add GD32450i-EVAL board support

This commit is contained in:
supowang
2019-11-06 17:01:50 +08:00
parent d5e0cc08b2
commit 6341168f8e
104 changed files with 48315 additions and 0 deletions

View File

@@ -0,0 +1,118 @@
/*!
\file gd32f450i_eval.h
\brief definitions for GD32F450_EVAL's leds, keys and COM ports hardware resources
*/
/*
Copyright (C) 2016 GigaDevice
2016-10-19, V1.0.0, firmware for GD32F450I
*/
#ifndef GD32F450I_EVAL_H
#define GD32F450I_EVAL_H
#ifdef cplusplus
extern "C" {
#endif
#include "gd32f4xx.h"
/* exported types */
typedef enum
{
LED1 = 0,
LED2 = 1,
LED3 = 2
} led_typedef_enum;
typedef enum
{
KEY_WAKEUP = 0,
KEY_TAMPER = 1,
KEY_USER = 2
} key_typedef_enum;
typedef enum
{
KEY_MODE_GPIO = 0,
KEY_MODE_EXTI = 1
} keymode_typedef_enum;
/* eval board low layer led */
#define LEDn 3U
#define LED1_PIN GPIO_PIN_2
#define LED1_GPIO_PORT GPIOE
#define LED1_GPIO_CLK RCU_GPIOE
#define LED2_PIN GPIO_PIN_3
#define LED2_GPIO_PORT GPIOE
#define LED2_GPIO_CLK RCU_GPIOE
#define LED3_PIN GPIO_PIN_10
#define LED3_GPIO_PORT GPIOF
#define LED3_GPIO_CLK RCU_GPIOF
#define COMn 1U
#define EVAL_COM1 USART0
#define EVAL_COM1_CLK RCU_USART0
#define EVAL_COM1_TX_PIN GPIO_PIN_9
#define EVAL_COM1_RX_PIN GPIO_PIN_10
#define EVAL_COM_GPIO_PORT GPIOA
#define EVAL_COM_GPIO_CLK RCU_GPIOA
#define EVAL_COM_AF GPIO_AF_7
#define KEYn 3U
/* tamper push-button */
#define TAMPER_KEY_PIN GPIO_PIN_13
#define TAMPER_KEY_GPIO_PORT GPIOC
#define TAMPER_KEY_GPIO_CLK RCU_GPIOC
#define TAMPER_KEY_EXTI_LINE EXTI_13
#define TAMPER_KEY_EXTI_PORT_SOURCE EXTI_SOURCE_GPIOC
#define TAMPER_KEY_EXTI_PIN_SOURCE EXTI_SOURCE_PIN13
#define TAMPER_KEY_EXTI_IRQn EXTI10_15_IRQn
/* wakeup push-button */
#define WAKEUP_KEY_PIN GPIO_PIN_0
#define WAKEUP_KEY_GPIO_PORT GPIOA
#define WAKEUP_KEY_GPIO_CLK RCU_GPIOA
#define WAKEUP_KEY_EXTI_LINE EXTI_0
#define WAKEUP_KEY_EXTI_PORT_SOURCE EXTI_SOURCE_GPIOA
#define WAKEUP_KEY_EXTI_PIN_SOURCE EXTI_SOURCE_PIN0
#define WAKEUP_KEY_EXTI_IRQn EXTI0_IRQn
/* user push-button */
#define USER_KEY_PIN GPIO_PIN_14
#define USER_KEY_GPIO_PORT GPIOB
#define USER_KEY_GPIO_CLK RCU_GPIOB
#define USER_KEY_EXTI_LINE EXTI_14
#define USER_KEY_EXTI_PORT_SOURCE EXTI_SOURCE_GPIOB
#define USER_KEY_EXTI_PIN_SOURCE EXTI_SOURCE_PIN14
#define USER_KEY_EXTI_IRQn EXTI10_15_IRQn
/* function declarations */
/* configures led GPIO */
void gd_eval_led_init(led_typedef_enum lednum);
/* turn on selected led */
void gd_eval_led_on(led_typedef_enum lednum);
/* turn off selected led */
void gd_eval_led_off(led_typedef_enum lednum);
/* toggle the selected led */
void gd_eval_led_toggle(led_typedef_enum lednum);
/* configure key */
void gd_eval_key_init(key_typedef_enum key_num, keymode_typedef_enum key_mode);
/* return the selected button state */
uint8_t gd_eval_key_state_get(key_typedef_enum button);
/* configure COM port */
void gd_eval_com_init(uint32_t com);
#ifdef cplusplus
}
#endif
#endif /* GD32F450I_EVAL_H */

View File

@@ -0,0 +1,37 @@
/*!
\file gd32f4xx_it.h
\brief the header file of the ISR
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef GD32F4XX_IT_H
#define GD32F4XX_IT_H
#include "gd32f4xx.h"
/* function declarations */
/* this function handles NMI exception */
void NMI_Handler(void);
/* this function handles HardFault exception */
void HardFault_Handler(void);
/* this function handles MemManage exception */
void MemManage_Handler(void);
/* this function handles BusFault exception */
void BusFault_Handler(void);
/* this function handles UsageFault exception */
void UsageFault_Handler(void);
/* this function handles SVC exception */
void SVC_Handler(void);
/* this function handles DebugMon exception */
void DebugMon_Handler(void);
/* this function handles PendSV exception */
void PendSV_Handler(void);
/* this function handles SysTick exception */
void SysTick_Handler(void);
#endif /* GD32F4XX_IT_H */

View File

@@ -0,0 +1,56 @@
/*!
\file gd32f4xx_libopt.h
\brief library optional for gd32f4xx
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#ifndef GD32F4XX_LIBOPT_H
#define GD32F4XX_LIBOPT_H
#if defined (GD32F450) || defined (GD32F405) || defined (GD32F407)
#include "gd32f4xx_rcu.h"
#include "gd32f4xx_adc.h"
#include "gd32f4xx_can.h"
#include "gd32f4xx_crc.h"
#include "gd32f4xx_ctc.h"
#include "gd32f4xx_dac.h"
#include "gd32f4xx_dbg.h"
#include "gd32f4xx_dci.h"
#include "gd32f4xx_dma.h"
#include "gd32f4xx_exti.h"
#include "gd32f4xx_fmc.h"
#include "gd32f4xx_fwdgt.h"
#include "gd32f4xx_gpio.h"
#include "gd32f4xx_syscfg.h"
#include "gd32f4xx_i2c.h"
#include "gd32f4xx_iref.h"
#include "gd32f4xx_pmu.h"
#include "gd32f4xx_rcu.h"
#include "gd32f4xx_rtc.h"
#include "gd32f4xx_sdio.h"
#include "gd32f4xx_spi.h"
#include "gd32f4xx_timer.h"
#include "gd32f4xx_trng.h"
#include "gd32f4xx_usart.h"
#include "gd32f4xx_wwdgt.h"
#include "gd32f4xx_misc.h"
#endif
#if defined (GD32F450)
#include "gd32f4xx_enet.h"
#include "gd32f4xx_exmc.h"
#include "gd32f4xx_ipa.h"
#include "gd32f4xx_tli.h"
#endif
#if defined (GD32F407)
#include "gd32f4xx_enet.h"
#include "gd32f4xx_exmc.h"
#endif
#endif /* GD32F4XX_LIBOPT_H */

View File

@@ -0,0 +1,20 @@
/*!
\file main.h
\brief the header file of main
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef __MAIN_H
#define __MAIN_H
/* led spark function */
void led_spark(void);
#endif /* __MAIN_H */

View File

@@ -0,0 +1,24 @@
/*!
\file systick.h
\brief the header file of systick
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef SYS_TICK_H
#define SYS_TICK_H
#include <stdint.h>
/* configure systick */
void systick_config(void);
/* delay a time in milliseconds */
void delay_1ms(uint32_t count);
/* delay decrement */
void delay_decrement(void);
#endif /* SYS_TICK_H */

View File

@@ -0,0 +1,198 @@
/*!
\file gd32f450i_eval.c
\brief firmware functions to manage leds, keys, COM ports
*/
/*
Copyright (C) 2016 GigaDevice
2016-10-19, V1.0.0, firmware for GD32F450I
*/
#include "gd32f450i_eval.h"
/* private variables */
static uint32_t GPIO_PORT[LEDn] = {LED1_GPIO_PORT, LED2_GPIO_PORT,
LED3_GPIO_PORT};
static uint32_t GPIO_PIN[LEDn] = {LED1_PIN, LED2_PIN, LED3_PIN};
static rcu_periph_enum COM_CLK[COMn] = {EVAL_COM1_CLK};
static uint32_t COM_TX_PIN[COMn] = {EVAL_COM1_TX_PIN};
static uint32_t COM_RX_PIN[COMn] = {EVAL_COM1_RX_PIN};
static rcu_periph_enum GPIO_CLK[LEDn] = {LED1_GPIO_CLK, LED2_GPIO_CLK,
LED3_GPIO_CLK};
static uint32_t KEY_PORT[KEYn] = {WAKEUP_KEY_GPIO_PORT,
TAMPER_KEY_GPIO_PORT,
USER_KEY_GPIO_PORT};
static uint32_t KEY_PIN[KEYn] = {WAKEUP_KEY_PIN, TAMPER_KEY_PIN,USER_KEY_PIN};
static rcu_periph_enum KEY_CLK[KEYn] = {WAKEUP_KEY_GPIO_CLK,
TAMPER_KEY_GPIO_CLK,
USER_KEY_GPIO_CLK};
static exti_line_enum KEY_EXTI_LINE[KEYn] = {WAKEUP_KEY_EXTI_LINE,
TAMPER_KEY_EXTI_LINE,
USER_KEY_EXTI_LINE};
static uint8_t KEY_PORT_SOURCE[KEYn] = {WAKEUP_KEY_EXTI_PORT_SOURCE,
TAMPER_KEY_EXTI_PORT_SOURCE,
USER_KEY_EXTI_PORT_SOURCE};
static uint8_t KEY_PIN_SOURCE[KEYn] = {WAKEUP_KEY_EXTI_PIN_SOURCE,
TAMPER_KEY_EXTI_PIN_SOURCE,
USER_KEY_EXTI_PIN_SOURCE};
static uint8_t KEY_IRQn[KEYn] = {WAKEUP_KEY_EXTI_IRQn,
TAMPER_KEY_EXTI_IRQn,
USER_KEY_EXTI_IRQn};
/*!
\brief configure led GPIO
\param[in] lednum: specify the Led to be configured
\arg LED1
\arg LED2
\arg LED3
\param[out] none
\retval none
*/
void gd_eval_led_init (led_typedef_enum lednum)
{
/* enable the led clock */
rcu_periph_clock_enable(GPIO_CLK[lednum]);
/* configure led GPIO port */
gpio_mode_set(GPIO_PORT[lednum], GPIO_MODE_OUTPUT, GPIO_PUPD_NONE,GPIO_PIN[lednum]);
gpio_output_options_set(GPIO_PORT[lednum], GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ,GPIO_PIN[lednum]);
GPIO_BC(GPIO_PORT[lednum]) = GPIO_PIN[lednum];
}
/*!
\brief turn on selected led
\param[in] lednum: specify the Led to be turned on
\arg LED1
\arg LED2
\arg LED3
\param[out] none
\retval none
*/
void gd_eval_led_on(led_typedef_enum lednum)
{
GPIO_BOP(GPIO_PORT[lednum]) = GPIO_PIN[lednum];
}
/*!
\brief turn off selected led
\param[in] lednum: specify the Led to be turned off
\arg LED1
\arg LED2
\arg LED3
\param[out] none
\retval none
*/
void gd_eval_led_off(led_typedef_enum lednum)
{
GPIO_BC(GPIO_PORT[lednum]) = GPIO_PIN[lednum];
}
/*!
\brief toggle selected led
\param[in] lednum: specify the Led to be toggled
\arg LED1
\arg LED2
\arg LED3
\param[out] none
\retval none
*/
void gd_eval_led_toggle(led_typedef_enum lednum)
{
GPIO_TG(GPIO_PORT[lednum]) = GPIO_PIN[lednum];
}
/*!
\brief configure key
\param[in] key_num: specify the key to be configured
\arg KEY_TAMPER: tamper key
\arg KEY_WAKEUP: wakeup key
\arg KEY_USER: user key
\param[in] key_mode: specify button mode
\arg KEY_MODE_GPIO: key will be used as simple IO
\arg KEY_MODE_EXTI: key will be connected to EXTI line with interrupt
\param[out] none
\retval none
*/
void gd_eval_key_init(key_typedef_enum key_num, keymode_typedef_enum key_mode)
{
/* enable the key clock */
rcu_periph_clock_enable(KEY_CLK[key_num]);
rcu_periph_clock_enable(RCU_SYSCFG);
/* configure button pin as input */
gpio_mode_set(KEY_PORT[key_num], GPIO_MODE_INPUT, GPIO_PUPD_NONE,KEY_PIN[key_num]);
if (key_mode == KEY_MODE_EXTI) {
/* enable and set key EXTI interrupt to the lowest priority */
nvic_irq_enable(KEY_IRQn[key_num], 2U, 0U);
/* connect key EXTI line to key GPIO pin */
syscfg_exti_line_config(KEY_PORT_SOURCE[key_num], KEY_PIN_SOURCE[key_num]);
/* configure key EXTI line */
exti_init(KEY_EXTI_LINE[key_num], EXTI_INTERRUPT, EXTI_TRIG_FALLING);
exti_interrupt_flag_clear(KEY_EXTI_LINE[key_num]);
}
}
/*!
\brief return the selected button state
\param[in] button: specify the button to be checked
\arg KEY_TAMPER: tamper key
\arg KEY_WAKEUP: wakeup key
\arg KEY_USER: user key
\param[out] none
\retval the button GPIO pin value
*/
uint8_t gd_eval_key_state_get(key_typedef_enum button)
{
return gpio_input_bit_get(KEY_PORT[button], KEY_PIN[button]);
}
/*!
\brief configure COM port
\param[in] COM: COM on the board
\arg EVAL_COM1: COM1 on the board
\param[out] none
\retval none
*/
void gd_eval_com_init(uint32_t com)
{
/* enable GPIO clock */
uint32_t COM_ID;
if(EVAL_COM1 == com)
{
COM_ID = 0U;
}
rcu_periph_clock_enable( EVAL_COM_GPIO_CLK);
/* enable USART clock */
rcu_periph_clock_enable(COM_CLK[COM_ID]);
/* connect port to USARTx_Tx */
gpio_af_set(EVAL_COM_GPIO_PORT, EVAL_COM_AF, COM_TX_PIN[COM_ID]);
/* connect port to USARTx_Rx */
gpio_af_set(EVAL_COM_GPIO_PORT, EVAL_COM_AF, COM_RX_PIN[COM_ID]);
/* configure USART Tx as alternate function push-pull */
gpio_mode_set(EVAL_COM_GPIO_PORT, GPIO_MODE_AF, GPIO_PUPD_PULLUP,COM_TX_PIN[COM_ID]);
gpio_output_options_set(EVAL_COM_GPIO_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ,COM_TX_PIN[COM_ID]);
/* configure USART Rx as alternate function push-pull */
gpio_mode_set(EVAL_COM_GPIO_PORT, GPIO_MODE_AF, GPIO_PUPD_PULLUP,COM_RX_PIN[COM_ID]);
gpio_output_options_set(EVAL_COM_GPIO_PORT, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ,COM_RX_PIN[COM_ID]);
/* USART configure */
usart_deinit(com);
usart_baudrate_set(com,115200U);
usart_receive_config(com, USART_RECEIVE_ENABLE);
usart_transmit_config(com, USART_TRANSMIT_ENABLE);
usart_enable(com);
}

