, + const uint16_t padding_x, + const uint16_t padding_y, + const uint16_t stride_x, + const uint16_t stride_y, + const q7_t * bias, + const uint16_t bias_shift, + const uint16_t out_shift, + q7_t * Im_out, + const uint16_t dim_im_out_x, + const uint16_t dim_im_out_y, + q15_t * bufferA, + q7_t * bufferB) +{ + + (void)bufferB; + +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + +/* + * Implementation: + * There are 3 nested loop here: + * Inner loop: calculate each output value with MAC instruction over an accumulator + * Mid loop: loop over different output channel + * Outer loop: loop over different output (x, y) + * + */ + + int16_t i_out_y, i_out_x; + int16_t i_ker_y, i_ker_x; + q7_t *colBuffer = (q7_t *) bufferA; + q7_t *pBuffer = colBuffer; + const q7_t *pBias = bias; + q7_t *pOut = Im_out; + uint16_t rowCnt; + uint16_t row_shift; + + /* do some checking here, basically ch_im_in == ch_im_out */ + if (ch_im_in != ch_im_out) + { + return ARM_MATH_SIZE_MISMATCH; + } + + for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) + { + /* we first do im2col here */ + for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; + i_ker_y++) + { + for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; + i_ker_x++) + { + if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x) + { + /* arm_fill_q7(0, pBuffer, ch_im_in); */ + memset(pBuffer, 0, ch_im_in); + } else + { + /* arm_copy_q7((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */ + memcpy(pBuffer, (q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, ch_im_in); + } + pBuffer += ch_im_in; + } + } + + /* we will do the computation here for each channel */ + rowCnt = ch_im_out >> 2; + row_shift = 0; + pBias = bias; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = (dim_kernel_x * dim_kernel_y) >> 1; + q7_t *pB = colBuffer + row_shift; + const q7_t *pA = wt + row_shift; + row_shift += 4; + +#ifdef USE_INTRINSIC + +#ifndef ARM_MATH_BIG_ENDIAN + + while (colCnt) + { + q31_t inA1, inA2, inB1, inB2, opA, opB; + + inB1 = arm_nn_read_q7x4(pB); + pB += ch_im_in; + opB = arm_nn_read_q7x4(pB); + pB += ch_im_in; + inB2 = __PKHTB(opB, inB1, 16); + inB1 = __PKHBT(inB1, opB, 16); + inA1 = arm_nn_read_q7x4(pA); + pA += ch_im_in; + opB = arm_nn_read_q7x4(pA); + pA += ch_im_in; + inA2 = __PKHTB(opB, inA1, 16); + inA1 = __PKHBT(inA1, opB, 16); + opA = __SXTB16(inA1); + opB = __SXTB16(inB1); + sum = __SMLAD(opA, opB, sum); + opA = __SXTB16(__ROR(inA1, 8)); + opB = __SXTB16(__ROR(inB1, 8)); + sum2 = __SMLAD(opA, opB, sum2); + opA = __SXTB16(inA2); + opB = __SXTB16(inB2); + sum3 = __SMLAD(opA, opB, sum3); + opA = __SXTB16(__ROR(inA2, 8)); + opB = __SXTB16(__ROR(inB2, 8)); + sum4 = __SMLAD(opA, opB, sum4); + colCnt--; + } +#else + + while (colCnt) + { + q31_t inA1, inA2, inB1, inB2, opA, opB; + + inB1 = arm_nn_read_q7x4(pB); + pB += ch_im_in; + opB = arm_nn_read_q7x4(pB); + pB += ch_im_in; + inB2 = __PKHBT(opB, inB1, 16); + inB1 = __PKHTB(inB1, opB, 16); + inA1 = arm_nn_read_q7x4(pA); + pA += ch_im_in; + opB = arm_nn_read_q7x4(pA); + pA += ch_im_in; + inA2 = __PKHBT(opB, inA1, 16); + inA1 = __PKHTB(inA1, opB, 16); + opA = __SXTB16(inA1); + opB = __SXTB16(inB1); + sum2 = __SMLAD(opA, opB, sum2); + opA = __SXTB16(__ROR(inA1, 8)); + opB = __SXTB16(__ROR(inB1, 8)); + sum = __SMLAD(opA, opB, sum); + opA = __SXTB16(inA2); + opB = __SXTB16(inB2); + sum4 = __SMLAD(opA, opB, sum4); + opA = __SXTB16(__ROR(inA2, 8)); + opB = __SXTB16(__ROR(inB2, 8)); + sum3 = __SMLAD(opA, opB, sum3); + colCnt--; + } + +#endif /* ARM_MATH_BIG_ENDIAN */ + +#else + +#ifndef ARM_MATH_BIG_ENDIAN + // r0 r1 r2 r3 r4 r5 + // inA1, inA2, inB1, inB2, opA, opB + asm volatile ("COL_LOOP:\n" + "ldr.w r2, [%[pB], #0]\n" + "add.w %[pB], %[pB], %[ch_im_in]\n" + "ldr.w r5, [%[pB], #0]\n" + "add.w %[pB], %[pB], %[ch_im_in]\n" + "pkhtb r3, r5, r2, ASR #16\n" + "pkhbt r2, r2, r5, LSL #16\n" + "ldr.w r0, [%[pA], #0]\n" + "add.w %[pA], %[pA], %[ch_im_in]\n" + "ldr.w r5, [%[pA], #0]\n" + "add.w %[pA], %[pA], %[ch_im_in]\n" + "pkhtb r1, r5, r0, ASR #16\n" + "pkhbt r0, r0, r5, LSL #16\n" + "sxtb16 r4, r0\n" + "sxtb16 r5, r2\n" + "smlad %[sum], r4, r5, %[sum]\n" + "mov.w r4, r0, ror #8\n" + "mov.w r5, r2, ror #8\n" + "sxtb16 r4, r4\n" + "sxtb16 r5, r5\n" + "smlad %[sum2], r4, r5, %[sum2]\n" + "sxtb16 r4, r1\n" + "sxtb16 r5, r3\n" + "smlad %[sum3], r4, r5, %[sum3]\n" + "mov.w r4, r1, ror #8\n" + "mov.w r5, r3, ror #8\n" + "sxtb16 r4, r4\n" + "sxtb16 r5, r5\n" + "smlad %[sum4], r4, r5, %[sum4]\n" + "subs %[colCnt], #1\n" + "bne COL_LOOP\n":[sum] "+r"(sum),[sum2] "+r"(sum2),[sum3] "+r"(sum3), + [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt), + [ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5"); +#else + // r0 r1 r2 r3 r4 r5 + // inA1, inA2, inB1, inB2, opA, opB + asm volatile ("COL_LOOP:\n" + "ldr.w r2, [%[pB], #0]\n" + "add.w %[pB], %[pB], %[ch_im_in]\n" + "ldr.w r5, [%[pB], #0]\n" + "add.w %[pB], %[pB], %[ch_im_in]\n" + "pkhbt r3, r5, r2, LSL #16\n" + "pkhtb r2, r2, r5, ASR #16\n" + "ldr.w r0, [%[pA], #0]\n" + "add.w %[pA], %[pA], %[ch_im_in]\n" + "ldr.w r5, [%[pA], #0]\n" + "add.w %[pA], %[pA], %[ch_im_in]\n" + "pkhbt r1, r5, r0, LSL #16\n" + "pkhtb r0, r0, r5, ASR #16\n" + "sxtb16 r4, r0\n" + "sxtb16 r5, r2\n" + "smlad %[sum2], r4, r5, %[sum2]\n" + "mov.w r4, r0, ror #8\n" + "mov.w r5, r2, ror #8\n" + "sxtb16 r4, r4\n" + "sxtb16 r5, r5\n" + "smlad %[sum], r4, r5, %[sum]\n" + "sxtb16 r4, r1\n" + "sxtb16 r5, r3\n" + "smlad %[sum4], r4, r5, %[sum4]\n" + "mov.w r4, r1, ror #8\n" + "mov.w r5, r3, ror #8\n" + "sxtb16 r4, r4\n" + "sxtb16 r5, r5\n" + "smlad %[sum3], r4, r5, %[sum3]\n" + "subs %[colCnt], #1\n" + "bne COL_LOOP\n":[sum] "+r"(sum),[sum2] "+r"(sum2),[sum3] "+r"(sum3), + [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt), + [ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5"); +#endif /*ARM_MATH_BIG_ENDIAN */ + +#endif /* USE_INTRINSIC */ + + colCnt = (dim_kernel_x * dim_kernel_y) & 0x1; + while (colCnt) + { + union arm_nnword inA, inB; + inA.word = arm_nn_read_q7x4(pA); + pA += ch_im_in; + inB.word = arm_nn_read_q7x4(pB); + pB += ch_im_in; + sum += inA.bytes[0] * inB.bytes[0]; + sum2 += inA.bytes[1] * inB.bytes[1]; + sum3 += inA.bytes[2] * inB.bytes[2]; + sum4 += inA.bytes[3] * inB.bytes[3]; + colCnt--; + } + + *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); + *pOut++ = (q7_t) __SSAT((sum2 >> out_shift), 8); + *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8); + *pOut++ = (q7_t) __SSAT((sum4 >> out_shift), 8); + + rowCnt--; + } + + rowCnt = ch_im_out & 0x3; + while (rowCnt) + { + q7_t *pB = colBuffer + row_shift; + const q7_t *pA = wt + row_shift; + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + uint16_t colCnt = (dim_kernel_x * dim_kernel_y); + + row_shift += 1; + + while (colCnt) + { + q7_t A1 = *pA; + q7_t B1 = *pB; + pA += ch_im_in; + pB += ch_im_in; + sum += A1 * B1; + + colCnt--; + } + *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); + rowCnt--; + } + + // clear counter and pointers + pBuffer = colBuffer; + } + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + int i_out_y, i_out_x, i_ch_out; + int i_ker_y, i_ker_x; + + /* do some checking here, basically ch_im_in == ch_im_out */ + if (ch_im_in != ch_im_out) + { + return ARM_MATH_SIZE_MISMATCH; + } + + for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++) + { + for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++) + { + for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++) + { + // for each output + int conv_out = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift); + for (i_ker_y = 0; i_ker_y < dim_kernel_y; i_ker_y++) + { + for (i_ker_x = 0; i_ker_x < dim_kernel_x; i_ker_x++) + { + int in_row = stride_y * i_out_y + i_ker_y - padding_y; + int in_col = stride_x * i_out_x + i_ker_x - padding_x; + if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x) + { + conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + i_ch_out] * + wt[(i_ker_y * dim_kernel_x + i_ker_x) * ch_im_out + i_ch_out]; + } + } + } + Im_out[(i_out_y * dim_im_out_x + i_out_x) * ch_im_out + i_ch_out] = + (q7_t) __SSAT((conv_out >> out_shift), 8); + } + } + } + +#endif /* ARM_MATH_DSP */ + + + /* Return to application */ + return ARM_MATH_SUCCESS; + +} + +/** + * @} end of NNConv group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_depthwise_conv_s8_core.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_depthwise_conv_s8_core.c new file mode 100644 index 00000000..f9106341 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_depthwise_conv_s8_core.c @@ -0,0 +1,219 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nn_depthwise_conv_s8_core.c + * Description: Depthwise convolution on im2col buffers. + * + * $Date: May 29, 2020 + * $Revision: V.1.0.3 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/* + * Depthwise conv on an im2col buffer where the input channel equals + * output channel. + * + * Refer header file for details. + * + */ + +q7_t *arm_nn_depthwise_conv_s8_core(const q7_t *row, + const q15_t *col, + const uint16_t num_ch, + const int32_t *out_shift, + const int32_t *out_mult, + const int32_t out_offset, + const int32_t activation_min, + const int32_t activation_max, + const uint16_t kernel_size, + const int32_t *const output_bias, + q7_t *out) +{ +#if defined(ARM_MATH_MVEI) + int32_t ch_per_loop = num_ch / 4; + + const int32_t *bias = output_bias; + int8_t *out_tmp = out; + + int32_t idx = 0; + + while (ch_per_loop > 0) + { + int32x4_t ip_0; + int32x4_t ip_1; + int32_t ker_loop = kernel_size / 3; + int32x4_t out_0 = vldrwq_s32(bias); + int32x4_t out_1 = out_0; + bias += 4; + + const int32_t offset = idx * 4; + const int8_t *row_0 = row + offset; + const int16_t *col_0 = col + offset; + const int16_t *col_1 = col + kernel_size * num_ch + offset; + + int32x4_t ker_0 = vldrbq_s32(row_0); + + while (ker_loop > 0) + { + const int8_t *row_1 = row_0 + num_ch; + const int8_t *row_2 = row_0 + 2 * num_ch; + const int32x4_t ker_1 = vldrbq_s32(row_1); + const int32x4_t ker_2 = vldrbq_s32(row_2); + + ip_0 = vldrhq_s32(col_0); + ip_1 = vldrhq_s32(col_1); + col_0 += num_ch; + col_1 += num_ch; + + out_0 += vmulq_s32(ip_0, ker_0); + out_1 += vmulq_s32(ip_1, ker_0); + + ip_0 = vldrhq_s32(col_0); + ip_1 = vldrhq_s32(col_1); + col_0 += num_ch; + col_1 += num_ch; + + out_0 += vmulq_s32(ip_0, ker_1); + out_1 += vmulq_s32(ip_1, ker_1); + + ip_0 = vldrhq_s32(col_0); + ip_1 = vldrhq_s32(col_1); + col_0 += num_ch; + col_1 += num_ch; + + out_0 += vmulq_s32(ip_0, ker_2); + out_1 += vmulq_s32(ip_1, ker_2); + row_0 += 3 * num_ch; + + ker_0 = vldrbq_s32(row_0); + ker_loop--; + } + + idx++; + /* Handle tail kernel elements */ + ker_loop = kernel_size - ((kernel_size / 3) * 3); + while (ker_loop > 0) + { + ip_0 = vldrhq_s32(col_0); + ip_1 = vldrhq_s32(col_1); + + out_0 += vmulq_s32(ip_0, ker_0); + out_1 += vmulq_s32(ip_1, ker_0); + + col_0 += num_ch; + col_1 += num_ch; + + ip_0 = vldrhq_s32(col_0); + ip_1 = vldrhq_s32(col_1); + + row_0 += num_ch; + ker_0 = vldrbq_s32(row_0); + ker_loop--; + } + const int32x4_t mult = vldrwq_s32(out_mult); + const int32x4_t shift = vldrwq_s32(out_shift); + out_mult += 4; + out_shift += 4; + + out_0 = arm_requantize_mve_32x4(out_0, mult, shift); + out_1 = arm_requantize_mve_32x4(out_1, mult, shift); + + out_0 = vaddq_n_s32(out_0, out_offset); + out_0 = vmaxq_s32(out_0, vdupq_n_s32(activation_min)); + out_0 = vminq_s32(out_0, vdupq_n_s32(activation_max)); + vstrbq_s32(out_tmp, out_0); + + out_1 = vaddq_n_s32(out_1, out_offset); + out_1 = vmaxq_s32(out_1, vdupq_n_s32(activation_min)); + out_1 = vminq_s32(out_1, vdupq_n_s32(activation_max)); + vstrbq_s32(out_tmp + num_ch, out_1); + + out_tmp += 4; + ch_per_loop--; + } + + int32_t tail_ch = num_ch & 3; + if (tail_ch != 0) + { + int32_t ch_idx = (num_ch & ~3); + int32x4_t col_0_sum; + int32x4_t col_1_sum; + + const int32_t single_buffer_size = kernel_size * num_ch; + for (int i = 0; i < tail_ch; i++) + { + const int16_t *col_pos_0 = col + ch_idx; + const int16_t *col_pos_1 = col_pos_0 + single_buffer_size; + + const int8_t *row_pos = row + ch_idx; + int32_t sum_0 = bias[i]; + int32_t sum_1 = bias[i]; + + for (int j = 0; j < kernel_size; j++) + { + const int8_t row_val = row_pos[j * num_ch]; + sum_0 += row_val * col_pos_0[j * num_ch]; + sum_1 += row_val * col_pos_1[j * num_ch]; + } + col_0_sum[i] = sum_0; + col_1_sum[i] = sum_1; + + ch_idx++; + } + const mve_pred16_t p = vctp32q((uint32_t)tail_ch); + const int32x4_t mult = vldrwq_z_s32(out_mult, p); + const int32x4_t shift = vldrwq_z_s32(out_shift, p); + + col_0_sum = arm_requantize_mve_32x4(col_0_sum, mult, shift); + col_1_sum = arm_requantize_mve_32x4(col_1_sum, mult, shift); + + col_0_sum = vaddq_n_s32(col_0_sum, out_offset); + col_0_sum = vmaxq_s32(col_0_sum, vdupq_n_s32(activation_min)); + col_0_sum = vminq_s32(col_0_sum, vdupq_n_s32(activation_max)); + vstrbq_p_s32(out_tmp, col_0_sum, p); + + col_1_sum = vaddq_n_s32(col_1_sum, out_offset); + col_1_sum = vmaxq_s32(col_1_sum, vdupq_n_s32(activation_min)); + col_1_sum = vminq_s32(col_1_sum, vdupq_n_s32(activation_max)); + vstrbq_p_s32(out_tmp + num_ch, col_1_sum, p); + + out_tmp += tail_ch; + } + + return out_tmp + num_ch; +#else + (void)row; + (void)col; + (void)num_ch; + (void)out_shift; + (void)out_mult; + (void)out_offset; + (void)activation_min; + (void)activation_max; + (void)kernel_size; + (void)output_bias; + (void)out; + return NULL; +#endif +} diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15.c new file mode 100644 index 00000000..49b3ba47 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15.c @@ -0,0 +1,179 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nn_mat_mult_kernel_q7_q15.c + * Description: Matrix-multiplication function for convolution + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + + /** + * @brief Matrix-multiplication function for convolution. + * + * @details Refer to header file for details. + * + */ + +q7_t *arm_nn_mat_mult_kernel_q7_q15(const q7_t * pA, + const q15_t * pInBuffer, + const uint16_t ch_im_out, + const uint16_t numCol_A, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t * bias, + q7_t * pOut) +{ +#if defined (ARM_MATH_DSP) + /* set up the second output pointers */ + q7_t *pOut2 = pOut + ch_im_out; + const q7_t *pBias = bias; + + uint16_t rowCnt = ch_im_out >> 1; + /* this loop over rows in A */ + while (rowCnt) + { + /* setup pointers for B */ + const q15_t *pB = pInBuffer; + const q15_t *pB2 = pB + numCol_A; + + /* align the second pointer for A */ + const q7_t *pA2 = pA + numCol_A; + + /* init the sum with bias */ + q31_t sum = ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = numCol_A >> 2; + /* accumulate over the vector */ + while (colCnt) + { + q31_t inA11, inA12, inA21, inA22; + + q31_t inB1 = arm_nn_read_q15x2_ia(&pB); + q31_t inB2 = arm_nn_read_q15x2_ia(&pB2); + + pA = read_and_pad(pA, &inA11, &inA12); + pA2 = read_and_pad(pA2, &inA21, &inA22); + + sum = __SMLAD(inA11, inB1, sum); + sum2 = __SMLAD(inA11, inB2, sum2); + sum3 = __SMLAD(inA21, inB1, sum3); + sum4 = __SMLAD(inA21, inB2, sum4); + + inB1 = arm_nn_read_q15x2_ia(&pB); + inB2 = arm_nn_read_q15x2_ia(&pB2); + + sum = __SMLAD(inA12, inB1, sum); + sum2 = __SMLAD(inA12, inB2, sum2); + sum3 = __SMLAD(inA22, inB1, sum3); + sum4 = __SMLAD(inA22, inB2, sum4); + + colCnt--; + } /* while over colCnt */ + colCnt = numCol_A & 0x3; + while (colCnt) + { + q7_t inA1 = *pA++; + q15_t inB1 = *pB++; + q7_t inA2 = *pA2++; + q15_t inB2 = *pB2++; + + sum += inA1 * inB1; + sum2 += inA1 * inB2; + sum3 += inA2 * inB1; + sum4 += inA2 * inB2; + colCnt--; + } /* while over colCnt */ + *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); + *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8); + *pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8); + *pOut2++ = (q7_t) __SSAT((sum4 >> out_shift), 8); + + /* skip the row computed with A2 */ + pA += numCol_A; + rowCnt--; + } /* for over ch_im_out */ + + /* compute left-over row if any */ + if (ch_im_out & 0x1) + { + /* setup pointers for B */ + const q15_t *pB = pInBuffer; + const q15_t *pB2 = pB + numCol_A; + + /* load the bias */ + q31_t sum = ((q31_t)(*pBias) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = numCol_A >> 2; + while (colCnt) + { + q31_t inA11, inA12; + + q31_t inB1 = arm_nn_read_q15x2_ia(&pB); + q31_t inB2 = arm_nn_read_q15x2_ia(&pB2); + + pA = read_and_pad(pA, &inA11, &inA12); + + sum = __SMLAD(inA11, inB1, sum); + sum2 = __SMLAD(inA11, inB2, sum2); + + inB1 = arm_nn_read_q15x2_ia(&pB); + inB2 = arm_nn_read_q15x2_ia(&pB2); + + sum = __SMLAD(inA12, inB1, sum); + sum2 = __SMLAD(inA12, inB2, sum2); + + colCnt--; + } + colCnt = numCol_A & 0x3; + while (colCnt) + { + q7_t inA1 = *pA++; + q15_t inB1 = *pB++; + q15_t inB2 = *pB2++; + + sum += inA1 * inB1; + sum2 += inA1 * inB2; + colCnt--; + } + + *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); + *pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8); + } + + pOut += ch_im_out; + + /* return the new output pointer with offset */ + return pOut; +#else + /* To be completed */ + return NULL; +#endif /* ARM_MATH_DSP */ + +} diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15_reordered.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15_reordered.c new file mode 100644 index 00000000..b5bbc397 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_q7_q15_reordered.c @@ -0,0 +1,129 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nn_mat_mult_kernel_q7_q15_reordered.c + * Description: Matrix-multiplication function for convolution with reordered columns + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" +#include "cmsis/CMSIS/DSP/Include/arm_math.h" + + /** + * @brief Matrix-multiplication function for convolution with re-ordered input. + * + * @details Refer to header file for details. + * + */ + +q7_t *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t * pA, + const q15_t * pInBuffer, + const uint16_t ch_im_out, + const uint16_t numCol_A, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t * bias, + q7_t * pOut) +{ + +#if defined (ARM_MATH_DSP) + /* set up the second output pointers */ + q7_t *pOut2 = pOut + ch_im_out; + int i; + + /* this loop over rows in A */ + for (i = 0; i < ch_im_out; i += 2) + { + /* setup pointers for B */ + const q15_t *pB = pInBuffer; + const q15_t *pB2 = pB + numCol_A; + + /* align the second pointer for A */ + const q7_t *pA2 = pA + numCol_A; + + /* init the sum with bias */ + q31_t sum = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(bias[i + 1]) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(bias[i + 1]) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = numCol_A >> 2; + /* accumulate over the vector */ + while (colCnt) + { + q31_t inA11, inA12, inA21, inA22; + + q31_t inB1 = arm_nn_read_q15x2_ia(&pB); + q31_t inB2 = arm_nn_read_q15x2_ia(&pB2); + + pA = read_and_pad_reordered(pA, &inA11, &inA12); + pA2 = read_and_pad_reordered(pA2, &inA21, &inA22); + + sum = __SMLAD(inA11, inB1, sum); + sum2 = __SMLAD(inA11, inB2, sum2); + sum3 = __SMLAD(inA21, inB1, sum3); + sum4 = __SMLAD(inA21, inB2, sum4); + + inB1 = arm_nn_read_q15x2_ia(&pB); + inB2 = arm_nn_read_q15x2_ia(&pB2); + + sum = __SMLAD(inA12, inB1, sum); + sum2 = __SMLAD(inA12, inB2, sum2); + sum3 = __SMLAD(inA22, inB1, sum3); + sum4 = __SMLAD(inA22, inB2, sum4); + + colCnt--; + } /* while over colCnt */ + colCnt = numCol_A & 0x3; + while (colCnt) + { + q7_t inA1 = *pA++; + q15_t inB1 = *pB++; + q7_t inA2 = *pA2++; + q15_t inB2 = *pB2++; + + sum += inA1 * inB1; + sum2 += inA1 * inB2; + sum3 += inA2 * inB1; + sum4 += inA2 * inB2; + colCnt--; + } /* while over colCnt */ + *pOut++ = (q7_t) __SSAT((sum >> out_shift), 8); + *pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8); + *pOut2++ = (q7_t) __SSAT((sum2 >> out_shift), 8); + *pOut2++ = (q7_t) __SSAT((sum4 >> out_shift), 8); + + /* skip the row computed with A2 */ + pA += numCol_A; + } /* for over ch_im_out */ + + pOut += ch_im_out; + + /* return the new output pointer with offset */ + return pOut; +#else + /* To be completed */ + return NULL; +#endif /* ARM_MATH_DSP */ +} diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_s8_s16.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_s8_s16.c new file mode 100644 index 00000000..9aa17c96 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_s8_s16.c @@ -0,0 +1,391 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nn_mat_mult_kernel_s8_s16.c + * Description: Matrix-multiplication function for convolution + * + * $Date: May 29, 2020 + * $Revision: V.1.0.2 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/* + * Matrix-multiplication function for convolution with per-channel requantization. + * + * Refer header file for details. + * + */ + +q7_t *arm_nn_mat_mult_kernel_s8_s16(const q7_t *input_a, + const q15_t *input_b, + const uint16_t output_ch, + const int32_t *out_shift, + const int32_t *out_mult, + const int32_t out_offset, + const int16_t activation_min, + const int16_t activation_max, + const uint16_t num_col_a, + const int32_t *const output_bias, + q7_t *out_0) +{ +#if defined(ARM_MATH_MVEI) +#define ROW_PER_LOOP (4) +#define COL_PER_LOOP (8) + + const q7_t *ip_a0_s8 = input_a; + q7_t *out_1 = out_0 + output_ch; + + const int32_t *bias = output_bias; + + int32_t row_count = output_ch / ROW_PER_LOOP; + + while (row_count) + { + const q15_t *ip_b0_s16 = input_b; + const q15_t *ip_b1_s16 = input_b + num_col_a; + + const q7_t *ip_a1_s8 = ip_a0_s8 + num_col_a; + const q7_t *ip_a2_s8 = ip_a0_s8 + num_col_a * 2; + const q7_t *ip_a3_s8 = ip_a0_s8 + num_col_a * 3; + + q31_t ch_0_out_n = bias[0]; + q31_t ch_1_out_n = bias[1]; + q31_t ch_2_out_n = bias[2]; + q31_t ch_3_out_n = bias[3]; + + q31_t ch_0_out_n1 = ch_0_out_n; + q31_t ch_1_out_n1 = ch_1_out_n; + q31_t ch_2_out_n1 = ch_2_out_n; + q31_t ch_3_out_n1 = ch_3_out_n; + bias += 4; + + int32_t col_count = num_col_a / COL_PER_LOOP; + + while (col_count) + { + // Load inputs + const int16x8_t ip_b0 = vld1q_s16(ip_b0_s16); + ip_b0_s16 += COL_PER_LOOP; + const int16x8_t ip_b1 = vld1q_s16(ip_b1_s16); + ip_b1_s16 += COL_PER_LOOP; + + // Load filters + const int16x8_t ip_a0 = vldrbq_s16(ip_a0_s8); + ip_a0_s8 += COL_PER_LOOP; + const int16x8_t ip_a1 = vldrbq_s16(ip_a1_s8); + ip_a1_s8 += COL_PER_LOOP; + const int16x8_t ip_a2 = vldrbq_s16(ip_a2_s8); + ip_a2_s8 += COL_PER_LOOP; + const int16x8_t ip_a3 = vldrbq_s16(ip_a3_s8); + ip_a3_s8 += COL_PER_LOOP; + + // MAC + ch_0_out_n += vmladavq_s16(ip_b0, ip_a0); + ch_1_out_n += vmladavq_s16(ip_b0, ip_a1); + ch_2_out_n += vmladavq_s16(ip_b0, ip_a2); + ch_3_out_n += vmladavq_s16(ip_b0, ip_a3); + ch_0_out_n1 += vmladavq_s16(ip_b1, ip_a0); + ch_1_out_n1 += vmladavq_s16(ip_b1, ip_a1); + ch_2_out_n1 += vmladavq_s16(ip_b1, ip_a2); + ch_3_out_n1 += vmladavq_s16(ip_b1, ip_a3); + + col_count--; + } + + /* Handle tail */ + col_count = (num_col_a & (COL_PER_LOOP - 1)) - 1; + while (col_count >= 0) + { + const int32_t b0 = ip_b0_s16[col_count]; + const int32_t b1 = ip_b1_s16[col_count]; + + ch_0_out_n += b0 * ip_a0_s8[col_count]; + ch_1_out_n += b0 * ip_a1_s8[col_count]; + ch_2_out_n += b0 * ip_a2_s8[col_count]; + ch_3_out_n += b0 * ip_a3_s8[col_count]; + + ch_0_out_n1 += b1 * ip_a0_s8[col_count]; + ch_1_out_n1 += b1 * ip_a1_s8[col_count]; + ch_2_out_n1 += b1 * ip_a2_s8[col_count]; + ch_3_out_n1 += b1 * ip_a3_s8[col_count]; + col_count--; + } + ip_a0_s8 += (num_col_a & (COL_PER_LOOP - 1)); + + int32x4_t out_vec_0; + int32x4_t out_vec_1; + out_vec_0[0] = ch_0_out_n; + out_vec_0[1] = ch_1_out_n; + out_vec_0[2] = ch_2_out_n; + out_vec_0[3] = ch_3_out_n; + + out_vec_1[0] = ch_0_out_n1; + out_vec_1[1] = ch_1_out_n1; + out_vec_1[2] = ch_2_out_n1; + out_vec_1[3] = ch_3_out_n1; + + int32x4_t mult = vldrwq_s32(out_mult); + int32x4_t shift = vldrwq_s32(out_shift); + out_mult += ROW_PER_LOOP; + out_shift += ROW_PER_LOOP; + + out_vec_0 = arm_requantize_mve_32x4(out_vec_0, mult, shift); + out_vec_1 = arm_requantize_mve_32x4(out_vec_1, mult, shift); + + out_vec_0 = vaddq_n_s32(out_vec_0, out_offset); + out_vec_0 = vmaxq_s32(out_vec_0, vdupq_n_s32(activation_min)); + out_vec_0 = vminq_s32(out_vec_0, vdupq_n_s32(activation_max)); + vstrbq_s32(out_0, out_vec_0); + out_0 += ROW_PER_LOOP; + + out_vec_1 = vaddq_n_s32(out_vec_1, out_offset); + out_vec_1 = vmaxq_s32(out_vec_1, vdupq_n_s32(activation_min)); + out_vec_1 = vminq_s32(out_vec_1, vdupq_n_s32(activation_max)); + vstrbq_s32(out_1, out_vec_1); + out_1 += ROW_PER_LOOP; + row_count--; + ip_a0_s8 += (num_col_a * 3); + } + + row_count = output_ch & (ROW_PER_LOOP - 1); + + if (row_count) + { + ip_a0_s8 = input_a + num_col_a * (output_ch & ~3); + const mve_pred16_t p = vctp32q((uint32_t)row_count); + int32x4_t out_vec_0 = vdupq_n_s32(0); + int32x4_t out_vec_1 = vdupq_n_s32(0); + int32x4_t mult_tail; + int32x4_t shift_tail; + + for (int i_ch = 0; i_ch < row_count; i_ch++) + { + int32_t output_0 = bias[i_ch]; + int32_t output_1 = bias[i_ch]; + const q15_t *ip_b0_s16 = input_b; + const q15_t *ip_b1_s16 = input_b + num_col_a; + + for (int i_idx = 0; i_idx < num_col_a; i_idx++) + { + output_0 += ip_b0_s16[i_idx] * ip_a0_s8[i_idx]; + output_1 += ip_b1_s16[i_idx] * ip_a0_s8[i_idx]; + } + + ip_a0_s8 += num_col_a; + out_vec_0[i_ch] = output_0; + out_vec_1[i_ch] = output_1; + mult_tail[i_ch] = out_mult[i_ch]; + shift_tail[i_ch] = out_shift[i_ch]; + } + out_vec_0 = arm_requantize_mve_32x4(out_vec_0, mult_tail, shift_tail); + out_vec_1 = arm_requantize_mve_32x4(out_vec_1, mult_tail, shift_tail); + + out_vec_0 = vaddq_n_s32(out_vec_0, out_offset); + out_vec_0 = vmaxq_s32(out_vec_0, vdupq_n_s32(activation_min)); + out_vec_0 = vminq_s32(out_vec_0, vdupq_n_s32(activation_max)); + vstrbq_p_s32(out_0, out_vec_0, p); + + out_vec_1 = vaddq_n_s32(out_vec_1, out_offset); + out_vec_1 = vmaxq_s32(out_vec_1, vdupq_n_s32(activation_min)); + out_vec_1 = vminq_s32(out_vec_1, vdupq_n_s32(activation_max)); + + vstrbq_p_s32(out_1, out_vec_1, p); + out_1 += row_count; + } + + return out_1; + +#elif defined(ARM_MATH_DSP) + /* set up the second output pointers */ + q7_t *out_1 = out_0 + output_ch; + const int32_t *bias = output_bias; + + uint16_t row_count = output_ch / 2; + const q7_t *ip_a0 = input_a; + /* this loop over rows in A */ + while (row_count) + { + /* setup pointers for B */ + const q15_t *ip_b0 = input_b; + const q15_t *ip_b1 = ip_b0 + num_col_a; + + /* align the second pointer for A */ + const q7_t *ip_a1 = ip_a0 + num_col_a; + + /* Init accumulator with bias for channel N and N + 1 */ + q31_t ch_0_out_0 = *bias; + q31_t ch_0_out_1 = *bias++; + q31_t ch_1_out_0 = *bias; + q31_t ch_1_out_1 = *bias++; + + uint16_t col_count = num_col_a / 4; + /* accumulate over the vector */ + while (col_count) + { + q31_t a01, a02, a11, a12; + q31_t b0 = arm_nn_read_q15x2_ia(&ip_b0); + q31_t b1 = arm_nn_read_q15x2_ia(&ip_b1); + + ip_a0 = read_and_pad(ip_a0, &a01, &a02); + ip_a1 = read_and_pad(ip_a1, &a11, &a12); + + ch_0_out_0 = __SMLAD(a01, b0, ch_0_out_0); + ch_0_out_1 = __SMLAD(a01, b1, ch_0_out_1); + ch_1_out_0 = __SMLAD(a11, b0, ch_1_out_0); + ch_1_out_1 = __SMLAD(a11, b1, ch_1_out_1); + + b0 = arm_nn_read_q15x2_ia(&ip_b0); + b1 = arm_nn_read_q15x2_ia(&ip_b1); + + ch_0_out_0 = __SMLAD(a02, b0, ch_0_out_0); + ch_0_out_1 = __SMLAD(a02, b1, ch_0_out_1); + ch_1_out_0 = __SMLAD(a12, b0, ch_1_out_0); + ch_1_out_1 = __SMLAD(a12, b1, ch_1_out_1); + + col_count--; + } /* while over col_count */ + col_count = num_col_a & 0x3; + while (col_count) + { + q7_t a0 = *ip_a0++; + q15_t b0 = *ip_b0++; + q7_t a1 = *ip_a1++; + q15_t b1 = *ip_b1++; + + ch_0_out_0 += a0 * b0; + ch_0_out_1 += a0 * b1; + ch_1_out_0 += a1 * b0; + ch_1_out_1 += a1 * b1; + col_count--; + } /* while over col_count */ + + ch_0_out_0 = arm_nn_requantize(ch_0_out_0, *out_mult, *out_shift); + ch_0_out_0 += out_offset; + ch_0_out_0 = MAX(ch_0_out_0, activation_min); + ch_0_out_0 = MIN(ch_0_out_0, activation_max); + *out_0++ = (q7_t)ch_0_out_0; + + ch_0_out_1 = arm_nn_requantize(ch_0_out_1, *out_mult, *out_shift); + ch_0_out_1 += out_offset; + ch_0_out_1 = MAX(ch_0_out_1, activation_min); + ch_0_out_1 = MIN(ch_0_out_1, activation_max); + *out_1++ = (q7_t)ch_0_out_1; + out_mult++; + out_shift++; + + ch_1_out_0 = arm_nn_requantize(ch_1_out_0, *out_mult, *out_shift); + ch_1_out_0 += out_offset; + ch_1_out_0 = MAX(ch_1_out_0, activation_min); + ch_1_out_0 = MIN(ch_1_out_0, activation_max); + *out_0++ = (q7_t)ch_1_out_0; + + ch_1_out_1 = arm_nn_requantize(ch_1_out_1, *out_mult, *out_shift); + ch_1_out_1 += out_offset; + ch_1_out_1 = MAX(ch_1_out_1, activation_min); + ch_1_out_1 = MIN(ch_1_out_1, activation_max); + *out_1++ = (q7_t)ch_1_out_1; + out_mult++; + out_shift++; + + /* skip row */ + ip_a0 += num_col_a; + row_count--; + } + + /* compute the last odd numbered row if any */ + if (output_ch & 0x1) + { + /* setup pointers for B */ + const q15_t *ip_b0 = input_b; + const q15_t *ip_b1 = ip_b0 + num_col_a; + + /* load the bias */ + q31_t ch_0_out_0 = *bias; + q31_t ch_0_out_1 = *bias++; + + uint16_t col_count = num_col_a >> 2; + while (col_count) + { + q31_t a01, a02; + q31_t b0 = arm_nn_read_q15x2_ia(&ip_b0); + q31_t b1 = arm_nn_read_q15x2_ia(&ip_b1); + + ip_a0 = read_and_pad(ip_a0, &a01, &a02); + + ch_0_out_0 = __SMLAD(a01, b0, ch_0_out_0); + ch_0_out_1 = __SMLAD(a01, b1, ch_0_out_1); + + b0 = arm_nn_read_q15x2_ia(&ip_b0); + b1 = arm_nn_read_q15x2_ia(&ip_b1); + ch_0_out_0 = __SMLAD(a02, b0, ch_0_out_0); + ch_0_out_1 = __SMLAD(a02, b1, ch_0_out_1); + + col_count--; + } + col_count = num_col_a & 0x3; + while (col_count) + { + q7_t a0 = *ip_a0++; + q15_t b0 = *ip_b0++; + q15_t b1 = *ip_b1++; + + ch_0_out_0 += a0 * b0; + ch_0_out_1 += a0 * b1; + col_count--; + } + ch_0_out_0 = arm_nn_requantize(ch_0_out_0, *out_mult, *out_shift); + ch_0_out_0 += out_offset; + ch_0_out_0 = MAX(ch_0_out_0, activation_min); + ch_0_out_0 = MIN(ch_0_out_0, activation_max); + *out_0++ = (q7_t)ch_0_out_0; + + ch_0_out_1 = arm_nn_requantize(ch_0_out_1, *out_mult, *out_shift); + ch_0_out_1 += out_offset; + ch_0_out_1 = MAX(ch_0_out_1, activation_min); + ch_0_out_1 = MIN(ch_0_out_1, activation_max); + *out_1++ = (q7_t)ch_0_out_1; + out_mult++; + out_shift++; + } + + out_0 += output_ch; + + /* return the new output pointer with offset */ + return out_0; +#else + (void)input_a; + (void)input_b; + (void)output_ch; + (void)out_shift; + (void)out_mult; + (void)out_offset; + (void)activation_min; + (void)activation_max; + (void)num_col_a; + (void)output_bias; + (void)out_0; + /* To be completed */ + return NULL; +#endif +} diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_s8_s16_reordered.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_s8_s16_reordered.c new file mode 100644 index 00000000..dc5d36d4 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_kernel_s8_s16_reordered.c @@ -0,0 +1,201 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nn_mat_mult_kernel_s8_s16_reordered.c + * Description: Matrix-multiplication function for convolution with reordered columns + * + * $Date: February 27, 2020 + * $Revision: V.1.0.2 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" +#include "cmsis/CMSIS/DSP/Include/arm_math.h" + +/* + * Matrix-multiplication with re-ordered input and bias inputs for convolution with per-channel + * requantization. The re-ordering is a consequence of sign extension is done by the SXTB16 command. + * + * Refer header file for details. This function differs from arm_nn_mat_mult_kernel_s8_s16(), in that it uses + * read_and_pad_reordered() instead of arm_nn_mat_mult_kernel_s8_s16(). Investigating the cycles impact and + * unifying these two functions is a potential future improvement. + * + */ + +q7_t *arm_nn_mat_mult_kernel_s8_s16_reordered(const q7_t *input_a, + const q15_t *input_b, + const uint16_t output_ch, + const int32_t *out_shift, + const int32_t *out_mult, + const int32_t out_offset, + const int16_t activation_min, + const int16_t activation_max, + const uint16_t num_col_a, + const int32_t *const output_bias, + q7_t *out_0) +{ +#if defined(ARM_MATH_DSP) + /* set up the second output pointers */ + q7_t *out_1 = out_0 + output_ch; + const int32_t *bias = output_bias; + + uint16_t row_count = output_ch / 2; + const q7_t *ip_a0 = input_a; + /* this loop over rows in A */ + while (row_count) + { + /* setup pointers for B */ + const q15_t *ip_b0 = input_b; + const q15_t *ip_b1 = ip_b0 + num_col_a; + + /* align the second pointer for A */ + const q7_t *ip_a1 = ip_a0 + num_col_a; + + /* Init accumulator with bias for channel N and N + 1 */ + q31_t ch_0_out_0 = *bias; + q31_t ch_0_out_1 = *bias++; + q31_t ch_1_out_0 = *bias; + q31_t ch_1_out_1 = *bias++; + + uint16_t col_count = num_col_a / 4; + /* accumulate over the vector */ + while (col_count) + { + q31_t a01, a02, a11, a12; + q31_t b0 = arm_nn_read_q15x2_ia(&ip_b0); + q31_t b1 = arm_nn_read_q15x2_ia(&ip_b1); + + ip_a0 = read_and_pad_reordered(ip_a0, &a01, &a02); + ip_a1 = read_and_pad_reordered(ip_a1, &a11, &a12); + + ch_0_out_0 = __SMLAD(a01, b0, ch_0_out_0); + ch_0_out_1 = __SMLAD(a01, b1, ch_0_out_1); + ch_1_out_0 = __SMLAD(a11, b0, ch_1_out_0); + ch_1_out_1 = __SMLAD(a11, b1, ch_1_out_1); + + b0 = arm_nn_read_q15x2_ia(&ip_b0); + b1 = arm_nn_read_q15x2_ia(&ip_b1); + + ch_0_out_0 = __SMLAD(a02, b0, ch_0_out_0); + ch_0_out_1 = __SMLAD(a02, b1, ch_0_out_1); + ch_1_out_0 = __SMLAD(a12, b0, ch_1_out_0); + ch_1_out_1 = __SMLAD(a12, b1, ch_1_out_1); + + col_count--; + } /* while over col_count */ + + ch_0_out_0 = arm_nn_requantize(ch_0_out_0, *out_mult, *out_shift); + ch_0_out_0 += out_offset; + ch_0_out_0 = MAX(ch_0_out_0, activation_min); + ch_0_out_0 = MIN(ch_0_out_0, activation_max); + *out_0++ = (q7_t)ch_0_out_0; + + ch_0_out_1 = arm_nn_requantize(ch_0_out_1, *out_mult, *out_shift); + ch_0_out_1 += out_offset; + ch_0_out_1 = MAX(ch_0_out_1, activation_min); + ch_0_out_1 = MIN(ch_0_out_1, activation_max); + *out_1++ = (q7_t)ch_0_out_1; + out_mult++; + out_shift++; + + ch_1_out_0 = arm_nn_requantize(ch_1_out_0, *out_mult, *out_shift); + ch_1_out_0 += out_offset; + ch_1_out_0 = MAX(ch_1_out_0, activation_min); + ch_1_out_0 = MIN(ch_1_out_0, activation_max); + *out_0++ = (q7_t)ch_1_out_0; + + ch_1_out_1 = arm_nn_requantize(ch_1_out_1, *out_mult, *out_shift); + ch_1_out_1 += out_offset; + ch_1_out_1 = MAX(ch_1_out_1, activation_min); + ch_1_out_1 = MIN(ch_1_out_1, activation_max); + *out_1++ = (q7_t)ch_1_out_1; + out_mult++; + out_shift++; + + /* skip row */ + ip_a0 += num_col_a; + row_count--; + } + + if (output_ch & 1) + { + /* setup pointers for B */ + const q15_t *ip_b0 = input_b; + const q15_t *ip_b1 = ip_b0 + num_col_a; + + /* Init accumulator with bias for channel N + 1 */ + q31_t ch_0_out_0 = *bias; + q31_t ch_0_out_1 = ch_0_out_0; + + int32_t col_count = num_col_a / 4; + while (col_count) + { + q31_t a01, a02; + q31_t b0 = arm_nn_read_q15x2_ia(&ip_b0); + q31_t b1 = arm_nn_read_q15x2_ia(&ip_b1); + + ip_a0 = read_and_pad_reordered(ip_a0, &a01, &a02); + + ch_0_out_0 = __SMLAD(a01, b0, ch_0_out_0); + ch_0_out_1 = __SMLAD(a01, b1, ch_0_out_1); + + b0 = arm_nn_read_q15x2_ia(&ip_b0); + b1 = arm_nn_read_q15x2_ia(&ip_b1); + + ch_0_out_0 = __SMLAD(a02, b0, ch_0_out_0); + ch_0_out_1 = __SMLAD(a02, b1, ch_0_out_1); + + col_count--; + } /* while over col_count */ + + ch_0_out_0 = arm_nn_requantize(ch_0_out_0, *out_mult, *out_shift); + ch_0_out_0 += out_offset; + ch_0_out_0 = MAX(ch_0_out_0, activation_min); + ch_0_out_0 = MIN(ch_0_out_0, activation_max); + *out_0++ = (q7_t)ch_0_out_0; + + ch_0_out_1 = arm_nn_requantize(ch_0_out_1, *out_mult, *out_shift); + ch_0_out_1 += out_offset; + ch_0_out_1 = MAX(ch_0_out_1, activation_min); + ch_0_out_1 = MIN(ch_0_out_1, activation_max); + *out_1++ = (q7_t)ch_0_out_1; + } + + out_0 += output_ch; + + /* return the new output pointer with offset */ + return out_0; +#else + (void)input_a; + (void)input_b; + (void)output_ch; + (void)out_shift; + (void)out_mult; + (void)out_offset; + (void)activation_min; + (void)activation_max; + (void)num_col_a; + (void)output_bias; + (void)out_0; + /* To be completed */ + return NULL; +#endif +} diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_s8.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_s8.c new file mode 100644 index 00000000..d0271d06 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ConvolutionFunctions/arm_nn_mat_mult_s8.c @@ -0,0 +1,173 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nn_mat_mult_s8.c + * Description: General Matrix-multiplication function + * + * $Date: May 29, 2020 + * $Revision: V.2.0.3 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/* + * s8 General matrix multiplication function with per-channel requantization for upto 4 column batches. + * + * Refer header file for details. + * + */ + +q7_t *arm_nn_mat_mult_s8(const q7_t *input_row, + const q7_t *input_col, + const uint16_t output_ch, + const uint16_t col_batches, + const int32_t *output_shift, + const int32_t *output_mult, + const int32_t out_offset, + const int32_t col_offset, + const int32_t row_offset, + const int16_t activation_min, + const int16_t activation_max, + const uint16_t row_len, + const int32_t *const bias, + q7_t *out) +{ +#if defined(ARM_MATH_MVEI) + (void)row_offset; + if (col_batches == 4) + { + for (int i_out_ch = 0; i_out_ch < output_ch; i_out_ch++) + { + int32_t row_len_tmp = row_len; + const int8_t *ip_r0 = input_row + (i_out_ch * row_len); + const int8_t *ip_c0 = input_col; + const int8_t *ip_c1 = input_col + row_len; + const int8_t *ip_c2 = input_col + (2 * row_len); + const int8_t *ip_c3 = input_col + (3 * row_len); + + int32_t acc_0 = bias[i_out_ch]; + int32_t acc_1 = bias[i_out_ch]; + int32_t acc_2 = bias[i_out_ch]; + int32_t acc_3 = bias[i_out_ch]; + const int32_t row_loop_cnt = (row_len + 7) / 8; + + for (int i_row_loop = 0; i_row_loop < row_loop_cnt; i_row_loop++) + { + mve_pred16_t p = vctp16q((uint32_t)row_len_tmp); + const int16x8_t offset = vdupq_m_n_s16(vuninitializedq_s16(), col_offset, p); + row_len_tmp -= 8; + + int16x8_t r0 = vldrbq_z_s16(ip_r0, p); + ip_r0 += 8; + + int16x8_t c0 = vldrbq_z_s16(ip_c0, p); + ip_c0 += 8; + c0 = vaddq_m_s16(vuninitializedq_s16(), c0, offset, p); + + int16x8_t c1 = vldrbq_z_s16(ip_c1, p); + ip_c1 += 8; + c1 = vaddq_m_s16(vuninitializedq_s16(), c1, offset, p); + + int16x8_t c2 = vldrbq_z_s16(ip_c2, p); + ip_c2 += 8; + c2 = vaddq_m_s16(vuninitializedq_s16(), c2, offset, p); + + int16x8_t c3 = vldrbq_z_s16(ip_c3, p); + ip_c3 += 8; + c3 = vaddq_m_s16(vuninitializedq_s16(), c3, offset, p); + + acc_0 = vmladavaq_p_s16(acc_0, r0, c0, p); + acc_1 = vmladavaq_p_s16(acc_1, r0, c1, p); + acc_2 = vmladavaq_p_s16(acc_2, r0, c2, p); + acc_3 = vmladavaq_p_s16(acc_3, r0, c3, p); + } + + int32x4_t res = {acc_0, acc_1, acc_2, acc_3}; + res = arm_requantize_mve(res, output_mult[i_out_ch], output_shift[i_out_ch]); + res = vaddq_n_s32(res, out_offset); + + res = vmaxq_s32(res, vdupq_n_s32(activation_min)); + res = vminq_s32(res, vdupq_n_s32(activation_max)); + + const uint32x4_t scatter_offset = {0, output_ch, output_ch * 2, output_ch * 3}; + vstrbq_scatter_offset_s32(&out[i_out_ch], scatter_offset, res); + } + out += 4 * output_ch; + } + else + { + for (int i_col_batch = (col_batches & ~0x3); i_col_batch < (col_batches & 0x3); i_col_batch++) + { + for (int i_out_ch = 0; i_out_ch < output_ch; i_out_ch++) + { + int32_t row_len_tmp = row_len; + + const int8_t *ip_r0 = input_row + (i_out_ch * row_len); + const int8_t *ip_c0 = input_col + (i_col_batch * row_len); + int32_t acc_0 = bias[i_out_ch]; + const int32_t row_loop_cnt = (row_len + 7) / 8; + + for (int i_row_loop = 0; i_row_loop < row_loop_cnt; i_row_loop++) + { + const mve_pred16_t p = vctp16q((uint32_t)row_len_tmp); + const int16x8_t offset = vdupq_m_n_s16(vuninitializedq_s16(), col_offset, p); + row_len_tmp -= 8; + + int16x8_t r0 = vldrbq_z_s16(ip_r0, p); + ip_r0 += 8; + int16x8_t c0 = vldrbq_z_s16(ip_c0, p); + ip_c0 += 8; + + c0 = vaddq_m_s16(vuninitializedq_s16(), c0, offset, p); + acc_0 = vmladavaq_p_s16(acc_0, r0, c0, p); + } + + acc_0 = arm_nn_requantize(acc_0, output_mult[i_out_ch], output_shift[i_out_ch]); + acc_0 += out_offset; + acc_0 = MAX(acc_0, activation_min); + acc_0 = MIN(acc_0, activation_max); + out[i_out_ch] = (q7_t)acc_0; + } + out += output_ch; + } + } + return out; + +#else + (void)input_row; + (void)input_col; + (void)output_ch; + (void)col_batches; + (void)output_shift; + (void)output_mult; + (void)out_offset; + (void)col_offset; + (void)row_offset; + (void)activation_min; + (void)activation_max; + (void)row_len; + (void)bias; + (void)out; + return NULL; +#endif +} diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15.c new file mode 100644 index 00000000..92bffbfd --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15.c @@ -0,0 +1,199 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_fully_connected_mat_q7_vec_q15.c + * Description: Mixed Q15-Q7 fully-connected layer function + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup FC + * @{ + */ + + /** + * @brief Mixed Q15-Q7 fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns ARM_MATH_SUCCESS + * + * @details + * + * Buffer size: + * + * vec_buffer size: 0 + * + * Q7_Q15 version of the fully connected layer + * + * Weights are in q7_t and Activations are in q15_t + * + */ + +arm_status +arm_fully_connected_mat_q7_vec_q15(const q15_t * pV, + const q7_t * pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t * bias, + q15_t * pOut, + q15_t * vec_buffer) +{ + (void)vec_buffer; +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + const q7_t *pB = pM; + const q7_t *pB2; + q15_t *pO = pOut; + const q7_t *pBias = bias; + const q15_t *pA = pV; + + uint16_t rowCnt = num_of_rows >> 1; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + uint16_t colCnt = dim_vec >> 2; + + pA = pV; + pB2 = pB + dim_vec; + + while (colCnt) + { + q31_t inV, inM11, inM12, inM21, inM22; + pB = read_and_pad(pB, &inM11, &inM12); + pB2 = read_and_pad(pB2, &inM21, &inM22); + + inV = arm_nn_read_q15x2_ia(&pA); + + sum = __SMLAD(inV, inM11, sum); + sum2 = __SMLAD(inV, inM21, sum2); + + inV = arm_nn_read_q15x2_ia(&pA); + + sum = __SMLAD(inV, inM12, sum); + sum2 = __SMLAD(inV, inM22, sum2); + + colCnt--; + } + colCnt = dim_vec & 0x3; + while (colCnt) + { + q15_t inV = *pA++; + q7_t inM = *pB++; + q7_t inM2 = *pB2++; + + sum += inV * inM; + sum2 += inV * inM2; + colCnt--; + } /* while over colCnt */ + *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16)); + *pO++ = (q15_t) (__SSAT((sum2 >> out_shift), 16)); + + /*adjust the pointers and counters */ + pB += dim_vec; + rowCnt--; + } + + /* left-over part of the rows */ + rowCnt = num_of_rows & 0x1; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + uint16_t colCnt = dim_vec >> 2; + + pA = pV; + + while (colCnt) + { + q31_t inV1, inV2, inM11, inM12; + + pB = read_and_pad(pB, &inM11, &inM12); + + inV1 = arm_nn_read_q15x2_ia(&pA); + sum = __SMLAD(inV1, inM11, sum); + + inV2 = arm_nn_read_q15x2_ia(&pA); + sum = __SMLAD(inV2, inM12, sum); + + colCnt--; + } + + /* left-over of the vector */ + colCnt = dim_vec & 0x3; + while (colCnt) + { + q15_t inV = *pA++; + q7_t inM = *pB++; + sum += inV * inM; + colCnt--; + } + + *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16)); + + rowCnt--; + } + +#else + int i, j; + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + for (i = 0; i < num_of_rows; i++) + { + int ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); + for (j = 0; j < dim_vec; j++) + { + ip_out += pV[j] * pM[i * dim_vec + j]; + } + pOut[i] = (q15_t) __SSAT((ip_out >> out_shift), 16); + } + +#endif /* ARM_MATH_DSP */ + + /* Return to ARM_MATH_SUCCESS */ + return (ARM_MATH_SUCCESS); + +} + +/** + * @} end of FC group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15_opt.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15_opt.c new file mode 100644 index 00000000..f2debef1 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15_opt.c @@ -0,0 +1,404 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_fully_connected_mat_q7_vec_q15_opt.c + * Description: Mixed Q15-Q7 opt fully-connected layer function + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup FC + * @{ + */ + + /** + * @brief Mixed Q15-Q7 opt fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns ARM_MATH_SUCCESS + * + * @details + * + * Buffer size: + * + * vec_buffer size: 0 + * + * Q7_Q15 version of the fully connected layer + * + * Weights are in q7_t and Activations are in q15_t + * + * Limitation: x4 version requires weight reordering to work + * + * Here we use only one pointer to read 4 rows in the weight + * matrix. So if the original q7_t matrix looks like this: + * + * | a11 | a12 | a13 | a14 | a15 | a16 | a17 | + * + * | a21 | a22 | a23 | a24 | a25 | a26 | a27 | + * + * | a31 | a32 | a33 | a34 | a35 | a36 | a37 | + * + * | a41 | a42 | a43 | a44 | a45 | a46 | a47 | + * + * | a51 | a52 | a53 | a54 | a55 | a56 | a57 | + * + * | a61 | a62 | a63 | a64 | a65 | a66 | a67 | + * + * We operates on multiple-of-4 rows, so the first four rows becomes + * + * | a11 | a21 | a12 | a22 | a31 | a41 | a32 | a42 | + * + * | a13 | a23 | a14 | a24 | a33 | a43 | a34 | a44 | + * + * | a15 | a25 | a16 | a26 | a35 | a45 | a36 | a46 | + * + * The column left over will be in-order. + * which is: + * | a17 | a27 | a37 | a47 | + * + * For the left-over rows, we do 1x1 computation, so the data remains + * as its original order. + * + * So the stored weight matrix looks like this: + * + * | a11 | a21 | a12 | a22 | a31 | a41 | + * + * | a32 | a42 | a13 | a23 | a14 | a24 | + * + * | a33 | a43 | a34 | a44 | a15 | a25 | + * + * | a16 | a26 | a35 | a45 | a36 | a46 | + * + * | a17 | a27 | a37 | a47 | a51 | a52 | + * + * | a53 | a54 | a55 | a56 | a57 | a61 | + * + * | a62 | a63 | a64 | a65 | a66 | a67 | + * + */ + +arm_status +arm_fully_connected_mat_q7_vec_q15_opt(const q15_t * pV, + const q7_t * pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, const q7_t * bias, q15_t * pOut, q15_t * vec_buffer) +{ + + (void)vec_buffer; +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + const q7_t *pB = pM; + q15_t *pO = pOut; + const q7_t *pBias = bias; + const q15_t *pA = pV; + + uint16_t rowCnt = num_of_rows >> 2; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 1; + + pA = pV; + +#ifdef USE_INTRINSIC + +#ifndef ARM_MATH_BIG_ENDIAN + + while (colCnt) + { + q31_t inM11, inM12, inM13, inM14; + q31_t inV; + + inV = arm_nn_read_q15x2_ia(&pA); + inM11 = arm_nn_read_q7x4_ia(&pB); + inM12 = __SXTB16(__ROR(inM11, 8)); + inM11 = __SXTB16(inM11); + sum = __SMLAD(inM11, inV, sum); + sum2 = __SMLAD(inM12, inV, sum2); + inM13 = arm_nn_read_q7x4_ia(&pB); + inM14 = __SXTB16(__ROR(inM13, 8)); + inM13 = __SXTB16(inM13); + sum3 = __SMLAD(inM13, inV, sum3); + sum4 = __SMLAD(inM14, inV, sum4); + colCnt--; + } + +#else + + while (colCnt) + { + q31_t inM11, inM12, inM13, inM14; + q31_t inV; + + inV = *__SIMD32(pA)++; + inM11 = arm_nn_read_q7x4_ia(&pB); + inM12 = __SXTB16(__ROR(inM11, 8)); + inM11 = __SXTB16(inM11); + sum = __SMLAD(inM12, inV, sum); + sum2 = __SMLAD(inM11, inV, sum2); + inM13 = arm_nn_read_q7x4_ia(&pB); + inM14 = __SXTB16(__ROR(inM13, 8)); + inM13 = __SXTB16(inM13); + sum3 = __SMLAD(inM14, inV, sum3); + sum4 = __SMLAD(inM13, inV, sum4); + colCnt--; + } + +#endif /* ARM_MATH_BIG_ENDIAN */ + +#else + + /* + * register needed: + * loop counter: colCnt + * accumulators: sum, sum2, sum3, sum4 + * pointers: pB, pA + * weight data: inM11, inM12, inM13, inM14 + * activation data: inV + */ + +#ifndef ARM_MATH_BIG_ENDIAN + asm volatile ("COL_LOOP_%=:\n" + "ldr.w r4, [%[pA]], #4\n" + "ldr.w r1, [%[pB]], #8\n" + "mov.w r0, r1, ror #8\n" + "sxtb16 r0, r0\n" + "sxtb16 r1, r1\n" + "smlad %[sum], r4, r1, %[sum]\n" + "smlad %[sum2], r4, r0, %[sum2]\n" + "ldr.w r3, [%[pB], #-4]\n" + "mov.w r2, r3, ror #8\n" + "sxtb16 r2, r2\n" + "sxtb16 r3, r3\n" + "smlad %[sum3], r4, r3, %[sum3]\n" + "smlad %[sum4], r4, r2, %[sum4]\n" + "subs %[colCnt], #1\n" + "bne COL_LOOP_%=\n":[sum] "+r"(sum), + [sum2] "+r"(sum2),[sum3] "+r"(sum3), + [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4"); +#else + asm volatile ("COL_LOOP_%=:\n" + "ldr.w r4, [%[pA]], #4\n" + "ldr.w r1, [%[pB]], #8\n" + "mov.w r0, r1, ror #8\n" + "sxtb16 r0, r0\n" + "sxtb16 r1, r1\n" + "smlad %[sum], r4, r0, %[sum]\n" + "smlad %[sum2], r4, r1, %[sum2]\n" + "ldr.w r3, [%[pB], #-4]\n" + "mov.w r2, r3, ror #8\n" + "sxtb16 r2, r2\n" + "sxtb16 r3, r3\n" + "smlad %[sum3], r4, r2, %[sum3]\n" + "smlad %[sum4], r4, r3, %[sum4]\n" + "subs %[colCnt], #1\n" + "bne COL_LOOP_%=\n":[sum] "+r"(sum), + [sum2] "+r"(sum2),[sum3] "+r"(sum3), + [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4"); +#endif /* ARM_MATH_BIG_ENDIAN */ + +#endif /* USE_INTRINSIC */ + + colCnt = dim_vec & 0x1; + while (colCnt) + { + q15_t inV = *pA++; + q7_t inM = *pB++; + q7_t inM2 = *pB++; + q7_t inM3 = *pB++; + q7_t inM4 = *pB++; + + sum += inV * inM; + sum2 += inV * inM2; + sum3 += inV * inM3; + sum4 += inV * inM4; + colCnt--; + } /* while over colCnt */ + *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16)); + *pO++ = (q15_t) (__SSAT((sum2 >> out_shift), 16)); + *pO++ = (q15_t) (__SSAT((sum3 >> out_shift), 16)); + *pO++ = (q15_t) (__SSAT((sum4 >> out_shift), 16)); + + /* adjust the pointers and counters */ + rowCnt--; + } + + /* left-over part of the rows */ + rowCnt = num_of_rows & 0x3; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 2; + + pA = pV; + + while (colCnt) + { + q31_t inV1, inV2, inM11, inM12; + + pB = read_and_pad(pB, &inM11, &inM12); + + inV1 = arm_nn_read_q15x2_ia(&pA); + sum = __SMLAD(inV1, inM11, sum); + + inV2 = arm_nn_read_q15x2_ia(&pA); + sum = __SMLAD(inV2, inM12, sum); + + colCnt--; + } + + /* left-over of the vector */ + colCnt = dim_vec & 0x3; + while (colCnt) + { + q15_t inV = *pA++; + q7_t inM = *pB++; + sum += inV * inM; + colCnt--; + } + + *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16)); + + rowCnt--; + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + uint16_t rowCnt = num_of_rows >> 2; + const q7_t *pB = pM; + const q15_t *pA; + q15_t *pO = pOut; + const q7_t *pBias = bias; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + uint16_t colCnt = dim_vec >> 1; + + pA = pV; + + while (colCnt) + { + q15_t inA1 = *pA++; + q15_t inA2 = *pA++; + + q7_t inB1 = *pB++; + q7_t inB3 = *pB++; + q7_t inB2 = *pB++; + q7_t inB4 = *pB++; + + sum += inA1 * inB1 + inA2 * inB2; + sum2 += inA1 * inB3 + inA2 * inB4; + + inB1 = *pB++; + inB3 = *pB++; + inB2 = *pB++; + inB4 = *pB++; + + sum3 += inA1 * inB1 + inA2 * inB2; + sum4 += inA1 * inB3 + inA2 * inB4; + + colCnt--; + } + + colCnt = dim_vec & 0x1; + while (colCnt) + { + q15_t inA = *pA++; + q7_t inB = *pB++; + sum += inA * inB; + inB = *pB++; + sum2 += inA * inB; + inB = *pB++; + sum3 += inA * inB; + inB = *pB++; + sum4 += inA * inB; + + colCnt--; + } + *pO++ = (q15_t) __SSAT((sum >> out_shift), 16); + *pO++ = (q15_t) __SSAT((sum2 >> out_shift), 16); + *pO++ = (q15_t) __SSAT((sum3 >> out_shift), 16); + *pO++ = (q15_t) __SSAT((sum4 >> out_shift), 16); + + rowCnt--; + } + + rowCnt = num_of_rows & 0x3; + + while (rowCnt) + { + int ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + int j; + + pA = pV; + for (j = 0; j < dim_vec; j++) + { + q15_t inA = *pA++; + q7_t inB = *pB++; + ip_out += inA * inB; + } + *pO++ = (q15_t) __SSAT((ip_out >> out_shift), 16); + + rowCnt--; + } + +#endif /* ARM_MATH_DSP */ + + /* Return to ARM_MATH_SUCCESS */ + return (ARM_MATH_SUCCESS); + +} + +/** + * @} end of FC group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15.c new file mode 100644 index 00000000..79413cbd --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15.c @@ -0,0 +1,193 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_fully_connected_q15.c + * Description: Q15 basic fully-connected layer function + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup FC + * @{ + */ + + /** + * @brief Q15 opt fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns ARM_MATH_SUCCESS + * + * + * @details + * + * Buffer size: + * + * vec_buffer size: 0 + * + */ + +arm_status +arm_fully_connected_q15(const q15_t * pV, + const q15_t * pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q15_t * bias, + q15_t * pOut, + q15_t * vec_buffer) +{ + (void)vec_buffer; +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + const q15_t *pB = pM; + const q15_t *pB2 = pB + dim_vec; + q15_t *pO = pOut; + const q15_t *pA; + const q15_t *pBias = bias; + uint16_t rowCnt = num_of_rows >> 1; + + /* this loop loops over different output */ + while (rowCnt) { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 2; + + pA = pV; + pB2 = pB + dim_vec; + + while (colCnt) + { + q31_t inV1, inM1, inM2; + inV1 = arm_nn_read_q15x2_ia(&pA); + inM1 = arm_nn_read_q15x2_ia(&pB); + sum = __SMLAD(inV1, inM1, sum); + inM2 = arm_nn_read_q15x2_ia(&pB2); + sum2 = __SMLAD(inV1, inM2, sum2); + + inV1 = arm_nn_read_q15x2_ia(&pA); + inM1 = arm_nn_read_q15x2_ia(&pB); + sum = __SMLAD(inV1, inM1, sum); + inM2 = arm_nn_read_q15x2_ia(&pB2); + sum2 = __SMLAD(inV1, inM2, sum2); + + colCnt--; + } + colCnt = dim_vec & 0x3; + while (colCnt) + { + q15_t inV = *pA++; + q15_t inM = *pB++; + q15_t inM2 = *pB2++; + + sum += inV * inM; + sum2 += inV * inM2; + colCnt--; + } /* while over colCnt */ + *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16)); + *pO++ = (q15_t) (__SSAT((sum2>> out_shift), 16)); + + /* adjust the pointers and counters */ + pB = pB + dim_vec; + rowCnt --; + } + + rowCnt = num_of_rows & 0x1; + + while (rowCnt) { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 2; + + pA = pV; + + while (colCnt) { + q31_t inV1, inM1; + inV1 = arm_nn_read_q15x2_ia(&pA); + inM1 = arm_nn_read_q15x2_ia(&pB); + sum = __SMLAD(inV1, inM1, sum); + + inV1 = arm_nn_read_q15x2_ia(&pA); + inM1 = arm_nn_read_q15x2_ia(&pB); + sum = __SMLAD(inV1, inM1, sum); + + colCnt--; + } + + /* left-over of the vector */ + colCnt = dim_vec & 0x3; + while(colCnt) { + q15_t inV = *pA++; + q15_t inM = *pB++; + + sum += inV * inM; + + colCnt--; + } + + *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16)); + + rowCnt --; + } + +#else + int i, j; + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + for (i = 0; i < num_of_rows; i++) + { + int ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); + for (j = 0; j < dim_vec; j++) + { + ip_out += pV[j] * pM[i * dim_vec + j]; + } + pOut[i] = (q15_t) __SSAT((ip_out >> out_shift), 16); + } + +#endif /* ARM_MATH_DSP */ + + /* Return to application */ + return (ARM_MATH_SUCCESS); + +} + +/** + * @} end of FC group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15_opt.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15_opt.c new file mode 100644 index 00000000..d495342e --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15_opt.c @@ -0,0 +1,332 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_fully_connected_q15_opt.c + * Description: Q15 opt fully-connected layer function + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup FC + * @{ + */ + + /** + * @brief Q15 opt fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns ARM_MATH_SUCCESS + * + * + * @details + * + * Buffer size: + * + * vec_buffer size: 0 + * + * Here we use only one pointer to read 4 rows in the weight + * matrix. So if the original matrix looks like this: + * + * | a11 | a12 | a13 | + * + * | a21 | a22 | a23 | + * + * | a31 | a32 | a33 | + * + * | a41 | a42 | a43 | + * + * | a51 | a52 | a53 | + * + * | a61 | a62 | a63 | + * + * We operates on multiple-of-4 rows, so the first four rows becomes + * + * | a11 | a12 | a21 | a22 | a31 | a32 | a41 | a42 | + * + * | a13 | a23 | a33 | a43 | + * + * Remaining rows are kept the same original order. + * + * So the stored weight matrix looks like this: + * + * + * | a11 | a12 | a21 | a22 | a31 | a32 | a41 | a42 | + * + * | a13 | a23 | a33 | a43 | a51 | a52 | a53 | a61 | + * + * | a62 | a63 | + */ + +arm_status +arm_fully_connected_q15_opt(const q15_t * pV, + const q15_t * pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q15_t * bias, + q15_t * pOut, + q15_t * vec_buffer) +{ + (void)vec_buffer; +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + const q15_t *pB = pM; + q15_t *pO = pOut; + const q15_t *pBias = bias; + const q15_t *pA = pV; + + uint16_t rowCnt = num_of_rows >> 2; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 1; + + pA = pV; + +#ifdef USE_INTRINSIC + + while (colCnt) + { + q31_t inM11, inM12, inM13, inM14; + q31_t inV; + + inV = arm_nn_read_q15x2_ia(&pA); + inM11 = arm_nn_read_q15x2_ia(&pB); + sum = __SMLAD(inV, inM11, sum); + inM12 = arm_nn_read_q15x2_ia(&pB); + sum2 = __SMLAD(inV, inM12, sum2); + inM13 = arm_nn_read_q15x2_ia(&pB); + sum3 = __SMLAD(inV, inM13, sum3); + inM14 = arm_nn_read_q15x2_ia(&pB); + sum4 = __SMLAD(inV, inM14, sum4); + colCnt--; + } + +#else + + /* + * register needed: + * loop counter: colCnt + * accumulators: sum, sum2, sum3, sum4 + * pointers: pB, pA + * weight data: inM11, inM12, inM13, inM14 + * activation data: inV + */ + + asm volatile ("COL_LOOP_%=:\n" + "ldr.w r4, [%[pA]], #4\n" + "ldr.w r0, [%[pB]], #16\n" + "smlad %[sum], r4, r0, %[sum]\n" + "ldr.w r1, [%[pB] , #-12]\n" + "smlad %[sum2], r4, r1, %[sum2]\n" + "ldr.w r2, [%[pB] , #-8]\n" + "smlad %[sum3], r4, r2, %[sum3]\n" + "ldr.w r3, [%[pB] , #-4]\n" + "smlad %[sum4], r4, r3, %[sum4]\n" + "subs %[colCnt], #1\n" + "bne COL_LOOP_%=\n":[sum] "+r"(sum), + [sum2] "+r"(sum2),[sum3] "+r"(sum3), + [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4"); + +#endif /* USE_INTRINSIC */ + + colCnt = dim_vec & 0x1; + while (colCnt) + { + + q15_t inV = *pA++; + q15_t inM = *pB++; + q15_t inM2 = *pB++; + q15_t inM3 = *pB++; + q15_t inM4 = *pB++; + + sum += inV * inM; + sum2 += inV * inM2; + sum3 += inV * inM3; + sum4 += inV * inM4; + colCnt--; + } /* while over colCnt */ + *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16)); + *pO++ = (q15_t) (__SSAT((sum2 >> out_shift), 16)); + *pO++ = (q15_t) (__SSAT((sum3 >> out_shift), 16)); + *pO++ = (q15_t) (__SSAT((sum4 >> out_shift), 16)); + + /* adjust the pointers and counters */ + rowCnt--; + } + + /* left-over part of the rows */ + rowCnt = num_of_rows & 0x3; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 2; + + pA = pV; + + while (colCnt) + { + q31_t inV1, inV2, inM1, inM2; + + inM1 = arm_nn_read_q15x2_ia(&pB); + inV1 = arm_nn_read_q15x2_ia(&pA); + sum = __SMLAD(inV1, inM1, sum); + + inM2 = arm_nn_read_q15x2_ia(&pB); + inV2 = arm_nn_read_q15x2_ia(&pA); + sum = __SMLAD(inV2, inM2, sum); + + colCnt--; + } + + /* left-over of the vector */ + colCnt = dim_vec & 0x3; + while (colCnt) + { + q15_t inV = *pA++; + q15_t inM = *pB++; + sum += inV * inM; + colCnt--; + } + + *pO++ = (q15_t) (__SSAT((sum >> out_shift), 16)); + + rowCnt--; + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + uint16_t rowCnt = num_of_rows >> 2; + const q15_t *pB = pM; + const q15_t *pA; + q15_t *pO = pOut; + const q15_t *pBias = bias; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 1; + + pA = pV; + while (colCnt) + { + q15_t inA1 = *pA++; + q15_t inA2 = *pA++; + + q15_t inB1 = *pB++; + q15_t inB2 = *pB++; + sum += inA1 * inB1 + inA2 * inB2; + + inB1 = *pB++; + inB2 = *pB++; + sum2 += inA1 * inB1 + inA2 * inB2; + + inB1 = *pB++; + inB2 = *pB++; + sum3 += inA1 * inB1 + inA2 * inB2; + + inB1 = *pB++; + inB2 = *pB++; + sum4 += inA1 * inB1 + inA2 * inB2; + + colCnt--; + } + colCnt = dim_vec & 0x1; + while (colCnt) + { + q15_t inA = *pA++; + q15_t inB = *pB++; + sum += inA * inB; + inB = *pB++; + sum2 += inA * inB; + inB = *pB++; + sum3 += inA * inB; + inB = *pB++; + sum4 += inA * inB; + colCnt--; + } + *pO++ = (q15_t) __SSAT((sum >> out_shift), 16); + *pO++ = (q15_t) __SSAT((sum2 >> out_shift), 16); + *pO++ = (q15_t) __SSAT((sum3 >> out_shift), 16); + *pO++ = (q15_t) __SSAT((sum4 >> out_shift), 16); + + rowCnt--; + } + rowCnt = num_of_rows & 0x3; + + while (rowCnt) + { + int ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + int j; + + pA = pV; + for (j = 0; j < dim_vec; j++) + { + q15_t inA = *pA++; + q15_t inB = *pB++; + ip_out += inA * inB; + } + *pO++ = (q15_t) __SSAT((ip_out >> out_shift), 16); + + rowCnt--; + } + +#endif /* ARM_MATH_DSP */ + + /* Return to ARM_MATH_SUCCESS */ + return (ARM_MATH_SUCCESS); + +} + +/** + * @} end of FC group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7.c new file mode 100644 index 00000000..12dc6f1c --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7.c @@ -0,0 +1,198 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_fully_connected_q7.c + * Description: Q7 basic fully-connected layer function + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup FC + * @{ + */ + + /** + * @brief Q7 basic fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns ARM_MATH_SUCCESS + * + * @details + * + * Buffer size: + * + * vec_buffer size: dim_vec + * + * This basic function is designed to work with regular weight + * matrix without interleaving. + * + */ + +arm_status +arm_fully_connected_q7(const q7_t * pV, + const q7_t * pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, const q7_t * bias, q7_t * pOut, q15_t * vec_buffer) +{ + +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + const q7_t *pB = pM; + const q7_t *pB2; + q7_t *pO = pOut; + const q7_t *pBias = bias; + const q15_t *pA; + uint16_t rowCnt = num_of_rows >> 1; + + /* expand the vector into the buffer */ + arm_q7_to_q15_reordered_no_shift(pV, vec_buffer, dim_vec); + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + uint16_t colCnt = dim_vec >> 2; + + pA = vec_buffer; + pB2 = pB + dim_vec; + + while (colCnt) + { + q31_t inV, inM11, inM12, inM21, inM22; + pB = read_and_pad_reordered(pB, &inM11, &inM12); + pB2 = read_and_pad_reordered(pB2, &inM21, &inM22); + + inV = arm_nn_read_q15x2_ia(&pA); + + sum = __SMLAD(inV, inM11, sum); + sum2 = __SMLAD(inV, inM21, sum2); + + inV = arm_nn_read_q15x2_ia(&pA); + + sum = __SMLAD(inV, inM12, sum); + sum2 = __SMLAD(inV, inM22, sum2); + + colCnt--; + } + colCnt = dim_vec & 0x3; + while (colCnt) + { + q7_t inV = *pA++; + q15_t inM = *pB++; + q15_t inM2 = *pB2++; + + sum += inV * inM; + sum2 += inV * inM2; + colCnt--; + } /* while over colCnt */ + *pO++ = (q7_t) (__SSAT((sum >> out_shift), 8)); + *pO++ = (q7_t) (__SSAT((sum2 >> out_shift), 8)); + + /* adjust the pointers and counters */ + pB += dim_vec; + rowCnt--; + } + + /* left-over part of the rows */ + rowCnt = num_of_rows & 0x1; + + while (rowCnt) + { + uint16_t colCnt = dim_vec >> 2; + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + pA = vec_buffer; + + while (colCnt) + { + q31_t inV1, inV2, inM11, inM12; + + pB = read_and_pad_reordered(pB, &inM11, &inM12); + + inV1 = arm_nn_read_q15x2_ia(&pA); + sum = __SMLAD(inV1, inM11, sum); + + inV2 = arm_nn_read_q15x2_ia(&pA); + sum = __SMLAD(inV2, inM12, sum); + + colCnt--; + } + + /* left-over of the vector */ + colCnt = dim_vec & 0x3; + while (colCnt) + { + q7_t inV = *pA++; + q15_t inM = *pB++; + sum += inV * inM; + colCnt--; + } + + *pO++ = (q7_t) (__SSAT((sum >> out_shift), 8)); + + rowCnt--; + } + +#else + int i, j; + + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + for (i = 0; i < num_of_rows; i++) + { + int ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); + for (j = 0; j < dim_vec; j++) + { + ip_out += pV[j] * pM[i * dim_vec + j]; + } + pOut[i] = (q7_t) __SSAT((ip_out >> out_shift), 8); + } + +#endif /* ARM_MATH_DSP */ + + /* Return to ARM_MATH_SUCCESS */ + return (ARM_MATH_SUCCESS); + +} + +/** + * @} end of FC group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7_opt.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7_opt.c new file mode 100644 index 00000000..ee7faa9d --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7_opt.c @@ -0,0 +1,484 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_fully_connected_q7_opt.c + * Description: Q7 basic fully-connected layer function + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup FC + * @{ + */ + + /** + * @brief Q7 opt fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns ARM_MATH_SUCCESS + * + * @details + * + * Buffer size: + * + * vec_buffer size: dim_vec + * + * This opt function is designed to work with interleaved weight + * matrix. The vector input is assumed in q7_t format, we call + * arm_q7_to_q15_no_shift_shuffle function to expand into + * q15_t format with certain weight re-ordering, refer to the function + * comments for more details. + * Here we use only one pointer to read 4 rows in the weight + * matrix. So if the original q7_t matrix looks like this: + * + * | a11 | a12 | a13 | a14 | a15 | a16 | a17 | + * + * | a21 | a22 | a23 | a24 | a25 | a26 | a27 | + * + * | a31 | a32 | a33 | a34 | a35 | a36 | a37 | + * + * | a41 | a42 | a43 | a44 | a45 | a46 | a47 | + * + * | a51 | a52 | a53 | a54 | a55 | a56 | a57 | + * + * | a61 | a62 | a63 | a64 | a65 | a66 | a67 | + * + * + * We operates on multiple-of-4 rows, so the first four rows becomes + * + * | a11 | a21 | a13 | a23 | a31 | a41 | a33 | a43 | + * + * | a12 | a22 | a14 | a24 | a32 | a42 | a34 | a44 | + * + * | a15 | a25 | a35 | a45 | a16 | a26 | a36 | a46 | + * + * So within the kernel, we first read the re-ordered vector in as: + * + * | b1 | b3 | and | b2 | b4 | + * + * the four q31_t weights will look like + * + * | a11 | a13 |, | a21 | a23 |, | a31 | a33 |, | a41 | a43 | + * + * | a12 | a14 |, | a22 | a24 |, | a32 | a34 |, | a42 | a44 | + * + * The column left over will be in-order. + * which is: + * + * | a17 | a27 | a37 | a47 | + * + * For the left-over rows, we do 1x1 computation, so the data remains + * as its original order. + * + * So the stored weight matrix looks like this: + * + * | a11 | a21 | a13 | a23 | a31 | a41 | + * + * | a33 | a43 | a12 | a22 | a14 | a24 | + * + * | a32 | a42 | a34 | a44 | a15 | a25 | + * + * | a35 | a45 | a16 | a26 | a36 | a46 | + * + * | a17 | a27 | a37 | a47 | a51 | a52 | + * + * | a53 | a54 | a55 | a56 | a57 | a61 | + * + * | a62 | a63 | a64 | a65 | a66 | a67 | + * + * + */ + +arm_status +arm_fully_connected_q7_opt(const q7_t * pV, + const q7_t * pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t * bias, + q7_t * pOut, + q15_t * vec_buffer) +{ + +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + const q7_t *pB = pM; + q7_t *pO = pOut; + const q7_t *pBias = bias; + const q15_t *pA; + uint16_t rowCnt = num_of_rows >> 2; + + arm_q7_to_q15_reordered_no_shift(pV, vec_buffer, dim_vec); + + while (rowCnt) + { + + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 2; + + pA = vec_buffer; + +#ifdef USE_INTRINSIC + +#ifndef ARM_MATH_BIG_ENDIAN + while (colCnt) + { + q31_t inM11, inM12, inM13, inM14; + q31_t inV; + + inV = arm_nn_read_q15x2_ia(&pA); + inM11 = arm_nn_read_q7x4_ia(&pB); + inM12 = __SXTB16(__ROR(inM11, 8)); + inM11 = __SXTB16(inM11); + sum = __SMLAD(inM11, inV, sum); + sum2 = __SMLAD(inM12, inV, sum2); + inM13 = arm_nn_read_q7x4_ia(&pB); + inM14 = __SXTB16(__ROR(inM13, 8)); + inM13 = __SXTB16(inM13); + sum3 = __SMLAD(inM13, inV, sum3); + sum4 = __SMLAD(inM14, inV, sum4); + + inV = arm_nn_read_q15x2_ia(&pA); + inM11 = arm_nn_read_q7x4_ia(&pB); + inM12 = __SXTB16(__ROR(inM11, 8)); + inM11 = __SXTB16(inM11); + sum = __SMLAD(inM11, inV, sum); + sum2 = __SMLAD(inM12, inV, sum2); + inM13 = arm_nn_read_q7x4_ia(&pB); + inM14 = __SXTB16(__ROR(inM13, 8)); + inM13 = __SXTB16(inM13); + sum3 = __SMLAD(inM13, inV, sum3); + sum4 = __SMLAD(inM14, inV, sum4); + colCnt--; + } +#else + while (colCnt) + { + q31_t inM11, inM12, inM13, inM14; + q31_t inV; + + inV = arm_nn_read_q15x2_ia(&pA); + inM11 = arm_nn_read_q7x4_ia(&pB); + inM12 = __SXTB16(__ROR(inM11, 8)); + inM11 = __SXTB16(inM11); + sum = __SMLAD(inM12, inV, sum); + sum2 = __SMLAD(inM11, inV, sum2); + inM13 = arm_nn_read_q7x4_ia(&pB); + inM14 = __SXTB16(__ROR(inM13, 8)); + inM13 = __SXTB16(inM13); + sum3 = __SMLAD(inM14, inV, sum3); + sum4 = __SMLAD(inM13, inV, sum4); + + inV = arm_nn_read_q15x2_ia(&pA); + inM11 = arm_nn_read_q7x4_ia(&pB); + inM12 = __SXTB16(__ROR(inM11, 8)); + inM11 = __SXTB16(inM11); + sum = __SMLAD(inM12, inV, sum); + sum2 = __SMLAD(inM11, inV, sum2); + inM13 = arm_nn_read_q7x4_ia(&pB); + inM14 = __SXTB16(__ROR(inM13, 8)); + inM13 = __SXTB16(inM13); + sum3 = __SMLAD(inM14, inV, sum3); + sum4 = __SMLAD(inM13, inV, sum4); + colCnt--; + } +#endif /* ARM_MATH_BIG_ENDIAN */ + +#else + + /* + * register needed: + * loop counter: colCnt + * accumulators: sum, sum2, sum3, sum4 + * pointers: pB, pA + * weight data: inM11, inM12, inM13, inM14 + * activation data: inV + */ + +#ifndef ARM_MATH_BIG_ENDIAN + asm volatile ("COL_LOOP_%=:\n" + "ldr.w r4, [%[pA]], #8\n" + "ldr.w r1, [%[pB]], #16\n" + "mov.w r0, r1, ror #8\n" + "sxtb16 r0, r0\n" + "sxtb16 r1, r1\n" + "smlad %[sum], r4, r1, %[sum]\n" + "smlad %[sum2], r4, r0, %[sum2]\n" + "ldr.w r3, [%[pB], #-12]\n" + "mov.w r2, r3, ror #8\n" + "sxtb16 r2, r2\n" + "sxtb16 r3, r3\n" + "smlad %[sum3], r4, r3, %[sum3]\n" + "smlad %[sum4], r4, r2, %[sum4]\n" + "ldr.w r4, [%[pA], #-4]\n" + "ldr.w r1, [%[pB], #-8]\n" + "mov.w r0, r1, ror #8\n" + "sxtb16 r0, r0\n" + "sxtb16 r1, r1\n" + "smlad %[sum], r4, r1, %[sum]\n" + "smlad %[sum2], r4, r0, %[sum2]\n" + "ldr.w r3, [%[pB], #-4]\n" + "mov.w r2, r3, ror #8\n" + "sxtb16 r2, r2\n" + "sxtb16 r3, r3\n" + "smlad %[sum3], r4, r3, %[sum3]\n" + "smlad %[sum4], r4, r2, %[sum4]\n" + "subs %[colCnt], #1\n" + "bne COL_LOOP_%=\n":[sum] "+r"(sum), + [sum2] "+r"(sum2),[sum3] "+r"(sum3), + [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4"); +#else + asm volatile ("COL_LOOP_%=:\n" + "ldr.w r4, [%[pA]], #8\n" + "ldr.w r1, [%[pB]], #16\n" + "mov.w r0, r1, ror #8\n" + "sxtb16 r0, r0\n" + "sxtb16 r1, r1\n" + "smlad %[sum], r4, r0, %[sum]\n" + "smlad %[sum2], r4, r1, %[sum2]\n" + "ldr.w r3, [%[pB], #-12]\n" + "mov.w r2, r3, ror #8\n" + "sxtb16 r2, r2\n" + "sxtb16 r3, r3\n" + "smlad %[sum3], r4, r2, %[sum3]\n" + "smlad %[sum4], r4, r3, %[sum4]\n" + "ldr.w r4, [%[pA], #-4]\n" + "ldr.w r1, [%[pB], #-8]\n" + "mov.w r0, r1, ror #8\n" + "sxtb16 r0, r0\n" + "sxtb16 r1, r1\n" + "smlad %[sum], r4, r0, %[sum]\n" + "smlad %[sum2], r4, r1, %[sum2]\n" + "ldr.w r3, [%[pB], #-4]\n" + "mov.w r2, r3, ror #8\n" + "sxtb16 r2, r2\n" + "sxtb16 r3, r3\n" + "smlad %[sum3], r4, r2, %[sum3]\n" + "smlad %[sum4], r4, r3, %[sum4]\n" + "subs %[colCnt], #1\n" + "bne COL_LOOP_%=\n":[sum] "+r"(sum), + [sum2] "+r"(sum2),[sum3] "+r"(sum3), + [sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4"); +#endif /* ARM_MATH_BIG_ENDIAN */ + +#endif /* USE_INTRINSIC */ + + colCnt = dim_vec & 0x3; + while (colCnt) + { + q15_t inV = *pA++; + q7_t inM = *pB++; + q7_t inM2 = *pB++; + q7_t inM3 = *pB++; + q7_t inM4 = *pB++; + + sum += inV * inM; + sum2 += inV * inM2; + sum3 += inV * inM3; + sum4 += inV * inM4; + colCnt--; + } /* while over colCnt */ + *pO++ = (q7_t) (__SSAT((sum >> out_shift), 8)); + *pO++ = (q7_t) (__SSAT((sum2 >> out_shift), 8)); + *pO++ = (q7_t) (__SSAT((sum3 >> out_shift), 8)); + *pO++ = (q7_t) (__SSAT((sum4 >> out_shift), 8)); + + /* adjust the pointers and counters */ + rowCnt--; + } + + /* left-over part of the rows */ + rowCnt = num_of_rows & 0x3; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + uint16_t colCnt = dim_vec >> 2; + + pA = vec_buffer; + + while (colCnt) + { + q31_t inV1, inV2, inM11, inM12; + + pB = read_and_pad_reordered(pB, &inM11, &inM12); + + inV1 = arm_nn_read_q15x2_ia(&pA); + sum = __SMLAD(inV1, inM11, sum); + + inV2 = arm_nn_read_q15x2_ia(&pA); + sum = __SMLAD(inV2, inM12, sum); + + colCnt--; + } + + /* left-over of the vector */ + colCnt = dim_vec & 0x3; + while (colCnt) + { + q15_t inV = *pA++; + q7_t inM = *pB++; + sum += inV * inM; + colCnt--; + } + + *pO++ = (q7_t) (__SSAT((sum >> out_shift), 8)); + + rowCnt--; + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + uint16_t rowCnt = num_of_rows >> 2; + const q7_t *pB = pM; + const q7_t *pA; + q7_t *pO = pOut; + const q7_t *pBias = bias; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 2; + + pA = pV; + + while (colCnt) + { + q7_t inA1 = *pA++; + q7_t inA3 = *pA++; + q7_t inA2 = *pA++; + q7_t inA4 = *pA++; + + q7_t inB1 = *pB++; + q7_t inB3 = *pB++; + q7_t inB2 = *pB++; + q7_t inB4 = *pB++; + + sum += inA1 * inB1 + inA2 * inB2; + sum2 += inA1 * inB3 + inA2 * inB4; + + inB1 = *pB++; + inB3 = *pB++; + inB2 = *pB++; + inB4 = *pB++; + + sum3 += inA1 * inB1 + inA2 * inB2; + sum4 += inA1 * inB3 + inA2 * inB4; + + inB1 = *pB++; + inB3 = *pB++; + inB2 = *pB++; + inB4 = *pB++; + + sum += inA3 * inB1 + inA4 * inB2; + sum2 += inA3 * inB3 + inA4 * inB4; + + inB1 = *pB++; + inB3 = *pB++; + inB2 = *pB++; + inB4 = *pB++; + + sum3 += inA3 * inB1 + inA4 * inB2; + sum4 += inA3 * inB3 + inA4 * inB4; + + colCnt--; + } + colCnt = dim_vec & 0x3; + while (colCnt) + { + q7_t inA = *pA++; + q7_t inB = *pB++; + sum += inA * inB; + inB = *pB++; + sum2 += inA * inB; + inB = *pB++; + sum3 += inA * inB; + inB = *pB++; + sum4 += inA * inB; + + colCnt--; + } + *pO++ = (q7_t) __SSAT((sum >> out_shift), 8); + *pO++ = (q7_t) __SSAT((sum2 >> out_shift), 8); + *pO++ = (q7_t) __SSAT((sum3 >> out_shift), 8); + *pO++ = (q7_t) __SSAT((sum4 >> out_shift), 8); + + rowCnt--; + } + + rowCnt = num_of_rows & 0x3; + + while (rowCnt) + { + int ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + int j; + + pA = pV; + for (j = 0; j < dim_vec; j++) + { + q7_t inA = *pA++; + q7_t inB = *pB++; + ip_out += inA * inB; + } + *pO++ = (q7_t) __SSAT((ip_out >> out_shift), 8); + + rowCnt--; + } + +#endif /* ARM_MATH_DSP */ + + /* Return to ARM_MATH_SUCCESS */ + return (ARM_MATH_SUCCESS); + +} + +/** + * @} end of FC group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_s8.