View File

@@ -0,0 +1,124 @@
/*!
\file gd32f4xx_it.c
\brief interrupt service routines
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#include "gd32f4xx_it.h"
#include "main.h"
#include "systick.h"
#include "tos.h"
/*!
\brief this function handles NMI exception
\param[in] none
\param[out] none
\retval none
*/
void NMI_Handler(void)
{
}
/*!
\brief this function handles HardFault exception
\param[in] none
\param[out] none
\retval none
*/
void HardFault_Handler(void)
{
/* if Hard Fault exception occurs, go to infinite loop */
while (1){
}
}
/*!
\brief this function handles MemManage exception
\param[in] none
\param[out] none
\retval none
*/
void MemManage_Handler(void)
{
/* if Memory Manage exception occurs, go to infinite loop */
while (1){
}
}
/*!
\brief this function handles BusFault exception
\param[in] none
\param[out] none
\retval none
*/
void BusFault_Handler(void)
{
/* if Bus Fault exception occurs, go to infinite loop */
while (1){
}
}
/*!
\brief this function handles UsageFault exception
\param[in] none
\param[out] none
\retval none
*/
void UsageFault_Handler(void)
{
/* if Usage Fault exception occurs, go to infinite loop */
while (1){
}
}
/*!
\brief this function handles SVC exception
\param[in] none
\param[out] none
\retval none
*/
void SVC_Handler(void)
{
}
/*!
\brief this function handles DebugMon exception
\param[in] none
\param[out] none
\retval none
*/
void DebugMon_Handler(void)
{
}
/*!
\brief this function handles PendSV exception
\param[in] none
\param[out] none
\retval none
*/
//void PendSV_Handler(void)
//{
//}
/*!
\brief this function handles SysTick exception
\param[in] none
\param[out] none
\retval none
*/
void SysTick_Handler(void)
{
if(tos_knl_is_running())
{
tos_knl_irq_enter();
tos_tick_handler();
tos_knl_irq_leave();
}
delay_decrement();
}

View File

@@ -0,0 +1,49 @@
#include "gd32f4xx.h"
#include "systick.h"
#include <stdio.h>
#include "main.h"
#include "gd32f450i_eval.h"
#include "cmsis_os.h"
#define TASK1_STK_SIZE 512
void task1(void *arg);
osThreadDef(task1, osPriorityNormal, 2, TASK1_STK_SIZE);
#define TASK2_STK_SIZE 512
void task2(void *arg);
osThreadDef(task2, osPriorityNormal, 1, TASK2_STK_SIZE);
void board_init(void)
{
gd_eval_led_init(LED1);
gd_eval_led_init(LED2);
gd_eval_led_init(LED3);
systick_config();
}
void task1(void *arg)
{
while (1) {
gd_eval_led_toggle(LED1);
gd_eval_led_toggle(LED2);
osDelay(2000);
}
}
void task2(void *arg)
{
while (1) {
gd_eval_led_toggle(LED3);
osDelay(1000);
}
}
int main(void)
{
board_init();
//printf("Welcome to TencentOS tiny\r\n");
osKernelInitialize();
osThreadCreate(osThread(task1), NULL); // Create task1
osThreadCreate(osThread(task2), NULL); // Create task2
osKernelStart();
}

View File

@@ -0,0 +1,60 @@
/*!
\file systick.c
\brief the systick configuration file
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#include "gd32f4xx.h"
#include "systick.h"
volatile static uint32_t delay;
/*!
\brief configure systick
\param[in] none
\param[out] none
\retval none
*/
void systick_config(void)
{
/* setup systick timer for 1000Hz interrupts */
if (SysTick_Config(SystemCoreClock / 1000U)){
/* capture error */
while (1){
}
}
/* configure the systick handler priority */
NVIC_SetPriority(SysTick_IRQn, 0x00U);
}
/*!
\brief delay a time in milliseconds
\param[in] count: count in milliseconds
\param[out] none
\retval none
*/
void delay_1ms(uint32_t count)
{
delay = count;
while(0U != delay){
}
}
/*!
\brief delay decrement
\param[in] none
\param[out] none
\retval none
*/
void delay_decrement(void)
{
if (0U != delay){
delay--;
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,747 @@
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Project xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="project_projx.xsd">
<SchemaVersion>2.1</SchemaVersion>
<Header>### uVision Project, (C) Keil Software</Header>
<Targets>
<Target>
<TargetName>TencentOS_tiny</TargetName>
<ToolsetNumber>0x4</ToolsetNumber>
<ToolsetName>ARM-ADS</ToolsetName>
<pCCUsed>5060750::V5.06 update 6 (build 750)::ARMCC</pCCUsed>
<uAC6>0</uAC6>
<TargetOption>
<TargetCommonOption>
<Device>GD32F450IK</Device>
<Vendor>GigaDevice</Vendor>
<PackID>GigaDevice.GD32F4xx_DFP.1.0.4</PackID>
<PackURL>http://gd32mcu.21ic.com/data/documents/yingyongruanjian/</PackURL>
<Cpu>IRAM(0x20000000,0x030000) IRAM2(0x10000000,0x010000) IROM(0x08000000,0x0300000) CPUTYPE("Cortex-M4") FPU2 CLOCK(12000000) ELITTLE</Cpu>
<FlashUtilSpec></FlashUtilSpec>
<StartupFile></StartupFile>
<FlashDriverDll>UL2CM3(-S0 -C0 -P0 -FD20000000 -FC1000 -FN1 -FF0GD32F4xx_3MB -FS08000000 -FL0300000 -FP0($$Device:GD32F450IK$Flash\GD32F4xx_3MB.FLM))</FlashDriverDll>
<DeviceId>0</DeviceId>
<RegisterFile>$$Device:GD32F450IK$Device\F4XX\Include\gd32f4xx.h</RegisterFile>
<MemoryEnv></MemoryEnv>
<Cmp></Cmp>
<Asm></Asm>
<Linker></Linker>
<OHString></OHString>
<InfinionOptionDll></InfinionOptionDll>
<SLE66CMisc></SLE66CMisc>
<SLE66AMisc></SLE66AMisc>
<SLE66LinkerMisc></SLE66LinkerMisc>
<SFDFile>$$Device:GD32F450IK$SVD\GD32F4xx.svd</SFDFile>
<bCustSvd>0</bCustSvd>
<UseEnv>0</UseEnv>
<BinPath></BinPath>
<IncludePath></IncludePath>
<LibPath></LibPath>
<RegisterFilePath></RegisterFilePath>
<DBRegisterFilePath></DBRegisterFilePath>
<TargetStatus>
<Error>0</Error>
<ExitCodeStop>0</ExitCodeStop>
<ButtonStop>0</ButtonStop>
<NotGenerated>0</NotGenerated>
<InvalidFlash>1</InvalidFlash>
</TargetStatus>
<OutputDirectory>.\Objects\</OutputDirectory>
<OutputName>TencentOS_tiny</OutputName>
<CreateExecutable>1</CreateExecutable>
<CreateLib>0</CreateLib>
<CreateHexFile>0</CreateHexFile>
<DebugInformation>1</DebugInformation>
<BrowseInformation>0</BrowseInformation>
<ListingPath>.\Listings\</ListingPath>
<HexFormatSelection>1</HexFormatSelection>
<Merge32K>0</Merge32K>
<CreateBatchFile>0</CreateBatchFile>
<BeforeCompile>
<RunUserProg1>0</RunUserProg1>
<RunUserProg2>0</RunUserProg2>
<UserProg1Name></UserProg1Name>
<UserProg2Name></UserProg2Name>
<UserProg1Dos16Mode>0</UserProg1Dos16Mode>
<UserProg2Dos16Mode>0</UserProg2Dos16Mode>
<nStopU1X>0</nStopU1X>
<nStopU2X>0</nStopU2X>
</BeforeCompile>
<BeforeMake>
<RunUserProg1>0</RunUserProg1>
<RunUserProg2>0</RunUserProg2>
<UserProg1Name></UserProg1Name>
<UserProg2Name></UserProg2Name>
<UserProg1Dos16Mode>0</UserProg1Dos16Mode>
<UserProg2Dos16Mode>0</UserProg2Dos16Mode>
<nStopB1X>0</nStopB1X>
<nStopB2X>0</nStopB2X>
</BeforeMake>
<AfterMake>
<RunUserProg1>0</RunUserProg1>
<RunUserProg2>0</RunUserProg2>
<UserProg1Name></UserProg1Name>
<UserProg2Name></UserProg2Name>
<UserProg1Dos16Mode>0</UserProg1Dos16Mode>
<UserProg2Dos16Mode>0</UserProg2Dos16Mode>
<nStopA1X>0</nStopA1X>
<nStopA2X>0</nStopA2X>
</AfterMake>
<SelectedForBatchBuild>0</SelectedForBatchBuild>
<SVCSIdString></SVCSIdString>
</TargetCommonOption>
<CommonProperty>
<UseCPPCompiler>0</UseCPPCompiler>
<RVCTCodeConst>0</RVCTCodeConst>
<RVCTZI>0</RVCTZI>
<RVCTOtherData>0</RVCTOtherData>
<ModuleSelection>0</ModuleSelection>
<IncludeInBuild>1</IncludeInBuild>
<AlwaysBuild>0</AlwaysBuild>
<GenerateAssemblyFile>0</GenerateAssemblyFile>
<AssembleAssemblyFile>0</AssembleAssemblyFile>
<PublicsOnly>0</PublicsOnly>
<StopOnExitCode>3</StopOnExitCode>
<CustomArgument></CustomArgument>
<IncludeLibraryModules></IncludeLibraryModules>
<ComprImg>1</ComprImg>
</CommonProperty>
<DllOption>
<SimDllName>SARMCM3.DLL</SimDllName>
<SimDllArguments> -REMAP -MPU</SimDllArguments>
<SimDlgDll>DCM.DLL</SimDlgDll>
<SimDlgDllArguments>-pCM4</SimDlgDllArguments>
<TargetDllName>SARMCM3.DLL</TargetDllName>
<TargetDllArguments> -MPU</TargetDllArguments>
<TargetDlgDll>TCM.DLL</TargetDlgDll>
<TargetDlgDllArguments>-pCM4</TargetDlgDllArguments>
</DllOption>
<DebugOption>
<OPTHX>
<HexSelection>1</HexSelection>
<HexRangeLowAddress>0</HexRangeLowAddress>
<HexRangeHighAddress>0</HexRangeHighAddress>
<HexOffset>0</HexOffset>
<Oh166RecLen>16</Oh166RecLen>
</OPTHX>
</DebugOption>
<Utilities>
<Flash1>
<UseTargetDll>1</UseTargetDll>
<UseExternalTool>0</UseExternalTool>
<RunIndependent>0</RunIndependent>
<UpdateFlashBeforeDebugging>1</UpdateFlashBeforeDebugging>
<Capability>1</Capability>
<DriverSelection>-1</DriverSelection>
</Flash1>
<bUseTDR>1</bUseTDR>
<Flash2>BIN\UL2CM3.DLL</Flash2>
<Flash3></Flash3>
<Flash4></Flash4>
<pFcarmOut></pFcarmOut>
<pFcarmGrp></pFcarmGrp>
<pFcArmRoot></pFcArmRoot>
<FcArmLst>0</FcArmLst>
</Utilities>
<TargetArmAds>
<ArmAdsMisc>
<GenerateListings>0</GenerateListings>
<asHll>1</asHll>
<asAsm>1</asAsm>
<asMacX>1</asMacX>
<asSyms>1</asSyms>
<asFals>1</asFals>
<asDbgD>1</asDbgD>
<asForm>1</asForm>
<ldLst>0</ldLst>
<ldmm>1</ldmm>
<ldXref>1</ldXref>
<BigEnd>0</BigEnd>
<AdsALst>1</AdsALst>
<AdsACrf>1</AdsACrf>
<AdsANop>0</AdsANop>
<AdsANot>0</AdsANot>
<AdsLLst>1</AdsLLst>
<AdsLmap>1</AdsLmap>
<AdsLcgr>1</AdsLcgr>
<AdsLsym>1</AdsLsym>
<AdsLszi>1</AdsLszi>
<AdsLtoi>1</AdsLtoi>
<AdsLsun>1</AdsLsun>
<AdsLven>1</AdsLven>
<AdsLsxf>1</AdsLsxf>
<RvctClst>0</RvctClst>
<GenPPlst>0</GenPPlst>
<AdsCpuType>"Cortex-M4"</AdsCpuType>
<RvctDeviceName></RvctDeviceName>
<mOS>0</mOS>
<uocRom>0</uocRom>
<uocRam>0</uocRam>
<hadIROM>1</hadIROM>
<hadIRAM>1</hadIRAM>
<hadXRAM>0</hadXRAM>
<uocXRam>0</uocXRam>
<RvdsVP>2</RvdsVP>
<RvdsMve>0</RvdsMve>
<hadIRAM2>1</hadIRAM2>
<hadIROM2>0</hadIROM2>
<StupSel>8</StupSel>
<useUlib>1</useUlib>
<EndSel>0</EndSel>
<uLtcg>0</uLtcg>
<nSecure>0</nSecure>
<RoSelD>3</RoSelD>
<RwSelD>4</RwSelD>
<CodeSel>0</CodeSel>
<OptFeed>0</OptFeed>
<NoZi1>0</NoZi1>
<NoZi2>0</NoZi2>
<NoZi3>0</NoZi3>
<NoZi4>0</NoZi4>
<NoZi5>0</NoZi5>
<Ro1Chk>0</Ro1Chk>
<Ro2Chk>0</Ro2Chk>
<Ro3Chk>0</Ro3Chk>
<Ir1Chk>1</Ir1Chk>
<Ir2Chk>0</Ir2Chk>
<Ra1Chk>0</Ra1Chk>
<Ra2Chk>0</Ra2Chk>
<Ra3Chk>0</Ra3Chk>
<Im1Chk>1</Im1Chk>
<Im2Chk>0</Im2Chk>
<OnChipMemories>
<Ocm1>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</Ocm1>
<Ocm2>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</Ocm2>
<Ocm3>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</Ocm3>
<Ocm4>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</Ocm4>
<Ocm5>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</Ocm5>
<Ocm6>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</Ocm6>
<IRAM>
<Type>0</Type>
<StartAddress>0x20000000</StartAddress>
<Size>0x30000</Size>
</IRAM>
<IROM>
<Type>1</Type>
<StartAddress>0x8000000</StartAddress>
<Size>0x300000</Size>
</IROM>
<XRAM>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</XRAM>
<OCR_RVCT1>
<Type>1</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</OCR_RVCT1>
<OCR_RVCT2>
<Type>1</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</OCR_RVCT2>
<OCR_RVCT3>
<Type>1</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</OCR_RVCT3>
<OCR_RVCT4>
<Type>1</Type>
<StartAddress>0x8000000</StartAddress>
<Size>0x300000</Size>
</OCR_RVCT4>
<OCR_RVCT5>
<Type>1</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</OCR_RVCT5>
<OCR_RVCT6>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</OCR_RVCT6>
<OCR_RVCT7>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</OCR_RVCT7>
<OCR_RVCT8>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</OCR_RVCT8>
<OCR_RVCT9>
<Type>0</Type>
<StartAddress>0x20000000</StartAddress>
<Size>0x30000</Size>
</OCR_RVCT9>
<OCR_RVCT10>
<Type>0</Type>
<StartAddress>0x10000000</StartAddress>
<Size>0x10000</Size>
</OCR_RVCT10>
</OnChipMemories>
<RvctStartVector></RvctStartVector>
</ArmAdsMisc>
<Cads>
<interw>1</interw>
<Optim>1</Optim>
<oTime>0</oTime>
<SplitLS>0</SplitLS>
<OneElfS>1</OneElfS>
<Strict>0</Strict>
<EnumInt>0</EnumInt>
<PlainCh>0</PlainCh>
<Ropi>0</Ropi>
<Rwpi>0</Rwpi>
<wLevel>2</wLevel>
<uThumb>0</uThumb>
<uSurpInc>0</uSurpInc>
<uC99>1</uC99>
<uGnu>1</uGnu>
<useXO>0</useXO>
<v6Lang>1</v6Lang>
<v6LangP>1</v6LangP>
<vShortEn>1</vShortEn>
<vShortWch>1</vShortWch>
<v6Lto>0</v6Lto>
<v6WtE>0</v6WtE>
<v6Rtti>0</v6Rtti>
<VariousControls>
<MiscControls></MiscControls>
<Define>USE_STDPERIPH_DRIVER,GD32F450</Define>
<Undefine></Undefine>
<IncludePath>..\..\BSP\Inc;..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\CMSIS\GD\GD32F4xx\Include;..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Include;..\..\..\..\arch\arm\arm-v7m\common\include;..\..\..\..\arch\arm\arm-v7m\cortex-m4\armcc;..\..\..\..\kernel\core\include;..\..\..\..\kernel\pm\include;..\..\..\..\osal\cmsis_os;..\..\TOS_CONFIG</IncludePath>
</VariousControls>
</Cads>
<Aads>
<interw>1</interw>
<Ropi>0</Ropi>
<Rwpi>0</Rwpi>
<thumb>0</thumb>
<SplitLS>0</SplitLS>
<SwStkChk>0</SwStkChk>
<NoWarn>0</NoWarn>
<uSurpInc>0</uSurpInc>
<useXO>0</useXO>
<uClangAs>0</uClangAs>
<VariousControls>
<MiscControls></MiscControls>
<Define></Define>
<Undefine></Undefine>
<IncludePath></IncludePath>
</VariousControls>
</Aads>
<LDads>
<umfTarg>1</umfTarg>
<Ropi>0</Ropi>
<Rwpi>0</Rwpi>
<noStLib>0</noStLib>
<RepFail>1</RepFail>
<useFile>0</useFile>
<TextAddressRange>0x08000000</TextAddressRange>
<DataAddressRange>0x20000000</DataAddressRange>
<pXoBase></pXoBase>
<ScatterFile></ScatterFile>
<IncludeLibs></IncludeLibs>
<IncludeLibsPath></IncludeLibsPath>
<Misc></Misc>
<LinkerInputFile></LinkerInputFile>
<DisabledWarnings></DisabledWarnings>
</LDads>
</TargetArmAds>
</TargetOption>
<Groups>
<Group>
<GroupName>Application</GroupName>
<Files>
<File>
<FileName>gd32f4xx_it.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\BSP\Src\gd32f4xx_it.c</FilePath>
</File>
<File>
<FileName>gd32f450i_eval.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\BSP\Src\gd32f450i_eval.c</FilePath>
</File>
<File>
<FileName>main.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\BSP\Src\main.c</FilePath>
</File>
<File>
<FileName>systick.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\BSP\Src\systick.c</FilePath>
</File>
</Files>
</Group>
<Group>
<GroupName>CMSIS</GroupName>
<Files>
<File>
<FileName>system_gd32f4xx.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\CMSIS\GD\GD32F4xx\Source\system_gd32f4xx.c</FilePath>
</File>
<File>
<FileName>startup_gd32f450.s</FileName>
<FileType>2</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\CMSIS\GD\GD32F4xx\Source\ARM\startup_gd32f450.s</FilePath>
</File>
</Files>
</Group>
<Group>
<GroupName>GD32F4xx_Firmware_Library</GroupName>
<Files>
<File>
<FileName>gd32f4xx_adc.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_adc.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_can.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_can.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_crc.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_crc.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_ctc.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_ctc.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_dac.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_dac.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_dbg.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_dbg.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_dci.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_dci.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_dma.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_dma.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_enet.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_enet.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_exmc.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_exmc.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_exti.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_exti.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_fmc.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_fmc.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_fwdgt.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_fwdgt.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_gpio.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_gpio.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_i2c.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_i2c.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_ipa.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_ipa.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_iref.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_iref.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_misc.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_misc.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_pmu.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_pmu.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_rcu.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_rcu.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_rtc.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_rtc.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_sdio.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_sdio.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_spi.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_spi.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_syscfg.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_syscfg.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_timer.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_timer.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_tli.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_tli.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_trng.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_trng.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_usart.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_usart.c</FilePath>
</File>
<File>
<FileName>gd32f4xx_wwdgt.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\platform\vendor_bsp\gd\GD32F4xx_Firmware_Library_V1.4\GD32F4xx_standard_peripheral\Source\gd32f4xx_wwdgt.c</FilePath>
</File>
</Files>
</Group>
<Group>
<GroupName>tos/arch</GroupName>
<Files>
<File>
<FileName>tos_cpu.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\arch\arm\arm-v7m\common\tos_cpu.c</FilePath>
</File>
<File>
<FileName>port_c.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\arch\arm\arm-v7m\cortex-m4\armcc\port_c.c</FilePath>
</File>
<File>
<FileName>port_s.S</FileName>
<FileType>2</FileType>
<FilePath>..\..\..\..\arch\arm\arm-v7m\cortex-m4\armcc\port_s.S</FilePath>
</File>
</Files>
</Group>
<Group>
<GroupName>tos/kernel</GroupName>
<Files>
<File>
<FileName>tos_binary_heap.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\kernel\core\tos_binary_heap.c</FilePath>
</File>
<File>
<FileName>tos_char_fifo.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\kernel\core\tos_char_fifo.c</FilePath>
</File>
<File>
<FileName>tos_completion.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\kernel\core\tos_completion.c</FilePath>
</File>
<File>
<FileName>tos_countdownlatch.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\kernel\core\tos_countdownlatch.c</FilePath>
</File>
<File>
<FileName>tos_event.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\kernel\core\tos_event.c</FilePath>
</File>
<File>
<FileName>tos_global.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\kernel\core\tos_global.c</FilePath>
</File>
<File>
<FileName>tos_mail_queue.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\kernel\core\tos_mail_queue.c</FilePath>
</File>
<File>
<FileName>tos_message_queue.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\kernel\core\tos_message_queue.c</FilePath>
</File>
<File>
<FileName>tos_mmblk.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\kernel\core\tos_mmblk.c</FilePath>
</File>
<File>
<FileName>tos_mmheap.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\kernel\core\tos_mmheap.c</FilePath>
</File>
<File>
<FileName>tos_mutex.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\kernel\core\tos_mutex.c</FilePath>
</File>
<File>
<FileName>tos_pend.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\kernel\core\tos_pend.c</FilePath>
</File>
<File>
<FileName>tos_priority_mail_queue.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\kernel\core\tos_priority_mail_queue.c</FilePath>
</File>
<File>
<FileName>tos_priority_message_queue.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\kernel\core\tos_priority_message_queue.c</FilePath>
</File>
<File>
<FileName>tos_priority_queue.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\kernel\core\tos_priority_queue.c</FilePath>
</File>
<File>
<FileName>tos_ring_queue.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\kernel\core\tos_ring_queue.c</FilePath>
</File>
<File>
<FileName>tos_robin.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\kernel\core\tos_robin.c</FilePath>
</File>
<File>
<FileName>tos_sched.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\kernel\core\tos_sched.c</FilePath>
</File>
<File>
<FileName>tos_sem.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\kernel\core\tos_sem.c</FilePath>
</File>
<File>
<FileName>tos_sys.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\kernel\core\tos_sys.c</FilePath>
</File>
<File>
<FileName>tos_task.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\kernel\core\tos_task.c</FilePath>
</File>
<File>
<FileName>tos_tick.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\kernel\core\tos_tick.c</FilePath>
</File>
<File>
<FileName>tos_time.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\kernel\core\tos_time.c</FilePath>
</File>
<File>
<FileName>tos_timer.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\kernel\core\tos_timer.c</FilePath>
</File>
</Files>
</Group>
<Group>
<GroupName>tos/cmsis</GroupName>
<Files>
<File>
<FileName>cmsis_os.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\..\..\osal\cmsis_os\cmsis_os.c</FilePath>
</File>
</Files>
</Group>
<Group>
<GroupName>::CMSIS</GroupName>
</Group>
</Groups>
</Target>
</Targets>
<RTE>
<apis/>
<components>
<component Cclass="CMSIS" Cgroup="CORE" Cvendor="ARM" Cversion="5.1.2" condition="ARMv6_7_8-M Device">
<package name="CMSIS" schemaVersion="1.3" url="http://www.keil.com/pack/" vendor="ARM" version="5.4.0"/>
<targetInfos>
<targetInfo name="TencentOS_tiny"/>
</targetInfos>
</component>
</components>
<files/>
</RTE>
</Project>

View File

@@ -0,0 +1,55 @@
#ifndef _TOS_CONFIG_H_
#define _TOS_CONFIG_H_
#include "gd32f4xx.h"
#define TOS_CFG_TASK_PRIO_MAX 10u
#define TOS_CFG_ROUND_ROBIN_EN 0u
#define TOS_CFG_OBJECT_VERIFY_EN 1u
#define TOS_CFG_TASK_DYNAMIC_CREATE_EN 1u
#define TOS_CFG_EVENT_EN 1u
#define TOS_CFG_MMBLK_EN 1u
#define TOS_CFG_MMHEAP_EN 1u
#define TOS_CFG_MMHEAP_DEFAULT_POOL_EN 1u
#define TOS_CFG_MMHEAP_DEFAULT_POOL_SIZE 0x100
#define TOS_CFG_MUTEX_EN 1u
#define TOS_CFG_MESSAGE_QUEUE_EN 1u
#define TOS_CFG_MAIL_QUEUE_EN 1u
#define TOS_CFG_PRIORITY_MESSAGE_QUEUE_EN 1u
#define TOS_CFG_PRIORITY_MAIL_QUEUE_EN 1u
#define TOS_CFG_TIMER_EN 0u
#define TOS_CFG_PWR_MGR_EN 0u
#define TOS_CFG_TICKLESS_EN 0u
#define TOS_CFG_SEM_EN 1u
#define TOS_CFG_TASK_STACK_DRAUGHT_DEPTH_DETACT_EN 1u
#define TOS_CFG_FAULT_BACKTRACE_EN 0u
#define TOS_CFG_IDLE_TASK_STK_SIZE 128u
#define TOS_CFG_CPU_TICK_PER_SECOND 1000u
#define TOS_CFG_CPU_CLOCK (SystemCoreClock)
#define TOS_CFG_TIMER_AS_PROC 1u
#endif