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_s8.c new file mode 100644 index 00000000..9775aaaa --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_s8.c @@ -0,0 +1,97 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_fully_connected_s8 + * Description: Fully connected function compatible with TF Lite. + * + * $Date: May 2, 2020 + * $Revision: V.2.0.0 + * + * Target Processor: Cortex-M and Cortex-A cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup FC + * @{ + */ + +/* + * S8 basic fully-connected and matrix multiplication layer function for TensorFlow Lite + * + * Refer header file for details. + * + */ + +arm_status +arm_fully_connected_s8(const cmsis_nn_context *ctx, + const cmsis_nn_fc_params *fc_params, + const cmsis_nn_per_tensor_quant_params *quant_params, + const cmsis_nn_dims *input_dims, + const q7_t *input, + const cmsis_nn_dims *filter_dims, + const q7_t *kernel, + const cmsis_nn_dims *bias_dims, + const int32_t *bias, + const cmsis_nn_dims *output_dims, + q7_t *output) +{ + (void)bias_dims; + (void)ctx; + int32_t batch_cnt = input_dims->n; + + while (batch_cnt) + { + arm_nn_vec_mat_mult_t_s8(input, + kernel, + bias, + output, + fc_params->input_offset, + fc_params->filter_offset, + fc_params->output_offset, + quant_params->multiplier, + quant_params->shift, + filter_dims->n, /* col_dim or accum_depth */ + output_dims->c, /* row_dim or output_depth */ + fc_params->activation.min, + fc_params->activation.max); + input += filter_dims->n; + output += output_dims->c; + batch_cnt--; + } + return (ARM_MATH_SUCCESS); +} + +int32_t arm_fully_connected_s8_get_buffer_size(const cmsis_nn_dims *filter_dims) +{ + (void)filter_dims; + return 0; +} + +/** + * @} end of FC group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_accumulate_q7_to_q15.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_accumulate_q7_to_q15.c new file mode 100644 index 00000000..7d14834e --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_accumulate_q7_to_q15.c @@ -0,0 +1,81 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nn_accumulate_q7_to_q15.c + * Description: Accumulate q7 vector into q15 one. + * + * $Date: May 29, 2020 + * $Revision: V.1.0.1 + * + * pSrc Processor: Cortex-M CPUs + * + * -------------------------------------------------------------------- */ +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupSupport + */ + +/** + * @addtogroup NNBasicMath + * @{ + */ + +void arm_nn_accumulate_q7_to_q15(q15_t *pDst, const q7_t *pSrc, uint32_t length) +{ + q15_t *pCnt = pDst; + const q7_t *pV = pSrc; + q31_t v1, v2, vo1, vo2; + int32_t cnt = length >> 2; + q31_t in; + + while (cnt > 0l) + { + q31_t value = arm_nn_read_q7x4_ia(&pV); + v1 = __SXTB16(__ROR((uint32_t)value, 8)); + v2 = __SXTB16(value); +#ifndef ARM_MATH_BIG_ENDIAN + vo2 = (q31_t)__PKHTB(v1, v2, 16); + vo1 = (q31_t)__PKHBT(v2, v1, 16); +#else + vo1 = (q31_t)__PKHTB(v1, v2, 16); + vo2 = (q31_t)__PKHBT(v2, v1, 16); +#endif + + in = arm_nn_read_q15x2(pCnt); + write_q15x2_ia(&pCnt, __QADD16(vo1, in)); + + in = arm_nn_read_q15x2(pCnt); + write_q15x2_ia(&pCnt, __QADD16(vo2, in)); + + cnt--; + } + cnt = length & 0x3; + while (cnt > 0l) + { + *pCnt++ += *pV++; + cnt--; + } +} + +/** + * @} end of NNBasicMath group + */ \ No newline at end of file diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_add_q7.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_add_q7.c new file mode 100644 index 00000000..ea549f94 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_add_q7.c @@ -0,0 +1,82 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nn_add_q7.c + * Description: Non saturating addition of elements of a q7 vector. + * + * $Date: July 2019 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupSupport + */ + +/** + * @addtogroup NNBasicMath + * @{ + */ + +void arm_nn_add_q7(const q7_t *input, q31_t *output, uint32_t block_size) +{ + uint32_t block_count; + q31_t result = 0; +#if defined(ARM_MATH_DSP) + /* Loop unrolling: Compute 4 outputs at a time */ + block_count = block_size >> 2U; + + while (block_count > 0U) + { + const int32_t mult_q15x2 = (1UL << 16) | 1UL; + q31_t in_q7x4 = arm_nn_read_q7x4_ia(&input); + q31_t temp_q15x2 = __SXTAB16(__SXTB16(in_q7x4), + __ROR((uint32_t)in_q7x4, 8)); + + result = __SMLAD(temp_q15x2, mult_q15x2, result); + + /* Decrement loop counter */ + block_count--; + } + + /* Loop unrolling: Compute remaining outputs */ + block_count = block_size & 0x3; +#else + block_count = block_size; +#endif + while (block_count > 0U) + { + /* Add and store result in destination buffer. */ + result += *input++; + + /* Decrement loop counter */ + block_count--; + } + + *output = result; +} + +/** + * @} end of NNBasicMath group + */ \ No newline at end of file diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_depthwise_conv_nt_t_padded_s8.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_depthwise_conv_nt_t_padded_s8.c new file mode 100644 index 00000000..15e6b6dd --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_depthwise_conv_nt_t_padded_s8.c @@ -0,0 +1,169 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nn_depthwise_conv_nt_t_padded_s8.c + * Description: Depthwise convolution with padded matrices. + * + * $Date: March 17, 2020 + * $Revision: V.1.0.1 + * + * Target Processor: Cortex-M processors with MVE extension + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupSupport + */ + +/** + * @addtogroup NNBasicMath + * @{ + */ + +/* + * Depthwise convolution of transposed rhs matrix with 4 lhs matrices. One or more of the rhs matrices are padded. + * Dimensions are the same for lhs and rhs. + * + * Refer header file for details. + * + */ + +q7_t *arm_nn_depthwise_conv_nt_t_padded_s8(const q7_t *lhs, + const q7_t *rhs, + const int32_t input_offset, + const uint16_t num_ch, + const int32_t *out_shift, + const int32_t *out_mult, + const int32_t out_offset, + const int32_t activation_min, + const int32_t activation_max, + const uint16_t row_x_col, + const int32_t *const output_bias, + q7_t *out) +{ +#if defined(ARM_MATH_MVEI) + int32_t loop_count = (num_ch + 3) / 4; + const int32_t *bias = output_bias; + uint32_t num_ch_to_process = num_ch; + + for (int i_loop_cnt = 0, offset = 0; i_loop_cnt < loop_count; + num_ch_to_process -= 4, out += 4, offset += 4, i_loop_cnt++) + { + int32x4_t out_0 = vldrwq_s32(bias); + int32x4_t out_1 = out_0; + int32x4_t out_2 = out_0; + int32x4_t out_3 = out_0; + bias += 4; + + const int8_t *rhs_0 = rhs + offset; + const int8_t *lhs_0 = lhs + offset; + const int8_t *lhs_1 = lhs + row_x_col * num_ch + offset; + const int8_t *lhs_2 = lhs + (row_x_col * num_ch * 2) + offset; + const int8_t *lhs_3 = lhs + (row_x_col * num_ch * 3) + offset; + + for (int i_row_x_col = 0; i_row_x_col < row_x_col; i_row_x_col++) + { + const int32x4_t ker_0 = vldrbq_s32(rhs_0); + + int32x4_t ip_0 = vldrbq_s32(lhs_0); + ip_0 = vaddq_n_s32(ip_0, input_offset); + out_0 += vmulq_s32(ip_0, ker_0); + + int32x4_t ip_1 = vldrbq_s32(lhs_1); + ip_1 = vaddq_n_s32(ip_1, input_offset); + out_1 += vmulq_s32(ip_1, ker_0); + + int32x4_t ip_2 = vldrbq_s32(lhs_2); + ip_2 = vaddq_n_s32(ip_2, input_offset); + out_2 += vmulq_s32(ip_2, ker_0); + + int32x4_t ip_3 = vldrbq_s32(lhs_3); + ip_3 = vaddq_n_s32(ip_3, input_offset); + + out_3 += vmulq_s32(ip_3, ker_0); + + lhs_0 += num_ch; + lhs_1 += num_ch; + lhs_2 += num_ch; + lhs_3 += num_ch; + + rhs_0 += num_ch; + } + + const int32x4_t mult = vldrwq_s32(out_mult); + const int32x4_t shift = vldrwq_s32(out_shift); + out_mult += 4; + out_shift += 4; + + out_0 = arm_requantize_mve_32x4(out_0, mult, shift); + out_0 = vaddq_n_s32(out_0, out_offset); + out_0 = vmaxq_s32(out_0, vdupq_n_s32(activation_min)); + out_0 = vminq_s32(out_0, vdupq_n_s32(activation_max)); + mve_pred16_t p = vctp32q(num_ch_to_process); + vstrbq_p_s32(out, out_0, p); + + out_1 = arm_requantize_mve_32x4(out_1, mult, shift); + out_1 = vaddq_n_s32(out_1, out_offset); + out_1 = vmaxq_s32(out_1, vdupq_n_s32(activation_min)); + out_1 = vminq_s32(out_1, vdupq_n_s32(activation_max)); + vstrbq_p_s32(out + num_ch, out_1, p); + + out_2 = arm_requantize_mve_32x4(out_2, mult, shift); + out_2 = vaddq_n_s32(out_2, out_offset); + out_2 = vmaxq_s32(out_2, vdupq_n_s32(activation_min)); + out_2 = vminq_s32(out_2, vdupq_n_s32(activation_max)); + vstrbq_p_s32(out + 2 * num_ch, out_2, p); + + out_3 = arm_requantize_mve_32x4(out_3, mult, shift); + out_3 = vaddq_n_s32(out_3, out_offset); + out_3 = vmaxq_s32(out_3, vdupq_n_s32(activation_min)); + out_3 = vminq_s32(out_3, vdupq_n_s32(activation_max)); + vstrbq_p_s32(out + 3 * num_ch, out_3, p); + } + + const int tail_ch = num_ch & 0x3; + if (tail_ch != 0) + { + out -= (4 - tail_ch); + } + return out + (3 * num_ch); + +#else + (void)lhs; + (void)rhs; + (void)input_offset; + (void)num_ch; + (void)out_shift; + (void)out_mult; + (void)out_offset; + (void)activation_min; + (void)activation_max; + (void)row_x_col; + (void)output_bias; + (void)out; + return NULL; +#endif +} + +/** + * @} end of NNBasicMath group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_depthwise_conv_nt_t_s8.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_depthwise_conv_nt_t_s8.c new file mode 100644 index 00000000..2cfdef44 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_depthwise_conv_nt_t_s8.c @@ -0,0 +1,171 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nn_depthwise_conv_nt_t_s8.c + * Description: Depthwise convolution on matrices with no padding. + * + * $Date: March 17, 2020 + * $Revision: V.1.0.1 + * + * Target Processor: Cortex-M processors with MVE extension. + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupSupport + */ + +/** + * @addtogroup NNBasicMath + * @{ + */ + +/* + * Depthwise convolution of rhs matrix with 4 lhs matrices with no padding. Dimensions are the same for lhs and rhs. + * + * Refer header file for details. + * + */ + +q7_t *arm_nn_depthwise_conv_nt_t_s8(const q7_t *lhs, + const q7_t *rhs, + const int32_t input_offset, + const uint16_t num_ch, + const int32_t *out_shift, + const int32_t *out_mult, + const int32_t out_offset, + const int32_t activation_min, + const int32_t activation_max, + const uint16_t row_x_col, + const int32_t *const output_bias, + q7_t *out) +{ +#if defined(ARM_MATH_MVEI) + const int32_t *bias = output_bias; + int32_t loop_count = (num_ch + 3) / 4; + uint32_t num_ch_to_process = num_ch; + + for (int i_loop_cnt = 0, offset = 0; i_loop_cnt < loop_count; + num_ch_to_process -= 4, offset += 4, out += 4, i_loop_cnt++) + { + int32x4_t out_0 = vldrwq_s32(bias); + int32x4_t out_1 = out_0; + int32x4_t out_2 = out_0; + int32x4_t out_3 = out_0; + bias += 4; + + const int8_t *rhs_0 = rhs + offset; + const int8_t *lhs_0 = lhs + offset; + const int8_t *lhs_1 = lhs + row_x_col * num_ch + offset; + const int8_t *lhs_2 = lhs + (row_x_col * num_ch * 2) + offset; + const int8_t *lhs_3 = lhs + (row_x_col * num_ch * 3) + offset; + int32x4_t ker_sum = vdupq_n_s32(0); + + for (int i_row_x_col = 0; i_row_x_col < row_x_col; i_row_x_col++) + { + const int32x4_t ker_0 = vldrbq_s32(rhs_0); + ker_sum = vaddq_s32(ker_sum, ker_0); + + int32x4_t ip_0 = vldrbq_s32(lhs_0); + out_0 += vmulq_s32(ip_0, ker_0); + + int32x4_t ip_1 = vldrbq_s32(lhs_1); + out_1 += vmulq_s32(ip_1, ker_0); + + int32x4_t ip_2 = vldrbq_s32(lhs_2); + out_2 += vmulq_s32(ip_2, ker_0); + + int32x4_t ip_3 = vldrbq_s32(lhs_3); + out_3 += vmulq_s32(ip_3, ker_0); + + lhs_0 += num_ch; + lhs_1 += num_ch; + lhs_2 += num_ch; + lhs_3 += num_ch; + + rhs_0 += num_ch; + } + + ker_sum = vmulq_n_s32(ker_sum, input_offset); + out_0 = ker_sum + out_0; + out_1 = ker_sum + out_1; + out_2 = ker_sum + out_2; + out_3 = ker_sum + out_3; + + const int32x4_t mult = vldrwq_s32(out_mult); + const int32x4_t shift = vldrwq_s32(out_shift); + out_mult += 4; + out_shift += 4; + mve_pred16_t p = vctp32q(num_ch_to_process); + + out_0 = arm_requantize_mve_32x4(out_0, mult, shift); + out_0 = vaddq_n_s32(out_0, out_offset); + out_0 = vmaxq_s32(out_0, vdupq_n_s32(activation_min)); + out_0 = vminq_s32(out_0, vdupq_n_s32(activation_max)); + vstrbq_p_s32(out, out_0, p); + + out_1 = arm_requantize_mve_32x4(out_1, mult, shift); + out_1 = vaddq_n_s32(out_1, out_offset); + out_1 = vmaxq_s32(out_1, vdupq_n_s32(activation_min)); + out_1 = vminq_s32(out_1, vdupq_n_s32(activation_max)); + vstrbq_p_s32(out + num_ch, out_1, p); + + out_2 = arm_requantize_mve_32x4(out_2, mult, shift); + out_2 = vaddq_n_s32(out_2, out_offset); + out_2 = vmaxq_s32(out_2, vdupq_n_s32(activation_min)); + out_2 = vminq_s32(out_2, vdupq_n_s32(activation_max)); + vstrbq_p_s32(out + 2 * num_ch, out_2, p); + + out_3 = arm_requantize_mve_32x4(out_3, mult, shift); + out_3 = vaddq_n_s32(out_3, out_offset); + out_3 = vmaxq_s32(out_3, vdupq_n_s32(activation_min)); + out_3 = vminq_s32(out_3, vdupq_n_s32(activation_max)); + vstrbq_p_s32(out + 3 * num_ch, out_3, p); + } + + const int tail_ch = num_ch & 0x3; + if (tail_ch != 0) + { + out -= (4 - tail_ch); + } + + return out + (3 * num_ch); +#else + (void)lhs; + (void)rhs; + (void)input_offset; + (void)num_ch; + (void)out_shift; + (void)out_mult; + (void)out_offset; + (void)activation_min; + (void)activation_max; + (void)row_x_col; + (void)output_bias; + (void)out; + return NULL; +#endif +} + +/** + * @} end of NNBasicMath group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mat_mul_core_1x_s8.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mat_mul_core_1x_s8.c new file mode 100644 index 00000000..f57ee07f --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mat_mul_core_1x_s8.c @@ -0,0 +1,91 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nn_mat_mul_core_1x_s8.c + * Description: General Matrix-multiplication function + * + * $Date: January 20, 2020 + * $Revision: V.1.0.1 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupSupport + */ + +/** + * @addtogroup NNBasicMath + * @{ + */ + +/* + * s8 matrix multiplication to process 1 row + * + * Refer header file for details. + * + */ + +arm_status arm_nn_mat_mul_core_1x_s8(int32_t row_elements, + const int8_t *row_base, + const int8_t *col_base, + int32_t *const sum_col, + int32_t *const output) +{ + int32_t acc_n0 = 0; + int32_t sum_tmp = 0; + +#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE) + + __asm volatile ( + " vldrb.8 q0, [%[col]], 16 \n" + " wlstp.8 lr, %[cnt], 1f \n" + "2: \n" + " vaddva.s8 %[sum], q0 \n" + " vldrb.8 q1, [%[row0]], 16 \n" + " vmladava.s8 %[out0], q0, q1 \n" + " vldrb.8 q0, [%[col]], 16 \n" + " letp lr, 2b \n" + "1: \n" + :[col] "+r"(col_base) + ,[sum] "+Te"(sum_tmp) + ,[row0] "+r"(row_base) + ,[out0] "+Te"(acc_n0) + :[cnt] "r"(row_elements) + :"q0","q1", "memory", "r14"); +#else + for (int i = 0; i < row_elements; i++) + { + sum_tmp += col_base[i]; + acc_n0 += row_base[i] * col_base[i]; + } +#endif + + *sum_col = sum_tmp; + *output = acc_n0; + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNBasicMath group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mat_mul_core_4x_s8.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mat_mul_core_4x_s8.c new file mode 100644 index 00000000..0b240b70 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mat_mul_core_4x_s8.c @@ -0,0 +1,118 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nn_mat_mul_core_4x_s8.c + * Description: General matrix multiplication function for MVE extension + * + * $Date: January 20, 2020 + * $Revision: V.2.0.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupSupport + */ + +/** + * @addtogroup NNBasicMath + * @{ + */ + +/* + * s8 matrix multiplication to process 4 rows and one column + * + * Refer header file for details. + * + */ +arm_status arm_nn_mat_mul_core_4x_s8(const int32_t row_elements, + const int32_t offset, + const int8_t *row_base, + const int8_t *col_base, + int32_t *const sum_col, + int32_t *const output) +{ + int32_t acc_n0 = 0; + int32_t acc_n1 = 0; + int32_t acc_n2 = 0; + int32_t acc_n3 = 0; + + const int8_t *ip_row_0 = row_base; + const int8_t *ip_row_1 = row_base + offset; + const int8_t *ip_row_2 = row_base + (2 * offset); + const int8_t *ip_row_3 = row_base + (3 * offset); + int32_t sum_tmp = 0; + +#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE) + __asm volatile( + " vldrb.8 q0, [%[col]], 16 \n" + " wlstp.8 lr, %[cnt], 1f \n" + "2: \n" + " vaddva.s8 %[sum], q0 \n" + " vldrb.8 q1, [%[row0]], 16 \n" + " vmladava.s8 %[out0], q0, q1 \n" + " vldrb.8 q2, [%[row1]], 16 \n" + " vmladava.s8 %[out1], q0, q2 \n" + " vldrb.8 q3, [%[row2]], 16 \n" + " vmladava.s8 %[out2], q0, q3 \n" + " vldrb.8 q4, [%[row3]], 16 \n" + " vmladava.s8 %[out3], q0, q4 \n" + " vldrb.8 q0, [%[col]], 16 \n" + " letp lr, 2b \n" + "1: \n" + :[col] "+r"(col_base) + ,[sum] "+Te"(sum_tmp) + ,[row0] "+r"(ip_row_0) + ,[row1] "+r"(ip_row_1) + ,[row2] "+r"(ip_row_2) + ,[row3] "+r"(ip_row_3) + ,[out0] "+Te"(acc_n0) + ,[out1] "+Te"(acc_n1) + ,[out2] "+Te"(acc_n2) + ,[out3] "+Te"(acc_n3) + : [cnt] "r"(row_elements) + : "q0", "q1", "q2", "q3", "q4", "memory", "r14"); +#else + for (int i = 0; i < row_elements; i++) + { + int32_t col = col_base[i]; + sum_tmp += col; + acc_n0 += ip_row_0[i] * col; + acc_n1 += ip_row_1[i] * col; + acc_n2 += ip_row_2[i] * col; + acc_n3 += ip_row_3[i] * col; + } +#endif + output[0] = acc_n0; + output[1] = acc_n1; + output[2] = acc_n2; + output[3] = acc_n3; + + *sum_col = sum_tmp; + + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNBasicMath group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mat_mult_nt_t_s8.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mat_mult_nt_t_s8.c new file mode 100644 index 00000000..392ab58c --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mat_mult_nt_t_s8.c @@ -0,0 +1,579 @@ +/* + * Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nn_mat_mult_s8_nt_t_s8 + * Description: Matrix multiplication support function with the right-hand-side (rhs) matrix transposed + * + * $Date: March 17 2020 + * $Revision: V.1.0.1 + * + * Target Processor: Cortex-M + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" +#include "cmsis/CMSIS/NN/Include/arm_nnsupportfunctions.h" + +// Work around for https://github.com/ARMmbed/mbed-os/issues/12568 +#define __patched_SXTB16_RORn(op1, rotate) \ +({ \ + uint32_t result; \ + __ASM ("sxtb16 %0, %1, ROR %2" : "=r" (result) : "r" (op1), "i" (rotate) ); \ + result; \ +}) +/** + * @ingroup groupSupport + */ + +/** + * @addtogroup NNBasicMath + * @{ + */ + +/* + * s8 matrix multiplication with the right-hand-side matrix transposed + * + * Refer header file for details. + * + */ +arm_status arm_nn_mat_mult_nt_t_s8(const q7_t *lhs, + const q7_t *rhs, + const q31_t *bias, + q7_t *dst, + const int32_t *dst_multipliers, + const int32_t *dst_shifts, + const int32_t lhs_rows, + const int32_t rhs_rows, + const int32_t rhs_cols, + const int32_t lhs_offset, + const int32_t dst_offset, + const int32_t activation_min, + const int32_t activation_max) +{ +#if defined(ARM_MATH_DSP) + const int32_t off0 = rhs_cols - 4; + + for (int32_t rhs_rows_idx = 0; rhs_rows_idx <= (rhs_rows - 2); rhs_rows_idx += 2) + { + const q7_t *lhs_ptr = &lhs[0]; + q7_t *dst_ptr = &dst[0]; + + q31_t lhs_offset_contribution0 = 0; + q31_t lhs_offset_contribution1 = 0; + + for (int32_t x = 0; x < rhs_cols; ++x) + { + lhs_offset_contribution0 += rhs[x]; + lhs_offset_contribution1 += rhs[x + rhs_cols]; + } + + lhs_offset_contribution0 *= lhs_offset; + lhs_offset_contribution1 *= lhs_offset; + + lhs_offset_contribution0 += bias[rhs_rows_idx]; + lhs_offset_contribution1 += bias[rhs_rows_idx + 1]; + + int32_t lhs_rows_idx = lhs_rows >> 1; + + while (lhs_rows_idx) + { + const q7_t *rhs_ptr = &rhs[0]; + + q31_t res00 = lhs_offset_contribution0; + q31_t res01 = lhs_offset_contribution1; + q31_t res10 = lhs_offset_contribution0; + q31_t res11 = lhs_offset_contribution1; + + int32_t rhs_cols_idx = 0; + + q31_t val0, val1, val2, val3, val4, val5; + + for (; rhs_cols_idx <= (rhs_cols - 16); rhs_cols_idx += 16) + { + val1 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr); + val2 = __SXTB16(val1); + val0 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr); + val3 = __SXTB16(val0); + val4 = arm_nn_read_q7x4((const q7_t *)&rhs_ptr[off0]); + val1 = __patched_SXTB16_RORn(val1, 8); + val0 = __patched_SXTB16_RORn(val0, 8); + + // 4 x MAC res00, res01 + res00 = __SMLAD(val3, val2, res00); + val5 = __SXTB16(val4); + res00 = __SMLAD(val0, val1, res00); + val4 = __patched_SXTB16_RORn(val4, 8); + res01 = __SMLAD(val3, val5, res01); + res01 = __SMLAD(val0, val4, res01); + + // 4 x MAC res10, res11 + val0 = arm_nn_read_q7x4((const q7_t *)&lhs_ptr[off0]); + val3 = __SXTB16(val0); + val0 = __patched_SXTB16_RORn(val0, 8); + res10 = __SMLAD(val3, val2, res10); + res11 = __SMLAD(val3, val5, res11); + res10 = __SMLAD(val0, val1, res10); + val1 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr); + res11 = __SMLAD(val0, val4, res11); + + val4 = arm_nn_read_q7x4((const q7_t *)&rhs_ptr[off0]); + val2 = __SXTB16(val1); + val0 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr); + val3 = __SXTB16(val0); + val1 = __patched_SXTB16_RORn(val1, 8); + val0 = __patched_SXTB16_RORn(val0, 8); + + // 4 x MAC res00, res01 + res00 = __SMLAD(val3, val2, res00); + val5 = __SXTB16(val4); + res00 = __SMLAD(val0, val1, res00); + val4 = __patched_SXTB16_RORn(val4, 8); + res01 = __SMLAD(val3, val5, res01); + res01 = __SMLAD(val0, val4, res01); + + // 4 x MAC res10, res11 + val0 = arm_nn_read_q7x4((const q7_t *)&lhs_ptr[off0]); + val3 = __SXTB16(val0); + val0 = __patched_SXTB16_RORn(val0, 8); + res10 = __SMLAD(val3, val2, res10); + res11 = __SMLAD(val3, val5, res11); + res10 = __SMLAD(val0, val1, res10); + val1 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr); + res11 = __SMLAD(val0, val4, res11); + + val4 = arm_nn_read_q7x4((const q7_t *)&rhs_ptr[off0]); + val2 = __SXTB16(val1); + val0 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr); + val3 = __SXTB16(val0); + val1 = __patched_SXTB16_RORn(val1, 8); + val0 = __patched_SXTB16_RORn(val0, 8); + + // 4 x MAC res00, res01 + res00 = __SMLAD(val3, val2, res00); + val5 = __SXTB16(val4); + res00 = __SMLAD(val0, val1, res00); + val4 = __patched_SXTB16_RORn(val4, 8); + res01 = __SMLAD(val3, val5, res01); + res01 = __SMLAD(val0, val4, res01); + + // 4 x MAC res10, res11 + val0 = arm_nn_read_q7x4((const q7_t *)&lhs_ptr[off0]); + val3 = __SXTB16(val0); + val0 = __patched_SXTB16_RORn(val0, 8); + res10 = __SMLAD(val3, val2, res10); + res11 = __SMLAD(val3, val5, res11); + res10 = __SMLAD(val0, val1, res10); + val1 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr); + res11 = __SMLAD(val0, val4, res11); + + val4 = arm_nn_read_q7x4((const q7_t *)&rhs_ptr[off0]); + val2 = __SXTB16(val1); + val0 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr); + val3 = __SXTB16(val0); + val1 = __patched_SXTB16_RORn(val1, 8); + val0 = __patched_SXTB16_RORn(val0, 8); + + // 4 x MAC res00, res01 + res00 = __SMLAD(val3, val2, res00); + val5 = __SXTB16(val4); + res00 = __SMLAD(val0, val1, res00); + val4 = __patched_SXTB16_RORn(val4, 8); + res01 = __SMLAD(val3, val5, res01); + res01 = __SMLAD(val0, val4, res01); + + // 4 x MAC res10, res11 + val0 = arm_nn_read_q7x4((const q7_t *)&lhs_ptr[off0]); + val3 = __SXTB16(val0); + val0 = __patched_SXTB16_RORn(val0, 8); + res10 = __SMLAD(val3, val2, res10); + res11 = __SMLAD(val3, val5, res11); + res10 = __SMLAD(val0, val1, res10); + res11 = __SMLAD(val0, val4, res11); + } + + for (; rhs_cols_idx < rhs_cols; ++rhs_cols_idx) + { + q7_t rhs_value0 = rhs_ptr[0]; + q7_t rhs_value1 = rhs_ptr[rhs_cols]; + q7_t lhs_value = lhs_ptr[0]; + + res00 += lhs_value * rhs_value0; + res01 += lhs_value * rhs_value1; + + lhs_value = lhs_ptr[rhs_cols]; + res10 += lhs_value * rhs_value0; + res11 += lhs_value * rhs_value1; + + ++rhs_ptr; + ++lhs_ptr; + } + + // Quantize down + res00 = arm_nn_requantize(res00, dst_multipliers[rhs_rows_idx], dst_shifts[rhs_rows_idx]); + res01 = arm_nn_requantize(res01, dst_multipliers[rhs_rows_idx + 1], dst_shifts[rhs_rows_idx + 1]); + res10 = arm_nn_requantize(res10, dst_multipliers[rhs_rows_idx], dst_shifts[rhs_rows_idx]); + res11 = arm_nn_requantize(res11, dst_multipliers[rhs_rows_idx + 1], dst_shifts[rhs_rows_idx + 1]); + + // Add offset + res00 += dst_offset; + res01 += dst_offset; + res10 += dst_offset; + res11 += dst_offset; + + // Clamp the result + res00 = MAX(res00, activation_min); + res00 = MIN(res00, activation_max); + res01 = MAX(res01, activation_min); + res01 = MIN(res01, activation_max); + res10 = MAX(res10, activation_min); + res10 = MIN(res10, activation_max); + res11 = MAX(res11, activation_min); + res11 = MIN(res11, activation_max); + + dst_ptr[0] = (q7_t)res00; + dst_ptr[1] = (q7_t)res01; + dst_ptr += rhs_rows; + dst_ptr[0] = (q7_t)res10; + dst_ptr[1] = (q7_t)res11; + dst_ptr += rhs_rows; + + lhs_ptr += rhs_cols; + + lhs_rows_idx--; + } + + // Left-over rows + if (lhs_rows % 2) + { + const q7_t *rhs_ptr = &rhs[0]; + + q31_t res00 = lhs_offset_contribution0; + q31_t res01 = lhs_offset_contribution1; + + int32_t rhs_cols_idx = 0; + + q31_t val0, val1, val2, val3, val4, val5; + for (; rhs_cols_idx <= (rhs_cols - 16); rhs_cols_idx += 16) + { + val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr); + val1 = arm_nn_read_q7x4((const q7_t *)&rhs_ptr[off0]); + val2 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr); + val3 = __SXTB16(val0); + val5 = __SXTB16(val2); + val4 = __SXTB16(val1); + val0 = __patched_SXTB16_RORn(val0, 8); + val2 = __patched_SXTB16_RORn(val2, 8); + val1 = __patched_SXTB16_RORn(val1, 8); + + // 4 x MAC res00, res01 + res00 = __SMLAD(val5, val3, res00); + res00 = __SMLAD(val2, val0, res00); + res01 = __SMLAD(val5, val4, res01); + res01 = __SMLAD(val2, val1, res01); + + val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr); + val1 = arm_nn_read_q7x4((const q7_t *)&rhs_ptr[off0]); + val2 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr); + val3 = __SXTB16(val0); + val5 = __SXTB16(val2); + val4 = __SXTB16(val1); + val0 = __patched_SXTB16_RORn(val0, 8); + val2 = __patched_SXTB16_RORn(val2, 8); + val1 = __patched_SXTB16_RORn(val1, 8); + + // 4 x MAC res00, res01 + res00 = __SMLAD(val5, val3, res00); + res00 = __SMLAD(val2, val0, res00); + res01 = __SMLAD(val5, val4, res01); + res01 = __SMLAD(val2, val1, res01); + + val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr); + val1 = arm_nn_read_q7x4((const q7_t *)&rhs_ptr[off0]); + val2 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr); + val3 = __SXTB16(val0); + val5 = __SXTB16(val2); + val4 = __SXTB16(val1); + val0 = __patched_SXTB16_RORn(val0, 8); + val2 = __patched_SXTB16_RORn(val2, 8); + val1 = __patched_SXTB16_RORn(val1, 8); + + // 4 x MAC res00, res01 + res00 = __SMLAD(val5, val3, res00); + res00 = __SMLAD(val2, val0, res00); + res01 = __SMLAD(val5, val4, res01); + res01 = __SMLAD(val2, val1, res01); + + val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr); + val1 = arm_nn_read_q7x4((const q7_t *)&rhs_ptr[off0]); + val2 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr); + val3 = __SXTB16(val0); + val5 = __SXTB16(val2); + val4 = __SXTB16(val1); + val0 = __patched_SXTB16_RORn(val0, 8); + val2 = __patched_SXTB16_RORn(val2, 8); + val1 = __patched_SXTB16_RORn(val1, 8); + + // 4 x MAC res00, res01 + res00 = __SMLAD(val5, val3, res00); + res00 = __SMLAD(val2, val0, res00); + res01 = __SMLAD(val5, val4, res01); + res01 = __SMLAD(val2, val1, res01); + } + + // Left-over accumulations + for (; rhs_cols_idx < rhs_cols; ++rhs_cols_idx) + { + q7_t rhs_value0 = rhs_ptr[0]; + q7_t rhs_value1 = rhs_ptr[rhs_cols]; + q7_t lhs_value = lhs_ptr[0]; + + res00 += lhs_value * rhs_value0; + res01 += lhs_value * rhs_value1; + + ++rhs_ptr; + ++lhs_ptr; + } + + // Quantize down + res00 = arm_nn_requantize(res00, dst_multipliers[rhs_rows_idx], dst_shifts[rhs_rows_idx]); + res01 = arm_nn_requantize(res01, dst_multipliers[rhs_rows_idx + 1], dst_shifts[rhs_rows_idx + 1]); + + // Add offset + res00 += dst_offset; + res01 += dst_offset; + + // Clamp the result + res00 = MAX(res00, activation_min); + res00 = MIN(res00, activation_max); + res01 = MAX(res01, activation_min); + res01 = MIN(res01, activation_max); + + dst_ptr[0] = (q7_t)res00; + dst_ptr[1] = (q7_t)res01; + } + + rhs += 2 * rhs_cols; + dst += 2; + } + + if (rhs_rows % 2) + { + const q7_t *lhs_ptr = &lhs[0]; + q7_t *dst_ptr = &dst[0]; + + for (int32_t lhs_rows_idx = 0; lhs_rows_idx < lhs_rows; ++lhs_rows_idx) + { + const q7_t *rhs_ptr = &rhs[0]; + q31_t res00 = bias[rhs_rows - 1]; + + for (int32_t rhs_cols_idx = 0; rhs_cols_idx < rhs_cols; ++rhs_cols_idx) + { + q31_t rhs_value = rhs_ptr[0]; + q31_t lhs_value = lhs_ptr[0] + lhs_offset; + + res00 += lhs_value * rhs_value; + + ++rhs_ptr; + ++lhs_ptr; + } + + // Quantize down + res00 = arm_nn_requantize(res00, dst_multipliers[rhs_rows - 1], dst_shifts[rhs_rows - 1]); + + // Add offset + res00 += dst_offset; + + // Clamp the result + res00 = MAX(res00, activation_min); + res00 = MIN(res00, activation_max); + + dst_ptr[0] = (q7_t)res00; + dst_ptr += rhs_rows; + } + } +#else + for (int32_t rhs_rows_idx = 0; rhs_rows_idx <= (rhs_rows - 2); rhs_rows_idx += 2) + { + const q7_t *lhs_ptr = &lhs[0]; + q7_t *dst_ptr = &dst[0]; + + q31_t lhs_offset_contribution0 = 0; + q31_t lhs_offset_contribution1 = 0; + + for (int32_t x = 0; x < rhs_cols; ++x) + { + lhs_offset_contribution0 += rhs[x]; + lhs_offset_contribution1 += rhs[x + rhs_cols]; + } + + lhs_offset_contribution0 *= lhs_offset; + lhs_offset_contribution1 *= lhs_offset; + + lhs_offset_contribution0 += bias[rhs_rows_idx]; + lhs_offset_contribution1 += bias[rhs_rows_idx + 1]; + + int32_t lhs_rows_idx = lhs_rows >> 1; + + while (lhs_rows_idx) + { + const q7_t *rhs_ptr = &rhs[0]; + + q31_t res00 = lhs_offset_contribution0; + q31_t res01 = lhs_offset_contribution1; + q31_t res10 = lhs_offset_contribution0; + q31_t res11 = lhs_offset_contribution1; + + for (int32_t rhs_cols_idx = 0; rhs_cols_idx < rhs_cols; ++rhs_cols_idx) + { + q7_t rhs_value0 = rhs_ptr[0]; + q7_t rhs_value1 = rhs_ptr[rhs_cols]; + q7_t lhs_value = lhs_ptr[0]; + + res00 += lhs_value * rhs_value0; + res01 += lhs_value * rhs_value1; + + lhs_value = lhs_ptr[rhs_cols]; + res10 += lhs_value * rhs_value0; + res11 += lhs_value * rhs_value1; + + ++rhs_ptr; + ++lhs_ptr; + } + + // Quantize down + res00 = arm_nn_requantize(res00, dst_multipliers[rhs_rows_idx], dst_shifts[rhs_rows_idx]); + res01 = arm_nn_requantize(res01, dst_multipliers[rhs_rows_idx + 1], dst_shifts[rhs_rows_idx + 1]); + res10 = arm_nn_requantize(res10, dst_multipliers[rhs_rows_idx], dst_shifts[rhs_rows_idx]); + res11 = arm_nn_requantize(res11, dst_multipliers[rhs_rows_idx + 1], dst_shifts[rhs_rows_idx + 1]); + + // Add offset + res00 += dst_offset; + res01 += dst_offset; + res10 += dst_offset; + res11 += dst_offset; + + // Clamp the result + res00 = MAX(res00, activation_min); + res00 = MIN(res00, activation_max); + res01 = MAX(res01, activation_min); + res01 = MIN(res01, activation_max); + res10 = MAX(res10, activation_min); + res10 = MIN(res10, activation_max); + res11 = MAX(res11, activation_min); + res11 = MIN(res11, activation_max); + + dst_ptr[0] = (q7_t)res00; + dst_ptr[1] = (q7_t)res01; + dst_ptr += rhs_rows; + dst_ptr[0] = (q7_t)res10; + dst_ptr[1] = (q7_t)res11; + dst_ptr += rhs_rows; + + lhs_ptr += rhs_cols; + + lhs_rows_idx--; + } + + // Left-over rows + if (lhs_rows % 2) + { + const q7_t *rhs_ptr = &rhs[0]; + + q31_t res00 = lhs_offset_contribution0; + q31_t res01 = lhs_offset_contribution1; + + for (int32_t rhs_cols_idx = 0; rhs_cols_idx < rhs_cols; ++rhs_cols_idx) + { + q7_t rhs_value0 = rhs_ptr[0]; + q7_t rhs_value1 = rhs_ptr[rhs_cols]; + q7_t lhs_value = lhs_ptr[0]; + + res00 += lhs_value * rhs_value0; + res01 += lhs_value * rhs_value1; + + ++rhs_ptr; + ++lhs_ptr; + } + + // Quantize down + res00 = arm_nn_requantize(res00, dst_multipliers[rhs_rows_idx], dst_shifts[rhs_rows_idx]); + res01 = arm_nn_requantize(res01, dst_multipliers[rhs_rows_idx + 1], dst_shifts[rhs_rows_idx + 1]); + + // Add offset + res00 += dst_offset; + res01 += dst_offset; + + // Clamp the result + res00 = MAX(res00, activation_min); + res00 = MIN(res00, activation_max); + res01 = MAX(res01, activation_min); + res01 = MIN(res01, activation_max); + + dst_ptr[0] = (q7_t)res00; + dst_ptr[1] = (q7_t)res01; + } + + rhs += 2 * rhs_cols; + dst += 2; + } + + if (rhs_rows % 2) + { + const q7_t *lhs_ptr = &lhs[0]; + q7_t *dst_ptr = &dst[0]; + + for (int32_t lhs_rows_idx = 0; lhs_rows_idx < lhs_rows; ++lhs_rows_idx) + { + const q7_t *rhs_ptr = &rhs[0]; + q31_t res00 = bias[rhs_rows - 1]; + + for (int32_t rhs_cols_idx = 0; rhs_cols_idx < rhs_cols; ++rhs_cols_idx) + { + q31_t rhs_value = rhs_ptr[0]; + q31_t lhs_value = lhs_ptr[0] + lhs_offset; + + res00 += lhs_value * rhs_value; + + ++rhs_ptr; + ++lhs_ptr; + } + + // Quantize down + res00 = arm_nn_requantize(res00, dst_multipliers[rhs_rows - 1], dst_shifts[rhs_rows - 1]); + + // Add offset + res00 += dst_offset; + + // Clamp the result + res00 = MAX(res00, activation_min); + res00 = MIN(res00, activation_max); + + dst_ptr[0] = (q7_t)res00; + dst_ptr += rhs_rows; + } + } +#endif + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNBasicMath group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q15.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q15.c new file mode 100644 index 00000000..d84bc18b --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q15.c @@ -0,0 +1,145 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nn_mult_q15.c + * Description: Q15 vector multiplication with variable output shifts + * + * $Date: 29. April 2020 + * $Revision: V.1.0.1 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupSupport + */ + +/** + * @addtogroup NNBasicMath + * @{ + */ + + +/** + * @brief Q7 vector multiplication with variable output shifts + * @param[in] *pSrcA pointer to the first input vector + * @param[in] *pSrcB pointer to the second input vector + * @param[out] *pDst pointer to the output vector + * @param[in] out_shift amount of right-shift for output + * @param[in] blockSize number of samples in each vector + * + * Scaling and Overflow Behavior: + * \par + * The function uses saturating arithmetic. + * Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated. + */ + +void arm_nn_mult_q15( + q15_t * pSrcA, + q15_t * pSrcB, + q15_t * pDst, + const uint16_t out_shift, + uint32_t blockSize) +{ + uint32_t blkCnt; /* loop counters */ + +#if defined (ARM_MATH_DSP) + +/* Run the below code for Cortex-M4 and Cortex-M3 */ + q31_t inA1, inA2, inB1, inB2; /* temporary input variables */ + q15_t out1, out2, out3, out4; /* temporary output variables */ + q31_t mul1, mul2, mul3, mul4; /* temporary variables */ + + /* loop Unrolling */ + blkCnt = blockSize >> 2U; + + /* First part of the processing with loop unrolling. Compute 4 outputs at a time. + ** a second loop below computes the remaining 1 to 3 samples. */ + while (blkCnt > 0U) + { + /* read two samples at a time from sourceA */ + inA1 = arm_nn_read_q15x2_ia((const q15_t **)&pSrcA); + /* read two samples at a time from sourceB */ + inB1 = arm_nn_read_q15x2_ia((const q15_t **)&pSrcB); + /* read two samples at a time from sourceA */ + inA2 = arm_nn_read_q15x2_ia((const q15_t **)&pSrcA); + /* read two samples at a time from sourceB */ + inB2 = arm_nn_read_q15x2_ia((const q15_t **)&pSrcB); + + /* multiply mul = sourceA * sourceB */ + mul1 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1 >> 16)); + mul2 = (q31_t) ((q15_t) inA1 * (q15_t) inB1); + mul3 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) (inB2 >> 16)); + mul4 = (q31_t) ((q15_t) inA2 * (q15_t) inB2); + + /* saturate result to 16 bit */ + out1 = (q15_t) __SSAT((q31_t) (mul1 + NN_ROUND(out_shift)) >> out_shift, 16); + out2 = (q15_t) __SSAT((q31_t) (mul2 + NN_ROUND(out_shift)) >> out_shift, 16); + out3 = (q15_t) __SSAT((q31_t) (mul3 + NN_ROUND(out_shift)) >> out_shift, 16); + out4 = (q15_t) __SSAT((q31_t) (mul4 + NN_ROUND(out_shift)) >> out_shift, 16); + + /* store the result */ +#ifndef ARM_MATH_BIG_ENDIAN + + *__SIMD32(pDst)++ = __PKHBT(out2, out1, 16); + *__SIMD32(pDst)++ = __PKHBT(out4, out3, 16); + +#else + + *__SIMD32(pDst)++ = __PKHBT(out2, out1, 16); + *__SIMD32(pDst)++ = __PKHBT(out4, out3, 16); + +#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ + + /* Decrement the blockSize loop counter */ + blkCnt--; + } + + /* If the blockSize is not a multiple of 4, compute any remaining output samples here. + ** No loop unrolling is used. */ + blkCnt = blockSize % 0x4U; + +#else + + /* Run the below code for Cortex-M0 */ + + /* Initialize blkCnt with number of samples */ + blkCnt = blockSize; + +#endif /* #if defined (ARM_MATH_DSP) */ + + + while (blkCnt > 0U) + { + /* C = A * B */ + /* Multiply the inputs and store the result in the destination buffer */ + *pDst++ = (q15_t) __SSAT(((q31_t) ((q31_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 16); + + /* Decrement the blockSize loop counter */ + blkCnt--; + } +} + +/** + * @} end of NNBasicMath group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q7.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q7.c new file mode 100644 index 00000000..d99c42a3 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_mult_q7.c @@ -0,0 +1,118 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nn_mult_q7.c + * Description: Q7 vector multiplication with variable output shifts + * + * $Date: 29. April 2020 + * $Revision: V.1.0.1 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupSupport + */ + +/** + * @addtogroup NNBasicMath + * @{ + */ + +/** + * @brief Q7 vector multiplication with variable output shifts + * @param[in] *pSrcA pointer to the first input vector + * @param[in] *pSrcB pointer to the second input vector + * @param[out] *pDst pointer to the output vector + * @param[in] out_shift amount of right-shift for output + * @param[in] blockSize number of samples in each vector + * + * Scaling and Overflow Behavior: + * \par + * The function uses saturating arithmetic. + * Results outside of the allowable Q7 range [0x80 0x7F] will be saturated. + */ + +void arm_nn_mult_q7( + q7_t * pSrcA, + q7_t * pSrcB, + q7_t * pDst, + const uint16_t out_shift, + uint32_t blockSize) +{ + uint32_t blkCnt; /* loop counters */ + +#if defined (ARM_MATH_DSP) + +/* Run the below code for Cortex-M4 and Cortex-M3 */ + q7_t out1, out2, out3, out4; /* Temporary variables to store the product */ + + /* loop Unrolling */ + blkCnt = blockSize >> 2U; + + /* First part of the processing with loop unrolling. Compute 4 outputs at a time. + ** a second loop below computes the remaining 1 to 3 samples. */ + while (blkCnt > 0U) + { + /* C = A * B */ + /* Multiply the inputs and store the results in temporary variables */ + out1 = (q7_t) __SSAT(((q15_t) ((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8); + out2 = (q7_t) __SSAT(((q15_t) ((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8); + out3 = (q7_t) __SSAT(((q15_t) ((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8); + out4 = (q7_t) __SSAT(((q15_t) ((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8); + + /* Store the results of 4 inputs in the destination buffer in single cycle by packing */ + *__SIMD32(pDst)++ = __PACKq7(out1, out2, out3, out4); + + /* Decrement the blockSize loop counter */ + blkCnt--; + } + + /* If the blockSize is not a multiple of 4, compute any remaining output samples here. + ** No loop unrolling is used. */ + blkCnt = blockSize % 0x4U; + +#else + + /* Run the below code for Cortex-M0 */ + + /* Initialize blkCnt with number of samples */ + blkCnt = blockSize; + +#endif /* #if defined (ARM_MATH_DSP) */ + + + while (blkCnt > 0U) + { + /* C = A * B */ + /* Multiply the inputs and store the result in the destination buffer */ + *pDst++ = (q7_t) __SSAT(((q15_t) ((q15_t) (*pSrcA++) * (*pSrcB++) + NN_ROUND(out_shift)) >> out_shift), 8); + + /* Decrement the blockSize loop counter */ + blkCnt--; + } +} + +/** + * @} end of NNBasicMath group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_vec_mat_mult_t_s8.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_vec_mat_mult_t_s8.c new file mode 100644 index 00000000..2551b189 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nn_vec_mat_mult_t_s8.c @@ -0,0 +1,462 @@ +/* + * Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nn_vec_mat_mult_t_s8 + * Description: s8 vector by matrix (transposed) multiplication + * + * $Date: April 2, 2020 + * $Revision: V.1.5.0 + * + * Target Processor: Cortex-M + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" +#include "cmsis/CMSIS/NN/Include/arm_nnsupportfunctions.h" + +/** + * @ingroup groupSupport + */ + +/** + * @addtogroup NNBasicMath + * @{ + */ + +/* + * s8 vector(lhs) by matrix (transposed) multiplication + * + * Refer header file for details. + * + */ +arm_status arm_nn_vec_mat_mult_t_s8(const q7_t *lhs, + const q7_t *rhs, + const q31_t *bias, + q7_t *dst, + const int32_t lhs_offset, + const int32_t rhs_offset, + const int32_t dst_offset, + const int32_t dst_multiplier, + const int32_t dst_shift, + const int32_t rhs_cols, + const int32_t rhs_rows, + const int32_t activation_min, + const int32_t activation_max) +{ +#if defined(ARM_MATH_MVEI) + + const int16x8_t rhs_offset_vec = vdupq_n_s16((int16_t)rhs_offset); + const int16x8_t lhs_offset_vec = vdupq_n_s16((int16_t)lhs_offset); + + int32_t row_loop_cnt = rhs_rows / 4; + + for (int i_row_loop_cnt = 0; i_row_loop_cnt < row_loop_cnt; i_row_loop_cnt++) + { + int32_t acc1 = bias[0]; + int32_t acc2 = bias[1]; + int32_t acc3 = bias[2]; + int32_t acc4 = bias[3]; + bias += 4; + + int32x4_t acc; + const int32_t col_loop_cnt = (rhs_cols + 7) / 8; + + const int8_t *vec = lhs; + const int8_t *rhs_0 = rhs; + const int8_t *rhs_1 = rhs + rhs_cols; + const int8_t *rhs_2 = rhs + 2 * rhs_cols; + const int8_t *rhs_3 = rhs + 3 * rhs_cols; + + uint32_t col_cnt = (uint32_t)rhs_cols; + + for (int i = 0; i < col_loop_cnt; i++) + { + mve_pred16_t p = vctp16q(col_cnt); + col_cnt -= 8; + const int16x8_t tmp_b = vaddq_m_s16(vuninitializedq_s16(), + vldrbq_z_s16(vec, p), lhs_offset_vec, p); + + const int16x8_t tmp_a0 = vaddq_m_s16(vuninitializedq_s16(), + vldrbq_z_s16(rhs_0, p), rhs_offset_vec, p); + acc1 = vmladavaq_p_s16(acc1, tmp_a0, tmp_b, p); + + const int16x8_t tmp_a1 = vaddq_m_s16(vuninitializedq_s16(), + vldrbq_z_s16(rhs_1, p), rhs_offset_vec, p); + acc2 = vmladavaq_p_s16(acc2, tmp_a1, tmp_b, p); + + const int16x8_t tmp_a2 = vaddq_m_s16(vuninitializedq_s16(), + vldrbq_z_s16(rhs_2, p), rhs_offset_vec, p); + acc3 = vmladavaq_p_s16(acc3, tmp_a2, tmp_b, p); + + const int16x8_t tmp_a3 = vaddq_m_s16(vuninitializedq_s16(), + vldrbq_z_s16(rhs_3, p), rhs_offset_vec, p); + acc4 = vmladavaq_p_s16(acc4, tmp_a3, tmp_b, p); + + vec += 8; + rhs_0 += 8; + rhs_1 += 8; + rhs_2 += 8; + rhs_3 += 8; + } + rhs += 4 * rhs_cols; + + acc[0] = acc1; + acc[1] = acc2; + acc[2] = acc3; + acc[3] = acc4; + + acc = arm_requantize_mve(acc, dst_multiplier, dst_shift); + acc = vaddq_s32(acc, vdupq_n_s32(dst_offset)); + acc = vmaxq_s32(acc, vdupq_n_s32(activation_min)); + acc = vminq_s32(acc, vdupq_n_s32(activation_max)); + + vstrbq_s32(dst, acc); + dst += 4; + } + + row_loop_cnt = rhs_rows & 3; + + for (int i_row_loop_cnt = 0; i_row_loop_cnt < row_loop_cnt; + i_row_loop_cnt++) + { + int32_t acc = *bias++; + const int32_t col_loop_cnt = (rhs_cols + 7) / 8; + const int8_t *vec = lhs; + const int8_t *kernel_cur = rhs; + + uint32_t col_cnt = (uint32_t)rhs_cols; + + for (int i = 0; i < col_loop_cnt; i++) + { + mve_pred16_t p = vctp16q(col_cnt); + col_cnt -= 8; + const int16x8_t tmp_b = vaddq_m_s16(vuninitializedq_s16(), + vldrbq_z_s16(vec, p), lhs_offset_vec, p); + + const int16x8_t tmp_a = vaddq_m_s16(vuninitializedq_s16(), + vldrbq_z_s16(kernel_cur, p), rhs_offset_vec, p); + acc = vmladavaq_p_s16(acc, tmp_a, tmp_b, p); + vec += 8; + kernel_cur += 8; + } + rhs += rhs_cols; + + acc = arm_nn_requantize(acc, dst_multiplier, dst_shift); + acc += dst_offset; + + acc = MAX(acc, activation_min); + acc = MIN(acc, activation_max); + *dst++ = (int8_t)(acc); + } + +#elif defined(ARM_MATH_DSP) + const int32_t off0 = rhs_cols - 4; + const int16_t lhs_offset_s16 = lhs_offset; + const int16_t rhs_offset_s16 = rhs_offset; + + const uint32_t lhs_offset_s16x2 = __PKHBT(lhs_offset_s16, lhs_offset_s16, 16); + const uint32_t rhs_offset_s16x2 = __PKHBT(rhs_offset_s16, rhs_offset_s16, 16); + + for (int32_t rhs_rows_idx = 0; rhs_rows_idx <= (rhs_rows - 2); rhs_rows_idx += 2) + { + const q7_t *lhs_ptr = &lhs[0]; + const q7_t *rhs_ptr = &rhs[0]; + + q31_t res00 = *bias++; + q31_t res01 = *bias++; + + int32_t rhs_cols_idx = 0; + + q31_t val0, val1, val2, val3, val4, val5; + for (; rhs_cols_idx <= (rhs_cols - 16); rhs_cols_idx += 16) + { + // Read 4 x int8 values from the RHS matrix + val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr); + val2 = __SXTAB16(rhs_offset_s16x2, val0); + // Read 4 x int8 values from the LHS vector + val1 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr); + val0 = __SXTAB16(rhs_offset_s16x2, __ROR(val0, 8)); + val3 = __SXTAB16(lhs_offset_s16x2, val1); + // Read 4 x int8 values from the RHS matrix + val4 = arm_nn_read_q7x4((const q7_t *)rhs_ptr + off0); + val1 = __SXTAB16(lhs_offset_s16x2, __ROR(val1, 8)); + + // Perform the accumulations + res00 = __SMLAD(val3, val2, res00); + val5 = __SXTAB16(rhs_offset_s16x2, val4); + res00 = __SMLAD(val1, val0, res00); + val4 = __SXTAB16(rhs_offset_s16x2, __ROR(val4, 8)); + // Read 4 x int8 values from the RHS matrix + val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr); + res01 = __SMLAD(val3, val5, res01); + res01 = __SMLAD(val1, val4, res01); + + val2 = __SXTAB16(rhs_offset_s16x2, val0); + // Read 4 x int8 values from the LHS vector + val1 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr); + val0 = __SXTAB16(rhs_offset_s16x2, __ROR(val0, 8)); + val3 = __SXTAB16(lhs_offset_s16x2, val1); + // Read 4 x int8 values from the RHS matrix + val4 = arm_nn_read_q7x4((const q7_t *)rhs_ptr + off0); + val1 = __SXTAB16(lhs_offset_s16x2, __ROR(val1, 8)); + + // Perform the accumulations + res00 = __SMLAD(val3, val2, res00); + val5 = __SXTAB16(rhs_offset_s16x2, val4); + res00 = __SMLAD(val1, val0, res00); + val4 = __SXTAB16(rhs_offset_s16x2, __ROR(val4, 8)); + // Read 4 x int8 values from the RHS matrix + val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr); + res01 = __SMLAD(val3, val5, res01); + res01 = __SMLAD(val1, val4, res01); + + val2 = __SXTAB16(rhs_offset_s16x2, val0); + // Read 4 x int8 values from the LHS vector + val1 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr); + val0 = __SXTAB16(rhs_offset_s16x2, __ROR(val0, 8)); + val3 = __SXTAB16(lhs_offset_s16x2, val1); + // Read 4 x int8 values from the RHS matrix + val4 = arm_nn_read_q7x4((const q7_t *)rhs_ptr + off0); + val1 = __SXTAB16(lhs_offset_s16x2, __ROR(val1, 8)); + + // Perform the accumulations + res00 = __SMLAD(val3, val2, res00); + val5 = __SXTAB16(rhs_offset_s16x2, val4); + res00 = __SMLAD(val1, val0, res00); + val4 = __SXTAB16(rhs_offset_s16x2, __ROR(val4, 8)); + // Read 4 x int8 values from the RHS matrix + val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr); + res01 = __SMLAD(val3, val5, res01); + res01 = __SMLAD(val1, val4, res01); + + val2 = __SXTAB16(rhs_offset_s16x2, val0); + // Read 4 x int8 values from the LHS vector + val1 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr); + val0 = __SXTAB16(rhs_offset_s16x2, __ROR(val0, 8)); + val3 = __SXTAB16(lhs_offset_s16x2, val1); + // Read 4 x int8 values from the RHS matrix + val4 = arm_nn_read_q7x4((const q7_t *)rhs_ptr + off0); + val1 = __SXTAB16(lhs_offset_s16x2, __ROR(val1, 8)); + + // Perform the accumulations + res00 = __SMLAD(val3, val2, res00); + val5 = __SXTAB16(rhs_offset_s16x2, val4); + res00 = __SMLAD(val1, val0, res00); + val4 = __SXTAB16(rhs_offset_s16x2, __ROR(val4, 8)); + res01 = __SMLAD(val3, val5, res01); + res01 = __SMLAD(val1, val4, res01); + } + + for (; rhs_cols_idx < rhs_cols; ++rhs_cols_idx) + { + q31_t rhs_value0 = rhs_ptr[0] + rhs_offset; + q31_t rhs_value1 = rhs_ptr[rhs_cols] + rhs_offset; + q31_t lhs_value = lhs_ptr[0] + lhs_offset; + + res00 += lhs_value * rhs_value0; + res01 += lhs_value * rhs_value1; + + ++rhs_ptr; + ++lhs_ptr; + } + + // Quantize down + res00 = arm_nn_requantize(res00, dst_multiplier, dst_shift); + res01 = arm_nn_requantize(res01, dst_multiplier, dst_shift); + + // Add offset + res00 += dst_offset; + res01 += dst_offset; + + // Clamp the result + res00 = MAX(res00, activation_min); + res00 = MIN(res00, activation_max); + res01 = MAX(res01, activation_min); + res01 = MIN(res01, activation_max); + + *dst++ = (q7_t)res00; + *dst++ = (q7_t)res01; + + rhs += 2 * rhs_cols; + } + + if (rhs_rows % 2) + { + const q7_t *lhs_ptr = &lhs[0]; + const q7_t *rhs_ptr = &rhs[0]; + + q31_t res00 = *bias++; + + int32_t rhs_cols_idx = 0; + + q31_t val0, val1, val2, val3; + for (; rhs_cols_idx <= (rhs_cols - 16); rhs_cols_idx += 16) + { + val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr); + val1 = __SXTAB16(rhs_offset_s16x2, val0); + val2 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr); + val0 = __SXTAB16(rhs_offset_s16x2, __ROR(val0, 8)); + val3 = __SXTAB16(lhs_offset_s16x2, val2); + val2 = __SXTAB16(lhs_offset_s16x2, __ROR(val2, 8)); + + // Partial accumulations + res00 = __SMLAD(val3, val1, res00); + res00 = __SMLAD(val2, val0, res00); + + val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr); + val1 = __SXTAB16(rhs_offset_s16x2, val0); + val2 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr); + val0 = __SXTAB16(rhs_offset_s16x2, __ROR(val0, 8)); + val3 = __SXTAB16(lhs_offset_s16x2, val2); + val2 = __SXTAB16(lhs_offset_s16x2, __ROR(val2, 8)); + + // Partial accumulations + res00 = __SMLAD(val3, val1, res00); + res00 = __SMLAD(val2, val0, res00); + + val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr); + val1 = __SXTAB16(rhs_offset_s16x2, val0); + val2 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr); + val0 = __SXTAB16(rhs_offset_s16x2, __ROR(val0, 8)); + val3 = __SXTAB16(lhs_offset_s16x2, val2); + val2 = __SXTAB16(lhs_offset_s16x2, __ROR(val2, 8)); + + // Partial accumulations + res00 = __SMLAD(val3, val1, res00); + res00 = __SMLAD(val2, val0, res00); + + val0 = arm_nn_read_q7x4_ia((const q7_t **)&rhs_ptr); + val1 = __SXTAB16(rhs_offset_s16x2, val0); + val2 = arm_nn_read_q7x4_ia((const q7_t **)&lhs_ptr); + val0 = __SXTAB16(rhs_offset_s16x2, __ROR(val0, 8)); + val3 = __SXTAB16(lhs_offset_s16x2, val2); + val2 = __SXTAB16(lhs_offset_s16x2, __ROR(val2, 8)); + + // Partial accumulations + res00 = __SMLAD(val3, val1, res00); + res00 = __SMLAD(val2, val0, res00); + } + + for (; rhs_cols_idx < rhs_cols; ++rhs_cols_idx) + { + q31_t rhs_value0 = rhs_ptr[0] + rhs_offset; + q31_t lhs_value = lhs_ptr[0] + lhs_offset; + + res00 += lhs_value * rhs_value0; + + ++rhs_ptr; + ++lhs_ptr; + } + + // Quantize down + res00 = arm_nn_requantize(res00, dst_multiplier, dst_shift); + + // Add offset + res00 += dst_offset; + + // Clamp the result + res00 = MAX(res00, activation_min); + res00 = MIN(res00, activation_max); + + *dst = (q7_t)res00; + } + +#else + + for (int32_t rhs_rows_idx = 0; rhs_rows_idx <= (rhs_rows - 2); rhs_rows_idx += 2) + { + const q7_t *lhs_ptr = &lhs[0]; + const q7_t *rhs_ptr = &rhs[0]; + + q31_t res00 = *bias++; + q31_t res01 = *bias++; + + for (int32_t rhs_cols_idx = 0; rhs_cols_idx < rhs_cols; ++rhs_cols_idx) + { + q31_t rhs_value0 = rhs_ptr[0] + rhs_offset; + q31_t rhs_value1 = rhs_ptr[rhs_cols] + rhs_offset; + q31_t lhs_value = lhs_ptr[0] + lhs_offset; + + res00 += lhs_value * rhs_value0; + res01 += lhs_value * rhs_value1; + + ++rhs_ptr; + ++lhs_ptr; + } + + // Quantize down + res00 = arm_nn_requantize(res00, dst_multiplier, dst_shift); + res01 = arm_nn_requantize(res01, dst_multiplier, dst_shift); + + // Add offset + res00 += dst_offset; + res01 += dst_offset; + + // Clamp the result + res00 = MAX(res00, activation_min); + res00 = MIN(res00, activation_max); + res01 = MAX(res01, activation_min); + res01 = MIN(res01, activation_max); + + *dst++ = (q7_t)res00; + *dst++ = (q7_t)res01; + + rhs += 2 * rhs_cols; + } + + if (rhs_rows % 2) + { + const q7_t *lhs_ptr = &lhs[0]; + const q7_t *rhs_ptr = &rhs[0]; + + q31_t res00 = *bias++; + + for (int32_t rhs_cols_idx = 0; rhs_cols_idx < rhs_cols; ++rhs_cols_idx) + { + q31_t rhs_value0 = rhs_ptr[0] + rhs_offset; + q31_t lhs_value = lhs_ptr[0] + lhs_offset; + + res00 += lhs_value * rhs_value0; + + ++rhs_ptr; + ++lhs_ptr; + } + + // Quantize down + res00 = arm_nn_requantize(res00, dst_multiplier, dst_shift); + + // Add offset + res00 += dst_offset; + + // Clamp the result + res00 = MAX(res00, activation_min); + res00 = MIN(res00, activation_max); + + *dst = (q7_t)res00; + } +#endif + + return ARM_MATH_SUCCESS; +} + +/** + * @} end of NNBasicMath group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nntables.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nntables.c new file mode 100644 index 00000000..57f97f68 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_nntables.c @@ -0,0 +1,297 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_nntables.c + * Description: Converts the elements of the Q7 vector to Q15 vector without left-shift + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/NN/Include/arm_nnsupportfunctions.h" + +/** + * @brief tables for various activation functions + * + * This file include the declaration of common tables. + * Most of them are used for activation functions + * + * Assumption: + * Unified table: input is 3.x format, i.e, range of [-8, 8) + * sigmoid(8) = 0.9996646498695336 + * tanh(8) = 0.9999997749296758 + * The accuracy here should be good enough + * + * 2-stage HL table: + * + * The entire input range is divided into two parts: + * + * Low range table: 0x000x xxxx or 0x111x xxxx + * table entry will be the binary number excluding the first + * two digits, i.e., 0x0x xxxx or 0x1x xxxx + * + * + * + * High range table 0x0010 0000 -- 0x0111 1111 + * 0x1000 0000 -- 0x1101 1111 + * + * For positive numbers, table entry will be + * 0x0010 0000 -- 0x0111 1111 minus 0x0010 0000 + * i.e., 0x0000 0000 - 0x0101 11111 + * + * same thing for the negative numbers, table entry will be + * 0x1000 0000 -- 0x1101 1111 minux 0x0010 0000 + * i.e., 0x0110 0000 - 0x1011 1111 + */ + +const q7_t sigmoidTable_q7[256] = { + 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, + 0x50, 0x52, 0x53, 0x55, 0x57, 0x59, 0x5a, 0x5c, + 0x5e, 0x5f, 0x61, 0x62, 0x63, 0x65, 0x66, 0x67, + 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, + 0x71, 0x72, 0x72, 0x73, 0x74, 0x74, 0x75, 0x76, + 0x76, 0x77, 0x77, 0x78, 0x78, 0x79, 0x79, 0x7a, + 0x7a, 0x7a, 0x7b, 0x7b, 0x7b, 0x7c, 0x7c, 0x7c, + 0x7c, 0x7c, 0x7d, 0x7d, 0x7d, 0x7d, 0x7d, 0x7e, + 0x7e, 0x7e, 0x7e, 0x7e, 0x7e, 0x7e, 0x7e, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, + 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, + 0x01, 0x01, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, + 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x04, + 0x04, 0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x06, + 0x06, 0x06, 0x07, 0x07, 0x08, 0x08, 0x09, 0x09, + 0x0a, 0x0a, 0x0b, 0x0c, 0x0c, 0x0d, 0x0e, 0x0e, + 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, + 0x17, 0x19, 0x1a, 0x1b, 0x1d, 0x1e, 0x1f, 0x21, + 0x22, 0x24, 0x26, 0x27, 0x29, 0x2b, 0x2d, 0x2e, + 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e, +}; + +const q15_t sigmoidTable_q15[256] = { + 0x4000, 0x4200, 0x43ff, 0x45fc, 0x47f5, 0x49eb, 0x4bdc, 0x4dc8, + 0x4fad, 0x518a, 0x5360, 0x552c, 0x56ef, 0x58a8, 0x5a57, 0x5bfb, + 0x5d93, 0x5f20, 0x60a1, 0x6216, 0x637f, 0x64db, 0x662b, 0x676f, + 0x68a6, 0x69d2, 0x6af1, 0x6c05, 0x6d0d, 0x6e09, 0x6efb, 0x6fe2, + 0x70be, 0x7190, 0x7258, 0x7316, 0x73cc, 0x7478, 0x751b, 0x75b7, + 0x764a, 0x76d6, 0x775b, 0x77d8, 0x784f, 0x78c0, 0x792a, 0x798f, + 0x79ee, 0x7a48, 0x7a9d, 0x7aed, 0x7b39, 0x7b80, 0x7bc4, 0x7c03, + 0x7c3f, 0x7c78, 0x7cad, 0x7ce0, 0x7d0f, 0x7d3c, 0x7d66, 0x7d8d, + 0x7db3, 0x7dd6, 0x7df7, 0x7e16, 0x7e33, 0x7e4f, 0x7e69, 0x7e81, + 0x7e98, 0x7eae, 0x7ec2, 0x7ed5, 0x7ee7, 0x7ef8, 0x7f08, 0x7f17, + 0x7f25, 0x7f32, 0x7f3e, 0x7f4a, 0x7f55, 0x7f5f, 0x7f69, 0x7f72, + 0x7f7b, 0x7f83, 0x7f8a, 0x7f91, 0x7f98, 0x7f9e, 0x7fa4, 0x7faa, + 0x7faf, 0x7fb4, 0x7fb8, 0x7fbd, 0x7fc1, 0x7fc5, 0x7fc8, 0x7fcc, + 0x7fcf, 0x7fd2, 0x7fd5, 0x7fd7, 0x7fda, 0x7fdc, 0x7fde, 0x7fe0, + 0x7fe2, 0x7fe4, 0x7fe6, 0x7fe7, 0x7fe9, 0x7fea, 0x7feb, 0x7fed, + 0x7fee, 0x7fef, 0x7ff0, 0x7ff1, 0x7ff2, 0x7ff3, 0x7ff4, 0x7ff4, + 0x000b, 0x000c, 0x000c, 0x000d, 0x000e, 0x000f, 0x0010, 0x0011, + 0x0012, 0x0013, 0x0015, 0x0016, 0x0017, 0x0019, 0x001a, 0x001c, + 0x001e, 0x0020, 0x0022, 0x0024, 0x0026, 0x0029, 0x002b, 0x002e, + 0x0031, 0x0034, 0x0038, 0x003b, 0x003f, 0x0043, 0x0048, 0x004c, + 0x0051, 0x0056, 0x005c, 0x0062, 0x0068, 0x006f, 0x0076, 0x007d, + 0x0085, 0x008e, 0x0097, 0x00a1, 0x00ab, 0x00b6, 0x00c2, 0x00ce, + 0x00db, 0x00e9, 0x00f8, 0x0108, 0x0119, 0x012b, 0x013e, 0x0152, + 0x0168, 0x017f, 0x0197, 0x01b1, 0x01cd, 0x01ea, 0x0209, 0x022a, + 0x024d, 0x0273, 0x029a, 0x02c4, 0x02f1, 0x0320, 0x0353, 0x0388, + 0x03c1, 0x03fd, 0x043c, 0x0480, 0x04c7, 0x0513, 0x0563, 0x05b8, + 0x0612, 0x0671, 0x06d6, 0x0740, 0x07b1, 0x0828, 0x08a5, 0x092a, + 0x09b6, 0x0a49, 0x0ae5, 0x0b88, 0x0c34, 0x0cea, 0x0da8, 0x0e70, + 0x0f42, 0x101e, 0x1105, 0x11f7, 0x12f3, 0x13fb, 0x150f, 0x162e, + 0x175a, 0x1891, 0x19d5, 0x1b25, 0x1c81, 0x1dea, 0x1f5f, 0x20e0, + 0x226d, 0x2405, 0x25a9, 0x2758, 0x2911, 0x2ad4, 0x2ca0, 0x2e76, + 0x3053, 0x3238, 0x3424, 0x3615, 0x380b, 0x3a04, 0x3c01, 0x3e00, +}; + +const q15_t sigmoidLTable_q15[128] = { + 0x4000, 0x4100, 0x4200, 0x42ff, 0x43ff, 0x44fd, 0x45fc, 0x46f9, + 0x47f5, 0x48f1, 0x49eb, 0x4ae5, 0x4bdc, 0x4cd3, 0x4dc8, 0x4ebb, + 0x4fad, 0x509c, 0x518a, 0x5276, 0x5360, 0x5447, 0x552c, 0x560f, + 0x56ef, 0x57cd, 0x58a8, 0x5981, 0x5a57, 0x5b2a, 0x5bfb, 0x5cc9, + 0x5d93, 0x5e5b, 0x5f20, 0x5fe2, 0x60a1, 0x615d, 0x6216, 0x62cc, + 0x637f, 0x642e, 0x64db, 0x6584, 0x662b, 0x66ce, 0x676f, 0x680c, + 0x68a6, 0x693d, 0x69d2, 0x6a63, 0x6af1, 0x6b7c, 0x6c05, 0x6c8a, + 0x6d0d, 0x6d8d, 0x6e09, 0x6e84, 0x6efb, 0x6f70, 0x6fe2, 0x7051, + 0x0f42, 0x0faf, 0x101e, 0x1090, 0x1105, 0x117c, 0x11f7, 0x1273, + 0x12f3, 0x1376, 0x13fb, 0x1484, 0x150f, 0x159d, 0x162e, 0x16c3, + 0x175a, 0x17f4, 0x1891, 0x1932, 0x19d5, 0x1a7c, 0x1b25, 0x1bd2, + 0x1c81, 0x1d34, 0x1dea, 0x1ea3, 0x1f5f, 0x201e, 0x20e0, 0x21a5, + 0x226d, 0x2337, 0x2405, 0x24d6, 0x25a9, 0x267f, 0x2758, 0x2833, + 0x2911, 0x29f1, 0x2ad4, 0x2bb9, 0x2ca0, 0x2d8a, 0x2e76, 0x2f64, + 0x3053, 0x3145, 0x3238, 0x332d, 0x3424, 0x351b, 0x3615, 0x370f, + 0x380b, 0x3907, 0x3a04, 0x3b03, 0x3c01, 0x3d01, 0x3e00, 0x3f00, +}; + +const q15_t sigmoidHTable_q15[192] = { + 0x70be, 0x7190, 0x7258, 0x7316, 0x73cc, 0x7478, 0x751b, 0x75b7, + 0x764a, 0x76d6, 0x775b, 0x77d8, 0x784f, 0x78c0, 0x792a, 0x798f, + 0x79ee, 0x7a48, 0x7a9d, 0x7aed, 0x7b39, 0x7b80, 0x7bc4, 0x7c03, + 0x7c3f, 0x7c78, 0x7cad, 0x7ce0, 0x7d0f, 0x7d3c, 0x7d66, 0x7d8d, + 0x7db3, 0x7dd6, 0x7df7, 0x7e16, 0x7e33, 0x7e4f, 0x7e69, 0x7e81, + 0x7e98, 0x7eae, 0x7ec2, 0x7ed5, 0x7ee7, 0x7ef8, 0x7f08, 0x7f17, + 0x7f25, 0x7f32, 0x7f3e, 0x7f4a, 0x7f55, 0x7f5f, 0x7f69, 0x7f72, + 0x7f7b, 0x7f83, 0x7f8a, 0x7f91, 0x7f98, 0x7f9e, 0x7fa4, 0x7faa, + 0x7faf, 0x7fb4, 0x7fb8, 0x7fbd, 0x7fc1, 0x7fc5, 0x7fc8, 0x7fcc, + 0x7fcf, 0x7fd2, 0x7fd5, 0x7fd7, 0x7fda, 0x7fdc, 0x7fde, 0x7fe0, + 0x7fe2, 0x7fe4, 0x7fe6, 0x7fe7, 0x7fe9, 0x7fea, 0x7feb, 0x7fed, + 0x7fee, 0x7fef, 0x7ff0, 0x7ff1, 0x7ff2, 0x7ff3, 0x7ff4, 0x7ff4, + 0x000b, 0x000c, 0x000c, 0x000d, 0x000e, 0x000f, 0x0010, 0x0011, + 0x0012, 0x0013, 0x0015, 0x0016, 0x0017, 0x0019, 0x001a, 0x001c, + 0x001e, 0x0020, 0x0022, 0x0024, 0x0026, 0x0029, 0x002b, 0x002e, + 0x0031, 0x0034, 0x0038, 0x003b, 0x003f, 0x0043, 0x0048, 0x004c, + 0x0051, 0x0056, 0x005c, 0x0062, 0x0068, 0x006f, 0x0076, 0x007d, + 0x0085, 0x008e, 0x0097, 0x00a1, 0x00ab, 0x00b6, 0x00c2, 0x00ce, + 0x00db, 0x00e9, 0x00f8, 0x0108, 0x0119, 0x012b, 0x013e, 0x0152, + 0x0168, 0x017f, 0x0197, 0x01b1, 0x01cd, 0x01ea, 0x0209, 0x022a, + 0x024d, 0x0273, 0x029a, 0x02c4, 0x02f1, 0x0320, 0x0353, 0x0388, + 0x03c1, 0x03fd, 0x043c, 0x0480, 0x04c7, 0x0513, 0x0563, 0x05b8, + 0x0612, 0x0671, 0x06d6, 0x0740, 0x07b1, 0x0828, 0x08a5, 0x092a, + 0x09b6, 0x0a49, 0x0ae5, 0x0b88, 0x0c34, 0x0cea, 0x0da8, 0x0e70, +}; + +const q7_t tanhTable_q7[256] = { + 0x00, 0x08, 0x10, 0x18, 0x1f, 0x27, 0x2e, 0x35, + 0x3b, 0x41, 0x47, 0x4c, 0x51, 0x56, 0x5a, 0x5e, + 0x61, 0x65, 0x68, 0x6a, 0x6d, 0x6f, 0x71, 0x72, + 0x74, 0x75, 0x76, 0x78, 0x78, 0x79, 0x7a, 0x7b, + 0x7b, 0x7c, 0x7c, 0x7d, 0x7d, 0x7e, 0x7e, 0x7e, + 0x7e, 0x7e, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x81, + 0x81, 0x81, 0x81, 0x81, 0x81, 0x81, 0x81, 0x82, + 0x82, 0x82, 0x82, 0x82, 0x83, 0x83, 0x84, 0x84, + 0x85, 0x85, 0x86, 0x87, 0x88, 0x88, 0x8a, 0x8b, + 0x8c, 0x8e, 0x8f, 0x91, 0x93, 0x96, 0x98, 0x9b, + 0x9f, 0xa2, 0xa6, 0xaa, 0xaf, 0xb4, 0xb9, 0xbf, + 0xc5, 0xcb, 0xd2, 0xd9, 0xe1, 0xe8, 0xf0, 0xf8, +}; + +const q15_t tanhTable_q15[256] = { + 0x0000, 0x07fd, 0x0feb, 0x17b9, 0x1f59, 0x26bf, 0x2ddf, 0x34ae, + 0x3b27, 0x4142, 0x46fd, 0x4c56, 0x514d, 0x55e2, 0x5a1a, 0x5df6, + 0x617c, 0x64b0, 0x6797, 0x6a37, 0x6c95, 0x6eb5, 0x709e, 0x7254, + 0x73dc, 0x753a, 0x7672, 0x7788, 0x787f, 0x795b, 0x7a1e, 0x7acb, + 0x7b65, 0x7bee, 0x7c66, 0x7cd1, 0x7d30, 0x7d84, 0x7dce, 0x7e0f, + 0x7e49, 0x7e7d, 0x7eaa, 0x7ed2, 0x7ef5, 0x7f14, 0x7f30, 0x7f48, + 0x7f5e, 0x7f71, 0x7f82, 0x7f91, 0x7f9e, 0x7fa9, 0x7fb3, 0x7fbc, + 0x7fc4, 0x7fcb, 0x7fd1, 0x7fd7, 0x7fdc, 0x7fe0, 0x7fe4, 0x7fe7, + 0x7fea, 0x7fed, 0x7fef, 0x7ff1, 0x7ff3, 0x7ff4, 0x7ff6, 0x7ff7, + 0x7ff8, 0x7ff9, 0x7ffa, 0x7ffa, 0x7ffb, 0x7ffc, 0x7ffc, 0x7ffd, + 0x7ffd, 0x7ffd, 0x7ffe, 0x7ffe, 0x7ffe, 0x7ffe, 0x7fff, 0x7fff, + 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, + 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, + 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, + 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, + 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, + 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, + 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, + 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, + 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, + 0x8000, 0x8000, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001, + 0x8001, 0x8001, 0x8001, 0x8002, 0x8002, 0x8002, 0x8002, 0x8003, + 0x8003, 0x8003, 0x8004, 0x8004, 0x8005, 0x8006, 0x8006, 0x8007, + 0x8008, 0x8009, 0x800a, 0x800c, 0x800d, 0x800f, 0x8011, 0x8013, + 0x8016, 0x8019, 0x801c, 0x8020, 0x8024, 0x8029, 0x802f, 0x8035, + 0x803c, 0x8044, 0x804d, 0x8057, 0x8062, 0x806f, 0x807e, 0x808f, + 0x80a2, 0x80b8, 0x80d0, 0x80ec, 0x810b, 0x812e, 0x8156, 0x8183, + 0x81b7, 0x81f1, 0x8232, 0x827c, 0x82d0, 0x832f, 0x839a, 0x8412, + 0x849b, 0x8535, 0x85e2, 0x86a5, 0x8781, 0x8878, 0x898e, 0x8ac6, + 0x8c24, 0x8dac, 0x8f62, 0x914b, 0x936b, 0x95c9, 0x9869, 0x9b50, + 0x9e84, 0xa20a, 0xa5e6, 0xaa1e, 0xaeb3, 0xb3aa, 0xb903, 0xbebe, + 0xc4d9, 0xcb52, 0xd221, 0xd941, 0xe0a7, 0xe847, 0xf015, 0xf803, +}; + +const q15_t tanhLTable_q15[128] = { + 0x0000, 0x0400, 0x07fd, 0x0bf7, 0x0feb, 0x13d7, 0x17b9, 0x1b90, + 0x1f59, 0x2314, 0x26bf, 0x2a58, 0x2ddf, 0x3151, 0x34ae, 0x37f6, + 0x3b27, 0x3e40, 0x4142, 0x442c, 0x46fd, 0x49b6, 0x4c56, 0x4edd, + 0x514d, 0x53a3, 0x55e2, 0x580a, 0x5a1a, 0x5c13, 0x5df6, 0x5fc4, + 0x617c, 0x6320, 0x64b0, 0x662d, 0x6797, 0x68f0, 0x6a37, 0x6b6e, + 0x6c95, 0x6dac, 0x6eb5, 0x6fb0, 0x709e, 0x717f, 0x7254, 0x731e, + 0x73dc, 0x7490, 0x753a, 0x75da, 0x7672, 0x7701, 0x7788, 0x7807, + 0x787f, 0x78f0, 0x795b, 0x79bf, 0x7a1e, 0x7a77, 0x7acb, 0x7b1b, + 0x849b, 0x84e5, 0x8535, 0x8589, 0x85e2, 0x8641, 0x86a5, 0x8710, + 0x8781, 0x87f9, 0x8878, 0x88ff, 0x898e, 0x8a26, 0x8ac6, 0x8b70, + 0x8c24, 0x8ce2, 0x8dac, 0x8e81, 0x8f62, 0x9050, 0x914b, 0x9254, + 0x936b, 0x9492, 0x95c9, 0x9710, 0x9869, 0x99d3, 0x9b50, 0x9ce0, + 0x9e84, 0xa03c, 0xa20a, 0xa3ed, 0xa5e6, 0xa7f6, 0xaa1e, 0xac5d, + 0xaeb3, 0xb123, 0xb3aa, 0xb64a, 0xb903, 0xbbd4, 0xbebe, 0xc1c0, + 0xc4d9, 0xc80a, 0xcb52, 0xceaf, 0xd221, 0xd5a8, 0xd941, 0xdcec, + 0xe0a7, 0xe470, 0xe847, 0xec29, 0xf015, 0xf409, 0xf803, 0xfc00, +}; + +const q15_t tanhHTable_q15[192] = { + 0x7b65, 0x7bee, 0x7c66, 0x7cd1, 0x7d30, 0x7d84, 0x7dce, 0x7e0f, + 0x7e49, 0x7e7d, 0x7eaa, 0x7ed2, 0x7ef5, 0x7f14, 0x7f30, 0x7f48, + 0x7f5e, 0x7f71, 0x7f82, 0x7f91, 0x7f9e, 0x7fa9, 0x7fb3, 0x7fbc, + 0x7fc4, 0x7fcb, 0x7fd1, 0x7fd7, 0x7fdc, 0x7fe0, 0x7fe4, 0x7fe7, + 0x7fea, 0x7fed, 0x7fef, 0x7ff1, 0x7ff3, 0x7ff4, 0x7ff6, 0x7ff7, + 0x7ff8, 0x7ff9, 0x7ffa, 0x7ffa, 0x7ffb, 0x7ffc, 0x7ffc, 0x7ffd, + 0x7ffd, 0x7ffd, 0x7ffe, 0x7ffe, 0x7ffe, 0x7ffe, 0x7fff, 0x7fff, + 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, + 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, + 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, + 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, + 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, 0x7fff, + 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, + 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, + 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, + 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, + 0x8000, 0x8000, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001, 0x8001, + 0x8001, 0x8001, 0x8001, 0x8002, 0x8002, 0x8002, 0x8002, 0x8003, + 0x8003, 0x8003, 0x8004, 0x8004, 0x8005, 0x8006, 0x8006, 0x8007, + 0x8008, 0x8009, 0x800a, 0x800c, 0x800d, 0x800f, 0x8011, 0x8013, + 0x8016, 0x8019, 0x801c, 0x8020, 0x8024, 0x8029, 0x802f, 0x8035, + 0x803c, 0x8044, 0x804d, 0x8057, 0x8062, 0x806f, 0x807e, 0x808f, + 0x80a2, 0x80b8, 0x80d0, 0x80ec, 0x810b, 0x812e, 0x8156, 0x8183, + 0x81b7, 0x81f1, 0x8232, 0x827c, 0x82d0, 0x832f, 0x839a, 0x8412, +}; diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_no_shift.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_no_shift.c new file mode 100644 index 00000000..5cdac6ce --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_no_shift.c @@ -0,0 +1,122 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_q7_to_q15_no_shift.c + * Description: Converts the elements of the Q7 vector to Q15 vector without left-shift + * + * $Date: May 29, 2020 + * $Revision: V.1.0.2 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/NN/Include/arm_nnsupportfunctions.h" + +/** + * @ingroup groupSupport + */ + +/** + * @addtogroup nndata_convert + * @{ + */ + +/** + * @brief Converts the elements of the Q7 vector to Q15 vector without left-shift + * @param[in] *pSrc points to the Q7 input vector + * @param[out] *pDst points to the Q15 output vector + * @param[in] blockSize length of the input vector + * + * \par Description: + * + * The equation used for the conversion process is: + * + *
+ * 	pDst[n] = (q15_t) pSrc[n];   0 <= n < blockSize.