View File

@@ -0,0 +1,341 @@
/*!
\file gd32f4xx.h
\brief general definitions for GD32F4xx
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware update for GD32F4xx
*/
#ifndef GD32F4XX_H
#define GD32F4XX_H
#ifdef cplusplus
extern "C" {
#endif
/* define GD32F4xx */
#if !defined (GD32F450) && !defined (GD32F405) && !defined (GD32F407)
/* #define GD32F450 */
/* #define GD32F405 */
/* #define GD32F407 */
#endif /* define GD32F4xx */
#if !defined (GD32F450) && !defined (GD32F405) && !defined (GD32F407)
#error "Please select the target GD32F4xx device in gd32f4xx.h file"
#endif /* undefine GD32F4xx tip */
/* define value of high speed crystal oscillator (HXTAL) in Hz */
#if !defined (HXTAL_VALUE)
#define HXTAL_VALUE ((uint32_t)8000000)
#endif /* high speed crystal oscillator value */
/* define startup timeout value of high speed crystal oscillator (HXTAL) */
#if !defined (HXTAL_STARTUP_TIMEOUT)
#define HXTAL_STARTUP_TIMEOUT ((uint16_t)0x0800)
#endif /* high speed crystal oscillator startup timeout */
/* define value of internal 16MHz RC oscillator (IRC16M) in Hz */
#if !defined (IRC16M_VALUE)
#define IRC16M_VALUE ((uint32_t)16000000)
#endif /* internal 16MHz RC oscillator value */
/* define startup timeout value of internal 16MHz RC oscillator (IRC16M) */
#if !defined (IRC16M_STARTUP_TIMEOUT)
#define IRC16M_STARTUP_TIMEOUT ((uint16_t)0x0500)
#endif /* internal 16MHz RC oscillator startup timeout */
/* define value of internal 32KHz RC oscillator(IRC32K) in Hz */
#if !defined (IRC32K_VALUE)
#define IRC32K_VALUE ((uint32_t)32000)
#endif /* internal 32KHz RC oscillator value */
/* define value of low speed crystal oscillator (LXTAL)in Hz */
#if !defined (LXTAL_VALUE)
#define LXTAL_VALUE ((uint32_t)32768)
#endif /* low speed crystal oscillator value */
/* I2S external clock in selection */
//#define I2S_EXTERNAL_CLOCK_IN (uint32_t)12288000U
/* GD32F4xx firmware library version number V1.0 */
#define __GD32F4xx_STDPERIPH_VERSION_MAIN (0x03) /*!< [31:24] main version */
#define __GD32F4xx_STDPERIPH_VERSION_SUB1 (0x00) /*!< [23:16] sub1 version */
#define __GD32F4xx_STDPERIPH_VERSION_SUB2 (0x00) /*!< [15:8] sub2 version */
#define __GD32F4xx_STDPERIPH_VERSION_RC (0x00) /*!< [7:0] release candidate */
#define __GD32F4xx_STDPERIPH_VERSION ((__GD32F4xx_STDPERIPH_VERSION_MAIN << 24)\
|(__GD32F4xx_STDPERIPH_VERSION_SUB1 << 16)\
|(__GD32F4xx_STDPERIPH_VERSION_SUB2 << 8)\
|(__GD32F4xx_STDPERIPH_VERSION_RC))
/* configuration of the Cortex-M4 processor and core peripherals */
#define __CM4_REV 0x0001 /*!< Core revision r0p1 */
#define __MPU_PRESENT 1 /*!< GD32F4xx do not provide MPU */
#define __NVIC_PRIO_BITS 4 /*!< GD32F4xx uses 4 bits for the priority levels */
#define __Vendor_SysTickConfig 0 /*!< set to 1 if different sysTick config is used */
#define __FPU_PRESENT 1 /*!< FPU present */
/* define interrupt number */
typedef enum IRQn
{
/* Cortex-M4 processor exceptions numbers */
NonMaskableInt_IRQn = -14, /*!< 2 non maskable interrupt */
MemoryManagement_IRQn = -12, /*!< 4 Cortex-M4 memory management interrupt */
BusFault_IRQn = -11, /*!< 5 Cortex-M4 bus fault interrupt */
UsageFault_IRQn = -10, /*!< 6 Cortex-M4 usage fault interrupt */
SVCall_IRQn = -5, /*!< 11 Cortex-M4 SV call interrupt */
DebugMonitor_IRQn = -4, /*!< 12 Cortex-M4 debug monitor interrupt */
PendSV_IRQn = -2, /*!< 14 Cortex-M4 pend SV interrupt */
SysTick_IRQn = -1, /*!< 15 Cortex-M4 system tick interrupt */
/* interruput numbers */
WWDGT_IRQn = 0, /*!< window watchDog timer interrupt */
LVD_IRQn = 1, /*!< LVD through EXTI line detect interrupt */
TAMPER_STAMP_IRQn = 2, /*!< Tamper and TimeStamp through EXTI Line detect */
RTC_WKUP_IRQn = 3, /*!< RTC Wakeup through EXTI line interrupt */
FMC_IRQn = 4, /*!< FMC interrupt */
RCU_CTC_IRQn = 5, /*!< RCU and CTC interrupt */
EXTI0_IRQn = 6, /*!< EXTI line 0 interrupts */
EXTI1_IRQn = 7, /*!< EXTI line 1 interrupts */
EXTI2_IRQn = 8, /*!< EXTI line 2 interrupts */
EXTI3_IRQn = 9, /*!< EXTI line 3 interrupts */
EXTI4_IRQn = 10, /*!< EXTI line 4 interrupts */
DMA0_Channel0_IRQn = 11, /*!< DMA0 Channel0 Interrupt */
DMA0_Channel1_IRQn = 12, /*!< DMA0 Channel1 Interrupt */
DMA0_Channel2_IRQn = 13, /*!< DMA0 Channel2 Interrupt */
DMA0_Channel3_IRQn = 14, /*!< DMA0 Channel3 Interrupt */
DMA0_Channel4_IRQn = 15, /*!< DMA0 Channel4 Interrupt */
DMA0_Channel5_IRQn = 16, /*!< DMA0 Channel5 Interrupt */
DMA0_Channel6_IRQn = 17, /*!< DMA0 Channel6 Interrupt */
ADC_IRQn = 18, /*!< ADC interrupt */
CAN0_TX_IRQn = 19, /*!< CAN0 TX interrupts */
CAN0_RX0_IRQn = 20, /*!< CAN0 RX0 interrupts */
CAN0_RX1_IRQn = 21, /*!< CAN0 RX1 interrupts */
CAN0_EWMC_IRQn = 22, /*!< CAN0 EWMC interrupts */
EXTI5_9_IRQn = 23, /*!< EXTI[9:5] interrupts */
TIMER0_BRK_TIMER8_IRQn = 24, /*!< TIMER0 Break and TIMER8 interrupts */
TIMER0_UP_TIMER9_IRQn = 25, /*!< TIMER0 Update and TIMER9 interrupts */
TIMER0_TRG_CMT_TIMER10_IRQn = 26, /*!< TIMER0 Trigger and Commutation and TIMER10 interrupts */
TIMER0_CC_IRQn = 27, /*!< TIMER0 Capture Compare interrupts */
TIMER1_IRQn = 28, /*!< TIMER1 interrupt */
TIMER2_IRQn = 29, /*!< TIMER2 interrupt */
TIMER3_IRQn = 30, /*!< TIMER3 interrupts */
I2C0_EV_IRQn = 31, /*!< I2C0 event interrupt */
I2C0_ER_IRQn = 32, /*!< I2C0 error interrupt */
I2C1_EV_IRQn = 33, /*!< I2C1 event interrupt */
I2C1_ER_IRQn = 34, /*!< I2C1 error interrupt */
SPI0_IRQn = 35, /*!< SPI0 interrupt */
SPI1_IRQn = 36, /*!< SPI1 interrupt */
USART0_IRQn = 37, /*!< USART0 interrupt */
USART1_IRQn = 38, /*!< USART1 interrupt */
USART2_IRQn = 39, /*!< USART2 interrupt */
EXTI10_15_IRQn = 40, /*!< EXTI[15:10] interrupts */
RTC_Alarm_IRQn = 41, /*!< RTC Alarm interrupt */
USBFS_WKUP_IRQn = 42, /*!< USBFS Wakeup interrupt */
TIMER7_BRK_TIMER11_IRQn = 43, /*!< TIMER7 Break and TIMER11 interrupts */
TIMER7_UP_TIMER12_IRQn = 44, /*!< TIMER7 Update and TIMER12 interrupts */
TIMER7_TRG_CMT_TIMER13_IRQn = 45, /*!< TIMER7 Trigger and Commutation and TIMER13 interrupts */
TIMER7_CC_IRQn = 46, /*!< TIMER7 Capture Compare interrupts */
DMA0_Channel7_IRQn = 47, /*!< DMA0 Channel7 Interrupt */
#if defined (GD32F450)
EXMC_IRQn = 48, /*!< EXMC Interrupt */
SDIO_IRQn = 49, /*!< SDIO Interrupt */
TIMER4_IRQn = 50, /*!< TIMER4 Interrupt */
SPI2_IRQn = 51, /*!< SPI2 Interrupt */
UART3_IRQn = 52, /*!< UART3 Interrupt */
UART4_IRQn = 53, /*!< UART4 Interrupt */
TIMER5_DAC_IRQn = 54, /*!< TIMER5 and DAC0 DAC1 Underrun error Interrupt */
TIMER6_IRQn = 55, /*!< TIMER6 Interrupt */
DMA1_Channel0_IRQn = 56, /*!< DMA1 Channel0 Interrupt */
DMA1_Channel1_IRQn = 57, /*!< DMA1 Channel1 Interrupt */
DMA1_Channel2_IRQn = 58, /*!< DMA1 Channel2 Interrupt */
DMA1_Channel3_IRQn = 59, /*!< DMA1 Channel3 Interrupt */
DMA1_Channel4_IRQn = 60, /*!< DMA1 Channel4 Interrupt */
ENET_IRQn = 61, /*!< Ethernet Interrupt */
ENET_WKUP_IRQn = 62, /*!< Ethernet Wakeup through EXTI Line Interrupt */
CAN1_TX_IRQn = 63, /*!< CAN1 TX Interrupt */
CAN1_RX0_IRQn = 64, /*!< CAN1 RX0 Interrupt */
CAN1_RX1_IRQn = 65, /*!< CAN1 RX1 Interrupt */
CAN1_EWMC_IRQn = 66, /*!< CAN1 EWMC Interrupt */
USBFS_IRQn = 67, /*!< USBFS Interrupt */
DMA1_Channel5_IRQn = 68, /*!< DMA1 Channel5 Interrupt */
DMA1_Channel6_IRQn = 69, /*!< DMA1 Channel6 Interrupt */
DMA1_Channel7_IRQn = 70, /*!< DMA1 Channel7 Interrupt */
USART5_IRQn = 71, /*!< USART5 Interrupt */
I2C2_EV_IRQn = 72, /*!< I2C2 Event Interrupt */
I2C2_ER_IRQn = 73, /*!< I2C2 Error Interrupt */
USBHS_EP1_Out_IRQn = 74, /*!< USBHS Endpoint 1 Out Interrupt */
USBHS_EP1_In_IRQn = 75, /*!< USBHS Endpoint 1 in Interrupt */
USBHS_WKUP_IRQn = 76, /*!< USBHS Wakeup through EXTI Line Interrupt */
USBHS_IRQn = 77, /*!< USBHS Interrupt */
DCI_IRQn = 78, /*!< DCI Interrupt */
TRNG_IRQn = 80, /*!< TRNG Interrupt */
FPU_IRQn = 81, /*!< FPU Interrupt */
UART6_IRQn = 82, /*!< UART6 Interrupt */
UART7_IRQn = 83, /*!< UART7 Interrupt */
SPI3_IRQn = 84, /*!< SPI3 Interrupt */
SPI4_IRQn = 85, /*!< SPI4 Interrupt */
SPI5_IRQn = 86, /*!< SPI5 Interrupt */
TLI_IRQn = 88, /*!< TLI Interrupt */
TLI_ER_IRQn = 89, /*!< TLI Error Interrupt */
IPA_IRQn = 90, /*!< IPA Interrupt */
#endif /* GD32F450 */
#if defined (GD32F405)
SDIO_IRQn = 49, /*!< SDIO Interrupt */
TIMER4_IRQn = 50, /*!< TIMER4 Interrupt */
SPI2_IRQn = 51, /*!< SPI2 Interrupt */
UART3_IRQn = 52, /*!< UART3 Interrupt */
UART4_IRQn = 53, /*!< UART4 Interrupt */
TIMER5_DAC_IRQn = 54, /*!< TIMER5 and DAC0 DAC1 Underrun error Interrupt */
TIMER6_IRQn = 55, /*!< TIMER6 Interrupt */
DMA1_Channel0_IRQn = 56, /*!< DMA1 Channel0 Interrupt */
DMA1_Channel1_IRQn = 57, /*!< DMA1 Channel1 Interrupt */
DMA1_Channel2_IRQn = 58, /*!< DMA1 Channel2 Interrupt */
DMA1_Channel3_IRQn = 59, /*!< DMA1 Channel3 Interrupt */
DMA1_Channel4_IRQn = 60, /*!< DMA1 Channel4 Interrupt */
CAN1_TX_IRQn = 63, /*!< CAN1 TX Interrupt */
CAN1_RX0_IRQn = 64, /*!< CAN1 RX0 Interrupt */
CAN1_RX1_IRQn = 65, /*!< CAN1 RX1 Interrupt */
CAN1_EWMC_IRQn = 66, /*!< CAN1 EWMC Interrupt */
USBFS_IRQn = 67, /*!< USBFS Interrupt */
DMA1_Channel5_IRQn = 68, /*!< DMA1 Channel5 Interrupt */
DMA1_Channel6_IRQn = 69, /*!< DMA1 Channel6 Interrupt */
DMA1_Channel7_IRQn = 70, /*!< DMA1 Channel7 Interrupt */
USART5_IRQn = 71, /*!< USART5 Interrupt */
I2C2_EV_IRQn = 72, /*!< I2C2 Event Interrupt */
I2C2_ER_IRQn = 73, /*!< I2C2 Error Interrupt */
USBHS_EP1_Out_IRQn = 74, /*!< USBHS Endpoint 1 Out Interrupt */
USBHS_EP1_In_IRQn = 75, /*!< USBHS Endpoint 1 in Interrupt */
USBHS_WKUP_IRQn = 76, /*!< USBHS Wakeup through EXTI Line Interrupt */
USBHS_IRQn = 77, /*!< USBHS Interrupt */
DCI_IRQn = 78, /*!< DCI Interrupt */
TRNG_IRQn = 80, /*!< TRNG Interrupt */
FPU_IRQn = 81, /*!< FPU Interrupt */
#endif /* GD32F405 */
#if defined (GD32F407)
EXMC_IRQn = 48, /*!< EXMC Interrupt */
SDIO_IRQn = 49, /*!< SDIO Interrupt */
TIMER4_IRQn = 50, /*!< TIMER4 Interrupt */
SPI2_IRQn = 51, /*!< SPI2 Interrupt */
UART3_IRQn = 52, /*!< UART3 Interrupt */
UART4_IRQn = 53, /*!< UART4 Interrupt */
TIMER5_DAC_IRQn = 54, /*!< TIMER5 and DAC0 DAC1 Underrun error Interrupt */
TIMER6_IRQn = 55, /*!< TIMER6 Interrupt */
DMA1_Channel0_IRQn = 56, /*!< DMA1 Channel0 Interrupt */
DMA1_Channel1_IRQn = 57, /*!< DMA1 Channel1 Interrupt */
DMA1_Channel2_IRQn = 58, /*!< DMA1 Channel2 Interrupt */
DMA1_Channel3_IRQn = 59, /*!< DMA1 Channel3 Interrupt */
DMA1_Channel4_IRQn = 60, /*!< DMA1 Channel4 Interrupt */
ENET_IRQn = 61, /*!< Ethernet Interrupt */
ENET_WKUP_IRQn = 62, /*!< Ethernet Wakeup through EXTI Line Interrupt */
CAN1_TX_IRQn = 63, /*!< CAN1 TX Interrupt */
CAN1_RX0_IRQn = 64, /*!< CAN1 RX0 Interrupt */
CAN1_RX1_IRQn = 65, /*!< CAN1 RX1 Interrupt */
CAN1_EWMC_IRQn = 66, /*!< CAN1 EWMC Interrupt */
USBFS_IRQn = 67, /*!< USBFS Interrupt */
DMA1_Channel5_IRQn = 68, /*!< DMA1 Channel5 Interrupt */
DMA1_Channel6_IRQn = 69, /*!< DMA1 Channel6 Interrupt */
DMA1_Channel7_IRQn = 70, /*!< DMA1 Channel7 Interrupt */
USART5_IRQn = 71, /*!< USART5 Interrupt */
I2C2_EV_IRQn = 72, /*!< I2C2 Event Interrupt */
I2C2_ER_IRQn = 73, /*!< I2C2 Error Interrupt */
USBHS_EP1_Out_IRQn = 74, /*!< USBHS Endpoint 1 Out Interrupt */
USBHS_EP1_In_IRQn = 75, /*!< USBHS Endpoint 1 in Interrupt */
USBHS_WKUP_IRQn = 76, /*!< USBHS Wakeup through EXTI Line Interrupt */
USBHS_IRQn = 77, /*!< USBHS Interrupt */
DCI_IRQn = 78, /*!< DCI Interrupt */
TRNG_IRQn = 80, /*!< TRNG Interrupt */
FPU_IRQn = 81, /*!< FPU Interrupt */
#endif /* GD32F407 */
} IRQn_Type;
/* includes */
#include "core_cm4.h"
#include "system_gd32f4xx.h"
#include <stdint.h>
/* enum definitions */
typedef enum {DISABLE = 0, ENABLE = !DISABLE} EventStatus, ControlStatus;
typedef enum {FALSE = 0, TRUE = !FALSE} bool;
typedef enum {RESET = 0, SET = !RESET} FlagStatus;
typedef enum {ERROR = 0, SUCCESS = !ERROR} ErrStatus;
/* bit operations */
#define REG32(addr) (*(volatile uint32_t *)(uint32_t)(addr))
#define REG16(addr) (*(volatile uint16_t *)(uint32_t)(addr))
#define REG8(addr) (*(volatile uint8_t *)(uint32_t)(addr))
#define BIT(x) ((uint32_t)((uint32_t)0x01U<<(x)))
#define BITS(start, end) ((0xFFFFFFFFUL << (start)) & (0xFFFFFFFFUL >> (31U - (uint32_t)(end))))
#define GET_BITS(regval, start, end) (((regval) & BITS((start),(end))) >> (start))
/* main flash and SRAM memory map */
#define FLASH_BASE ((uint32_t)0x08000000U) /*!< main FLASH base address */
#define TCMSRAM_BASE ((uint32_t)0x10000000U) /*!< TCMSRAM(64KB) base address */
#define OPTION_BASE ((uint32_t)0x1FFEC000U) /*!< Option bytes base address */
#define SRAM_BASE ((uint32_t)0x20000000U) /*!< SRAM0 base address */
/* peripheral memory map */
#define APB1_BUS_BASE ((uint32_t)0x40000000U) /*!< apb1 base address */
#define APB2_BUS_BASE ((uint32_t)0x40010000U) /*!< apb2 base address */
#define AHB1_BUS_BASE ((uint32_t)0x40020000U) /*!< ahb1 base address */
#define AHB2_BUS_BASE ((uint32_t)0x50000000U) /*!< ahb2 base address */
/* EXMC memory map */
#define EXMC_BASE ((uint32_t)0xA0000000U) /*!< EXMC register base address */
/* advanced peripheral bus 1 memory map */
#define TIMER_BASE (APB1_BUS_BASE + 0x00000000U) /*!< TIMER base address */
#define RTC_BASE (APB1_BUS_BASE + 0x00002800U) /*!< RTC base address */
#define WWDGT_BASE (APB1_BUS_BASE + 0x00002C00U) /*!< WWDGT base address */
#define FWDGT_BASE (APB1_BUS_BASE + 0x00003000U) /*!< FWDGT base address */
#define I2S_ADD_BASE (APB1_BUS_BASE + 0x00003400U) /*!< I2S1_add base address */
#define SPI_BASE (APB1_BUS_BASE + 0x00003800U) /*!< SPI base address */
#define USART_BASE (APB1_BUS_BASE + 0x00004400U) /*!< USART base address */
#define I2C_BASE (APB1_BUS_BASE + 0x00005400U) /*!< I2C base address */
#define CAN_BASE (APB1_BUS_BASE + 0x00006400U) /*!< CAN base address */
#define CTC_BASE (APB1_BUS_BASE + 0x00006C00U) /*!< CTC base address */
#define PMU_BASE (APB1_BUS_BASE + 0x00007000U) /*!< PMU base address */
#define DAC_BASE (APB1_BUS_BASE + 0x00007400U) /*!< DAC base address */
#define IREF_BASE (APB1_BUS_BASE + 0x0000C400U) /*!< IREF base address */
/* advanced peripheral bus 2 memory map */
#define TLI_BASE (APB2_BUS_BASE + 0x00006800U) /*!< TLI base address */
#define SYSCFG_BASE (APB2_BUS_BASE + 0x00003800U) /*!< SYSCFG base address */
#define EXTI_BASE (APB2_BUS_BASE + 0x00003C00U) /*!< EXTI base address */
#define SDIO_BASE (APB2_BUS_BASE + 0x00002C00U) /*!< SDIO base address */
#define ADC_BASE (APB2_BUS_BASE + 0x00002000U) /*!< ADC base address */
/* advanced high performance bus 1 memory map */
#define GPIO_BASE (AHB1_BUS_BASE + 0x00000000U) /*!< GPIO base address */
#define CRC_BASE (AHB1_BUS_BASE + 0x00003000U) /*!< CRC base address */
#define RCU_BASE (AHB1_BUS_BASE + 0x00003800U) /*!< RCU base address */
#define FMC_BASE (AHB1_BUS_BASE + 0x00003C00U) /*!< FMC base address */
#define BKPSRAM_BASE (AHB1_BUS_BASE + 0x00004000U) /*!< BKPSRAM base address */
#define DMA_BASE (AHB1_BUS_BASE + 0x00006000U) /*!< DMA base address */
#define ENET_BASE (AHB1_BUS_BASE + 0x00008000U) /*!< ENET base address */
#define IPA_BASE (AHB1_BUS_BASE + 0x0000B000U) /*!< IPA base address */
#define USBHS_BASE (AHB1_BUS_BASE + 0x00020000U) /*!< USBHS base address */
/* advanced high performance bus 2 memory map */
#define USBFS_BASE (AHB2_BUS_BASE + 0x00000000U) /*!< USBFS base address */
#define DCI_BASE (AHB2_BUS_BASE + 0x00050000U) /*!< DCI base address */
#define TRNG_BASE (AHB2_BUS_BASE + 0x00060800U) /*!< TRNG base address */
/* option byte and debug memory map */
#define OB_BASE ((uint32_t)0x1FFEC000U) /*!< OB base address */
#define DBG_BASE ((uint32_t)0xE0042000U) /*!< DBG base address */
/* define marco USE_STDPERIPH_DRIVER */
#if !defined USE_STDPERIPH_DRIVER
#define USE_STDPERIPH_DRIVER
#endif
#ifdef USE_STDPERIPH_DRIVER
#include "gd32f4xx_libopt.h"
#endif /* USE_STDPERIPH_DRIVER */
#ifdef cplusplus
}
#endif
#endif

View File

@@ -0,0 +1,58 @@
/*!
\file system_gd32f4xx.h
\brief CMSIS Cortex-M4 Device Peripheral Access Layer Header File for
GD32F4xx Device Series
*/
/* Copyright (c) 2012 ARM LIMITED
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of ARM nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.
*
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
/* This file refers the CMSIS standard, some adjustments are made according to GigaDevice chips */
#ifndef SYSTEM_GD32F4XX_H
#define SYSTEM_GD32F4XX_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
/* system clock frequency (core clock) */
extern uint32_t SystemCoreClock;
/* function declarations */
/* initialize the system and update the SystemCoreClock variable */
extern void SystemInit (void);
/* update the SystemCoreClock with current core clock retrieved from cpu registers */
extern void SystemCoreClockUpdate (void);
#ifdef __cplusplus
}
#endif
#endif /* SYSTEM_GD32F4XX_H */

View File

@@ -0,0 +1,397 @@
;/*!
; \file startup_gd32f405.s
; \brief start up file
;*/
;/*
; Copyright (C) 2016 GigaDevice
; 2016-08-15, V1.0.1, firmware for GD32F4xx
;*/
; <h> Stack Configuration
; <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Stack_Size EQU 0x00000400
AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE Stack_Size
__initial_sp
; <h> Heap Configuration
; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Heap_Size EQU 0x00000400
AREA HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
Heap_Mem SPACE Heap_Size
__heap_limit
PRESERVE8
THUMB
; /* reset Vector Mapped to at Address 0 */
AREA RESET, DATA, READONLY
EXPORT __Vectors
EXPORT __Vectors_End
EXPORT __Vectors_Size
__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler
DCD HardFault_Handler ; Hard Fault Handler
DCD MemManage_Handler ; MPU Fault Handler
DCD BusFault_Handler ; Bus Fault Handler
DCD UsageFault_Handler ; Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; SVCall Handler
DCD DebugMon_Handler ; Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler
; /* external interrupts handler */
DCD WWDGT_IRQHandler ; 16:Window Watchdog Timer
DCD LVD_IRQHandler ; 17:LVD through EXTI Line detect
DCD TAMPER_STAMP_IRQHandler ; 18:Tamper and TimeStamp through EXTI Line detect
DCD RTC_WKUP_IRQHandler ; 19:RTC Wakeup through EXTI Line
DCD FMC_IRQHandler ; 20:FMC
DCD RCU_CTC_IRQHandler ; 21:RCU and CTC
DCD EXTI0_IRQHandler ; 22:EXTI Line 0
DCD EXTI1_IRQHandler ; 23:EXTI Line 1
DCD EXTI2_IRQHandler ; 24:EXTI Line 2
DCD EXTI3_IRQHandler ; 25:EXTI Line 3
DCD EXTI4_IRQHandler ; 26:EXTI Line 4
DCD DMA0_Channel0_IRQHandler ; 27:DMA0 Channel0
DCD DMA0_Channel1_IRQHandler ; 28:DMA0 Channel1
DCD DMA0_Channel2_IRQHandler ; 29:DMA0 Channel2
DCD DMA0_Channel3_IRQHandler ; 30:DMA0 Channel3
DCD DMA0_Channel4_IRQHandler ; 31:DMA0 Channel4
DCD DMA0_Channel5_IRQHandler ; 32:DMA0 Channel5
DCD DMA0_Channel6_IRQHandler ; 33:DMA0 Channel6
DCD ADC_IRQHandler ; 34:ADC
DCD CAN0_TX_IRQHandler ; 35:CAN0 TX
DCD CAN0_RX0_IRQHandler ; 36:CAN0 RX0
DCD CAN0_RX1_IRQHandler ; 37:CAN0 RX1
DCD CAN0_EWMC_IRQHandler ; 38:CAN0 EWMC
DCD EXTI5_9_IRQHandler ; 39:EXTI5 to EXTI9
DCD TIMER0_BRK_TIMER8_IRQHandler ; 40:TIMER0 Break and TIMER8
DCD TIMER0_UP_TIMER9_IRQHandler ; 41:TIMER0 Update and TIMER9
DCD TIMER0_TRG_CMT_TIMER10_IRQHandler ; 42:TIMER0 Trigger and Commutation and TIMER10
DCD TIMER0_CC_IRQHandler ; 43:TIMER0 Capture Compare
DCD TIMER1_IRQHandler ; 44:TIMER1
DCD TIMER2_IRQHandler ; 45:TIMER2
DCD TIMER3_IRQHandler ; 46:TIMER3
DCD I2C0_EV_IRQHandler ; 47:I2C0 Event
DCD I2C0_ER_IRQHandler ; 48:I2C0 Error
DCD I2C1_EV_IRQHandler ; 49:I2C1 Event
DCD I2C1_ER_IRQHandler ; 50:I2C1 Error
DCD SPI0_IRQHandler ; 51:SPI0
DCD SPI1_IRQHandler ; 52:SPI1
DCD USART0_IRQHandler ; 53:USART0
DCD USART1_IRQHandler ; 54:USART1
DCD USART2_IRQHandler ; 55:USART2
DCD EXTI10_15_IRQHandler ; 56:EXTI10 to EXTI15
DCD RTC_Alarm_IRQHandler ; 57:RTC Alarm
DCD USBFS_WKUP_IRQHandler ; 58:USBFS Wakeup
DCD TIMER7_BRK_TIMER11_IRQHandler ; 59:TIMER7 Break and TIMER11
DCD TIMER7_UP_TIMER12_IRQHandler ; 60:TIMER7 Update and TIMER12
DCD TIMER7_TRG_CMT_TIMER13_IRQHandler ; 61:TIMER7 Trigger and Commutation and TIMER13
DCD TIMER7_CC_IRQHandler ; 62:TIMER7 Capture Compare
DCD DMA0_Channel7_IRQHandler ; 63:DMA0 Channel7
DCD 0 ; 64:Reserved
DCD SDIO_IRQHandler ; 65:SDIO
DCD TIMER4_IRQHandler ; 66:TIMER4
DCD SPI2_IRQHandler ; 67:SPI2
DCD UART3_IRQHandler ; 68:UART3
DCD UART4_IRQHandler ; 69:UART4
DCD TIMER5_DAC_IRQHandler ; 70:TIMER5 and DAC0 DAC1 Underrun error
DCD TIMER6_IRQHandler ; 71:TIMER6
DCD DMA1_Channel0_IRQHandler ; 72:DMA1 Channel0
DCD DMA1_Channel1_IRQHandler ; 73:DMA1 Channel1
DCD DMA1_Channel2_IRQHandler ; 74:DMA1 Channel2
DCD DMA1_Channel3_IRQHandler ; 75:DMA1 Channel3
DCD DMA1_Channel4_IRQHandler ; 76:DMA1 Channel4
DCD 0 ; 77:Reserved
DCD 0 ; 78:Reserved
DCD CAN1_TX_IRQHandler ; 79:CAN1 TX
DCD CAN1_RX0_IRQHandler ; 80:CAN1 RX0
DCD CAN1_RX1_IRQHandler ; 81:CAN1 RX1
DCD CAN1_EWMC_IRQHandler ; 82:CAN1 EWMC
DCD USBFS_IRQHandler ; 83:USBFS
DCD DMA1_Channel5_IRQHandler ; 84:DMA1 Channel5
DCD DMA1_Channel6_IRQHandler ; 85:DMA1 Channel6
DCD DMA1_Channel7_IRQHandler ; 86:DMA1 Channel7
DCD USART5_IRQHandler ; 87:USART5
DCD I2C2_EV_IRQHandler ; 88:I2C2 Event
DCD I2C2_ER_IRQHandler ; 89:I2C2 Error
DCD USBHS_EP1_Out_IRQHandler ; 90:USBHS Endpoint 1 Out
DCD USBHS_EP1_In_IRQHandler ; 91:USBHS Endpoint 1 in
DCD USBHS_WKUP_IRQHandler ; 92:USBHS Wakeup through EXTI Line
DCD USBHS_IRQHandler ; 93:USBHS
DCD DCI_IRQHandler ; 94:DCI
DCD 0 ; 95:Reserved
DCD TRNG_IRQHandler ; 96:TRNG
DCD FPU_IRQHandler ; 97:FPU
__Vectors_End
__Vectors_Size EQU __Vectors_End - __Vectors
AREA |.text|, CODE, READONLY
;/* reset Handler */
Reset_Handler PROC
EXPORT Reset_Handler [WEAK]
IMPORT SystemInit
IMPORT __main
LDR R0, =SystemInit
BLX R0
LDR R0, =__main
BX R0
ENDP
;/* dummy Exception Handlers */
NMI_Handler PROC
EXPORT NMI_Handler [WEAK]
B .
ENDP
HardFault_Handler\
PROC
EXPORT HardFault_Handler [WEAK]
B .
ENDP
MemManage_Handler\
PROC
EXPORT MemManage_Handler [WEAK]
B .
ENDP
BusFault_Handler\
PROC
EXPORT BusFault_Handler [WEAK]
B .
ENDP
UsageFault_Handler\
PROC
EXPORT UsageFault_Handler [WEAK]
B .
ENDP
SVC_Handler PROC
EXPORT SVC_Handler [WEAK]
B .
ENDP
DebugMon_Handler\
PROC
EXPORT DebugMon_Handler [WEAK]
B .
ENDP
PendSV_Handler\
PROC
EXPORT PendSV_Handler [WEAK]
B .
ENDP
SysTick_Handler\
PROC
EXPORT SysTick_Handler [WEAK]
B .
ENDP
Default_Handler PROC
; /* external interrupts handler */
EXPORT WWDGT_IRQHandler [WEAK]
EXPORT LVD_IRQHandler [WEAK]
EXPORT TAMPER_STAMP_IRQHandler [WEAK]
EXPORT RTC_WKUP_IRQHandler [WEAK]
EXPORT FMC_IRQHandler [WEAK]
EXPORT RCU_CTC_IRQHandler [WEAK]
EXPORT EXTI0_IRQHandler [WEAK]
EXPORT EXTI1_IRQHandler [WEAK]
EXPORT EXTI2_IRQHandler [WEAK]
EXPORT EXTI3_IRQHandler [WEAK]
EXPORT EXTI4_IRQHandler [WEAK]
EXPORT DMA0_Channel0_IRQHandler [WEAK]
EXPORT DMA0_Channel1_IRQHandler [WEAK]
EXPORT DMA0_Channel2_IRQHandler [WEAK]
EXPORT DMA0_Channel3_IRQHandler [WEAK]
EXPORT DMA0_Channel4_IRQHandler [WEAK]
EXPORT DMA0_Channel5_IRQHandler [WEAK]
EXPORT DMA0_Channel6_IRQHandler [WEAK]
EXPORT ADC_IRQHandler [WEAK]
EXPORT CAN0_TX_IRQHandler [WEAK]
EXPORT CAN0_RX0_IRQHandler [WEAK]
EXPORT CAN0_RX1_IRQHandler [WEAK]
EXPORT CAN0_EWMC_IRQHandler [WEAK]
EXPORT EXTI5_9_IRQHandler [WEAK]
EXPORT TIMER0_BRK_TIMER8_IRQHandler [WEAK]
EXPORT TIMER0_UP_TIMER9_IRQHandler [WEAK]
EXPORT TIMER0_TRG_CMT_TIMER10_IRQHandler [WEAK]
EXPORT TIMER0_CC_IRQHandler [WEAK]
EXPORT TIMER1_IRQHandler [WEAK]
EXPORT TIMER2_IRQHandler [WEAK]
EXPORT TIMER3_IRQHandler [WEAK]
EXPORT I2C0_EV_IRQHandler [WEAK]
EXPORT I2C0_ER_IRQHandler [WEAK]
EXPORT I2C1_EV_IRQHandler [WEAK]
EXPORT I2C1_ER_IRQHandler [WEAK]
EXPORT SPI0_IRQHandler [WEAK]
EXPORT SPI1_IRQHandler [WEAK]
EXPORT USART0_IRQHandler [WEAK]
EXPORT USART1_IRQHandler [WEAK]
EXPORT USART2_IRQHandler [WEAK]
EXPORT EXTI10_15_IRQHandler [WEAK]
EXPORT RTC_Alarm_IRQHandler [WEAK]
EXPORT USBFS_WKUP_IRQHandler [WEAK]
EXPORT TIMER7_BRK_TIMER11_IRQHandler [WEAK]
EXPORT TIMER7_UP_TIMER12_IRQHandler [WEAK]
EXPORT TIMER7_TRG_CMT_TIMER13_IRQHandler [WEAK]
EXPORT TIMER7_CC_IRQHandler [WEAK]
EXPORT DMA0_Channel7_IRQHandler [WEAK]
EXPORT SDIO_IRQHandler [WEAK]
EXPORT TIMER4_IRQHandler [WEAK]
EXPORT SPI2_IRQHandler [WEAK]
EXPORT UART3_IRQHandler [WEAK]
EXPORT UART4_IRQHandler [WEAK]
EXPORT TIMER5_DAC_IRQHandler [WEAK]
EXPORT TIMER6_IRQHandler [WEAK]
EXPORT DMA1_Channel0_IRQHandler [WEAK]
EXPORT DMA1_Channel1_IRQHandler [WEAK]
EXPORT DMA1_Channel2_IRQHandler [WEAK]
EXPORT DMA1_Channel3_IRQHandler [WEAK]
EXPORT DMA1_Channel4_IRQHandler [WEAK]
EXPORT CAN1_TX_IRQHandler [WEAK]
EXPORT CAN1_RX0_IRQHandler [WEAK]
EXPORT CAN1_RX1_IRQHandler [WEAK]
EXPORT CAN1_EWMC_IRQHandler [WEAK]
EXPORT USBFS_IRQHandler [WEAK]
EXPORT DMA1_Channel5_IRQHandler [WEAK]
EXPORT DMA1_Channel6_IRQHandler [WEAK]
EXPORT DMA1_Channel7_IRQHandler [WEAK]
EXPORT USART5_IRQHandler [WEAK]
EXPORT I2C2_EV_IRQHandler [WEAK]
EXPORT I2C2_ER_IRQHandler [WEAK]
EXPORT USBHS_EP1_Out_IRQHandler [WEAK]
EXPORT USBHS_EP1_In_IRQHandler [WEAK]
EXPORT USBHS_WKUP_IRQHandler [WEAK]
EXPORT USBHS_IRQHandler [WEAK]
EXPORT DCI_IRQHandler [WEAK]
EXPORT TRNG_IRQHandler [WEAK]
EXPORT FPU_IRQHandler [WEAK]
;/* external interrupts handler */
WWDGT_IRQHandler
LVD_IRQHandler
TAMPER_STAMP_IRQHandler
RTC_WKUP_IRQHandler
FMC_IRQHandler
RCU_CTC_IRQHandler
EXTI0_IRQHandler
EXTI1_IRQHandler
EXTI2_IRQHandler
EXTI3_IRQHandler
EXTI4_IRQHandler
DMA0_Channel0_IRQHandler
DMA0_Channel1_IRQHandler
DMA0_Channel2_IRQHandler
DMA0_Channel3_IRQHandler
DMA0_Channel4_IRQHandler
DMA0_Channel5_IRQHandler
DMA0_Channel6_IRQHandler
ADC_IRQHandler
CAN0_TX_IRQHandler
CAN0_RX0_IRQHandler
CAN0_RX1_IRQHandler
CAN0_EWMC_IRQHandler
EXTI5_9_IRQHandler
TIMER0_BRK_TIMER8_IRQHandler
TIMER0_UP_TIMER9_IRQHandler
TIMER0_TRG_CMT_TIMER10_IRQHandler
TIMER0_CC_IRQHandler
TIMER1_IRQHandler
TIMER2_IRQHandler
TIMER3_IRQHandler
I2C0_EV_IRQHandler
I2C0_ER_IRQHandler
I2C1_EV_IRQHandler
I2C1_ER_IRQHandler
SPI0_IRQHandler
SPI1_IRQHandler
USART0_IRQHandler
USART1_IRQHandler
USART2_IRQHandler
EXTI10_15_IRQHandler
RTC_Alarm_IRQHandler
USBFS_WKUP_IRQHandler
TIMER7_BRK_TIMER11_IRQHandler
TIMER7_UP_TIMER12_IRQHandler
TIMER7_TRG_CMT_TIMER13_IRQHandler
TIMER7_CC_IRQHandler
DMA0_Channel7_IRQHandler
SDIO_IRQHandler
TIMER4_IRQHandler
SPI2_IRQHandler
UART3_IRQHandler
UART4_IRQHandler
TIMER5_DAC_IRQHandler
TIMER6_IRQHandler
DMA1_Channel0_IRQHandler
DMA1_Channel1_IRQHandler
DMA1_Channel2_IRQHandler
DMA1_Channel3_IRQHandler
DMA1_Channel4_IRQHandler
CAN1_TX_IRQHandler
CAN1_RX0_IRQHandler
CAN1_RX1_IRQHandler
CAN1_EWMC_IRQHandler
USBFS_IRQHandler
DMA1_Channel5_IRQHandler
DMA1_Channel6_IRQHandler
DMA1_Channel7_IRQHandler
USART5_IRQHandler
I2C2_EV_IRQHandler
I2C2_ER_IRQHandler
USBHS_EP1_Out_IRQHandler
USBHS_EP1_In_IRQHandler
USBHS_WKUP_IRQHandler
USBHS_IRQHandler
DCI_IRQHandler
TRNG_IRQHandler
FPU_IRQHandler
B .
ENDP
ALIGN
; user Initial Stack & Heap
IF :DEF:__MICROLIB
EXPORT __initial_sp
EXPORT __heap_base
EXPORT __heap_limit
ELSE
IMPORT __use_two_region_memory
EXPORT __user_initial_stackheap
__user_initial_stackheap PROC
LDR R0, = Heap_Mem
LDR R1, =(Stack_Mem + Stack_Size)
LDR R2, = (Heap_Mem + Heap_Size)
LDR R3, = Stack_Mem
BX LR
ENDP
ALIGN
ENDIF
END