+ * 
+ * + */ + +void arm_q7_to_q15_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize) +{ + const q7_t *pIn = pSrc; + uint32_t blkCnt; + +#if defined(ARM_MATH_DSP) + q31_t in; + q31_t in1, in2; + q31_t out1, out2; + + /*loop Unrolling */ + blkCnt = blockSize >> 2u; + + /* First part of the processing with loop unrolling. Compute 4 outputs at a time. */ + while (blkCnt > 0u) + { + in = arm_nn_read_q7x4_ia(&pIn); + + /* rotatate in by 8 and extend two q7_t values to q15_t values */ + in1 = __SXTB16(__ROR((uint32_t)in, 8)); + + /* extend remaining two q7_t values to q15_t values */ + in2 = __SXTB16(in); + +#ifndef ARM_MATH_BIG_ENDIAN + out2 = (int32_t)__PKHTB(in1, in2, 16); + out1 = (int32_t)__PKHBT(in2, in1, 16); +#else + out1 = (int32_t)__PKHTB(in1, in2, 16); + out2 = (int32_t)__PKHBT(in2, in1, 16); +#endif + write_q15x2_ia(&pDst, out1); + write_q15x2_ia(&pDst, out2); + + /* Decrement the loop counter */ + blkCnt--; + } + + /* If the blockSize is not a multiple of 4, compute any remaining output samples here. + ** No loop unrolling is used. */ + blkCnt = blockSize % 0x4u; + +#else + + /* Run the below code for Cortex-M0 */ + + /* Loop over blockSize number of values */ + blkCnt = blockSize; + +#endif /* #ifndef ARM_MATH_CM0_FAMILY */ + + while (blkCnt > 0u) + { + /* convert from q7 to q15 and then store the results in the destination buffer */ + *pDst++ = (q15_t)*pIn++; + + /* Decrement the loop counter */ + blkCnt--; + } + +} + +/** + * @} end of nndata_convert group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_reordered_no_shift.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_reordered_no_shift.c new file mode 100644 index 00000000..8128aaa2 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_reordered_no_shift.c @@ -0,0 +1,144 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_q7_to_q15_reordered_no_shift.c + * Description: Converts the elements of the Q7 vector to reordered Q15 vector without left-shift + * + * $Date: May 29, 2020 + * $Revision: V.1.0.1 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/NN/Include/arm_nnsupportfunctions.h" + +/** + * @ingroup groupSupport + */ + +/** + * @addtogroup nndata_convert + * @{ + */ + +/** + * @brief Converts the elements of the Q7 vector to reordered Q15 vector without left-shift + * @param[in] *pSrc points to the Q7 input vector + * @param[out] *pDst points to the Q15 output vector + * @param[in] blockSize length of the input vector + * + * @details + * + * This function does the q7 to q15 expansion with re-ordering + * + *
+ *                          |   A1   |   A2   |   A3   |   A4   |
+ *
+ *                           0      7 8     15 16    23 24    31
+ * 
+ * + * is converted into: + * + *
+ *  |       A1       |       A3       |   and  |       A2       |       A4       |
+ *
+ *   0             15 16            31          0             15 16            31
+ * 
+ * + * + * This looks strange but is natural considering how sign-extension is done at + * assembly level. + * + * The expansion of other other oprand will follow the same rule so that the end + * results are the same. + * + * The tail (i.e., last (N % 4) elements) will still be in original order. + * + */ + +void arm_q7_to_q15_reordered_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize) +{ + const q7_t *pIn = pSrc; /* Src pointer */ + uint32_t blkCnt; /* loop counter */ + +#ifndef ARM_MATH_CM0_FAMILY + q31_t in; + q31_t in1, in2; + + /* Run the below code for Cortex-M4 and Cortex-M3 */ + + /*loop Unrolling */ + blkCnt = blockSize >> 2u; + + /* First part of the processing with loop unrolling. Compute 4 outputs at a time. + ** a second loop below computes the remaining 1 to 3 samples. */ + while (blkCnt > 0u) + { + /* C = (q15_t) A << 8 */ + /* convert from q7 to q15 and then store the results in the destination buffer */ + in = arm_nn_read_q7x4_ia(&pIn); + + /* rotatate in by 8 and extend two q7_t values to q15_t values */ + in1 = __SXTB16(__ROR((uint32_t)in, 8)); + + /* extend remainig two q7_t values to q15_t values */ + in2 = __SXTB16(in); + +#ifndef ARM_MATH_BIG_ENDIAN + *__SIMD32(pDst)++ = in2; + *__SIMD32(pDst)++ = in1; +#else + *__SIMD32(pDst)++ = in1; + *__SIMD32(pDst)++ = in2; +#endif + + /* Decrement the loop counter */ + blkCnt--; + } + + /* If the blockSize is not a multiple of 4, compute any remaining output samples here. + ** No loop unrolling is used. */ + blkCnt = blockSize % 0x4u; + +#else + + /* Run the below code for Cortex-M0 */ + + /* Loop over blockSize number of values */ + blkCnt = blockSize; + +#endif /* #ifndef ARM_MATH_CM0_FAMILY */ + + while (blkCnt > 0u) + { + /* C = (q15_t) A << 8 */ + /* convert from q7 to q15 and then store the results in the destination buffer */ + *pDst++ = (q15_t) * pIn++; + + /* Decrement the loop counter */ + blkCnt--; + } + +} + +/** + * @} end of q7_to_x group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_reordered_with_offset.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_reordered_with_offset.c new file mode 100644 index 00000000..34e13ca1 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_reordered_with_offset.c @@ -0,0 +1,100 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_q7_to_q15_reordered_with_offset.c + * Description: Converts the elements of the Q7 vector to a reordered Q15 vector with an added offset. The re-ordering + * is a signature of sign extension intrinsic(DSP extension). + * + * $Date: May 29, 2020 + * $Revision: V.2.0.3 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/NN/Include/arm_nnsupportfunctions.h" + +/** + * @ingroup groupSupport + */ + +/** + * @addtogroup nndata_convert + * @{ + */ + +/** + * @brief Converts the elements of the Q7 vector to a reordered Q15 vector with an added offset. + * + * @note Refer header file for details. + * + */ + +void arm_q7_to_q15_reordered_with_offset(const q7_t *src, q15_t *dst, uint32_t block_size, q15_t offset) +{ + +#if defined(ARM_MATH_DSP) + uint32_t block_cnt; + /* Run the below code for cores that support SIMD instructions */ + q31_t in_q7x4; + q31_t out_q15x2_1; + q31_t out_q15x2_2; + + /*loop unrolling */ + block_cnt = block_size >> 2u; + + /* First part of the processing with loop unrolling. Compute 4 outputs at a time. */ + const q31_t offset_q15x2 = (q31_t)__PKHBT(offset, offset, 16); + while (block_cnt > 0u) + { + /* convert from q7 to q15 and then store the results in the destination buffer */ + in_q7x4 = arm_nn_read_q7x4_ia(&src); + + /* Extract and sign extend each of the four q7 values to q15 */ + out_q15x2_1 = __SXTAB16(offset_q15x2, __ROR((uint32_t)in_q7x4, 8)); + out_q15x2_2 = __SXTAB16(offset_q15x2, in_q7x4); + + write_q15x2_ia(&dst, out_q15x2_2); + write_q15x2_ia(&dst, out_q15x2_1); + + block_cnt--; + } + /* Handle left over samples */ + block_cnt = block_size % 0x4u; + + while (block_cnt > 0u) + { + *dst++ = (q15_t)*src++ + offset; + + /* Decrement the loop counter */ + block_cnt--; + } +#else + (void)src; + (void)dst; + (void)block_size; + (void)offset; + /* Not available */ +#endif +} + +/** + * @} end of nndata_convert group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_with_offset.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_with_offset.c new file mode 100644 index 00000000..4b69f556 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/NNSupportFunctions/arm_q7_to_q15_with_offset.c @@ -0,0 +1,117 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in_q7x4 compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in_q7x4 writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_q7_to_q15_with_offset.c + * Description: Converts the elements of the Q7 vector to Q15 vector with an added offset + * + * $Date: March 3, 2020 + * $Revision: V.2.0.2 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/NN/Include/arm_nnsupportfunctions.h" + +/** + * @ingroup groupSupport + */ + +/** + * @addtogroup nndata_convert + * @{ + */ + +void arm_q7_to_q15_with_offset(const q7_t *src, + q15_t *dst, + uint32_t block_size, + q15_t offset) +{ + int block_cnt; + +#if defined(ARM_MATH_MVEI) + + int16x8_t source; + const int16x8_t source_offset = vdupq_n_s16(offset); + block_cnt = block_size / 8; + + while (block_cnt > 0) + { + source = vldrbq_s16(src); + source = vaddq_s16(source, source_offset); + vstrhq_s16(dst, source); + dst += 8; + src += 8; + block_cnt--; + } + + block_cnt = block_size & 0x7; + +#elif defined(ARM_MATH_DSP) + /* Run the below code for cores that support SIMD instructions */ + q31_t in_q7x4; + q31_t in_q15x2_1; + q31_t in_q15x2_2; + q31_t out_q15x2_1; + q31_t out_q15x2_2; + + /*loop unrolling */ + block_cnt = block_size >> 2; + + /* First part of the processing with loop unrolling. Compute 4 outputs at a time. */ + const q31_t offset_q15x2 = __PKHBT(offset, offset, 16); + while (block_cnt > 0) + { + /* convert from q7 to q15 and then store the results in the destination buffer */ + in_q7x4 = arm_nn_read_q7x4_ia(&src); + + /* Extract and sign extend each of the four q7 values to q15 */ + in_q15x2_1 = __SXTAB16(offset_q15x2, __ROR(in_q7x4, 8)); + in_q15x2_2 = __SXTAB16(offset_q15x2, in_q7x4); + + out_q15x2_2 = __PKHTB(in_q15x2_1, in_q15x2_2, 16); + out_q15x2_1 = __PKHBT(in_q15x2_2, in_q15x2_1, 16); + + write_q15x2_ia(&dst, out_q15x2_1); + write_q15x2_ia(&dst, out_q15x2_2); + + block_cnt--; + } + /* Handle left over samples */ + block_cnt = block_size % 0x4; + +#else + /* Run the below code for Cortex-M0 */ + /* Loop over block_size number of values */ + block_cnt = block_size; +#endif + + while (block_cnt > 0) + { + *dst++ = (q15_t)*src++ + offset; + + /* Decrement the loop counter */ + block_cnt--; + } +} + +/** + * @} end of nndata_convert group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/PoolingFunctions/arm_avgpool_s8.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/PoolingFunctions/arm_avgpool_s8.c new file mode 100644 index 00000000..fbcfdf6c --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/PoolingFunctions/arm_avgpool_s8.c @@ -0,0 +1,361 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_avgpool_s8.c + * Description: Pooling function implementations + * + * $Date: May 29,2020 + * $Revision: V.2.0.1 + * + * Target Processor: Cortex-M CPUs + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + + +#if defined (ARM_MATH_DSP) && !defined (ARM_MATH_MVEI) + +static void buffer_scale_back_q15_to_q7_and_clamp(q15_t *buffer, q7_t *target, uint16_t length, + uint16_t count,const int act_min, const int act_max) +{ + int i; + int sum; + + for (i = 0; i < length; i++) + { + sum = buffer[i] > 0 ? (buffer[i] + count / 2) / count : (buffer[i] - count / 2) / count; + + sum = MAX(sum, act_min); + sum = MIN(sum, act_max); + + target[i] = (q7_t) (sum); + } +} +#endif + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup Pooling + * @{ + */ + +/* + * s8 average pooling function + * + * Refer to header file for details. + * + */ + +#if defined(ARM_MATH_MVEI) + +arm_status arm_avgpool_s8(const cmsis_nn_context *ctx, + const cmsis_nn_pool_params *pool_params, + const cmsis_nn_dims *input_dims, + const q7_t *src, + const cmsis_nn_dims *filter_dims, + const cmsis_nn_dims *output_dims, + q7_t *dst) +{ + (void)ctx; + const int32_t dim_src_height = input_dims->h; + const int32_t dim_src_width = input_dims->w; + const int32_t dim_dst_height = output_dims->h; + const int32_t dim_dst_width = output_dims->w; + const int32_t stride_height = pool_params->stride.h; + const int32_t stride_width = pool_params->stride.w; + const int32_t dim_kernel_height = filter_dims->h; + const int32_t dim_kernel_width = filter_dims->w; + const int32_t padding_height = pool_params->padding.h; + const int32_t padding_width = pool_params->padding.w; + const int32_t act_min = pool_params->activation.min; + const int32_t act_max = pool_params->activation.max; + const int32_t ch_src = input_dims->c; + + int32_t i_x, i_y; + int32_t k_x, k_y; + + for (i_y = 0; i_y < dim_dst_height; i_y++) + { + for (i_x = 0; i_x < dim_dst_width; i_x++) + { + + int32_t k_y_start,k_y_end; + int32_t k_x_start,k_x_end; + int32_t chCnt; + const int8_t *pTmp, *pTmpInner; + int8_t *pDst; + + k_y_start = MAX(0, i_y * stride_height - padding_height); + k_y_end = MIN(i_y * stride_height - padding_height + dim_kernel_height,dim_src_height); + + k_x_start = MAX(0,i_x * stride_width - padding_width); + k_x_end = MIN(i_x * stride_width - padding_width + dim_kernel_width, dim_src_width); + + + pTmp = src; + pDst = &dst[ch_src * (i_x + i_y * dim_dst_width)]; + + chCnt = ch_src >> 4; + while(chCnt > 0) + { + int32x4_t sumV1,sumV2,sumV3,sumV4; + + int8x16_t tempV; + int16x8_t tempVLO, tempVHI; + int32x4_t tempVLOLO, tempVLOHI, tempVHILO, tempVHIHI; + int32_t count = 0; + + sumV1 = vdupq_n_s32(0); + sumV2 = vdupq_n_s32(0); + sumV3 = vdupq_n_s32(0); + sumV4 = vdupq_n_s32(0); + + for (k_y = k_y_start; k_y < k_y_end; k_y++) + { + for (k_x = k_x_start; k_x < k_x_end; k_x++) + { + pTmpInner = pTmp + (ch_src * (k_x + k_y * dim_src_width)); + tempV = vldrbq_s8 (pTmpInner); + + tempVLO = vmovlbq_s8(tempV); + tempVHI = vmovltq_s8(tempV); + + tempVLOLO = vmovlbq_s16(tempVLO); + tempVLOHI = vmovltq_s16(tempVLO); + + tempVHILO = vmovlbq_s16(tempVHI); + tempVHIHI = vmovltq_s16(tempVHI); + + sumV1 = vaddq_s32(sumV1,tempVLOLO); + sumV2 = vaddq_s32(sumV2,tempVLOHI); + sumV3 = vaddq_s32(sumV3,tempVHILO); + sumV4 = vaddq_s32(sumV4,tempVHIHI); + + count++; + } + } + + + sumV1[0] = sumV1[0] > 0 ? (sumV1[0] + count / 2) / count : (sumV1[0] - count / 2) / count; + sumV1[1] = sumV1[1] > 0 ? (sumV1[1] + count / 2) / count : (sumV1[1] - count / 2) / count; + sumV1[2] = sumV1[2] > 0 ? (sumV1[2] + count / 2) / count : (sumV1[2] - count / 2) / count; + sumV1[3] = sumV1[3] > 0 ? (sumV1[3] + count / 2) / count : (sumV1[3] - count / 2) / count; + + sumV2[0] = sumV2[0] > 0 ? (sumV2[0] + count / 2) / count : (sumV2[0] - count / 2) / count; + sumV2[1] = sumV2[1] > 0 ? (sumV2[1] + count / 2) / count : (sumV2[1] - count / 2) / count; + sumV2[2] = sumV2[2] > 0 ? (sumV2[2] + count / 2) / count : (sumV2[2] - count / 2) / count; + sumV2[3] = sumV2[3] > 0 ? (sumV2[3] + count / 2) / count : (sumV2[3] - count / 2) / count; + + sumV3[0] = sumV3[0] > 0 ? (sumV3[0] + count / 2) / count : (sumV3[0] - count / 2) / count; + sumV3[1] = sumV3[1] > 0 ? (sumV3[1] + count / 2) / count : (sumV3[1] - count / 2) / count; + sumV3[2] = sumV3[2] > 0 ? (sumV3[2] + count / 2) / count : (sumV3[2] - count / 2) / count; + sumV3[3] = sumV3[3] > 0 ? (sumV3[3] + count / 2) / count : (sumV3[3] - count / 2) / count; + + sumV4[0] = sumV4[0] > 0 ? (sumV4[0] + count / 2) / count : (sumV4[0] - count / 2) / count; + sumV4[1] = sumV4[1] > 0 ? (sumV4[1] + count / 2) / count : (sumV4[1] - count / 2) / count; + sumV4[2] = sumV4[2] > 0 ? (sumV4[2] + count / 2) / count : (sumV4[2] - count / 2) / count; + sumV4[3] = sumV4[3] > 0 ? (sumV4[3] + count / 2) / count : (sumV4[3] - count / 2) / count; + + sumV1 = vmaxq_s32(sumV1, vdupq_n_s32(act_min)); + sumV1 = vminq_s32(sumV1, vdupq_n_s32(act_max)); + + sumV2 = vmaxq_s32(sumV2, vdupq_n_s32(act_min)); + sumV2 = vminq_s32(sumV2, vdupq_n_s32(act_max)); + + sumV3 = vmaxq_s32(sumV3, vdupq_n_s32(act_min)); + sumV3 = vminq_s32(sumV3, vdupq_n_s32(act_max)); + + sumV4 = vmaxq_s32(sumV4, vdupq_n_s32(act_min)); + sumV4 = vminq_s32(sumV4, vdupq_n_s32(act_max)); + + tempVLO = vmovnbq_s32(tempVLO,sumV1); + tempVLO = vmovntq_s32(tempVLO,sumV2); + + tempVHI = vmovnbq_s32(tempVHI,sumV3); + tempVHI = vmovntq_s32(tempVHI,sumV4); + + + tempV = vmovnbq_s16(tempV,tempVLO); + tempV = vmovntq_s16(tempV,tempVHI); + + vstrbq_s8(pDst,tempV); + pDst += 16; + + chCnt --; + pTmp += 16; + } + + chCnt = ch_src & 0xF; + while(chCnt > 0) + { + int32_t sum = 0; + int32_t count = 0; + + for (k_y = k_y_start; k_y < k_y_end; k_y++) + { + for (k_x = k_x_start; k_x < k_x_end; k_x++) + { + sum += pTmp[ch_src * (k_x + k_y * dim_src_width)]; + count++; + } + } + sum = sum > 0 ? (sum + count / 2) / count : (sum - count / 2) / count; + sum = MAX(sum, act_min); + sum = MIN(sum, act_max); + + *pDst++ = sum; + + chCnt --; + pTmp++; + } + } + } + return ARM_MATH_SUCCESS; +} + +#else +arm_status arm_avgpool_s8(const cmsis_nn_context *ctx, + const cmsis_nn_pool_params *pool_params, + const cmsis_nn_dims *input_dims, + const q7_t *src, + const cmsis_nn_dims *filter_dims, + const cmsis_nn_dims *output_dims, + q7_t *dst) +{ + const int32_t dim_src_height = input_dims->h; + const int32_t dim_src_width = input_dims->w; + const int32_t dim_dst_height = output_dims->h; + const int32_t dim_dst_width = output_dims->w; + const int32_t stride_height = pool_params->stride.h; + const int32_t stride_width = pool_params->stride.w; + const int32_t dim_kernel_height = filter_dims->h; + const int32_t dim_kernel_width = filter_dims->w; + const int32_t padding_height = pool_params->padding.h; + const int32_t padding_width = pool_params->padding.w; + const int32_t act_min = pool_params->activation.min; + const int32_t act_max = pool_params->activation.max; + const int32_t ch_src = input_dims->c; + q15_t *bufferA = (q15_t *)ctx->buf; + +#if defined (ARM_MATH_DSP) + + /* Run the following code for Cortex-M4 and Cortex-M7 + */ + int32_t k_x, k_y, i_x, i_y; + + for (i_y = 0; i_y < dim_dst_height; i_y++) + { + for (i_x = 0; i_x < dim_dst_width; i_x++) + { + /* Condition for kernel start dimension: (base_idx_ + kernel__start) >= 0 */ + const int32_t base_idx_y = (i_y * stride_height) - padding_height; + const int32_t base_idx_x = (i_x * stride_width) - padding_width; + const int32_t kernel_y_start = MAX(0, -base_idx_y); + const int32_t kernel_x_start = MAX(0, -base_idx_x); + + /* Condition for kernel end dimension: (base_idx_ + kernel__end) < dim_src_ */ + const int32_t kernel_y_end = MIN(dim_kernel_height, dim_src_height - base_idx_y); + const int32_t kernel_x_end = MIN(dim_kernel_width, dim_src_width - base_idx_x); + + int count = 0; + + for (k_y = kernel_y_start; k_y < kernel_y_end; k_y++) + { + for (k_x = kernel_x_start; k_x < kernel_x_end; k_x++) + { + const q7_t *start = src + ch_src * (k_x + base_idx_x + (k_y + base_idx_y) * dim_src_width); + + if (count == 0) + { + arm_q7_to_q15_no_shift(start, bufferA, ch_src); + } + else + { + arm_nn_accumulate_q7_to_q15(bufferA, start, ch_src); + } + count++; + } + } + buffer_scale_back_q15_to_q7_and_clamp(bufferA, dst, ch_src, count, act_min, act_max); + dst += ch_src; + } + } +#else + + /* Reference C code adapted from CMSIS-NN arm_avepool_q7_HWC. + */ + (void)bufferA; + int16_t i_ch_in, i_x, i_y; + int16_t k_x, k_y; + + for (i_y = 0; i_y < dim_dst_height; i_y++) + { + for (i_x = 0; i_x < dim_dst_width; i_x++) + { + for (i_ch_in = 0; i_ch_in < ch_src; i_ch_in++) + { + int sum = 0; + int count = 0; + for (k_y = i_y * stride_height - padding_height; k_y < i_y * stride_height - padding_height + dim_kernel_height; k_y++) + { + for (k_x = i_x * stride_width - padding_width; k_x < i_x * stride_width - padding_width + dim_kernel_width; k_x++) + { + if (k_y >= 0 && k_x >= 0 && k_y < dim_src_height && k_x < dim_src_width) + { + sum += src[i_ch_in + ch_src * (k_x + k_y * dim_src_width)]; + count++; + } + } + } + sum = sum > 0 ? (sum + count / 2) / count : (sum - count / 2) / count; + sum = MAX(sum, act_min); + sum = MIN(sum, act_max); + + dst[i_ch_in + ch_src * (i_x + i_y * dim_dst_width)] = sum; + } + } + } + +#endif + return ARM_MATH_SUCCESS; +} + +#endif /* ARM_MATH_MVEI */ + +int32_t arm_avgpool_s8_get_buffer_size(const int dim_dst_width, + const int ch_src) +{ + (void)dim_dst_width; + +#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI) + return (ch_src * sizeof(int16_t)); +#else + (void)ch_src; + return 0; +#endif +} +/** + * @} end of Pooling group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/PoolingFunctions/arm_max_pool_s8.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/PoolingFunctions/arm_max_pool_s8.c new file mode 100644 index 00000000..df87ad98 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/PoolingFunctions/arm_max_pool_s8.c @@ -0,0 +1,235 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_max_pool_s8.c + * Description: Pooling function implementations + * + * $Date: June 11, 2020 + * $Revision: V.2.0.0 + * + * Target Processor: Cortex-M CPUs + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +static void compare_and_replace_if_larger_q7(q7_t *base, + const q7_t *target, + int32_t length) +{ +#if defined(ARM_MATH_MVEI) + int32_t loop_count = (length + 15) / 16; + for (int i = 0; i < loop_count; i++) + { + mve_pred16_t p = vctp16q((uint32_t)length); + const int8x16_t op_1 = vldrbq_z_s8(base, p); + const int8x16_t op_2 = vldrbq_z_s8(target, p); + const int8x16_t max = vmaxq_m_s8(vuninitializedq_s8(), op_1, op_2, p); + vstrbq_p_s8(base, max, p); + base += 16; + target += 16; + length -= 16; + } +#else + q7_t *dst = base; + const q7_t *src = target; + union arm_nnword ref_max; + union arm_nnword comp_max; + int32_t cnt = length >> 2; + + while (cnt > 0l) + { + ref_max.word = arm_nn_read_q7x4(dst); + comp_max.word = arm_nn_read_q7x4_ia(&src); + + if (comp_max.bytes[0] > ref_max.bytes[0]) + { + ref_max.bytes[0] = comp_max.bytes[0]; + } + if (comp_max.bytes[1] > ref_max.bytes[1]) + { + ref_max.bytes[1] = comp_max.bytes[1]; + } + if (comp_max.bytes[2] > ref_max.bytes[2]) + { + ref_max.bytes[2] = comp_max.bytes[2]; + } + if (comp_max.bytes[3] > ref_max.bytes[3]) + { + ref_max.bytes[3] = comp_max.bytes[3]; + } + + write_q7x4_ia(&dst, ref_max.word); + + cnt--; + } + + cnt = length & 0x3; + while (cnt > 0l) + { + if (*src > *dst) + { + *dst = *src; + } + dst++; + src++; + cnt--; + } +#endif +} + +static void +clamp_output(q7_t *source, int32_t length, const int32_t act_min, const int32_t act_max) +{ +#if defined(ARM_MATH_MVEI) + int32_t + loop_count = (length + 15) / 16; + for (int i = 0; i < loop_count; i++) + { + mve_pred16_t p = vctp16q((uint32_t)length); + length -= 16; + const int8x16_t src = vldrbq_z_s8(source, p); + const int8x16_t predicated_min = vdupq_m_n_s8(vuninitializedq_s8(), (int8_t)act_min, p); + const int8x16_t predicated_max = vdupq_m_n_s8(vuninitializedq_s8(), (int8_t)act_max, p); + int8x16_t + res = vmaxq_m_s8(vuninitializedq_s8(), src, predicated_min, p); + res = vminq_m_s8(vuninitializedq_s8(), src, predicated_max, p); + vstrbq_p_s8(source, res, p); + source += 16; + } +#else + union arm_nnword in; + int32_t cnt = length >> 2; + + while (cnt > 0l) + { + in.word = arm_nn_read_q7x4(source); + + in.bytes[0] = MAX(in.bytes[0], act_min); + in.bytes[0] = MIN(in.bytes[0], act_max); + in.bytes[1] = MAX(in.bytes[1], act_min); + in.bytes[1] = MIN(in.bytes[1], act_max); + in.bytes[2] = MAX(in.bytes[2], act_min); + in.bytes[2] = MIN(in.bytes[2], act_max); + in.bytes[3] = MAX(in.bytes[3], act_min); + in.bytes[3] = MIN(in.bytes[3], act_max); + + write_q7x4_ia(&source, in.word); + cnt--; + } + + cnt = length & 0x3; + while (cnt > 0l) + { + int32_t comp = *source; + comp = MAX(comp, act_min); + comp = MIN(comp, act_max); + *source++ = (int8_t)comp; + cnt--; + } +#endif +} + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup Pooling + * @{ + */ + +/* + * Optimized s8 max pooling function + * + * Refer to header file for details. + * + */ + +arm_status +arm_max_pool_s8(const cmsis_nn_context *ctx, + const cmsis_nn_pool_params *pool_params, + const cmsis_nn_dims *input_dims, + const q7_t *src, + const cmsis_nn_dims *filter_dims, + const cmsis_nn_dims *output_dims, + q7_t *dst) +{ + const int32_t input_y = input_dims->h; + const int32_t input_x = input_dims->w; + const int32_t output_y = output_dims->h; + const int32_t output_x = output_dims->w; + const int32_t stride_y = pool_params->stride.h; + const int32_t stride_x = pool_params->stride.w; + const int32_t kernel_y = filter_dims->h; + const int32_t kernel_x = filter_dims->w; + const int32_t pad_y = pool_params->padding.h; + const int32_t pad_x = pool_params->padding.w; + const int32_t act_min = pool_params->activation.min; + const int32_t act_max = pool_params->activation.max; + const int32_t channel_in = input_dims->c; + (void)ctx; + q7_t *dst_base = dst; + + for (int i_y = 0, base_idx_y = -pad_y; i_y < output_y; base_idx_y += stride_y, i_y++) + { + for (int i_x = 0, base_idx_x = -pad_x; i_x < output_x; base_idx_x += stride_x, i_x++) + { + /* Condition for kernel start dimension: (base_idx_ + kernel__start) >= 0 */ + const int32_t ker_y_start = MAX(0, -base_idx_y); + const int32_t ker_x_start = MAX(0, -base_idx_x); + + /* Condition for kernel end dimension: (base_idx_ + kernel__end) < dim_src_ */ + const int32_t kernel_y_end = MIN(kernel_y, input_y - base_idx_y); + const int32_t kernel_x_end = MIN(kernel_x, input_x - base_idx_x); + + int count = 0; + + for (int k_y = ker_y_start; k_y < kernel_y_end; k_y++) + { + for (int k_x = ker_x_start; k_x < kernel_x_end; k_x++) + { + const q7_t *start = src + channel_in * (k_x + base_idx_x + (k_y + base_idx_y) * input_x); + + if (count == 0) + { + memcpy(dst, start, channel_in); + count++; + } + else + { + compare_and_replace_if_larger_q7(dst, start, channel_in); + } + } + } + /* 'count' is expected to be non-zero here. */ + dst += channel_in; + } + } + + clamp_output(dst_base, output_x * output_y * channel_in, act_min, act_max); + + return ARM_MATH_SUCCESS; +} + +/** + * @} end of Pooling group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/PoolingFunctions/arm_pool_q7_HWC.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/PoolingFunctions/arm_pool_q7_HWC.c new file mode 100644 index 00000000..4f1e2a51 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/PoolingFunctions/arm_pool_q7_HWC.c @@ -0,0 +1,454 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_pool_q7_HWC.c + * Description: Pooling function implementations + * + * $Date: 17. January 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +#if defined (ARM_MATH_DSP) + +/** + * @brief A few utility functions used by pooling functions + * + * + */ + +static void buffer_scale_back_q15_to_q7(q15_t * buffer, q7_t * target, uint16_t length, uint16_t scale) +{ + int i; + + for (i = 0; i < length; i++) + { + target[i] = (q7_t) (buffer[i] / scale); + } +} + +static void compare_and_replace_if_larger_q7(q7_t * base, // base data + const q7_t * target, // compare target + const uint16_t length // data length + ) +{ + q7_t *pIn = base; + const q7_t *pCom = target; + union arm_nnword in; + union arm_nnword com; + uint16_t cnt = length >> 2; + + while (cnt > 0u) + { + in.word = arm_nn_read_q7x4((const q7_t*)pIn); + com.word = arm_nn_read_q7x4_ia((const q7_t**)&pCom); + + // if version + if (com.bytes[0] > in.bytes[0]) + in.bytes[0] = com.bytes[0]; + if (com.bytes[1] > in.bytes[1]) + in.bytes[1] = com.bytes[1]; + if (com.bytes[2] > in.bytes[2]) + in.bytes[2] = com.bytes[2]; + if (com.bytes[3] > in.bytes[3]) + in.bytes[3] = com.bytes[3]; + + *__SIMD32(pIn)++ = in.word; + + cnt--; + } + + cnt = length & 0x3; + while (cnt > 0u) + { + if (*pCom > *pIn) + { + *pIn = *pCom; + } + pIn++; + pCom++; + cnt--; + } +} + +static void accumulate_q7_to_q15(q15_t * base, q7_t * target, const uint16_t length) +{ + q15_t *pCnt = base; + q7_t *pV = target; + q31_t v1, v2, vo1, vo2; + uint16_t cnt = length >> 2; + q31_t in; + + while (cnt > 0u) + { + q31_t value = arm_nn_read_q7x4_ia((const q7_t**)&pV); + v1 = __SXTB16(__ROR(value, 8)); + v2 = __SXTB16(value); +#ifndef ARM_MATH_BIG_ENDIAN + + vo2 = __PKHTB(v1, v2, 16); + vo1 = __PKHBT(v2, v1, 16); + +#else + + vo1 = __PKHTB(v1, v2, 16); + vo2 = __PKHBT(v2, v1, 16); + +#endif + + in = arm_nn_read_q15x2(pCnt); + *__SIMD32(pCnt)++ = __QADD16(vo1, in); + + in = arm_nn_read_q15x2(pCnt); + *__SIMD32(pCnt)++ = __QADD16(vo2, in); + + cnt--; + } + cnt = length & 0x3; + while (cnt > 0u) + { + *pCnt++ += *pV++; + cnt--; + } +} + +#endif // ARM_MATH_DSP + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup Pooling + * @{ + */ + + /** + * @brief Q7 max pooling function + * @param[in, out] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimention + * @param[in] ch_im_in number of input tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA Not used + * @param[in,out] Im_out pointer to output tensor + * + * @details + * + * The pooling function is implemented as split x-pooling then + * y-pooling. + * + * This pooling function is input-destructive. Input data is undefined + * after calling this function. + * + */ + +void +arm_maxpool_q7_HWC(q7_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, const uint16_t dim_im_out, q7_t * bufferA, q7_t * Im_out) +{ + (void)bufferA; +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + int16_t i_x, i_y; + + /* first does the pooling along x axis */ + for (i_y = 0; i_y < dim_im_in; i_y++) + { + + for (i_x = 0; i_x < dim_im_out; i_x++) + { + /* for each output pixel */ + q7_t *target = Im_in + (i_y * dim_im_in + i_x) * ch_im_in; + q7_t *win_start; + q7_t *win_stop; + if (i_x * stride - padding < 0) + { + win_start = target; + } else + { + win_start = Im_in + (i_y * dim_im_in + i_x * stride - padding) * ch_im_in; + } + + if (i_x * stride - padding + dim_kernel >= dim_im_in) + { + win_stop = Im_in + (i_y * dim_im_in + dim_im_in) * ch_im_in; + } else + { + win_stop = Im_in + (i_y * dim_im_in + i_x * stride - padding + dim_kernel) * ch_im_in; + } + + /* first step is to copy over initial data */ + /* arm_copy_q7(win_start, target, ch_im_in); */ + memmove(target, win_start, ch_im_in); + + /* start the max operation from the second part */ + win_start += ch_im_in; + for (; win_start < win_stop; win_start += ch_im_in) + { + compare_and_replace_if_larger_q7(target, win_start, ch_im_in); + } + } + } + + /* then does the pooling along y axis */ + for (i_y = 0; i_y < dim_im_out; i_y++) + { + + /* for each output row */ + q7_t *target = Im_out + i_y * dim_im_out * ch_im_in; + q7_t *row_start; + q7_t *row_end; + /* setting the starting row */ + if (i_y * stride - padding < 0) + { + row_start = Im_in; + } else + { + row_start = Im_in + (i_y * stride - padding) * dim_im_in * ch_im_in; + } + /* setting the stopping row */ + if (i_y * stride - padding + dim_kernel >= dim_im_in) + { + row_end = Im_in + dim_im_in * dim_im_in * ch_im_in; + } else + { + row_end = Im_in + (i_y * stride - padding + dim_kernel) * dim_im_in * ch_im_in; + } + + /* copy over the first row */ + /* arm_copy_q7(row_start, target, dim_im_out * ch_im_in); */ + memmove(target, row_start, dim_im_out * ch_im_in); + + /* move over to next row */ + row_start += ch_im_in * dim_im_in; + + for (; row_start < row_end; row_start += dim_im_in * ch_im_in) + { + compare_and_replace_if_larger_q7(target, row_start, dim_im_out * ch_im_in); + } + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + int16_t i_ch_in, i_x, i_y; + int16_t k_x, k_y; + + for (i_ch_in = 0; i_ch_in < ch_im_in; i_ch_in++) + { + for (i_y = 0; i_y < dim_im_out; i_y++) + { + for (i_x = 0; i_x < dim_im_out; i_x++) + { + int max = -129; + for (k_y = i_y * stride - padding; k_y < i_y * stride - padding + dim_kernel; k_y++) + { + for (k_x = i_x * stride - padding; k_x < i_x * stride - padding + dim_kernel; k_x++) + { + if (k_y >= 0 && k_x >= 0 && k_y < dim_im_in && k_x < dim_im_in) + { + if (Im_in[i_ch_in + ch_im_in * (k_x + k_y * dim_im_in)] > max) + { + max = Im_in[i_ch_in + ch_im_in * (k_x + k_y * dim_im_in)]; + } + } + } + } + Im_out[i_ch_in + ch_im_in * (i_x + i_y * dim_im_out)] = max; + } + } + } + +#endif /* ARM_MATH_DSP */ + +} + + /** + * @brief Q7 average pooling function + * @param[in,out] Im_in pointer to input tensor + * @param[in] dim_im_in input tensor dimention + * @param[in] ch_im_in number of input tensor channels + * @param[in] dim_kernel filter kernel size + * @param[in] padding padding sizes + * @param[in] stride convolution stride + * @param[in] dim_im_out output tensor dimension + * @param[in,out] bufferA pointer to buffer space for input + * @param[in,out] Im_out pointer to output tensor + * + * @details + * + * Buffer size: + * + * bufferA size: 2*dim_im_out*ch_im_in + * + * The pooling function is implemented as split x-pooling then + * y-pooling. + * + * This pooling function is input-destructive. Input data is undefined + * after calling this function. + * + */ + +void +arm_avepool_q7_HWC(q7_t * Im_in, + const uint16_t dim_im_in, + const uint16_t ch_im_in, + const uint16_t dim_kernel, + const uint16_t padding, + const uint16_t stride, const uint16_t dim_im_out, q7_t * bufferA, q7_t * Im_out) +{ + +#if defined (ARM_MATH_DSP) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + q15_t *buffer = (q15_t *) bufferA; + int16_t i_x, i_y; + int16_t count = 0; + + /* first does the pooling along x axis */ + for (i_y = 0; i_y < dim_im_in; i_y++) + { + + for (i_x = 0; i_x < dim_im_out; i_x++) + { + /* for each output pixel */ + q7_t *target = Im_in + (i_y * dim_im_in + i_x) * ch_im_in; + q7_t *win_start; + q7_t *win_stop; + if (i_x * stride - padding < 0) + { + win_start = target; + } else + { + win_start = Im_in + (i_y * dim_im_in + i_x * stride - padding) * ch_im_in; + } + + if (i_x * stride - padding + dim_kernel >= dim_im_in) + { + win_stop = Im_in + (i_y * dim_im_in + dim_im_in) * ch_im_in; + } else + { + win_stop = Im_in + (i_y * dim_im_in + i_x * stride - padding + dim_kernel) * ch_im_in; + } + + /* first step is to copy over initial data */ + arm_q7_to_q15_no_shift(win_start, buffer, ch_im_in); + count = 1; + + /* start the max operation from the second part */ + win_start += ch_im_in; + for (; win_start < win_stop; win_start += ch_im_in) + { + accumulate_q7_to_q15(buffer, win_start, ch_im_in); + count++; + } + buffer_scale_back_q15_to_q7(buffer, target, ch_im_in, count); + } + } + + /* then does the pooling along y axis */ + for (i_y = 0; i_y < dim_im_out; i_y++) + { + /* for each output row */ + q7_t *target = Im_out + i_y * dim_im_out * ch_im_in; + q7_t *row_start; + q7_t *row_end; + /* setting the starting row */ + if (i_y * stride - padding < 0) + { + row_start = Im_in; + } else + { + row_start = Im_in + (i_y * stride - padding) * dim_im_in * ch_im_in; + } + /* setting the stopping row */ + if (i_y * stride - padding + dim_kernel >= dim_im_in) + { + row_end = Im_in + dim_im_in * dim_im_in * ch_im_in; + } else + { + row_end = Im_in + (i_y * stride - padding + dim_kernel) * dim_im_in * ch_im_in; + } + + /* copy over the first row */ + arm_q7_to_q15_no_shift(row_start, buffer, dim_im_out * ch_im_in); + count = 1; + + /* move over to next row */ + row_start += ch_im_in * dim_im_in; + + for (; row_start < row_end; row_start += dim_im_in * ch_im_in) + { + accumulate_q7_to_q15(buffer, row_start, dim_im_out * ch_im_in); + count++; + } + buffer_scale_back_q15_to_q7(buffer, target, dim_im_out * ch_im_in, count); + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + + (void)bufferA; + int16_t i_ch_in, i_x, i_y; + int16_t k_x, k_y; + + for (i_ch_in = 0; i_ch_in < ch_im_in; i_ch_in++) + { + for (i_y = 0; i_y < dim_im_out; i_y++) + { + for (i_x = 0; i_x < dim_im_out; i_x++) + { + int sum = 0; + int count = 0; + for (k_y = i_y * stride - padding; k_y < i_y * stride - padding + dim_kernel; k_y++) + { + for (k_x = i_x * stride - padding; k_x < i_x * stride - padding + dim_kernel; k_x++) + { + if (k_y >= 0 && k_x >= 0 && k_y < dim_im_in && k_x < dim_im_in) + { + sum += Im_in[i_ch_in + ch_im_in * (k_x + k_y * dim_im_in)]; + count++; + } + } + } + Im_out[i_ch_in + ch_im_in * (i_x + i_y * dim_im_out)] = sum / count; + } + } + } + +#endif /* ARM_MATH_DSP */ + +} + +/** + * @} end of Pooling group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ReshapeFunctions/arm_reshape_s8.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ReshapeFunctions/arm_reshape_s8.c new file mode 100644 index 00000000..f943976c --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/ReshapeFunctions/arm_reshape_s8.c @@ -0,0 +1,58 @@ +/* + * Copyright (C) 2010-2019 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_reshape_s8.c + * Description: Reshape a s8 vector + * + * $Date: September 2019 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup Reshape + * @{ + */ + +/** + * Basic s8 reshape function. + * + * Refer header file for details. + * + */ + +void arm_reshape_s8(const int8_t *input, + int8_t *output, + const uint32_t total_size) +{ + memcpy(output, input, total_size); +} + +/** + * @} end of Reshape group + */ \ No newline at end of file diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q15.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q15.c new file mode 100644 index 00000000..30000431 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q15.c @@ -0,0 +1,119 @@ +/* + * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_softmax_q15.c + * Description: Q15 softmax function + * + * $Date: 20. February 2018 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup Softmax + * @{ + */ + + /** + * @brief Q15 softmax function + * @param[in] vec_in pointer to input vector + * @param[in] dim_vec input vector dimention + * @param[out] p_out pointer to output vector + * + * @details + * + * Here, instead of typical e based softmax, we use + * 2-based softmax, i.e.,: + * + * y_i = 2^(x_i) / sum(2^x_j) + * + * The relative output will be different here. + * But mathematically, the gradient will be the same + * with a log(2) scaling factor. + * + */ + +void arm_softmax_q15(const q15_t * vec_in, const uint16_t dim_vec, q15_t * p_out) +{ + q31_t sum; + int16_t i; + uint8_t shift; + q31_t base; + base = -1 * 0x100000; + for (i = 0; i < dim_vec; i++) + { + if (vec_in[i] > base) + { + base = vec_in[i]; + } + } + + /* we ignore really small values + * anyway, they will be 0 after shrinking + * to q15_t + */ + base = base - 16; + + sum = 0; + + for (i = 0; i < dim_vec; i++) + { + if (vec_in[i] > base) + { + shift = (uint8_t)__USAT(vec_in[i] - base, 5); + sum += 0x1 << shift; + } + } + + /* This is effectively (0x1 << 32) / sum */ + int64_t div_base = 0x100000000LL; + int output_base = (int32_t)(div_base / sum); + + /* Final confidence will be output_base >> ( 17 - (vec_in[i] - base) ) + * so 32768 (0x1<<15) -> 100% confidence when sum = 0x1 << 16, output_base = 0x1 << 16 + * and vec_in[i]-base = 16 + */ + for (i = 0; i < dim_vec; i++) + { + if (vec_in[i] > base) + { + /* Here minimum value of 17+base-vec[i] will be 1 */ + shift = (uint8_t)__USAT(17+base-vec_in[i], 5); + p_out[i] = (q15_t) __SSAT((output_base >> shift), 16); + } else + { + p_out[i] = 0; + } + } + +} + +/** + * @} end of Softmax group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q7.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q7.c new file mode 100644 index 00000000..c2032271 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_q7.c @@ -0,0 +1,108 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_softmax_q7.c + * Description: Q7 softmax function + * + * $Date: June 8, 2020 + * $Revision: V.1.0.1 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup Softmax + * @{ + */ + + /** + * @brief Q7 softmax function + * @param[in] vec_in pointer to input vector + * @param[in] dim_vec input vector dimention + * @param[out] p_out pointer to output vector + * + * @details + * + * Here, instead of typical natural logarithm e based softmax, we use + * 2-based softmax here, i.e.,: + * + * y_i = 2^(x_i) / sum(2^x_j) + * + * The relative output will be different here. + * But mathematically, the gradient will be the same + * with a log(2) scaling factor. + * + */ + +void arm_softmax_q7(const q7_t * vec_in, const uint16_t dim_vec, q7_t * p_out ) +{ + q31_t sum; + int16_t i; + uint8_t shift; + q15_t base; + base = -128; + + /* We first search for the maximum */ + for (i = 0; i < dim_vec; i++) + { + if (vec_in[i] > base) + { + base = vec_in[i]; + } + } + + /* + * So the base is set to max-8, meaning + * that we ignore really small values. + * anyway, they will be 0 after shrinking to q7_t. + */ + base = base - (1 << 3); + + sum = 0; + + for (i = 0; i < dim_vec; i++) + { + shift = (uint8_t)__USAT(vec_in[i] - base, 3); + sum += 0x1 << shift; + } + + /* This is effectively (0x1 << 20) / sum */ + int output_base = (1 << 20) / sum; + + for (i = 0; i < dim_vec; i++) + { + + /* Here minimum value of 13+base-vec_in[i] will be 5 */ + shift = (uint8_t)__USAT(13 + base - vec_in[i], 5); + p_out[i] = (q7_t)__SSAT((output_base >> shift), 8); + } +} + +/** + * @} end of Softmax group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_s8.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_s8.c new file mode 100644 index 00000000..8639f706 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_s8.c @@ -0,0 +1,257 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_softmax_s8.c + * Description: S8 softmax function + * + * $Date: April 6, 2020 + * $Revision: V.2.0.0 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/NN/Include/arm_nnsupportfunctions.h" + +#define ACCUM_BITS 12 + +#ifdef ARM_MATH_MVEI +static int32x4_t arm_exp_on_negative_values_mve_32x4(int32x4_t val) +{ +#define SHIFT_START (24) + int32_t shift = SHIFT_START; + int32x4_t mask; + + const int32x4_t val_mod_minus_quarter = vandq_s32(val, vdupq_n_s32((1 << SHIFT_START) - 1)) - vdupq_n_s32(1 << SHIFT_START); + const int32x4_t remainder = vsubq_s32(val_mod_minus_quarter, val); + const int32x4_t x = vaddq_n_s32(val_mod_minus_quarter << 5, 1 << 28); + const int32x4_t x2 = MUL_SAT_MVE(x, x); + const int32x4_t op_1 = DIV_POW2_MVE(MUL_SAT_MVE(x2, x2), 2) + MUL_SAT_MVE(x2, x); + const int32x4_t op_2 = x + DIV_POW2_MVE(MUL_SAT_MVE(op_1, vdupq_n_s32(715827883)) + x2, 1); + int32x4_t result = vdupq_n_s32(1895147668) + MUL_SAT_MVE(vdupq_n_s32(1895147668), op_2); + +#define SELECT_IF_NON_ZERO(x) \ + { \ + mve_pred16_t p = vcmpneq_n_s32(remainder & vdupq_n_s32(1 << shift++), 0); \ + mask = vmvnq_m_s32(vdupq_n_s32(0), vdupq_n_s32(0), p); \ + result = SELECT_USING_MASK(mask, MUL_SAT_MVE(result, vdupq_n_s32(x)), result); \ + } + + SELECT_IF_NON_ZERO(1672461947) + SELECT_IF_NON_ZERO(1302514674) + SELECT_IF_NON_ZERO(790015084) + SELECT_IF_NON_ZERO(290630308) + SELECT_IF_NON_ZERO(39332535) + SELECT_IF_NON_ZERO(720401) + SELECT_IF_NON_ZERO(242) + +#undef SELECT_IF_NON_ZERO + + mve_pred16_t p = vcmpeqq_n_s32(val, 0); + mask = vmvnq_m_s32(vdupq_n_s32(0), vdupq_n_s32(0), p); + + result = SELECT_USING_MASK(mask, vdupq_n_s32(Q31_MAX), result); + return result; +} +#endif + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup Softmax + * @{ + */ + +void arm_softmax_s8(const int8_t *input, + const int32_t num_rows, + const int32_t row_size, + const int32_t mult, + const int32_t shift, + const int32_t diff_min, + int8_t *output) +{ +#ifdef ARM_MATH_MVEI + +#define ACT_MIN ((int8_t)Q7_MIN) +#define ACT_MAX ((int8_t)Q7_MAX) + + const int32_t mask = (1 << shift); + + for (int i_num_rows = 0; i_num_rows < num_rows; ++i_num_rows) + { + int8_t max = ACT_MIN; + + int32_t vec_count = (row_size + 15) / 16; + uint32_t r_count = (uint32_t)row_size; + for (int i = 0; i < vec_count; i++) + { + mve_pred16_t p = vctp8q(r_count); + const int8x16_t ip = vldrbq_z_s8(&input[i * 16], p); + max = vmaxvq_p_s8(max, ip, p); + r_count -= 16; + } + + vec_count = row_size / 4; + int32_t idx = 0; + int32_t sum = 0; + + while (vec_count) + { + int32x4_t ip = vldrbq_s32(&input[idx * 4]); + ip = vsubq_n_s32(ip, max); + mve_pred16_t p = vcmpgeq_n_s32(ip, diff_min); + if (p != 0) + { + ip = vmulq_n_s32(ip, mask); + + int32x4_t res = MUL_SAT_MVE(ip, vdupq_n_s32(mult)); + + res = arm_exp_on_negative_values_mve_32x4(res); + res = DIV_POW2_MVE(res, ACCUM_BITS); + res = vpselq_s32(res, vdupq_n_s32(0), p); + sum += vaddvq_s32(res); + } + + vec_count--; + idx++; + } + + const int32_t tail_idx = row_size & ~3; + for (int i = 0; i < (row_size & 3); i++) + { + const int32_t diff = input[tail_idx + i] - max; + if (diff >= diff_min) + { + sum += DIV_POW2(EXP_ON_NEG(MUL_SAT(diff * mask, mult)), ACCUM_BITS); + } + } + + const int32_t headroom = __CLZ((uint32_t)sum); + const int32_t bits_over_unit = ACCUM_BITS - headroom + 23; + const int32_t shifted_scale = ONE_OVER1((sum << headroom) - (1 << 31)); + + vec_count = row_size / 4; + idx = 0; + + while (vec_count) + { + int32x4_t ip = vldrbq_s32(&input[idx]); + ip = vsubq_n_s32(ip, max); + + mve_pred16_t p = vcmpgeq_n_s32(ip, diff_min); + + int32x4_t tmp_res; + + if (p != 0) + { + ip = vmulq_n_s32(ip, mask); + + tmp_res = MUL_SAT_MVE(ip, vdupq_n_s32(mult)); + tmp_res = arm_exp_on_negative_values_mve_32x4(tmp_res); + tmp_res = MUL_SAT_MVE(vdupq_n_s32(shifted_scale), tmp_res); + tmp_res = DIV_POW2_MVE(tmp_res, bits_over_unit); + tmp_res += vdupq_n_s32(ACT_MIN); + + tmp_res = vmaxq_s32(tmp_res, vdupq_n_s32(ACT_MIN)); + tmp_res = vminq_s32(tmp_res, vdupq_n_s32(ACT_MAX)); + tmp_res = vpselq_s32(tmp_res, vdupq_n_s32(ACT_MIN), p); + } + else + { + tmp_res = vdupq_n_s32(ACT_MIN); + } + vstrbq_s32(&output[idx], tmp_res); + vec_count--; + idx += 4; + } + + for (int i = 0; i < (row_size & 3); i++) + { + int32_t diff = input[tail_idx + i] - max; + if (diff >= diff_min) + { + const int32_t res = DIV_POW2(MUL_SAT(shifted_scale, EXP_ON_NEG(MUL_SAT(diff * mask, mult))), bits_over_unit) - 128; + output[tail_idx + i] = (int8_t)CLAMP(res, (int32_t)ACT_MAX, (int32_t)ACT_MIN); + } + else + { + output[tail_idx + i] = ACT_MIN; + } + } + + input += row_size; + output += row_size; + } +#else + const int32_t mask = (1 << shift); + + int32_t col = 0; + int32_t row_idx; + + for (row_idx = 0; row_idx < num_rows; ++row_idx) + { + // Find the maximum value in order to ensure numerical stability + int8_t max = *input; + + for (col = 1; col < row_size; ++col) + { + max = MAX(max, input[col]); + } + + int32_t diff = 0; + int32_t sum = 0; + + for (col = 0; col < row_size; ++col) + { + diff = input[col] - max; + if (diff >= diff_min) + { + sum += DIV_POW2(EXP_ON_NEG(MUL_SAT(diff * mask, mult)), ACCUM_BITS); + } + } + + const int32_t headroom = __CLZ(sum); + const int32_t bits_over_unit = ACCUM_BITS - headroom + 23; + const int32_t shifted_scale = ONE_OVER1((sum << headroom) - (1 << 31)); + + for (col = 0; col < row_size; ++col) + { + diff = input[col] - max; + if (diff >= diff_min) + { + const int32_t res = DIV_POW2(MUL_SAT(shifted_scale, EXP_ON_NEG(MUL_SAT(diff * mask, mult))), bits_over_unit) - 128; + output[col] = (int8_t)CLAMP(res, (int32_t)127, (int32_t)-128); + } + else + { + output[col] = -128; + } + } + input += row_size; + output += row_size; + } + +#endif +} +/** + * @} end of Softmax group + */ diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_u8.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_u8.c new file mode 100644 index 00000000..2820af64 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_u8.c @@ -0,0 +1,101 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_softmax_u8.c + * Description: U8 softmax function + * + * $Date: May 29, 2020 + * $Revision: V.1.0.1 + * + * Target Processor: Cortex-M CPUs + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +#define ACCUM_BITS 12 + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup Softmax + * @{ + */ +void arm_softmax_u8(const uint8_t *input, + const int32_t num_rows, + const int32_t row_size, + const int32_t mult, + const int32_t shift, + const int32_t diff_min, + uint8_t *output) +{ + const int32_t mask = (1 << shift); + + int32_t col = 0; + int32_t row_idx; + + for(row_idx = 0; row_idx < num_rows; ++row_idx) + { + // Find the maximum value in order to ensure numerical stability + uint8_t max = *input; + + for (col = 1; col < row_size; ++col) + { + max = MAX(max, input[col]); + } + + int32_t diff = 0; + int32_t sum = 0; + + for (col = 0; col < row_size; ++col) + { + diff = input[col] - max; + if(diff >= diff_min) + { + sum += DIV_POW2(EXP_ON_NEG(MUL_SAT(diff * mask, mult)), ACCUM_BITS); + } + } + + const int32_t headroom = __CLZ((uint32_t)sum); + const int32_t bits_over_unit = ACCUM_BITS - headroom + 23; + const int32_t shifted_scale = ONE_OVER1((sum << headroom) - (1 << 31)); + + for (col = 0; col < row_size; ++col) + { + diff = input[col] - max; + if (diff >= diff_min) + { + const int32_t res = DIV_POW2(MUL_SAT(shifted_scale, EXP_ON_NEG(MUL_SAT(diff * mask, mult))), bits_over_unit); + output[col] = (uint8_t) CLAMP(res, (int32_t)255, (int32_t)0); + } + else + { + output[col] = 0; + } + } + input += row_size; + output += row_size; + } +} +/** + * @} end of Softmax group + */ \ No newline at end of file diff --git a/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_with_batch_q7.c b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_with_batch_q7.c new file mode 100644 index 00000000..e4a634d6 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/NN/Source/SoftmaxFunctions/arm_softmax_with_batch_q7.c @@ -0,0 +1,75 @@ +/* + * Copyright (C) 2010-2019 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_softmax_with_batch_q7.c + * Description: Q7 softmax function + * + * $Date: 05. August 2019 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M and Cortex-A cores + * + * -------------------------------------------------------------------- */ + +#include "cmsis/CMSIS/DSP/Include/arm_math.h" +#include "cmsis/CMSIS/NN/Include/arm_nnfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup Softmax + * @{ + */ + + /** + * @brief Q7 softmax function with batch parameter + * @param[in] vec_in pointer to input vector + * @param[in] nb_batches number of batches + * @param[in] dim_vec input vector dimention + * @param[out] p_out pointer to output vector + * + * @details + * + * Here, instead of typical natural logarithm e based softmax, we use + * 2-based softmax here, i.e.,: + * + * y_i = 2^(x_i) / sum(2^x_j) + * + * The relative output will be different here. + * But mathematically, the gradient will be the same + * with a log(2) scaling factor. + * + */ + +void arm_softmax_with_batch_q7(const q7_t * vec_in, const uint16_t nb_batches,const uint16_t dim_vec, q7_t * p_out ) +{ + for(int i=0; i(e); + return EnumNamesTensorType()[index]; +} + +enum QuantizationDetails { + QuantizationDetails_NONE = 0, + QuantizationDetails_CustomQuantization = 1, + QuantizationDetails_MIN = QuantizationDetails_NONE, + QuantizationDetails_MAX = QuantizationDetails_CustomQuantization +}; + +inline const QuantizationDetails (&EnumValuesQuantizationDetails())[2] { + static const QuantizationDetails values[] = { + QuantizationDetails_NONE, + QuantizationDetails_CustomQuantization + }; + return values; +} + +inline const char * const *EnumNamesQuantizationDetails() { + static const char * const names[3] = { + "NONE", + "CustomQuantization", + nullptr + }; + return names; +} + +inline const char *EnumNameQuantizationDetails(QuantizationDetails e) { + if (flatbuffers::IsOutRange(e, QuantizationDetails_NONE, QuantizationDetails_CustomQuantization)) return ""; + const size_t index = static_cast(e); + return EnumNamesQuantizationDetails()[index]; +} + +template struct QuantizationDetailsTraits { + static const QuantizationDetails enum_value = QuantizationDetails_NONE; +}; + +template<> struct QuantizationDetailsTraits { + static const QuantizationDetails enum_value = QuantizationDetails_CustomQuantization; +}; + +struct QuantizationDetailsUnion { + QuantizationDetails type; + void *value; + + QuantizationDetailsUnion() : type(QuantizationDetails_NONE), value(nullptr) {} + QuantizationDetailsUnion(QuantizationDetailsUnion&& u) FLATBUFFERS_NOEXCEPT : + type(QuantizationDetails_NONE), value(nullptr) + { std::swap(type, u.type); std::swap(value, u.value); } + QuantizationDetailsUnion(const QuantizationDetailsUnion &) FLATBUFFERS_NOEXCEPT; + QuantizationDetailsUnion &operator=(const QuantizationDetailsUnion &u) FLATBUFFERS_NOEXCEPT + { QuantizationDetailsUnion t(u); std::swap(type, t.type); std::swap(value, t.value); return *this; } + QuantizationDetailsUnion &operator=(QuantizationDetailsUnion &&u) FLATBUFFERS_NOEXCEPT + { std::swap(type, u.type); std::swap(value, u.value); return *this; } + ~QuantizationDetailsUnion() { Reset(); } + + void Reset(); + +#ifndef FLATBUFFERS_CPP98_STL + template + void Set(T&& val) { + using RT = typename std::remove_reference::type; + Reset(); + type = QuantizationDetailsTraits::enum_value; + if (type != QuantizationDetails_NONE) { + value = new RT(std::forward(val)); + } + } +#endif // FLATBUFFERS_CPP98_STL + + static void *UnPack(const void *obj, QuantizationDetails type, const flatbuffers::resolver_function_t *resolver); + flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const flatbuffers::rehasher_function_t *_rehasher = nullptr) const; + + tflite::CustomQuantizationT *AsCustomQuantization() { + return type == QuantizationDetails_CustomQuantization ? + reinterpret_cast(value) : nullptr; + } + const tflite::CustomQuantizationT *AsCustomQuantization() const { + return type == QuantizationDetails_CustomQuantization ? + reinterpret_cast(value) : nullptr; + } +}; + +bool VerifyQuantizationDetails(flatbuffers::Verifier &verifier, const void *obj, QuantizationDetails type); +bool VerifyQuantizationDetailsVector(flatbuffers::Verifier &verifier, const flatbuffers::Vector> *values, const flatbuffers::Vector *types); + +enum DimensionType { + DimensionType_DENSE = 0, + DimensionType_SPARSE_CSR = 1, + DimensionType_MIN = DimensionType_DENSE, + DimensionType_MAX = DimensionType_SPARSE_CSR +}; + +inline const DimensionType (&EnumValuesDimensionType())[2] { + static const DimensionType values[] = { + DimensionType_DENSE, + DimensionType_SPARSE_CSR + }; + return values; +} + +inline const char * const *EnumNamesDimensionType() { + static const char * const names[3] = { + "DENSE", + "SPARSE_CSR", + nullptr + }; + return names; +} + +inline const char *EnumNameDimensionType(DimensionType e) { + if (flatbuffers::IsOutRange(e, DimensionType_DENSE, DimensionType_SPARSE_CSR)) return ""; + const size_t index = static_cast(e); + return EnumNamesDimensionType()[index]; +} + +enum SparseIndexVector { + SparseIndexVector_NONE = 0, + SparseIndexVector_Int32Vector = 1, + SparseIndexVector_Uint16Vector = 2, + SparseIndexVector_Uint8Vector = 3, + SparseIndexVector_MIN = SparseIndexVector_NONE, + SparseIndexVector_MAX = SparseIndexVector_Uint8Vector +}; + +inline const SparseIndexVector (&EnumValuesSparseIndexVector())[4] { + static const SparseIndexVector values[] = { + SparseIndexVector_NONE, + SparseIndexVector_Int32Vector, + SparseIndexVector_Uint16Vector, + SparseIndexVector_Uint8Vector + }; + return values; +} + +inline const char * const *EnumNamesSparseIndexVector() { + static const char * const names[5] = { + "NONE", + "Int32Vector", + "Uint16Vector", + "Uint8Vector", + nullptr + }; + return names; +} + +inline const char *EnumNameSparseIndexVector(SparseIndexVector e) { + if (flatbuffers::IsOutRange(e, SparseIndexVector_NONE, SparseIndexVector_Uint8Vector)) return ""; + const size_t index = static_cast(e); + return EnumNamesSparseIndexVector()[index]; +} + +template struct SparseIndexVectorTraits { + static const SparseIndexVector enum_value = SparseIndexVector_NONE; +}; + +template<> struct SparseIndexVectorTraits { + static const SparseIndexVector enum_value = SparseIndexVector_Int32Vector; +}; + +template<> struct SparseIndexVectorTraits { + static const SparseIndexVector enum_value = SparseIndexVector_Uint16Vector; +}; + +template<> struct SparseIndexVectorTraits { + static const SparseIndexVector enum_value = SparseIndexVector_Uint8Vector; +}; + +struct SparseIndexVectorUnion { + SparseIndexVector type; + void *value; + + SparseIndexVectorUnion() : type(SparseIndexVector_NONE), value(nullptr) {} + SparseIndexVectorUnion(SparseIndexVectorUnion&& u) FLATBUFFERS_NOEXCEPT : + type(SparseIndexVector_NONE), value(nullptr) + { std::swap(type, u.type); std::swap(value, u.value); } + SparseIndexVectorUnion(const SparseIndexVectorUnion &) FLATBUFFERS_NOEXCEPT; + SparseIndexVectorUnion &operator=(const SparseIndexVectorUnion &u) FLATBUFFERS_NOEXCEPT + { SparseIndexVectorUnion t(u); std::swap(type, t.type); std::swap(value, t.value); return *this; } + SparseIndexVectorUnion &operator=(SparseIndexVectorUnion &&u) FLATBUFFERS_NOEXCEPT + { std::swap(type, u.type); std::swap(value, u.value); return *this; } + ~SparseIndexVectorUnion() { Reset(); } + + void Reset(); + +#ifndef FLATBUFFERS_CPP98_STL + template + void Set(T&& val) { + using RT = typename std::remove_reference::type; + Reset(); + type = SparseIndexVectorTraits::enum_value; + if (type != SparseIndexVector_NONE) { + value = new RT(std::forward(val)); + } + } +#endif // FLATBUFFERS_CPP98_STL + + static void *UnPack(const void *obj, SparseIndexVector type, const flatbuffers::resolver_function_t *resolver); + flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const flatbuffers::rehasher_function_t *_rehasher = nullptr) const; + + tflite::Int32VectorT *AsInt32Vector() { + return type == SparseIndexVector_Int32Vector ? + reinterpret_cast(value) : nullptr; + } + const tflite::Int32VectorT *AsInt32Vector() const { + return type == SparseIndexVector_Int32Vector ? + reinterpret_cast(value) : nullptr; + } + tflite::Uint16VectorT *AsUint16Vector() { + return type == SparseIndexVector_Uint16Vector ? + reinterpret_cast(value) : nullptr; + } + const tflite::Uint16VectorT *AsUint16Vector() const { + return type == SparseIndexVector_Uint16Vector ? + reinterpret_cast(value) : nullptr; + } + tflite::Uint8VectorT *AsUint8Vector() { + return type == SparseIndexVector_Uint8Vector ? + reinterpret_cast(value) : nullptr; + } + const tflite::Uint8VectorT *AsUint8Vector() const { + return type == SparseIndexVector_Uint8Vector ? + reinterpret_cast(value) : nullptr; + } +}; + +bool VerifySparseIndexVector(flatbuffers::Verifier &verifier, const void *obj, SparseIndexVector type); +bool VerifySparseIndexVectorVector(flatbuffers::Verifier &verifier, const flatbuffers::Vector> *values, const flatbuffers::Vector *types); + +enum BuiltinOperator { + BuiltinOperator_ADD = 0, + BuiltinOperator_AVERAGE_POOL_2D = 1, + BuiltinOperator_CONCATENATION = 2, + BuiltinOperator_CONV_2D = 3, + BuiltinOperator_DEPTHWISE_CONV_2D = 4, + BuiltinOperator_DEPTH_TO_SPACE = 5, + BuiltinOperator_DEQUANTIZE = 6, + BuiltinOperator_EMBEDDING_LOOKUP = 7, + BuiltinOperator_FLOOR = 8, + BuiltinOperator_FULLY_CONNECTED = 9, + BuiltinOperator_HASHTABLE_LOOKUP = 10, + BuiltinOperator_L2_NORMALIZATION = 11, + BuiltinOperator_L2_POOL_2D = 12, + BuiltinOperator_LOCAL_RESPONSE_NORMALIZATION = 13, + BuiltinOperator_LOGISTIC = 14, + BuiltinOperator_LSH_PROJECTION = 15, + BuiltinOperator_LSTM = 16, + BuiltinOperator_MAX_POOL_2D = 17, + BuiltinOperator_MUL = 18, + BuiltinOperator_RELU = 19, + BuiltinOperator_RELU_N1_TO_1 = 20, + BuiltinOperator_RELU6 = 21, + BuiltinOperator_RESHAPE = 22, + BuiltinOperator_RESIZE_BILINEAR = 23, + BuiltinOperator_RNN = 24, + BuiltinOperator_SOFTMAX = 25, + BuiltinOperator_SPACE_TO_DEPTH = 26, + BuiltinOperator_SVDF = 27, + BuiltinOperator_TANH = 28, + BuiltinOperator_CONCAT_EMBEDDINGS = 29, + BuiltinOperator_SKIP_GRAM = 30, + BuiltinOperator_CALL = 31, + BuiltinOperator_CUSTOM = 32, + BuiltinOperator_EMBEDDING_LOOKUP_SPARSE = 33, + BuiltinOperator_PAD = 34, + BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_RNN = 35, + BuiltinOperator_GATHER = 36, + BuiltinOperator_BATCH_TO_SPACE_ND = 37, + BuiltinOperator_SPACE_TO_BATCH_ND = 38, + BuiltinOperator_TRANSPOSE = 39, + BuiltinOperator_MEAN = 40, + BuiltinOperator_SUB = 41, + BuiltinOperator_DIV = 42, + BuiltinOperator_SQUEEZE = 43, + BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM = 44, + BuiltinOperator_STRIDED_SLICE = 45, + BuiltinOperator_BIDIRECTIONAL_SEQUENCE_RNN = 46, + BuiltinOperator_EXP = 47, + BuiltinOperator_TOPK_V2 = 48, + BuiltinOperator_SPLIT = 49, + BuiltinOperator_LOG_SOFTMAX = 50, + BuiltinOperator_DELEGATE = 51, + BuiltinOperator_BIDIRECTIONAL_SEQUENCE_LSTM = 52, + BuiltinOperator_CAST = 53, + BuiltinOperator_PRELU = 54, + BuiltinOperator_MAXIMUM = 55, + BuiltinOperator_ARG_MAX = 56, + BuiltinOperator_MINIMUM = 57, + BuiltinOperator_LESS = 58, + BuiltinOperator_NEG = 59, + BuiltinOperator_PADV2 = 60, + BuiltinOperator_GREATER = 61, + BuiltinOperator_GREATER_EQUAL = 62, + BuiltinOperator_LESS_EQUAL = 63, + BuiltinOperator_SELECT = 64, + BuiltinOperator_SLICE = 65, + BuiltinOperator_SIN = 66, + BuiltinOperator_TRANSPOSE_CONV = 67, + BuiltinOperator_SPARSE_TO_DENSE = 68, + BuiltinOperator_TILE = 69, + BuiltinOperator_EXPAND_DIMS = 70, + BuiltinOperator_EQUAL = 71, + BuiltinOperator_NOT_EQUAL = 72, + BuiltinOperator_LOG = 73, + BuiltinOperator_SUM = 74, + BuiltinOperator_SQRT = 75, + BuiltinOperator_RSQRT = 76, + BuiltinOperator_SHAPE = 77, + BuiltinOperator_POW = 78, + BuiltinOperator_ARG_MIN = 79, + BuiltinOperator_FAKE_QUANT = 80, + BuiltinOperator_REDUCE_PROD = 81, + BuiltinOperator_REDUCE_MAX = 82, + BuiltinOperator_PACK = 83, + BuiltinOperator_LOGICAL_OR = 84, + BuiltinOperator_ONE_HOT = 85, + BuiltinOperator_LOGICAL_AND = 86, + BuiltinOperator_LOGICAL_NOT = 87, + BuiltinOperator_UNPACK = 88, + BuiltinOperator_REDUCE_MIN = 89, + BuiltinOperator_FLOOR_DIV = 90, + BuiltinOperator_REDUCE_ANY = 91, + BuiltinOperator_SQUARE = 92, + BuiltinOperator_ZEROS_LIKE = 93, + BuiltinOperator_FILL = 94, + BuiltinOperator_FLOOR_MOD = 95, + BuiltinOperator_RANGE = 96, + BuiltinOperator_RESIZE_NEAREST_NEIGHBOR = 97, + BuiltinOperator_LEAKY_RELU = 98, + BuiltinOperator_SQUARED_DIFFERENCE = 99, + BuiltinOperator_MIRROR_PAD = 100, + BuiltinOperator_ABS = 101, + BuiltinOperator_SPLIT_V = 102, + BuiltinOperator_UNIQUE = 103, + BuiltinOperator_CEIL = 104, + BuiltinOperator_REVERSE_V2 = 105, + BuiltinOperator_ADD_N = 106, + BuiltinOperator_GATHER_ND = 107, + BuiltinOperator_COS = 108, + BuiltinOperator_WHERE = 109, + BuiltinOperator_RANK = 110, + BuiltinOperator_ELU = 111, + BuiltinOperator_REVERSE_SEQUENCE = 112, + BuiltinOperator_MATRIX_DIAG = 113, + BuiltinOperator_QUANTIZE = 114, + BuiltinOperator_MATRIX_SET_DIAG = 115, + BuiltinOperator_ROUND = 116, + BuiltinOperator_HARD_SWISH = 117, + BuiltinOperator_IF = 118, + BuiltinOperator_WHILE = 119, + BuiltinOperator_NON_MAX_SUPPRESSION_V4 = 120, + BuiltinOperator_NON_MAX_SUPPRESSION_V5 = 121, + BuiltinOperator_SCATTER_ND = 122, + BuiltinOperator_SELECT_V2 = 123, + BuiltinOperator_DENSIFY = 124, + BuiltinOperator_SEGMENT_SUM = 125, + BuiltinOperator_BATCH_MATMUL = 126, + BuiltinOperator_MIN = BuiltinOperator_ADD, + BuiltinOperator_MAX = BuiltinOperator_BATCH_MATMUL +}; + +inline const BuiltinOperator (&EnumValuesBuiltinOperator())[127] { + static const BuiltinOperator values[] = { + BuiltinOperator_ADD, + BuiltinOperator_AVERAGE_POOL_2D, + BuiltinOperator_CONCATENATION, + BuiltinOperator_CONV_2D, + BuiltinOperator_DEPTHWISE_CONV_2D, + BuiltinOperator_DEPTH_TO_SPACE, + BuiltinOperator_DEQUANTIZE, + BuiltinOperator_EMBEDDING_LOOKUP, + BuiltinOperator_FLOOR, + BuiltinOperator_FULLY_CONNECTED, + BuiltinOperator_HASHTABLE_LOOKUP, + BuiltinOperator_L2_NORMALIZATION, + BuiltinOperator_L2_POOL_2D, + BuiltinOperator_LOCAL_RESPONSE_NORMALIZATION, + BuiltinOperator_LOGISTIC, + BuiltinOperator_LSH_PROJECTION, + BuiltinOperator_LSTM, + BuiltinOperator_MAX_POOL_2D, + BuiltinOperator_MUL, + BuiltinOperator_RELU, + BuiltinOperator_RELU_N1_TO_1, + BuiltinOperator_RELU6, + BuiltinOperator_RESHAPE, + BuiltinOperator_RESIZE_BILINEAR, + BuiltinOperator_RNN, + BuiltinOperator_SOFTMAX, + BuiltinOperator_SPACE_TO_DEPTH, + BuiltinOperator_SVDF, + BuiltinOperator_TANH, + BuiltinOperator_CONCAT_EMBEDDINGS, + BuiltinOperator_SKIP_GRAM, + BuiltinOperator_CALL, + BuiltinOperator_CUSTOM, + BuiltinOperator_EMBEDDING_LOOKUP_SPARSE, + BuiltinOperator_PAD, + BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_RNN, + BuiltinOperator_GATHER, + BuiltinOperator_BATCH_TO_SPACE_ND, + BuiltinOperator_SPACE_TO_BATCH_ND, + BuiltinOperator_TRANSPOSE, + BuiltinOperator_MEAN, + BuiltinOperator_SUB, + BuiltinOperator_DIV, + BuiltinOperator_SQUEEZE, + BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM, + BuiltinOperator_STRIDED_SLICE, + BuiltinOperator_BIDIRECTIONAL_SEQUENCE_RNN, + BuiltinOperator_EXP, + BuiltinOperator_TOPK_V2, + BuiltinOperator_SPLIT, + BuiltinOperator_LOG_SOFTMAX, + BuiltinOperator_DELEGATE, + BuiltinOperator_BIDIRECTIONAL_SEQUENCE_LSTM, + BuiltinOperator_CAST, + BuiltinOperator_PRELU, + BuiltinOperator_MAXIMUM, + BuiltinOperator_ARG_MAX, + BuiltinOperator_MINIMUM, + BuiltinOperator_LESS, + BuiltinOperator_NEG, + BuiltinOperator_PADV2, + BuiltinOperator_GREATER, + BuiltinOperator_GREATER_EQUAL, + BuiltinOperator_LESS_EQUAL, + BuiltinOperator_SELECT, + BuiltinOperator_SLICE, + BuiltinOperator_SIN, + BuiltinOperator_TRANSPOSE_CONV, + BuiltinOperator_SPARSE_TO_DENSE, + BuiltinOperator_TILE, + BuiltinOperator_EXPAND_DIMS, + BuiltinOperator_EQUAL, + BuiltinOperator_NOT_EQUAL, + BuiltinOperator_LOG, + BuiltinOperator_SUM, + BuiltinOperator_SQRT, + BuiltinOperator_RSQRT, + BuiltinOperator_SHAPE, + BuiltinOperator_POW, + BuiltinOperator_ARG_MIN, + BuiltinOperator_FAKE_QUANT, + BuiltinOperator_REDUCE_PROD, + BuiltinOperator_REDUCE_MAX, + BuiltinOperator_PACK, + BuiltinOperator_LOGICAL_OR, + BuiltinOperator_ONE_HOT, + BuiltinOperator_LOGICAL_AND, + BuiltinOperator_LOGICAL_NOT, + BuiltinOperator_UNPACK, + BuiltinOperator_REDUCE_MIN, + BuiltinOperator_FLOOR_DIV, + BuiltinOperator_REDUCE_ANY, + BuiltinOperator_SQUARE, + BuiltinOperator_ZEROS_LIKE, + BuiltinOperator_FILL, + BuiltinOperator_FLOOR_MOD, + BuiltinOperator_RANGE, + BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, + BuiltinOperator_LEAKY_RELU, + BuiltinOperator_SQUARED_DIFFERENCE, + BuiltinOperator_MIRROR_PAD, + BuiltinOperator_ABS, + BuiltinOperator_SPLIT_V, + BuiltinOperator_UNIQUE, + BuiltinOperator_CEIL, + BuiltinOperator_REVERSE_V2, + BuiltinOperator_ADD_N, + BuiltinOperator_GATHER_ND, + BuiltinOperator_COS, + BuiltinOperator_WHERE, + BuiltinOperator_RANK, + BuiltinOperator_ELU, + BuiltinOperator_REVERSE_SEQUENCE, + BuiltinOperator_MATRIX_DIAG, + BuiltinOperator_QUANTIZE, + BuiltinOperator_MATRIX_SET_DIAG, + BuiltinOperator_ROUND, + BuiltinOperator_HARD_SWISH, + BuiltinOperator_IF, + BuiltinOperator_WHILE, + BuiltinOperator_NON_MAX_SUPPRESSION_V4, + BuiltinOperator_NON_MAX_SUPPRESSION_V5, + BuiltinOperator_SCATTER_ND, + BuiltinOperator_SELECT_V2, + BuiltinOperator_DENSIFY, + BuiltinOperator_SEGMENT_SUM, + BuiltinOperator_BATCH_MATMUL + }; + return values; +} + +inline const char * const *EnumNamesBuiltinOperator() { + static const char * const names[128] = { + "ADD", + "AVERAGE_POOL_2D", + "CONCATENATION", + "CONV_2D", + "DEPTHWISE_CONV_2D", + "DEPTH_TO_SPACE", + "DEQUANTIZE", + "EMBEDDING_LOOKUP", + "FLOOR", + "FULLY_CONNECTED", + "HASHTABLE_LOOKUP", + "L2_NORMALIZATION", + "L2_POOL_2D", + "LOCAL_RESPONSE_NORMALIZATION", + "LOGISTIC", + "LSH_PROJECTION", + "LSTM", + "MAX_POOL_2D", + "MUL", + "RELU", + "RELU_N1_TO_1", + "RELU6", + "RESHAPE", + "RESIZE_BILINEAR", + "RNN", + "SOFTMAX", + "SPACE_TO_DEPTH", + "SVDF", + "TANH", + "CONCAT_EMBEDDINGS", + "SKIP_GRAM", + "CALL", + "CUSTOM", + "EMBEDDING_LOOKUP_SPARSE", + "PAD", + "UNIDIRECTIONAL_SEQUENCE_RNN", + "GATHER", + "BATCH_TO_SPACE_ND", + "SPACE_TO_BATCH_ND", + "TRANSPOSE", + "MEAN", + "SUB", + "DIV", + "SQUEEZE", + "UNIDIRECTIONAL_SEQUENCE_LSTM", + "STRIDED_SLICE", + "BIDIRECTIONAL_SEQUENCE_RNN", + "EXP", + "TOPK_V2", + "SPLIT", + "LOG_SOFTMAX", + "DELEGATE", + "BIDIRECTIONAL_SEQUENCE_LSTM", + "CAST", + "PRELU", + "MAXIMUM", + "ARG_MAX", + "MINIMUM", + "LESS", + "NEG", + "PADV2", + "GREATER", + "GREATER_EQUAL", + "LESS_EQUAL", + "SELECT", + "SLICE", + "SIN", + "TRANSPOSE_CONV", + "SPARSE_TO_DENSE", + "TILE", + "EXPAND_DIMS", + "EQUAL", + "NOT_EQUAL", + "LOG", + "SUM", + "SQRT", + "RSQRT", + "SHAPE", + "POW", + "ARG_MIN", + "FAKE_QUANT", + "REDUCE_PROD", + "REDUCE_MAX", + "PACK", + "LOGICAL_OR", + "ONE_HOT", + "LOGICAL_AND", + "LOGICAL_NOT", + "UNPACK", + "REDUCE_MIN", + "FLOOR_DIV", + "REDUCE_ANY", + "SQUARE", + "ZEROS_LIKE", + "FILL", + "FLOOR_MOD", + "RANGE", + "RESIZE_NEAREST_NEIGHBOR", + "LEAKY_RELU", + "SQUARED_DIFFERENCE", + "MIRROR_PAD", + "ABS", + "SPLIT_V", + "UNIQUE", + "CEIL", + "REVERSE_V2", + "ADD_N", + "GATHER_ND", + "COS", + "WHERE", + "RANK", + "ELU", + "REVERSE_SEQUENCE", + "MATRIX_DIAG", + "QUANTIZE", + "MATRIX_SET_DIAG", + "ROUND", + "HARD_SWISH", + "IF", + "WHILE", + "NON_MAX_SUPPRESSION_V4", + "NON_MAX_SUPPRESSION_V5", + "SCATTER_ND", + "SELECT_V2", + "DENSIFY", + "SEGMENT_SUM", + "BATCH_MATMUL", + nullptr + }; + return names; +} + +inline const char *EnumNameBuiltinOperator(BuiltinOperator e) { + if (flatbuffers::IsOutRange(e, BuiltinOperator_ADD, BuiltinOperator_BATCH_MATMUL)) return ""; + const size_t index = static_cast(e); + return EnumNamesBuiltinOperator()[index]; +} + +enum BuiltinOptions { + BuiltinOptions_NONE = 0, + BuiltinOptions_Conv2DOptions = 1, + BuiltinOptions_DepthwiseConv2DOptions = 2, + BuiltinOptions_ConcatEmbeddingsOptions = 3, + BuiltinOptions_LSHProjectionOptions = 4, + BuiltinOptions_Pool2DOptions = 5, + BuiltinOptions_SVDFOptions = 6, + BuiltinOptions_RNNOptions = 7, + BuiltinOptions_FullyConnectedOptions = 8, + BuiltinOptions_SoftmaxOptions = 9, + BuiltinOptions_ConcatenationOptions = 10, + BuiltinOptions_AddOptions = 11, + BuiltinOptions_L2NormOptions = 12, + BuiltinOptions_LocalResponseNormalizationOptions = 13, + BuiltinOptions_LSTMOptions = 14, + BuiltinOptions_ResizeBilinearOptions = 15, + BuiltinOptions_CallOptions = 16, + BuiltinOptions_ReshapeOptions = 17, + BuiltinOptions_SkipGramOptions = 18, + BuiltinOptions_SpaceToDepthOptions = 19, + BuiltinOptions_EmbeddingLookupSparseOptions = 20, + BuiltinOptions_MulOptions = 21, + BuiltinOptions_PadOptions = 22, + BuiltinOptions_GatherOptions = 23, + BuiltinOptions_BatchToSpaceNDOptions = 24, + BuiltinOptions_SpaceToBatchNDOptions = 25, + BuiltinOptions_TransposeOptions = 26, + BuiltinOptions_ReducerOptions = 27, + BuiltinOptions_SubOptions = 28, + BuiltinOptions_DivOptions = 29, + BuiltinOptions_SqueezeOptions = 30, + BuiltinOptions_SequenceRNNOptions = 31, + BuiltinOptions_StridedSliceOptions = 32, + BuiltinOptions_ExpOptions = 33, + BuiltinOptions_TopKV2Options = 34, + BuiltinOptions_SplitOptions = 35, + BuiltinOptions_LogSoftmaxOptions = 36, + BuiltinOptions_CastOptions = 37, + BuiltinOptions_DequantizeOptions = 38, + BuiltinOptions_MaximumMinimumOptions = 39, + BuiltinOptions_ArgMaxOptions = 40, + BuiltinOptions_LessOptions = 41, + BuiltinOptions_NegOptions = 42, + BuiltinOptions_PadV2Options = 43, + BuiltinOptions_GreaterOptions = 44, + BuiltinOptions_GreaterEqualOptions = 45, + BuiltinOptions_LessEqualOptions = 46, + BuiltinOptions_SelectOptions = 47, + BuiltinOptions_SliceOptions = 48, + BuiltinOptions_TransposeConvOptions = 49, + BuiltinOptions_SparseToDenseOptions = 50, + BuiltinOptions_TileOptions = 51, + BuiltinOptions_ExpandDimsOptions = 52, + BuiltinOptions_EqualOptions = 53, + BuiltinOptions_NotEqualOptions = 54, + BuiltinOptions_ShapeOptions = 55, + BuiltinOptions_PowOptions = 56, + BuiltinOptions_ArgMinOptions = 57, + BuiltinOptions_FakeQuantOptions = 58, + BuiltinOptions_PackOptions = 59, + BuiltinOptions_LogicalOrOptions = 60, + BuiltinOptions_OneHotOptions = 61, + BuiltinOptions_LogicalAndOptions = 62, + BuiltinOptions_LogicalNotOptions = 63, + BuiltinOptions_UnpackOptions = 64, + BuiltinOptions_FloorDivOptions = 65, + BuiltinOptions_SquareOptions = 66, + BuiltinOptions_ZerosLikeOptions = 67, + BuiltinOptions_FillOptions = 68, + BuiltinOptions_BidirectionalSequenceLSTMOptions = 69, + BuiltinOptions_BidirectionalSequenceRNNOptions = 70, + BuiltinOptions_UnidirectionalSequenceLSTMOptions = 71, + BuiltinOptions_FloorModOptions = 72, + BuiltinOptions_RangeOptions = 73, + BuiltinOptions_ResizeNearestNeighborOptions = 74, + BuiltinOptions_LeakyReluOptions = 75, + BuiltinOptions_SquaredDifferenceOptions = 76, + BuiltinOptions_MirrorPadOptions = 77, + BuiltinOptions_AbsOptions = 78, + BuiltinOptions_SplitVOptions = 79, + BuiltinOptions_UniqueOptions = 80, + BuiltinOptions_ReverseV2Options = 81, + BuiltinOptions_AddNOptions = 82, + BuiltinOptions_GatherNdOptions = 83, + BuiltinOptions_CosOptions = 84, + BuiltinOptions_WhereOptions = 85, + BuiltinOptions_RankOptions = 86, + BuiltinOptions_ReverseSequenceOptions = 87, + BuiltinOptions_MatrixDiagOptions = 88, + BuiltinOptions_QuantizeOptions = 89, + BuiltinOptions_MatrixSetDiagOptions = 90, + BuiltinOptions_HardSwishOptions = 91, + BuiltinOptions_IfOptions = 92, + BuiltinOptions_WhileOptions = 93, + BuiltinOptions_DepthToSpaceOptions = 94, + BuiltinOptions_NonMaxSuppressionV4Options = 95, + BuiltinOptions_NonMaxSuppressionV5Options = 96, + BuiltinOptions_ScatterNdOptions = 97, + BuiltinOptions_SelectV2Options = 98, + BuiltinOptions_DensifyOptions = 99, + BuiltinOptions_SegmentSumOptions = 100, + BuiltinOptions_BatchMatMulOptions = 101, + BuiltinOptions_MIN = BuiltinOptions_NONE, + BuiltinOptions_MAX = BuiltinOptions_BatchMatMulOptions +}; + +inline const BuiltinOptions (&EnumValuesBuiltinOptions())[102] { + static const BuiltinOptions values[] = { + BuiltinOptions_NONE, + BuiltinOptions_Conv2DOptions, + BuiltinOptions_DepthwiseConv2DOptions, + BuiltinOptions_ConcatEmbeddingsOptions, + BuiltinOptions_LSHProjectionOptions, + BuiltinOptions_Pool2DOptions, + BuiltinOptions_SVDFOptions, + BuiltinOptions_RNNOptions, + BuiltinOptions_FullyConnectedOptions, + BuiltinOptions_SoftmaxOptions, + BuiltinOptions_ConcatenationOptions, + BuiltinOptions_AddOptions, + BuiltinOptions_L2NormOptions, + BuiltinOptions_LocalResponseNormalizationOptions, + BuiltinOptions_LSTMOptions, + BuiltinOptions_ResizeBilinearOptions, + BuiltinOptions_CallOptions, + BuiltinOptions_ReshapeOptions, + BuiltinOptions_SkipGramOptions, + BuiltinOptions_SpaceToDepthOptions, + BuiltinOptions_EmbeddingLookupSparseOptions, + BuiltinOptions_MulOptions, + BuiltinOptions_PadOptions, + BuiltinOptions_GatherOptions, + BuiltinOptions_BatchToSpaceNDOptions, + BuiltinOptions_SpaceToBatchNDOptions, + BuiltinOptions_TransposeOptions, + BuiltinOptions_ReducerOptions, + BuiltinOptions_SubOptions, + BuiltinOptions_DivOptions, + BuiltinOptions_SqueezeOptions, + BuiltinOptions_SequenceRNNOptions, + BuiltinOptions_StridedSliceOptions, + BuiltinOptions_ExpOptions, + BuiltinOptions_TopKV2Options, + BuiltinOptions_SplitOptions, + BuiltinOptions_LogSoftmaxOptions, + BuiltinOptions_CastOptions, + BuiltinOptions_DequantizeOptions, + BuiltinOptions_MaximumMinimumOptions, + BuiltinOptions_ArgMaxOptions, + BuiltinOptions_LessOptions, + BuiltinOptions_NegOptions, + BuiltinOptions_PadV2Options, + BuiltinOptions_GreaterOptions, + BuiltinOptions_GreaterEqualOptions, + BuiltinOptions_LessEqualOptions, + BuiltinOptions_SelectOptions, + BuiltinOptions_SliceOptions, + BuiltinOptions_TransposeConvOptions, + BuiltinOptions_SparseToDenseOptions, + BuiltinOptions_TileOptions, + BuiltinOptions_ExpandDimsOptions, + BuiltinOptions_EqualOptions, + BuiltinOptions_NotEqualOptions, + BuiltinOptions_ShapeOptions, + BuiltinOptions_PowOptions, + BuiltinOptions_ArgMinOptions, + BuiltinOptions_FakeQuantOptions, + BuiltinOptions_PackOptions, + BuiltinOptions_LogicalOrOptions, + BuiltinOptions_OneHotOptions, + BuiltinOptions_LogicalAndOptions, + BuiltinOptions_LogicalNotOptions, + BuiltinOptions_UnpackOptions, + BuiltinOptions_FloorDivOptions, + BuiltinOptions_SquareOptions, + BuiltinOptions_ZerosLikeOptions, + BuiltinOptions_FillOptions, + BuiltinOptions_BidirectionalSequenceLSTMOptions, + BuiltinOptions_BidirectionalSequenceRNNOptions, + BuiltinOptions_UnidirectionalSequenceLSTMOptions, + BuiltinOptions_FloorModOptions, + BuiltinOptions_RangeOptions, + BuiltinOptions_ResizeNearestNeighborOptions, + BuiltinOptions_LeakyReluOptions, + BuiltinOptions_SquaredDifferenceOptions, + BuiltinOptions_MirrorPadOptions, + BuiltinOptions_AbsOptions, + BuiltinOptions_SplitVOptions, + BuiltinOptions_UniqueOptions, + BuiltinOptions_ReverseV2Options, + BuiltinOptions_AddNOptions, + BuiltinOptions_GatherNdOptions, + BuiltinOptions_CosOptions, + BuiltinOptions_WhereOptions, + BuiltinOptions_RankOptions, + BuiltinOptions_ReverseSequenceOptions, + BuiltinOptions_MatrixDiagOptions, + BuiltinOptions_QuantizeOptions, + BuiltinOptions_MatrixSetDiagOptions, + BuiltinOptions_HardSwishOptions, + BuiltinOptions_IfOptions, + BuiltinOptions_WhileOptions, + BuiltinOptions_DepthToSpaceOptions, + BuiltinOptions_NonMaxSuppressionV4Options, + BuiltinOptions_NonMaxSuppressionV5Options, + BuiltinOptions_ScatterNdOptions, + BuiltinOptions_SelectV2Options, + BuiltinOptions_DensifyOptions, + BuiltinOptions_SegmentSumOptions, + BuiltinOptions_BatchMatMulOptions + }; + return values; +} + +inline const char * const *EnumNamesBuiltinOptions() { + static const char * const names[103] = { + "NONE", + "Conv2DOptions", + "DepthwiseConv2DOptions", + "ConcatEmbeddingsOptions", + "LSHProjectionOptions", + "Pool2DOptions", + "SVDFOptions", + "RNNOptions", + "FullyConnectedOptions", + "SoftmaxOptions", + "ConcatenationOptions", + "AddOptions", + "L2NormOptions", + "LocalResponseNormalizationOptions", + "LSTMOptions", + "ResizeBilinearOptions", + "CallOptions", + "ReshapeOptions", + "SkipGramOptions", + "SpaceToDepthOptions", + "EmbeddingLookupSparseOptions", + "MulOptions", + "PadOptions", + "GatherOptions", + "BatchToSpaceNDOptions", + "SpaceToBatchNDOptions", + "TransposeOptions", + "ReducerOptions", + "SubOptions", + "DivOptions", + "SqueezeOptions", + "SequenceRNNOptions", + "StridedSliceOptions", + "ExpOptions", + "TopKV2Options", + "SplitOptions", + "LogSoftmaxOptions", + "CastOptions", + "DequantizeOptions", + "MaximumMinimumOptions", + "ArgMaxOptions", + "LessOptions", + "NegOptions", + "PadV2Options", + "GreaterOptions", + "GreaterEqualOptions", + "LessEqualOptions", + "SelectOptions", + "SliceOptions", + "TransposeConvOptions", + "SparseToDenseOptions", + "TileOptions", + "ExpandDimsOptions", + "EqualOptions", + "NotEqualOptions", + "ShapeOptions", + "PowOptions", + "ArgMinOptions", + "FakeQuantOptions", + "PackOptions", + "LogicalOrOptions", + "OneHotOptions", + "LogicalAndOptions", + "LogicalNotOptions", + "UnpackOptions", + "FloorDivOptions", + "SquareOptions", + "ZerosLikeOptions", + "FillOptions", + "BidirectionalSequenceLSTMOptions", + "BidirectionalSequenceRNNOptions", + "UnidirectionalSequenceLSTMOptions", + "FloorModOptions", + "RangeOptions", + "ResizeNearestNeighborOptions", + "LeakyReluOptions", + "SquaredDifferenceOptions", + "MirrorPadOptions", + "AbsOptions", + "SplitVOptions", + "UniqueOptions", + "ReverseV2Options", + "AddNOptions", + "GatherNdOptions", + "CosOptions", + "WhereOptions", + "RankOptions", + "ReverseSequenceOptions", + "MatrixDiagOptions", + "QuantizeOptions", + "MatrixSetDiagOptions", + "HardSwishOptions", + "IfOptions", + "WhileOptions", + "DepthToSpaceOptions", + "NonMaxSuppressionV4Options", + "NonMaxSuppressionV5Options", + "ScatterNdOptions", + "SelectV2Options", + "DensifyOptions", + "SegmentSumOptions", + "BatchMatMulOptions", + nullptr + }; + return names; +} + +inline const char *EnumNameBuiltinOptions(BuiltinOptions e) { + if (flatbuffers::IsOutRange(e, BuiltinOptions_NONE, BuiltinOptions_BatchMatMulOptions)) return ""; + const size_t index = static_cast(e); + return EnumNamesBuiltinOptions()[index]; +} + +template struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_NONE; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_Conv2DOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_DepthwiseConv2DOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_ConcatEmbeddingsOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_LSHProjectionOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_Pool2DOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_SVDFOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_RNNOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_FullyConnectedOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_SoftmaxOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_ConcatenationOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_AddOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_L2NormOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_LocalResponseNormalizationOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_LSTMOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_ResizeBilinearOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_CallOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_ReshapeOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_SkipGramOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_SpaceToDepthOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_EmbeddingLookupSparseOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_MulOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_PadOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_GatherOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_BatchToSpaceNDOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_SpaceToBatchNDOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_TransposeOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_ReducerOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_SubOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_DivOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_SqueezeOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_SequenceRNNOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_StridedSliceOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_ExpOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_TopKV2Options; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_SplitOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_LogSoftmaxOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_CastOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_DequantizeOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_MaximumMinimumOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_ArgMaxOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_LessOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_NegOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_PadV2Options; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_GreaterOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_GreaterEqualOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_LessEqualOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_SelectOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_SliceOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_TransposeConvOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_SparseToDenseOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_TileOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_ExpandDimsOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_EqualOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_NotEqualOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_ShapeOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_PowOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_ArgMinOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_FakeQuantOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_PackOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_LogicalOrOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_OneHotOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_LogicalAndOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_LogicalNotOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_UnpackOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_FloorDivOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_SquareOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_ZerosLikeOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_FillOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_BidirectionalSequenceLSTMOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_BidirectionalSequenceRNNOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_UnidirectionalSequenceLSTMOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_FloorModOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_RangeOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_ResizeNearestNeighborOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_LeakyReluOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_SquaredDifferenceOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_MirrorPadOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_AbsOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_SplitVOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_UniqueOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_ReverseV2Options; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_AddNOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_GatherNdOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_CosOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_WhereOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_RankOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_ReverseSequenceOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_MatrixDiagOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_QuantizeOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_MatrixSetDiagOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_HardSwishOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_IfOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_WhileOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_DepthToSpaceOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_NonMaxSuppressionV4Options; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_NonMaxSuppressionV5Options; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_ScatterNdOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_SelectV2Options; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_DensifyOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_SegmentSumOptions; +}; + +template<> struct BuiltinOptionsTraits { + static const BuiltinOptions enum_value = BuiltinOptions_BatchMatMulOptions; +}; + +struct BuiltinOptionsUnion { + BuiltinOptions type; + void *value; + + BuiltinOptionsUnion() : type(BuiltinOptions_NONE), value(nullptr) {} + BuiltinOptionsUnion(BuiltinOptionsUnion&& u) FLATBUFFERS_NOEXCEPT : + type(BuiltinOptions_NONE), value(nullptr) + { std::swap(type, u.type); std::swap(value, u.value); } + BuiltinOptionsUnion(const BuiltinOptionsUnion &) FLATBUFFERS_NOEXCEPT; + BuiltinOptionsUnion &operator=(const BuiltinOptionsUnion &u) FLATBUFFERS_NOEXCEPT + { BuiltinOptionsUnion t(u); std::swap(type, t.type); std::swap(value, t.value); return *this; } + BuiltinOptionsUnion &operator=(BuiltinOptionsUnion &&u) FLATBUFFERS_NOEXCEPT + { std::swap(type, u.type); std::swap(value, u.value); return *this; } + ~BuiltinOptionsUnion() { Reset(); } + + void Reset(); + +#ifndef FLATBUFFERS_CPP98_STL + template + void Set(T&& val) { + using RT = typename std::remove_reference::type; + Reset(); + type = BuiltinOptionsTraits::enum_value; + if (type != BuiltinOptions_NONE) { + value = new RT(std::forward(val)); + } + } +#endif // FLATBUFFERS_CPP98_STL + + static void *UnPack(const void *obj, BuiltinOptions type, const flatbuffers::resolver_function_t *resolver); + flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const flatbuffers::rehasher_function_t *_rehasher = nullptr) const; + + tflite::Conv2DOptionsT *AsConv2DOptions() { + return type == BuiltinOptions_Conv2DOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::Conv2DOptionsT *AsConv2DOptions() const { + return type == BuiltinOptions_Conv2DOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::DepthwiseConv2DOptionsT *AsDepthwiseConv2DOptions() { + return type == BuiltinOptions_DepthwiseConv2DOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::DepthwiseConv2DOptionsT *AsDepthwiseConv2DOptions() const { + return type == BuiltinOptions_DepthwiseConv2DOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::ConcatEmbeddingsOptionsT *AsConcatEmbeddingsOptions() { + return type == BuiltinOptions_ConcatEmbeddingsOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::ConcatEmbeddingsOptionsT *AsConcatEmbeddingsOptions() const { + return type == BuiltinOptions_ConcatEmbeddingsOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::LSHProjectionOptionsT *AsLSHProjectionOptions() { + return type == BuiltinOptions_LSHProjectionOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::LSHProjectionOptionsT *AsLSHProjectionOptions() const { + return type == BuiltinOptions_LSHProjectionOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::Pool2DOptionsT *AsPool2DOptions() { + return type == BuiltinOptions_Pool2DOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::Pool2DOptionsT *AsPool2DOptions() const { + return type == BuiltinOptions_Pool2DOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::SVDFOptionsT *AsSVDFOptions() { + return type == BuiltinOptions_SVDFOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::SVDFOptionsT *AsSVDFOptions() const { + return type == BuiltinOptions_SVDFOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::RNNOptionsT *AsRNNOptions() { + return type == BuiltinOptions_RNNOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::RNNOptionsT *AsRNNOptions() const { + return type == BuiltinOptions_RNNOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::FullyConnectedOptionsT *AsFullyConnectedOptions() { + return type == BuiltinOptions_FullyConnectedOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::FullyConnectedOptionsT *AsFullyConnectedOptions() const { + return type == BuiltinOptions_FullyConnectedOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::SoftmaxOptionsT *AsSoftmaxOptions() { + return type == BuiltinOptions_SoftmaxOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::SoftmaxOptionsT *AsSoftmaxOptions() const { + return type == BuiltinOptions_SoftmaxOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::ConcatenationOptionsT *AsConcatenationOptions() { + return type == BuiltinOptions_ConcatenationOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::ConcatenationOptionsT *AsConcatenationOptions() const { + return type == BuiltinOptions_ConcatenationOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::AddOptionsT *AsAddOptions() { + return type == BuiltinOptions_AddOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::AddOptionsT *AsAddOptions() const { + return type == BuiltinOptions_AddOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::L2NormOptionsT *AsL2NormOptions() { + return type == BuiltinOptions_L2NormOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::L2NormOptionsT *AsL2NormOptions() const { + return type == BuiltinOptions_L2NormOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::LocalResponseNormalizationOptionsT *AsLocalResponseNormalizationOptions() { + return type == BuiltinOptions_LocalResponseNormalizationOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::LocalResponseNormalizationOptionsT *AsLocalResponseNormalizationOptions() const { + return type == BuiltinOptions_LocalResponseNormalizationOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::LSTMOptionsT *AsLSTMOptions() { + return type == BuiltinOptions_LSTMOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::LSTMOptionsT *AsLSTMOptions() const { + return type == BuiltinOptions_LSTMOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::ResizeBilinearOptionsT *AsResizeBilinearOptions() { + return type == BuiltinOptions_ResizeBilinearOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::ResizeBilinearOptionsT *AsResizeBilinearOptions() const { + return type == BuiltinOptions_ResizeBilinearOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::CallOptionsT *AsCallOptions() { + return type == BuiltinOptions_CallOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::CallOptionsT *AsCallOptions() const { + return type == BuiltinOptions_CallOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::ReshapeOptionsT *AsReshapeOptions() { + return type == BuiltinOptions_ReshapeOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::ReshapeOptionsT *AsReshapeOptions() const { + return type == BuiltinOptions_ReshapeOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::SkipGramOptionsT *AsSkipGramOptions() { + return type == BuiltinOptions_SkipGramOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::SkipGramOptionsT *AsSkipGramOptions() const { + return type == BuiltinOptions_SkipGramOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::SpaceToDepthOptionsT *AsSpaceToDepthOptions() { + return type == BuiltinOptions_SpaceToDepthOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::SpaceToDepthOptionsT *AsSpaceToDepthOptions() const { + return type == BuiltinOptions_SpaceToDepthOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::EmbeddingLookupSparseOptionsT *AsEmbeddingLookupSparseOptions() { + return type == BuiltinOptions_EmbeddingLookupSparseOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::EmbeddingLookupSparseOptionsT *AsEmbeddingLookupSparseOptions() const { + return type == BuiltinOptions_EmbeddingLookupSparseOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::MulOptionsT *AsMulOptions() { + return type == BuiltinOptions_MulOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::MulOptionsT *AsMulOptions() const { + return type == BuiltinOptions_MulOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::PadOptionsT *AsPadOptions() { + return type == BuiltinOptions_PadOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::PadOptionsT *AsPadOptions() const { + return type == BuiltinOptions_PadOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::GatherOptionsT *AsGatherOptions() { + return type == BuiltinOptions_GatherOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::GatherOptionsT *AsGatherOptions() const { + return type == BuiltinOptions_GatherOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::BatchToSpaceNDOptionsT *AsBatchToSpaceNDOptions() { + return type == BuiltinOptions_BatchToSpaceNDOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::BatchToSpaceNDOptionsT *AsBatchToSpaceNDOptions() const { + return type == BuiltinOptions_BatchToSpaceNDOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::SpaceToBatchNDOptionsT *AsSpaceToBatchNDOptions() { + return type == BuiltinOptions_SpaceToBatchNDOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::SpaceToBatchNDOptionsT *AsSpaceToBatchNDOptions() const { + return type == BuiltinOptions_SpaceToBatchNDOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::TransposeOptionsT *AsTransposeOptions() { + return type == BuiltinOptions_TransposeOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::TransposeOptionsT *AsTransposeOptions() const { + return type == BuiltinOptions_TransposeOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::ReducerOptionsT *AsReducerOptions() { + return type == BuiltinOptions_ReducerOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::ReducerOptionsT *AsReducerOptions() const { + return type == BuiltinOptions_ReducerOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::SubOptionsT *AsSubOptions() { + return type == BuiltinOptions_SubOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::SubOptionsT *AsSubOptions() const { + return type == BuiltinOptions_SubOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::DivOptionsT *AsDivOptions() { + return type == BuiltinOptions_DivOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::DivOptionsT *AsDivOptions() const { + return type == BuiltinOptions_DivOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::SqueezeOptionsT *AsSqueezeOptions() { + return type == BuiltinOptions_SqueezeOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::SqueezeOptionsT *AsSqueezeOptions() const { + return type == BuiltinOptions_SqueezeOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::SequenceRNNOptionsT *AsSequenceRNNOptions() { + return type == BuiltinOptions_SequenceRNNOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::SequenceRNNOptionsT *AsSequenceRNNOptions() const { + return type == BuiltinOptions_SequenceRNNOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::StridedSliceOptionsT *AsStridedSliceOptions() { + return type == BuiltinOptions_StridedSliceOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::StridedSliceOptionsT *AsStridedSliceOptions() const { + return type == BuiltinOptions_StridedSliceOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::ExpOptionsT *AsExpOptions() { + return type == BuiltinOptions_ExpOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::ExpOptionsT *AsExpOptions() const { + return type == BuiltinOptions_ExpOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::TopKV2OptionsT *AsTopKV2Options() { + return type == BuiltinOptions_TopKV2Options ? + reinterpret_cast(value) : nullptr; + } + const tflite::TopKV2OptionsT *AsTopKV2Options() const { + return type == BuiltinOptions_TopKV2Options ? + reinterpret_cast(value) : nullptr; + } + tflite::SplitOptionsT *AsSplitOptions() { + return type == BuiltinOptions_SplitOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::SplitOptionsT *AsSplitOptions() const { + return type == BuiltinOptions_SplitOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::LogSoftmaxOptionsT *AsLogSoftmaxOptions() { + return type == BuiltinOptions_LogSoftmaxOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::LogSoftmaxOptionsT *AsLogSoftmaxOptions() const { + return type == BuiltinOptions_LogSoftmaxOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::CastOptionsT *AsCastOptions() { + return type == BuiltinOptions_CastOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::CastOptionsT *AsCastOptions() const { + return type == BuiltinOptions_CastOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::DequantizeOptionsT *AsDequantizeOptions() { + return type == BuiltinOptions_DequantizeOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::DequantizeOptionsT *AsDequantizeOptions() const { + return type == BuiltinOptions_DequantizeOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::MaximumMinimumOptionsT *AsMaximumMinimumOptions() { + return type == BuiltinOptions_MaximumMinimumOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::MaximumMinimumOptionsT *AsMaximumMinimumOptions() const { + return type == BuiltinOptions_MaximumMinimumOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::ArgMaxOptionsT *AsArgMaxOptions() { + return type == BuiltinOptions_ArgMaxOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::ArgMaxOptionsT *AsArgMaxOptions() const { + return type == BuiltinOptions_ArgMaxOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::LessOptionsT *AsLessOptions() { + return type == BuiltinOptions_LessOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::LessOptionsT *AsLessOptions() const { + return type == BuiltinOptions_LessOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::NegOptionsT *AsNegOptions() { + return type == BuiltinOptions_NegOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::NegOptionsT *AsNegOptions() const { + return type == BuiltinOptions_NegOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::PadV2OptionsT *AsPadV2Options() { + return type == BuiltinOptions_PadV2Options ? + reinterpret_cast(value) : nullptr; + } + const tflite::PadV2OptionsT *AsPadV2Options() const { + return type == BuiltinOptions_PadV2Options ? + reinterpret_cast(value) : nullptr; + } + tflite::GreaterOptionsT *AsGreaterOptions() { + return type == BuiltinOptions_GreaterOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::GreaterOptionsT *AsGreaterOptions() const { + return type == BuiltinOptions_GreaterOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::GreaterEqualOptionsT *AsGreaterEqualOptions() { + return type == BuiltinOptions_GreaterEqualOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::GreaterEqualOptionsT *AsGreaterEqualOptions() const { + return type == BuiltinOptions_GreaterEqualOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::LessEqualOptionsT *AsLessEqualOptions() { + return type == BuiltinOptions_LessEqualOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::LessEqualOptionsT *AsLessEqualOptions() const { + return type == BuiltinOptions_LessEqualOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::SelectOptionsT *AsSelectOptions() { + return type == BuiltinOptions_SelectOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::SelectOptionsT *AsSelectOptions() const { + return type == BuiltinOptions_SelectOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::SliceOptionsT *AsSliceOptions() { + return type == BuiltinOptions_SliceOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::SliceOptionsT *AsSliceOptions() const { + return type == BuiltinOptions_SliceOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::TransposeConvOptionsT *AsTransposeConvOptions() { + return type == BuiltinOptions_TransposeConvOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::TransposeConvOptionsT *AsTransposeConvOptions() const { + return type == BuiltinOptions_TransposeConvOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::SparseToDenseOptionsT *AsSparseToDenseOptions() { + return type == BuiltinOptions_SparseToDenseOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::SparseToDenseOptionsT *AsSparseToDenseOptions() const { + return type == BuiltinOptions_SparseToDenseOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::TileOptionsT *AsTileOptions() { + return type == BuiltinOptions_TileOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::TileOptionsT *AsTileOptions() const { + return type == BuiltinOptions_TileOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::ExpandDimsOptionsT *AsExpandDimsOptions() { + return type == BuiltinOptions_ExpandDimsOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::ExpandDimsOptionsT *AsExpandDimsOptions() const { + return type == BuiltinOptions_ExpandDimsOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::EqualOptionsT *AsEqualOptions() { + return type == BuiltinOptions_EqualOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::EqualOptionsT *AsEqualOptions() const { + return type == BuiltinOptions_EqualOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::NotEqualOptionsT *AsNotEqualOptions() { + return type == BuiltinOptions_NotEqualOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::NotEqualOptionsT *AsNotEqualOptions() const { + return type == BuiltinOptions_NotEqualOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::ShapeOptionsT *AsShapeOptions() { + return type == BuiltinOptions_ShapeOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::ShapeOptionsT *AsShapeOptions() const { + return type == BuiltinOptions_ShapeOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::PowOptionsT *AsPowOptions() { + return type == BuiltinOptions_PowOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::PowOptionsT *AsPowOptions() const { + return type == BuiltinOptions_PowOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::ArgMinOptionsT *AsArgMinOptions() { + return type == BuiltinOptions_ArgMinOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::ArgMinOptionsT *AsArgMinOptions() const { + return type == BuiltinOptions_ArgMinOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::FakeQuantOptionsT *AsFakeQuantOptions() { + return type == BuiltinOptions_FakeQuantOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::FakeQuantOptionsT *AsFakeQuantOptions() const { + return type == BuiltinOptions_FakeQuantOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::PackOptionsT *AsPackOptions() { + return type == BuiltinOptions_PackOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::PackOptionsT *AsPackOptions() const { + return type == BuiltinOptions_PackOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::LogicalOrOptionsT *AsLogicalOrOptions() { + return type == BuiltinOptions_LogicalOrOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::LogicalOrOptionsT *AsLogicalOrOptions() const { + return type == BuiltinOptions_LogicalOrOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::OneHotOptionsT *AsOneHotOptions() { + return type == BuiltinOptions_OneHotOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::OneHotOptionsT *AsOneHotOptions() const { + return type == BuiltinOptions_OneHotOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::LogicalAndOptionsT *AsLogicalAndOptions() { + return type == BuiltinOptions_LogicalAndOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::LogicalAndOptionsT *AsLogicalAndOptions() const { + return type == BuiltinOptions_LogicalAndOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::LogicalNotOptionsT *AsLogicalNotOptions() { + return type == BuiltinOptions_LogicalNotOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::LogicalNotOptionsT *AsLogicalNotOptions() const { + return type == BuiltinOptions_LogicalNotOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::UnpackOptionsT *AsUnpackOptions() { + return type == BuiltinOptions_UnpackOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::UnpackOptionsT *AsUnpackOptions() const { + return type == BuiltinOptions_UnpackOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::FloorDivOptionsT *AsFloorDivOptions() { + return type == BuiltinOptions_FloorDivOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::FloorDivOptionsT *AsFloorDivOptions() const { + return type == BuiltinOptions_FloorDivOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::SquareOptionsT *AsSquareOptions() { + return type == BuiltinOptions_SquareOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::SquareOptionsT *AsSquareOptions() const { + return type == BuiltinOptions_SquareOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::ZerosLikeOptionsT *AsZerosLikeOptions() { + return type == BuiltinOptions_ZerosLikeOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::ZerosLikeOptionsT *AsZerosLikeOptions() const { + return type == BuiltinOptions_ZerosLikeOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::FillOptionsT *AsFillOptions() { + return type == BuiltinOptions_FillOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::FillOptionsT *AsFillOptions() const { + return type == BuiltinOptions_FillOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::BidirectionalSequenceLSTMOptionsT *AsBidirectionalSequenceLSTMOptions() { + return type == BuiltinOptions_BidirectionalSequenceLSTMOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::BidirectionalSequenceLSTMOptionsT *AsBidirectionalSequenceLSTMOptions() const { + return type == BuiltinOptions_BidirectionalSequenceLSTMOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::BidirectionalSequenceRNNOptionsT *AsBidirectionalSequenceRNNOptions() { + return type == BuiltinOptions_BidirectionalSequenceRNNOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::BidirectionalSequenceRNNOptionsT *AsBidirectionalSequenceRNNOptions() const { + return type == BuiltinOptions_BidirectionalSequenceRNNOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::UnidirectionalSequenceLSTMOptionsT *AsUnidirectionalSequenceLSTMOptions() { + return type == BuiltinOptions_UnidirectionalSequenceLSTMOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::UnidirectionalSequenceLSTMOptionsT *AsUnidirectionalSequenceLSTMOptions() const { + return type == BuiltinOptions_UnidirectionalSequenceLSTMOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::FloorModOptionsT *AsFloorModOptions() { + return type == BuiltinOptions_FloorModOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::FloorModOptionsT *AsFloorModOptions() const { + return type == BuiltinOptions_FloorModOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::RangeOptionsT *AsRangeOptions() { + return type == BuiltinOptions_RangeOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::RangeOptionsT *AsRangeOptions() const { + return type == BuiltinOptions_RangeOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::ResizeNearestNeighborOptionsT *AsResizeNearestNeighborOptions() { + return type == BuiltinOptions_ResizeNearestNeighborOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::ResizeNearestNeighborOptionsT *AsResizeNearestNeighborOptions() const { + return type == BuiltinOptions_ResizeNearestNeighborOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::LeakyReluOptionsT *AsLeakyReluOptions() { + return type == BuiltinOptions_LeakyReluOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::LeakyReluOptionsT *AsLeakyReluOptions() const { + return type == BuiltinOptions_LeakyReluOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::SquaredDifferenceOptionsT *AsSquaredDifferenceOptions() { + return type == BuiltinOptions_SquaredDifferenceOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::SquaredDifferenceOptionsT *AsSquaredDifferenceOptions() const { + return type == BuiltinOptions_SquaredDifferenceOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::MirrorPadOptionsT *AsMirrorPadOptions() { + return type == BuiltinOptions_MirrorPadOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::MirrorPadOptionsT *AsMirrorPadOptions() const { + return type == BuiltinOptions_MirrorPadOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::AbsOptionsT *AsAbsOptions() { + return type == BuiltinOptions_AbsOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::AbsOptionsT *AsAbsOptions() const { + return type == BuiltinOptions_AbsOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::SplitVOptionsT *AsSplitVOptions() { + return type == BuiltinOptions_SplitVOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::SplitVOptionsT *AsSplitVOptions() const { + return type == BuiltinOptions_SplitVOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::UniqueOptionsT *AsUniqueOptions() { + return type == BuiltinOptions_UniqueOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::UniqueOptionsT *AsUniqueOptions() const { + return type == BuiltinOptions_UniqueOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::ReverseV2OptionsT *AsReverseV2Options() { + return type == BuiltinOptions_ReverseV2Options ? + reinterpret_cast(value) : nullptr; + } + const tflite::ReverseV2OptionsT *AsReverseV2Options() const { + return type == BuiltinOptions_ReverseV2Options ? + reinterpret_cast(value) : nullptr; + } + tflite::AddNOptionsT *AsAddNOptions() { + return type == BuiltinOptions_AddNOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::AddNOptionsT *AsAddNOptions() const { + return type == BuiltinOptions_AddNOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::GatherNdOptionsT *AsGatherNdOptions() { + return type == BuiltinOptions_GatherNdOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::GatherNdOptionsT *AsGatherNdOptions() const { + return type == BuiltinOptions_GatherNdOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::CosOptionsT *AsCosOptions() { + return type == BuiltinOptions_CosOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::CosOptionsT *AsCosOptions() const { + return type == BuiltinOptions_CosOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::WhereOptionsT *AsWhereOptions() { + return type == BuiltinOptions_WhereOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::WhereOptionsT *AsWhereOptions() const { + return type == BuiltinOptions_WhereOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::RankOptionsT *AsRankOptions() { + return type == BuiltinOptions_RankOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::RankOptionsT *AsRankOptions() const { + return type == BuiltinOptions_RankOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::ReverseSequenceOptionsT *AsReverseSequenceOptions() { + return type == BuiltinOptions_ReverseSequenceOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::ReverseSequenceOptionsT *AsReverseSequenceOptions() const { + return type == BuiltinOptions_ReverseSequenceOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::MatrixDiagOptionsT *AsMatrixDiagOptions() { + return type == BuiltinOptions_MatrixDiagOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::MatrixDiagOptionsT *AsMatrixDiagOptions() const { + return type == BuiltinOptions_MatrixDiagOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::QuantizeOptionsT *AsQuantizeOptions() { + return type == BuiltinOptions_QuantizeOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::QuantizeOptionsT *AsQuantizeOptions() const { + return type == BuiltinOptions_QuantizeOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::MatrixSetDiagOptionsT *AsMatrixSetDiagOptions() { + return type == BuiltinOptions_MatrixSetDiagOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::MatrixSetDiagOptionsT *AsMatrixSetDiagOptions() const { + return type == BuiltinOptions_MatrixSetDiagOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::HardSwishOptionsT *AsHardSwishOptions() { + return type == BuiltinOptions_HardSwishOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::HardSwishOptionsT *AsHardSwishOptions() const { + return type == BuiltinOptions_HardSwishOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::IfOptionsT *AsIfOptions() { + return type == BuiltinOptions_IfOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::IfOptionsT *AsIfOptions() const { + return type == BuiltinOptions_IfOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::WhileOptionsT *AsWhileOptions() { + return type == BuiltinOptions_WhileOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::WhileOptionsT *AsWhileOptions() const { + return type == BuiltinOptions_WhileOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::DepthToSpaceOptionsT *AsDepthToSpaceOptions() { + return type == BuiltinOptions_DepthToSpaceOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::DepthToSpaceOptionsT *AsDepthToSpaceOptions() const { + return type == BuiltinOptions_DepthToSpaceOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::NonMaxSuppressionV4OptionsT *AsNonMaxSuppressionV4Options() { + return type == BuiltinOptions_NonMaxSuppressionV4Options ? + reinterpret_cast(value) : nullptr; + } + const tflite::NonMaxSuppressionV4OptionsT *AsNonMaxSuppressionV4Options() const { + return type == BuiltinOptions_NonMaxSuppressionV4Options ? + reinterpret_cast(value) : nullptr; + } + tflite::NonMaxSuppressionV5OptionsT *AsNonMaxSuppressionV5Options() { + return type == BuiltinOptions_NonMaxSuppressionV5Options ? + reinterpret_cast(value) : nullptr; + } + const tflite::NonMaxSuppressionV5OptionsT *AsNonMaxSuppressionV5Options() const { + return type == BuiltinOptions_NonMaxSuppressionV5Options ? + reinterpret_cast(value) : nullptr; + } + tflite::ScatterNdOptionsT *AsScatterNdOptions() { + return type == BuiltinOptions_ScatterNdOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::ScatterNdOptionsT *AsScatterNdOptions() const { + return type == BuiltinOptions_ScatterNdOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::SelectV2OptionsT *AsSelectV2Options() { + return type == BuiltinOptions_SelectV2Options ? + reinterpret_cast(value) : nullptr; + } + const tflite::SelectV2OptionsT *AsSelectV2Options() const { + return type == BuiltinOptions_SelectV2Options ? + reinterpret_cast(value) : nullptr; + } + tflite::DensifyOptionsT *AsDensifyOptions() { + return type == BuiltinOptions_DensifyOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::DensifyOptionsT *AsDensifyOptions() const { + return type == BuiltinOptions_DensifyOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::SegmentSumOptionsT *AsSegmentSumOptions() { + return type == BuiltinOptions_SegmentSumOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::SegmentSumOptionsT *AsSegmentSumOptions() const { + return type == BuiltinOptions_SegmentSumOptions ? + reinterpret_cast(value) : nullptr; + } + tflite::BatchMatMulOptionsT *AsBatchMatMulOptions() { + return type == BuiltinOptions_BatchMatMulOptions ? + reinterpret_cast(value) : nullptr; + } + const tflite::BatchMatMulOptionsT *AsBatchMatMulOptions() const { + return type == BuiltinOptions_BatchMatMulOptions ? + reinterpret_cast(value) : nullptr; + } +}; + +bool VerifyBuiltinOptions(flatbuffers::Verifier &verifier, const void *obj, BuiltinOptions type); +bool VerifyBuiltinOptionsVector(flatbuffers::Verifier &verifier, const flatbuffers::Vector> *values, const flatbuffers::Vector *types); + +enum Padding { + Padding_SAME = 0, + Padding_VALID = 1, + Padding_MIN = Padding_SAME, + Padding_MAX = Padding_VALID +}; + +inline const Padding (&EnumValuesPadding())[2] { + static const Padding values[] = { + Padding_SAME, + Padding_VALID + }; + return values; +} + +inline const char * const *EnumNamesPadding() { + static const char * const names[3] = { + "SAME", + "VALID", + nullptr + }; + return names; +} + +inline const char *EnumNamePadding(Padding e) { + if (flatbuffers::IsOutRange(e, Padding_SAME, Padding_VALID)) return ""; + const size_t index = static_cast(e); + return EnumNamesPadding()[index]; +} + +enum ActivationFunctionType { + ActivationFunctionType_NONE = 0, + ActivationFunctionType_RELU = 1, + ActivationFunctionType_RELU_N1_TO_1 = 2, + ActivationFunctionType_RELU6 = 3, + ActivationFunctionType_TANH = 4, + ActivationFunctionType_SIGN_BIT = 5, + ActivationFunctionType_MIN = ActivationFunctionType_NONE, + ActivationFunctionType_MAX = ActivationFunctionType_SIGN_BIT +}; + +inline const ActivationFunctionType (&EnumValuesActivationFunctionType())[6] { + static const ActivationFunctionType values[] = { + ActivationFunctionType_NONE, + ActivationFunctionType_RELU, + ActivationFunctionType_RELU_N1_TO_1, + ActivationFunctionType_RELU6, + ActivationFunctionType_TANH, + ActivationFunctionType_SIGN_BIT + }; + return values; +} + +inline const char * const *EnumNamesActivationFunctionType() { + static const char * const names[7] = { + "NONE", + "RELU", + "RELU_N1_TO_1", + "RELU6", + "TANH", + "SIGN_BIT", + nullptr + }; + return names; +} + +inline const char *EnumNameActivationFunctionType(ActivationFunctionType e) { + if (flatbuffers::IsOutRange(e, ActivationFunctionType_NONE, ActivationFunctionType_SIGN_BIT)) return ""; + const size_t index = static_cast(e); + return EnumNamesActivationFunctionType()[index]; +} + +enum LSHProjectionType { + LSHProjectionType_UNKNOWN = 0, + LSHProjectionType_SPARSE = 1, + LSHProjectionType_DENSE = 2, + LSHProjectionType_MIN = LSHProjectionType_UNKNOWN, + LSHProjectionType_MAX = LSHProjectionType_DENSE +}; + +inline const LSHProjectionType (&EnumValuesLSHProjectionType())[3] { + static const LSHProjectionType values[] = { + LSHProjectionType_UNKNOWN, + LSHProjectionType_SPARSE, + LSHProjectionType_DENSE + }; + return values; +} + +inline const char * const *EnumNamesLSHProjectionType() { + static const char * const names[4] = { + "UNKNOWN", + "SPARSE", + "DENSE", + nullptr + }; + return names; +} + +inline const char *EnumNameLSHProjectionType(LSHProjectionType e) { + if (flatbuffers::IsOutRange(e, LSHProjectionType_UNKNOWN, LSHProjectionType_DENSE)) return ""; + const size_t index = static_cast(e); + return EnumNamesLSHProjectionType()[index]; +} + +enum FullyConnectedOptionsWeightsFormat { + FullyConnectedOptionsWeightsFormat_DEFAULT = 0, + FullyConnectedOptionsWeightsFormat_SHUFFLED4x16INT8 = 1, + FullyConnectedOptionsWeightsFormat_MIN = FullyConnectedOptionsWeightsFormat_DEFAULT, + FullyConnectedOptionsWeightsFormat_MAX = FullyConnectedOptionsWeightsFormat_SHUFFLED4x16INT8 +}; + +inline const FullyConnectedOptionsWeightsFormat (&EnumValuesFullyConnectedOptionsWeightsFormat())[2] { + static const FullyConnectedOptionsWeightsFormat values[] = { + FullyConnectedOptionsWeightsFormat_DEFAULT, + FullyConnectedOptionsWeightsFormat_SHUFFLED4x16INT8 + }; + return values; +} + +inline const char * const *EnumNamesFullyConnectedOptionsWeightsFormat() { + static const char * const names[3] = { + "DEFAULT", + "SHUFFLED4x16INT8", + nullptr + }; + return names; +} + +inline const char *EnumNameFullyConnectedOptionsWeightsFormat(FullyConnectedOptionsWeightsFormat e) { + if (flatbuffers::IsOutRange(e, FullyConnectedOptionsWeightsFormat_DEFAULT, FullyConnectedOptionsWeightsFormat_SHUFFLED4x16INT8)) return ""; + const size_t index = static_cast(e); + return EnumNamesFullyConnectedOptionsWeightsFormat()[index]; +} + +enum LSTMKernelType { + LSTMKernelType_FULL = 0, + LSTMKernelType_BASIC = 1, + LSTMKernelType_MIN = LSTMKernelType_FULL, + LSTMKernelType_MAX = LSTMKernelType_BASIC +}; + +inline const LSTMKernelType (&EnumValuesLSTMKernelType())[2] { + static const LSTMKernelType values[] = { + LSTMKernelType_FULL, + LSTMKernelType_BASIC + }; + return values; +} + +inline const char * const *EnumNamesLSTMKernelType() { + static const char * const names[3] = { + "FULL", + "BASIC", + nullptr + }; + return names; +} + +inline const char *EnumNameLSTMKernelType(LSTMKernelType e) { + if (flatbuffers::IsOutRange(e, LSTMKernelType_FULL, LSTMKernelType_BASIC)) return ""; + const size_t index = static_cast(e); + return EnumNamesLSTMKernelType()[index]; +} + +enum CombinerType { + CombinerType_SUM = 0, + CombinerType_MEAN = 1, + CombinerType_SQRTN = 2, + CombinerType_MIN = CombinerType_SUM, + CombinerType_MAX = CombinerType_SQRTN +}; + +inline const CombinerType (&EnumValuesCombinerType())[3] { + static const CombinerType values[] = { + CombinerType_SUM, + CombinerType_MEAN, + CombinerType_SQRTN + }; + return values; +} + +inline const char * const *EnumNamesCombinerType() { + static const char * const names[4] = { + "SUM", + "MEAN", + "SQRTN", + nullptr + }; + return names; +} + +inline const char *EnumNameCombinerType(CombinerType e) { + if (flatbuffers::IsOutRange(e, CombinerType_SUM, CombinerType_SQRTN)) return ""; + const size_t index = static_cast(e); + return EnumNamesCombinerType()[index]; +} + +enum MirrorPadMode { + MirrorPadMode_REFLECT = 0, + MirrorPadMode_SYMMETRIC = 1, + MirrorPadMode_MIN = MirrorPadMode_REFLECT, + MirrorPadMode_MAX = MirrorPadMode_SYMMETRIC +}; + +inline const MirrorPadMode (&EnumValuesMirrorPadMode())[2] { + static const MirrorPadMode values[] = { + MirrorPadMode_REFLECT, + MirrorPadMode_SYMMETRIC + }; + return values; +} + +inline const char * const *EnumNamesMirrorPadMode() { + static const char * const names[3] = { + "REFLECT", + "SYMMETRIC", + nullptr + }; + return names; +} + +inline const char *EnumNameMirrorPadMode(MirrorPadMode e) { + if (flatbuffers::IsOutRange(e, MirrorPadMode_REFLECT, MirrorPadMode_SYMMETRIC)) return ""; + const size_t index = static_cast(e); + return EnumNamesMirrorPadMode()[index]; +} + +enum CustomOptionsFormat { + CustomOptionsFormat_FLEXBUFFERS = 0, + CustomOptionsFormat_MIN = CustomOptionsFormat_FLEXBUFFERS, + CustomOptionsFormat_MAX = CustomOptionsFormat_FLEXBUFFERS +}; + +inline const CustomOptionsFormat (&EnumValuesCustomOptionsFormat())[1] { + static const CustomOptionsFormat values[] = { + CustomOptionsFormat_FLEXBUFFERS + }; + return values; +} + +inline const char * const *EnumNamesCustomOptionsFormat() { + static const char * const names[2] = { + "FLEXBUFFERS", + nullptr + }; + return names; +} + +inline const char *EnumNameCustomOptionsFormat(CustomOptionsFormat e) { + if (flatbuffers::IsOutRange(e, CustomOptionsFormat_FLEXBUFFERS, CustomOptionsFormat_FLEXBUFFERS)) return ""; + const size_t index = static_cast(e); + return EnumNamesCustomOptionsFormat()[index]; +} + +struct CustomQuantizationT : public flatbuffers::NativeTable { + typedef CustomQuantization TableType; + std::vector custom; + CustomQuantizationT() { + } +}; + +struct CustomQuantization FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef CustomQuantizationT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_CUSTOM = 4 + }; + const flatbuffers::Vector *custom() const { + return GetPointer *>(VT_CUSTOM); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyOffset(verifier, VT_CUSTOM) && + verifier.VerifyVector(custom()) && + verifier.EndTable(); + } + CustomQuantizationT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(CustomQuantizationT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const CustomQuantizationT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct CustomQuantizationBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_custom(flatbuffers::Offset> custom) { + fbb_.AddOffset(CustomQuantization::VT_CUSTOM, custom); + } + explicit CustomQuantizationBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + CustomQuantizationBuilder &operator=(const CustomQuantizationBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateCustomQuantization( + flatbuffers::FlatBufferBuilder &_fbb, + flatbuffers::Offset> custom = 0) { + CustomQuantizationBuilder builder_(_fbb); + builder_.add_custom(custom); + return builder_.Finish(); +} + +inline flatbuffers::Offset CreateCustomQuantizationDirect( + flatbuffers::FlatBufferBuilder &_fbb, + const std::vector *custom = nullptr) { + if (custom) { _fbb.ForceVectorAlignment(custom->size(), sizeof(uint8_t), 16); } + auto custom__ = custom ? _fbb.CreateVector(*custom) : 0; + return tflite::CreateCustomQuantization( + _fbb, + custom__); +} + +flatbuffers::Offset CreateCustomQuantization(flatbuffers::FlatBufferBuilder &_fbb, const CustomQuantizationT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct QuantizationParametersT : public flatbuffers::NativeTable { + typedef QuantizationParameters TableType; + std::vector min; + std::vector max; + std::vector scale; + std::vector zero_point; + tflite::QuantizationDetailsUnion details; + int32_t quantized_dimension; + QuantizationParametersT() + : quantized_dimension(0) { + } +}; + +struct QuantizationParameters FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef QuantizationParametersT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_MIN = 4, + VT_MAX = 6, + VT_SCALE = 8, + VT_ZERO_POINT = 10, + VT_DETAILS_TYPE = 12, + VT_DETAILS = 14, + VT_QUANTIZED_DIMENSION = 16 + }; + const flatbuffers::Vector *min() const { + return GetPointer *>(VT_MIN); + } + const flatbuffers::Vector *max() const { + return GetPointer *>(VT_MAX); + } + const flatbuffers::Vector *scale() const { + return GetPointer *>(VT_SCALE); + } + const flatbuffers::Vector *zero_point() const { + return GetPointer *>(VT_ZERO_POINT); + } + tflite::QuantizationDetails details_type() const { + return static_cast(GetField(VT_DETAILS_TYPE, 0)); + } + const void *details() const { + return GetPointer(VT_DETAILS); + } + template const T *details_as() const; + const tflite::CustomQuantization *details_as_CustomQuantization() const { + return details_type() == tflite::QuantizationDetails_CustomQuantization ? static_cast(details()) : nullptr; + } + int32_t quantized_dimension() const { + return GetField(VT_QUANTIZED_DIMENSION, 0); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyOffset(verifier, VT_MIN) && + verifier.VerifyVector(min()) && + VerifyOffset(verifier, VT_MAX) && + verifier.VerifyVector(max()) && + VerifyOffset(verifier, VT_SCALE) && + verifier.VerifyVector(scale()) && + VerifyOffset(verifier, VT_ZERO_POINT) && + verifier.VerifyVector(zero_point()) && + VerifyField(verifier, VT_DETAILS_TYPE) && + VerifyOffset(verifier, VT_DETAILS) && + VerifyQuantizationDetails(verifier, details(), details_type()) && + VerifyField(verifier, VT_QUANTIZED_DIMENSION) && + verifier.EndTable(); + } + QuantizationParametersT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(QuantizationParametersT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const QuantizationParametersT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +template<> inline const tflite::CustomQuantization *QuantizationParameters::details_as() const { + return details_as_CustomQuantization(); +} + +struct QuantizationParametersBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_min(flatbuffers::Offset> min) { + fbb_.AddOffset(QuantizationParameters::VT_MIN, min); + } + void add_max(flatbuffers::Offset> max) { + fbb_.AddOffset(QuantizationParameters::VT_MAX, max); + } + void add_scale(flatbuffers::Offset> scale) { + fbb_.AddOffset(QuantizationParameters::VT_SCALE, scale); + } + void add_zero_point(flatbuffers::Offset> zero_point) { + fbb_.AddOffset(QuantizationParameters::VT_ZERO_POINT, zero_point); + } + void add_details_type(tflite::QuantizationDetails details_type) { + fbb_.AddElement(QuantizationParameters::VT_DETAILS_TYPE, static_cast(details_type), 0); + } + void add_details(flatbuffers::Offset details) { + fbb_.AddOffset(QuantizationParameters::VT_DETAILS, details); + } + void add_quantized_dimension(int32_t quantized_dimension) { + fbb_.AddElement(QuantizationParameters::VT_QUANTIZED_DIMENSION, quantized_dimension, 0); + } + explicit QuantizationParametersBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + QuantizationParametersBuilder &operator=(const QuantizationParametersBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateQuantizationParameters( + flatbuffers::FlatBufferBuilder &_fbb, + flatbuffers::Offset> min = 0, + flatbuffers::Offset> max = 0, + flatbuffers::Offset> scale = 0, + flatbuffers::Offset> zero_point = 0, + tflite::QuantizationDetails details_type = tflite::QuantizationDetails_NONE, + flatbuffers::Offset details = 0, + int32_t quantized_dimension = 0) { + QuantizationParametersBuilder builder_(_fbb); + builder_.add_quantized_dimension(quantized_dimension); + builder_.add_details(details); + builder_.add_zero_point(zero_point); + builder_.add_scale(scale); + builder_.add_max(max); + builder_.add_min(min); + builder_.add_details_type(details_type); + return builder_.Finish(); +} + +inline flatbuffers::Offset CreateQuantizationParametersDirect( + flatbuffers::FlatBufferBuilder &_fbb, + const std::vector *min = nullptr, + const std::vector *max = nullptr, + const std::vector *scale = nullptr, + const std::vector *zero_point = nullptr, + tflite::QuantizationDetails details_type = tflite::QuantizationDetails_NONE, + flatbuffers::Offset details = 0, + int32_t quantized_dimension = 0) { + auto min__ = min ? _fbb.CreateVector(*min) : 0; + auto max__ = max ? _fbb.CreateVector(*max) : 0; + auto scale__ = scale ? _fbb.CreateVector(*scale) : 0; + auto zero_point__ = zero_point ? _fbb.CreateVector(*zero_point) : 0; + return tflite::CreateQuantizationParameters( + _fbb, + min__, + max__, + scale__, + zero_point__, + details_type, + details, + quantized_dimension); +} + +flatbuffers::Offset CreateQuantizationParameters(flatbuffers::FlatBufferBuilder &_fbb, const QuantizationParametersT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct Int32VectorT : public flatbuffers::NativeTable { + typedef Int32Vector TableType; + std::vector values; + Int32VectorT() { + } +}; + +struct Int32Vector FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef Int32VectorT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_VALUES = 4 + }; + const flatbuffers::Vector *values() const { + return GetPointer *>(VT_VALUES); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyOffset(verifier, VT_VALUES) && + verifier.VerifyVector(values()) && + verifier.EndTable(); + } + Int32VectorT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(Int32VectorT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const Int32VectorT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct Int32VectorBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_values(flatbuffers::Offset> values) { + fbb_.AddOffset(Int32Vector::VT_VALUES, values); + } + explicit Int32VectorBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + Int32VectorBuilder &operator=(const Int32VectorBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateInt32Vector( + flatbuffers::FlatBufferBuilder &_fbb, + flatbuffers::Offset> values = 0) { + Int32VectorBuilder builder_(_fbb); + builder_.add_values(values); + return builder_.Finish(); +} + +inline flatbuffers::Offset CreateInt32VectorDirect( + flatbuffers::FlatBufferBuilder &_fbb, + const std::vector *values = nullptr) { + auto values__ = values ? _fbb.CreateVector(*values) : 0; + return tflite::CreateInt32Vector( + _fbb, + values__); +} + +flatbuffers::Offset CreateInt32Vector(flatbuffers::FlatBufferBuilder &_fbb, const Int32VectorT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct Uint16VectorT : public flatbuffers::NativeTable { + typedef Uint16Vector TableType; + std::vector values; + Uint16VectorT() { + } +}; + +struct Uint16Vector FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef Uint16VectorT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_VALUES = 4 + }; + const flatbuffers::Vector *values() const { + return GetPointer *>(VT_VALUES); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyOffset(verifier, VT_VALUES) && + verifier.VerifyVector(values()) && + verifier.EndTable(); + } + Uint16VectorT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(Uint16VectorT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const Uint16VectorT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct Uint16VectorBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_values(flatbuffers::Offset> values) { + fbb_.AddOffset(Uint16Vector::VT_VALUES, values); + } + explicit Uint16VectorBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + Uint16VectorBuilder &operator=(const Uint16VectorBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateUint16Vector( + flatbuffers::FlatBufferBuilder &_fbb, + flatbuffers::Offset> values = 0) { + Uint16VectorBuilder builder_(_fbb); + builder_.add_values(values); + return builder_.Finish(); +} + +inline flatbuffers::Offset CreateUint16VectorDirect( + flatbuffers::FlatBufferBuilder &_fbb, + const std::vector *values = nullptr) { + if (values) { _fbb.ForceVectorAlignment(values->size(), sizeof(uint16_t), 4); } + auto values__ = values ? _fbb.CreateVector(*values) : 0; + return tflite::CreateUint16Vector( + _fbb, + values__); +} + +flatbuffers::Offset CreateUint16Vector(flatbuffers::FlatBufferBuilder &_fbb, const Uint16VectorT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct Uint8VectorT : public flatbuffers::NativeTable { + typedef Uint8Vector TableType; + std::vector values; + Uint8VectorT() { + } +}; + +struct Uint8Vector FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef Uint8VectorT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_VALUES = 4 + }; + const flatbuffers::Vector *values() const { + return GetPointer *>(VT_VALUES); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyOffset(verifier, VT_VALUES) && + verifier.VerifyVector(values()) && + verifier.EndTable(); + } + Uint8VectorT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(Uint8VectorT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const Uint8VectorT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct Uint8VectorBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_values(flatbuffers::Offset> values) { + fbb_.AddOffset(Uint8Vector::VT_VALUES, values); + } + explicit Uint8VectorBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + Uint8VectorBuilder &operator=(const Uint8VectorBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateUint8Vector( + flatbuffers::FlatBufferBuilder &_fbb, + flatbuffers::Offset> values = 0) { + Uint8VectorBuilder builder_(_fbb); + builder_.add_values(values); + return builder_.Finish(); +} + +inline flatbuffers::Offset CreateUint8VectorDirect( + flatbuffers::FlatBufferBuilder &_fbb, + const std::vector *values = nullptr) { + if (values) { _fbb.ForceVectorAlignment(values->size(), sizeof(uint8_t), 4); } + auto values__ = values ? _fbb.CreateVector(*values) : 0; + return tflite::CreateUint8Vector( + _fbb, + values__); +} + +flatbuffers::Offset CreateUint8Vector(flatbuffers::FlatBufferBuilder &_fbb, const Uint8VectorT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct DimensionMetadataT : public flatbuffers::NativeTable { + typedef DimensionMetadata TableType; + tflite::DimensionType format; + int32_t dense_size; + tflite::SparseIndexVectorUnion array_segments; + tflite::SparseIndexVectorUnion array_indices; + DimensionMetadataT() + : format(tflite::DimensionType_DENSE), + dense_size(0) { + } +}; + +struct DimensionMetadata FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef DimensionMetadataT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_FORMAT = 4, + VT_DENSE_SIZE = 6, + VT_ARRAY_SEGMENTS_TYPE = 8, + VT_ARRAY_SEGMENTS = 10, + VT_ARRAY_INDICES_TYPE = 12, + VT_ARRAY_INDICES = 14 + }; + tflite::DimensionType format() const { + return static_cast(GetField(VT_FORMAT, 0)); + } + int32_t dense_size() const { + return GetField(VT_DENSE_SIZE, 0); + } + tflite::SparseIndexVector array_segments_type() const { + return static_cast(GetField(VT_ARRAY_SEGMENTS_TYPE, 0)); + } + const void *array_segments() const { + return GetPointer(VT_ARRAY_SEGMENTS); + } + template const T *array_segments_as() const; + const tflite::Int32Vector *array_segments_as_Int32Vector() const { + return array_segments_type() == tflite::SparseIndexVector_Int32Vector ? static_cast(array_segments()) : nullptr; + } + const tflite::Uint16Vector *array_segments_as_Uint16Vector() const { + return array_segments_type() == tflite::SparseIndexVector_Uint16Vector ? static_cast(array_segments()) : nullptr; + } + const tflite::Uint8Vector *array_segments_as_Uint8Vector() const { + return array_segments_type() == tflite::SparseIndexVector_Uint8Vector ? static_cast(array_segments()) : nullptr; + } + tflite::SparseIndexVector array_indices_type() const { + return static_cast(GetField(VT_ARRAY_INDICES_TYPE, 0)); + } + const void *array_indices() const { + return GetPointer(VT_ARRAY_INDICES); + } + template const T *array_indices_as() const; + const tflite::Int32Vector *array_indices_as_Int32Vector() const { + return array_indices_type() == tflite::SparseIndexVector_Int32Vector ? static_cast(array_indices()) : nullptr; + } + const tflite::Uint16Vector *array_indices_as_Uint16Vector() const { + return array_indices_type() == tflite::SparseIndexVector_Uint16Vector ? static_cast(array_indices()) : nullptr; + } + const tflite::Uint8Vector *array_indices_as_Uint8Vector() const { + return array_indices_type() == tflite::SparseIndexVector_Uint8Vector ? static_cast(array_indices()) : nullptr; + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_FORMAT) && + VerifyField(verifier, VT_DENSE_SIZE) && + VerifyField(verifier, VT_ARRAY_SEGMENTS_TYPE) && + VerifyOffset(verifier, VT_ARRAY_SEGMENTS) && + VerifySparseIndexVector(verifier, array_segments(), array_segments_type()) && + VerifyField(verifier, VT_ARRAY_INDICES_TYPE) && + VerifyOffset(verifier, VT_ARRAY_INDICES) && + VerifySparseIndexVector(verifier, array_indices(), array_indices_type()) && + verifier.EndTable(); + } + DimensionMetadataT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(DimensionMetadataT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const DimensionMetadataT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +template<> inline const tflite::Int32Vector *DimensionMetadata::array_segments_as() const { + return array_segments_as_Int32Vector(); +} + +template<> inline const tflite::Uint16Vector *DimensionMetadata::array_segments_as() const { + return array_segments_as_Uint16Vector(); +} + +template<> inline const tflite::Uint8Vector *DimensionMetadata::array_segments_as() const { + return array_segments_as_Uint8Vector(); +} + +template<> inline const tflite::Int32Vector *DimensionMetadata::array_indices_as() const { + return array_indices_as_Int32Vector(); +} + +template<> inline const tflite::Uint16Vector *DimensionMetadata::array_indices_as() const { + return array_indices_as_Uint16Vector(); +} + +template<> inline const tflite::Uint8Vector *DimensionMetadata::array_indices_as() const { + return array_indices_as_Uint8Vector(); +} + +struct DimensionMetadataBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_format(tflite::DimensionType format) { + fbb_.AddElement(DimensionMetadata::VT_FORMAT, static_cast(format), 0); + } + void add_dense_size(int32_t dense_size) { + fbb_.AddElement(DimensionMetadata::VT_DENSE_SIZE, dense_size, 0); + } + void add_array_segments_type(tflite::SparseIndexVector array_segments_type) { + fbb_.AddElement(DimensionMetadata::VT_ARRAY_SEGMENTS_TYPE, static_cast(array_segments_type), 0); + } + void add_array_segments(flatbuffers::Offset array_segments) { + fbb_.AddOffset(DimensionMetadata::VT_ARRAY_SEGMENTS, array_segments); + } + void add_array_indices_type(tflite::SparseIndexVector array_indices_type) { + fbb_.AddElement(DimensionMetadata::VT_ARRAY_INDICES_TYPE, static_cast(array_indices_type), 0); + } + void add_array_indices(flatbuffers::Offset array_indices) { + fbb_.AddOffset(DimensionMetadata::VT_ARRAY_INDICES, array_indices); + } + explicit DimensionMetadataBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + DimensionMetadataBuilder &operator=(const DimensionMetadataBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateDimensionMetadata( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::DimensionType format = tflite::DimensionType_DENSE, + int32_t dense_size = 0, + tflite::SparseIndexVector array_segments_type = tflite::SparseIndexVector_NONE, + flatbuffers::Offset array_segments = 0, + tflite::SparseIndexVector array_indices_type = tflite::SparseIndexVector_NONE, + flatbuffers::Offset array_indices = 0) { + DimensionMetadataBuilder builder_(_fbb); + builder_.add_array_indices(array_indices); + builder_.add_array_segments(array_segments); + builder_.add_dense_size(dense_size); + builder_.add_array_indices_type(array_indices_type); + builder_.add_array_segments_type(array_segments_type); + builder_.add_format(format); + return builder_.Finish(); +} + +flatbuffers::Offset CreateDimensionMetadata(flatbuffers::FlatBufferBuilder &_fbb, const DimensionMetadataT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct SparsityParametersT : public flatbuffers::NativeTable { + typedef SparsityParameters TableType; + std::vector traversal_order; + std::vector block_map; + std::vector> dim_metadata; + SparsityParametersT() { + } +}; + +struct SparsityParameters FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef SparsityParametersT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_TRAVERSAL_ORDER = 4, + VT_BLOCK_MAP = 6, + VT_DIM_METADATA = 8 + }; + const flatbuffers::Vector *traversal_order() const { + return GetPointer *>(VT_TRAVERSAL_ORDER); + } + const flatbuffers::Vector *block_map() const { + return GetPointer *>(VT_BLOCK_MAP); + } + const flatbuffers::Vector> *dim_metadata() const { + return GetPointer> *>(VT_DIM_METADATA); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyOffset(verifier, VT_TRAVERSAL_ORDER) && + verifier.VerifyVector(traversal_order()) && + VerifyOffset(verifier, VT_BLOCK_MAP) && + verifier.VerifyVector(block_map()) && + VerifyOffset(verifier, VT_DIM_METADATA) && + verifier.VerifyVector(dim_metadata()) && + verifier.VerifyVectorOfTables(dim_metadata()) && + verifier.EndTable(); + } + SparsityParametersT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(SparsityParametersT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const SparsityParametersT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct SparsityParametersBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_traversal_order(flatbuffers::Offset> traversal_order) { + fbb_.AddOffset(SparsityParameters::VT_TRAVERSAL_ORDER, traversal_order); + } + void add_block_map(flatbuffers::Offset> block_map) { + fbb_.AddOffset(SparsityParameters::VT_BLOCK_MAP, block_map); + } + void add_dim_metadata(flatbuffers::Offset>> dim_metadata) { + fbb_.AddOffset(SparsityParameters::VT_DIM_METADATA, dim_metadata); + } + explicit SparsityParametersBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + SparsityParametersBuilder &operator=(const SparsityParametersBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateSparsityParameters( + flatbuffers::FlatBufferBuilder &_fbb, + flatbuffers::Offset> traversal_order = 0, + flatbuffers::Offset> block_map = 0, + flatbuffers::Offset>> dim_metadata = 0) { + SparsityParametersBuilder builder_(_fbb); + builder_.add_dim_metadata(dim_metadata); + builder_.add_block_map(block_map); + builder_.add_traversal_order(traversal_order); + return builder_.Finish(); +} + +inline flatbuffers::Offset CreateSparsityParametersDirect( + flatbuffers::FlatBufferBuilder &_fbb, + const std::vector *traversal_order = nullptr, + const std::vector *block_map = nullptr, + const std::vector> *dim_metadata = nullptr) { + auto traversal_order__ = traversal_order ? _fbb.CreateVector(*traversal_order) : 0; + auto block_map__ = block_map ? _fbb.CreateVector(*block_map) : 0; + auto dim_metadata__ = dim_metadata ? _fbb.CreateVector>(*dim_metadata) : 0; + return tflite::CreateSparsityParameters( + _fbb, + traversal_order__, + block_map__, + dim_metadata__); +} + +flatbuffers::Offset CreateSparsityParameters(flatbuffers::FlatBufferBuilder &_fbb, const SparsityParametersT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct TensorT : public flatbuffers::NativeTable { + typedef Tensor TableType; + std::vector shape; + tflite::TensorType type; + uint32_t buffer; + std::string name; + std::unique_ptr quantization; + bool is_variable; + std::unique_ptr sparsity; + std::vector shape_signature; + TensorT() + : type(tflite::TensorType_FLOAT32), + buffer(0), + is_variable(false) { + } +}; + +struct Tensor FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef TensorT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_SHAPE = 4, + VT_TYPE = 6, + VT_BUFFER = 8, + VT_NAME = 10, + VT_QUANTIZATION = 12, + VT_IS_VARIABLE = 14, + VT_SPARSITY = 16, + VT_SHAPE_SIGNATURE = 18 + }; + const flatbuffers::Vector *shape() const { + return GetPointer *>(VT_SHAPE); + } + tflite::TensorType type() const { + return static_cast(GetField(VT_TYPE, 0)); + } + uint32_t buffer() const { + return GetField(VT_BUFFER, 0); + } + const flatbuffers::String *name() const { + return GetPointer(VT_NAME); + } + const tflite::QuantizationParameters *quantization() const { + return GetPointer(VT_QUANTIZATION); + } + bool is_variable() const { + return GetField(VT_IS_VARIABLE, 0) != 0; + } + const tflite::SparsityParameters *sparsity() const { + return GetPointer(VT_SPARSITY); + } + const flatbuffers::Vector *shape_signature() const { + return GetPointer *>(VT_SHAPE_SIGNATURE); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyOffset(verifier, VT_SHAPE) && + verifier.VerifyVector(shape()) && + VerifyField(verifier, VT_TYPE) && + VerifyField(verifier, VT_BUFFER) && + VerifyOffset(verifier, VT_NAME) && + verifier.VerifyString(name()) && + VerifyOffset(verifier, VT_QUANTIZATION) && + verifier.VerifyTable(quantization()) && + VerifyField(verifier, VT_IS_VARIABLE) && + VerifyOffset(verifier, VT_SPARSITY) && + verifier.VerifyTable(sparsity()) && + VerifyOffset(verifier, VT_SHAPE_SIGNATURE) && + verifier.VerifyVector(shape_signature()) && + verifier.EndTable(); + } + TensorT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(TensorT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const TensorT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct TensorBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_shape(flatbuffers::Offset> shape) { + fbb_.AddOffset(Tensor::VT_SHAPE, shape); + } + void add_type(tflite::TensorType type) { + fbb_.AddElement(Tensor::VT_TYPE, static_cast(type), 0); + } + void add_buffer(uint32_t buffer) { + fbb_.AddElement(Tensor::VT_BUFFER, buffer, 0); + } + void add_name(flatbuffers::Offset name) { + fbb_.AddOffset(Tensor::VT_NAME, name); + } + void add_quantization(flatbuffers::Offset quantization) { + fbb_.AddOffset(Tensor::VT_QUANTIZATION, quantization); + } + void add_is_variable(bool is_variable) { + fbb_.AddElement(Tensor::VT_IS_VARIABLE, static_cast(is_variable), 0); + } + void add_sparsity(flatbuffers::Offset sparsity) { + fbb_.AddOffset(Tensor::VT_SPARSITY, sparsity); + } + void add_shape_signature(flatbuffers::Offset> shape_signature) { + fbb_.AddOffset(Tensor::VT_SHAPE_SIGNATURE, shape_signature); + } + explicit TensorBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + TensorBuilder &operator=(const TensorBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateTensor( + flatbuffers::FlatBufferBuilder &_fbb, + flatbuffers::Offset> shape = 0, + tflite::TensorType type = tflite::TensorType_FLOAT32, + uint32_t buffer = 0, + flatbuffers::Offset name = 0, + flatbuffers::Offset quantization = 0, + bool is_variable = false, + flatbuffers::Offset sparsity = 0, + flatbuffers::Offset> shape_signature = 0) { + TensorBuilder builder_(_fbb); + builder_.add_shape_signature(shape_signature); + builder_.add_sparsity(sparsity); + builder_.add_quantization(quantization); + builder_.add_name(name); + builder_.add_buffer(buffer); + builder_.add_shape(shape); + builder_.add_is_variable(is_variable); + builder_.add_type(type); + return builder_.Finish(); +} + +inline flatbuffers::Offset CreateTensorDirect( + flatbuffers::FlatBufferBuilder &_fbb, + const std::vector *shape = nullptr, + tflite::TensorType type = tflite::TensorType_FLOAT32, + uint32_t buffer = 0, + const char *name = nullptr, + flatbuffers::Offset quantization = 0, + bool is_variable = false, + flatbuffers::Offset sparsity = 0, + const std::vector *shape_signature = nullptr) { + auto shape__ = shape ? _fbb.CreateVector(*shape) : 0; + auto name__ = name ? _fbb.CreateString(name) : 0; + auto shape_signature__ = shape_signature ? _fbb.CreateVector(*shape_signature) : 0; + return tflite::CreateTensor( + _fbb, + shape__, + type, + buffer, + name__, + quantization, + is_variable, + sparsity, + shape_signature__); +} + +flatbuffers::Offset CreateTensor(flatbuffers::FlatBufferBuilder &_fbb, const TensorT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct Conv2DOptionsT : public flatbuffers::NativeTable { + typedef Conv2DOptions TableType; + tflite::Padding padding; + int32_t stride_w; + int32_t stride_h; + tflite::ActivationFunctionType fused_activation_function; + int32_t dilation_w_factor; + int32_t dilation_h_factor; + Conv2DOptionsT() + : padding(tflite::Padding_SAME), + stride_w(0), + stride_h(0), + fused_activation_function(tflite::ActivationFunctionType_NONE), + dilation_w_factor(1), + dilation_h_factor(1) { + } +}; + +struct Conv2DOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef Conv2DOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_PADDING = 4, + VT_STRIDE_W = 6, + VT_STRIDE_H = 8, + VT_FUSED_ACTIVATION_FUNCTION = 10, + VT_DILATION_W_FACTOR = 12, + VT_DILATION_H_FACTOR = 14 + }; + tflite::Padding padding() const { + return static_cast(GetField(VT_PADDING, 0)); + } + int32_t stride_w() const { + return GetField(VT_STRIDE_W, 0); + } + int32_t stride_h() const { + return GetField(VT_STRIDE_H, 0); + } + tflite::ActivationFunctionType fused_activation_function() const { + return static_cast(GetField(VT_FUSED_ACTIVATION_FUNCTION, 0)); + } + int32_t dilation_w_factor() const { + return GetField(VT_DILATION_W_FACTOR, 1); + } + int32_t dilation_h_factor() const { + return GetField(VT_DILATION_H_FACTOR, 1); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_PADDING) && + VerifyField(verifier, VT_STRIDE_W) && + VerifyField(verifier, VT_STRIDE_H) && + VerifyField(verifier, VT_FUSED_ACTIVATION_FUNCTION) && + VerifyField(verifier, VT_DILATION_W_FACTOR) && + VerifyField(verifier, VT_DILATION_H_FACTOR) && + verifier.EndTable(); + } + Conv2DOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(Conv2DOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const Conv2DOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct Conv2DOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_padding(tflite::Padding padding) { + fbb_.AddElement(Conv2DOptions::VT_PADDING, static_cast(padding), 0); + } + void add_stride_w(int32_t stride_w) { + fbb_.AddElement(Conv2DOptions::VT_STRIDE_W, stride_w, 0); + } + void add_stride_h(int32_t stride_h) { + fbb_.AddElement(Conv2DOptions::VT_STRIDE_H, stride_h, 0); + } + void add_fused_activation_function(tflite::ActivationFunctionType fused_activation_function) { + fbb_.AddElement(Conv2DOptions::VT_FUSED_ACTIVATION_FUNCTION, static_cast(fused_activation_function), 0); + } + void add_dilation_w_factor(int32_t dilation_w_factor) { + fbb_.AddElement(Conv2DOptions::VT_DILATION_W_FACTOR, dilation_w_factor, 1); + } + void add_dilation_h_factor(int32_t dilation_h_factor) { + fbb_.AddElement(Conv2DOptions::VT_DILATION_H_FACTOR, dilation_h_factor, 1); + } + explicit Conv2DOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + Conv2DOptionsBuilder &operator=(const Conv2DOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateConv2DOptions( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::Padding padding = tflite::Padding_SAME, + int32_t stride_w = 0, + int32_t stride_h = 0, + tflite::ActivationFunctionType fused_activation_function = tflite::ActivationFunctionType_NONE, + int32_t dilation_w_factor = 1, + int32_t dilation_h_factor = 1) { + Conv2DOptionsBuilder builder_(_fbb); + builder_.add_dilation_h_factor(dilation_h_factor); + builder_.add_dilation_w_factor(dilation_w_factor); + builder_.add_stride_h(stride_h); + builder_.add_stride_w(stride_w); + builder_.add_fused_activation_function(fused_activation_function); + builder_.add_padding(padding); + return builder_.Finish(); +} + +flatbuffers::Offset CreateConv2DOptions(flatbuffers::FlatBufferBuilder &_fbb, const Conv2DOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct Pool2DOptionsT : public flatbuffers::NativeTable { + typedef Pool2DOptions TableType; + tflite::Padding padding; + int32_t stride_w; + int32_t stride_h; + int32_t filter_width; + int32_t filter_height; + tflite::ActivationFunctionType fused_activation_function; + Pool2DOptionsT() + : padding(tflite::Padding_SAME), + stride_w(0), + stride_h(0), + filter_width(0), + filter_height(0), + fused_activation_function(tflite::ActivationFunctionType_NONE) { + } +}; + +struct Pool2DOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef Pool2DOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_PADDING = 4, + VT_STRIDE_W = 6, + VT_STRIDE_H = 8, + VT_FILTER_WIDTH = 10, + VT_FILTER_HEIGHT = 12, + VT_FUSED_ACTIVATION_FUNCTION = 14 + }; + tflite::Padding padding() const { + return static_cast(GetField(VT_PADDING, 0)); + } + int32_t stride_w() const { + return GetField(VT_STRIDE_W, 0); + } + int32_t stride_h() const { + return GetField(VT_STRIDE_H, 0); + } + int32_t filter_width() const { + return GetField(VT_FILTER_WIDTH, 0); + } + int32_t filter_height() const { + return GetField(VT_FILTER_HEIGHT, 0); + } + tflite::ActivationFunctionType fused_activation_function() const { + return static_cast(GetField(VT_FUSED_ACTIVATION_FUNCTION, 0)); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_PADDING) && + VerifyField(verifier, VT_STRIDE_W) && + VerifyField(verifier, VT_STRIDE_H) && + VerifyField(verifier, VT_FILTER_WIDTH) && + VerifyField(verifier, VT_FILTER_HEIGHT) && + VerifyField(verifier, VT_FUSED_ACTIVATION_FUNCTION) && + verifier.EndTable(); + } + Pool2DOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(Pool2DOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const Pool2DOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct Pool2DOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_padding(tflite::Padding padding) { + fbb_.AddElement(Pool2DOptions::VT_PADDING, static_cast(padding), 0); + } + void add_stride_w(int32_t stride_w) { + fbb_.AddElement(Pool2DOptions::VT_STRIDE_W, stride_w, 0); + } + void add_stride_h(int32_t stride_h) { + fbb_.AddElement(Pool2DOptions::VT_STRIDE_H, stride_h, 0); + } + void add_filter_width(int32_t filter_width) { + fbb_.AddElement(Pool2DOptions::VT_FILTER_WIDTH, filter_width, 0); + } + void add_filter_height(int32_t filter_height) { + fbb_.AddElement(Pool2DOptions::VT_FILTER_HEIGHT, filter_height, 0); + } + void add_fused_activation_function(tflite::ActivationFunctionType fused_activation_function) { + fbb_.AddElement(Pool2DOptions::VT_FUSED_ACTIVATION_FUNCTION, static_cast(fused_activation_function), 0); + } + explicit Pool2DOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + Pool2DOptionsBuilder &operator=(const Pool2DOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreatePool2DOptions( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::Padding padding = tflite::Padding_SAME, + int32_t stride_w = 0, + int32_t stride_h = 0, + int32_t filter_width = 0, + int32_t filter_height = 0, + tflite::ActivationFunctionType fused_activation_function = tflite::ActivationFunctionType_NONE) { + Pool2DOptionsBuilder builder_(_fbb); + builder_.add_filter_height(filter_height); + builder_.add_filter_width(filter_width); + builder_.add_stride_h(stride_h); + builder_.add_stride_w(stride_w); + builder_.add_fused_activation_function(fused_activation_function); + builder_.add_padding(padding); + return builder_.Finish(); +} + +flatbuffers::Offset CreatePool2DOptions(flatbuffers::FlatBufferBuilder &_fbb, const Pool2DOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct DepthwiseConv2DOptionsT : public flatbuffers::NativeTable { + typedef DepthwiseConv2DOptions TableType; + tflite::Padding padding; + int32_t stride_w; + int32_t stride_h; + int32_t depth_multiplier; + tflite::ActivationFunctionType fused_activation_function; + int32_t dilation_w_factor; + int32_t dilation_h_factor; + DepthwiseConv2DOptionsT() + : padding(tflite::Padding_SAME), + stride_w(0), + stride_h(0), + depth_multiplier(0), + fused_activation_function(tflite::ActivationFunctionType_NONE), + dilation_w_factor(1), + dilation_h_factor(1) { + } +}; + +struct DepthwiseConv2DOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef DepthwiseConv2DOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_PADDING = 4, + VT_STRIDE_W = 6, + VT_STRIDE_H = 8, + VT_DEPTH_MULTIPLIER = 10, + VT_FUSED_ACTIVATION_FUNCTION = 12, + VT_DILATION_W_FACTOR = 14, + VT_DILATION_H_FACTOR = 16 + }; + tflite::Padding padding() const { + return static_cast(GetField(VT_PADDING, 0)); + } + int32_t stride_w() const { + return GetField(VT_STRIDE_W, 0); + } + int32_t stride_h() const { + return GetField(VT_STRIDE_H, 0); + } + int32_t depth_multiplier() const { + return GetField(VT_DEPTH_MULTIPLIER, 0); + } + tflite::ActivationFunctionType fused_activation_function() const { + return static_cast(GetField(VT_FUSED_ACTIVATION_FUNCTION, 0)); + } + int32_t dilation_w_factor() const { + return GetField(VT_DILATION_W_FACTOR, 1); + } + int32_t dilation_h_factor() const { + return GetField(VT_DILATION_H_FACTOR, 1); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_PADDING) && + VerifyField(verifier, VT_STRIDE_W) && + VerifyField(verifier, VT_STRIDE_H) && + VerifyField(verifier, VT_DEPTH_MULTIPLIER) && + VerifyField(verifier, VT_FUSED_ACTIVATION_FUNCTION) && + VerifyField(verifier, VT_DILATION_W_FACTOR) && + VerifyField(verifier, VT_DILATION_H_FACTOR) && + verifier.EndTable(); + } + DepthwiseConv2DOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(DepthwiseConv2DOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const DepthwiseConv2DOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct DepthwiseConv2DOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_padding(tflite::Padding padding) { + fbb_.AddElement(DepthwiseConv2DOptions::VT_PADDING, static_cast(padding), 0); + } + void add_stride_w(int32_t stride_w) { + fbb_.AddElement(DepthwiseConv2DOptions::VT_STRIDE_W, stride_w, 0); + } + void add_stride_h(int32_t stride_h) { + fbb_.AddElement(DepthwiseConv2DOptions::VT_STRIDE_H, stride_h, 0); + } + void add_depth_multiplier(int32_t depth_multiplier) { + fbb_.AddElement(DepthwiseConv2DOptions::VT_DEPTH_MULTIPLIER, depth_multiplier, 0); + } + void add_fused_activation_function(tflite::ActivationFunctionType fused_activation_function) { + fbb_.AddElement(DepthwiseConv2DOptions::VT_FUSED_ACTIVATION_FUNCTION, static_cast(fused_activation_function), 0); + } + void add_dilation_w_factor(int32_t dilation_w_factor) { + fbb_.AddElement(DepthwiseConv2DOptions::VT_DILATION_W_FACTOR, dilation_w_factor, 1); + } + void add_dilation_h_factor(int32_t dilation_h_factor) { + fbb_.AddElement(DepthwiseConv2DOptions::VT_DILATION_H_FACTOR, dilation_h_factor, 1); + } + explicit DepthwiseConv2DOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + DepthwiseConv2DOptionsBuilder &operator=(const DepthwiseConv2DOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateDepthwiseConv2DOptions( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::Padding padding = tflite::Padding_SAME, + int32_t stride_w = 0, + int32_t stride_h = 0, + int32_t depth_multiplier = 0, + tflite::ActivationFunctionType fused_activation_function = tflite::ActivationFunctionType_NONE, + int32_t dilation_w_factor = 1, + int32_t dilation_h_factor = 1) { + DepthwiseConv2DOptionsBuilder builder_(_fbb); + builder_.add_dilation_h_factor(dilation_h_factor); + builder_.add_dilation_w_factor(dilation_w_factor); + builder_.add_depth_multiplier(depth_multiplier); + builder_.add_stride_h(stride_h); + builder_.add_stride_w(stride_w); + builder_.add_fused_activation_function(fused_activation_function); + builder_.add_padding(padding); + return builder_.Finish(); +} + +flatbuffers::Offset CreateDepthwiseConv2DOptions(flatbuffers::FlatBufferBuilder &_fbb, const DepthwiseConv2DOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct ConcatEmbeddingsOptionsT : public flatbuffers::NativeTable { + typedef ConcatEmbeddingsOptions TableType; + int32_t num_channels; + std::vector num_columns_per_channel; + std::vector embedding_dim_per_channel; + ConcatEmbeddingsOptionsT() + : num_channels(0) { + } +}; + +struct ConcatEmbeddingsOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef ConcatEmbeddingsOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_NUM_CHANNELS = 4, + VT_NUM_COLUMNS_PER_CHANNEL = 6, + VT_EMBEDDING_DIM_PER_CHANNEL = 8 + }; + int32_t num_channels() const { + return GetField(VT_NUM_CHANNELS, 0); + } + const flatbuffers::Vector *num_columns_per_channel() const { + return GetPointer *>(VT_NUM_COLUMNS_PER_CHANNEL); + } + const flatbuffers::Vector *embedding_dim_per_channel() const { + return GetPointer *>(VT_EMBEDDING_DIM_PER_CHANNEL); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_NUM_CHANNELS) && + VerifyOffset(verifier, VT_NUM_COLUMNS_PER_CHANNEL) && + verifier.VerifyVector(num_columns_per_channel()) && + VerifyOffset(verifier, VT_EMBEDDING_DIM_PER_CHANNEL) && + verifier.VerifyVector(embedding_dim_per_channel()) && + verifier.EndTable(); + } + ConcatEmbeddingsOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(ConcatEmbeddingsOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const ConcatEmbeddingsOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct ConcatEmbeddingsOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_num_channels(int32_t num_channels) { + fbb_.AddElement(ConcatEmbeddingsOptions::VT_NUM_CHANNELS, num_channels, 0); + } + void add_num_columns_per_channel(flatbuffers::Offset> num_columns_per_channel) { + fbb_.AddOffset(ConcatEmbeddingsOptions::VT_NUM_COLUMNS_PER_CHANNEL, num_columns_per_channel); + } + void add_embedding_dim_per_channel(flatbuffers::Offset> embedding_dim_per_channel) { + fbb_.AddOffset(ConcatEmbeddingsOptions::VT_EMBEDDING_DIM_PER_CHANNEL, embedding_dim_per_channel); + } + explicit ConcatEmbeddingsOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ConcatEmbeddingsOptionsBuilder &operator=(const ConcatEmbeddingsOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateConcatEmbeddingsOptions( + flatbuffers::FlatBufferBuilder &_fbb, + int32_t num_channels = 0, + flatbuffers::Offset> num_columns_per_channel = 0, + flatbuffers::Offset> embedding_dim_per_channel = 0) { + ConcatEmbeddingsOptionsBuilder builder_(_fbb); + builder_.add_embedding_dim_per_channel(embedding_dim_per_channel); + builder_.add_num_columns_per_channel(num_columns_per_channel); + builder_.add_num_channels(num_channels); + return builder_.Finish(); +} + +inline flatbuffers::Offset CreateConcatEmbeddingsOptionsDirect( + flatbuffers::FlatBufferBuilder &_fbb, + int32_t num_channels = 0, + const std::vector *num_columns_per_channel = nullptr, + const std::vector *embedding_dim_per_channel = nullptr) { + auto num_columns_per_channel__ = num_columns_per_channel ? _fbb.CreateVector(*num_columns_per_channel) : 0; + auto embedding_dim_per_channel__ = embedding_dim_per_channel ? _fbb.CreateVector(*embedding_dim_per_channel) : 0; + return tflite::CreateConcatEmbeddingsOptions( + _fbb, + num_channels, + num_columns_per_channel__, + embedding_dim_per_channel__); +} + +flatbuffers::Offset CreateConcatEmbeddingsOptions(flatbuffers::FlatBufferBuilder &_fbb, const ConcatEmbeddingsOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct LSHProjectionOptionsT : public flatbuffers::NativeTable { + typedef LSHProjectionOptions TableType; + tflite::LSHProjectionType type; + LSHProjectionOptionsT() + : type(tflite::LSHProjectionType_UNKNOWN) { + } +}; + +struct LSHProjectionOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef LSHProjectionOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_TYPE = 4 + }; + tflite::LSHProjectionType type() const { + return static_cast(GetField(VT_TYPE, 0)); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_TYPE) && + verifier.EndTable(); + } + LSHProjectionOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(LSHProjectionOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const LSHProjectionOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct LSHProjectionOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_type(tflite::LSHProjectionType type) { + fbb_.AddElement(LSHProjectionOptions::VT_TYPE, static_cast(type), 0); + } + explicit LSHProjectionOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + LSHProjectionOptionsBuilder &operator=(const LSHProjectionOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateLSHProjectionOptions( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::LSHProjectionType type = tflite::LSHProjectionType_UNKNOWN) { + LSHProjectionOptionsBuilder builder_(_fbb); + builder_.add_type(type); + return builder_.Finish(); +} + +flatbuffers::Offset CreateLSHProjectionOptions(flatbuffers::FlatBufferBuilder &_fbb, const LSHProjectionOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct SVDFOptionsT : public flatbuffers::NativeTable { + typedef SVDFOptions TableType; + int32_t rank; + tflite::ActivationFunctionType fused_activation_function; + bool asymmetric_quantize_inputs; + SVDFOptionsT() + : rank(0), + fused_activation_function(tflite::ActivationFunctionType_NONE), + asymmetric_quantize_inputs(false) { + } +}; + +struct SVDFOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef SVDFOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_RANK = 4, + VT_FUSED_ACTIVATION_FUNCTION = 6, + VT_ASYMMETRIC_QUANTIZE_INPUTS = 8 + }; + int32_t rank() const { + return GetField(VT_RANK, 0); + } + tflite::ActivationFunctionType fused_activation_function() const { + return static_cast(GetField(VT_FUSED_ACTIVATION_FUNCTION, 0)); + } + bool asymmetric_quantize_inputs() const { + return GetField(VT_ASYMMETRIC_QUANTIZE_INPUTS, 0) != 0; + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_RANK) && + VerifyField(verifier, VT_FUSED_ACTIVATION_FUNCTION) && + VerifyField(verifier, VT_ASYMMETRIC_QUANTIZE_INPUTS) && + verifier.EndTable(); + } + SVDFOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(SVDFOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const SVDFOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct SVDFOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_rank(int32_t rank) { + fbb_.AddElement(SVDFOptions::VT_RANK, rank, 0); + } + void add_fused_activation_function(tflite::ActivationFunctionType fused_activation_function) { + fbb_.AddElement(SVDFOptions::VT_FUSED_ACTIVATION_FUNCTION, static_cast(fused_activation_function), 0); + } + void add_asymmetric_quantize_inputs(bool asymmetric_quantize_inputs) { + fbb_.AddElement(SVDFOptions::VT_ASYMMETRIC_QUANTIZE_INPUTS, static_cast(asymmetric_quantize_inputs), 0); + } + explicit SVDFOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + SVDFOptionsBuilder &operator=(const SVDFOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateSVDFOptions( + flatbuffers::FlatBufferBuilder &_fbb, + int32_t rank = 0, + tflite::ActivationFunctionType fused_activation_function = tflite::ActivationFunctionType_NONE, + bool asymmetric_quantize_inputs = false) { + SVDFOptionsBuilder builder_(_fbb); + builder_.add_rank(rank); + builder_.add_asymmetric_quantize_inputs(asymmetric_quantize_inputs); + builder_.add_fused_activation_function(fused_activation_function); + return builder_.Finish(); +} + +flatbuffers::Offset CreateSVDFOptions(flatbuffers::FlatBufferBuilder &_fbb, const SVDFOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct RNNOptionsT : public flatbuffers::NativeTable { + typedef RNNOptions TableType; + tflite::ActivationFunctionType fused_activation_function; + bool asymmetric_quantize_inputs; + RNNOptionsT() + : fused_activation_function(tflite::ActivationFunctionType_NONE), + asymmetric_quantize_inputs(false) { + } +}; + +struct RNNOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef RNNOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_FUSED_ACTIVATION_FUNCTION = 4, + VT_ASYMMETRIC_QUANTIZE_INPUTS = 6 + }; + tflite::ActivationFunctionType fused_activation_function() const { + return static_cast(GetField(VT_FUSED_ACTIVATION_FUNCTION, 0)); + } + bool asymmetric_quantize_inputs() const { + return GetField(VT_ASYMMETRIC_QUANTIZE_INPUTS, 0) != 0; + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_FUSED_ACTIVATION_FUNCTION) && + VerifyField(verifier, VT_ASYMMETRIC_QUANTIZE_INPUTS) && + verifier.EndTable(); + } + RNNOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(RNNOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const RNNOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct RNNOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_fused_activation_function(tflite::ActivationFunctionType fused_activation_function) { + fbb_.AddElement(RNNOptions::VT_FUSED_ACTIVATION_FUNCTION, static_cast(fused_activation_function), 0); + } + void add_asymmetric_quantize_inputs(bool asymmetric_quantize_inputs) { + fbb_.AddElement(RNNOptions::VT_ASYMMETRIC_QUANTIZE_INPUTS, static_cast(asymmetric_quantize_inputs), 0); + } + explicit RNNOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + RNNOptionsBuilder &operator=(const RNNOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateRNNOptions( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::ActivationFunctionType fused_activation_function = tflite::ActivationFunctionType_NONE, + bool asymmetric_quantize_inputs = false) { + RNNOptionsBuilder builder_(_fbb); + builder_.add_asymmetric_quantize_inputs(asymmetric_quantize_inputs); + builder_.add_fused_activation_function(fused_activation_function); + return builder_.Finish(); +} + +flatbuffers::Offset CreateRNNOptions(flatbuffers::FlatBufferBuilder &_fbb, const RNNOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct SequenceRNNOptionsT : public flatbuffers::NativeTable { + typedef SequenceRNNOptions TableType; + bool time_major; + tflite::ActivationFunctionType fused_activation_function; + bool asymmetric_quantize_inputs; + SequenceRNNOptionsT() + : time_major(false), + fused_activation_function(tflite::ActivationFunctionType_NONE), + asymmetric_quantize_inputs(false) { + } +}; + +struct SequenceRNNOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef SequenceRNNOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_TIME_MAJOR = 4, + VT_FUSED_ACTIVATION_FUNCTION = 6, + VT_ASYMMETRIC_QUANTIZE_INPUTS = 8 + }; + bool time_major() const { + return GetField(VT_TIME_MAJOR, 0) != 0; + } + tflite::ActivationFunctionType fused_activation_function() const { + return static_cast(GetField(VT_FUSED_ACTIVATION_FUNCTION, 0)); + } + bool asymmetric_quantize_inputs() const { + return GetField(VT_ASYMMETRIC_QUANTIZE_INPUTS, 0) != 0; + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_TIME_MAJOR) && + VerifyField(verifier, VT_FUSED_ACTIVATION_FUNCTION) && + VerifyField(verifier, VT_ASYMMETRIC_QUANTIZE_INPUTS) && + verifier.EndTable(); + } + SequenceRNNOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(SequenceRNNOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const SequenceRNNOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct SequenceRNNOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_time_major(bool time_major) { + fbb_.AddElement(SequenceRNNOptions::VT_TIME_MAJOR, static_cast(time_major), 0); + } + void add_fused_activation_function(tflite::ActivationFunctionType fused_activation_function) { + fbb_.AddElement(SequenceRNNOptions::VT_FUSED_ACTIVATION_FUNCTION, static_cast(fused_activation_function), 0); + } + void add_asymmetric_quantize_inputs(bool asymmetric_quantize_inputs) { + fbb_.AddElement(SequenceRNNOptions::VT_ASYMMETRIC_QUANTIZE_INPUTS, static_cast(asymmetric_quantize_inputs), 0); + } + explicit SequenceRNNOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + SequenceRNNOptionsBuilder &operator=(const SequenceRNNOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateSequenceRNNOptions( + flatbuffers::FlatBufferBuilder &_fbb, + bool time_major = false, + tflite::ActivationFunctionType fused_activation_function = tflite::ActivationFunctionType_NONE, + bool asymmetric_quantize_inputs = false) { + SequenceRNNOptionsBuilder builder_(_fbb); + builder_.add_asymmetric_quantize_inputs(asymmetric_quantize_inputs); + builder_.add_fused_activation_function(fused_activation_function); + builder_.add_time_major(time_major); + return builder_.Finish(); +} + +flatbuffers::Offset CreateSequenceRNNOptions(flatbuffers::FlatBufferBuilder &_fbb, const SequenceRNNOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct BidirectionalSequenceRNNOptionsT : public flatbuffers::NativeTable { + typedef BidirectionalSequenceRNNOptions TableType; + bool time_major; + tflite::ActivationFunctionType fused_activation_function; + bool merge_outputs; + bool asymmetric_quantize_inputs; + BidirectionalSequenceRNNOptionsT() + : time_major(false), + fused_activation_function(tflite::ActivationFunctionType_NONE), + merge_outputs(false), + asymmetric_quantize_inputs(false) { + } +}; + +struct BidirectionalSequenceRNNOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef BidirectionalSequenceRNNOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_TIME_MAJOR = 4, + VT_FUSED_ACTIVATION_FUNCTION = 6, + VT_MERGE_OUTPUTS = 8, + VT_ASYMMETRIC_QUANTIZE_INPUTS = 10 + }; + bool time_major() const { + return GetField(VT_TIME_MAJOR, 0) != 0; + } + tflite::ActivationFunctionType fused_activation_function() const { + return static_cast(GetField(VT_FUSED_ACTIVATION_FUNCTION, 0)); + } + bool merge_outputs() const { + return GetField(VT_MERGE_OUTPUTS, 0) != 0; + } + bool asymmetric_quantize_inputs() const { + return GetField(VT_ASYMMETRIC_QUANTIZE_INPUTS, 0) != 0; + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_TIME_MAJOR) && + VerifyField(verifier, VT_FUSED_ACTIVATION_FUNCTION) && + VerifyField(verifier, VT_MERGE_OUTPUTS) && + VerifyField(verifier, VT_ASYMMETRIC_QUANTIZE_INPUTS) && + verifier.EndTable(); + } + BidirectionalSequenceRNNOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(BidirectionalSequenceRNNOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const BidirectionalSequenceRNNOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct BidirectionalSequenceRNNOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_time_major(bool time_major) { + fbb_.AddElement(BidirectionalSequenceRNNOptions::VT_TIME_MAJOR, static_cast(time_major), 0); + } + void add_fused_activation_function(tflite::ActivationFunctionType fused_activation_function) { + fbb_.AddElement(BidirectionalSequenceRNNOptions::VT_FUSED_ACTIVATION_FUNCTION, static_cast(fused_activation_function), 0); + } + void add_merge_outputs(bool merge_outputs) { + fbb_.AddElement(BidirectionalSequenceRNNOptions::VT_MERGE_OUTPUTS, static_cast(merge_outputs), 0); + } + void add_asymmetric_quantize_inputs(bool asymmetric_quantize_inputs) { + fbb_.AddElement(BidirectionalSequenceRNNOptions::VT_ASYMMETRIC_QUANTIZE_INPUTS, static_cast(asymmetric_quantize_inputs), 0); + } + explicit BidirectionalSequenceRNNOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + BidirectionalSequenceRNNOptionsBuilder &operator=(const BidirectionalSequenceRNNOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateBidirectionalSequenceRNNOptions( + flatbuffers::FlatBufferBuilder &_fbb, + bool time_major = false, + tflite::ActivationFunctionType fused_activation_function = tflite::ActivationFunctionType_NONE, + bool merge_outputs = false, + bool asymmetric_quantize_inputs = false) { + BidirectionalSequenceRNNOptionsBuilder builder_(_fbb); + builder_.add_asymmetric_quantize_inputs(asymmetric_quantize_inputs); + builder_.add_merge_outputs(merge_outputs); + builder_.add_fused_activation_function(fused_activation_function); + builder_.add_time_major(time_major); + return builder_.Finish(); +} + +flatbuffers::Offset CreateBidirectionalSequenceRNNOptions(flatbuffers::FlatBufferBuilder &_fbb, const BidirectionalSequenceRNNOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct FullyConnectedOptionsT : public flatbuffers::NativeTable { + typedef FullyConnectedOptions TableType; + tflite::ActivationFunctionType fused_activation_function; + tflite::FullyConnectedOptionsWeightsFormat weights_format; + bool keep_num_dims; + bool asymmetric_quantize_inputs; + FullyConnectedOptionsT() + : fused_activation_function(tflite::ActivationFunctionType_NONE), + weights_format(tflite::FullyConnectedOptionsWeightsFormat_DEFAULT), + keep_num_dims(false), + asymmetric_quantize_inputs(false) { + } +}; + +struct FullyConnectedOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef FullyConnectedOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_FUSED_ACTIVATION_FUNCTION = 4, + VT_WEIGHTS_FORMAT = 6, + VT_KEEP_NUM_DIMS = 8, + VT_ASYMMETRIC_QUANTIZE_INPUTS = 10 + }; + tflite::ActivationFunctionType fused_activation_function() const { + return static_cast(GetField(VT_FUSED_ACTIVATION_FUNCTION, 0)); + } + tflite::FullyConnectedOptionsWeightsFormat weights_format() const { + return static_cast(GetField(VT_WEIGHTS_FORMAT, 0)); + } + bool keep_num_dims() const { + return GetField(VT_KEEP_NUM_DIMS, 0) != 0; + } + bool asymmetric_quantize_inputs() const { + return GetField(VT_ASYMMETRIC_QUANTIZE_INPUTS, 0) != 0; + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_FUSED_ACTIVATION_FUNCTION) && + VerifyField(verifier, VT_WEIGHTS_FORMAT) && + VerifyField(verifier, VT_KEEP_NUM_DIMS) && + VerifyField(verifier, VT_ASYMMETRIC_QUANTIZE_INPUTS) && + verifier.EndTable(); + } + FullyConnectedOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(FullyConnectedOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const FullyConnectedOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct FullyConnectedOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_fused_activation_function(tflite::ActivationFunctionType fused_activation_function) { + fbb_.AddElement(FullyConnectedOptions::VT_FUSED_ACTIVATION_FUNCTION, static_cast(fused_activation_function), 0); + } + void add_weights_format(tflite::FullyConnectedOptionsWeightsFormat weights_format) { + fbb_.AddElement(FullyConnectedOptions::VT_WEIGHTS_FORMAT, static_cast(weights_format), 0); + } + void add_keep_num_dims(bool keep_num_dims) { + fbb_.AddElement(FullyConnectedOptions::VT_KEEP_NUM_DIMS, static_cast(keep_num_dims), 0); + } + void add_asymmetric_quantize_inputs(bool asymmetric_quantize_inputs) { + fbb_.AddElement(FullyConnectedOptions::VT_ASYMMETRIC_QUANTIZE_INPUTS, static_cast(asymmetric_quantize_inputs), 0); + } + explicit FullyConnectedOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + FullyConnectedOptionsBuilder &operator=(const FullyConnectedOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateFullyConnectedOptions( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::ActivationFunctionType fused_activation_function = tflite::ActivationFunctionType_NONE, + tflite::FullyConnectedOptionsWeightsFormat weights_format = tflite::FullyConnectedOptionsWeightsFormat_DEFAULT, + bool keep_num_dims = false, + bool asymmetric_quantize_inputs = false) { + FullyConnectedOptionsBuilder builder_(_fbb); + builder_.add_asymmetric_quantize_inputs(asymmetric_quantize_inputs); + builder_.add_keep_num_dims(keep_num_dims); + builder_.add_weights_format(weights_format); + builder_.add_fused_activation_function(fused_activation_function); + return builder_.Finish(); +} + +flatbuffers::Offset CreateFullyConnectedOptions(flatbuffers::FlatBufferBuilder &_fbb, const FullyConnectedOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct SoftmaxOptionsT : public flatbuffers::NativeTable { + typedef SoftmaxOptions TableType; + float beta; + SoftmaxOptionsT() + : beta(0.0f) { + } +}; + +struct SoftmaxOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef SoftmaxOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_BETA = 4 + }; + float beta() const { + return GetField(VT_BETA, 0.0f); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_BETA) && + verifier.EndTable(); + } + SoftmaxOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(SoftmaxOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const SoftmaxOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct SoftmaxOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_beta(float beta) { + fbb_.AddElement(SoftmaxOptions::VT_BETA, beta, 0.0f); + } + explicit SoftmaxOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + SoftmaxOptionsBuilder &operator=(const SoftmaxOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateSoftmaxOptions( + flatbuffers::FlatBufferBuilder &_fbb, + float beta = 0.0f) { + SoftmaxOptionsBuilder builder_(_fbb); + builder_.add_beta(beta); + return builder_.Finish(); +} + +flatbuffers::Offset CreateSoftmaxOptions(flatbuffers::FlatBufferBuilder &_fbb, const SoftmaxOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct ConcatenationOptionsT : public flatbuffers::NativeTable { + typedef ConcatenationOptions TableType; + int32_t axis; + tflite::ActivationFunctionType fused_activation_function; + ConcatenationOptionsT() + : axis(0), + fused_activation_function(tflite::ActivationFunctionType_NONE) { + } +}; + +struct ConcatenationOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef ConcatenationOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_AXIS = 4, + VT_FUSED_ACTIVATION_FUNCTION = 6 + }; + int32_t axis() const { + return GetField(VT_AXIS, 0); + } + tflite::ActivationFunctionType fused_activation_function() const { + return static_cast(GetField(VT_FUSED_ACTIVATION_FUNCTION, 0)); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_AXIS) && + VerifyField(verifier, VT_FUSED_ACTIVATION_FUNCTION) && + verifier.EndTable(); + } + ConcatenationOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(ConcatenationOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const ConcatenationOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct ConcatenationOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_axis(int32_t axis) { + fbb_.AddElement(ConcatenationOptions::VT_AXIS, axis, 0); + } + void add_fused_activation_function(tflite::ActivationFunctionType fused_activation_function) { + fbb_.AddElement(ConcatenationOptions::VT_FUSED_ACTIVATION_FUNCTION, static_cast(fused_activation_function), 0); + } + explicit ConcatenationOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ConcatenationOptionsBuilder &operator=(const ConcatenationOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateConcatenationOptions( + flatbuffers::FlatBufferBuilder &_fbb, + int32_t axis = 0, + tflite::ActivationFunctionType fused_activation_function = tflite::ActivationFunctionType_NONE) { + ConcatenationOptionsBuilder builder_(_fbb); + builder_.add_axis(axis); + builder_.add_fused_activation_function(fused_activation_function); + return builder_.Finish(); +} + +flatbuffers::Offset CreateConcatenationOptions(flatbuffers::FlatBufferBuilder &_fbb, const ConcatenationOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct AddOptionsT : public flatbuffers::NativeTable { + typedef AddOptions TableType; + bool pot_scale_int16; + tflite::ActivationFunctionType fused_activation_function; + AddOptionsT() + : pot_scale_int16(true), + fused_activation_function(tflite::ActivationFunctionType_NONE) { + } +}; + +struct AddOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef AddOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_FUSED_ACTIVATION_FUNCTION = 4, + VT_POT_SCALE_INT16 = 6 + }; + bool pot_scale_int16() const { + return GetField(VT_POT_SCALE_INT16, 0) != 0; + } + tflite::ActivationFunctionType fused_activation_function() const { + return static_cast(GetField(VT_FUSED_ACTIVATION_FUNCTION, 0)); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_POT_SCALE_INT16) && + VerifyField(verifier, VT_FUSED_ACTIVATION_FUNCTION) && + verifier.EndTable(); + } + AddOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(AddOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const AddOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct AddOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_fused_activation_function(tflite::ActivationFunctionType fused_activation_function) { + fbb_.AddElement(AddOptions::VT_FUSED_ACTIVATION_FUNCTION, static_cast(fused_activation_function), 0); + } + explicit AddOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + AddOptionsBuilder &operator=(const AddOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateAddOptions( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::ActivationFunctionType fused_activation_function = tflite::ActivationFunctionType_NONE) { + AddOptionsBuilder builder_(_fbb); + builder_.add_fused_activation_function(fused_activation_function); + return builder_.Finish(); +} + +flatbuffers::Offset CreateAddOptions(flatbuffers::FlatBufferBuilder &_fbb, const AddOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct MulOptionsT : public flatbuffers::NativeTable { + typedef MulOptions TableType; + tflite::ActivationFunctionType fused_activation_function; + MulOptionsT() + : fused_activation_function(tflite::ActivationFunctionType_NONE) { + } +}; + +struct MulOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef MulOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_FUSED_ACTIVATION_FUNCTION = 4 + }; + tflite::ActivationFunctionType fused_activation_function() const { + return static_cast(GetField(VT_FUSED_ACTIVATION_FUNCTION, 0)); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_FUSED_ACTIVATION_FUNCTION) && + verifier.EndTable(); + } + MulOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(MulOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const MulOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct MulOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_fused_activation_function(tflite::ActivationFunctionType fused_activation_function) { + fbb_.AddElement(MulOptions::VT_FUSED_ACTIVATION_FUNCTION, static_cast(fused_activation_function), 0); + } + explicit MulOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + MulOptionsBuilder &operator=(const MulOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateMulOptions( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::ActivationFunctionType fused_activation_function = tflite::ActivationFunctionType_NONE) { + MulOptionsBuilder builder_(_fbb); + builder_.add_fused_activation_function(fused_activation_function); + return builder_.Finish(); +} + +flatbuffers::Offset CreateMulOptions(flatbuffers::FlatBufferBuilder &_fbb, const MulOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct L2NormOptionsT : public flatbuffers::NativeTable { + typedef L2NormOptions TableType; + tflite::ActivationFunctionType fused_activation_function; + L2NormOptionsT() + : fused_activation_function(tflite::ActivationFunctionType_NONE) { + } +}; + +struct L2NormOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef L2NormOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_FUSED_ACTIVATION_FUNCTION = 4 + }; + tflite::ActivationFunctionType fused_activation_function() const { + return static_cast(GetField(VT_FUSED_ACTIVATION_FUNCTION, 0)); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_FUSED_ACTIVATION_FUNCTION) && + verifier.EndTable(); + } + L2NormOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(L2NormOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const L2NormOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct L2NormOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_fused_activation_function(tflite::ActivationFunctionType fused_activation_function) { + fbb_.AddElement(L2NormOptions::VT_FUSED_ACTIVATION_FUNCTION, static_cast(fused_activation_function), 0); + } + explicit L2NormOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + L2NormOptionsBuilder &operator=(const L2NormOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateL2NormOptions( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::ActivationFunctionType fused_activation_function = tflite::ActivationFunctionType_NONE) { + L2NormOptionsBuilder builder_(_fbb); + builder_.add_fused_activation_function(fused_activation_function); + return builder_.Finish(); +} + +flatbuffers::Offset CreateL2NormOptions(flatbuffers::FlatBufferBuilder &_fbb, const L2NormOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct LocalResponseNormalizationOptionsT : public flatbuffers::NativeTable { + typedef LocalResponseNormalizationOptions TableType; + int32_t radius; + float bias; + float alpha; + float beta; + LocalResponseNormalizationOptionsT() + : radius(0), + bias(0.0f), + alpha(0.0f), + beta(0.0f) { + } +}; + +struct LocalResponseNormalizationOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef LocalResponseNormalizationOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_RADIUS = 4, + VT_BIAS = 6, + VT_ALPHA = 8, + VT_BETA = 10 + }; + int32_t radius() const { + return GetField(VT_RADIUS, 0); + } + float bias() const { + return GetField(VT_BIAS, 0.0f); + } + float alpha() const { + return GetField(VT_ALPHA, 0.0f); + } + float beta() const { + return GetField(VT_BETA, 0.0f); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_RADIUS) && + VerifyField(verifier, VT_BIAS) && + VerifyField(verifier, VT_ALPHA) && + VerifyField(verifier, VT_BETA) && + verifier.EndTable(); + } + LocalResponseNormalizationOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(LocalResponseNormalizationOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const LocalResponseNormalizationOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct LocalResponseNormalizationOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_radius(int32_t radius) { + fbb_.AddElement(LocalResponseNormalizationOptions::VT_RADIUS, radius, 0); + } + void add_bias(float bias) { + fbb_.AddElement(LocalResponseNormalizationOptions::VT_BIAS, bias, 0.0f); + } + void add_alpha(float alpha) { + fbb_.AddElement(LocalResponseNormalizationOptions::VT_ALPHA, alpha, 0.0f); + } + void add_beta(float beta) { + fbb_.AddElement(LocalResponseNormalizationOptions::VT_BETA, beta, 0.0f); + } + explicit LocalResponseNormalizationOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + LocalResponseNormalizationOptionsBuilder &operator=(const LocalResponseNormalizationOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateLocalResponseNormalizationOptions( + flatbuffers::FlatBufferBuilder &_fbb, + int32_t radius = 0, + float bias = 0.0f, + float alpha = 0.0f, + float beta = 0.0f) { + LocalResponseNormalizationOptionsBuilder builder_(_fbb); + builder_.add_beta(beta); + builder_.add_alpha(alpha); + builder_.add_bias(bias); + builder_.add_radius(radius); + return builder_.Finish(); +} + +flatbuffers::Offset CreateLocalResponseNormalizationOptions(flatbuffers::FlatBufferBuilder &_fbb, const LocalResponseNormalizationOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct LSTMOptionsT : public flatbuffers::NativeTable { + typedef LSTMOptions TableType; + tflite::ActivationFunctionType fused_activation_function; + float cell_clip; + float proj_clip; + tflite::LSTMKernelType kernel_type; + bool asymmetric_quantize_inputs; + LSTMOptionsT() + : fused_activation_function(tflite::ActivationFunctionType_NONE), + cell_clip(0.0f), + proj_clip(0.0f), + kernel_type(tflite::LSTMKernelType_FULL), + asymmetric_quantize_inputs(false) { + } +}; + +struct LSTMOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef LSTMOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_FUSED_ACTIVATION_FUNCTION = 4, + VT_CELL_CLIP = 6, + VT_PROJ_CLIP = 8, + VT_KERNEL_TYPE = 10, + VT_ASYMMETRIC_QUANTIZE_INPUTS = 12 + }; + tflite::ActivationFunctionType fused_activation_function() const { + return static_cast(GetField(VT_FUSED_ACTIVATION_FUNCTION, 0)); + } + float cell_clip() const { + return GetField(VT_CELL_CLIP, 0.0f); + } + float proj_clip() const { + return GetField(VT_PROJ_CLIP, 0.0f); + } + tflite::LSTMKernelType kernel_type() const { + return static_cast(GetField(VT_KERNEL_TYPE, 0)); + } + bool asymmetric_quantize_inputs() const { + return GetField(VT_ASYMMETRIC_QUANTIZE_INPUTS, 0) != 0; + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_FUSED_ACTIVATION_FUNCTION) && + VerifyField(verifier, VT_CELL_CLIP) && + VerifyField(verifier, VT_PROJ_CLIP) && + VerifyField(verifier, VT_KERNEL_TYPE) && + VerifyField(verifier, VT_ASYMMETRIC_QUANTIZE_INPUTS) && + verifier.EndTable(); + } + LSTMOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(LSTMOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const LSTMOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct LSTMOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_fused_activation_function(tflite::ActivationFunctionType fused_activation_function) { + fbb_.AddElement(LSTMOptions::VT_FUSED_ACTIVATION_FUNCTION, static_cast(fused_activation_function), 0); + } + void add_cell_clip(float cell_clip) { + fbb_.AddElement(LSTMOptions::VT_CELL_CLIP, cell_clip, 0.0f); + } + void add_proj_clip(float proj_clip) { + fbb_.AddElement(LSTMOptions::VT_PROJ_CLIP, proj_clip, 0.0f); + } + void add_kernel_type(tflite::LSTMKernelType kernel_type) { + fbb_.AddElement(LSTMOptions::VT_KERNEL_TYPE, static_cast(kernel_type), 0); + } + void add_asymmetric_quantize_inputs(bool asymmetric_quantize_inputs) { + fbb_.AddElement(LSTMOptions::VT_ASYMMETRIC_QUANTIZE_INPUTS, static_cast(asymmetric_quantize_inputs), 0); + } + explicit LSTMOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + LSTMOptionsBuilder &operator=(const LSTMOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateLSTMOptions( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::ActivationFunctionType fused_activation_function = tflite::ActivationFunctionType_NONE, + float cell_clip = 0.0f, + float proj_clip = 0.0f, + tflite::LSTMKernelType kernel_type = tflite::LSTMKernelType_FULL, + bool asymmetric_quantize_inputs = false) { + LSTMOptionsBuilder builder_(_fbb); + builder_.add_proj_clip(proj_clip); + builder_.add_cell_clip(cell_clip); + builder_.add_asymmetric_quantize_inputs(asymmetric_quantize_inputs); + builder_.add_kernel_type(kernel_type); + builder_.add_fused_activation_function(fused_activation_function); + return builder_.Finish(); +} + +flatbuffers::Offset CreateLSTMOptions(flatbuffers::FlatBufferBuilder &_fbb, const LSTMOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct UnidirectionalSequenceLSTMOptionsT : public flatbuffers::NativeTable { + typedef UnidirectionalSequenceLSTMOptions TableType; + tflite::ActivationFunctionType fused_activation_function; + float cell_clip; + float proj_clip; + bool time_major; + bool asymmetric_quantize_inputs; + UnidirectionalSequenceLSTMOptionsT() + : fused_activation_function(tflite::ActivationFunctionType_NONE), + cell_clip(0.0f), + proj_clip(0.0f), + time_major(false), + asymmetric_quantize_inputs(false) { + } +}; + +struct UnidirectionalSequenceLSTMOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef UnidirectionalSequenceLSTMOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_FUSED_ACTIVATION_FUNCTION = 4, + VT_CELL_CLIP = 6, + VT_PROJ_CLIP = 8, + VT_TIME_MAJOR = 10, + VT_ASYMMETRIC_QUANTIZE_INPUTS = 12 + }; + tflite::ActivationFunctionType fused_activation_function() const { + return static_cast(GetField(VT_FUSED_ACTIVATION_FUNCTION, 0)); + } + float cell_clip() const { + return GetField(VT_CELL_CLIP, 0.0f); + } + float proj_clip() const { + return GetField(VT_PROJ_CLIP, 0.0f); + } + bool time_major() const { + return GetField(VT_TIME_MAJOR, 0) != 0; + } + bool asymmetric_quantize_inputs() const { + return GetField(VT_ASYMMETRIC_QUANTIZE_INPUTS, 0) != 0; + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_FUSED_ACTIVATION_FUNCTION) && + VerifyField(verifier, VT_CELL_CLIP) && + VerifyField(verifier, VT_PROJ_CLIP) && + VerifyField(verifier, VT_TIME_MAJOR) && + VerifyField(verifier, VT_ASYMMETRIC_QUANTIZE_INPUTS) && + verifier.EndTable(); + } + UnidirectionalSequenceLSTMOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(UnidirectionalSequenceLSTMOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const UnidirectionalSequenceLSTMOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct UnidirectionalSequenceLSTMOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_fused_activation_function(tflite::ActivationFunctionType fused_activation_function) { + fbb_.AddElement(UnidirectionalSequenceLSTMOptions::VT_FUSED_ACTIVATION_FUNCTION, static_cast(fused_activation_function), 0); + } + void add_cell_clip(float cell_clip) { + fbb_.AddElement(UnidirectionalSequenceLSTMOptions::VT_CELL_CLIP, cell_clip, 0.0f); + } + void add_proj_clip(float proj_clip) { + fbb_.AddElement(UnidirectionalSequenceLSTMOptions::VT_PROJ_CLIP, proj_clip, 0.0f); + } + void add_time_major(bool time_major) { + fbb_.AddElement(UnidirectionalSequenceLSTMOptions::VT_TIME_MAJOR, static_cast(time_major), 0); + } + void add_asymmetric_quantize_inputs(bool asymmetric_quantize_inputs) { + fbb_.AddElement(UnidirectionalSequenceLSTMOptions::VT_ASYMMETRIC_QUANTIZE_INPUTS, static_cast(asymmetric_quantize_inputs), 0); + } + explicit UnidirectionalSequenceLSTMOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + UnidirectionalSequenceLSTMOptionsBuilder &operator=(const UnidirectionalSequenceLSTMOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateUnidirectionalSequenceLSTMOptions( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::ActivationFunctionType fused_activation_function = tflite::ActivationFunctionType_NONE, + float cell_clip = 0.0f, + float proj_clip = 0.0f, + bool time_major = false, + bool asymmetric_quantize_inputs = false) { + UnidirectionalSequenceLSTMOptionsBuilder builder_(_fbb); + builder_.add_proj_clip(proj_clip); + builder_.add_cell_clip(cell_clip); + builder_.add_asymmetric_quantize_inputs(asymmetric_quantize_inputs); + builder_.add_time_major(time_major); + builder_.add_fused_activation_function(fused_activation_function); + return builder_.Finish(); +} + +flatbuffers::Offset CreateUnidirectionalSequenceLSTMOptions(flatbuffers::FlatBufferBuilder &_fbb, const UnidirectionalSequenceLSTMOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct BidirectionalSequenceLSTMOptionsT : public flatbuffers::NativeTable { + typedef BidirectionalSequenceLSTMOptions TableType; + tflite::ActivationFunctionType fused_activation_function; + float cell_clip; + float proj_clip; + bool merge_outputs; + bool time_major; + bool asymmetric_quantize_inputs; + BidirectionalSequenceLSTMOptionsT() + : fused_activation_function(tflite::ActivationFunctionType_NONE), + cell_clip(0.0f), + proj_clip(0.0f), + merge_outputs(false), + time_major(true), + asymmetric_quantize_inputs(false) { + } +}; + +struct BidirectionalSequenceLSTMOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef BidirectionalSequenceLSTMOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_FUSED_ACTIVATION_FUNCTION = 4, + VT_CELL_CLIP = 6, + VT_PROJ_CLIP = 8, + VT_MERGE_OUTPUTS = 10, + VT_TIME_MAJOR = 12, + VT_ASYMMETRIC_QUANTIZE_INPUTS = 14 + }; + tflite::ActivationFunctionType fused_activation_function() const { + return static_cast(GetField(VT_FUSED_ACTIVATION_FUNCTION, 0)); + } + float cell_clip() const { + return GetField(VT_CELL_CLIP, 0.0f); + } + float proj_clip() const { + return GetField(VT_PROJ_CLIP, 0.0f); + } + bool merge_outputs() const { + return GetField(VT_MERGE_OUTPUTS, 0) != 0; + } + bool time_major() const { + return GetField(VT_TIME_MAJOR, 1) != 0; + } + bool asymmetric_quantize_inputs() const { + return GetField(VT_ASYMMETRIC_QUANTIZE_INPUTS, 0) != 0; + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_FUSED_ACTIVATION_FUNCTION) && + VerifyField(verifier, VT_CELL_CLIP) && + VerifyField(verifier, VT_PROJ_CLIP) && + VerifyField(verifier, VT_MERGE_OUTPUTS) && + VerifyField(verifier, VT_TIME_MAJOR) && + VerifyField(verifier, VT_ASYMMETRIC_QUANTIZE_INPUTS) && + verifier.EndTable(); + } + BidirectionalSequenceLSTMOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(BidirectionalSequenceLSTMOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const BidirectionalSequenceLSTMOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct BidirectionalSequenceLSTMOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_fused_activation_function(tflite::ActivationFunctionType fused_activation_function) { + fbb_.AddElement(BidirectionalSequenceLSTMOptions::VT_FUSED_ACTIVATION_FUNCTION, static_cast(fused_activation_function), 0); + } + void add_cell_clip(float cell_clip) { + fbb_.AddElement(BidirectionalSequenceLSTMOptions::VT_CELL_CLIP, cell_clip, 0.0f); + } + void add_proj_clip(float proj_clip) { + fbb_.AddElement(BidirectionalSequenceLSTMOptions::VT_PROJ_CLIP, proj_clip, 0.0f); + } + void add_merge_outputs(bool merge_outputs) { + fbb_.AddElement(BidirectionalSequenceLSTMOptions::VT_MERGE_OUTPUTS, static_cast(merge_outputs), 0); + } + void add_time_major(bool time_major) { + fbb_.AddElement(BidirectionalSequenceLSTMOptions::VT_TIME_MAJOR, static_cast(time_major), 1); + } + void add_asymmetric_quantize_inputs(bool asymmetric_quantize_inputs) { + fbb_.AddElement(BidirectionalSequenceLSTMOptions::VT_ASYMMETRIC_QUANTIZE_INPUTS, static_cast(asymmetric_quantize_inputs), 0); + } + explicit BidirectionalSequenceLSTMOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + BidirectionalSequenceLSTMOptionsBuilder &operator=(const BidirectionalSequenceLSTMOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateBidirectionalSequenceLSTMOptions( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::ActivationFunctionType fused_activation_function = tflite::ActivationFunctionType_NONE, + float cell_clip = 0.0f, + float proj_clip = 0.0f, + bool merge_outputs = false, + bool time_major = true, + bool asymmetric_quantize_inputs = false) { + BidirectionalSequenceLSTMOptionsBuilder builder_(_fbb); + builder_.add_proj_clip(proj_clip); + builder_.add_cell_clip(cell_clip); + builder_.add_asymmetric_quantize_inputs(asymmetric_quantize_inputs); + builder_.add_time_major(time_major); + builder_.add_merge_outputs(merge_outputs); + builder_.add_fused_activation_function(fused_activation_function); + return builder_.Finish(); +} + +flatbuffers::Offset CreateBidirectionalSequenceLSTMOptions(flatbuffers::FlatBufferBuilder &_fbb, const BidirectionalSequenceLSTMOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct ResizeBilinearOptionsT : public flatbuffers::NativeTable { + typedef ResizeBilinearOptions TableType; + bool align_corners; + bool half_pixel_centers; + ResizeBilinearOptionsT() + : align_corners(false), + half_pixel_centers(false) { + } +}; + +struct ResizeBilinearOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef ResizeBilinearOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_ALIGN_CORNERS = 8, + VT_HALF_PIXEL_CENTERS = 10 + }; + bool align_corners() const { + return GetField(VT_ALIGN_CORNERS, 0) != 0; + } + bool half_pixel_centers() const { + return GetField(VT_HALF_PIXEL_CENTERS, 0) != 0; + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_ALIGN_CORNERS) && + VerifyField(verifier, VT_HALF_PIXEL_CENTERS) && + verifier.EndTable(); + } + ResizeBilinearOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(ResizeBilinearOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const ResizeBilinearOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct ResizeBilinearOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_align_corners(bool align_corners) { + fbb_.AddElement(ResizeBilinearOptions::VT_ALIGN_CORNERS, static_cast(align_corners), 0); + } + void add_half_pixel_centers(bool half_pixel_centers) { + fbb_.AddElement(ResizeBilinearOptions::VT_HALF_PIXEL_CENTERS, static_cast(half_pixel_centers), 0); + } + explicit ResizeBilinearOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ResizeBilinearOptionsBuilder &operator=(const ResizeBilinearOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateResizeBilinearOptions( + flatbuffers::FlatBufferBuilder &_fbb, + bool align_corners = false, + bool half_pixel_centers = false) { + ResizeBilinearOptionsBuilder builder_(_fbb); + builder_.add_half_pixel_centers(half_pixel_centers); + builder_.add_align_corners(align_corners); + return builder_.Finish(); +} + +flatbuffers::Offset CreateResizeBilinearOptions(flatbuffers::FlatBufferBuilder &_fbb, const ResizeBilinearOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct ResizeNearestNeighborOptionsT : public flatbuffers::NativeTable { + typedef ResizeNearestNeighborOptions TableType; + bool align_corners; + bool half_pixel_centers; + ResizeNearestNeighborOptionsT() + : align_corners(false), + half_pixel_centers(false) { + } +}; + +struct ResizeNearestNeighborOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef ResizeNearestNeighborOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_ALIGN_CORNERS = 4, + VT_HALF_PIXEL_CENTERS = 6 + }; + bool align_corners() const { + return GetField(VT_ALIGN_CORNERS, 0) != 0; + } + bool half_pixel_centers() const { + return GetField(VT_HALF_PIXEL_CENTERS, 0) != 0; + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_ALIGN_CORNERS) && + VerifyField(verifier, VT_HALF_PIXEL_CENTERS) && + verifier.EndTable(); + } + ResizeNearestNeighborOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(ResizeNearestNeighborOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const ResizeNearestNeighborOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct ResizeNearestNeighborOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_align_corners(bool align_corners) { + fbb_.AddElement(ResizeNearestNeighborOptions::VT_ALIGN_CORNERS, static_cast(align_corners), 0); + } + void add_half_pixel_centers(bool half_pixel_centers) { + fbb_.AddElement(ResizeNearestNeighborOptions::VT_HALF_PIXEL_CENTERS, static_cast(half_pixel_centers), 0); + } + explicit ResizeNearestNeighborOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ResizeNearestNeighborOptionsBuilder &operator=(const ResizeNearestNeighborOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateResizeNearestNeighborOptions( + flatbuffers::FlatBufferBuilder &_fbb, + bool align_corners = false, + bool half_pixel_centers = false) { + ResizeNearestNeighborOptionsBuilder builder_(_fbb); + builder_.add_half_pixel_centers(half_pixel_centers); + builder_.add_align_corners(align_corners); + return builder_.Finish(); +} + +flatbuffers::Offset CreateResizeNearestNeighborOptions(flatbuffers::FlatBufferBuilder &_fbb, const ResizeNearestNeighborOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct CallOptionsT : public flatbuffers::NativeTable { + typedef CallOptions TableType; + uint32_t subgraph; + CallOptionsT() + : subgraph(0) { + } +}; + +struct CallOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef CallOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_SUBGRAPH = 4 + }; + uint32_t subgraph() const { + return GetField(VT_SUBGRAPH, 0); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_SUBGRAPH) && + verifier.EndTable(); + } + CallOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(CallOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const CallOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct CallOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_subgraph(uint32_t subgraph) { + fbb_.AddElement(CallOptions::VT_SUBGRAPH, subgraph, 0); + } + explicit CallOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + CallOptionsBuilder &operator=(const CallOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateCallOptions( + flatbuffers::FlatBufferBuilder &_fbb, + uint32_t subgraph = 0) { + CallOptionsBuilder builder_(_fbb); + builder_.add_subgraph(subgraph); + return builder_.Finish(); +} + +flatbuffers::Offset CreateCallOptions(flatbuffers::FlatBufferBuilder &_fbb, const CallOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct PadOptionsT : public flatbuffers::NativeTable { + typedef PadOptions TableType; + PadOptionsT() { + } +}; + +struct PadOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef PadOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + PadOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(PadOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const PadOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct PadOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit PadOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + PadOptionsBuilder &operator=(const PadOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreatePadOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + PadOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreatePadOptions(flatbuffers::FlatBufferBuilder &_fbb, const PadOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct PadV2OptionsT : public flatbuffers::NativeTable { + typedef PadV2Options TableType; + PadV2OptionsT() { + } +}; + +struct PadV2Options FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef PadV2OptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + PadV2OptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(PadV2OptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const PadV2OptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct PadV2OptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit PadV2OptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + PadV2OptionsBuilder &operator=(const PadV2OptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreatePadV2Options( + flatbuffers::FlatBufferBuilder &_fbb) { + PadV2OptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreatePadV2Options(flatbuffers::FlatBufferBuilder &_fbb, const PadV2OptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct ReshapeOptionsT : public flatbuffers::NativeTable { + typedef ReshapeOptions TableType; + std::vector new_shape; + ReshapeOptionsT() { + } +}; + +struct ReshapeOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef ReshapeOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_NEW_SHAPE = 4 + }; + const flatbuffers::Vector *new_shape() const { + return GetPointer *>(VT_NEW_SHAPE); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyOffset(verifier, VT_NEW_SHAPE) && + verifier.VerifyVector(new_shape()) && + verifier.EndTable(); + } + ReshapeOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(ReshapeOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const ReshapeOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct ReshapeOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_new_shape(flatbuffers::Offset> new_shape) { + fbb_.AddOffset(ReshapeOptions::VT_NEW_SHAPE, new_shape); + } + explicit ReshapeOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ReshapeOptionsBuilder &operator=(const ReshapeOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateReshapeOptions( + flatbuffers::FlatBufferBuilder &_fbb, + flatbuffers::Offset> new_shape = 0) { + ReshapeOptionsBuilder builder_(_fbb); + builder_.add_new_shape(new_shape); + return builder_.Finish(); +} + +inline flatbuffers::Offset CreateReshapeOptionsDirect( + flatbuffers::FlatBufferBuilder &_fbb, + const std::vector *new_shape = nullptr) { + auto new_shape__ = new_shape ? _fbb.CreateVector(*new_shape) : 0; + return tflite::CreateReshapeOptions( + _fbb, + new_shape__); +} + +flatbuffers::Offset CreateReshapeOptions(flatbuffers::FlatBufferBuilder &_fbb, const ReshapeOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct SpaceToBatchNDOptionsT : public flatbuffers::NativeTable { + typedef SpaceToBatchNDOptions TableType; + SpaceToBatchNDOptionsT() { + } +}; + +struct SpaceToBatchNDOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef SpaceToBatchNDOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + SpaceToBatchNDOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(SpaceToBatchNDOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const SpaceToBatchNDOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct SpaceToBatchNDOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit SpaceToBatchNDOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + SpaceToBatchNDOptionsBuilder &operator=(const SpaceToBatchNDOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateSpaceToBatchNDOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + SpaceToBatchNDOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateSpaceToBatchNDOptions(flatbuffers::FlatBufferBuilder &_fbb, const SpaceToBatchNDOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct BatchToSpaceNDOptionsT : public flatbuffers::NativeTable { + typedef BatchToSpaceNDOptions TableType; + BatchToSpaceNDOptionsT() { + } +}; + +struct BatchToSpaceNDOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef BatchToSpaceNDOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + BatchToSpaceNDOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(BatchToSpaceNDOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const BatchToSpaceNDOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct BatchToSpaceNDOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit BatchToSpaceNDOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + BatchToSpaceNDOptionsBuilder &operator=(const BatchToSpaceNDOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateBatchToSpaceNDOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + BatchToSpaceNDOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateBatchToSpaceNDOptions(flatbuffers::FlatBufferBuilder &_fbb, const BatchToSpaceNDOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct SkipGramOptionsT : public flatbuffers::NativeTable { + typedef SkipGramOptions TableType; + int32_t ngram_size; + int32_t max_skip_size; + bool include_all_ngrams; + SkipGramOptionsT() + : ngram_size(0), + max_skip_size(0), + include_all_ngrams(false) { + } +}; + +struct SkipGramOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef SkipGramOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_NGRAM_SIZE = 4, + VT_MAX_SKIP_SIZE = 6, + VT_INCLUDE_ALL_NGRAMS = 8 + }; + int32_t ngram_size() const { + return GetField(VT_NGRAM_SIZE, 0); + } + int32_t max_skip_size() const { + return GetField(VT_MAX_SKIP_SIZE, 0); + } + bool include_all_ngrams() const { + return GetField(VT_INCLUDE_ALL_NGRAMS, 0) != 0; + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_NGRAM_SIZE) && + VerifyField(verifier, VT_MAX_SKIP_SIZE) && + VerifyField(verifier, VT_INCLUDE_ALL_NGRAMS) && + verifier.EndTable(); + } + SkipGramOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(SkipGramOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const SkipGramOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct SkipGramOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_ngram_size(int32_t ngram_size) { + fbb_.AddElement(SkipGramOptions::VT_NGRAM_SIZE, ngram_size, 0); + } + void add_max_skip_size(int32_t max_skip_size) { + fbb_.AddElement(SkipGramOptions::VT_MAX_SKIP_SIZE, max_skip_size, 0); + } + void add_include_all_ngrams(bool include_all_ngrams) { + fbb_.AddElement(SkipGramOptions::VT_INCLUDE_ALL_NGRAMS, static_cast(include_all_ngrams), 0); + } + explicit SkipGramOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + SkipGramOptionsBuilder &operator=(const SkipGramOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateSkipGramOptions( + flatbuffers::FlatBufferBuilder &_fbb, + int32_t ngram_size = 0, + int32_t max_skip_size = 0, + bool include_all_ngrams = false) { + SkipGramOptionsBuilder builder_(_fbb); + builder_.add_max_skip_size(max_skip_size); + builder_.add_ngram_size(ngram_size); + builder_.add_include_all_ngrams(include_all_ngrams); + return builder_.Finish(); +} + +flatbuffers::Offset CreateSkipGramOptions(flatbuffers::FlatBufferBuilder &_fbb, const SkipGramOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct SpaceToDepthOptionsT : public flatbuffers::NativeTable { + typedef SpaceToDepthOptions TableType; + int32_t block_size; + SpaceToDepthOptionsT() + : block_size(0) { + } +}; + +struct SpaceToDepthOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef SpaceToDepthOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_BLOCK_SIZE = 4 + }; + int32_t block_size() const { + return GetField(VT_BLOCK_SIZE, 0); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_BLOCK_SIZE) && + verifier.EndTable(); + } + SpaceToDepthOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(SpaceToDepthOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const SpaceToDepthOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct SpaceToDepthOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_block_size(int32_t block_size) { + fbb_.AddElement(SpaceToDepthOptions::VT_BLOCK_SIZE, block_size, 0); + } + explicit SpaceToDepthOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + SpaceToDepthOptionsBuilder &operator=(const SpaceToDepthOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateSpaceToDepthOptions( + flatbuffers::FlatBufferBuilder &_fbb, + int32_t block_size = 0) { + SpaceToDepthOptionsBuilder builder_(_fbb); + builder_.add_block_size(block_size); + return builder_.Finish(); +} + +flatbuffers::Offset CreateSpaceToDepthOptions(flatbuffers::FlatBufferBuilder &_fbb, const SpaceToDepthOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct DepthToSpaceOptionsT : public flatbuffers::NativeTable { + typedef DepthToSpaceOptions TableType; + int32_t block_size; + DepthToSpaceOptionsT() + : block_size(0) { + } +}; + +struct DepthToSpaceOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef DepthToSpaceOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_BLOCK_SIZE = 4 + }; + int32_t block_size() const { + return GetField(VT_BLOCK_SIZE, 0); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_BLOCK_SIZE) && + verifier.EndTable(); + } + DepthToSpaceOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(DepthToSpaceOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const DepthToSpaceOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct DepthToSpaceOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_block_size(int32_t block_size) { + fbb_.AddElement(DepthToSpaceOptions::VT_BLOCK_SIZE, block_size, 0); + } + explicit DepthToSpaceOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + DepthToSpaceOptionsBuilder &operator=(const DepthToSpaceOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateDepthToSpaceOptions( + flatbuffers::FlatBufferBuilder &_fbb, + int32_t block_size = 0) { + DepthToSpaceOptionsBuilder builder_(_fbb); + builder_.add_block_size(block_size); + return builder_.Finish(); +} + +flatbuffers::Offset CreateDepthToSpaceOptions(flatbuffers::FlatBufferBuilder &_fbb, const DepthToSpaceOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct SubOptionsT : public flatbuffers::NativeTable { + typedef SubOptions TableType; + bool pot_scale_int16; + tflite::ActivationFunctionType fused_activation_function; + SubOptionsT() + : pot_scale_int16(true), + fused_activation_function(tflite::ActivationFunctionType_NONE) { + } +}; + +struct SubOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef SubOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_FUSED_ACTIVATION_FUNCTION = 4, + VT_POT_SCALE_INT16 = 6 + }; + bool pot_scale_int16() const { + return GetField(VT_POT_SCALE_INT16, 0) != 0; + } + tflite::ActivationFunctionType fused_activation_function() const { + return static_cast(GetField(VT_FUSED_ACTIVATION_FUNCTION, 0)); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_POT_SCALE_INT16) && + VerifyField(verifier, VT_FUSED_ACTIVATION_FUNCTION) && + verifier.EndTable(); + } + SubOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(SubOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const SubOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct SubOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_fused_activation_function(tflite::ActivationFunctionType fused_activation_function) { + fbb_.AddElement(SubOptions::VT_FUSED_ACTIVATION_FUNCTION, static_cast(fused_activation_function), 0); + } + explicit SubOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + SubOptionsBuilder &operator=(const SubOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateSubOptions( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::ActivationFunctionType fused_activation_function = tflite::ActivationFunctionType_NONE) { + SubOptionsBuilder builder_(_fbb); + builder_.add_fused_activation_function(fused_activation_function); + return builder_.Finish(); +} + +flatbuffers::Offset CreateSubOptions(flatbuffers::FlatBufferBuilder &_fbb, const SubOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct DivOptionsT : public flatbuffers::NativeTable { + typedef DivOptions TableType; + tflite::ActivationFunctionType fused_activation_function; + DivOptionsT() + : fused_activation_function(tflite::ActivationFunctionType_NONE) { + } +}; + +struct DivOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef DivOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_FUSED_ACTIVATION_FUNCTION = 4 + }; + tflite::ActivationFunctionType fused_activation_function() const { + return static_cast(GetField(VT_FUSED_ACTIVATION_FUNCTION, 0)); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_FUSED_ACTIVATION_FUNCTION) && + verifier.EndTable(); + } + DivOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(DivOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const DivOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct DivOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_fused_activation_function(tflite::ActivationFunctionType fused_activation_function) { + fbb_.AddElement(DivOptions::VT_FUSED_ACTIVATION_FUNCTION, static_cast(fused_activation_function), 0); + } + explicit DivOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + DivOptionsBuilder &operator=(const DivOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateDivOptions( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::ActivationFunctionType fused_activation_function = tflite::ActivationFunctionType_NONE) { + DivOptionsBuilder builder_(_fbb); + builder_.add_fused_activation_function(fused_activation_function); + return builder_.Finish(); +} + +flatbuffers::Offset CreateDivOptions(flatbuffers::FlatBufferBuilder &_fbb, const DivOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct TopKV2OptionsT : public flatbuffers::NativeTable { + typedef TopKV2Options TableType; + TopKV2OptionsT() { + } +}; + +struct TopKV2Options FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef TopKV2OptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + TopKV2OptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(TopKV2OptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const TopKV2OptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct TopKV2OptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit TopKV2OptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + TopKV2OptionsBuilder &operator=(const TopKV2OptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateTopKV2Options( + flatbuffers::FlatBufferBuilder &_fbb) { + TopKV2OptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateTopKV2Options(flatbuffers::FlatBufferBuilder &_fbb, const TopKV2OptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct EmbeddingLookupSparseOptionsT : public flatbuffers::NativeTable { + typedef EmbeddingLookupSparseOptions TableType; + tflite::CombinerType combiner; + EmbeddingLookupSparseOptionsT() + : combiner(tflite::CombinerType_SUM) { + } +}; + +struct EmbeddingLookupSparseOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef EmbeddingLookupSparseOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_COMBINER = 4 + }; + tflite::CombinerType combiner() const { + return static_cast(GetField(VT_COMBINER, 0)); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_COMBINER) && + verifier.EndTable(); + } + EmbeddingLookupSparseOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(EmbeddingLookupSparseOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const EmbeddingLookupSparseOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct EmbeddingLookupSparseOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_combiner(tflite::CombinerType combiner) { + fbb_.AddElement(EmbeddingLookupSparseOptions::VT_COMBINER, static_cast(combiner), 0); + } + explicit EmbeddingLookupSparseOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + EmbeddingLookupSparseOptionsBuilder &operator=(const EmbeddingLookupSparseOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateEmbeddingLookupSparseOptions( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::CombinerType combiner = tflite::CombinerType_SUM) { + EmbeddingLookupSparseOptionsBuilder builder_(_fbb); + builder_.add_combiner(combiner); + return builder_.Finish(); +} + +flatbuffers::Offset CreateEmbeddingLookupSparseOptions(flatbuffers::FlatBufferBuilder &_fbb, const EmbeddingLookupSparseOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct GatherOptionsT : public flatbuffers::NativeTable { + typedef GatherOptions TableType; + int32_t axis; + GatherOptionsT() + : axis(0) { + } +}; + +struct GatherOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef GatherOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_AXIS = 4 + }; + int32_t axis() const { + return GetField(VT_AXIS, 0); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_AXIS) && + verifier.EndTable(); + } + GatherOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(GatherOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const GatherOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct GatherOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_axis(int32_t axis) { + fbb_.AddElement(GatherOptions::VT_AXIS, axis, 0); + } + explicit GatherOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + GatherOptionsBuilder &operator=(const GatherOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateGatherOptions( + flatbuffers::FlatBufferBuilder &_fbb, + int32_t axis = 0) { + GatherOptionsBuilder builder_(_fbb); + builder_.add_axis(axis); + return builder_.Finish(); +} + +flatbuffers::Offset CreateGatherOptions(flatbuffers::FlatBufferBuilder &_fbb, const GatherOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct TransposeOptionsT : public flatbuffers::NativeTable { + typedef TransposeOptions TableType; + TransposeOptionsT() { + } +}; + +struct TransposeOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef TransposeOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + TransposeOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(TransposeOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const TransposeOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct TransposeOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit TransposeOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + TransposeOptionsBuilder &operator=(const TransposeOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateTransposeOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + TransposeOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateTransposeOptions(flatbuffers::FlatBufferBuilder &_fbb, const TransposeOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct ExpOptionsT : public flatbuffers::NativeTable { + typedef ExpOptions TableType; + ExpOptionsT() { + } +}; + +struct ExpOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef ExpOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + ExpOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(ExpOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const ExpOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct ExpOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit ExpOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ExpOptionsBuilder &operator=(const ExpOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateExpOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + ExpOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateExpOptions(flatbuffers::FlatBufferBuilder &_fbb, const ExpOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct CosOptionsT : public flatbuffers::NativeTable { + typedef CosOptions TableType; + CosOptionsT() { + } +}; + +struct CosOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef CosOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + CosOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(CosOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const CosOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct CosOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit CosOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + CosOptionsBuilder &operator=(const CosOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateCosOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + CosOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateCosOptions(flatbuffers::FlatBufferBuilder &_fbb, const CosOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct ReducerOptionsT : public flatbuffers::NativeTable { + typedef ReducerOptions TableType; + bool keep_dims; + ReducerOptionsT() + : keep_dims(false) { + } +}; + +struct ReducerOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef ReducerOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_KEEP_DIMS = 4 + }; + bool keep_dims() const { + return GetField(VT_KEEP_DIMS, 0) != 0; + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_KEEP_DIMS) && + verifier.EndTable(); + } + ReducerOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(ReducerOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const ReducerOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct ReducerOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_keep_dims(bool keep_dims) { + fbb_.AddElement(ReducerOptions::VT_KEEP_DIMS, static_cast(keep_dims), 0); + } + explicit ReducerOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ReducerOptionsBuilder &operator=(const ReducerOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateReducerOptions( + flatbuffers::FlatBufferBuilder &_fbb, + bool keep_dims = false) { + ReducerOptionsBuilder builder_(_fbb); + builder_.add_keep_dims(keep_dims); + return builder_.Finish(); +} + +flatbuffers::Offset CreateReducerOptions(flatbuffers::FlatBufferBuilder &_fbb, const ReducerOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct SqueezeOptionsT : public flatbuffers::NativeTable { + typedef SqueezeOptions TableType; + std::vector squeeze_dims; + SqueezeOptionsT() { + } +}; + +struct SqueezeOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef SqueezeOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_SQUEEZE_DIMS = 4 + }; + const flatbuffers::Vector *squeeze_dims() const { + return GetPointer *>(VT_SQUEEZE_DIMS); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyOffset(verifier, VT_SQUEEZE_DIMS) && + verifier.VerifyVector(squeeze_dims()) && + verifier.EndTable(); + } + SqueezeOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(SqueezeOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const SqueezeOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct SqueezeOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_squeeze_dims(flatbuffers::Offset> squeeze_dims) { + fbb_.AddOffset(SqueezeOptions::VT_SQUEEZE_DIMS, squeeze_dims); + } + explicit SqueezeOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + SqueezeOptionsBuilder &operator=(const SqueezeOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateSqueezeOptions( + flatbuffers::FlatBufferBuilder &_fbb, + flatbuffers::Offset> squeeze_dims = 0) { + SqueezeOptionsBuilder builder_(_fbb); + builder_.add_squeeze_dims(squeeze_dims); + return builder_.Finish(); +} + +inline flatbuffers::Offset CreateSqueezeOptionsDirect( + flatbuffers::FlatBufferBuilder &_fbb, + const std::vector *squeeze_dims = nullptr) { + auto squeeze_dims__ = squeeze_dims ? _fbb.CreateVector(*squeeze_dims) : 0; + return tflite::CreateSqueezeOptions( + _fbb, + squeeze_dims__); +} + +flatbuffers::Offset CreateSqueezeOptions(flatbuffers::FlatBufferBuilder &_fbb, const SqueezeOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct SplitOptionsT : public flatbuffers::NativeTable { + typedef SplitOptions TableType; + int32_t num_splits; + SplitOptionsT() + : num_splits(0) { + } +}; + +struct SplitOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef SplitOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_NUM_SPLITS = 4 + }; + int32_t num_splits() const { + return GetField(VT_NUM_SPLITS, 0); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_NUM_SPLITS) && + verifier.EndTable(); + } + SplitOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(SplitOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const SplitOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct SplitOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_num_splits(int32_t num_splits) { + fbb_.AddElement(SplitOptions::VT_NUM_SPLITS, num_splits, 0); + } + explicit SplitOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + SplitOptionsBuilder &operator=(const SplitOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateSplitOptions( + flatbuffers::FlatBufferBuilder &_fbb, + int32_t num_splits = 0) { + SplitOptionsBuilder builder_(_fbb); + builder_.add_num_splits(num_splits); + return builder_.Finish(); +} + +flatbuffers::Offset CreateSplitOptions(flatbuffers::FlatBufferBuilder &_fbb, const SplitOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct SplitVOptionsT : public flatbuffers::NativeTable { + typedef SplitVOptions TableType; + int32_t num_splits; + SplitVOptionsT() + : num_splits(0) { + } +}; + +struct SplitVOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef SplitVOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_NUM_SPLITS = 4 + }; + int32_t num_splits() const { + return GetField(VT_NUM_SPLITS, 0); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_NUM_SPLITS) && + verifier.EndTable(); + } + SplitVOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(SplitVOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const SplitVOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct SplitVOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_num_splits(int32_t num_splits) { + fbb_.AddElement(SplitVOptions::VT_NUM_SPLITS, num_splits, 0); + } + explicit SplitVOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + SplitVOptionsBuilder &operator=(const SplitVOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateSplitVOptions( + flatbuffers::FlatBufferBuilder &_fbb, + int32_t num_splits = 0) { + SplitVOptionsBuilder builder_(_fbb); + builder_.add_num_splits(num_splits); + return builder_.Finish(); +} + +flatbuffers::Offset CreateSplitVOptions(flatbuffers::FlatBufferBuilder &_fbb, const SplitVOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct StridedSliceOptionsT : public flatbuffers::NativeTable { + typedef StridedSliceOptions TableType; + int32_t begin_mask; + int32_t end_mask; + int32_t ellipsis_mask; + int32_t new_axis_mask; + int32_t shrink_axis_mask; + StridedSliceOptionsT() + : begin_mask(0), + end_mask(0), + ellipsis_mask(0), + new_axis_mask(0), + shrink_axis_mask(0) { + } +}; + +struct StridedSliceOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef StridedSliceOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_BEGIN_MASK = 4, + VT_END_MASK = 6, + VT_ELLIPSIS_MASK = 8, + VT_NEW_AXIS_MASK = 10, + VT_SHRINK_AXIS_MASK = 12 + }; + int32_t begin_mask() const { + return GetField(VT_BEGIN_MASK, 0); + } + int32_t end_mask() const { + return GetField(VT_END_MASK, 0); + } + int32_t ellipsis_mask() const { + return GetField(VT_ELLIPSIS_MASK, 0); + } + int32_t new_axis_mask() const { + return GetField(VT_NEW_AXIS_MASK, 0); + } + int32_t shrink_axis_mask() const { + return GetField(VT_SHRINK_AXIS_MASK, 0); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_BEGIN_MASK) && + VerifyField(verifier, VT_END_MASK) && + VerifyField(verifier, VT_ELLIPSIS_MASK) && + VerifyField(verifier, VT_NEW_AXIS_MASK) && + VerifyField(verifier, VT_SHRINK_AXIS_MASK) && + verifier.EndTable(); + } + StridedSliceOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(StridedSliceOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const StridedSliceOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct StridedSliceOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_begin_mask(int32_t begin_mask) { + fbb_.AddElement(StridedSliceOptions::VT_BEGIN_MASK, begin_mask, 0); + } + void add_end_mask(int32_t end_mask) { + fbb_.AddElement(StridedSliceOptions::VT_END_MASK, end_mask, 0); + } + void add_ellipsis_mask(int32_t ellipsis_mask) { + fbb_.AddElement(StridedSliceOptions::VT_ELLIPSIS_MASK, ellipsis_mask, 0); + } + void add_new_axis_mask(int32_t new_axis_mask) { + fbb_.AddElement(StridedSliceOptions::VT_NEW_AXIS_MASK, new_axis_mask, 0); + } + void add_shrink_axis_mask(int32_t shrink_axis_mask) { + fbb_.AddElement(StridedSliceOptions::VT_SHRINK_AXIS_MASK, shrink_axis_mask, 0); + } + explicit StridedSliceOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + StridedSliceOptionsBuilder &operator=(const StridedSliceOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateStridedSliceOptions( + flatbuffers::FlatBufferBuilder &_fbb, + int32_t begin_mask = 0, + int32_t end_mask = 0, + int32_t ellipsis_mask = 0, + int32_t new_axis_mask = 0, + int32_t shrink_axis_mask = 0) { + StridedSliceOptionsBuilder builder_(_fbb); + builder_.add_shrink_axis_mask(shrink_axis_mask); + builder_.add_new_axis_mask(new_axis_mask); + builder_.add_ellipsis_mask(ellipsis_mask); + builder_.add_end_mask(end_mask); + builder_.add_begin_mask(begin_mask); + return builder_.Finish(); +} + +flatbuffers::Offset CreateStridedSliceOptions(flatbuffers::FlatBufferBuilder &_fbb, const StridedSliceOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct LogSoftmaxOptionsT : public flatbuffers::NativeTable { + typedef LogSoftmaxOptions TableType; + LogSoftmaxOptionsT() { + } +}; + +struct LogSoftmaxOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef LogSoftmaxOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + LogSoftmaxOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(LogSoftmaxOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const LogSoftmaxOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct LogSoftmaxOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit LogSoftmaxOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + LogSoftmaxOptionsBuilder &operator=(const LogSoftmaxOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateLogSoftmaxOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + LogSoftmaxOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateLogSoftmaxOptions(flatbuffers::FlatBufferBuilder &_fbb, const LogSoftmaxOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct CastOptionsT : public flatbuffers::NativeTable { + typedef CastOptions TableType; + tflite::TensorType in_data_type; + tflite::TensorType out_data_type; + CastOptionsT() + : in_data_type(tflite::TensorType_FLOAT32), + out_data_type(tflite::TensorType_FLOAT32) { + } +}; + +struct CastOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef CastOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_IN_DATA_TYPE = 4, + VT_OUT_DATA_TYPE = 6 + }; + tflite::TensorType in_data_type() const { + return static_cast(GetField(VT_IN_DATA_TYPE, 0)); + } + tflite::TensorType out_data_type() const { + return static_cast(GetField(VT_OUT_DATA_TYPE, 0)); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_IN_DATA_TYPE) && + VerifyField(verifier, VT_OUT_DATA_TYPE) && + verifier.EndTable(); + } + CastOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(CastOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const CastOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct CastOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_in_data_type(tflite::TensorType in_data_type) { + fbb_.AddElement(CastOptions::VT_IN_DATA_TYPE, static_cast(in_data_type), 0); + } + void add_out_data_type(tflite::TensorType out_data_type) { + fbb_.AddElement(CastOptions::VT_OUT_DATA_TYPE, static_cast(out_data_type), 0); + } + explicit CastOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + CastOptionsBuilder &operator=(const CastOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateCastOptions( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::TensorType in_data_type = tflite::TensorType_FLOAT32, + tflite::TensorType out_data_type = tflite::TensorType_FLOAT32) { + CastOptionsBuilder builder_(_fbb); + builder_.add_out_data_type(out_data_type); + builder_.add_in_data_type(in_data_type); + return builder_.Finish(); +} + +flatbuffers::Offset CreateCastOptions(flatbuffers::FlatBufferBuilder &_fbb, const CastOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct DequantizeOptionsT : public flatbuffers::NativeTable { + typedef DequantizeOptions TableType; + DequantizeOptionsT() { + } +}; + +struct DequantizeOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef DequantizeOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + DequantizeOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(DequantizeOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const DequantizeOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct DequantizeOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit DequantizeOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + DequantizeOptionsBuilder &operator=(const DequantizeOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateDequantizeOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + DequantizeOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateDequantizeOptions(flatbuffers::FlatBufferBuilder &_fbb, const DequantizeOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct MaximumMinimumOptionsT : public flatbuffers::NativeTable { + typedef MaximumMinimumOptions TableType; + MaximumMinimumOptionsT() { + } +}; + +struct MaximumMinimumOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef MaximumMinimumOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + MaximumMinimumOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(MaximumMinimumOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const MaximumMinimumOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct MaximumMinimumOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit MaximumMinimumOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + MaximumMinimumOptionsBuilder &operator=(const MaximumMinimumOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateMaximumMinimumOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + MaximumMinimumOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateMaximumMinimumOptions(flatbuffers::FlatBufferBuilder &_fbb, const MaximumMinimumOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct TileOptionsT : public flatbuffers::NativeTable { + typedef TileOptions TableType; + TileOptionsT() { + } +}; + +struct TileOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef TileOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + TileOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(TileOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const TileOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct TileOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit TileOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + TileOptionsBuilder &operator=(const TileOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateTileOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + TileOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateTileOptions(flatbuffers::FlatBufferBuilder &_fbb, const TileOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct ArgMaxOptionsT : public flatbuffers::NativeTable { + typedef ArgMaxOptions TableType; + tflite::TensorType output_type; + ArgMaxOptionsT() + : output_type(tflite::TensorType_FLOAT32) { + } +}; + +struct ArgMaxOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef ArgMaxOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_OUTPUT_TYPE = 4 + }; + tflite::TensorType output_type() const { + return static_cast(GetField(VT_OUTPUT_TYPE, 0)); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_OUTPUT_TYPE) && + verifier.EndTable(); + } + ArgMaxOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(ArgMaxOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const ArgMaxOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct ArgMaxOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_output_type(tflite::TensorType output_type) { + fbb_.AddElement(ArgMaxOptions::VT_OUTPUT_TYPE, static_cast(output_type), 0); + } + explicit ArgMaxOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ArgMaxOptionsBuilder &operator=(const ArgMaxOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateArgMaxOptions( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::TensorType output_type = tflite::TensorType_FLOAT32) { + ArgMaxOptionsBuilder builder_(_fbb); + builder_.add_output_type(output_type); + return builder_.Finish(); +} + +flatbuffers::Offset CreateArgMaxOptions(flatbuffers::FlatBufferBuilder &_fbb, const ArgMaxOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct ArgMinOptionsT : public flatbuffers::NativeTable { + typedef ArgMinOptions TableType; + tflite::TensorType output_type; + ArgMinOptionsT() + : output_type(tflite::TensorType_FLOAT32) { + } +}; + +struct ArgMinOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef ArgMinOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_OUTPUT_TYPE = 4 + }; + tflite::TensorType output_type() const { + return static_cast(GetField(VT_OUTPUT_TYPE, 0)); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_OUTPUT_TYPE) && + verifier.EndTable(); + } + ArgMinOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(ArgMinOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const ArgMinOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct ArgMinOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_output_type(tflite::TensorType output_type) { + fbb_.AddElement(ArgMinOptions::VT_OUTPUT_TYPE, static_cast(output_type), 0); + } + explicit ArgMinOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ArgMinOptionsBuilder &operator=(const ArgMinOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateArgMinOptions( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::TensorType output_type = tflite::TensorType_FLOAT32) { + ArgMinOptionsBuilder builder_(_fbb); + builder_.add_output_type(output_type); + return builder_.Finish(); +} + +flatbuffers::Offset CreateArgMinOptions(flatbuffers::FlatBufferBuilder &_fbb, const ArgMinOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct GreaterOptionsT : public flatbuffers::NativeTable { + typedef GreaterOptions TableType; + GreaterOptionsT() { + } +}; + +struct GreaterOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef GreaterOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + GreaterOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(GreaterOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const GreaterOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct GreaterOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit GreaterOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + GreaterOptionsBuilder &operator=(const GreaterOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateGreaterOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + GreaterOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateGreaterOptions(flatbuffers::FlatBufferBuilder &_fbb, const GreaterOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct GreaterEqualOptionsT : public flatbuffers::NativeTable { + typedef GreaterEqualOptions TableType; + GreaterEqualOptionsT() { + } +}; + +struct GreaterEqualOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef GreaterEqualOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + GreaterEqualOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(GreaterEqualOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const GreaterEqualOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct GreaterEqualOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit GreaterEqualOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + GreaterEqualOptionsBuilder &operator=(const GreaterEqualOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateGreaterEqualOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + GreaterEqualOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateGreaterEqualOptions(flatbuffers::FlatBufferBuilder &_fbb, const GreaterEqualOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct LessOptionsT : public flatbuffers::NativeTable { + typedef LessOptions TableType; + LessOptionsT() { + } +}; + +struct LessOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef LessOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + LessOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(LessOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const LessOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct LessOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit LessOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + LessOptionsBuilder &operator=(const LessOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateLessOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + LessOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateLessOptions(flatbuffers::FlatBufferBuilder &_fbb, const LessOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct LessEqualOptionsT : public flatbuffers::NativeTable { + typedef LessEqualOptions TableType; + LessEqualOptionsT() { + } +}; + +struct LessEqualOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef LessEqualOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + LessEqualOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(LessEqualOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const LessEqualOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct LessEqualOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit LessEqualOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + LessEqualOptionsBuilder &operator=(const LessEqualOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateLessEqualOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + LessEqualOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateLessEqualOptions(flatbuffers::FlatBufferBuilder &_fbb, const LessEqualOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct NegOptionsT : public flatbuffers::NativeTable { + typedef NegOptions TableType; + NegOptionsT() { + } +}; + +struct NegOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef NegOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + NegOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(NegOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const NegOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct NegOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit NegOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + NegOptionsBuilder &operator=(const NegOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateNegOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + NegOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateNegOptions(flatbuffers::FlatBufferBuilder &_fbb, const NegOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct SelectOptionsT : public flatbuffers::NativeTable { + typedef SelectOptions TableType; + SelectOptionsT() { + } +}; + +struct SelectOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef SelectOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + SelectOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(SelectOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const SelectOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct SelectOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit SelectOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + SelectOptionsBuilder &operator=(const SelectOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateSelectOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + SelectOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateSelectOptions(flatbuffers::FlatBufferBuilder &_fbb, const SelectOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct SliceOptionsT : public flatbuffers::NativeTable { + typedef SliceOptions TableType; + SliceOptionsT() { + } +}; + +struct SliceOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef SliceOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + SliceOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(SliceOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const SliceOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct SliceOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit SliceOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + SliceOptionsBuilder &operator=(const SliceOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateSliceOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + SliceOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateSliceOptions(flatbuffers::FlatBufferBuilder &_fbb, const SliceOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct TransposeConvOptionsT : public flatbuffers::NativeTable { + typedef TransposeConvOptions TableType; + tflite::Padding padding; + int32_t stride_w; + int32_t stride_h; + TransposeConvOptionsT() + : padding(tflite::Padding_SAME), + stride_w(0), + stride_h(0) { + } +}; + +struct TransposeConvOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef TransposeConvOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_PADDING = 4, + VT_STRIDE_W = 6, + VT_STRIDE_H = 8 + }; + tflite::Padding padding() const { + return static_cast(GetField(VT_PADDING, 0)); + } + int32_t stride_w() const { + return GetField(VT_STRIDE_W, 0); + } + int32_t stride_h() const { + return GetField(VT_STRIDE_H, 0); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_PADDING) && + VerifyField(verifier, VT_STRIDE_W) && + VerifyField(verifier, VT_STRIDE_H) && + verifier.EndTable(); + } + TransposeConvOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(TransposeConvOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const TransposeConvOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct TransposeConvOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_padding(tflite::Padding padding) { + fbb_.AddElement(TransposeConvOptions::VT_PADDING, static_cast(padding), 0); + } + void add_stride_w(int32_t stride_w) { + fbb_.AddElement(TransposeConvOptions::VT_STRIDE_W, stride_w, 0); + } + void add_stride_h(int32_t stride_h) { + fbb_.AddElement(TransposeConvOptions::VT_STRIDE_H, stride_h, 0); + } + explicit TransposeConvOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + TransposeConvOptionsBuilder &operator=(const TransposeConvOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateTransposeConvOptions( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::Padding padding = tflite::Padding_SAME, + int32_t stride_w = 0, + int32_t stride_h = 0) { + TransposeConvOptionsBuilder builder_(_fbb); + builder_.add_stride_h(stride_h); + builder_.add_stride_w(stride_w); + builder_.add_padding(padding); + return builder_.Finish(); +} + +flatbuffers::Offset CreateTransposeConvOptions(flatbuffers::FlatBufferBuilder &_fbb, const TransposeConvOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct ExpandDimsOptionsT : public flatbuffers::NativeTable { + typedef ExpandDimsOptions TableType; + ExpandDimsOptionsT() { + } +}; + +struct ExpandDimsOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef ExpandDimsOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + ExpandDimsOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(ExpandDimsOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const ExpandDimsOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct ExpandDimsOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit ExpandDimsOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ExpandDimsOptionsBuilder &operator=(const ExpandDimsOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateExpandDimsOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + ExpandDimsOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateExpandDimsOptions(flatbuffers::FlatBufferBuilder &_fbb, const ExpandDimsOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct SparseToDenseOptionsT : public flatbuffers::NativeTable { + typedef SparseToDenseOptions TableType; + bool validate_indices; + SparseToDenseOptionsT() + : validate_indices(false) { + } +}; + +struct SparseToDenseOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef SparseToDenseOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_VALIDATE_INDICES = 4 + }; + bool validate_indices() const { + return GetField(VT_VALIDATE_INDICES, 0) != 0; + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_VALIDATE_INDICES) && + verifier.EndTable(); + } + SparseToDenseOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(SparseToDenseOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const SparseToDenseOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct SparseToDenseOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_validate_indices(bool validate_indices) { + fbb_.AddElement(SparseToDenseOptions::VT_VALIDATE_INDICES, static_cast(validate_indices), 0); + } + explicit SparseToDenseOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + SparseToDenseOptionsBuilder &operator=(const SparseToDenseOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateSparseToDenseOptions( + flatbuffers::FlatBufferBuilder &_fbb, + bool validate_indices = false) { + SparseToDenseOptionsBuilder builder_(_fbb); + builder_.add_validate_indices(validate_indices); + return builder_.Finish(); +} + +flatbuffers::Offset CreateSparseToDenseOptions(flatbuffers::FlatBufferBuilder &_fbb, const SparseToDenseOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct EqualOptionsT : public flatbuffers::NativeTable { + typedef EqualOptions TableType; + EqualOptionsT() { + } +}; + +struct EqualOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef EqualOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + EqualOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(EqualOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const EqualOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct EqualOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit EqualOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + EqualOptionsBuilder &operator=(const EqualOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateEqualOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + EqualOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateEqualOptions(flatbuffers::FlatBufferBuilder &_fbb, const EqualOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct NotEqualOptionsT : public flatbuffers::NativeTable { + typedef NotEqualOptions TableType; + NotEqualOptionsT() { + } +}; + +struct NotEqualOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef NotEqualOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + NotEqualOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(NotEqualOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const NotEqualOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct NotEqualOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit NotEqualOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + NotEqualOptionsBuilder &operator=(const NotEqualOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateNotEqualOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + NotEqualOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateNotEqualOptions(flatbuffers::FlatBufferBuilder &_fbb, const NotEqualOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct ShapeOptionsT : public flatbuffers::NativeTable { + typedef ShapeOptions TableType; + tflite::TensorType out_type; + ShapeOptionsT() + : out_type(tflite::TensorType_FLOAT32) { + } +}; + +struct ShapeOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef ShapeOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_OUT_TYPE = 4 + }; + tflite::TensorType out_type() const { + return static_cast(GetField(VT_OUT_TYPE, 0)); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_OUT_TYPE) && + verifier.EndTable(); + } + ShapeOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(ShapeOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const ShapeOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct ShapeOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_out_type(tflite::TensorType out_type) { + fbb_.AddElement(ShapeOptions::VT_OUT_TYPE, static_cast(out_type), 0); + } + explicit ShapeOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ShapeOptionsBuilder &operator=(const ShapeOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateShapeOptions( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::TensorType out_type = tflite::TensorType_FLOAT32) { + ShapeOptionsBuilder builder_(_fbb); + builder_.add_out_type(out_type); + return builder_.Finish(); +} + +flatbuffers::Offset CreateShapeOptions(flatbuffers::FlatBufferBuilder &_fbb, const ShapeOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct RankOptionsT : public flatbuffers::NativeTable { + typedef RankOptions TableType; + RankOptionsT() { + } +}; + +struct RankOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef RankOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + RankOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(RankOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const RankOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct RankOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit RankOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + RankOptionsBuilder &operator=(const RankOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateRankOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + RankOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateRankOptions(flatbuffers::FlatBufferBuilder &_fbb, const RankOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct PowOptionsT : public flatbuffers::NativeTable { + typedef PowOptions TableType; + PowOptionsT() { + } +}; + +struct PowOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef PowOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + PowOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(PowOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const PowOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct PowOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit PowOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + PowOptionsBuilder &operator=(const PowOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreatePowOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + PowOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreatePowOptions(flatbuffers::FlatBufferBuilder &_fbb, const PowOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct FakeQuantOptionsT : public flatbuffers::NativeTable { + typedef FakeQuantOptions TableType; + float min; + float max; + int32_t num_bits; + bool narrow_range; + FakeQuantOptionsT() + : min(0.0f), + max(0.0f), + num_bits(0), + narrow_range(false) { + } +}; + +struct FakeQuantOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef FakeQuantOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_MIN = 4, + VT_MAX = 6, + VT_NUM_BITS = 8, + VT_NARROW_RANGE = 10 + }; + float min() const { + return GetField(VT_MIN, 0.0f); + } + float max() const { + return GetField(VT_MAX, 0.0f); + } + int32_t num_bits() const { + return GetField(VT_NUM_BITS, 0); + } + bool narrow_range() const { + return GetField(VT_NARROW_RANGE, 0) != 0; + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_MIN) && + VerifyField(verifier, VT_MAX) && + VerifyField(verifier, VT_NUM_BITS) && + VerifyField(verifier, VT_NARROW_RANGE) && + verifier.EndTable(); + } + FakeQuantOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(FakeQuantOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const FakeQuantOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct FakeQuantOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_min(float min) { + fbb_.AddElement(FakeQuantOptions::VT_MIN, min, 0.0f); + } + void add_max(float max) { + fbb_.AddElement(FakeQuantOptions::VT_MAX, max, 0.0f); + } + void add_num_bits(int32_t num_bits) { + fbb_.AddElement(FakeQuantOptions::VT_NUM_BITS, num_bits, 0); + } + void add_narrow_range(bool narrow_range) { + fbb_.AddElement(FakeQuantOptions::VT_NARROW_RANGE, static_cast(narrow_range), 0); + } + explicit FakeQuantOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + FakeQuantOptionsBuilder &operator=(const FakeQuantOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateFakeQuantOptions( + flatbuffers::FlatBufferBuilder &_fbb, + float min = 0.0f, + float max = 0.0f, + int32_t num_bits = 0, + bool narrow_range = false) { + FakeQuantOptionsBuilder builder_(_fbb); + builder_.add_num_bits(num_bits); + builder_.add_max(max); + builder_.add_min(min); + builder_.add_narrow_range(narrow_range); + return builder_.Finish(); +} + +flatbuffers::Offset CreateFakeQuantOptions(flatbuffers::FlatBufferBuilder &_fbb, const FakeQuantOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct PackOptionsT : public flatbuffers::NativeTable { + typedef PackOptions TableType; + int32_t values_count; + int32_t axis; + PackOptionsT() + : values_count(0), + axis(0) { + } +}; + +struct PackOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef PackOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_VALUES_COUNT = 4, + VT_AXIS = 6 + }; + int32_t values_count() const { + return GetField(VT_VALUES_COUNT, 0); + } + int32_t axis() const { + return GetField(VT_AXIS, 0); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_VALUES_COUNT) && + VerifyField(verifier, VT_AXIS) && + verifier.EndTable(); + } + PackOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(PackOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const PackOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct PackOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_values_count(int32_t values_count) { + fbb_.AddElement(PackOptions::VT_VALUES_COUNT, values_count, 0); + } + void add_axis(int32_t axis) { + fbb_.AddElement(PackOptions::VT_AXIS, axis, 0); + } + explicit PackOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + PackOptionsBuilder &operator=(const PackOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreatePackOptions( + flatbuffers::FlatBufferBuilder &_fbb, + int32_t values_count = 0, + int32_t axis = 0) { + PackOptionsBuilder builder_(_fbb); + builder_.add_axis(axis); + builder_.add_values_count(values_count); + return builder_.Finish(); +} + +flatbuffers::Offset CreatePackOptions(flatbuffers::FlatBufferBuilder &_fbb, const PackOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct LogicalOrOptionsT : public flatbuffers::NativeTable { + typedef LogicalOrOptions TableType; + LogicalOrOptionsT() { + } +}; + +struct LogicalOrOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef LogicalOrOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + LogicalOrOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(LogicalOrOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const LogicalOrOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct LogicalOrOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit LogicalOrOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + LogicalOrOptionsBuilder &operator=(const LogicalOrOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateLogicalOrOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + LogicalOrOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateLogicalOrOptions(flatbuffers::FlatBufferBuilder &_fbb, const LogicalOrOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct OneHotOptionsT : public flatbuffers::NativeTable { + typedef OneHotOptions TableType; + int32_t axis; + OneHotOptionsT() + : axis(0) { + } +}; + +struct OneHotOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef OneHotOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_AXIS = 4 + }; + int32_t axis() const { + return GetField(VT_AXIS, 0); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_AXIS) && + verifier.EndTable(); + } + OneHotOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(OneHotOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const OneHotOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct OneHotOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_axis(int32_t axis) { + fbb_.AddElement(OneHotOptions::VT_AXIS, axis, 0); + } + explicit OneHotOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + OneHotOptionsBuilder &operator=(const OneHotOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateOneHotOptions( + flatbuffers::FlatBufferBuilder &_fbb, + int32_t axis = 0) { + OneHotOptionsBuilder builder_(_fbb); + builder_.add_axis(axis); + return builder_.Finish(); +} + +flatbuffers::Offset CreateOneHotOptions(flatbuffers::FlatBufferBuilder &_fbb, const OneHotOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct AbsOptionsT : public flatbuffers::NativeTable { + typedef AbsOptions TableType; + AbsOptionsT() { + } +}; + +struct AbsOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef AbsOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + AbsOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(AbsOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const AbsOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct AbsOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit AbsOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + AbsOptionsBuilder &operator=(const AbsOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateAbsOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + AbsOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateAbsOptions(flatbuffers::FlatBufferBuilder &_fbb, const AbsOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct HardSwishOptionsT : public flatbuffers::NativeTable { + typedef HardSwishOptions TableType; + HardSwishOptionsT() { + } +}; + +struct HardSwishOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef HardSwishOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + HardSwishOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(HardSwishOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const HardSwishOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct HardSwishOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit HardSwishOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + HardSwishOptionsBuilder &operator=(const HardSwishOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateHardSwishOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + HardSwishOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateHardSwishOptions(flatbuffers::FlatBufferBuilder &_fbb, const HardSwishOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct LogicalAndOptionsT : public flatbuffers::NativeTable { + typedef LogicalAndOptions TableType; + LogicalAndOptionsT() { + } +}; + +struct LogicalAndOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef LogicalAndOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + LogicalAndOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(LogicalAndOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const LogicalAndOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct LogicalAndOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit LogicalAndOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + LogicalAndOptionsBuilder &operator=(const LogicalAndOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateLogicalAndOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + LogicalAndOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateLogicalAndOptions(flatbuffers::FlatBufferBuilder &_fbb, const LogicalAndOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct LogicalNotOptionsT : public flatbuffers::NativeTable { + typedef LogicalNotOptions TableType; + LogicalNotOptionsT() { + } +}; + +struct LogicalNotOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef LogicalNotOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + LogicalNotOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(LogicalNotOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const LogicalNotOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct LogicalNotOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit LogicalNotOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + LogicalNotOptionsBuilder &operator=(const LogicalNotOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateLogicalNotOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + LogicalNotOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateLogicalNotOptions(flatbuffers::FlatBufferBuilder &_fbb, const LogicalNotOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct UnpackOptionsT : public flatbuffers::NativeTable { + typedef UnpackOptions TableType; + int32_t num; + int32_t axis; + UnpackOptionsT() + : num(0), + axis(0) { + } +}; + +struct UnpackOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef UnpackOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_NUM = 4, + VT_AXIS = 6 + }; + int32_t num() const { + return GetField(VT_NUM, 0); + } + int32_t axis() const { + return GetField(VT_AXIS, 0); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_NUM) && + VerifyField(verifier, VT_AXIS) && + verifier.EndTable(); + } + UnpackOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(UnpackOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const UnpackOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct UnpackOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_num(int32_t num) { + fbb_.AddElement(UnpackOptions::VT_NUM, num, 0); + } + void add_axis(int32_t axis) { + fbb_.AddElement(UnpackOptions::VT_AXIS, axis, 0); + } + explicit UnpackOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + UnpackOptionsBuilder &operator=(const UnpackOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateUnpackOptions( + flatbuffers::FlatBufferBuilder &_fbb, + int32_t num = 0, + int32_t axis = 0) { + UnpackOptionsBuilder builder_(_fbb); + builder_.add_axis(axis); + builder_.add_num(num); + return builder_.Finish(); +} + +flatbuffers::Offset CreateUnpackOptions(flatbuffers::FlatBufferBuilder &_fbb, const UnpackOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct FloorDivOptionsT : public flatbuffers::NativeTable { + typedef FloorDivOptions TableType; + FloorDivOptionsT() { + } +}; + +struct FloorDivOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef FloorDivOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + FloorDivOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(FloorDivOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const FloorDivOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct FloorDivOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit FloorDivOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + FloorDivOptionsBuilder &operator=(const FloorDivOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateFloorDivOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + FloorDivOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateFloorDivOptions(flatbuffers::FlatBufferBuilder &_fbb, const FloorDivOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct SquareOptionsT : public flatbuffers::NativeTable { + typedef SquareOptions TableType; + SquareOptionsT() { + } +}; + +struct SquareOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef SquareOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + SquareOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(SquareOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const SquareOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct SquareOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit SquareOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + SquareOptionsBuilder &operator=(const SquareOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateSquareOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + SquareOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateSquareOptions(flatbuffers::FlatBufferBuilder &_fbb, const SquareOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct ZerosLikeOptionsT : public flatbuffers::NativeTable { + typedef ZerosLikeOptions TableType; + ZerosLikeOptionsT() { + } +}; + +struct ZerosLikeOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef ZerosLikeOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + ZerosLikeOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(ZerosLikeOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const ZerosLikeOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct ZerosLikeOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit ZerosLikeOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ZerosLikeOptionsBuilder &operator=(const ZerosLikeOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateZerosLikeOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + ZerosLikeOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateZerosLikeOptions(flatbuffers::FlatBufferBuilder &_fbb, const ZerosLikeOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct FillOptionsT : public flatbuffers::NativeTable { + typedef FillOptions TableType; + FillOptionsT() { + } +}; + +struct FillOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef FillOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + FillOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(FillOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const FillOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct FillOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit FillOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + FillOptionsBuilder &operator=(const FillOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateFillOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + FillOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateFillOptions(flatbuffers::FlatBufferBuilder &_fbb, const FillOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct FloorModOptionsT : public flatbuffers::NativeTable { + typedef FloorModOptions TableType; + FloorModOptionsT() { + } +}; + +struct FloorModOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef FloorModOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + FloorModOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(FloorModOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const FloorModOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct FloorModOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit FloorModOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + FloorModOptionsBuilder &operator=(const FloorModOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateFloorModOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + FloorModOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateFloorModOptions(flatbuffers::FlatBufferBuilder &_fbb, const FloorModOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct RangeOptionsT : public flatbuffers::NativeTable { + typedef RangeOptions TableType; + RangeOptionsT() { + } +}; + +struct RangeOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef RangeOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + RangeOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(RangeOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const RangeOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct RangeOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit RangeOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + RangeOptionsBuilder &operator=(const RangeOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateRangeOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + RangeOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateRangeOptions(flatbuffers::FlatBufferBuilder &_fbb, const RangeOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct LeakyReluOptionsT : public flatbuffers::NativeTable { + typedef LeakyReluOptions TableType; + float alpha; + LeakyReluOptionsT() + : alpha(0.0f) { + } +}; + +struct LeakyReluOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef LeakyReluOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_ALPHA = 4 + }; + float alpha() const { + return GetField(VT_ALPHA, 0.0f); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_ALPHA) && + verifier.EndTable(); + } + LeakyReluOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(LeakyReluOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const LeakyReluOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct LeakyReluOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_alpha(float alpha) { + fbb_.AddElement(LeakyReluOptions::VT_ALPHA, alpha, 0.0f); + } + explicit LeakyReluOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + LeakyReluOptionsBuilder &operator=(const LeakyReluOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateLeakyReluOptions( + flatbuffers::FlatBufferBuilder &_fbb, + float alpha = 0.0f) { + LeakyReluOptionsBuilder builder_(_fbb); + builder_.add_alpha(alpha); + return builder_.Finish(); +} + +flatbuffers::Offset CreateLeakyReluOptions(flatbuffers::FlatBufferBuilder &_fbb, const LeakyReluOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct SquaredDifferenceOptionsT : public flatbuffers::NativeTable { + typedef SquaredDifferenceOptions TableType; + SquaredDifferenceOptionsT() { + } +}; + +struct SquaredDifferenceOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef SquaredDifferenceOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + SquaredDifferenceOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(SquaredDifferenceOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const SquaredDifferenceOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct SquaredDifferenceOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit SquaredDifferenceOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + SquaredDifferenceOptionsBuilder &operator=(const SquaredDifferenceOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateSquaredDifferenceOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + SquaredDifferenceOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateSquaredDifferenceOptions(flatbuffers::FlatBufferBuilder &_fbb, const SquaredDifferenceOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct MirrorPadOptionsT : public flatbuffers::NativeTable { + typedef MirrorPadOptions TableType; + tflite::MirrorPadMode mode; + MirrorPadOptionsT() + : mode(tflite::MirrorPadMode_REFLECT) { + } +}; + +struct MirrorPadOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef MirrorPadOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_MODE = 4 + }; + tflite::MirrorPadMode mode() const { + return static_cast(GetField(VT_MODE, 0)); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_MODE) && + verifier.EndTable(); + } + MirrorPadOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(MirrorPadOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const MirrorPadOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct MirrorPadOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_mode(tflite::MirrorPadMode mode) { + fbb_.AddElement(MirrorPadOptions::VT_MODE, static_cast(mode), 0); + } + explicit MirrorPadOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + MirrorPadOptionsBuilder &operator=(const MirrorPadOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateMirrorPadOptions( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::MirrorPadMode mode = tflite::MirrorPadMode_REFLECT) { + MirrorPadOptionsBuilder builder_(_fbb); + builder_.add_mode(mode); + return builder_.Finish(); +} + +flatbuffers::Offset CreateMirrorPadOptions(flatbuffers::FlatBufferBuilder &_fbb, const MirrorPadOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct UniqueOptionsT : public flatbuffers::NativeTable { + typedef UniqueOptions TableType; + tflite::TensorType idx_out_type; + UniqueOptionsT() + : idx_out_type(tflite::TensorType_INT32) { + } +}; + +struct UniqueOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef UniqueOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_IDX_OUT_TYPE = 4 + }; + tflite::TensorType idx_out_type() const { + return static_cast(GetField(VT_IDX_OUT_TYPE, 2)); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_IDX_OUT_TYPE) && + verifier.EndTable(); + } + UniqueOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(UniqueOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const UniqueOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct UniqueOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_idx_out_type(tflite::TensorType idx_out_type) { + fbb_.AddElement(UniqueOptions::VT_IDX_OUT_TYPE, static_cast(idx_out_type), 2); + } + explicit UniqueOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + UniqueOptionsBuilder &operator=(const UniqueOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateUniqueOptions( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::TensorType idx_out_type = tflite::TensorType_INT32) { + UniqueOptionsBuilder builder_(_fbb); + builder_.add_idx_out_type(idx_out_type); + return builder_.Finish(); +} + +flatbuffers::Offset CreateUniqueOptions(flatbuffers::FlatBufferBuilder &_fbb, const UniqueOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct ReverseV2OptionsT : public flatbuffers::NativeTable { + typedef ReverseV2Options TableType; + ReverseV2OptionsT() { + } +}; + +struct ReverseV2Options FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef ReverseV2OptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + ReverseV2OptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(ReverseV2OptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const ReverseV2OptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct ReverseV2OptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit ReverseV2OptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ReverseV2OptionsBuilder &operator=(const ReverseV2OptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateReverseV2Options( + flatbuffers::FlatBufferBuilder &_fbb) { + ReverseV2OptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateReverseV2Options(flatbuffers::FlatBufferBuilder &_fbb, const ReverseV2OptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct AddNOptionsT : public flatbuffers::NativeTable { + typedef AddNOptions TableType; + AddNOptionsT() { + } +}; + +struct AddNOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef AddNOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + AddNOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(AddNOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const AddNOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct AddNOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit AddNOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + AddNOptionsBuilder &operator=(const AddNOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateAddNOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + AddNOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateAddNOptions(flatbuffers::FlatBufferBuilder &_fbb, const AddNOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct GatherNdOptionsT : public flatbuffers::NativeTable { + typedef GatherNdOptions TableType; + GatherNdOptionsT() { + } +}; + +struct GatherNdOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef GatherNdOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + GatherNdOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(GatherNdOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const GatherNdOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct GatherNdOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit GatherNdOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + GatherNdOptionsBuilder &operator=(const GatherNdOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateGatherNdOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + GatherNdOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateGatherNdOptions(flatbuffers::FlatBufferBuilder &_fbb, const GatherNdOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct WhereOptionsT : public flatbuffers::NativeTable { + typedef WhereOptions TableType; + WhereOptionsT() { + } +}; + +struct WhereOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef WhereOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + WhereOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(WhereOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const WhereOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct WhereOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit WhereOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + WhereOptionsBuilder &operator=(const WhereOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateWhereOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + WhereOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateWhereOptions(flatbuffers::FlatBufferBuilder &_fbb, const WhereOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct ReverseSequenceOptionsT : public flatbuffers::NativeTable { + typedef ReverseSequenceOptions TableType; + int32_t seq_dim; + int32_t batch_dim; + ReverseSequenceOptionsT() + : seq_dim(0), + batch_dim(0) { + } +}; + +struct ReverseSequenceOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef ReverseSequenceOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_SEQ_DIM = 4, + VT_BATCH_DIM = 6 + }; + int32_t seq_dim() const { + return GetField(VT_SEQ_DIM, 0); + } + int32_t batch_dim() const { + return GetField(VT_BATCH_DIM, 0); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_SEQ_DIM) && + VerifyField(verifier, VT_BATCH_DIM) && + verifier.EndTable(); + } + ReverseSequenceOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(ReverseSequenceOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const ReverseSequenceOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct ReverseSequenceOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_seq_dim(int32_t seq_dim) { + fbb_.AddElement(ReverseSequenceOptions::VT_SEQ_DIM, seq_dim, 0); + } + void add_batch_dim(int32_t batch_dim) { + fbb_.AddElement(ReverseSequenceOptions::VT_BATCH_DIM, batch_dim, 0); + } + explicit ReverseSequenceOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ReverseSequenceOptionsBuilder &operator=(const ReverseSequenceOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateReverseSequenceOptions( + flatbuffers::FlatBufferBuilder &_fbb, + int32_t seq_dim = 0, + int32_t batch_dim = 0) { + ReverseSequenceOptionsBuilder builder_(_fbb); + builder_.add_batch_dim(batch_dim); + builder_.add_seq_dim(seq_dim); + return builder_.Finish(); +} + +flatbuffers::Offset CreateReverseSequenceOptions(flatbuffers::FlatBufferBuilder &_fbb, const ReverseSequenceOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct MatrixDiagOptionsT : public flatbuffers::NativeTable { + typedef MatrixDiagOptions TableType; + MatrixDiagOptionsT() { + } +}; + +struct MatrixDiagOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef MatrixDiagOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + MatrixDiagOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(MatrixDiagOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const MatrixDiagOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct MatrixDiagOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit MatrixDiagOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + MatrixDiagOptionsBuilder &operator=(const MatrixDiagOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateMatrixDiagOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + MatrixDiagOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateMatrixDiagOptions(flatbuffers::FlatBufferBuilder &_fbb, const MatrixDiagOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct QuantizeOptionsT : public flatbuffers::NativeTable { + typedef QuantizeOptions TableType; + QuantizeOptionsT() { + } +}; + +struct QuantizeOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef QuantizeOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + QuantizeOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(QuantizeOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const QuantizeOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct QuantizeOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit QuantizeOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + QuantizeOptionsBuilder &operator=(const QuantizeOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateQuantizeOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + QuantizeOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateQuantizeOptions(flatbuffers::FlatBufferBuilder &_fbb, const QuantizeOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct MatrixSetDiagOptionsT : public flatbuffers::NativeTable { + typedef MatrixSetDiagOptions TableType; + MatrixSetDiagOptionsT() { + } +}; + +struct MatrixSetDiagOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef MatrixSetDiagOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + MatrixSetDiagOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(MatrixSetDiagOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const MatrixSetDiagOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct MatrixSetDiagOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit MatrixSetDiagOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + MatrixSetDiagOptionsBuilder &operator=(const MatrixSetDiagOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateMatrixSetDiagOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + MatrixSetDiagOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateMatrixSetDiagOptions(flatbuffers::FlatBufferBuilder &_fbb, const MatrixSetDiagOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct IfOptionsT : public flatbuffers::NativeTable { + typedef IfOptions TableType; + int32_t then_subgraph_index; + int32_t else_subgraph_index; + IfOptionsT() + : then_subgraph_index(0), + else_subgraph_index(0) { + } +}; + +struct IfOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef IfOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_THEN_SUBGRAPH_INDEX = 4, + VT_ELSE_SUBGRAPH_INDEX = 6 + }; + int32_t then_subgraph_index() const { + return GetField(VT_THEN_SUBGRAPH_INDEX, 0); + } + int32_t else_subgraph_index() const { + return GetField(VT_ELSE_SUBGRAPH_INDEX, 0); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_THEN_SUBGRAPH_INDEX) && + VerifyField(verifier, VT_ELSE_SUBGRAPH_INDEX) && + verifier.EndTable(); + } + IfOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(IfOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const IfOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct IfOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_then_subgraph_index(int32_t then_subgraph_index) { + fbb_.AddElement(IfOptions::VT_THEN_SUBGRAPH_INDEX, then_subgraph_index, 0); + } + void add_else_subgraph_index(int32_t else_subgraph_index) { + fbb_.AddElement(IfOptions::VT_ELSE_SUBGRAPH_INDEX, else_subgraph_index, 0); + } + explicit IfOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + IfOptionsBuilder &operator=(const IfOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateIfOptions( + flatbuffers::FlatBufferBuilder &_fbb, + int32_t then_subgraph_index = 0, + int32_t else_subgraph_index = 0) { + IfOptionsBuilder builder_(_fbb); + builder_.add_else_subgraph_index(else_subgraph_index); + builder_.add_then_subgraph_index(then_subgraph_index); + return builder_.Finish(); +} + +flatbuffers::Offset CreateIfOptions(flatbuffers::FlatBufferBuilder &_fbb, const IfOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct WhileOptionsT : public flatbuffers::NativeTable { + typedef WhileOptions TableType; + int32_t cond_subgraph_index; + int32_t body_subgraph_index; + WhileOptionsT() + : cond_subgraph_index(0), + body_subgraph_index(0) { + } +}; + +struct WhileOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef WhileOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_COND_SUBGRAPH_INDEX = 4, + VT_BODY_SUBGRAPH_INDEX = 6 + }; + int32_t cond_subgraph_index() const { + return GetField(VT_COND_SUBGRAPH_INDEX, 0); + } + int32_t body_subgraph_index() const { + return GetField(VT_BODY_SUBGRAPH_INDEX, 0); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_COND_SUBGRAPH_INDEX) && + VerifyField(verifier, VT_BODY_SUBGRAPH_INDEX) && + verifier.EndTable(); + } + WhileOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(WhileOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const WhileOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct WhileOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_cond_subgraph_index(int32_t cond_subgraph_index) { + fbb_.AddElement(WhileOptions::VT_COND_SUBGRAPH_INDEX, cond_subgraph_index, 0); + } + void add_body_subgraph_index(int32_t body_subgraph_index) { + fbb_.AddElement(WhileOptions::VT_BODY_SUBGRAPH_INDEX, body_subgraph_index, 0); + } + explicit WhileOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + WhileOptionsBuilder &operator=(const WhileOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateWhileOptions( + flatbuffers::FlatBufferBuilder &_fbb, + int32_t cond_subgraph_index = 0, + int32_t body_subgraph_index = 0) { + WhileOptionsBuilder builder_(_fbb); + builder_.add_body_subgraph_index(body_subgraph_index); + builder_.add_cond_subgraph_index(cond_subgraph_index); + return builder_.Finish(); +} + +flatbuffers::Offset CreateWhileOptions(flatbuffers::FlatBufferBuilder &_fbb, const WhileOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct NonMaxSuppressionV4OptionsT : public flatbuffers::NativeTable { + typedef NonMaxSuppressionV4Options TableType; + NonMaxSuppressionV4OptionsT() { + } +}; + +struct NonMaxSuppressionV4Options FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef NonMaxSuppressionV4OptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + NonMaxSuppressionV4OptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(NonMaxSuppressionV4OptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const NonMaxSuppressionV4OptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct NonMaxSuppressionV4OptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit NonMaxSuppressionV4OptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + NonMaxSuppressionV4OptionsBuilder &operator=(const NonMaxSuppressionV4OptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateNonMaxSuppressionV4Options( + flatbuffers::FlatBufferBuilder &_fbb) { + NonMaxSuppressionV4OptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateNonMaxSuppressionV4Options(flatbuffers::FlatBufferBuilder &_fbb, const NonMaxSuppressionV4OptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct NonMaxSuppressionV5OptionsT : public flatbuffers::NativeTable { + typedef NonMaxSuppressionV5Options TableType; + NonMaxSuppressionV5OptionsT() { + } +}; + +struct NonMaxSuppressionV5Options FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef NonMaxSuppressionV5OptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + NonMaxSuppressionV5OptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(NonMaxSuppressionV5OptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const NonMaxSuppressionV5OptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct NonMaxSuppressionV5OptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit NonMaxSuppressionV5OptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + NonMaxSuppressionV5OptionsBuilder &operator=(const NonMaxSuppressionV5OptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateNonMaxSuppressionV5Options( + flatbuffers::FlatBufferBuilder &_fbb) { + NonMaxSuppressionV5OptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateNonMaxSuppressionV5Options(flatbuffers::FlatBufferBuilder &_fbb, const NonMaxSuppressionV5OptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct ScatterNdOptionsT : public flatbuffers::NativeTable { + typedef ScatterNdOptions TableType; + ScatterNdOptionsT() { + } +}; + +struct ScatterNdOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef ScatterNdOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + ScatterNdOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(ScatterNdOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const ScatterNdOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct ScatterNdOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit ScatterNdOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ScatterNdOptionsBuilder &operator=(const ScatterNdOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateScatterNdOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + ScatterNdOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateScatterNdOptions(flatbuffers::FlatBufferBuilder &_fbb, const ScatterNdOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct SelectV2OptionsT : public flatbuffers::NativeTable { + typedef SelectV2Options TableType; + SelectV2OptionsT() { + } +}; + +struct SelectV2Options FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef SelectV2OptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + SelectV2OptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(SelectV2OptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const SelectV2OptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct SelectV2OptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit SelectV2OptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + SelectV2OptionsBuilder &operator=(const SelectV2OptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateSelectV2Options( + flatbuffers::FlatBufferBuilder &_fbb) { + SelectV2OptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateSelectV2Options(flatbuffers::FlatBufferBuilder &_fbb, const SelectV2OptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct DensifyOptionsT : public flatbuffers::NativeTable { + typedef DensifyOptions TableType; + DensifyOptionsT() { + } +}; + +struct DensifyOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef DensifyOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + DensifyOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(DensifyOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const DensifyOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct DensifyOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit DensifyOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + DensifyOptionsBuilder &operator=(const DensifyOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateDensifyOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + DensifyOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateDensifyOptions(flatbuffers::FlatBufferBuilder &_fbb, const DensifyOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct SegmentSumOptionsT : public flatbuffers::NativeTable { + typedef SegmentSumOptions TableType; + SegmentSumOptionsT() { + } +}; + +struct SegmentSumOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef SegmentSumOptionsT NativeTableType; + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + verifier.EndTable(); + } + SegmentSumOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(SegmentSumOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const SegmentSumOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct SegmentSumOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + explicit SegmentSumOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + SegmentSumOptionsBuilder &operator=(const SegmentSumOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateSegmentSumOptions( + flatbuffers::FlatBufferBuilder &_fbb) { + SegmentSumOptionsBuilder builder_(_fbb); + return builder_.Finish(); +} + +flatbuffers::Offset CreateSegmentSumOptions(flatbuffers::FlatBufferBuilder &_fbb, const SegmentSumOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct BatchMatMulOptionsT : public flatbuffers::NativeTable { + typedef BatchMatMulOptions TableType; + bool adj_x; + bool adj_y; + BatchMatMulOptionsT() + : adj_x(false), + adj_y(false) { + } +}; + +struct BatchMatMulOptions FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef BatchMatMulOptionsT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_ADJ_X = 4, + VT_ADJ_Y = 6 + }; + bool adj_x() const { + return GetField(VT_ADJ_X, 0) != 0; + } + bool adj_y() const { + return GetField(VT_ADJ_Y, 0) != 0; + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_ADJ_X) && + VerifyField(verifier, VT_ADJ_Y) && + verifier.EndTable(); + } + BatchMatMulOptionsT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(BatchMatMulOptionsT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const BatchMatMulOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct BatchMatMulOptionsBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_adj_x(bool adj_x) { + fbb_.AddElement(BatchMatMulOptions::VT_ADJ_X, static_cast(adj_x), 0); + } + void add_adj_y(bool adj_y) { + fbb_.AddElement(BatchMatMulOptions::VT_ADJ_Y, static_cast(adj_y), 0); + } + explicit BatchMatMulOptionsBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + BatchMatMulOptionsBuilder &operator=(const BatchMatMulOptionsBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateBatchMatMulOptions( + flatbuffers::FlatBufferBuilder &_fbb, + bool adj_x = false, + bool adj_y = false) { + BatchMatMulOptionsBuilder builder_(_fbb); + builder_.add_adj_y(adj_y); + builder_.add_adj_x(adj_x); + return builder_.Finish(); +} + +flatbuffers::Offset CreateBatchMatMulOptions(flatbuffers::FlatBufferBuilder &_fbb, const BatchMatMulOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct OperatorCodeT : public flatbuffers::NativeTable { + typedef OperatorCode TableType; + tflite::BuiltinOperator builtin_code; + std::string custom_code; + int32_t version; + OperatorCodeT() + : builtin_code(tflite::BuiltinOperator_ADD), + version(1) { + } +}; + +struct OperatorCode FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef OperatorCodeT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_BUILTIN_CODE = 4, + VT_CUSTOM_CODE = 6, + VT_VERSION = 8 + }; + tflite::BuiltinOperator builtin_code() const { + return static_cast(GetField(VT_BUILTIN_CODE, 0)); + } + const flatbuffers::String *custom_code() const { + return GetPointer(VT_CUSTOM_CODE); + } + int32_t version() const { + return GetField(VT_VERSION, 1); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_BUILTIN_CODE) && + VerifyOffset(verifier, VT_CUSTOM_CODE) && + verifier.VerifyString(custom_code()) && + VerifyField(verifier, VT_VERSION) && + verifier.EndTable(); + } + OperatorCodeT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(OperatorCodeT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const OperatorCodeT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct OperatorCodeBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_builtin_code(tflite::BuiltinOperator builtin_code) { + fbb_.AddElement(OperatorCode::VT_BUILTIN_CODE, static_cast(builtin_code), 0); + } + void add_custom_code(flatbuffers::Offset custom_code) { + fbb_.AddOffset(OperatorCode::VT_CUSTOM_CODE, custom_code); + } + void add_version(int32_t version) { + fbb_.AddElement(OperatorCode::VT_VERSION, version, 1); + } + explicit OperatorCodeBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + OperatorCodeBuilder &operator=(const OperatorCodeBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateOperatorCode( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::BuiltinOperator builtin_code = tflite::BuiltinOperator_ADD, + flatbuffers::Offset custom_code = 0, + int32_t version = 1) { + OperatorCodeBuilder builder_(_fbb); + builder_.add_version(version); + builder_.add_custom_code(custom_code); + builder_.add_builtin_code(builtin_code); + return builder_.Finish(); +} + +inline flatbuffers::Offset CreateOperatorCodeDirect( + flatbuffers::FlatBufferBuilder &_fbb, + tflite::BuiltinOperator builtin_code = tflite::BuiltinOperator_ADD, + const char *custom_code = nullptr, + int32_t version = 1) { + auto custom_code__ = custom_code ? _fbb.CreateString(custom_code) : 0; + return tflite::CreateOperatorCode( + _fbb, + builtin_code, + custom_code__, + version); +} + +flatbuffers::Offset CreateOperatorCode(flatbuffers::FlatBufferBuilder &_fbb, const OperatorCodeT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct OperatorT : public flatbuffers::NativeTable { + typedef Operator TableType; + uint32_t opcode_index; + std::vector inputs; + std::vector outputs; + tflite::BuiltinOptionsUnion builtin_options; + std::vector custom_options; + tflite::CustomOptionsFormat custom_options_format; + std::vector mutating_variable_inputs; + std::vector intermediates; + OperatorT() + : opcode_index(0), + custom_options_format(tflite::CustomOptionsFormat_FLEXBUFFERS) { + } +}; + +struct Operator FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef OperatorT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_OPCODE_INDEX = 4, + VT_INPUTS = 6, + VT_OUTPUTS = 8, + VT_BUILTIN_OPTIONS_TYPE = 10, + VT_BUILTIN_OPTIONS = 12, + VT_CUSTOM_OPTIONS = 14, + VT_CUSTOM_OPTIONS_FORMAT = 16, + VT_MUTATING_VARIABLE_INPUTS = 18, + VT_INTERMEDIATES = 20 + }; + uint32_t opcode_index() const { + return GetField(VT_OPCODE_INDEX, 0); + } + const flatbuffers::Vector *inputs() const { + return GetPointer *>(VT_INPUTS); + } + const flatbuffers::Vector *outputs() const { + return GetPointer *>(VT_OUTPUTS); + } + tflite::BuiltinOptions builtin_options_type() const { + return static_cast(GetField(VT_BUILTIN_OPTIONS_TYPE, 0)); + } + const void *builtin_options() const { + return GetPointer(VT_BUILTIN_OPTIONS); + } + template const T *builtin_options_as() const; + const tflite::Conv2DOptions *builtin_options_as_Conv2DOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_Conv2DOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::DepthwiseConv2DOptions *builtin_options_as_DepthwiseConv2DOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_DepthwiseConv2DOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::ConcatEmbeddingsOptions *builtin_options_as_ConcatEmbeddingsOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_ConcatEmbeddingsOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::LSHProjectionOptions *builtin_options_as_LSHProjectionOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_LSHProjectionOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::Pool2DOptions *builtin_options_as_Pool2DOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_Pool2DOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::SVDFOptions *builtin_options_as_SVDFOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_SVDFOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::RNNOptions *builtin_options_as_RNNOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_RNNOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::FullyConnectedOptions *builtin_options_as_FullyConnectedOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_FullyConnectedOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::SoftmaxOptions *builtin_options_as_SoftmaxOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_SoftmaxOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::ConcatenationOptions *builtin_options_as_ConcatenationOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_ConcatenationOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::AddOptions *builtin_options_as_AddOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_AddOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::L2NormOptions *builtin_options_as_L2NormOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_L2NormOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::LocalResponseNormalizationOptions *builtin_options_as_LocalResponseNormalizationOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_LocalResponseNormalizationOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::LSTMOptions *builtin_options_as_LSTMOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_LSTMOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::ResizeBilinearOptions *builtin_options_as_ResizeBilinearOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_ResizeBilinearOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::CallOptions *builtin_options_as_CallOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_CallOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::ReshapeOptions *builtin_options_as_ReshapeOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_ReshapeOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::SkipGramOptions *builtin_options_as_SkipGramOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_SkipGramOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::SpaceToDepthOptions *builtin_options_as_SpaceToDepthOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_SpaceToDepthOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::EmbeddingLookupSparseOptions *builtin_options_as_EmbeddingLookupSparseOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_EmbeddingLookupSparseOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::MulOptions *builtin_options_as_MulOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_MulOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::PadOptions *builtin_options_as_PadOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_PadOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::GatherOptions *builtin_options_as_GatherOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_GatherOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::BatchToSpaceNDOptions *builtin_options_as_BatchToSpaceNDOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_BatchToSpaceNDOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::SpaceToBatchNDOptions *builtin_options_as_SpaceToBatchNDOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_SpaceToBatchNDOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::TransposeOptions *builtin_options_as_TransposeOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_TransposeOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::ReducerOptions *builtin_options_as_ReducerOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_ReducerOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::SubOptions *builtin_options_as_SubOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_SubOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::DivOptions *builtin_options_as_DivOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_DivOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::SqueezeOptions *builtin_options_as_SqueezeOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_SqueezeOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::SequenceRNNOptions *builtin_options_as_SequenceRNNOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_SequenceRNNOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::StridedSliceOptions *builtin_options_as_StridedSliceOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_StridedSliceOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::ExpOptions *builtin_options_as_ExpOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_ExpOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::TopKV2Options *builtin_options_as_TopKV2Options() const { + return builtin_options_type() == tflite::BuiltinOptions_TopKV2Options ? static_cast(builtin_options()) : nullptr; + } + const tflite::SplitOptions *builtin_options_as_SplitOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_SplitOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::LogSoftmaxOptions *builtin_options_as_LogSoftmaxOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_LogSoftmaxOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::CastOptions *builtin_options_as_CastOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_CastOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::DequantizeOptions *builtin_options_as_DequantizeOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_DequantizeOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::MaximumMinimumOptions *builtin_options_as_MaximumMinimumOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_MaximumMinimumOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::ArgMaxOptions *builtin_options_as_ArgMaxOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_ArgMaxOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::LessOptions *builtin_options_as_LessOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_LessOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::NegOptions *builtin_options_as_NegOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_NegOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::PadV2Options *builtin_options_as_PadV2Options() const { + return builtin_options_type() == tflite::BuiltinOptions_PadV2Options ? static_cast(builtin_options()) : nullptr; + } + const tflite::GreaterOptions *builtin_options_as_GreaterOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_GreaterOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::GreaterEqualOptions *builtin_options_as_GreaterEqualOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_GreaterEqualOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::LessEqualOptions *builtin_options_as_LessEqualOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_LessEqualOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::SelectOptions *builtin_options_as_SelectOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_SelectOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::SliceOptions *builtin_options_as_SliceOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_SliceOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::TransposeConvOptions *builtin_options_as_TransposeConvOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_TransposeConvOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::SparseToDenseOptions *builtin_options_as_SparseToDenseOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_SparseToDenseOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::TileOptions *builtin_options_as_TileOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_TileOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::ExpandDimsOptions *builtin_options_as_ExpandDimsOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_ExpandDimsOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::EqualOptions *builtin_options_as_EqualOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_EqualOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::NotEqualOptions *builtin_options_as_NotEqualOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_NotEqualOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::ShapeOptions *builtin_options_as_ShapeOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_ShapeOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::PowOptions *builtin_options_as_PowOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_PowOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::ArgMinOptions *builtin_options_as_ArgMinOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_ArgMinOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::FakeQuantOptions *builtin_options_as_FakeQuantOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_FakeQuantOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::PackOptions *builtin_options_as_PackOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_PackOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::LogicalOrOptions *builtin_options_as_LogicalOrOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_LogicalOrOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::OneHotOptions *builtin_options_as_OneHotOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_OneHotOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::LogicalAndOptions *builtin_options_as_LogicalAndOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_LogicalAndOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::LogicalNotOptions *builtin_options_as_LogicalNotOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_LogicalNotOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::UnpackOptions *builtin_options_as_UnpackOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_UnpackOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::FloorDivOptions *builtin_options_as_FloorDivOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_FloorDivOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::SquareOptions *builtin_options_as_SquareOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_SquareOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::ZerosLikeOptions *builtin_options_as_ZerosLikeOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_ZerosLikeOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::FillOptions *builtin_options_as_FillOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_FillOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::BidirectionalSequenceLSTMOptions *builtin_options_as_BidirectionalSequenceLSTMOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_BidirectionalSequenceLSTMOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::BidirectionalSequenceRNNOptions *builtin_options_as_BidirectionalSequenceRNNOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_BidirectionalSequenceRNNOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::UnidirectionalSequenceLSTMOptions *builtin_options_as_UnidirectionalSequenceLSTMOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_UnidirectionalSequenceLSTMOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::FloorModOptions *builtin_options_as_FloorModOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_FloorModOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::RangeOptions *builtin_options_as_RangeOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_RangeOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::ResizeNearestNeighborOptions *builtin_options_as_ResizeNearestNeighborOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_ResizeNearestNeighborOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::LeakyReluOptions *builtin_options_as_LeakyReluOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_LeakyReluOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::SquaredDifferenceOptions *builtin_options_as_SquaredDifferenceOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_SquaredDifferenceOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::MirrorPadOptions *builtin_options_as_MirrorPadOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_MirrorPadOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::AbsOptions *builtin_options_as_AbsOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_AbsOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::SplitVOptions *builtin_options_as_SplitVOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_SplitVOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::UniqueOptions *builtin_options_as_UniqueOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_UniqueOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::ReverseV2Options *builtin_options_as_ReverseV2Options() const { + return builtin_options_type() == tflite::BuiltinOptions_ReverseV2Options ? static_cast(builtin_options()) : nullptr; + } + const tflite::AddNOptions *builtin_options_as_AddNOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_AddNOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::GatherNdOptions *builtin_options_as_GatherNdOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_GatherNdOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::CosOptions *builtin_options_as_CosOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_CosOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::WhereOptions *builtin_options_as_WhereOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_WhereOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::RankOptions *builtin_options_as_RankOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_RankOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::ReverseSequenceOptions *builtin_options_as_ReverseSequenceOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_ReverseSequenceOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::MatrixDiagOptions *builtin_options_as_MatrixDiagOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_MatrixDiagOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::QuantizeOptions *builtin_options_as_QuantizeOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_QuantizeOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::MatrixSetDiagOptions *builtin_options_as_MatrixSetDiagOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_MatrixSetDiagOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::HardSwishOptions *builtin_options_as_HardSwishOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_HardSwishOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::IfOptions *builtin_options_as_IfOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_IfOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::WhileOptions *builtin_options_as_WhileOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_WhileOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::DepthToSpaceOptions *builtin_options_as_DepthToSpaceOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_DepthToSpaceOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::NonMaxSuppressionV4Options *builtin_options_as_NonMaxSuppressionV4Options() const { + return builtin_options_type() == tflite::BuiltinOptions_NonMaxSuppressionV4Options ? static_cast(builtin_options()) : nullptr; + } + const tflite::NonMaxSuppressionV5Options *builtin_options_as_NonMaxSuppressionV5Options() const { + return builtin_options_type() == tflite::BuiltinOptions_NonMaxSuppressionV5Options ? static_cast(builtin_options()) : nullptr; + } + const tflite::ScatterNdOptions *builtin_options_as_ScatterNdOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_ScatterNdOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::SelectV2Options *builtin_options_as_SelectV2Options() const { + return builtin_options_type() == tflite::BuiltinOptions_SelectV2Options ? static_cast(builtin_options()) : nullptr; + } + const tflite::DensifyOptions *builtin_options_as_DensifyOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_DensifyOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::SegmentSumOptions *builtin_options_as_SegmentSumOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_SegmentSumOptions ? static_cast(builtin_options()) : nullptr; + } + const tflite::BatchMatMulOptions *builtin_options_as_BatchMatMulOptions() const { + return builtin_options_type() == tflite::BuiltinOptions_BatchMatMulOptions ? static_cast(builtin_options()) : nullptr; + } + const flatbuffers::Vector *custom_options() const { + return GetPointer *>(VT_CUSTOM_OPTIONS); + } + tflite::CustomOptionsFormat custom_options_format() const { + return static_cast(GetField(VT_CUSTOM_OPTIONS_FORMAT, 0)); + } + const flatbuffers::Vector *mutating_variable_inputs() const { + return GetPointer *>(VT_MUTATING_VARIABLE_INPUTS); + } + const flatbuffers::Vector *intermediates() const { + return GetPointer *>(VT_INTERMEDIATES); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_OPCODE_INDEX) && + VerifyOffset(verifier, VT_INPUTS) && + verifier.VerifyVector(inputs()) && + VerifyOffset(verifier, VT_OUTPUTS) && + verifier.VerifyVector(outputs()) && + VerifyField(verifier, VT_BUILTIN_OPTIONS_TYPE) && + VerifyOffset(verifier, VT_BUILTIN_OPTIONS) && + VerifyBuiltinOptions(verifier, builtin_options(), builtin_options_type()) && + VerifyOffset(verifier, VT_CUSTOM_OPTIONS) && + verifier.VerifyVector(custom_options()) && + VerifyField(verifier, VT_CUSTOM_OPTIONS_FORMAT) && + VerifyOffset(verifier, VT_MUTATING_VARIABLE_INPUTS) && + verifier.VerifyVector(mutating_variable_inputs()) && + VerifyOffset(verifier, VT_INTERMEDIATES) && + verifier.VerifyVector(intermediates()) && + verifier.EndTable(); + } + OperatorT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(OperatorT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const OperatorT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +template<> inline const tflite::Conv2DOptions *Operator::builtin_options_as() const { + return builtin_options_as_Conv2DOptions(); +} + +template<> inline const tflite::DepthwiseConv2DOptions *Operator::builtin_options_as() const { + return builtin_options_as_DepthwiseConv2DOptions(); +} + +template<> inline const tflite::ConcatEmbeddingsOptions *Operator::builtin_options_as() const { + return builtin_options_as_ConcatEmbeddingsOptions(); +} + +template<> inline const tflite::LSHProjectionOptions *Operator::builtin_options_as() const { + return builtin_options_as_LSHProjectionOptions(); +} + +template<> inline const tflite::Pool2DOptions *Operator::builtin_options_as() const { + return builtin_options_as_Pool2DOptions(); +} + +template<> inline const tflite::SVDFOptions *Operator::builtin_options_as() const { + return builtin_options_as_SVDFOptions(); +} + +template<> inline const tflite::RNNOptions *Operator::builtin_options_as() const { + return builtin_options_as_RNNOptions(); +} + +template<> inline const tflite::FullyConnectedOptions *Operator::builtin_options_as() const { + return builtin_options_as_FullyConnectedOptions(); +} + +template<> inline const tflite::SoftmaxOptions *Operator::builtin_options_as() const { + return builtin_options_as_SoftmaxOptions(); +} + +template<> inline const tflite::ConcatenationOptions *Operator::builtin_options_as() const { + return builtin_options_as_ConcatenationOptions(); +} + +template<> inline const tflite::AddOptions *Operator::builtin_options_as() const { + return builtin_options_as_AddOptions(); +} + +template<> inline const tflite::L2NormOptions *Operator::builtin_options_as() const { + return builtin_options_as_L2NormOptions(); +} + +template<> inline const tflite::LocalResponseNormalizationOptions *Operator::builtin_options_as() const { + return builtin_options_as_LocalResponseNormalizationOptions(); +} + +template<> inline const tflite::LSTMOptions *Operator::builtin_options_as() const { + return builtin_options_as_LSTMOptions(); +} + +template<> inline const tflite::ResizeBilinearOptions *Operator::builtin_options_as() const { + return builtin_options_as_ResizeBilinearOptions(); +} + +template<> inline const tflite::CallOptions *Operator::builtin_options_as() const { + return builtin_options_as_CallOptions(); +} + +template<> inline const tflite::ReshapeOptions *Operator::builtin_options_as() const { + return builtin_options_as_ReshapeOptions(); +} + +template<> inline const tflite::SkipGramOptions *Operator::builtin_options_as() const { + return builtin_options_as_SkipGramOptions(); +} + +template<> inline const tflite::SpaceToDepthOptions *Operator::builtin_options_as() const { + return builtin_options_as_SpaceToDepthOptions(); +} + +template<> inline const tflite::EmbeddingLookupSparseOptions *Operator::builtin_options_as() const { + return builtin_options_as_EmbeddingLookupSparseOptions(); +} + +template<> inline const tflite::MulOptions *Operator::builtin_options_as() const { + return builtin_options_as_MulOptions(); +} + +template<> inline const tflite::PadOptions *Operator::builtin_options_as() const { + return builtin_options_as_PadOptions(); +} + +template<> inline const tflite::GatherOptions *Operator::builtin_options_as() const { + return builtin_options_as_GatherOptions(); +} + +template<> inline const tflite::BatchToSpaceNDOptions *Operator::builtin_options_as() const { + return builtin_options_as_BatchToSpaceNDOptions(); +} + +template<> inline const tflite::SpaceToBatchNDOptions *Operator::builtin_options_as() const { + return builtin_options_as_SpaceToBatchNDOptions(); +} + +template<> inline const tflite::TransposeOptions *Operator::builtin_options_as() const { + return builtin_options_as_TransposeOptions(); +} + +template<> inline const tflite::ReducerOptions *Operator::builtin_options_as() const { + return builtin_options_as_ReducerOptions(); +} + +template<> inline const tflite::SubOptions *Operator::builtin_options_as() const { + return builtin_options_as_SubOptions(); +} + +template<> inline const tflite::DivOptions *Operator::builtin_options_as() const { + return builtin_options_as_DivOptions(); +} + +template<> inline const tflite::SqueezeOptions *Operator::builtin_options_as() const { + return builtin_options_as_SqueezeOptions(); +} + +template<> inline const tflite::SequenceRNNOptions *Operator::builtin_options_as() const { + return builtin_options_as_SequenceRNNOptions(); +} + +template<> inline const tflite::StridedSliceOptions *Operator::builtin_options_as() const { + return builtin_options_as_StridedSliceOptions(); +} + +template<> inline const tflite::ExpOptions *Operator::builtin_options_as() const { + return builtin_options_as_ExpOptions(); +} + +template<> inline const tflite::TopKV2Options *Operator::builtin_options_as() const { + return builtin_options_as_TopKV2Options(); +} + +template<> inline const tflite::SplitOptions *Operator::builtin_options_as() const { + return builtin_options_as_SplitOptions(); +} + +template<> inline const tflite::LogSoftmaxOptions *Operator::builtin_options_as() const { + return builtin_options_as_LogSoftmaxOptions(); +} + +template<> inline const tflite::CastOptions *Operator::builtin_options_as() const { + return builtin_options_as_CastOptions(); +} + +template<> inline const tflite::DequantizeOptions *Operator::builtin_options_as() const { + return builtin_options_as_DequantizeOptions(); +} + +template<> inline const tflite::MaximumMinimumOptions *Operator::builtin_options_as() const { + return builtin_options_as_MaximumMinimumOptions(); +} + +template<> inline const tflite::ArgMaxOptions *Operator::builtin_options_as() const { + return builtin_options_as_ArgMaxOptions(); +} + +template<> inline const tflite::LessOptions *Operator::builtin_options_as() const { + return builtin_options_as_LessOptions(); +} + +template<> inline const tflite::NegOptions *Operator::builtin_options_as() const { + return builtin_options_as_NegOptions(); +} + +template<> inline const tflite::PadV2Options *Operator::builtin_options_as() const { + return builtin_options_as_PadV2Options(); +} + +template<> inline const tflite::GreaterOptions *Operator::builtin_options_as() const { + return builtin_options_as_GreaterOptions(); +} + +template<> inline const tflite::GreaterEqualOptions *Operator::builtin_options_as() const { + return builtin_options_as_GreaterEqualOptions(); +} + +template<> inline const tflite::LessEqualOptions *Operator::builtin_options_as() const { + return builtin_options_as_LessEqualOptions(); +} + +template<> inline const tflite::SelectOptions *Operator::builtin_options_as() const { + return builtin_options_as_SelectOptions(); +} + +template<> inline const tflite::SliceOptions *Operator::builtin_options_as() const { + return builtin_options_as_SliceOptions(); +} + +template<> inline const tflite::TransposeConvOptions *Operator::builtin_options_as() const { + return builtin_options_as_TransposeConvOptions(); +} + +template<> inline const tflite::SparseToDenseOptions *Operator::builtin_options_as() const { + return builtin_options_as_SparseToDenseOptions(); +} + +template<> inline const tflite::TileOptions *Operator::builtin_options_as() const { + return builtin_options_as_TileOptions(); +} + +template<> inline const tflite::ExpandDimsOptions *Operator::builtin_options_as() const { + return builtin_options_as_ExpandDimsOptions(); +} + +template<> inline const tflite::EqualOptions *Operator::builtin_options_as() const { + return builtin_options_as_EqualOptions(); +} + +template<> inline const tflite::NotEqualOptions *Operator::builtin_options_as() const { + return builtin_options_as_NotEqualOptions(); +} + +template<> inline const tflite::ShapeOptions *Operator::builtin_options_as() const { + return builtin_options_as_ShapeOptions(); +} + +template<> inline const tflite::PowOptions *Operator::builtin_options_as() const { + return builtin_options_as_PowOptions(); +} + +template<> inline const tflite::ArgMinOptions *Operator::builtin_options_as() const { + return builtin_options_as_ArgMinOptions(); +} + +template<> inline const tflite::FakeQuantOptions *Operator::builtin_options_as() const { + return builtin_options_as_FakeQuantOptions(); +} + +template<> inline const tflite::PackOptions *Operator::builtin_options_as() const { + return builtin_options_as_PackOptions(); +} + +template<> inline const tflite::LogicalOrOptions *Operator::builtin_options_as() const { + return builtin_options_as_LogicalOrOptions(); +} + +template<> inline const tflite::OneHotOptions *Operator::builtin_options_as() const { + return builtin_options_as_OneHotOptions(); +} + +template<> inline const tflite::LogicalAndOptions *Operator::builtin_options_as() const { + return builtin_options_as_LogicalAndOptions(); +} + +template<> inline const tflite::LogicalNotOptions *Operator::builtin_options_as() const { + return builtin_options_as_LogicalNotOptions(); +} + +template<> inline const tflite::UnpackOptions *Operator::builtin_options_as() const { + return builtin_options_as_UnpackOptions(); +} + +template<> inline const tflite::FloorDivOptions *Operator::builtin_options_as() const { + return builtin_options_as_FloorDivOptions(); +} + +template<> inline const tflite::SquareOptions *Operator::builtin_options_as() const { + return builtin_options_as_SquareOptions(); +} + +template<> inline const tflite::ZerosLikeOptions *Operator::builtin_options_as() const { + return builtin_options_as_ZerosLikeOptions(); +} + +template<> inline const tflite::FillOptions *Operator::builtin_options_as() const { + return builtin_options_as_FillOptions(); +} + +template<> inline const tflite::BidirectionalSequenceLSTMOptions *Operator::builtin_options_as() const { + return builtin_options_as_BidirectionalSequenceLSTMOptions(); +} + +template<> inline const tflite::BidirectionalSequenceRNNOptions *Operator::builtin_options_as() const { + return builtin_options_as_BidirectionalSequenceRNNOptions(); +} + +template<> inline const tflite::UnidirectionalSequenceLSTMOptions *Operator::builtin_options_as() const { + return builtin_options_as_UnidirectionalSequenceLSTMOptions(); +} + +template<> inline const tflite::FloorModOptions *Operator::builtin_options_as() const { + return builtin_options_as_FloorModOptions(); +} + +template<> inline const tflite::RangeOptions *Operator::builtin_options_as() const { + return builtin_options_as_RangeOptions(); +} + +template<> inline const tflite::ResizeNearestNeighborOptions *Operator::builtin_options_as() const { + return builtin_options_as_ResizeNearestNeighborOptions(); +} + +template<> inline const tflite::LeakyReluOptions *Operator::builtin_options_as() const { + return builtin_options_as_LeakyReluOptions(); +} + +template<> inline const tflite::SquaredDifferenceOptions *Operator::builtin_options_as() const { + return builtin_options_as_SquaredDifferenceOptions(); +} + +template<> inline const tflite::MirrorPadOptions *Operator::builtin_options_as() const { + return builtin_options_as_MirrorPadOptions(); +} + +template<> inline const tflite::AbsOptions *Operator::builtin_options_as() const { + return builtin_options_as_AbsOptions(); +} + +template<> inline const tflite::SplitVOptions *Operator::builtin_options_as() const { + return builtin_options_as_SplitVOptions(); +} + +template<> inline const tflite::UniqueOptions *Operator::builtin_options_as() const { + return builtin_options_as_UniqueOptions(); +} + +template<> inline const tflite::ReverseV2Options *Operator::builtin_options_as() const { + return builtin_options_as_ReverseV2Options(); +} + +template<> inline const tflite::AddNOptions *Operator::builtin_options_as() const { + return builtin_options_as_AddNOptions(); +} + +template<> inline const tflite::GatherNdOptions *Operator::builtin_options_as() const { + return builtin_options_as_GatherNdOptions(); +} + +template<> inline const tflite::CosOptions *Operator::builtin_options_as() const { + return builtin_options_as_CosOptions(); +} + +template<> inline const tflite::WhereOptions *Operator::builtin_options_as() const { + return builtin_options_as_WhereOptions(); +} + +template<> inline const tflite::RankOptions *Operator::builtin_options_as() const { + return builtin_options_as_RankOptions(); +} + +template<> inline const tflite::ReverseSequenceOptions *Operator::builtin_options_as() const { + return builtin_options_as_ReverseSequenceOptions(); +} + +template<> inline const tflite::MatrixDiagOptions *Operator::builtin_options_as() const { + return builtin_options_as_MatrixDiagOptions(); +} + +template<> inline const tflite::QuantizeOptions *Operator::builtin_options_as() const { + return builtin_options_as_QuantizeOptions(); +} + +template<> inline const tflite::MatrixSetDiagOptions *Operator::builtin_options_as() const { + return builtin_options_as_MatrixSetDiagOptions(); +} + +template<> inline const tflite::HardSwishOptions *Operator::builtin_options_as() const { + return builtin_options_as_HardSwishOptions(); +} + +template<> inline const tflite::IfOptions *Operator::builtin_options_as() const { + return builtin_options_as_IfOptions(); +} + +template<> inline const tflite::WhileOptions *Operator::builtin_options_as() const { + return builtin_options_as_WhileOptions(); +} + +template<> inline const tflite::DepthToSpaceOptions *Operator::builtin_options_as() const { + return builtin_options_as_DepthToSpaceOptions(); +} + +template<> inline const tflite::NonMaxSuppressionV4Options *Operator::builtin_options_as() const { + return builtin_options_as_NonMaxSuppressionV4Options(); +} + +template<> inline const tflite::NonMaxSuppressionV5Options *Operator::builtin_options_as() const { + return builtin_options_as_NonMaxSuppressionV5Options(); +} + +template<> inline const tflite::ScatterNdOptions *Operator::builtin_options_as() const { + return builtin_options_as_ScatterNdOptions(); +} + +template<> inline const tflite::SelectV2Options *Operator::builtin_options_as() const { + return builtin_options_as_SelectV2Options(); +} + +template<> inline const tflite::DensifyOptions *Operator::builtin_options_as() const { + return builtin_options_as_DensifyOptions(); +} + +template<> inline const tflite::SegmentSumOptions *Operator::builtin_options_as() const { + return builtin_options_as_SegmentSumOptions(); +} + +template<> inline const tflite::BatchMatMulOptions *Operator::builtin_options_as() const { + return builtin_options_as_BatchMatMulOptions(); +} + +struct OperatorBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_opcode_index(uint32_t opcode_index) { + fbb_.AddElement(Operator::VT_OPCODE_INDEX, opcode_index, 0); + } + void add_inputs(flatbuffers::Offset> inputs) { + fbb_.AddOffset(Operator::VT_INPUTS, inputs); + } + void add_outputs(flatbuffers::Offset> outputs) { + fbb_.AddOffset(Operator::VT_OUTPUTS, outputs); + } + void add_builtin_options_type(tflite::BuiltinOptions builtin_options_type) { + fbb_.AddElement(Operator::VT_BUILTIN_OPTIONS_TYPE, static_cast(builtin_options_type), 0); + } + void add_builtin_options(flatbuffers::Offset builtin_options) { + fbb_.AddOffset(Operator::VT_BUILTIN_OPTIONS, builtin_options); + } + void add_custom_options(flatbuffers::Offset> custom_options) { + fbb_.AddOffset(Operator::VT_CUSTOM_OPTIONS, custom_options); + } + void add_custom_options_format(tflite::CustomOptionsFormat custom_options_format) { + fbb_.AddElement(Operator::VT_CUSTOM_OPTIONS_FORMAT, static_cast(custom_options_format), 0); + } + void add_mutating_variable_inputs(flatbuffers::Offset> mutating_variable_inputs) { + fbb_.AddOffset(Operator::VT_MUTATING_VARIABLE_INPUTS, mutating_variable_inputs); + } + void add_intermediates(flatbuffers::Offset> intermediates) { + fbb_.AddOffset(Operator::VT_INTERMEDIATES, intermediates); + } + explicit OperatorBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + OperatorBuilder &operator=(const OperatorBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateOperator( + flatbuffers::FlatBufferBuilder &_fbb, + uint32_t opcode_index = 0, + flatbuffers::Offset> inputs = 0, + flatbuffers::Offset> outputs = 0, + tflite::BuiltinOptions builtin_options_type = tflite::BuiltinOptions_NONE, + flatbuffers::Offset builtin_options = 0, + flatbuffers::Offset> custom_options = 0, + tflite::CustomOptionsFormat custom_options_format = tflite::CustomOptionsFormat_FLEXBUFFERS, + flatbuffers::Offset> mutating_variable_inputs = 0, + flatbuffers::Offset> intermediates = 0) { + OperatorBuilder builder_(_fbb); + builder_.add_intermediates(intermediates); + builder_.add_mutating_variable_inputs(mutating_variable_inputs); + builder_.add_custom_options(custom_options); + builder_.add_builtin_options(builtin_options); + builder_.add_outputs(outputs); + builder_.add_inputs(inputs); + builder_.add_opcode_index(opcode_index); + builder_.add_custom_options_format(custom_options_format); + builder_.add_builtin_options_type(builtin_options_type); + return builder_.Finish(); +} + +inline flatbuffers::Offset CreateOperatorDirect( + flatbuffers::FlatBufferBuilder &_fbb, + uint32_t opcode_index = 0, + const std::vector *inputs = nullptr, + const std::vector *outputs = nullptr, + tflite::BuiltinOptions builtin_options_type = tflite::BuiltinOptions_NONE, + flatbuffers::Offset builtin_options = 0, + const std::vector *custom_options = nullptr, + tflite::CustomOptionsFormat custom_options_format = tflite::CustomOptionsFormat_FLEXBUFFERS, + const std::vector *mutating_variable_inputs = nullptr, + const std::vector *intermediates = nullptr) { + auto inputs__ = inputs ? _fbb.CreateVector(*inputs) : 0; + auto outputs__ = outputs ? _fbb.CreateVector(*outputs) : 0; + auto custom_options__ = custom_options ? _fbb.CreateVector(*custom_options) : 0; + auto mutating_variable_inputs__ = mutating_variable_inputs ? _fbb.CreateVector(*mutating_variable_inputs) : 0; + auto intermediates__ = intermediates ? _fbb.CreateVector(*intermediates) : 0; + return tflite::CreateOperator( + _fbb, + opcode_index, + inputs__, + outputs__, + builtin_options_type, + builtin_options, + custom_options__, + custom_options_format, + mutating_variable_inputs__, + intermediates__); +} + +flatbuffers::Offset CreateOperator(flatbuffers::FlatBufferBuilder &_fbb, const OperatorT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct SubGraphT : public flatbuffers::NativeTable { + typedef SubGraph TableType; + std::vector> tensors; + std::vector inputs; + std::vector outputs; + std::vector> operators; + std::string name; + SubGraphT() { + } +}; + +struct SubGraph FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef SubGraphT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_TENSORS = 4, + VT_INPUTS = 6, + VT_OUTPUTS = 8, + VT_OPERATORS = 10, + VT_NAME = 12 + }; + const flatbuffers::Vector> *tensors() const { + return GetPointer> *>(VT_TENSORS); + } + const flatbuffers::Vector *inputs() const { + return GetPointer *>(VT_INPUTS); + } + const flatbuffers::Vector *outputs() const { + return GetPointer *>(VT_OUTPUTS); + } + const flatbuffers::Vector> *operators() const { + return GetPointer> *>(VT_OPERATORS); + } + const flatbuffers::String *name() const { + return GetPointer(VT_NAME); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyOffset(verifier, VT_TENSORS) && + verifier.VerifyVector(tensors()) && + verifier.VerifyVectorOfTables(tensors()) && + VerifyOffset(verifier, VT_INPUTS) && + verifier.VerifyVector(inputs()) && + VerifyOffset(verifier, VT_OUTPUTS) && + verifier.VerifyVector(outputs()) && + VerifyOffset(verifier, VT_OPERATORS) && + verifier.VerifyVector(operators()) && + verifier.VerifyVectorOfTables(operators()) && + VerifyOffset(verifier, VT_NAME) && + verifier.VerifyString(name()) && + verifier.EndTable(); + } + SubGraphT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(SubGraphT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const SubGraphT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct SubGraphBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_tensors(flatbuffers::Offset>> tensors) { + fbb_.AddOffset(SubGraph::VT_TENSORS, tensors); + } + void add_inputs(flatbuffers::Offset> inputs) { + fbb_.AddOffset(SubGraph::VT_INPUTS, inputs); + } + void add_outputs(flatbuffers::Offset> outputs) { + fbb_.AddOffset(SubGraph::VT_OUTPUTS, outputs); + } + void add_operators(flatbuffers::Offset>> operators) { + fbb_.AddOffset(SubGraph::VT_OPERATORS, operators); + } + void add_name(flatbuffers::Offset name) { + fbb_.AddOffset(SubGraph::VT_NAME, name); + } + explicit SubGraphBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + SubGraphBuilder &operator=(const SubGraphBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateSubGraph( + flatbuffers::FlatBufferBuilder &_fbb, + flatbuffers::Offset>> tensors = 0, + flatbuffers::Offset> inputs = 0, + flatbuffers::Offset> outputs = 0, + flatbuffers::Offset>> operators = 0, + flatbuffers::Offset name = 0) { + SubGraphBuilder builder_(_fbb); + builder_.add_name(name); + builder_.add_operators(operators); + builder_.add_outputs(outputs); + builder_.add_inputs(inputs); + builder_.add_tensors(tensors); + return builder_.Finish(); +} + +inline flatbuffers::Offset CreateSubGraphDirect( + flatbuffers::FlatBufferBuilder &_fbb, + const std::vector> *tensors = nullptr, + const std::vector *inputs = nullptr, + const std::vector *outputs = nullptr, + const std::vector> *operators = nullptr, + const char *name = nullptr) { + auto tensors__ = tensors ? _fbb.CreateVector>(*tensors) : 0; + auto inputs__ = inputs ? _fbb.CreateVector(*inputs) : 0; + auto outputs__ = outputs ? _fbb.CreateVector(*outputs) : 0; + auto operators__ = operators ? _fbb.CreateVector>(*operators) : 0; + auto name__ = name ? _fbb.CreateString(name) : 0; + return tflite::CreateSubGraph( + _fbb, + tensors__, + inputs__, + outputs__, + operators__, + name__); +} + +flatbuffers::Offset CreateSubGraph(flatbuffers::FlatBufferBuilder &_fbb, const SubGraphT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct BufferT : public flatbuffers::NativeTable { + typedef Buffer TableType; + std::vector data; + BufferT() { + } +}; + +struct Buffer FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef BufferT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_DATA = 4 + }; + const flatbuffers::Vector *data() const { + return GetPointer *>(VT_DATA); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyOffset(verifier, VT_DATA) && + verifier.VerifyVector(data()) && + verifier.EndTable(); + } + BufferT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(BufferT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const BufferT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct BufferBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_data(flatbuffers::Offset> data) { + fbb_.AddOffset(Buffer::VT_DATA, data); + } + explicit BufferBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + BufferBuilder &operator=(const BufferBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateBuffer( + flatbuffers::FlatBufferBuilder &_fbb, + flatbuffers::Offset> data = 0) { + BufferBuilder builder_(_fbb); + builder_.add_data(data); + return builder_.Finish(); +} + +inline flatbuffers::Offset CreateBufferDirect( + flatbuffers::FlatBufferBuilder &_fbb, + const std::vector *data = nullptr) { + if (data) { _fbb.ForceVectorAlignment(data->size(), sizeof(uint8_t), 16); } + auto data__ = data ? _fbb.CreateVector(*data) : 0; + return tflite::CreateBuffer( + _fbb, + data__); +} + +flatbuffers::Offset CreateBuffer(flatbuffers::FlatBufferBuilder &_fbb, const BufferT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct MetadataT : public flatbuffers::NativeTable { + typedef Metadata TableType; + std::string name; + uint32_t buffer; + MetadataT() + : buffer(0) { + } +}; + +struct Metadata FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef MetadataT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_NAME = 4, + VT_BUFFER = 6 + }; + const flatbuffers::String *name() const { + return GetPointer(VT_NAME); + } + uint32_t buffer() const { + return GetField(VT_BUFFER, 0); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyOffset(verifier, VT_NAME) && + verifier.VerifyString(name()) && + VerifyField(verifier, VT_BUFFER) && + verifier.EndTable(); + } + MetadataT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(MetadataT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const MetadataT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct MetadataBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_name(flatbuffers::Offset name) { + fbb_.AddOffset(Metadata::VT_NAME, name); + } + void add_buffer(uint32_t buffer) { + fbb_.AddElement(Metadata::VT_BUFFER, buffer, 0); + } + explicit MetadataBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + MetadataBuilder &operator=(const MetadataBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateMetadata( + flatbuffers::FlatBufferBuilder &_fbb, + flatbuffers::Offset name = 0, + uint32_t buffer = 0) { + MetadataBuilder builder_(_fbb); + builder_.add_buffer(buffer); + builder_.add_name(name); + return builder_.Finish(); +} + +inline flatbuffers::Offset CreateMetadataDirect( + flatbuffers::FlatBufferBuilder &_fbb, + const char *name = nullptr, + uint32_t buffer = 0) { + auto name__ = name ? _fbb.CreateString(name) : 0; + return tflite::CreateMetadata( + _fbb, + name__, + buffer); +} + +flatbuffers::Offset CreateMetadata(flatbuffers::FlatBufferBuilder &_fbb, const MetadataT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +struct ModelT : public flatbuffers::NativeTable { + typedef Model TableType; + uint32_t version; + std::vector> operator_codes; + std::vector> subgraphs; + std::string description; + std::vector> buffers; + std::vector metadata_buffer; + std::vector> metadata; + ModelT() + : version(0) { + } +}; + +struct Model FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table { + typedef ModelT NativeTableType; + enum FlatBuffersVTableOffset FLATBUFFERS_VTABLE_UNDERLYING_TYPE { + VT_VERSION = 4, + VT_OPERATOR_CODES = 6, + VT_SUBGRAPHS = 8, + VT_DESCRIPTION = 10, + VT_BUFFERS = 12, + VT_METADATA_BUFFER = 14, + VT_METADATA = 16 + }; + uint32_t version() const { + return GetField(VT_VERSION, 0); + } + const flatbuffers::Vector> *operator_codes() const { + return GetPointer> *>(VT_OPERATOR_CODES); + } + const flatbuffers::Vector> *subgraphs() const { + return GetPointer> *>(VT_SUBGRAPHS); + } + const flatbuffers::String *description() const { + return GetPointer(VT_DESCRIPTION); + } + const flatbuffers::Vector> *buffers() const { + return GetPointer> *>(VT_BUFFERS); + } + const flatbuffers::Vector *metadata_buffer() const { + return GetPointer *>(VT_METADATA_BUFFER); + } + const flatbuffers::Vector> *metadata() const { + return GetPointer> *>(VT_METADATA); + } + bool Verify(flatbuffers::Verifier &verifier) const { + return VerifyTableStart(verifier) && + VerifyField(verifier, VT_VERSION) && + VerifyOffset(verifier, VT_OPERATOR_CODES) && + verifier.VerifyVector(operator_codes()) && + verifier.VerifyVectorOfTables(operator_codes()) && + VerifyOffset(verifier, VT_SUBGRAPHS) && + verifier.VerifyVector(subgraphs()) && + verifier.VerifyVectorOfTables(subgraphs()) && + VerifyOffset(verifier, VT_DESCRIPTION) && + verifier.VerifyString(description()) && + VerifyOffset(verifier, VT_BUFFERS) && + verifier.VerifyVector(buffers()) && + verifier.VerifyVectorOfTables(buffers()) && + VerifyOffset(verifier, VT_METADATA_BUFFER) && + verifier.VerifyVector(metadata_buffer()) && + VerifyOffset(verifier, VT_METADATA) && + verifier.VerifyVector(metadata()) && + verifier.VerifyVectorOfTables(metadata()) && + verifier.EndTable(); + } + ModelT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const; + void UnPackTo(ModelT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const; + static flatbuffers::Offset Pack(flatbuffers::FlatBufferBuilder &_fbb, const ModelT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); +}; + +struct ModelBuilder { + flatbuffers::FlatBufferBuilder &fbb_; + flatbuffers::uoffset_t start_; + void add_version(uint32_t version) { + fbb_.AddElement(Model::VT_VERSION, version, 0); + } + void add_operator_codes(flatbuffers::Offset>> operator_codes) { + fbb_.AddOffset(Model::VT_OPERATOR_CODES, operator_codes); + } + void add_subgraphs(flatbuffers::Offset>> subgraphs) { + fbb_.AddOffset(Model::VT_SUBGRAPHS, subgraphs); + } + void add_description(flatbuffers::Offset description) { + fbb_.AddOffset(Model::VT_DESCRIPTION, description); + } + void add_buffers(flatbuffers::Offset>> buffers) { + fbb_.AddOffset(Model::VT_BUFFERS, buffers); + } + void add_metadata_buffer(flatbuffers::Offset> metadata_buffer) { + fbb_.AddOffset(Model::VT_METADATA_BUFFER, metadata_buffer); + } + void add_metadata(flatbuffers::Offset>> metadata) { + fbb_.AddOffset(Model::VT_METADATA, metadata); + } + explicit ModelBuilder(flatbuffers::FlatBufferBuilder &_fbb) + : fbb_(_fbb) { + start_ = fbb_.StartTable(); + } + ModelBuilder &operator=(const ModelBuilder &); + flatbuffers::Offset Finish() { + const auto end = fbb_.EndTable(start_); + auto o = flatbuffers::Offset(end); + return o; + } +}; + +inline flatbuffers::Offset CreateModel( + flatbuffers::FlatBufferBuilder &_fbb, + uint32_t version = 0, + flatbuffers::Offset>> operator_codes = 0, + flatbuffers::Offset>> subgraphs = 0, + flatbuffers::Offset description = 0, + flatbuffers::Offset>> buffers = 0, + flatbuffers::Offset> metadata_buffer = 0, + flatbuffers::Offset>> metadata = 0) { + ModelBuilder builder_(_fbb); + builder_.add_metadata(metadata); + builder_.add_metadata_buffer(metadata_buffer); + builder_.add_buffers(buffers); + builder_.add_description(description); + builder_.add_subgraphs(subgraphs); + builder_.add_operator_codes(operator_codes); + builder_.add_version(version); + return builder_.Finish(); +} + +inline flatbuffers::Offset CreateModelDirect( + flatbuffers::FlatBufferBuilder &_fbb, + uint32_t version = 0, + const std::vector> *operator_codes = nullptr, + const std::vector> *subgraphs = nullptr, + const char *description = nullptr, + const std::vector> *buffers = nullptr, + const std::vector *metadata_buffer = nullptr, + const std::vector> *metadata = nullptr) { + auto operator_codes__ = operator_codes ? _fbb.CreateVector>(*operator_codes) : 0; + auto subgraphs__ = subgraphs ? _fbb.CreateVector>(*subgraphs) : 0; + auto description__ = description ? _fbb.CreateString(description) : 0; + auto buffers__ = buffers ? _fbb.CreateVector>(*buffers) : 0; + auto metadata_buffer__ = metadata_buffer ? _fbb.CreateVector(*metadata_buffer) : 0; + auto metadata__ = metadata ? _fbb.CreateVector>(*metadata) : 0; + return tflite::CreateModel( + _fbb, + version, + operator_codes__, + subgraphs__, + description__, + buffers__, + metadata_buffer__, + metadata__); +} + +flatbuffers::Offset CreateModel(flatbuffers::FlatBufferBuilder &_fbb, const ModelT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr); + +inline CustomQuantizationT *CustomQuantization::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new CustomQuantizationT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void CustomQuantization::UnPackTo(CustomQuantizationT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = custom(); if (_e) { _o->custom.