View File

@@ -0,0 +1,403 @@
;/*!
; \file startup_gd32f407.s
; \brief start up file
;*/
;/*
; Copyright (C) 2016 GigaDevice
; 2016-08-15, V1.0.1, firmware for GD32F4xx
;*/
; <h> Stack Configuration
; <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Stack_Size EQU 0x00000400
AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE Stack_Size
__initial_sp
; <h> Heap Configuration
; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Heap_Size EQU 0x00000400
AREA HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
Heap_Mem SPACE Heap_Size
__heap_limit
PRESERVE8
THUMB
; /* reset Vector Mapped to at Address 0 */
AREA RESET, DATA, READONLY
EXPORT __Vectors
EXPORT __Vectors_End
EXPORT __Vectors_Size
__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler
DCD HardFault_Handler ; Hard Fault Handler
DCD MemManage_Handler ; MPU Fault Handler
DCD BusFault_Handler ; Bus Fault Handler
DCD UsageFault_Handler ; Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; SVCall Handler
DCD DebugMon_Handler ; Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler
; /* external interrupts handler */
DCD WWDGT_IRQHandler ; 16:Window Watchdog Timer
DCD LVD_IRQHandler ; 17:LVD through EXTI Line detect
DCD TAMPER_STAMP_IRQHandler ; 18:Tamper and TimeStamp through EXTI Line detect
DCD RTC_WKUP_IRQHandler ; 19:RTC Wakeup through EXTI Line
DCD FMC_IRQHandler ; 20:FMC
DCD RCU_CTC_IRQHandler ; 21:RCU and CTC
DCD EXTI0_IRQHandler ; 22:EXTI Line 0
DCD EXTI1_IRQHandler ; 23:EXTI Line 1
DCD EXTI2_IRQHandler ; 24:EXTI Line 2
DCD EXTI3_IRQHandler ; 25:EXTI Line 3
DCD EXTI4_IRQHandler ; 26:EXTI Line 4
DCD DMA0_Channel0_IRQHandler ; 27:DMA0 Channel0
DCD DMA0_Channel1_IRQHandler ; 28:DMA0 Channel1
DCD DMA0_Channel2_IRQHandler ; 29:DMA0 Channel2
DCD DMA0_Channel3_IRQHandler ; 30:DMA0 Channel3
DCD DMA0_Channel4_IRQHandler ; 31:DMA0 Channel4
DCD DMA0_Channel5_IRQHandler ; 32:DMA0 Channel5
DCD DMA0_Channel6_IRQHandler ; 33:DMA0 Channel6
DCD ADC_IRQHandler ; 34:ADC
DCD CAN0_TX_IRQHandler ; 35:CAN0 TX
DCD CAN0_RX0_IRQHandler ; 36:CAN0 RX0
DCD CAN0_RX1_IRQHandler ; 37:CAN0 RX1
DCD CAN0_EWMC_IRQHandler ; 38:CAN0 EWMC
DCD EXTI5_9_IRQHandler ; 39:EXTI5 to EXTI9
DCD TIMER0_BRK_TIMER8_IRQHandler ; 40:TIMER0 Break and TIMER8
DCD TIMER0_UP_TIMER9_IRQHandler ; 41:TIMER0 Update and TIMER9
DCD TIMER0_TRG_CMT_TIMER10_IRQHandler ; 42:TIMER0 Trigger and Commutation and TIMER10
DCD TIMER0_CC_IRQHandler ; 43:TIMER0 Capture Compare
DCD TIMER1_IRQHandler ; 44:TIMER1
DCD TIMER2_IRQHandler ; 45:TIMER2
DCD TIMER3_IRQHandler ; 46:TIMER3
DCD I2C0_EV_IRQHandler ; 47:I2C0 Event
DCD I2C0_ER_IRQHandler ; 48:I2C0 Error
DCD I2C1_EV_IRQHandler ; 49:I2C1 Event
DCD I2C1_ER_IRQHandler ; 50:I2C1 Error
DCD SPI0_IRQHandler ; 51:SPI0
DCD SPI1_IRQHandler ; 52:SPI1
DCD USART0_IRQHandler ; 53:USART0
DCD USART1_IRQHandler ; 54:USART1
DCD USART2_IRQHandler ; 55:USART2
DCD EXTI10_15_IRQHandler ; 56:EXTI10 to EXTI15
DCD RTC_Alarm_IRQHandler ; 57:RTC Alarm
DCD USBFS_WKUP_IRQHandler ; 58:USBFS Wakeup
DCD TIMER7_BRK_TIMER11_IRQHandler ; 59:TIMER7 Break and TIMER11
DCD TIMER7_UP_TIMER12_IRQHandler ; 60:TIMER7 Update and TIMER12
DCD TIMER7_TRG_CMT_TIMER13_IRQHandler ; 61:TIMER7 Trigger and Commutation and TIMER13
DCD TIMER7_CC_IRQHandler ; 62:TIMER7 Capture Compare
DCD DMA0_Channel7_IRQHandler ; 63:DMA0 Channel7
DCD EXMC_IRQHandler ; 64:EXMC
DCD SDIO_IRQHandler ; 65:SDIO
DCD TIMER4_IRQHandler ; 66:TIMER4
DCD SPI2_IRQHandler ; 67:SPI2
DCD UART3_IRQHandler ; 68:UART3
DCD UART4_IRQHandler ; 69:UART4
DCD TIMER5_DAC_IRQHandler ; 70:TIMER5 and DAC0 DAC1 Underrun error
DCD TIMER6_IRQHandler ; 71:TIMER6
DCD DMA1_Channel0_IRQHandler ; 72:DMA1 Channel0
DCD DMA1_Channel1_IRQHandler ; 73:DMA1 Channel1
DCD DMA1_Channel2_IRQHandler ; 74:DMA1 Channel2
DCD DMA1_Channel3_IRQHandler ; 75:DMA1 Channel3
DCD DMA1_Channel4_IRQHandler ; 76:DMA1 Channel4
DCD ENET_IRQHandler ; 77:Ethernet
DCD ENET_WKUP_IRQHandler ; 78:Ethernet Wakeup through EXTI Line
DCD CAN1_TX_IRQHandler ; 79:CAN1 TX
DCD CAN1_RX0_IRQHandler ; 80:CAN1 RX0
DCD CAN1_RX1_IRQHandler ; 81:CAN1 RX1
DCD CAN1_EWMC_IRQHandler ; 82:CAN1 EWMC
DCD USBFS_IRQHandler ; 83:USBFS
DCD DMA1_Channel5_IRQHandler ; 84:DMA1 Channel5
DCD DMA1_Channel6_IRQHandler ; 85:DMA1 Channel6
DCD DMA1_Channel7_IRQHandler ; 86:DMA1 Channel7
DCD USART5_IRQHandler ; 87:USART5
DCD I2C2_EV_IRQHandler ; 88:I2C2 Event
DCD I2C2_ER_IRQHandler ; 89:I2C2 Error
DCD USBHS_EP1_Out_IRQHandler ; 90:USBHS Endpoint 1 Out
DCD USBHS_EP1_In_IRQHandler ; 91:USBHS Endpoint 1 in
DCD USBHS_WKUP_IRQHandler ; 92:USBHS Wakeup through EXTI Line
DCD USBHS_IRQHandler ; 93:USBHS
DCD DCI_IRQHandler ; 94:DCI
DCD 0 ; 95:Reserved
DCD TRNG_IRQHandler ; 96:TRNG
DCD FPU_IRQHandler ; 97:FPU
__Vectors_End
__Vectors_Size EQU __Vectors_End - __Vectors
AREA |.text|, CODE, READONLY
;/* reset Handler */
Reset_Handler PROC
EXPORT Reset_Handler [WEAK]
IMPORT SystemInit
IMPORT __main
LDR R0, =SystemInit
BLX R0
LDR R0, =__main
BX R0
ENDP
;/* dummy Exception Handlers */
NMI_Handler PROC
EXPORT NMI_Handler [WEAK]
B .
ENDP
HardFault_Handler\
PROC
EXPORT HardFault_Handler [WEAK]
B .
ENDP
MemManage_Handler\
PROC
EXPORT MemManage_Handler [WEAK]
B .
ENDP
BusFault_Handler\
PROC
EXPORT BusFault_Handler [WEAK]
B .
ENDP
UsageFault_Handler\
PROC
EXPORT UsageFault_Handler [WEAK]
B .
ENDP
SVC_Handler PROC
EXPORT SVC_Handler [WEAK]
B .
ENDP
DebugMon_Handler\
PROC
EXPORT DebugMon_Handler [WEAK]
B .
ENDP
PendSV_Handler\
PROC
EXPORT PendSV_Handler [WEAK]
B .
ENDP
SysTick_Handler\
PROC
EXPORT SysTick_Handler [WEAK]
B .
ENDP
Default_Handler PROC
; /* external interrupts handler */
EXPORT WWDGT_IRQHandler [WEAK]
EXPORT LVD_IRQHandler [WEAK]
EXPORT TAMPER_STAMP_IRQHandler [WEAK]
EXPORT RTC_WKUP_IRQHandler [WEAK]
EXPORT FMC_IRQHandler [WEAK]
EXPORT RCU_CTC_IRQHandler [WEAK]
EXPORT EXTI0_IRQHandler [WEAK]
EXPORT EXTI1_IRQHandler [WEAK]
EXPORT EXTI2_IRQHandler [WEAK]
EXPORT EXTI3_IRQHandler [WEAK]
EXPORT EXTI4_IRQHandler [WEAK]
EXPORT DMA0_Channel0_IRQHandler [WEAK]
EXPORT DMA0_Channel1_IRQHandler [WEAK]
EXPORT DMA0_Channel2_IRQHandler [WEAK]
EXPORT DMA0_Channel3_IRQHandler [WEAK]
EXPORT DMA0_Channel4_IRQHandler [WEAK]
EXPORT DMA0_Channel5_IRQHandler [WEAK]
EXPORT DMA0_Channel6_IRQHandler [WEAK]
EXPORT ADC_IRQHandler [WEAK]
EXPORT CAN0_TX_IRQHandler [WEAK]
EXPORT CAN0_RX0_IRQHandler [WEAK]
EXPORT CAN0_RX1_IRQHandler [WEAK]
EXPORT CAN0_EWMC_IRQHandler [WEAK]
EXPORT EXTI5_9_IRQHandler [WEAK]
EXPORT TIMER0_BRK_TIMER8_IRQHandler [WEAK]
EXPORT TIMER0_UP_TIMER9_IRQHandler [WEAK]
EXPORT TIMER0_TRG_CMT_TIMER10_IRQHandler [WEAK]
EXPORT TIMER0_CC_IRQHandler [WEAK]
EXPORT TIMER1_IRQHandler [WEAK]
EXPORT TIMER2_IRQHandler [WEAK]
EXPORT TIMER3_IRQHandler [WEAK]
EXPORT I2C0_EV_IRQHandler [WEAK]
EXPORT I2C0_ER_IRQHandler [WEAK]
EXPORT I2C1_EV_IRQHandler [WEAK]
EXPORT I2C1_ER_IRQHandler [WEAK]
EXPORT SPI0_IRQHandler [WEAK]
EXPORT SPI1_IRQHandler [WEAK]
EXPORT USART0_IRQHandler [WEAK]
EXPORT USART1_IRQHandler [WEAK]
EXPORT USART2_IRQHandler [WEAK]
EXPORT EXTI10_15_IRQHandler [WEAK]
EXPORT RTC_Alarm_IRQHandler [WEAK]
EXPORT USBFS_WKUP_IRQHandler [WEAK]
EXPORT TIMER7_BRK_TIMER11_IRQHandler [WEAK]
EXPORT TIMER7_UP_TIMER12_IRQHandler [WEAK]
EXPORT TIMER7_TRG_CMT_TIMER13_IRQHandler [WEAK]
EXPORT TIMER7_CC_IRQHandler [WEAK]
EXPORT DMA0_Channel7_IRQHandler [WEAK]
EXPORT EXMC_IRQHandler [WEAK]
EXPORT SDIO_IRQHandler [WEAK]
EXPORT TIMER4_IRQHandler [WEAK]
EXPORT SPI2_IRQHandler [WEAK]
EXPORT UART3_IRQHandler [WEAK]
EXPORT UART4_IRQHandler [WEAK]
EXPORT TIMER5_DAC_IRQHandler [WEAK]
EXPORT TIMER6_IRQHandler [WEAK]
EXPORT DMA1_Channel0_IRQHandler [WEAK]
EXPORT DMA1_Channel1_IRQHandler [WEAK]
EXPORT DMA1_Channel2_IRQHandler [WEAK]
EXPORT DMA1_Channel3_IRQHandler [WEAK]
EXPORT DMA1_Channel4_IRQHandler [WEAK]
EXPORT ENET_IRQHandler [WEAK]
EXPORT ENET_WKUP_IRQHandler [WEAK]
EXPORT CAN1_TX_IRQHandler [WEAK]
EXPORT CAN1_RX0_IRQHandler [WEAK]
EXPORT CAN1_RX1_IRQHandler [WEAK]
EXPORT CAN1_EWMC_IRQHandler [WEAK]
EXPORT USBFS_IRQHandler [WEAK]
EXPORT DMA1_Channel5_IRQHandler [WEAK]
EXPORT DMA1_Channel6_IRQHandler [WEAK]
EXPORT DMA1_Channel7_IRQHandler [WEAK]
EXPORT USART5_IRQHandler [WEAK]
EXPORT I2C2_EV_IRQHandler [WEAK]
EXPORT I2C2_ER_IRQHandler [WEAK]
EXPORT USBHS_EP1_Out_IRQHandler [WEAK]
EXPORT USBHS_EP1_In_IRQHandler [WEAK]
EXPORT USBHS_WKUP_IRQHandler [WEAK]
EXPORT USBHS_IRQHandler [WEAK]
EXPORT DCI_IRQHandler [WEAK]
EXPORT TRNG_IRQHandler [WEAK]
EXPORT FPU_IRQHandler [WEAK]
;/* external interrupts handler */
WWDGT_IRQHandler
LVD_IRQHandler
TAMPER_STAMP_IRQHandler
RTC_WKUP_IRQHandler
FMC_IRQHandler
RCU_CTC_IRQHandler
EXTI0_IRQHandler
EXTI1_IRQHandler
EXTI2_IRQHandler
EXTI3_IRQHandler
EXTI4_IRQHandler
DMA0_Channel0_IRQHandler
DMA0_Channel1_IRQHandler
DMA0_Channel2_IRQHandler
DMA0_Channel3_IRQHandler
DMA0_Channel4_IRQHandler
DMA0_Channel5_IRQHandler
DMA0_Channel6_IRQHandler
ADC_IRQHandler
CAN0_TX_IRQHandler
CAN0_RX0_IRQHandler
CAN0_RX1_IRQHandler
CAN0_EWMC_IRQHandler
EXTI5_9_IRQHandler
TIMER0_BRK_TIMER8_IRQHandler
TIMER0_UP_TIMER9_IRQHandler
TIMER0_TRG_CMT_TIMER10_IRQHandler
TIMER0_CC_IRQHandler
TIMER1_IRQHandler
TIMER2_IRQHandler
TIMER3_IRQHandler
I2C0_EV_IRQHandler
I2C0_ER_IRQHandler
I2C1_EV_IRQHandler
I2C1_ER_IRQHandler
SPI0_IRQHandler
SPI1_IRQHandler
USART0_IRQHandler
USART1_IRQHandler
USART2_IRQHandler
EXTI10_15_IRQHandler
RTC_Alarm_IRQHandler
USBFS_WKUP_IRQHandler
TIMER7_BRK_TIMER11_IRQHandler
TIMER7_UP_TIMER12_IRQHandler
TIMER7_TRG_CMT_TIMER13_IRQHandler
TIMER7_CC_IRQHandler
DMA0_Channel7_IRQHandler
EXMC_IRQHandler
SDIO_IRQHandler
TIMER4_IRQHandler
SPI2_IRQHandler
UART3_IRQHandler
UART4_IRQHandler
TIMER5_DAC_IRQHandler
TIMER6_IRQHandler
DMA1_Channel0_IRQHandler
DMA1_Channel1_IRQHandler
DMA1_Channel2_IRQHandler
DMA1_Channel3_IRQHandler
DMA1_Channel4_IRQHandler
ENET_IRQHandler
ENET_WKUP_IRQHandler
CAN1_TX_IRQHandler
CAN1_RX0_IRQHandler
CAN1_RX1_IRQHandler
CAN1_EWMC_IRQHandler
USBFS_IRQHandler
DMA1_Channel5_IRQHandler
DMA1_Channel6_IRQHandler
DMA1_Channel7_IRQHandler
USART5_IRQHandler
I2C2_EV_IRQHandler
I2C2_ER_IRQHandler
USBHS_EP1_Out_IRQHandler
USBHS_EP1_In_IRQHandler
USBHS_WKUP_IRQHandler
USBHS_IRQHandler
DCI_IRQHandler
TRNG_IRQHandler
FPU_IRQHandler
B .
ENDP
ALIGN
; user Initial Stack & Heap
IF :DEF:__MICROLIB
EXPORT __initial_sp
EXPORT __heap_base
EXPORT __heap_limit
ELSE
IMPORT __use_two_region_memory
EXPORT __user_initial_stackheap
__user_initial_stackheap PROC
LDR R0, = Heap_Mem
LDR R1, =(Stack_Mem + Stack_Size)
LDR R2, = (Heap_Mem + Heap_Size)
LDR R3, = Stack_Mem
BX LR
ENDP
ALIGN
ENDIF
END

View File

@@ -0,0 +1,428 @@
;/*!
; \file startup_gd32f450.s
; \brief start up file
;*/
;/*
; Copyright (C) 2016 GigaDevice
; 2016-08-15, V1.0.1, firmware for GD32F4xx
;*/
; <h> Stack Configuration
; <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Stack_Size EQU 0x00000400
AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE Stack_Size
__initial_sp
; <h> Heap Configuration
; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Heap_Size EQU 0x00000400
AREA HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
Heap_Mem SPACE Heap_Size
__heap_limit
PRESERVE8
THUMB
; /* reset Vector Mapped to at Address 0 */
AREA RESET, DATA, READONLY
EXPORT __Vectors
EXPORT __Vectors_End
EXPORT __Vectors_Size
__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler
DCD HardFault_Handler ; Hard Fault Handler
DCD MemManage_Handler ; MPU Fault Handler
DCD BusFault_Handler ; Bus Fault Handler
DCD UsageFault_Handler ; Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; SVCall Handler
DCD DebugMon_Handler ; Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler
; /* external interrupts handler */
DCD WWDGT_IRQHandler ; 16:Window Watchdog Timer
DCD LVD_IRQHandler ; 17:LVD through EXTI Line detect
DCD TAMPER_STAMP_IRQHandler ; 18:Tamper and TimeStamp through EXTI Line detect
DCD RTC_WKUP_IRQHandler ; 19:RTC Wakeup through EXTI Line
DCD FMC_IRQHandler ; 20:FMC
DCD RCU_CTC_IRQHandler ; 21:RCU and CTC
DCD EXTI0_IRQHandler ; 22:EXTI Line 0
DCD EXTI1_IRQHandler ; 23:EXTI Line 1
DCD EXTI2_IRQHandler ; 24:EXTI Line 2
DCD EXTI3_IRQHandler ; 25:EXTI Line 3
DCD EXTI4_IRQHandler ; 26:EXTI Line 4
DCD DMA0_Channel0_IRQHandler ; 27:DMA0 Channel0
DCD DMA0_Channel1_IRQHandler ; 28:DMA0 Channel1
DCD DMA0_Channel2_IRQHandler ; 29:DMA0 Channel2
DCD DMA0_Channel3_IRQHandler ; 30:DMA0 Channel3
DCD DMA0_Channel4_IRQHandler ; 31:DMA0 Channel4
DCD DMA0_Channel5_IRQHandler ; 32:DMA0 Channel5
DCD DMA0_Channel6_IRQHandler ; 33:DMA0 Channel6
DCD ADC_IRQHandler ; 34:ADC
DCD CAN0_TX_IRQHandler ; 35:CAN0 TX
DCD CAN0_RX0_IRQHandler ; 36:CAN0 RX0
DCD CAN0_RX1_IRQHandler ; 37:CAN0 RX1
DCD CAN0_EWMC_IRQHandler ; 38:CAN0 EWMC
DCD EXTI5_9_IRQHandler ; 39:EXTI5 to EXTI9
DCD TIMER0_BRK_TIMER8_IRQHandler ; 40:TIMER0 Break and TIMER8
DCD TIMER0_UP_TIMER9_IRQHandler ; 41:TIMER0 Update and TIMER9
DCD TIMER0_TRG_CMT_TIMER10_IRQHandler ; 42:TIMER0 Trigger and Commutation and TIMER10
DCD TIMER0_CC_IRQHandler ; 43:TIMER0 Capture Compare
DCD TIMER1_IRQHandler ; 44:TIMER1
DCD TIMER2_IRQHandler ; 45:TIMER2
DCD TIMER3_IRQHandler ; 46:TIMER3
DCD I2C0_EV_IRQHandler ; 47:I2C0 Event
DCD I2C0_ER_IRQHandler ; 48:I2C0 Error
DCD I2C1_EV_IRQHandler ; 49:I2C1 Event
DCD I2C1_ER_IRQHandler ; 50:I2C1 Error
DCD SPI0_IRQHandler ; 51:SPI0
DCD SPI1_IRQHandler ; 52:SPI1
DCD USART0_IRQHandler ; 53:USART0
DCD USART1_IRQHandler ; 54:USART1
DCD USART2_IRQHandler ; 55:USART2
DCD EXTI10_15_IRQHandler ; 56:EXTI10 to EXTI15
DCD RTC_Alarm_IRQHandler ; 57:RTC Alarm
DCD USBFS_WKUP_IRQHandler ; 58:USBFS Wakeup
DCD TIMER7_BRK_TIMER11_IRQHandler ; 59:TIMER7 Break and TIMER11
DCD TIMER7_UP_TIMER12_IRQHandler ; 60:TIMER7 Update and TIMER12
DCD TIMER7_TRG_CMT_TIMER13_IRQHandler ; 61:TIMER7 Trigger and Commutation and TIMER13
DCD TIMER7_CC_IRQHandler ; 62:TIMER7 Capture Compare
DCD DMA0_Channel7_IRQHandler ; 63:DMA0 Channel7
DCD EXMC_IRQHandler ; 64:EXMC
DCD SDIO_IRQHandler ; 65:SDIO
DCD TIMER4_IRQHandler ; 66:TIMER4
DCD SPI2_IRQHandler ; 67:SPI2
DCD UART3_IRQHandler ; 68:UART3
DCD UART4_IRQHandler ; 69:UART4
DCD TIMER5_DAC_IRQHandler ; 70:TIMER5 and DAC0 DAC1 Underrun error
DCD TIMER6_IRQHandler ; 71:TIMER6
DCD DMA1_Channel0_IRQHandler ; 72:DMA1 Channel0
DCD DMA1_Channel1_IRQHandler ; 73:DMA1 Channel1
DCD DMA1_Channel2_IRQHandler ; 74:DMA1 Channel2
DCD DMA1_Channel3_IRQHandler ; 75:DMA1 Channel3
DCD DMA1_Channel4_IRQHandler ; 76:DMA1 Channel4
DCD ENET_IRQHandler ; 77:Ethernet
DCD ENET_WKUP_IRQHandler ; 78:Ethernet Wakeup through EXTI Line
DCD CAN1_TX_IRQHandler ; 79:CAN1 TX
DCD CAN1_RX0_IRQHandler ; 80:CAN1 RX0
DCD CAN1_RX1_IRQHandler ; 81:CAN1 RX1
DCD CAN1_EWMC_IRQHandler ; 82:CAN1 EWMC
DCD USBFS_IRQHandler ; 83:USBFS
DCD DMA1_Channel5_IRQHandler ; 84:DMA1 Channel5
DCD DMA1_Channel6_IRQHandler ; 85:DMA1 Channel6
DCD DMA1_Channel7_IRQHandler ; 86:DMA1 Channel7
DCD USART5_IRQHandler ; 87:USART5
DCD I2C2_EV_IRQHandler ; 88:I2C2 Event
DCD I2C2_ER_IRQHandler ; 89:I2C2 Error
DCD USBHS_EP1_Out_IRQHandler ; 90:USBHS Endpoint 1 Out
DCD USBHS_EP1_In_IRQHandler ; 91:USBHS Endpoint 1 in
DCD USBHS_WKUP_IRQHandler ; 92:USBHS Wakeup through EXTI Line
DCD USBHS_IRQHandler ; 93:USBHS
DCD DCI_IRQHandler ; 94:DCI
DCD 0 ; 95:Reserved
DCD TRNG_IRQHandler ; 96:TRNG
DCD FPU_IRQHandler ; 97:FPU
DCD UART6_IRQHandler ; 98:UART6
DCD UART7_IRQHandler ; 99:UART7
DCD SPI3_IRQHandler ; 100:SPI3
DCD SPI4_IRQHandler ; 101:SPI4
DCD SPI5_IRQHandler ; 102:SPI5
DCD 0 ; 103:Reserved
DCD TLI_IRQHandler ; 104:TLI
DCD TLI_ER_IRQHandler ; 105:TLI Error
DCD IPA_IRQHandler ; 106:IPA
__Vectors_End
__Vectors_Size EQU __Vectors_End - __Vectors
AREA |.text|, CODE, READONLY
;/* reset Handler */
Reset_Handler PROC
EXPORT Reset_Handler [WEAK]
IMPORT SystemInit
IMPORT __main
LDR R0, =SystemInit
BLX R0
LDR R0, =__main
BX R0
ENDP
;/* dummy Exception Handlers */
NMI_Handler PROC
EXPORT NMI_Handler [WEAK]
B .
ENDP
HardFault_Handler\
PROC
EXPORT HardFault_Handler [WEAK]
B .
ENDP
MemManage_Handler\
PROC
EXPORT MemManage_Handler [WEAK]
B .
ENDP
BusFault_Handler\
PROC
EXPORT BusFault_Handler [WEAK]
B .
ENDP
UsageFault_Handler\
PROC
EXPORT UsageFault_Handler [WEAK]
B .
ENDP
SVC_Handler PROC
EXPORT SVC_Handler [WEAK]
B .
ENDP
DebugMon_Handler\
PROC
EXPORT DebugMon_Handler [WEAK]
B .
ENDP
PendSV_Handler\
PROC
EXPORT PendSV_Handler [WEAK]
B .
ENDP
SysTick_Handler\
PROC
EXPORT SysTick_Handler [WEAK]
B .
ENDP
Default_Handler PROC
; /* external interrupts handler */
EXPORT WWDGT_IRQHandler [WEAK]
EXPORT LVD_IRQHandler [WEAK]
EXPORT TAMPER_STAMP_IRQHandler [WEAK]
EXPORT RTC_WKUP_IRQHandler [WEAK]
EXPORT FMC_IRQHandler [WEAK]
EXPORT RCU_CTC_IRQHandler [WEAK]
EXPORT EXTI0_IRQHandler [WEAK]
EXPORT EXTI1_IRQHandler [WEAK]
EXPORT EXTI2_IRQHandler [WEAK]
EXPORT EXTI3_IRQHandler [WEAK]
EXPORT EXTI4_IRQHandler [WEAK]
EXPORT DMA0_Channel0_IRQHandler [WEAK]
EXPORT DMA0_Channel1_IRQHandler [WEAK]
EXPORT DMA0_Channel2_IRQHandler [WEAK]
EXPORT DMA0_Channel3_IRQHandler [WEAK]
EXPORT DMA0_Channel4_IRQHandler [WEAK]
EXPORT DMA0_Channel5_IRQHandler [WEAK]
EXPORT DMA0_Channel6_IRQHandler [WEAK]
EXPORT ADC_IRQHandler [WEAK]
EXPORT CAN0_TX_IRQHandler [WEAK]
EXPORT CAN0_RX0_IRQHandler [WEAK]
EXPORT CAN0_RX1_IRQHandler [WEAK]
EXPORT CAN0_EWMC_IRQHandler [WEAK]
EXPORT EXTI5_9_IRQHandler [WEAK]
EXPORT TIMER0_BRK_TIMER8_IRQHandler [WEAK]
EXPORT TIMER0_UP_TIMER9_IRQHandler [WEAK]
EXPORT TIMER0_TRG_CMT_TIMER10_IRQHandler [WEAK]
EXPORT TIMER0_CC_IRQHandler [WEAK]
EXPORT TIMER1_IRQHandler [WEAK]
EXPORT TIMER2_IRQHandler [WEAK]
EXPORT TIMER3_IRQHandler [WEAK]
EXPORT I2C0_EV_IRQHandler [WEAK]
EXPORT I2C0_ER_IRQHandler [WEAK]
EXPORT I2C1_EV_IRQHandler [WEAK]
EXPORT I2C1_ER_IRQHandler [WEAK]
EXPORT SPI0_IRQHandler [WEAK]
EXPORT SPI1_IRQHandler [WEAK]
EXPORT USART0_IRQHandler [WEAK]
EXPORT USART1_IRQHandler [WEAK]
EXPORT USART2_IRQHandler [WEAK]
EXPORT EXTI10_15_IRQHandler [WEAK]
EXPORT RTC_Alarm_IRQHandler [WEAK]
EXPORT USBFS_WKUP_IRQHandler [WEAK]