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->custom[_i] = _e->Get(_i); } } } +} + +inline flatbuffers::Offset CustomQuantization::Pack(flatbuffers::FlatBufferBuilder &_fbb, const CustomQuantizationT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateCustomQuantization(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateCustomQuantization(flatbuffers::FlatBufferBuilder &_fbb, const CustomQuantizationT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const CustomQuantizationT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + _fbb.ForceVectorAlignment(_o->custom.size(), sizeof(uint8_t), 16); + auto _custom = _o->custom.size() ? _fbb.CreateVector(_o->custom) : 0; + return tflite::CreateCustomQuantization( + _fbb, + _custom); +} + +inline QuantizationParametersT *QuantizationParameters::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new QuantizationParametersT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void QuantizationParameters::UnPackTo(QuantizationParametersT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = min(); if (_e) { _o->min.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->min[_i] = _e->Get(_i); } } } + { auto _e = max(); if (_e) { _o->max.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->max[_i] = _e->Get(_i); } } } + { auto _e = scale(); if (_e) { _o->scale.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->scale[_i] = _e->Get(_i); } } } + { auto _e = zero_point(); if (_e) { _o->zero_point.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->zero_point[_i] = _e->Get(_i); } } } + { auto _e = details_type(); _o->details.type = _e; } + { auto _e = details(); if (_e) _o->details.value = tflite::QuantizationDetailsUnion::UnPack(_e, details_type(), _resolver); } + { auto _e = quantized_dimension(); _o->quantized_dimension = _e; } +} + +inline flatbuffers::Offset QuantizationParameters::Pack(flatbuffers::FlatBufferBuilder &_fbb, const QuantizationParametersT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateQuantizationParameters(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateQuantizationParameters(flatbuffers::FlatBufferBuilder &_fbb, const QuantizationParametersT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const QuantizationParametersT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _min = _o->min.size() ? _fbb.CreateVector(_o->min) : 0; + auto _max = _o->max.size() ? _fbb.CreateVector(_o->max) : 0; + auto _scale = _o->scale.size() ? _fbb.CreateVector(_o->scale) : 0; + auto _zero_point = _o->zero_point.size() ? _fbb.CreateVector(_o->zero_point) : 0; + auto _details_type = _o->details.type; + auto _details = _o->details.Pack(_fbb); + auto _quantized_dimension = _o->quantized_dimension; + return tflite::CreateQuantizationParameters( + _fbb, + _min, + _max, + _scale, + _zero_point, + _details_type, + _details, + _quantized_dimension); +} + +inline Int32VectorT *Int32Vector::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new Int32VectorT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void Int32Vector::UnPackTo(Int32VectorT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = values(); if (_e) { _o->values.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->values[_i] = _e->Get(_i); } } } +} + +inline flatbuffers::Offset Int32Vector::Pack(flatbuffers::FlatBufferBuilder &_fbb, const Int32VectorT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateInt32Vector(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateInt32Vector(flatbuffers::FlatBufferBuilder &_fbb, const Int32VectorT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const Int32VectorT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _values = _o->values.size() ? _fbb.CreateVector(_o->values) : 0; + return tflite::CreateInt32Vector( + _fbb, + _values); +} + +inline Uint16VectorT *Uint16Vector::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new Uint16VectorT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void Uint16Vector::UnPackTo(Uint16VectorT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = values(); if (_e) { _o->values.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->values[_i] = _e->Get(_i); } } } +} + +inline flatbuffers::Offset Uint16Vector::Pack(flatbuffers::FlatBufferBuilder &_fbb, const Uint16VectorT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateUint16Vector(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateUint16Vector(flatbuffers::FlatBufferBuilder &_fbb, const Uint16VectorT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const Uint16VectorT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + _fbb.ForceVectorAlignment(_o->values.size(), sizeof(uint16_t), 4); + auto _values = _o->values.size() ? _fbb.CreateVector(_o->values) : 0; + return tflite::CreateUint16Vector( + _fbb, + _values); +} + +inline Uint8VectorT *Uint8Vector::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new Uint8VectorT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void Uint8Vector::UnPackTo(Uint8VectorT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = values(); if (_e) { _o->values.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->values[_i] = _e->Get(_i); } } } +} + +inline flatbuffers::Offset Uint8Vector::Pack(flatbuffers::FlatBufferBuilder &_fbb, const Uint8VectorT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateUint8Vector(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateUint8Vector(flatbuffers::FlatBufferBuilder &_fbb, const Uint8VectorT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const Uint8VectorT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + _fbb.ForceVectorAlignment(_o->values.size(), sizeof(uint8_t), 4); + auto _values = _o->values.size() ? _fbb.CreateVector(_o->values) : 0; + return tflite::CreateUint8Vector( + _fbb, + _values); +} + +inline DimensionMetadataT *DimensionMetadata::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new DimensionMetadataT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void DimensionMetadata::UnPackTo(DimensionMetadataT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = format(); _o->format = _e; } + { auto _e = dense_size(); _o->dense_size = _e; } + { auto _e = array_segments_type(); _o->array_segments.type = _e; } + { auto _e = array_segments(); if (_e) _o->array_segments.value = tflite::SparseIndexVectorUnion::UnPack(_e, array_segments_type(), _resolver); } + { auto _e = array_indices_type(); _o->array_indices.type = _e; } + { auto _e = array_indices(); if (_e) _o->array_indices.value = tflite::SparseIndexVectorUnion::UnPack(_e, array_indices_type(), _resolver); } +} + +inline flatbuffers::Offset DimensionMetadata::Pack(flatbuffers::FlatBufferBuilder &_fbb, const DimensionMetadataT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateDimensionMetadata(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateDimensionMetadata(flatbuffers::FlatBufferBuilder &_fbb, const DimensionMetadataT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const DimensionMetadataT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _format = _o->format; + auto _dense_size = _o->dense_size; + auto _array_segments_type = _o->array_segments.type; + auto _array_segments = _o->array_segments.Pack(_fbb); + auto _array_indices_type = _o->array_indices.type; + auto _array_indices = _o->array_indices.Pack(_fbb); + return tflite::CreateDimensionMetadata( + _fbb, + _format, + _dense_size, + _array_segments_type, + _array_segments, + _array_indices_type, + _array_indices); +} + +inline SparsityParametersT *SparsityParameters::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new SparsityParametersT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void SparsityParameters::UnPackTo(SparsityParametersT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = traversal_order(); if (_e) { _o->traversal_order.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->traversal_order[_i] = _e->Get(_i); } } } + { auto _e = block_map(); if (_e) { _o->block_map.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->block_map[_i] = _e->Get(_i); } } } + { auto _e = dim_metadata(); if (_e) { _o->dim_metadata.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->dim_metadata[_i] = std::unique_ptr(_e->Get(_i)->UnPack(_resolver)); } } } +} + +inline flatbuffers::Offset SparsityParameters::Pack(flatbuffers::FlatBufferBuilder &_fbb, const SparsityParametersT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateSparsityParameters(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateSparsityParameters(flatbuffers::FlatBufferBuilder &_fbb, const SparsityParametersT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const SparsityParametersT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _traversal_order = _o->traversal_order.size() ? _fbb.CreateVector(_o->traversal_order) : 0; + auto _block_map = _o->block_map.size() ? _fbb.CreateVector(_o->block_map) : 0; + auto _dim_metadata = _o->dim_metadata.size() ? _fbb.CreateVector> (_o->dim_metadata.size(), [](size_t i, _VectorArgs *__va) { return CreateDimensionMetadata(*__va->__fbb, __va->__o->dim_metadata[i].get(), __va->__rehasher); }, &_va ) : 0; + return tflite::CreateSparsityParameters( + _fbb, + _traversal_order, + _block_map, + _dim_metadata); +} + +inline TensorT *Tensor::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new TensorT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void Tensor::UnPackTo(TensorT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = shape(); if (_e) { _o->shape.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->shape[_i] = _e->Get(_i); } } } + { auto _e = type(); _o->type = _e; } + { auto _e = buffer(); _o->buffer = _e; } + { auto _e = name(); if (_e) _o->name = _e->str(); } + { auto _e = quantization(); if (_e) _o->quantization = std::unique_ptr(_e->UnPack(_resolver)); } + { auto _e = is_variable(); _o->is_variable = _e; } + { auto _e = sparsity(); if (_e) _o->sparsity = std::unique_ptr(_e->UnPack(_resolver)); } + { auto _e = shape_signature(); if (_e) { _o->shape_signature.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->shape_signature[_i] = _e->Get(_i); } } } +} + +inline flatbuffers::Offset Tensor::Pack(flatbuffers::FlatBufferBuilder &_fbb, const TensorT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateTensor(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateTensor(flatbuffers::FlatBufferBuilder &_fbb, const TensorT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const TensorT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _shape = _o->shape.size() ? _fbb.CreateVector(_o->shape) : 0; + auto _type = _o->type; + auto _buffer = _o->buffer; + auto _name = _o->name.empty() ? 0 : _fbb.CreateString(_o->name); + auto _quantization = _o->quantization ? CreateQuantizationParameters(_fbb, _o->quantization.get(), _rehasher) : 0; + auto _is_variable = _o->is_variable; + auto _sparsity = _o->sparsity ? CreateSparsityParameters(_fbb, _o->sparsity.get(), _rehasher) : 0; + auto _shape_signature = _o->shape_signature.size() ? _fbb.CreateVector(_o->shape_signature) : 0; + return tflite::CreateTensor( + _fbb, + _shape, + _type, + _buffer, + _name, + _quantization, + _is_variable, + _sparsity, + _shape_signature); +} + +inline Conv2DOptionsT *Conv2DOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new Conv2DOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void Conv2DOptions::UnPackTo(Conv2DOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = padding(); _o->padding = _e; } + { auto _e = stride_w(); _o->stride_w = _e; } + { auto _e = stride_h(); _o->stride_h = _e; } + { auto _e = fused_activation_function(); _o->fused_activation_function = _e; } + { auto _e = dilation_w_factor(); _o->dilation_w_factor = _e; } + { auto _e = dilation_h_factor(); _o->dilation_h_factor = _e; } +} + +inline flatbuffers::Offset Conv2DOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const Conv2DOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateConv2DOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateConv2DOptions(flatbuffers::FlatBufferBuilder &_fbb, const Conv2DOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const Conv2DOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _padding = _o->padding; + auto _stride_w = _o->stride_w; + auto _stride_h = _o->stride_h; + auto _fused_activation_function = _o->fused_activation_function; + auto _dilation_w_factor = _o->dilation_w_factor; + auto _dilation_h_factor = _o->dilation_h_factor; + return tflite::CreateConv2DOptions( + _fbb, + _padding, + _stride_w, + _stride_h, + _fused_activation_function, + _dilation_w_factor, + _dilation_h_factor); +} + +inline Pool2DOptionsT *Pool2DOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new Pool2DOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void Pool2DOptions::UnPackTo(Pool2DOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = padding(); _o->padding = _e; } + { auto _e = stride_w(); _o->stride_w = _e; } + { auto _e = stride_h(); _o->stride_h = _e; } + { auto _e = filter_width(); _o->filter_width = _e; } + { auto _e = filter_height(); _o->filter_height = _e; } + { auto _e = fused_activation_function(); _o->fused_activation_function = _e; } +} + +inline flatbuffers::Offset Pool2DOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const Pool2DOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreatePool2DOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreatePool2DOptions(flatbuffers::FlatBufferBuilder &_fbb, const Pool2DOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const Pool2DOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _padding = _o->padding; + auto _stride_w = _o->stride_w; + auto _stride_h = _o->stride_h; + auto _filter_width = _o->filter_width; + auto _filter_height = _o->filter_height; + auto _fused_activation_function = _o->fused_activation_function; + return tflite::CreatePool2DOptions( + _fbb, + _padding, + _stride_w, + _stride_h, + _filter_width, + _filter_height, + _fused_activation_function); +} + +inline DepthwiseConv2DOptionsT *DepthwiseConv2DOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new DepthwiseConv2DOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void DepthwiseConv2DOptions::UnPackTo(DepthwiseConv2DOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = padding(); _o->padding = _e; } + { auto _e = stride_w(); _o->stride_w = _e; } + { auto _e = stride_h(); _o->stride_h = _e; } + { auto _e = depth_multiplier(); _o->depth_multiplier = _e; } + { auto _e = fused_activation_function(); _o->fused_activation_function = _e; } + { auto _e = dilation_w_factor(); _o->dilation_w_factor = _e; } + { auto _e = dilation_h_factor(); _o->dilation_h_factor = _e; } +} + +inline flatbuffers::Offset DepthwiseConv2DOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const DepthwiseConv2DOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateDepthwiseConv2DOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateDepthwiseConv2DOptions(flatbuffers::FlatBufferBuilder &_fbb, const DepthwiseConv2DOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const DepthwiseConv2DOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _padding = _o->padding; + auto _stride_w = _o->stride_w; + auto _stride_h = _o->stride_h; + auto _depth_multiplier = _o->depth_multiplier; + auto _fused_activation_function = _o->fused_activation_function; + auto _dilation_w_factor = _o->dilation_w_factor; + auto _dilation_h_factor = _o->dilation_h_factor; + return tflite::CreateDepthwiseConv2DOptions( + _fbb, + _padding, + _stride_w, + _stride_h, + _depth_multiplier, + _fused_activation_function, + _dilation_w_factor, + _dilation_h_factor); +} + +inline ConcatEmbeddingsOptionsT *ConcatEmbeddingsOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new ConcatEmbeddingsOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void ConcatEmbeddingsOptions::UnPackTo(ConcatEmbeddingsOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = num_channels(); _o->num_channels = _e; } + { auto _e = num_columns_per_channel(); if (_e) { _o->num_columns_per_channel.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->num_columns_per_channel[_i] = _e->Get(_i); } } } + { auto _e = embedding_dim_per_channel(); if (_e) { _o->embedding_dim_per_channel.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->embedding_dim_per_channel[_i] = _e->Get(_i); } } } +} + +inline flatbuffers::Offset ConcatEmbeddingsOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const ConcatEmbeddingsOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateConcatEmbeddingsOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateConcatEmbeddingsOptions(flatbuffers::FlatBufferBuilder &_fbb, const ConcatEmbeddingsOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const ConcatEmbeddingsOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _num_channels = _o->num_channels; + auto _num_columns_per_channel = _o->num_columns_per_channel.size() ? _fbb.CreateVector(_o->num_columns_per_channel) : 0; + auto _embedding_dim_per_channel = _o->embedding_dim_per_channel.size() ? _fbb.CreateVector(_o->embedding_dim_per_channel) : 0; + return tflite::CreateConcatEmbeddingsOptions( + _fbb, + _num_channels, + _num_columns_per_channel, + _embedding_dim_per_channel); +} + +inline LSHProjectionOptionsT *LSHProjectionOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new LSHProjectionOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void LSHProjectionOptions::UnPackTo(LSHProjectionOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = type(); _o->type = _e; } +} + +inline flatbuffers::Offset LSHProjectionOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const LSHProjectionOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateLSHProjectionOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateLSHProjectionOptions(flatbuffers::FlatBufferBuilder &_fbb, const LSHProjectionOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const LSHProjectionOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _type = _o->type; + return tflite::CreateLSHProjectionOptions( + _fbb, + _type); +} + +inline SVDFOptionsT *SVDFOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new SVDFOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void SVDFOptions::UnPackTo(SVDFOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = rank(); _o->rank = _e; } + { auto _e = fused_activation_function(); _o->fused_activation_function = _e; } + { auto _e = asymmetric_quantize_inputs(); _o->asymmetric_quantize_inputs = _e; } +} + +inline flatbuffers::Offset SVDFOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const SVDFOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateSVDFOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateSVDFOptions(flatbuffers::FlatBufferBuilder &_fbb, const SVDFOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const SVDFOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _rank = _o->rank; + auto _fused_activation_function = _o->fused_activation_function; + auto _asymmetric_quantize_inputs = _o->asymmetric_quantize_inputs; + return tflite::CreateSVDFOptions( + _fbb, + _rank, + _fused_activation_function, + _asymmetric_quantize_inputs); +} + +inline RNNOptionsT *RNNOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new RNNOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void RNNOptions::UnPackTo(RNNOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = fused_activation_function(); _o->fused_activation_function = _e; } + { auto _e = asymmetric_quantize_inputs(); _o->asymmetric_quantize_inputs = _e; } +} + +inline flatbuffers::Offset RNNOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const RNNOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateRNNOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateRNNOptions(flatbuffers::FlatBufferBuilder &_fbb, const RNNOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const RNNOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _fused_activation_function = _o->fused_activation_function; + auto _asymmetric_quantize_inputs = _o->asymmetric_quantize_inputs; + return tflite::CreateRNNOptions( + _fbb, + _fused_activation_function, + _asymmetric_quantize_inputs); +} + +inline SequenceRNNOptionsT *SequenceRNNOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new SequenceRNNOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void SequenceRNNOptions::UnPackTo(SequenceRNNOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = time_major(); _o->time_major = _e; } + { auto _e = fused_activation_function(); _o->fused_activation_function = _e; } + { auto _e = asymmetric_quantize_inputs(); _o->asymmetric_quantize_inputs = _e; } +} + +inline flatbuffers::Offset SequenceRNNOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const SequenceRNNOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateSequenceRNNOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateSequenceRNNOptions(flatbuffers::FlatBufferBuilder &_fbb, const SequenceRNNOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const SequenceRNNOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _time_major = _o->time_major; + auto _fused_activation_function = _o->fused_activation_function; + auto _asymmetric_quantize_inputs = _o->asymmetric_quantize_inputs; + return tflite::CreateSequenceRNNOptions( + _fbb, + _time_major, + _fused_activation_function, + _asymmetric_quantize_inputs); +} + +inline BidirectionalSequenceRNNOptionsT *BidirectionalSequenceRNNOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new BidirectionalSequenceRNNOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void BidirectionalSequenceRNNOptions::UnPackTo(BidirectionalSequenceRNNOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = time_major(); _o->time_major = _e; } + { auto _e = fused_activation_function(); _o->fused_activation_function = _e; } + { auto _e = merge_outputs(); _o->merge_outputs = _e; } + { auto _e = asymmetric_quantize_inputs(); _o->asymmetric_quantize_inputs = _e; } +} + +inline flatbuffers::Offset BidirectionalSequenceRNNOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const BidirectionalSequenceRNNOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateBidirectionalSequenceRNNOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateBidirectionalSequenceRNNOptions(flatbuffers::FlatBufferBuilder &_fbb, const BidirectionalSequenceRNNOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const BidirectionalSequenceRNNOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _time_major = _o->time_major; + auto _fused_activation_function = _o->fused_activation_function; + auto _merge_outputs = _o->merge_outputs; + auto _asymmetric_quantize_inputs = _o->asymmetric_quantize_inputs; + return tflite::CreateBidirectionalSequenceRNNOptions( + _fbb, + _time_major, + _fused_activation_function, + _merge_outputs, + _asymmetric_quantize_inputs); +} + +inline FullyConnectedOptionsT *FullyConnectedOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new FullyConnectedOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void FullyConnectedOptions::UnPackTo(FullyConnectedOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = fused_activation_function(); _o->fused_activation_function = _e; } + { auto _e = weights_format(); _o->weights_format = _e; } + { auto _e = keep_num_dims(); _o->keep_num_dims = _e; } + { auto _e = asymmetric_quantize_inputs(); _o->asymmetric_quantize_inputs = _e; } +} + +inline flatbuffers::Offset FullyConnectedOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const FullyConnectedOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateFullyConnectedOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateFullyConnectedOptions(flatbuffers::FlatBufferBuilder &_fbb, const FullyConnectedOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const FullyConnectedOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _fused_activation_function = _o->fused_activation_function; + auto _weights_format = _o->weights_format; + auto _keep_num_dims = _o->keep_num_dims; + auto _asymmetric_quantize_inputs = _o->asymmetric_quantize_inputs; + return tflite::CreateFullyConnectedOptions( + _fbb, + _fused_activation_function, + _weights_format, + _keep_num_dims, + _asymmetric_quantize_inputs); +} + +inline SoftmaxOptionsT *SoftmaxOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new SoftmaxOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void SoftmaxOptions::UnPackTo(SoftmaxOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = beta(); _o->beta = _e; } +} + +inline flatbuffers::Offset SoftmaxOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const SoftmaxOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateSoftmaxOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateSoftmaxOptions(flatbuffers::FlatBufferBuilder &_fbb, const SoftmaxOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const SoftmaxOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _beta = _o->beta; + return tflite::CreateSoftmaxOptions( + _fbb, + _beta); +} + +inline ConcatenationOptionsT *ConcatenationOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new ConcatenationOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void ConcatenationOptions::UnPackTo(ConcatenationOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = axis(); _o->axis = _e; } + { auto _e = fused_activation_function(); _o->fused_activation_function = _e; } +} + +inline flatbuffers::Offset ConcatenationOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const ConcatenationOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateConcatenationOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateConcatenationOptions(flatbuffers::FlatBufferBuilder &_fbb, const ConcatenationOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const ConcatenationOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _axis = _o->axis; + auto _fused_activation_function = _o->fused_activation_function; + return tflite::CreateConcatenationOptions( + _fbb, + _axis, + _fused_activation_function); +} + +inline AddOptionsT *AddOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new AddOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void AddOptions::UnPackTo(AddOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = fused_activation_function(); _o->fused_activation_function = _e; } +} + +inline flatbuffers::Offset AddOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const AddOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateAddOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateAddOptions(flatbuffers::FlatBufferBuilder &_fbb, const AddOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const AddOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _fused_activation_function = _o->fused_activation_function; + return tflite::CreateAddOptions( + _fbb, + _fused_activation_function); +} + +inline MulOptionsT *MulOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new MulOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void MulOptions::UnPackTo(MulOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = fused_activation_function(); _o->fused_activation_function = _e; } +} + +inline flatbuffers::Offset MulOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const MulOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateMulOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateMulOptions(flatbuffers::FlatBufferBuilder &_fbb, const MulOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const MulOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _fused_activation_function = _o->fused_activation_function; + return tflite::CreateMulOptions( + _fbb, + _fused_activation_function); +} + +inline L2NormOptionsT *L2NormOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new L2NormOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void L2NormOptions::UnPackTo(L2NormOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = fused_activation_function(); _o->fused_activation_function = _e; } +} + +inline flatbuffers::Offset L2NormOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const L2NormOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateL2NormOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateL2NormOptions(flatbuffers::FlatBufferBuilder &_fbb, const L2NormOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const L2NormOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _fused_activation_function = _o->fused_activation_function; + return tflite::CreateL2NormOptions( + _fbb, + _fused_activation_function); +} + +inline LocalResponseNormalizationOptionsT *LocalResponseNormalizationOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new LocalResponseNormalizationOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void LocalResponseNormalizationOptions::UnPackTo(LocalResponseNormalizationOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = radius(); _o->radius = _e; } + { auto _e = bias(); _o->bias = _e; } + { auto _e = alpha(); _o->alpha = _e; } + { auto _e = beta(); _o->beta = _e; } +} + +inline flatbuffers::Offset LocalResponseNormalizationOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const LocalResponseNormalizationOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateLocalResponseNormalizationOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateLocalResponseNormalizationOptions(flatbuffers::FlatBufferBuilder &_fbb, const LocalResponseNormalizationOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const LocalResponseNormalizationOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _radius = _o->radius; + auto _bias = _o->bias; + auto _alpha = _o->alpha; + auto _beta = _o->beta; + return tflite::CreateLocalResponseNormalizationOptions( + _fbb, + _radius, + _bias, + _alpha, + _beta); +} + +inline LSTMOptionsT *LSTMOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new LSTMOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void LSTMOptions::UnPackTo(LSTMOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = fused_activation_function(); _o->fused_activation_function = _e; } + { auto _e = cell_clip(); _o->cell_clip = _e; } + { auto _e = proj_clip(); _o->proj_clip = _e; } + { auto _e = kernel_type(); _o->kernel_type = _e; } + { auto _e = asymmetric_quantize_inputs(); _o->asymmetric_quantize_inputs = _e; } +} + +inline flatbuffers::Offset LSTMOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const LSTMOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateLSTMOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateLSTMOptions(flatbuffers::FlatBufferBuilder &_fbb, const LSTMOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const LSTMOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _fused_activation_function = _o->fused_activation_function; + auto _cell_clip = _o->cell_clip; + auto _proj_clip = _o->proj_clip; + auto _kernel_type = _o->kernel_type; + auto _asymmetric_quantize_inputs = _o->asymmetric_quantize_inputs; + return tflite::CreateLSTMOptions( + _fbb, + _fused_activation_function, + _cell_clip, + _proj_clip, + _kernel_type, + _asymmetric_quantize_inputs); +} + +inline UnidirectionalSequenceLSTMOptionsT *UnidirectionalSequenceLSTMOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new UnidirectionalSequenceLSTMOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void UnidirectionalSequenceLSTMOptions::UnPackTo(UnidirectionalSequenceLSTMOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = fused_activation_function(); _o->fused_activation_function = _e; } + { auto _e = cell_clip(); _o->cell_clip = _e; } + { auto _e = proj_clip(); _o->proj_clip = _e; } + { auto _e = time_major(); _o->time_major = _e; } + { auto _e = asymmetric_quantize_inputs(); _o->asymmetric_quantize_inputs = _e; } +} + +inline flatbuffers::Offset UnidirectionalSequenceLSTMOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const UnidirectionalSequenceLSTMOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateUnidirectionalSequenceLSTMOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateUnidirectionalSequenceLSTMOptions(flatbuffers::FlatBufferBuilder &_fbb, const UnidirectionalSequenceLSTMOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const UnidirectionalSequenceLSTMOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _fused_activation_function = _o->fused_activation_function; + auto _cell_clip = _o->cell_clip; + auto _proj_clip = _o->proj_clip; + auto _time_major = _o->time_major; + auto _asymmetric_quantize_inputs = _o->asymmetric_quantize_inputs; + return tflite::CreateUnidirectionalSequenceLSTMOptions( + _fbb, + _fused_activation_function, + _cell_clip, + _proj_clip, + _time_major, + _asymmetric_quantize_inputs); +} + +inline BidirectionalSequenceLSTMOptionsT *BidirectionalSequenceLSTMOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new BidirectionalSequenceLSTMOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void BidirectionalSequenceLSTMOptions::UnPackTo(BidirectionalSequenceLSTMOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = fused_activation_function(); _o->fused_activation_function = _e; } + { auto _e = cell_clip(); _o->cell_clip = _e; } + { auto _e = proj_clip(); _o->proj_clip = _e; } + { auto _e = merge_outputs(); _o->merge_outputs = _e; } + { auto _e = time_major(); _o->time_major = _e; } + { auto _e = asymmetric_quantize_inputs(); _o->asymmetric_quantize_inputs = _e; } +} + +inline flatbuffers::Offset BidirectionalSequenceLSTMOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const BidirectionalSequenceLSTMOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateBidirectionalSequenceLSTMOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateBidirectionalSequenceLSTMOptions(flatbuffers::FlatBufferBuilder &_fbb, const BidirectionalSequenceLSTMOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const BidirectionalSequenceLSTMOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _fused_activation_function = _o->fused_activation_function; + auto _cell_clip = _o->cell_clip; + auto _proj_clip = _o->proj_clip; + auto _merge_outputs = _o->merge_outputs; + auto _time_major = _o->time_major; + auto _asymmetric_quantize_inputs = _o->asymmetric_quantize_inputs; + return tflite::CreateBidirectionalSequenceLSTMOptions( + _fbb, + _fused_activation_function, + _cell_clip, + _proj_clip, + _merge_outputs, + _time_major, + _asymmetric_quantize_inputs); +} + +inline ResizeBilinearOptionsT *ResizeBilinearOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new ResizeBilinearOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void ResizeBilinearOptions::UnPackTo(ResizeBilinearOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = align_corners(); _o->align_corners = _e; } + { auto _e = half_pixel_centers(); _o->half_pixel_centers = _e; } +} + +inline flatbuffers::Offset ResizeBilinearOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const ResizeBilinearOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateResizeBilinearOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateResizeBilinearOptions(flatbuffers::FlatBufferBuilder &_fbb, const ResizeBilinearOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const ResizeBilinearOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _align_corners = _o->align_corners; + auto _half_pixel_centers = _o->half_pixel_centers; + return tflite::CreateResizeBilinearOptions( + _fbb, + _align_corners, + _half_pixel_centers); +} + +inline ResizeNearestNeighborOptionsT *ResizeNearestNeighborOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new ResizeNearestNeighborOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void ResizeNearestNeighborOptions::UnPackTo(ResizeNearestNeighborOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = align_corners(); _o->align_corners = _e; } + { auto _e = half_pixel_centers(); _o->half_pixel_centers = _e; } +} + +inline flatbuffers::Offset ResizeNearestNeighborOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const ResizeNearestNeighborOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateResizeNearestNeighborOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateResizeNearestNeighborOptions(flatbuffers::FlatBufferBuilder &_fbb, const ResizeNearestNeighborOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const ResizeNearestNeighborOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _align_corners = _o->align_corners; + auto _half_pixel_centers = _o->half_pixel_centers; + return tflite::CreateResizeNearestNeighborOptions( + _fbb, + _align_corners, + _half_pixel_centers); +} + +inline CallOptionsT *CallOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new CallOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void CallOptions::UnPackTo(CallOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = subgraph(); _o->subgraph = _e; } +} + +inline flatbuffers::Offset CallOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const CallOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateCallOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateCallOptions(flatbuffers::FlatBufferBuilder &_fbb, const CallOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const CallOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _subgraph = _o->subgraph; + return tflite::CreateCallOptions( + _fbb, + _subgraph); +} + +inline PadOptionsT *PadOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new PadOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void PadOptions::UnPackTo(PadOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset PadOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const PadOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreatePadOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreatePadOptions(flatbuffers::FlatBufferBuilder &_fbb, const PadOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const PadOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreatePadOptions( + _fbb); +} + +inline PadV2OptionsT *PadV2Options::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new PadV2OptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void PadV2Options::UnPackTo(PadV2OptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset PadV2Options::Pack(flatbuffers::FlatBufferBuilder &_fbb, const PadV2OptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreatePadV2Options(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreatePadV2Options(flatbuffers::FlatBufferBuilder &_fbb, const PadV2OptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const PadV2OptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreatePadV2Options( + _fbb); +} + +inline ReshapeOptionsT *ReshapeOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new ReshapeOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void ReshapeOptions::UnPackTo(ReshapeOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = new_shape(); if (_e) { _o->new_shape.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->new_shape[_i] = _e->Get(_i); } } } +} + +inline flatbuffers::Offset ReshapeOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const ReshapeOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateReshapeOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateReshapeOptions(flatbuffers::FlatBufferBuilder &_fbb, const ReshapeOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const ReshapeOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _new_shape = _o->new_shape.size() ? _fbb.CreateVector(_o->new_shape) : 0; + return tflite::CreateReshapeOptions( + _fbb, + _new_shape); +} + +inline SpaceToBatchNDOptionsT *SpaceToBatchNDOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new SpaceToBatchNDOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void SpaceToBatchNDOptions::UnPackTo(SpaceToBatchNDOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset SpaceToBatchNDOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const SpaceToBatchNDOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateSpaceToBatchNDOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateSpaceToBatchNDOptions(flatbuffers::FlatBufferBuilder &_fbb, const SpaceToBatchNDOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const SpaceToBatchNDOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateSpaceToBatchNDOptions( + _fbb); +} + +inline BatchToSpaceNDOptionsT *BatchToSpaceNDOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new BatchToSpaceNDOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void BatchToSpaceNDOptions::UnPackTo(BatchToSpaceNDOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset BatchToSpaceNDOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const BatchToSpaceNDOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateBatchToSpaceNDOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateBatchToSpaceNDOptions(flatbuffers::FlatBufferBuilder &_fbb, const BatchToSpaceNDOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const BatchToSpaceNDOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateBatchToSpaceNDOptions( + _fbb); +} + +inline SkipGramOptionsT *SkipGramOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new SkipGramOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void SkipGramOptions::UnPackTo(SkipGramOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = ngram_size(); _o->ngram_size = _e; } + { auto _e = max_skip_size(); _o->max_skip_size = _e; } + { auto _e = include_all_ngrams(); _o->include_all_ngrams = _e; } +} + +inline flatbuffers::Offset SkipGramOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const SkipGramOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateSkipGramOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateSkipGramOptions(flatbuffers::FlatBufferBuilder &_fbb, const SkipGramOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const SkipGramOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _ngram_size = _o->ngram_size; + auto _max_skip_size = _o->max_skip_size; + auto _include_all_ngrams = _o->include_all_ngrams; + return tflite::CreateSkipGramOptions( + _fbb, + _ngram_size, + _max_skip_size, + _include_all_ngrams); +} + +inline SpaceToDepthOptionsT *SpaceToDepthOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new SpaceToDepthOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void SpaceToDepthOptions::UnPackTo(SpaceToDepthOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = block_size(); _o->block_size = _e; } +} + +inline flatbuffers::Offset SpaceToDepthOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const SpaceToDepthOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateSpaceToDepthOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateSpaceToDepthOptions(flatbuffers::FlatBufferBuilder &_fbb, const SpaceToDepthOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const SpaceToDepthOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _block_size = _o->block_size; + return tflite::CreateSpaceToDepthOptions( + _fbb, + _block_size); +} + +inline DepthToSpaceOptionsT *DepthToSpaceOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new DepthToSpaceOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void DepthToSpaceOptions::UnPackTo(DepthToSpaceOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = block_size(); _o->block_size = _e; } +} + +inline flatbuffers::Offset DepthToSpaceOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const DepthToSpaceOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateDepthToSpaceOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateDepthToSpaceOptions(flatbuffers::FlatBufferBuilder &_fbb, const DepthToSpaceOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const DepthToSpaceOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _block_size = _o->block_size; + return tflite::CreateDepthToSpaceOptions( + _fbb, + _block_size); +} + +inline SubOptionsT *SubOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new SubOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void SubOptions::UnPackTo(SubOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = fused_activation_function(); _o->fused_activation_function = _e; } +} + +inline flatbuffers::Offset SubOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const SubOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateSubOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateSubOptions(flatbuffers::FlatBufferBuilder &_fbb, const SubOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const SubOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _fused_activation_function = _o->fused_activation_function; + return tflite::CreateSubOptions( + _fbb, + _fused_activation_function); +} + +inline DivOptionsT *DivOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new DivOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void DivOptions::UnPackTo(DivOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = fused_activation_function(); _o->fused_activation_function = _e; } +} + +inline flatbuffers::Offset DivOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const DivOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateDivOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateDivOptions(flatbuffers::FlatBufferBuilder &_fbb, const DivOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const DivOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _fused_activation_function = _o->fused_activation_function; + return tflite::CreateDivOptions( + _fbb, + _fused_activation_function); +} + +inline TopKV2OptionsT *TopKV2Options::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new TopKV2OptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void TopKV2Options::UnPackTo(TopKV2OptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset TopKV2Options::Pack(flatbuffers::FlatBufferBuilder &_fbb, const TopKV2OptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateTopKV2Options(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateTopKV2Options(flatbuffers::FlatBufferBuilder &_fbb, const TopKV2OptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const TopKV2OptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateTopKV2Options( + _fbb); +} + +inline EmbeddingLookupSparseOptionsT *EmbeddingLookupSparseOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new EmbeddingLookupSparseOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void EmbeddingLookupSparseOptions::UnPackTo(EmbeddingLookupSparseOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = combiner(); _o->combiner = _e; } +} + +inline flatbuffers::Offset EmbeddingLookupSparseOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const EmbeddingLookupSparseOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateEmbeddingLookupSparseOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateEmbeddingLookupSparseOptions(flatbuffers::FlatBufferBuilder &_fbb, const EmbeddingLookupSparseOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const EmbeddingLookupSparseOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _combiner = _o->combiner; + return tflite::CreateEmbeddingLookupSparseOptions( + _fbb, + _combiner); +} + +inline GatherOptionsT *GatherOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new GatherOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void GatherOptions::UnPackTo(GatherOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = axis(); _o->axis = _e; } +} + +inline flatbuffers::Offset GatherOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const GatherOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateGatherOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateGatherOptions(flatbuffers::FlatBufferBuilder &_fbb, const GatherOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const GatherOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _axis = _o->axis; + return tflite::CreateGatherOptions( + _fbb, + _axis); +} + +inline TransposeOptionsT *TransposeOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new TransposeOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void TransposeOptions::UnPackTo(TransposeOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset TransposeOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const TransposeOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateTransposeOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateTransposeOptions(flatbuffers::FlatBufferBuilder &_fbb, const TransposeOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const TransposeOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateTransposeOptions( + _fbb); +} + +inline ExpOptionsT *ExpOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new ExpOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void ExpOptions::UnPackTo(ExpOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset ExpOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const ExpOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateExpOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateExpOptions(flatbuffers::FlatBufferBuilder &_fbb, const ExpOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const ExpOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateExpOptions( + _fbb); +} + +inline CosOptionsT *CosOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new CosOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void CosOptions::UnPackTo(CosOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset CosOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const CosOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateCosOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateCosOptions(flatbuffers::FlatBufferBuilder &_fbb, const CosOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const CosOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateCosOptions( + _fbb); +} + +inline ReducerOptionsT *ReducerOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new ReducerOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void ReducerOptions::UnPackTo(ReducerOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = keep_dims(); _o->keep_dims = _e; } +} + +inline flatbuffers::Offset ReducerOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const ReducerOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateReducerOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateReducerOptions(flatbuffers::FlatBufferBuilder &_fbb, const ReducerOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const ReducerOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _keep_dims = _o->keep_dims; + return tflite::CreateReducerOptions( + _fbb, + _keep_dims); +} + +inline SqueezeOptionsT *SqueezeOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new SqueezeOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void SqueezeOptions::UnPackTo(SqueezeOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = squeeze_dims(); if (_e) { _o->squeeze_dims.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->squeeze_dims[_i] = _e->Get(_i); } } } +} + +inline flatbuffers::Offset SqueezeOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const SqueezeOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateSqueezeOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateSqueezeOptions(flatbuffers::FlatBufferBuilder &_fbb, const SqueezeOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const SqueezeOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _squeeze_dims = _o->squeeze_dims.size() ? _fbb.CreateVector(_o->squeeze_dims) : 0; + return tflite::CreateSqueezeOptions( + _fbb, + _squeeze_dims); +} + +inline SplitOptionsT *SplitOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new SplitOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void SplitOptions::UnPackTo(SplitOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = num_splits(); _o->num_splits = _e; } +} + +inline flatbuffers::Offset SplitOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const SplitOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateSplitOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateSplitOptions(flatbuffers::FlatBufferBuilder &_fbb, const SplitOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const SplitOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _num_splits = _o->num_splits; + return tflite::CreateSplitOptions( + _fbb, + _num_splits); +} + +inline SplitVOptionsT *SplitVOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new SplitVOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void SplitVOptions::UnPackTo(SplitVOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = num_splits(); _o->num_splits = _e; } +} + +inline flatbuffers::Offset SplitVOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const SplitVOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateSplitVOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateSplitVOptions(flatbuffers::FlatBufferBuilder &_fbb, const SplitVOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const SplitVOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _num_splits = _o->num_splits; + return tflite::CreateSplitVOptions( + _fbb, + _num_splits); +} + +inline StridedSliceOptionsT *StridedSliceOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new StridedSliceOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void StridedSliceOptions::UnPackTo(StridedSliceOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = begin_mask(); _o->begin_mask = _e; } + { auto _e = end_mask(); _o->end_mask = _e; } + { auto _e = ellipsis_mask(); _o->ellipsis_mask = _e; } + { auto _e = new_axis_mask(); _o->new_axis_mask = _e; } + { auto _e = shrink_axis_mask(); _o->shrink_axis_mask = _e; } +} + +inline flatbuffers::Offset StridedSliceOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const StridedSliceOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateStridedSliceOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateStridedSliceOptions(flatbuffers::FlatBufferBuilder &_fbb, const StridedSliceOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const StridedSliceOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _begin_mask = _o->begin_mask; + auto _end_mask = _o->end_mask; + auto _ellipsis_mask = _o->ellipsis_mask; + auto _new_axis_mask = _o->new_axis_mask; + auto _shrink_axis_mask = _o->shrink_axis_mask; + return tflite::CreateStridedSliceOptions( + _fbb, + _begin_mask, + _end_mask, + _ellipsis_mask, + _new_axis_mask, + _shrink_axis_mask); +} + +inline LogSoftmaxOptionsT *LogSoftmaxOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new LogSoftmaxOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void LogSoftmaxOptions::UnPackTo(LogSoftmaxOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset LogSoftmaxOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const LogSoftmaxOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateLogSoftmaxOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateLogSoftmaxOptions(flatbuffers::FlatBufferBuilder &_fbb, const LogSoftmaxOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const LogSoftmaxOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateLogSoftmaxOptions( + _fbb); +} + +inline CastOptionsT *CastOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new CastOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void CastOptions::UnPackTo(CastOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = in_data_type(); _o->in_data_type = _e; } + { auto _e = out_data_type(); _o->out_data_type = _e; } +} + +inline flatbuffers::Offset CastOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const CastOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateCastOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateCastOptions(flatbuffers::FlatBufferBuilder &_fbb, const CastOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const CastOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _in_data_type = _o->in_data_type; + auto _out_data_type = _o->out_data_type; + return tflite::CreateCastOptions( + _fbb, + _in_data_type, + _out_data_type); +} + +inline DequantizeOptionsT *DequantizeOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new DequantizeOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void DequantizeOptions::UnPackTo(DequantizeOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset DequantizeOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const DequantizeOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateDequantizeOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateDequantizeOptions(flatbuffers::FlatBufferBuilder &_fbb, const DequantizeOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const DequantizeOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateDequantizeOptions( + _fbb); +} + +inline MaximumMinimumOptionsT *MaximumMinimumOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new MaximumMinimumOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void MaximumMinimumOptions::UnPackTo(MaximumMinimumOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset MaximumMinimumOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const MaximumMinimumOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateMaximumMinimumOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateMaximumMinimumOptions(flatbuffers::FlatBufferBuilder &_fbb, const MaximumMinimumOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const MaximumMinimumOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateMaximumMinimumOptions( + _fbb); +} + +inline TileOptionsT *TileOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new TileOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void TileOptions::UnPackTo(TileOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset TileOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const TileOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateTileOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateTileOptions(flatbuffers::FlatBufferBuilder &_fbb, const TileOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const TileOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateTileOptions( + _fbb); +} + +inline ArgMaxOptionsT *ArgMaxOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new ArgMaxOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void ArgMaxOptions::UnPackTo(ArgMaxOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = output_type(); _o->output_type = _e; } +} + +inline flatbuffers::Offset ArgMaxOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const ArgMaxOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateArgMaxOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateArgMaxOptions(flatbuffers::FlatBufferBuilder &_fbb, const ArgMaxOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const ArgMaxOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _output_type = _o->output_type; + return tflite::CreateArgMaxOptions( + _fbb, + _output_type); +} + +inline ArgMinOptionsT *ArgMinOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new ArgMinOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void ArgMinOptions::UnPackTo(ArgMinOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = output_type(); _o->output_type = _e; } +} + +inline flatbuffers::Offset ArgMinOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const ArgMinOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateArgMinOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateArgMinOptions(flatbuffers::FlatBufferBuilder &_fbb, const ArgMinOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const ArgMinOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _output_type = _o->output_type; + return tflite::CreateArgMinOptions( + _fbb, + _output_type); +} + +inline GreaterOptionsT *GreaterOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new GreaterOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void GreaterOptions::UnPackTo(GreaterOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset GreaterOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const GreaterOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateGreaterOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateGreaterOptions(flatbuffers::FlatBufferBuilder &_fbb, const GreaterOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const GreaterOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateGreaterOptions( + _fbb); +} + +inline GreaterEqualOptionsT *GreaterEqualOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new GreaterEqualOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void GreaterEqualOptions::UnPackTo(GreaterEqualOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset GreaterEqualOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const GreaterEqualOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateGreaterEqualOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateGreaterEqualOptions(flatbuffers::FlatBufferBuilder &_fbb, const GreaterEqualOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const GreaterEqualOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateGreaterEqualOptions( + _fbb); +} + +inline LessOptionsT *LessOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new LessOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void LessOptions::UnPackTo(LessOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset LessOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const LessOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateLessOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateLessOptions(flatbuffers::FlatBufferBuilder &_fbb, const LessOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const LessOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateLessOptions( + _fbb); +} + +inline LessEqualOptionsT *LessEqualOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new LessEqualOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void LessEqualOptions::UnPackTo(LessEqualOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset LessEqualOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const LessEqualOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateLessEqualOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateLessEqualOptions(flatbuffers::FlatBufferBuilder &_fbb, const LessEqualOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const LessEqualOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateLessEqualOptions( + _fbb); +} + +inline NegOptionsT *NegOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new NegOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void NegOptions::UnPackTo(NegOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset NegOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const NegOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateNegOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateNegOptions(flatbuffers::FlatBufferBuilder &_fbb, const NegOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const NegOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateNegOptions( + _fbb); +} + +inline SelectOptionsT *SelectOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new SelectOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void SelectOptions::UnPackTo(SelectOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset SelectOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const SelectOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateSelectOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateSelectOptions(flatbuffers::FlatBufferBuilder &_fbb, const SelectOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const SelectOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateSelectOptions( + _fbb); +} + +inline SliceOptionsT *SliceOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new SliceOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void SliceOptions::UnPackTo(SliceOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset SliceOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const SliceOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateSliceOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateSliceOptions(flatbuffers::FlatBufferBuilder &_fbb, const SliceOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const SliceOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateSliceOptions( + _fbb); +} + +inline TransposeConvOptionsT *TransposeConvOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new TransposeConvOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void TransposeConvOptions::UnPackTo(TransposeConvOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = padding(); _o->padding = _e; } + { auto _e = stride_w(); _o->stride_w = _e; } + { auto _e = stride_h(); _o->stride_h = _e; } +} + +inline flatbuffers::Offset TransposeConvOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const TransposeConvOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateTransposeConvOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateTransposeConvOptions(flatbuffers::FlatBufferBuilder &_fbb, const TransposeConvOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const TransposeConvOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _padding = _o->padding; + auto _stride_w = _o->stride_w; + auto _stride_h = _o->stride_h; + return tflite::CreateTransposeConvOptions( + _fbb, + _padding, + _stride_w, + _stride_h); +} + +inline ExpandDimsOptionsT *ExpandDimsOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new ExpandDimsOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void ExpandDimsOptions::UnPackTo(ExpandDimsOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset ExpandDimsOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const ExpandDimsOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateExpandDimsOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateExpandDimsOptions(flatbuffers::FlatBufferBuilder &_fbb, const ExpandDimsOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const ExpandDimsOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateExpandDimsOptions( + _fbb); +} + +inline SparseToDenseOptionsT *SparseToDenseOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new SparseToDenseOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void SparseToDenseOptions::UnPackTo(SparseToDenseOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = validate_indices(); _o->validate_indices = _e; } +} + +inline flatbuffers::Offset SparseToDenseOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const SparseToDenseOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateSparseToDenseOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateSparseToDenseOptions(flatbuffers::FlatBufferBuilder &_fbb, const SparseToDenseOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const SparseToDenseOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _validate_indices = _o->validate_indices; + return tflite::CreateSparseToDenseOptions( + _fbb, + _validate_indices); +} + +inline EqualOptionsT *EqualOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new EqualOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void EqualOptions::UnPackTo(EqualOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset EqualOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const EqualOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateEqualOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateEqualOptions(flatbuffers::FlatBufferBuilder &_fbb, const EqualOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const EqualOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateEqualOptions( + _fbb); +} + +inline NotEqualOptionsT *NotEqualOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new NotEqualOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void NotEqualOptions::UnPackTo(NotEqualOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset NotEqualOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const NotEqualOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateNotEqualOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateNotEqualOptions(flatbuffers::FlatBufferBuilder &_fbb, const NotEqualOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const NotEqualOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateNotEqualOptions( + _fbb); +} + +inline ShapeOptionsT *ShapeOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new ShapeOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void ShapeOptions::UnPackTo(ShapeOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = out_type(); _o->out_type = _e; } +} + +inline flatbuffers::Offset ShapeOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const ShapeOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateShapeOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateShapeOptions(flatbuffers::FlatBufferBuilder &_fbb, const ShapeOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const ShapeOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _out_type = _o->out_type; + return tflite::CreateShapeOptions( + _fbb, + _out_type); +} + +inline RankOptionsT *RankOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new RankOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void RankOptions::UnPackTo(RankOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset RankOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const RankOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateRankOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateRankOptions(flatbuffers::FlatBufferBuilder &_fbb, const RankOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const RankOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateRankOptions( + _fbb); +} + +inline PowOptionsT *PowOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new PowOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void PowOptions::UnPackTo(PowOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset PowOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const PowOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreatePowOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreatePowOptions(flatbuffers::FlatBufferBuilder &_fbb, const PowOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const PowOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreatePowOptions( + _fbb); +} + +inline FakeQuantOptionsT *FakeQuantOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new FakeQuantOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void FakeQuantOptions::UnPackTo(FakeQuantOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = min(); _o->min = _e; } + { auto _e = max(); _o->max = _e; } + { auto _e = num_bits(); _o->num_bits = _e; } + { auto _e = narrow_range(); _o->narrow_range = _e; } +} + +inline flatbuffers::Offset FakeQuantOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const FakeQuantOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateFakeQuantOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateFakeQuantOptions(flatbuffers::FlatBufferBuilder &_fbb, const FakeQuantOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const FakeQuantOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _min = _o->min; + auto _max = _o->max; + auto _num_bits = _o->num_bits; + auto _narrow_range = _o->narrow_range; + return tflite::CreateFakeQuantOptions( + _fbb, + _min, + _max, + _num_bits, + _narrow_range); +} + +inline PackOptionsT *PackOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new PackOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void PackOptions::UnPackTo(PackOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = values_count(); _o->values_count = _e; } + { auto _e = axis(); _o->axis = _e; } +} + +inline flatbuffers::Offset PackOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const PackOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreatePackOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreatePackOptions(flatbuffers::FlatBufferBuilder &_fbb, const PackOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const PackOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _values_count = _o->values_count; + auto _axis = _o->axis; + return tflite::CreatePackOptions( + _fbb, + _values_count, + _axis); +} + +inline LogicalOrOptionsT *LogicalOrOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new LogicalOrOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void LogicalOrOptions::UnPackTo(LogicalOrOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset LogicalOrOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const LogicalOrOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateLogicalOrOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateLogicalOrOptions(flatbuffers::FlatBufferBuilder &_fbb, const LogicalOrOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const LogicalOrOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateLogicalOrOptions( + _fbb); +} + +inline OneHotOptionsT *OneHotOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new OneHotOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void OneHotOptions::UnPackTo(OneHotOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = axis(); _o->axis = _e; } +} + +inline flatbuffers::Offset OneHotOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const OneHotOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateOneHotOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateOneHotOptions(flatbuffers::FlatBufferBuilder &_fbb, const OneHotOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const OneHotOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _axis = _o->axis; + return tflite::CreateOneHotOptions( + _fbb, + _axis); +} + +inline AbsOptionsT *AbsOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new AbsOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void AbsOptions::UnPackTo(AbsOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset AbsOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const AbsOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateAbsOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateAbsOptions(flatbuffers::FlatBufferBuilder &_fbb, const AbsOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const AbsOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateAbsOptions( + _fbb); +} + +inline HardSwishOptionsT *HardSwishOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new HardSwishOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void HardSwishOptions::UnPackTo(HardSwishOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset HardSwishOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const HardSwishOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateHardSwishOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateHardSwishOptions(flatbuffers::FlatBufferBuilder &_fbb, const HardSwishOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const HardSwishOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateHardSwishOptions( + _fbb); +} + +inline LogicalAndOptionsT *LogicalAndOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new LogicalAndOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void LogicalAndOptions::UnPackTo(LogicalAndOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset LogicalAndOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const LogicalAndOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateLogicalAndOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateLogicalAndOptions(flatbuffers::FlatBufferBuilder &_fbb, const LogicalAndOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const LogicalAndOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateLogicalAndOptions( + _fbb); +} + +inline LogicalNotOptionsT *LogicalNotOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new LogicalNotOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void LogicalNotOptions::UnPackTo(LogicalNotOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset LogicalNotOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const LogicalNotOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateLogicalNotOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateLogicalNotOptions(flatbuffers::FlatBufferBuilder &_fbb, const LogicalNotOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const LogicalNotOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateLogicalNotOptions( + _fbb); +} + +inline UnpackOptionsT *UnpackOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new UnpackOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void UnpackOptions::UnPackTo(UnpackOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = num(); _o->num = _e; } + { auto _e = axis(); _o->axis = _e; } +} + +inline flatbuffers::Offset UnpackOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const UnpackOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateUnpackOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateUnpackOptions(flatbuffers::FlatBufferBuilder &_fbb, const UnpackOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const UnpackOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _num = _o->num; + auto _axis = _o->axis; + return tflite::CreateUnpackOptions( + _fbb, + _num, + _axis); +} + +inline FloorDivOptionsT *FloorDivOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new FloorDivOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void FloorDivOptions::UnPackTo(FloorDivOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset FloorDivOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const FloorDivOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateFloorDivOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateFloorDivOptions(flatbuffers::FlatBufferBuilder &_fbb, const FloorDivOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const FloorDivOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateFloorDivOptions( + _fbb); +} + +inline SquareOptionsT *SquareOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new SquareOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void SquareOptions::UnPackTo(SquareOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset SquareOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const SquareOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateSquareOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateSquareOptions(flatbuffers::FlatBufferBuilder &_fbb, const SquareOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const SquareOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateSquareOptions( + _fbb); +} + +inline ZerosLikeOptionsT *ZerosLikeOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new ZerosLikeOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void ZerosLikeOptions::UnPackTo(ZerosLikeOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset ZerosLikeOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const ZerosLikeOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateZerosLikeOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateZerosLikeOptions(flatbuffers::FlatBufferBuilder &_fbb, const ZerosLikeOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const ZerosLikeOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateZerosLikeOptions( + _fbb); +} + +inline FillOptionsT *FillOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new FillOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void FillOptions::UnPackTo(FillOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset FillOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const FillOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateFillOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateFillOptions(flatbuffers::FlatBufferBuilder &_fbb, const FillOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const FillOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateFillOptions( + _fbb); +} + +inline FloorModOptionsT *FloorModOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new FloorModOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void FloorModOptions::UnPackTo(FloorModOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset FloorModOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const FloorModOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateFloorModOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateFloorModOptions(flatbuffers::FlatBufferBuilder &_fbb, const FloorModOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const FloorModOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateFloorModOptions( + _fbb); +} + +inline RangeOptionsT *RangeOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new RangeOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void RangeOptions::UnPackTo(RangeOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset RangeOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const RangeOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateRangeOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateRangeOptions(flatbuffers::FlatBufferBuilder &_fbb, const RangeOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const RangeOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateRangeOptions( + _fbb); +} + +inline LeakyReluOptionsT *LeakyReluOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new LeakyReluOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void LeakyReluOptions::UnPackTo(LeakyReluOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = alpha(); _o->alpha = _e; } +} + +inline flatbuffers::Offset LeakyReluOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const LeakyReluOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateLeakyReluOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateLeakyReluOptions(flatbuffers::FlatBufferBuilder &_fbb, const LeakyReluOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const LeakyReluOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _alpha = _o->alpha; + return tflite::CreateLeakyReluOptions( + _fbb, + _alpha); +} + +inline SquaredDifferenceOptionsT *SquaredDifferenceOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new SquaredDifferenceOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void SquaredDifferenceOptions::UnPackTo(SquaredDifferenceOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset SquaredDifferenceOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const SquaredDifferenceOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateSquaredDifferenceOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateSquaredDifferenceOptions(flatbuffers::FlatBufferBuilder &_fbb, const SquaredDifferenceOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const SquaredDifferenceOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateSquaredDifferenceOptions( + _fbb); +} + +inline MirrorPadOptionsT *MirrorPadOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new MirrorPadOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void MirrorPadOptions::UnPackTo(MirrorPadOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = mode(); _o->mode = _e; } +} + +inline flatbuffers::Offset MirrorPadOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const MirrorPadOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateMirrorPadOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateMirrorPadOptions(flatbuffers::FlatBufferBuilder &_fbb, const MirrorPadOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const MirrorPadOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _mode = _o->mode; + return tflite::CreateMirrorPadOptions( + _fbb, + _mode); +} + +inline UniqueOptionsT *UniqueOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new UniqueOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void UniqueOptions::UnPackTo(UniqueOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = idx_out_type(); _o->idx_out_type = _e; } +} + +inline flatbuffers::Offset UniqueOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const UniqueOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateUniqueOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateUniqueOptions(flatbuffers::FlatBufferBuilder &_fbb, const UniqueOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const UniqueOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _idx_out_type = _o->idx_out_type; + return tflite::CreateUniqueOptions( + _fbb, + _idx_out_type); +} + +inline ReverseV2OptionsT *ReverseV2Options::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new ReverseV2OptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void ReverseV2Options::UnPackTo(ReverseV2OptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset ReverseV2Options::Pack(flatbuffers::FlatBufferBuilder &_fbb, const ReverseV2OptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateReverseV2Options(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateReverseV2Options(flatbuffers::FlatBufferBuilder &_fbb, const ReverseV2OptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const ReverseV2OptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateReverseV2Options( + _fbb); +} + +inline AddNOptionsT *AddNOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new AddNOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void AddNOptions::UnPackTo(AddNOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset AddNOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const AddNOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateAddNOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateAddNOptions(flatbuffers::FlatBufferBuilder &_fbb, const AddNOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const AddNOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateAddNOptions( + _fbb); +} + +inline GatherNdOptionsT *GatherNdOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new GatherNdOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void GatherNdOptions::UnPackTo(GatherNdOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset GatherNdOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const GatherNdOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateGatherNdOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateGatherNdOptions(flatbuffers::FlatBufferBuilder &_fbb, const GatherNdOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const GatherNdOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateGatherNdOptions( + _fbb); +} + +inline WhereOptionsT *WhereOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new WhereOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void WhereOptions::UnPackTo(WhereOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset WhereOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const WhereOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateWhereOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateWhereOptions(flatbuffers::FlatBufferBuilder &_fbb, const WhereOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const WhereOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateWhereOptions( + _fbb); +} + +inline ReverseSequenceOptionsT *ReverseSequenceOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new ReverseSequenceOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void ReverseSequenceOptions::UnPackTo(ReverseSequenceOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = seq_dim(); _o->seq_dim = _e; } + { auto _e = batch_dim(); _o->batch_dim = _e; } +} + +inline flatbuffers::Offset ReverseSequenceOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const ReverseSequenceOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateReverseSequenceOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateReverseSequenceOptions(flatbuffers::FlatBufferBuilder &_fbb, const ReverseSequenceOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const ReverseSequenceOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _seq_dim = _o->seq_dim; + auto _batch_dim = _o->batch_dim; + return tflite::CreateReverseSequenceOptions( + _fbb, + _seq_dim, + _batch_dim); +} + +inline MatrixDiagOptionsT *MatrixDiagOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new MatrixDiagOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void MatrixDiagOptions::UnPackTo(MatrixDiagOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset MatrixDiagOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const MatrixDiagOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateMatrixDiagOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateMatrixDiagOptions(flatbuffers::FlatBufferBuilder &_fbb, const MatrixDiagOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const MatrixDiagOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateMatrixDiagOptions( + _fbb); +} + +inline QuantizeOptionsT *QuantizeOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new QuantizeOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void QuantizeOptions::UnPackTo(QuantizeOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset QuantizeOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const QuantizeOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateQuantizeOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateQuantizeOptions(flatbuffers::FlatBufferBuilder &_fbb, const QuantizeOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const QuantizeOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateQuantizeOptions( + _fbb); +} + +inline MatrixSetDiagOptionsT *MatrixSetDiagOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new MatrixSetDiagOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void MatrixSetDiagOptions::UnPackTo(MatrixSetDiagOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset MatrixSetDiagOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const MatrixSetDiagOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateMatrixSetDiagOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateMatrixSetDiagOptions(flatbuffers::FlatBufferBuilder &_fbb, const MatrixSetDiagOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const MatrixSetDiagOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateMatrixSetDiagOptions( + _fbb); +} + +inline IfOptionsT *IfOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new IfOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void IfOptions::UnPackTo(IfOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = then_subgraph_index(); _o->then_subgraph_index = _e; } + { auto _e = else_subgraph_index(); _o->else_subgraph_index = _e; } +} + +inline flatbuffers::Offset IfOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const IfOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateIfOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateIfOptions(flatbuffers::FlatBufferBuilder &_fbb, const IfOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const IfOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _then_subgraph_index = _o->then_subgraph_index; + auto _else_subgraph_index = _o->else_subgraph_index; + return tflite::CreateIfOptions( + _fbb, + _then_subgraph_index, + _else_subgraph_index); +} + +inline WhileOptionsT *WhileOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new WhileOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void WhileOptions::UnPackTo(WhileOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = cond_subgraph_index(); _o->cond_subgraph_index = _e; } + { auto _e = body_subgraph_index(); _o->body_subgraph_index = _e; } +} + +inline flatbuffers::Offset WhileOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const WhileOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateWhileOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateWhileOptions(flatbuffers::FlatBufferBuilder &_fbb, const WhileOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const WhileOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _cond_subgraph_index = _o->cond_subgraph_index; + auto _body_subgraph_index = _o->body_subgraph_index; + return tflite::CreateWhileOptions( + _fbb, + _cond_subgraph_index, + _body_subgraph_index); +} + +inline NonMaxSuppressionV4OptionsT *NonMaxSuppressionV4Options::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new NonMaxSuppressionV4OptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void NonMaxSuppressionV4Options::UnPackTo(NonMaxSuppressionV4OptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset NonMaxSuppressionV4Options::Pack(flatbuffers::FlatBufferBuilder &_fbb, const NonMaxSuppressionV4OptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateNonMaxSuppressionV4Options(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateNonMaxSuppressionV4Options(flatbuffers::FlatBufferBuilder &_fbb, const NonMaxSuppressionV4OptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const NonMaxSuppressionV4OptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateNonMaxSuppressionV4Options( + _fbb); +} + +inline NonMaxSuppressionV5OptionsT *NonMaxSuppressionV5Options::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new NonMaxSuppressionV5OptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void NonMaxSuppressionV5Options::UnPackTo(NonMaxSuppressionV5OptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset NonMaxSuppressionV5Options::Pack(flatbuffers::FlatBufferBuilder &_fbb, const NonMaxSuppressionV5OptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateNonMaxSuppressionV5Options(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateNonMaxSuppressionV5Options(flatbuffers::FlatBufferBuilder &_fbb, const NonMaxSuppressionV5OptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const NonMaxSuppressionV5OptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateNonMaxSuppressionV5Options( + _fbb); +} + +inline ScatterNdOptionsT *ScatterNdOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new ScatterNdOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void ScatterNdOptions::UnPackTo(ScatterNdOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset ScatterNdOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const ScatterNdOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateScatterNdOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateScatterNdOptions(flatbuffers::FlatBufferBuilder &_fbb, const ScatterNdOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const ScatterNdOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateScatterNdOptions( + _fbb); +} + +inline SelectV2OptionsT *SelectV2Options::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new SelectV2OptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void SelectV2Options::UnPackTo(SelectV2OptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset SelectV2Options::Pack(flatbuffers::FlatBufferBuilder &_fbb, const SelectV2OptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateSelectV2Options(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateSelectV2Options(flatbuffers::FlatBufferBuilder &_fbb, const SelectV2OptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const SelectV2OptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateSelectV2Options( + _fbb); +} + +inline DensifyOptionsT *DensifyOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new DensifyOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void DensifyOptions::UnPackTo(DensifyOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset DensifyOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const DensifyOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateDensifyOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateDensifyOptions(flatbuffers::FlatBufferBuilder &_fbb, const DensifyOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const DensifyOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateDensifyOptions( + _fbb); +} + +inline SegmentSumOptionsT *SegmentSumOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new SegmentSumOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void SegmentSumOptions::UnPackTo(SegmentSumOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; +} + +inline flatbuffers::Offset SegmentSumOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const SegmentSumOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateSegmentSumOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateSegmentSumOptions(flatbuffers::FlatBufferBuilder &_fbb, const SegmentSumOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const SegmentSumOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + return tflite::CreateSegmentSumOptions( + _fbb); +} + +inline BatchMatMulOptionsT *BatchMatMulOptions::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new BatchMatMulOptionsT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void BatchMatMulOptions::UnPackTo(BatchMatMulOptionsT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = adj_x(); _o->adj_x = _e; } + { auto _e = adj_y(); _o->adj_y = _e; } +} + +inline flatbuffers::Offset BatchMatMulOptions::Pack(flatbuffers::FlatBufferBuilder &_fbb, const BatchMatMulOptionsT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateBatchMatMulOptions(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateBatchMatMulOptions(flatbuffers::FlatBufferBuilder &_fbb, const BatchMatMulOptionsT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const BatchMatMulOptionsT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _adj_x = _o->adj_x; + auto _adj_y = _o->adj_y; + return tflite::CreateBatchMatMulOptions( + _fbb, + _adj_x, + _adj_y); +} + +inline OperatorCodeT *OperatorCode::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new OperatorCodeT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void OperatorCode::UnPackTo(OperatorCodeT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = builtin_code(); _o->builtin_code = _e; } + { auto _e = custom_code(); if (_e) _o->custom_code = _e->str(); } + { auto _e = version(); _o->version = _e; } +} + +inline flatbuffers::Offset OperatorCode::Pack(flatbuffers::FlatBufferBuilder &_fbb, const OperatorCodeT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateOperatorCode(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateOperatorCode(flatbuffers::FlatBufferBuilder &_fbb, const OperatorCodeT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const OperatorCodeT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _builtin_code = _o->builtin_code; + auto _custom_code = _o->custom_code.empty() ? 0 : _fbb.CreateString(_o->custom_code); + auto _version = _o->version; + return tflite::CreateOperatorCode( + _fbb, + _builtin_code, + _custom_code, + _version); +} + +inline OperatorT *Operator::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new OperatorT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void Operator::UnPackTo(OperatorT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = opcode_index(); _o->opcode_index = _e; } + { auto _e = inputs(); if (_e) { _o->inputs.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->inputs[_i] = _e->Get(_i); } } } + { auto _e = outputs(); if (_e) { _o->outputs.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->outputs[_i] = _e->Get(_i); } } } + { auto _e = builtin_options_type(); _o->builtin_options.type = _e; } + { auto _e = builtin_options(); if (_e) _o->builtin_options.value = tflite::BuiltinOptionsUnion::UnPack(_e, builtin_options_type(), _resolver); } + { auto _e = custom_options(); if (_e) { _o->custom_options.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->custom_options[_i] = _e->Get(_i); } } } + { auto _e = custom_options_format(); _o->custom_options_format = _e; } + { auto _e = mutating_variable_inputs(); if (_e) { _o->mutating_variable_inputs.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->mutating_variable_inputs[_i] = _e->Get(_i) != 0; } } } + { auto _e = intermediates(); if (_e) { _o->intermediates.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->intermediates[_i] = _e->Get(_i); } } } +} + +inline flatbuffers::Offset Operator::Pack(flatbuffers::FlatBufferBuilder &_fbb, const OperatorT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateOperator(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateOperator(flatbuffers::FlatBufferBuilder &_fbb, const OperatorT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const OperatorT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _opcode_index = _o->opcode_index; + auto _inputs = _o->inputs.size() ? _fbb.CreateVector(_o->inputs) : 0; + auto _outputs = _o->outputs.size() ? _fbb.CreateVector(_o->outputs) : 0; + auto _builtin_options_type = _o->builtin_options.type; + auto _builtin_options = _o->builtin_options.Pack(_fbb); + auto _custom_options = _o->custom_options.size() ? _fbb.CreateVector(_o->custom_options) : 0; + auto _custom_options_format = _o->custom_options_format; + auto _mutating_variable_inputs = _o->mutating_variable_inputs.size() ? _fbb.CreateVector(_o->mutating_variable_inputs) : 0; + auto _intermediates = _o->intermediates.size() ? _fbb.CreateVector(_o->intermediates) : 0; + return tflite::CreateOperator( + _fbb, + _opcode_index, + _inputs, + _outputs, + _builtin_options_type, + _builtin_options, + _custom_options, + _custom_options_format, + _mutating_variable_inputs, + _intermediates); +} + +inline SubGraphT *SubGraph::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new SubGraphT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void SubGraph::UnPackTo(SubGraphT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = tensors(); if (_e) { _o->tensors.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->tensors[_i] = std::unique_ptr(_e->Get(_i)->UnPack(_resolver)); } } } + { auto _e = inputs(); if (_e) { _o->inputs.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->inputs[_i] = _e->Get(_i); } } } + { auto _e = outputs(); if (_e) { _o->outputs.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->outputs[_i] = _e->Get(_i); } } } + { auto _e = operators(); if (_e) { _o->operators.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->operators[_i] = std::unique_ptr(_e->Get(_i)->UnPack(_resolver)); } } } + { auto _e = name(); if (_e) _o->name = _e->str(); } +} + +inline flatbuffers::Offset SubGraph::Pack(flatbuffers::FlatBufferBuilder &_fbb, const SubGraphT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateSubGraph(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateSubGraph(flatbuffers::FlatBufferBuilder &_fbb, const SubGraphT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const SubGraphT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _tensors = _o->tensors.size() ? _fbb.CreateVector> (_o->tensors.size(), [](size_t i, _VectorArgs *__va) { return CreateTensor(*__va->__fbb, __va->__o->tensors[i].get(), __va->__rehasher); }, &_va ) : 0; + auto _inputs = _o->inputs.size() ? _fbb.CreateVector(_o->inputs) : 0; + auto _outputs = _o->outputs.size() ? _fbb.CreateVector(_o->outputs) : 0; + auto _operators = _o->operators.size() ? _fbb.CreateVector> (_o->operators.size(), [](size_t i, _VectorArgs *__va) { return CreateOperator(*__va->__fbb, __va->__o->operators[i].get(), __va->__rehasher); }, &_va ) : 0; + auto _name = _o->name.empty() ? 0 : _fbb.CreateString(_o->name); + return tflite::CreateSubGraph( + _fbb, + _tensors, + _inputs, + _outputs, + _operators, + _name); +} + +inline BufferT *Buffer::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new BufferT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void Buffer::UnPackTo(BufferT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = data(); if (_e) { _o->data.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->data[_i] = _e->Get(_i); } } } +} + +inline flatbuffers::Offset Buffer::Pack(flatbuffers::FlatBufferBuilder &_fbb, const BufferT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateBuffer(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateBuffer(flatbuffers::FlatBufferBuilder &_fbb, const BufferT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const BufferT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + _fbb.ForceVectorAlignment(_o->data.size(), sizeof(uint8_t), 16); + auto _data = _o->data.size() ? _fbb.CreateVector(_o->data) : 0; + return tflite::CreateBuffer( + _fbb, + _data); +} + +inline MetadataT *Metadata::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new MetadataT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void Metadata::UnPackTo(MetadataT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = name(); if (_e) _o->name = _e->str(); } + { auto _e = buffer(); _o->buffer = _e; } +} + +inline flatbuffers::Offset Metadata::Pack(flatbuffers::FlatBufferBuilder &_fbb, const MetadataT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateMetadata(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateMetadata(flatbuffers::FlatBufferBuilder &_fbb, const MetadataT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const MetadataT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _name = _o->name.empty() ? 0 : _fbb.CreateString(_o->name); + auto _buffer = _o->buffer; + return tflite::CreateMetadata( + _fbb, + _name, + _buffer); +} + +inline ModelT *Model::UnPack(const flatbuffers::resolver_function_t *_resolver) const { + auto _o = new ModelT(); + UnPackTo(_o, _resolver); + return _o; +} + +inline void Model::UnPackTo(ModelT *_o, const flatbuffers::resolver_function_t *_resolver) const { + (void)_o; + (void)_resolver; + { auto _e = version(); _o->version = _e; } + { auto _e = operator_codes(); if (_e) { _o->operator_codes.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->operator_codes[_i] = std::unique_ptr(_e->Get(_i)->UnPack(_resolver)); } } } + { auto _e = subgraphs(); if (_e) { _o->subgraphs.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->subgraphs[_i] = std::unique_ptr(_e->Get(_i)->UnPack(_resolver)); } } } + { auto _e = description(); if (_e) _o->description = _e->str(); } + { auto _e = buffers(); if (_e) { _o->buffers.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->buffers[_i] = std::unique_ptr(_e->Get(_i)->UnPack(_resolver)); } } } + { auto _e = metadata_buffer(); if (_e) { _o->metadata_buffer.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->metadata_buffer[_i] = _e->Get(_i); } } } + { auto _e = metadata(); if (_e) { _o->metadata.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->metadata[_i] = std::unique_ptr(_e->Get(_i)->UnPack(_resolver)); } } } +} + +inline flatbuffers::Offset Model::Pack(flatbuffers::FlatBufferBuilder &_fbb, const ModelT* _o, const flatbuffers::rehasher_function_t *_rehasher) { + return CreateModel(_fbb, _o, _rehasher); +} + +inline flatbuffers::Offset CreateModel(flatbuffers::FlatBufferBuilder &_fbb, const ModelT *_o, const flatbuffers::rehasher_function_t *_rehasher) { + (void)_rehasher; + (void)_o; + struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const ModelT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va; + auto _version = _o->version; + auto _operator_codes = _o->operator_codes.size() ? _fbb.CreateVector> (_o->operator_codes.size(), [](size_t i, _VectorArgs *__va) { return CreateOperatorCode(*__va->__fbb, __va->__o->operator_codes[i].get(), __va->__rehasher); }, &_va ) : 0; + auto _subgraphs = _o->subgraphs.size() ? _fbb.CreateVector> (_o->subgraphs.size(), [](size_t i, _VectorArgs *__va) { return CreateSubGraph(*__va->__fbb, __va->__o->subgraphs[i].get(), __va->__rehasher); }, &_va ) : 0; + auto _description = _o->description.empty() ? 0 : _fbb.CreateString(_o->description); + auto _buffers = _o->buffers.size() ? _fbb.CreateVector> (_o->buffers.size(), [](size_t i, _VectorArgs *__va) { return CreateBuffer(*__va->__fbb, __va->__o->buffers[i].get(), __va->__rehasher); }, &_va ) : 0; + auto _metadata_buffer = _o->metadata_buffer.size() ? _fbb.CreateVector(_o->metadata_buffer) : 0; + auto _metadata = _o->metadata.size() ? _fbb.CreateVector> (_o->metadata.size(), [](size_t i, _VectorArgs *__va) { return CreateMetadata(*__va->__fbb, __va->__o->metadata[i].get(), __va->__rehasher); }, &_va ) : 0; + return tflite::CreateModel( + _fbb, + _version, + _operator_codes, + _subgraphs, + _description, + _buffers, + _metadata_buffer, + _metadata); +} + +inline bool VerifyQuantizationDetails(flatbuffers::Verifier &verifier, const void *obj, QuantizationDetails type) { + switch (type) { + case QuantizationDetails_NONE: { + return true; + } + case QuantizationDetails_CustomQuantization: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + default: return true; + } +} + +inline bool VerifyQuantizationDetailsVector(flatbuffers::Verifier &verifier, const flatbuffers::Vector> *values, const flatbuffers::Vector *types) { + if (!values || !types) return !values && !types; + if (values->size() != types->size()) return false; + for (flatbuffers::uoffset_t i = 0; i < values->size(); ++i) { + if (!VerifyQuantizationDetails( + verifier, values->Get(i), types->GetEnum(i))) { + return false; + } + } + return true; +} + +inline void *QuantizationDetailsUnion::UnPack(const void *obj, QuantizationDetails type, const flatbuffers::resolver_function_t *resolver) { + switch (type) { + case QuantizationDetails_CustomQuantization: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + default: return nullptr; + } +} + +inline flatbuffers::Offset QuantizationDetailsUnion::Pack(flatbuffers::FlatBufferBuilder &_fbb, const flatbuffers::rehasher_function_t *_rehasher) const { + switch (type) { + case QuantizationDetails_CustomQuantization: { + auto ptr = reinterpret_cast(value); + return CreateCustomQuantization(_fbb, ptr, _rehasher).Union(); + } + default: return 0; + } +} + +inline QuantizationDetailsUnion::QuantizationDetailsUnion(const QuantizationDetailsUnion &u) FLATBUFFERS_NOEXCEPT : type(u.type), value(nullptr) { + switch (type) { + case QuantizationDetails_CustomQuantization: { + value = new tflite::CustomQuantizationT(*reinterpret_cast(u.value)); + break; + } + default: + break; + } +} + +inline void QuantizationDetailsUnion::Reset() { + switch (type) { + case QuantizationDetails_CustomQuantization: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + default: break; + } + value = nullptr; + type = QuantizationDetails_NONE; +} + +inline bool VerifySparseIndexVector(flatbuffers::Verifier &verifier, const void *obj, SparseIndexVector type) { + switch (type) { + case SparseIndexVector_NONE: { + return true; + } + case SparseIndexVector_Int32Vector: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case SparseIndexVector_Uint16Vector: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case SparseIndexVector_Uint8Vector: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + default: return true; + } +} + +inline bool VerifySparseIndexVectorVector(flatbuffers::Verifier &verifier, const flatbuffers::Vector> *values, const flatbuffers::Vector *types) { + if (!values || !types) return !values && !types; + if (values->size() != types->size()) return false; + for (flatbuffers::uoffset_t i = 0; i < values->size(); ++i) { + if (!VerifySparseIndexVector( + verifier, values->Get(i), types->GetEnum(i))) { + return false; + } + } + return true; +} + +inline void *SparseIndexVectorUnion::UnPack(const void *obj, SparseIndexVector type, const flatbuffers::resolver_function_t *resolver) { + switch (type) { + case SparseIndexVector_Int32Vector: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case SparseIndexVector_Uint16Vector: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case SparseIndexVector_Uint8Vector: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + default: return nullptr; + } +} + +inline flatbuffers::Offset SparseIndexVectorUnion::Pack(flatbuffers::FlatBufferBuilder &_fbb, const flatbuffers::rehasher_function_t *_rehasher) const { + switch (type) { + case SparseIndexVector_Int32Vector: { + auto ptr = reinterpret_cast(value); + return CreateInt32Vector(_fbb, ptr, _rehasher).Union(); + } + case SparseIndexVector_Uint16Vector: { + auto ptr = reinterpret_cast(value); + return CreateUint16Vector(_fbb, ptr, _rehasher).Union(); + } + case SparseIndexVector_Uint8Vector: { + auto ptr = reinterpret_cast(value); + return CreateUint8Vector(_fbb, ptr, _rehasher).Union(); + } + default: return 0; + } +} + +inline SparseIndexVectorUnion::SparseIndexVectorUnion(const SparseIndexVectorUnion &u) FLATBUFFERS_NOEXCEPT : type(u.type), value(nullptr) { + switch (type) { + case SparseIndexVector_Int32Vector: { + value = new tflite::Int32VectorT(*reinterpret_cast(u.value)); + break; + } + case SparseIndexVector_Uint16Vector: { + value = new tflite::Uint16VectorT(*reinterpret_cast(u.value)); + break; + } + case SparseIndexVector_Uint8Vector: { + value = new tflite::Uint8VectorT(*reinterpret_cast(u.value)); + break; + } + default: + break; + } +} + +inline void SparseIndexVectorUnion::Reset() { + switch (type) { + case SparseIndexVector_Int32Vector: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case SparseIndexVector_Uint16Vector: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case SparseIndexVector_Uint8Vector: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + default: break; + } + value = nullptr; + type = SparseIndexVector_NONE; +} + +inline bool VerifyBuiltinOptions(flatbuffers::Verifier &verifier, const void *obj, BuiltinOptions type) { + switch (type) { + case BuiltinOptions_NONE: { + return true; + } + case BuiltinOptions_Conv2DOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_DepthwiseConv2DOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_ConcatEmbeddingsOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_LSHProjectionOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_Pool2DOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_SVDFOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_RNNOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_FullyConnectedOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_SoftmaxOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_ConcatenationOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_AddOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_L2NormOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_LocalResponseNormalizationOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_LSTMOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_ResizeBilinearOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_CallOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_ReshapeOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_SkipGramOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_SpaceToDepthOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_EmbeddingLookupSparseOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_MulOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_PadOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_GatherOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_BatchToSpaceNDOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_SpaceToBatchNDOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_TransposeOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_ReducerOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_SubOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_DivOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_SqueezeOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_SequenceRNNOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_StridedSliceOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_ExpOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_TopKV2Options: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_SplitOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_LogSoftmaxOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_CastOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_DequantizeOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_MaximumMinimumOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_ArgMaxOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_LessOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_NegOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_PadV2Options: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_GreaterOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_GreaterEqualOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_LessEqualOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_SelectOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_SliceOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_TransposeConvOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_SparseToDenseOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_TileOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_ExpandDimsOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_EqualOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_NotEqualOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_ShapeOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_PowOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_ArgMinOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_FakeQuantOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_PackOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_LogicalOrOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_OneHotOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_LogicalAndOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_LogicalNotOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_UnpackOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_FloorDivOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_SquareOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_ZerosLikeOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_FillOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_BidirectionalSequenceLSTMOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_BidirectionalSequenceRNNOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_UnidirectionalSequenceLSTMOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_FloorModOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_RangeOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_ResizeNearestNeighborOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_LeakyReluOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_SquaredDifferenceOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_MirrorPadOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_AbsOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_SplitVOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_UniqueOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_ReverseV2Options: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_AddNOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_GatherNdOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_CosOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_WhereOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_RankOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_ReverseSequenceOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_MatrixDiagOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_QuantizeOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_MatrixSetDiagOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_HardSwishOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_IfOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_WhileOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_DepthToSpaceOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_NonMaxSuppressionV4Options: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_NonMaxSuppressionV5Options: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_ScatterNdOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_SelectV2Options: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_DensifyOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_SegmentSumOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + case BuiltinOptions_BatchMatMulOptions: { + auto ptr = reinterpret_cast(obj); + return verifier.VerifyTable(ptr); + } + default: return true; + } +} + +inline bool VerifyBuiltinOptionsVector(flatbuffers::Verifier &verifier, const flatbuffers::Vector> *values, const flatbuffers::Vector *types) { + if (!values || !types) return !values && !types; + if (values->size() != types->size()) return false; + for (flatbuffers::uoffset_t i = 0; i < values->size(); ++i) { + if (!VerifyBuiltinOptions( + verifier, values->Get(i), types->GetEnum(i))) { + return false; + } + } + return true; +} + +inline void *BuiltinOptionsUnion::UnPack(const void *obj, BuiltinOptions type, const flatbuffers::resolver_function_t *resolver) { + switch (type) { + case BuiltinOptions_Conv2DOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_DepthwiseConv2DOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_ConcatEmbeddingsOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_LSHProjectionOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_Pool2DOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_SVDFOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_RNNOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_FullyConnectedOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_SoftmaxOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_ConcatenationOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_AddOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_L2NormOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_LocalResponseNormalizationOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_LSTMOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_ResizeBilinearOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_CallOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_ReshapeOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_SkipGramOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_SpaceToDepthOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_EmbeddingLookupSparseOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_MulOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_PadOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_GatherOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_BatchToSpaceNDOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_SpaceToBatchNDOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_TransposeOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_ReducerOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_SubOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_DivOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_SqueezeOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_SequenceRNNOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_StridedSliceOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_ExpOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_TopKV2Options: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_SplitOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_LogSoftmaxOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_CastOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_DequantizeOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_MaximumMinimumOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_ArgMaxOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_LessOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_NegOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_PadV2Options: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_GreaterOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_GreaterEqualOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_LessEqualOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_SelectOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_SliceOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_TransposeConvOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_SparseToDenseOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_TileOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_ExpandDimsOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_EqualOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_NotEqualOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_ShapeOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_PowOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_ArgMinOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_FakeQuantOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_PackOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_LogicalOrOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_OneHotOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_LogicalAndOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_LogicalNotOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_UnpackOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_FloorDivOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_SquareOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_ZerosLikeOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_FillOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_BidirectionalSequenceLSTMOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_BidirectionalSequenceRNNOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_UnidirectionalSequenceLSTMOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_FloorModOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_RangeOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_ResizeNearestNeighborOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_LeakyReluOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_SquaredDifferenceOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_MirrorPadOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_AbsOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_SplitVOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_UniqueOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_ReverseV2Options: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_AddNOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_GatherNdOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_CosOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_WhereOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_RankOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_ReverseSequenceOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_MatrixDiagOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_QuantizeOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_MatrixSetDiagOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_HardSwishOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_IfOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_WhileOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_DepthToSpaceOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_NonMaxSuppressionV4Options: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_NonMaxSuppressionV5Options: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_ScatterNdOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_SelectV2Options: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_DensifyOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_SegmentSumOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + case BuiltinOptions_BatchMatMulOptions: { + auto ptr = reinterpret_cast(obj); + return ptr->UnPack(resolver); + } + default: return nullptr; + } +} + +inline flatbuffers::Offset BuiltinOptionsUnion::Pack(flatbuffers::FlatBufferBuilder &_fbb, const flatbuffers::rehasher_function_t *_rehasher) const { + switch (type) { + case BuiltinOptions_Conv2DOptions: { + auto ptr = reinterpret_cast(value); + return CreateConv2DOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_DepthwiseConv2DOptions: { + auto ptr = reinterpret_cast(value); + return CreateDepthwiseConv2DOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_ConcatEmbeddingsOptions: { + auto ptr = reinterpret_cast(value); + return CreateConcatEmbeddingsOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_LSHProjectionOptions: { + auto ptr = reinterpret_cast(value); + return CreateLSHProjectionOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_Pool2DOptions: { + auto ptr = reinterpret_cast(value); + return CreatePool2DOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_SVDFOptions: { + auto ptr = reinterpret_cast(value); + return CreateSVDFOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_RNNOptions: { + auto ptr = reinterpret_cast(value); + return CreateRNNOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_FullyConnectedOptions: { + auto ptr = reinterpret_cast(value); + return CreateFullyConnectedOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_SoftmaxOptions: { + auto ptr = reinterpret_cast(value); + return CreateSoftmaxOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_ConcatenationOptions: { + auto ptr = reinterpret_cast(value); + return CreateConcatenationOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_AddOptions: { + auto ptr = reinterpret_cast(value); + return CreateAddOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_L2NormOptions: { + auto ptr = reinterpret_cast(value); + return CreateL2NormOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_LocalResponseNormalizationOptions: { + auto ptr = reinterpret_cast(value); + return CreateLocalResponseNormalizationOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_LSTMOptions: { + auto ptr = reinterpret_cast(value); + return CreateLSTMOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_ResizeBilinearOptions: { + auto ptr = reinterpret_cast(value); + return CreateResizeBilinearOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_CallOptions: { + auto ptr = reinterpret_cast(value); + return CreateCallOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_ReshapeOptions: { + auto ptr = reinterpret_cast(value); + return CreateReshapeOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_SkipGramOptions: { + auto ptr = reinterpret_cast(value); + return CreateSkipGramOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_SpaceToDepthOptions: { + auto ptr = reinterpret_cast(value); + return CreateSpaceToDepthOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_EmbeddingLookupSparseOptions: { + auto ptr = reinterpret_cast(value); + return CreateEmbeddingLookupSparseOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_MulOptions: { + auto ptr = reinterpret_cast(value); + return CreateMulOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_PadOptions: { + auto ptr = reinterpret_cast(value); + return CreatePadOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_GatherOptions: { + auto ptr = reinterpret_cast(value); + return CreateGatherOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_BatchToSpaceNDOptions: { + auto ptr = reinterpret_cast(value); + return CreateBatchToSpaceNDOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_SpaceToBatchNDOptions: { + auto ptr = reinterpret_cast(value); + return CreateSpaceToBatchNDOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_TransposeOptions: { + auto ptr = reinterpret_cast(value); + return CreateTransposeOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_ReducerOptions: { + auto ptr = reinterpret_cast(value); + return CreateReducerOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_SubOptions: { + auto ptr = reinterpret_cast(value); + return CreateSubOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_DivOptions: { + auto ptr = reinterpret_cast(value); + return CreateDivOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_SqueezeOptions: { + auto ptr = reinterpret_cast(value); + return CreateSqueezeOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_SequenceRNNOptions: { + auto ptr = reinterpret_cast(value); + return CreateSequenceRNNOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_StridedSliceOptions: { + auto ptr = reinterpret_cast(value); + return CreateStridedSliceOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_ExpOptions: { + auto ptr = reinterpret_cast(value); + return CreateExpOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_TopKV2Options: { + auto ptr = reinterpret_cast(value); + return CreateTopKV2Options(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_SplitOptions: { + auto ptr = reinterpret_cast(value); + return CreateSplitOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_LogSoftmaxOptions: { + auto ptr = reinterpret_cast(value); + return CreateLogSoftmaxOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_CastOptions: { + auto ptr = reinterpret_cast(value); + return CreateCastOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_DequantizeOptions: { + auto ptr = reinterpret_cast(value); + return CreateDequantizeOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_MaximumMinimumOptions: { + auto ptr = reinterpret_cast(value); + return CreateMaximumMinimumOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_ArgMaxOptions: { + auto ptr = reinterpret_cast(value); + return CreateArgMaxOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_LessOptions: { + auto ptr = reinterpret_cast(value); + return CreateLessOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_NegOptions: { + auto ptr = reinterpret_cast(value); + return CreateNegOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_PadV2Options: { + auto ptr = reinterpret_cast(value); + return CreatePadV2Options(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_GreaterOptions: { + auto ptr = reinterpret_cast(value); + return CreateGreaterOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_GreaterEqualOptions: { + auto ptr = reinterpret_cast(value); + return CreateGreaterEqualOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_LessEqualOptions: { + auto ptr = reinterpret_cast(value); + return CreateLessEqualOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_SelectOptions: { + auto ptr = reinterpret_cast(value); + return CreateSelectOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_SliceOptions: { + auto ptr = reinterpret_cast(value); + return CreateSliceOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_TransposeConvOptions: { + auto ptr = reinterpret_cast(value); + return CreateTransposeConvOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_SparseToDenseOptions: { + auto ptr = reinterpret_cast(value); + return CreateSparseToDenseOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_TileOptions: { + auto ptr = reinterpret_cast(value); + return CreateTileOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_ExpandDimsOptions: { + auto ptr = reinterpret_cast(value); + return CreateExpandDimsOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_EqualOptions: { + auto ptr = reinterpret_cast(value); + return CreateEqualOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_NotEqualOptions: { + auto ptr = reinterpret_cast(value); + return CreateNotEqualOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_ShapeOptions: { + auto ptr = reinterpret_cast(value); + return CreateShapeOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_PowOptions: { + auto ptr = reinterpret_cast(value); + return CreatePowOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_ArgMinOptions: { + auto ptr = reinterpret_cast(value); + return CreateArgMinOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_FakeQuantOptions: { + auto ptr = reinterpret_cast(value); + return CreateFakeQuantOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_PackOptions: { + auto ptr = reinterpret_cast(value); + return CreatePackOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_LogicalOrOptions: { + auto ptr = reinterpret_cast(value); + return CreateLogicalOrOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_OneHotOptions: { + auto ptr = reinterpret_cast(value); + return CreateOneHotOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_LogicalAndOptions: { + auto ptr = reinterpret_cast(value); + return CreateLogicalAndOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_LogicalNotOptions: { + auto ptr = reinterpret_cast(value); + return CreateLogicalNotOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_UnpackOptions: { + auto ptr = reinterpret_cast(value); + return CreateUnpackOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_FloorDivOptions: { + auto ptr = reinterpret_cast(value); + return CreateFloorDivOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_SquareOptions: { + auto ptr = reinterpret_cast(value); + return CreateSquareOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_ZerosLikeOptions: { + auto ptr = reinterpret_cast(value); + return CreateZerosLikeOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_FillOptions: { + auto ptr = reinterpret_cast(value); + return CreateFillOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_BidirectionalSequenceLSTMOptions: { + auto ptr = reinterpret_cast(value); + return CreateBidirectionalSequenceLSTMOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_BidirectionalSequenceRNNOptions: { + auto ptr = reinterpret_cast(value); + return CreateBidirectionalSequenceRNNOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_UnidirectionalSequenceLSTMOptions: { + auto ptr = reinterpret_cast(value); + return CreateUnidirectionalSequenceLSTMOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_FloorModOptions: { + auto ptr = reinterpret_cast(value); + return CreateFloorModOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_RangeOptions: { + auto ptr = reinterpret_cast(value); + return CreateRangeOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_ResizeNearestNeighborOptions: { + auto ptr = reinterpret_cast(value); + return CreateResizeNearestNeighborOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_LeakyReluOptions: { + auto ptr = reinterpret_cast(value); + return CreateLeakyReluOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_SquaredDifferenceOptions: { + auto ptr = reinterpret_cast(value); + return CreateSquaredDifferenceOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_MirrorPadOptions: { + auto ptr = reinterpret_cast(value); + return CreateMirrorPadOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_AbsOptions: { + auto ptr = reinterpret_cast(value); + return CreateAbsOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_SplitVOptions: { + auto ptr = reinterpret_cast(value); + return CreateSplitVOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_UniqueOptions: { + auto ptr = reinterpret_cast(value); + return CreateUniqueOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_ReverseV2Options: { + auto ptr = reinterpret_cast(value); + return CreateReverseV2Options(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_AddNOptions: { + auto ptr = reinterpret_cast(value); + return CreateAddNOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_GatherNdOptions: { + auto ptr = reinterpret_cast(value); + return CreateGatherNdOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_CosOptions: { + auto ptr = reinterpret_cast(value); + return CreateCosOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_WhereOptions: { + auto ptr = reinterpret_cast(value); + return CreateWhereOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_RankOptions: { + auto ptr = reinterpret_cast(value); + return CreateRankOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_ReverseSequenceOptions: { + auto ptr = reinterpret_cast(value); + return CreateReverseSequenceOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_MatrixDiagOptions: { + auto ptr = reinterpret_cast(value); + return CreateMatrixDiagOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_QuantizeOptions: { + auto ptr = reinterpret_cast(value); + return CreateQuantizeOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_MatrixSetDiagOptions: { + auto ptr = reinterpret_cast(value); + return CreateMatrixSetDiagOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_HardSwishOptions: { + auto ptr = reinterpret_cast(value); + return CreateHardSwishOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_IfOptions: { + auto ptr = reinterpret_cast(value); + return CreateIfOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_WhileOptions: { + auto ptr = reinterpret_cast(value); + return CreateWhileOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_DepthToSpaceOptions: { + auto ptr = reinterpret_cast(value); + return CreateDepthToSpaceOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_NonMaxSuppressionV4Options: { + auto ptr = reinterpret_cast(value); + return CreateNonMaxSuppressionV4Options(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_NonMaxSuppressionV5Options: { + auto ptr = reinterpret_cast(value); + return CreateNonMaxSuppressionV5Options(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_ScatterNdOptions: { + auto ptr = reinterpret_cast(value); + return CreateScatterNdOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_SelectV2Options: { + auto ptr = reinterpret_cast(value); + return CreateSelectV2Options(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_DensifyOptions: { + auto ptr = reinterpret_cast(value); + return CreateDensifyOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_SegmentSumOptions: { + auto ptr = reinterpret_cast(value); + return CreateSegmentSumOptions(_fbb, ptr, _rehasher).Union(); + } + case BuiltinOptions_BatchMatMulOptions: { + auto ptr = reinterpret_cast(value); + return CreateBatchMatMulOptions(_fbb, ptr, _rehasher).Union(); + } + default: return 0; + } +} + +inline BuiltinOptionsUnion::BuiltinOptionsUnion(const BuiltinOptionsUnion &u) FLATBUFFERS_NOEXCEPT : type(u.type), value(nullptr) { + switch (type) { + case BuiltinOptions_Conv2DOptions: { + value = new tflite::Conv2DOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_DepthwiseConv2DOptions: { + value = new tflite::DepthwiseConv2DOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_ConcatEmbeddingsOptions: { + value = new tflite::ConcatEmbeddingsOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_LSHProjectionOptions: { + value = new tflite::LSHProjectionOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_Pool2DOptions: { + value = new tflite::Pool2DOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_SVDFOptions: { + value = new tflite::SVDFOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_RNNOptions: { + value = new tflite::RNNOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_FullyConnectedOptions: { + value = new tflite::FullyConnectedOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_SoftmaxOptions: { + value = new tflite::SoftmaxOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_ConcatenationOptions: { + value = new tflite::ConcatenationOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_AddOptions: { + value = new tflite::AddOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_L2NormOptions: { + value = new tflite::L2NormOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_LocalResponseNormalizationOptions: { + value = new tflite::LocalResponseNormalizationOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_LSTMOptions: { + value = new tflite::LSTMOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_ResizeBilinearOptions: { + value = new tflite::ResizeBilinearOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_CallOptions: { + value = new tflite::CallOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_ReshapeOptions: { + value = new tflite::ReshapeOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_SkipGramOptions: { + value = new tflite::SkipGramOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_SpaceToDepthOptions: { + value = new tflite::SpaceToDepthOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_EmbeddingLookupSparseOptions: { + value = new tflite::EmbeddingLookupSparseOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_MulOptions: { + value = new tflite::MulOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_PadOptions: { + value = new tflite::PadOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_GatherOptions: { + value = new tflite::GatherOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_BatchToSpaceNDOptions: { + value = new tflite::BatchToSpaceNDOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_SpaceToBatchNDOptions: { + value = new tflite::SpaceToBatchNDOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_TransposeOptions: { + value = new tflite::TransposeOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_ReducerOptions: { + value = new tflite::ReducerOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_SubOptions: { + value = new tflite::SubOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_DivOptions: { + value = new tflite::DivOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_SqueezeOptions: { + value = new tflite::SqueezeOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_SequenceRNNOptions: { + value = new tflite::SequenceRNNOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_StridedSliceOptions: { + value = new tflite::StridedSliceOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_ExpOptions: { + value = new tflite::ExpOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_TopKV2Options: { + value = new tflite::TopKV2OptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_SplitOptions: { + value = new tflite::SplitOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_LogSoftmaxOptions: { + value = new tflite::LogSoftmaxOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_CastOptions: { + value = new tflite::CastOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_DequantizeOptions: { + value = new tflite::DequantizeOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_MaximumMinimumOptions: { + value = new tflite::MaximumMinimumOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_ArgMaxOptions: { + value = new tflite::ArgMaxOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_LessOptions: { + value = new tflite::LessOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_NegOptions: { + value = new tflite::NegOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_PadV2Options: { + value = new tflite::PadV2OptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_GreaterOptions: { + value = new tflite::GreaterOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_GreaterEqualOptions: { + value = new tflite::GreaterEqualOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_LessEqualOptions: { + value = new tflite::LessEqualOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_SelectOptions: { + value = new tflite::SelectOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_SliceOptions: { + value = new tflite::SliceOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_TransposeConvOptions: { + value = new tflite::TransposeConvOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_SparseToDenseOptions: { + value = new tflite::SparseToDenseOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_TileOptions: { + value = new tflite::TileOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_ExpandDimsOptions: { + value = new tflite::ExpandDimsOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_EqualOptions: { + value = new tflite::EqualOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_NotEqualOptions: { + value = new tflite::NotEqualOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_ShapeOptions: { + value = new tflite::ShapeOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_PowOptions: { + value = new tflite::PowOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_ArgMinOptions: { + value = new tflite::ArgMinOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_FakeQuantOptions: { + value = new tflite::FakeQuantOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_PackOptions: { + value = new tflite::PackOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_LogicalOrOptions: { + value = new tflite::LogicalOrOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_OneHotOptions: { + value = new tflite::OneHotOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_LogicalAndOptions: { + value = new tflite::LogicalAndOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_LogicalNotOptions: { + value = new tflite::LogicalNotOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_UnpackOptions: { + value = new tflite::UnpackOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_FloorDivOptions: { + value = new tflite::FloorDivOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_SquareOptions: { + value = new tflite::SquareOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_ZerosLikeOptions: { + value = new tflite::ZerosLikeOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_FillOptions: { + value = new tflite::FillOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_BidirectionalSequenceLSTMOptions: { + value = new tflite::BidirectionalSequenceLSTMOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_BidirectionalSequenceRNNOptions: { + value = new tflite::BidirectionalSequenceRNNOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_UnidirectionalSequenceLSTMOptions: { + value = new tflite::UnidirectionalSequenceLSTMOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_FloorModOptions: { + value = new tflite::FloorModOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_RangeOptions: { + value = new tflite::RangeOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_ResizeNearestNeighborOptions: { + value = new tflite::ResizeNearestNeighborOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_LeakyReluOptions: { + value = new tflite::LeakyReluOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_SquaredDifferenceOptions: { + value = new tflite::SquaredDifferenceOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_MirrorPadOptions: { + value = new tflite::MirrorPadOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_AbsOptions: { + value = new tflite::AbsOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_SplitVOptions: { + value = new tflite::SplitVOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_UniqueOptions: { + value = new tflite::UniqueOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_ReverseV2Options: { + value = new tflite::ReverseV2OptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_AddNOptions: { + value = new tflite::AddNOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_GatherNdOptions: { + value = new tflite::GatherNdOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_CosOptions: { + value = new tflite::CosOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_WhereOptions: { + value = new tflite::WhereOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_RankOptions: { + value = new tflite::RankOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_ReverseSequenceOptions: { + value = new tflite::ReverseSequenceOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_MatrixDiagOptions: { + value = new tflite::MatrixDiagOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_QuantizeOptions: { + value = new tflite::QuantizeOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_MatrixSetDiagOptions: { + value = new tflite::MatrixSetDiagOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_HardSwishOptions: { + value = new tflite::HardSwishOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_IfOptions: { + value = new tflite::IfOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_WhileOptions: { + value = new tflite::WhileOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_DepthToSpaceOptions: { + value = new tflite::DepthToSpaceOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_NonMaxSuppressionV4Options: { + value = new tflite::NonMaxSuppressionV4OptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_NonMaxSuppressionV5Options: { + value = new tflite::NonMaxSuppressionV5OptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_ScatterNdOptions: { + value = new tflite::ScatterNdOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_SelectV2Options: { + value = new tflite::SelectV2OptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_DensifyOptions: { + value = new tflite::DensifyOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_SegmentSumOptions: { + value = new tflite::SegmentSumOptionsT(*reinterpret_cast(u.value)); + break; + } + case BuiltinOptions_BatchMatMulOptions: { + value = new tflite::BatchMatMulOptionsT(*reinterpret_cast(u.value)); + break; + } + default: + break; + } +} + +inline void BuiltinOptionsUnion::Reset() { + switch (type) { + case BuiltinOptions_Conv2DOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_DepthwiseConv2DOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_ConcatEmbeddingsOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_LSHProjectionOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_Pool2DOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_SVDFOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_RNNOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_FullyConnectedOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_SoftmaxOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_ConcatenationOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_AddOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_L2NormOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_LocalResponseNormalizationOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_LSTMOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_ResizeBilinearOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_CallOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_ReshapeOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_SkipGramOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_SpaceToDepthOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_EmbeddingLookupSparseOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_MulOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_PadOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_GatherOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_BatchToSpaceNDOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_SpaceToBatchNDOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_TransposeOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_ReducerOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_SubOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_DivOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_SqueezeOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_SequenceRNNOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_StridedSliceOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_ExpOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_TopKV2Options: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_SplitOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_LogSoftmaxOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_CastOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_DequantizeOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_MaximumMinimumOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_ArgMaxOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_LessOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_NegOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_PadV2Options: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_GreaterOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_GreaterEqualOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_LessEqualOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_SelectOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_SliceOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_TransposeConvOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_SparseToDenseOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_TileOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_ExpandDimsOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_EqualOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_NotEqualOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_ShapeOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_PowOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_ArgMinOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_FakeQuantOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_PackOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_LogicalOrOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_OneHotOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_LogicalAndOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_LogicalNotOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_UnpackOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_FloorDivOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_SquareOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_ZerosLikeOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_FillOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_BidirectionalSequenceLSTMOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_BidirectionalSequenceRNNOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_UnidirectionalSequenceLSTMOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_FloorModOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_RangeOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_ResizeNearestNeighborOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_LeakyReluOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_SquaredDifferenceOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_MirrorPadOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_AbsOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_SplitVOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_UniqueOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_ReverseV2Options: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_AddNOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_GatherNdOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_CosOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_WhereOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_RankOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_ReverseSequenceOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_MatrixDiagOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_QuantizeOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_MatrixSetDiagOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_HardSwishOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_IfOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_WhileOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_DepthToSpaceOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_NonMaxSuppressionV4Options: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_NonMaxSuppressionV5Options: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_ScatterNdOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_SelectV2Options: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_DensifyOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_SegmentSumOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + case BuiltinOptions_BatchMatMulOptions: { + auto ptr = reinterpret_cast(value); + delete ptr; + break; + } + default: break; + } + value = nullptr; + type = BuiltinOptions_NONE; +} + +inline const tflite::Model *GetModel(const void *buf) { + return flatbuffers::GetRoot(buf); +} + +inline const tflite::Model *GetSizePrefixedModel(const void *buf) { + return flatbuffers::GetSizePrefixedRoot(buf); +} + +inline const char *ModelIdentifier() { + return "TFL3"; +} + +inline bool ModelBufferHasIdentifier(const void *buf) { + return flatbuffers::BufferHasIdentifier( + buf, ModelIdentifier()); +} + +inline bool VerifyModelBuffer( + flatbuffers::Verifier &verifier) { + return verifier.VerifyBuffer(ModelIdentifier()); +} + +inline bool VerifySizePrefixedModelBuffer( + flatbuffers::Verifier &verifier) { + return verifier.VerifySizePrefixedBuffer(ModelIdentifier()); +} + +inline const char *ModelExtension() { + return "tflite"; +} + +inline void FinishModelBuffer( + flatbuffers::FlatBufferBuilder &fbb, + flatbuffers::Offset root) { + fbb.Finish(root, ModelIdentifier()); +} + +inline void FinishSizePrefixedModelBuffer( + flatbuffers::FlatBufferBuilder &fbb, + flatbuffers::Offset root) { + fbb.FinishSizePrefixed(root, ModelIdentifier()); +} + +inline std::unique_ptr UnPackModel( + const void *buf, + const flatbuffers::resolver_function_t *res = nullptr) { + return std::unique_ptr(GetModel(buf)->UnPack(res)); +} + +inline std::unique_ptr UnPackSizePrefixedModel( + const void *buf, + const flatbuffers::resolver_function_t *res = nullptr) { + return std::unique_ptr(GetSizePrefixedModel(buf)->UnPack(res)); +} + +} // namespace tflite + +#endif // FLATBUFFERS_GENERATED_SCHEMA_TFLITE_H_ diff --git a/components/tflite_micro/tensorflow/lite/string_type.h b/components/tflite_micro/tensorflow/lite/string_type.h new file mode 100644 index 00000000..f5a7f833 --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/string_type.h @@ -0,0 +1,27 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +// Abstract string. We don't want even absl at this level. +#ifndef TENSORFLOW_LITE_STRING_TYPE_H_ +#define TENSORFLOW_LITE_STRING_TYPE_H_ + +#include + +namespace tflite { + +using std::string; + +} // namespace tflite + +#endif // TENSORFLOW_LITE_STRING_TYPE_H_ diff --git a/components/tflite_micro/tensorflow/lite/string_util.h b/components/tflite_micro/tensorflow/lite/string_util.h new file mode 100644 index 00000000..2086f9ba --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/string_util.h @@ -0,0 +1,109 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +// Util methods to read and write String tensors. +// String tensors are considered to be char tensor with protocol. +// [0, 3] 4 bytes: N, num of strings in the tensor in little endian. +// [(i+1)*4, (i+1)*4+3] 4 bytes: offset of i-th string in little endian. +// [(N+2)*4, (N+2)*4+3] 4 bytes: length of the whole char buffer. +// [offset(i), offset(i+1) - 1] : content of i-th string. +// Example of a string tensor: +// [ +// 2, 0, 0, 0, # 2 strings. +// 16, 0, 0, 0, # 0-th string starts from index 16. +// 18, 0, 0, 0, # 1-st string starts from index 18. +// 18, 0, 0, 0, # total length of array. +// 'A', 'B', # 0-th string [16..17]: "AB" +// ] # 1-th string, empty +// +// A typical usage: +// In op.Eval(context, node): +// DynamicBuffer buf; +// # Add string "AB" to tensor, string is stored in dynamic buffer. +// buf.AddString("AB", 2); +// # Write content of DynamicBuffer to tensor in format of string tensor +// # described above. +// buf.WriteToTensor(tensor, nullptr) + +#ifndef TENSORFLOW_LITE_STRING_UTIL_H_ +#define TENSORFLOW_LITE_STRING_UTIL_H_ + +#include + +#include "tensorflow/lite/c/common.h" +#include "tensorflow/lite/string_type.h" + +namespace tflite { + +// Convenient structure to store string pointer and length. +typedef struct { + const char* str; + int len; +} StringRef; + +// DynamicBuffer holds temporary buffer that will be used to create a dynamic +// tensor. A typical usage is to initialize a DynamicBuffer object, fill in +// content and call CreateStringTensor in op.Eval(). +class DynamicBuffer { + public: + DynamicBuffer() : offset_({0}) {} + + // Add string to dynamic buffer by resizing the buffer and copying the data. + void AddString(const StringRef& string); + + // Add string to dynamic buffer by resizing the buffer and copying the data. + void AddString(const char* str, size_t len); + + // Join a list of string with separator, and add as a single string to the + // buffer. + void AddJoinedString(const std::vector& strings, char separator); + void AddJoinedString(const std::vector& strings, + StringRef separator); + + // Fill content into a buffer and returns the number of bytes stored. + // The function allocates space for the buffer but does NOT take ownership. + int WriteToBuffer(char** buffer); + + // String tensors are not generally supported on platforms w/ static memory. + // TODO(b/156130024): Remove this guard after removing header from TFLM deps. +#ifndef TF_LITE_STATIC_MEMORY + // Fill content into a string tensor, with the given new_shape. The new shape + // must match the number of strings in this object. Caller relinquishes + // ownership of new_shape. If 'new_shape' is nullptr, keep the tensor's + // existing shape. + void WriteToTensor(TfLiteTensor* tensor, TfLiteIntArray* new_shape); + + // Fill content into a string tensor. Set shape to {num_strings}. + void WriteToTensorAsVector(TfLiteTensor* tensor); +#endif // TF_LITE_STATIC_MEMORY + + private: + // Data buffer to store contents of strings, not including headers. + std::vector data_; + // Offset of the starting index of each string in data buffer. + std::vector offset_; +}; + +// Return num of strings in a String tensor. +int GetStringCount(const void* raw_buffer); +int GetStringCount(const TfLiteTensor* tensor); + +// Get String pointer and length of index-th string in tensor. +// NOTE: This will not create a copy of string data. +StringRef GetString(const void* raw_buffer, int string_index); +StringRef GetString(const TfLiteTensor* tensor, int string_index); +} // namespace tflite + +#endif // TENSORFLOW_LITE_STRING_UTIL_H_ diff --git a/components/tflite_micro/tensorflow/lite/type_to_tflitetype.h b/components/tflite_micro/tensorflow/lite/type_to_tflitetype.h new file mode 100644 index 00000000..a95b233c --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/type_to_tflitetype.h @@ -0,0 +1,70 @@ +/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_TYPE_TO_TFLITETYPE_H_ +#define TENSORFLOW_LITE_TYPE_TO_TFLITETYPE_H_ + +// Arduino build defines abs as a macro here. That is invalid C++, and breaks +// libc++'s header, undefine it. +#ifdef abs +#undef abs +#endif + +#include +#include + +#include "tensorflow/lite/c/common.h" + +namespace tflite { + +// Map statically from a C++ type to a TfLiteType. Used in interpreter for +// safe casts. +// Example: +// typeToTfLiteType() -> kTfLiteBool +template +constexpr TfLiteType typeToTfLiteType() { + return kTfLiteNoType; +} +// Map from TfLiteType to the corresponding C++ type. +// Example: +// TfLiteTypeToType::Type -> bool +template +struct TfLiteTypeToType {}; // Specializations below + +// Template specialization for both typeToTfLiteType and TfLiteTypeToType. +#define MATCH_TYPE_AND_TFLITE_TYPE(CPP_TYPE, TFLITE_TYPE_ENUM) \ + template <> \ + constexpr TfLiteType typeToTfLiteType() { \ + return TFLITE_TYPE_ENUM; \ + } \ + template <> \ + struct TfLiteTypeToType { \ + using Type = CPP_TYPE; \ + } + +MATCH_TYPE_AND_TFLITE_TYPE(int, kTfLiteInt32); +MATCH_TYPE_AND_TFLITE_TYPE(int16_t, kTfLiteInt16); +MATCH_TYPE_AND_TFLITE_TYPE(int64_t, kTfLiteInt64); +MATCH_TYPE_AND_TFLITE_TYPE(float, kTfLiteFloat32); +MATCH_TYPE_AND_TFLITE_TYPE(unsigned char, kTfLiteUInt8); +MATCH_TYPE_AND_TFLITE_TYPE(int8_t, kTfLiteInt8); +MATCH_TYPE_AND_TFLITE_TYPE(bool, kTfLiteBool); +MATCH_TYPE_AND_TFLITE_TYPE(std::complex, kTfLiteComplex64); +MATCH_TYPE_AND_TFLITE_TYPE(std::complex, kTfLiteComplex128); +MATCH_TYPE_AND_TFLITE_TYPE(std::string, kTfLiteString); +MATCH_TYPE_AND_TFLITE_TYPE(TfLiteFloat16, kTfLiteFloat16); +MATCH_TYPE_AND_TFLITE_TYPE(double, kTfLiteFloat64); + +} // namespace tflite +#endif // TENSORFLOW_LITE_TYPE_TO_TFLITETYPE_H_ diff --git a/components/tflite_micro/tensorflow/lite/version.h b/components/tflite_micro/tensorflow/lite/version.h new file mode 100644 index 00000000..f667447b --- /dev/null +++ b/components/tflite_micro/tensorflow/lite/version.h @@ -0,0 +1,29 @@ +/* Copyright 2017 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +#ifndef TENSORFLOW_LITE_VERSION_H_ +#define TENSORFLOW_LITE_VERSION_H_ + +#include "tensorflow/core/public/version.h" + +// The version number of the Schema. Ideally all changes will be backward +// compatible. If that ever changes, we must ensure that version is the first +// entry in the new tflite root so that we can see that version is not 1. +#define TFLITE_SCHEMA_VERSION (3) + +// TensorFlow Lite Runtime version. +// This value is currently shared with that of TensorFlow. +#define TFLITE_VERSION_STRING TF_VERSION_STRING + +#endif // TENSORFLOW_LITE_VERSION_H_ diff --git a/examples/tflitemicro_person_detection/tflitemicro_person_detection.c b/examples/tflitemicro_person_detection/tflitemicro_person_detection.c new file mode 100644 index 00000000..e68bb3bb --- /dev/null +++ b/examples/tflitemicro_person_detection/tflitemicro_person_detection.c @@ -0,0 +1,48 @@ +#include "cmsis_os.h" +#include "mcu_init.h" + +extern uint16_t camBuffer[]; +extern uint8_t frame_flag; + +#define TASK1_STK_SIZE 1024 +void task1(void *arg); +osThreadDef(task1, osPriorityNormal, 1, TASK1_STK_SIZE); + +#define TASK2_STK_SIZE 1024 +void task2(void *arg); +osThreadDef(task2, osPriorityNormal, 1, TASK2_STK_SIZE); + +void task1(void *arg) +{ + while (1) { + if(frame_flag == 1){ + + if(HAL_DCMI_Stop(&hdcmi))Error_Handler(); //stop DCMI + + LCD_2IN4_Display(camBuffer,OV2640_PIXEL_WIDTH,OV2640_PIXEL_HEIGHT); + + frame_flag = 0; + + if(HAL_DCMI_Start_DMA(&hdcmi,DCMI_MODE_CONTINUOUS,(uint32_t)camBuffer ,\ + (OV2640_PIXEL_WIDTH*OV2640_PIXEL_HEIGHT)/2))Error_Handler(); //restart DCMI + } + osDelay(50); + } +} + +void task2(void *arg) +{ + while (1) { + printf("***person detection task\r\n"); + osDelay(50); + } +} + + +void application_entry(void *arg) +{ + printf("***Start person detection task! \r\n"); + osThreadCreate(osThread(task1), NULL); // Create task1 + osThreadCreate(osThread(task2), NULL); // Create task2 +} +