EXPORT TIMER7_BRK_TIMER11_IRQHandler [WEAK]
EXPORT TIMER7_UP_TIMER12_IRQHandler [WEAK]
EXPORT TIMER7_TRG_CMT_TIMER13_IRQHandler [WEAK]
EXPORT TIMER7_CC_IRQHandler [WEAK]
EXPORT DMA0_Channel7_IRQHandler [WEAK]
EXPORT EXMC_IRQHandler [WEAK]
EXPORT SDIO_IRQHandler [WEAK]
EXPORT TIMER4_IRQHandler [WEAK]
EXPORT SPI2_IRQHandler [WEAK]
EXPORT UART3_IRQHandler [WEAK]
EXPORT UART4_IRQHandler [WEAK]
EXPORT TIMER5_DAC_IRQHandler [WEAK]
EXPORT TIMER6_IRQHandler [WEAK]
EXPORT DMA1_Channel0_IRQHandler [WEAK]
EXPORT DMA1_Channel1_IRQHandler [WEAK]
EXPORT DMA1_Channel2_IRQHandler [WEAK]
EXPORT DMA1_Channel3_IRQHandler [WEAK]
EXPORT DMA1_Channel4_IRQHandler [WEAK]
EXPORT ENET_IRQHandler [WEAK]
EXPORT ENET_WKUP_IRQHandler [WEAK]
EXPORT CAN1_TX_IRQHandler [WEAK]
EXPORT CAN1_RX0_IRQHandler [WEAK]
EXPORT CAN1_RX1_IRQHandler [WEAK]
EXPORT CAN1_EWMC_IRQHandler [WEAK]
EXPORT USBFS_IRQHandler [WEAK]
EXPORT DMA1_Channel5_IRQHandler [WEAK]
EXPORT DMA1_Channel6_IRQHandler [WEAK]
EXPORT DMA1_Channel7_IRQHandler [WEAK]
EXPORT USART5_IRQHandler [WEAK]
EXPORT I2C2_EV_IRQHandler [WEAK]
EXPORT I2C2_ER_IRQHandler [WEAK]
EXPORT USBHS_EP1_Out_IRQHandler [WEAK]
EXPORT USBHS_EP1_In_IRQHandler [WEAK]
EXPORT USBHS_WKUP_IRQHandler [WEAK]
EXPORT USBHS_IRQHandler [WEAK]
EXPORT DCI_IRQHandler [WEAK]
EXPORT TRNG_IRQHandler [WEAK]
EXPORT FPU_IRQHandler [WEAK]
EXPORT UART6_IRQHandler [WEAK]
EXPORT UART7_IRQHandler [WEAK]
EXPORT SPI3_IRQHandler [WEAK]
EXPORT SPI4_IRQHandler [WEAK]
EXPORT SPI5_IRQHandler [WEAK]
EXPORT TLI_IRQHandler [WEAK]
EXPORT TLI_ER_IRQHandler [WEAK]
EXPORT IPA_IRQHandler [WEAK]
;/* external interrupts handler */
WWDGT_IRQHandler
LVD_IRQHandler
TAMPER_STAMP_IRQHandler
RTC_WKUP_IRQHandler
FMC_IRQHandler
RCU_CTC_IRQHandler
EXTI0_IRQHandler
EXTI1_IRQHandler
EXTI2_IRQHandler
EXTI3_IRQHandler
EXTI4_IRQHandler
DMA0_Channel0_IRQHandler
DMA0_Channel1_IRQHandler
DMA0_Channel2_IRQHandler
DMA0_Channel3_IRQHandler
DMA0_Channel4_IRQHandler
DMA0_Channel5_IRQHandler
DMA0_Channel6_IRQHandler
ADC_IRQHandler
CAN0_TX_IRQHandler
CAN0_RX0_IRQHandler
CAN0_RX1_IRQHandler
CAN0_EWMC_IRQHandler
EXTI5_9_IRQHandler
TIMER0_BRK_TIMER8_IRQHandler
TIMER0_UP_TIMER9_IRQHandler
TIMER0_TRG_CMT_TIMER10_IRQHandler
TIMER0_CC_IRQHandler
TIMER1_IRQHandler
TIMER2_IRQHandler
TIMER3_IRQHandler
I2C0_EV_IRQHandler
I2C0_ER_IRQHandler
I2C1_EV_IRQHandler
I2C1_ER_IRQHandler
SPI0_IRQHandler
SPI1_IRQHandler
USART0_IRQHandler
USART1_IRQHandler
USART2_IRQHandler
EXTI10_15_IRQHandler
RTC_Alarm_IRQHandler
USBFS_WKUP_IRQHandler
TIMER7_BRK_TIMER11_IRQHandler
TIMER7_UP_TIMER12_IRQHandler
TIMER7_TRG_CMT_TIMER13_IRQHandler
TIMER7_CC_IRQHandler
DMA0_Channel7_IRQHandler
EXMC_IRQHandler
SDIO_IRQHandler
TIMER4_IRQHandler
SPI2_IRQHandler
UART3_IRQHandler
UART4_IRQHandler
TIMER5_DAC_IRQHandler
TIMER6_IRQHandler
DMA1_Channel0_IRQHandler
DMA1_Channel1_IRQHandler
DMA1_Channel2_IRQHandler
DMA1_Channel3_IRQHandler
DMA1_Channel4_IRQHandler
ENET_IRQHandler
ENET_WKUP_IRQHandler
CAN1_TX_IRQHandler
CAN1_RX0_IRQHandler
CAN1_RX1_IRQHandler
CAN1_EWMC_IRQHandler
USBFS_IRQHandler
DMA1_Channel5_IRQHandler
DMA1_Channel6_IRQHandler
DMA1_Channel7_IRQHandler
USART5_IRQHandler
I2C2_EV_IRQHandler
I2C2_ER_IRQHandler
USBHS_EP1_Out_IRQHandler
USBHS_EP1_In_IRQHandler
USBHS_WKUP_IRQHandler
USBHS_IRQHandler
DCI_IRQHandler
TRNG_IRQHandler
FPU_IRQHandler
UART6_IRQHandler
UART7_IRQHandler
SPI3_IRQHandler
SPI4_IRQHandler
SPI5_IRQHandler
TLI_IRQHandler
TLI_ER_IRQHandler
IPA_IRQHandler
B .
ENDP
ALIGN
; user Initial Stack & Heap
IF :DEF:__MICROLIB
EXPORT __initial_sp
EXPORT __heap_base
EXPORT __heap_limit
ELSE
IMPORT __use_two_region_memory
EXPORT __user_initial_stackheap
__user_initial_stackheap PROC
LDR R0, = Heap_Mem
LDR R1, =(Stack_Mem + Stack_Size)
LDR R2, = (Heap_Mem + Heap_Size)
LDR R3, = Stack_Mem
BX LR
ENDP
ALIGN
ENDIF
END

View File

@@ -0,0 +1,577 @@
;/*!
; \file startup_gd32f405.s
; \brief start up file
;*/
;/*
; Copyright (C) 2016 GigaDevice
; 2016-08-15, V1.0.1, firmware for GD32F4xx
;*/
MODULE ?cstartup
;; Forward declaration of sections.
SECTION CSTACK:DATA:NOROOT(3)
SECTION .intvec:CODE:NOROOT(2)
EXTERN __iar_program_start
EXTERN SystemInit
PUBLIC __vector_table
DATA
__vector_table
DCD sfe(CSTACK) ; top of stack
DCD Reset_Handler ; Vector Number 1,Reset Handler
DCD NMI_Handler ; Vector Number 2,NMI Handler
DCD HardFault_Handler ; Vector Number 3,Hard Fault Handler
DCD MemManage_Handler ; Vector Number 4,MPU Fault Handler
DCD BusFault_Handler ; Vector Number 5,Bus Fault Handler
DCD UsageFault_Handler ; Vector Number 6,Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; Vector Number 11,SVCall Handler
DCD DebugMon_Handler ; Vector Number 12,Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; Vector Number 14,PendSV Handler
DCD SysTick_Handler ; Vector Number 15,SysTick Handler
; External Interrupts
DCD WWDGT_IRQHandler ; 16:Window Watchdog Timer
DCD LVD_IRQHandler ; 17:LVD through EXTI Line detect
DCD TAMPER_STAMP_IRQHandler ; 18:Tamper and TimeStamp through EXTI Line detect
DCD RTC_WKUP_IRQHandler ; 19:RTC Wakeup through EXTI Line
DCD FMC_IRQHandler ; 20:FMC
DCD RCU_CTC_IRQHandler ; 21:RCU and CTC
DCD EXTI0_IRQHandler ; 22:EXTI Line 0
DCD EXTI1_IRQHandler ; 23:EXTI Line 1
DCD EXTI2_IRQHandler ; 24:EXTI Line 2
DCD EXTI3_IRQHandler ; 25:EXTI Line 3
DCD EXTI4_IRQHandler ; 26:EXTI Line 4
DCD DMA0_Channel0_IRQHandler ; 27:DMA0 Channel0
DCD DMA0_Channel1_IRQHandler ; 28:DMA0 Channel1
DCD DMA0_Channel2_IRQHandler ; 29:DMA0 Channel2
DCD DMA0_Channel3_IRQHandler ; 30:DMA0 Channel3
DCD DMA0_Channel4_IRQHandler ; 31:DMA0 Channel4
DCD DMA0_Channel5_IRQHandler ; 32:DMA0 Channel5
DCD DMA0_Channel6_IRQHandler ; 33:DMA0 Channel6
DCD ADC_IRQHandler ; 34:ADC
DCD CAN0_TX_IRQHandler ; 35:CAN0 TX
DCD CAN0_RX0_IRQHandler ; 36:CAN0 RX0
DCD CAN0_RX1_IRQHandler ; 37:CAN0 RX1
DCD CAN0_EWMC_IRQHandler ; 38:CAN0 EWMC
DCD EXTI5_9_IRQHandler ; 39:EXTI5 to EXTI9
DCD TIMER0_BRK_TIMER8_IRQHandler ; 40:TIMER0 Break and TIMER8
DCD TIMER0_UP_TIMER9_IRQHandler ; 41:TIMER0 Update and TIMER9
DCD TIMER0_TRG_CMT_TIMER10_IRQHandler ; 42:TIMER0 Trigger and Commucation and TIMER10
DCD TIMER0_CC_IRQHandler ; 43:TIMER0 Capture Compare
DCD TIMER1_IRQHandler ; 44:TIMER1
DCD TIMER2_IRQHandler ; 45:TIMER2
DCD TIMER3_IRQHandler ; 46:TIMER3
DCD I2C0_EV_IRQHandler ; 47:I2C0 Event
DCD I2C0_ER_IRQHandler ; 48:I2C0 Error
DCD I2C1_EV_IRQHandler ; 49:I2C1 Event
DCD I2C1_ER_IRQHandler ; 50:I2C1 Error
DCD SPI0_IRQHandler ; 51:SPI0
DCD SPI1_IRQHandler ; 52:SPI1
DCD USART0_IRQHandler ; 53:USART0
DCD USART1_IRQHandler ; 54:USART1
DCD USART2_IRQHandler ; 55:USART2
DCD EXTI10_15_IRQHandler ; 56:EXTI10 to EXTI15
DCD RTC_Alarm_IRQHandler ; 57:RTC Alarm
DCD USBFS_WKUP_IRQHandler ; 58:USBFS Wakeup
DCD TIMER7_BRK_TIMER11_IRQHandler ; 59:TIMER7 Break and TIMER11
DCD TIMER7_UP_TIMER12_IRQHandler ; 60:TIMER7 Update and TIMER12
DCD TIMER7_TRG_CMT_TIMER13_IRQHandler ; 61:TIMER7 Trigger and Commucation and TIMER13
DCD TIMER7_CC_IRQHandler ; 62:TIMER7 Capture Compare
DCD DMA0_Channel7_IRQHandler ; 63:DMA0 Channel7
DCD 0 ; 64:Reserved
DCD SDIO_IRQHandler ; 65:SDIO
DCD TIMER4_IRQHandler ; 66:TIMER4
DCD SPI2_IRQHandler ; 67:SPI2
DCD UART3_IRQHandler ; 68:UART3
DCD UART4_IRQHandler ; 69:UART4
DCD TIMER5_DAC_IRQHandler ; 70:TIMER5 and DAC0 DAC1 Underrun error
DCD TIMER6_IRQHandler ; 71:TIMER6
DCD DMA1_Channel0_IRQHandler ; 72:DMA1 Channel0
DCD DMA1_Channel1_IRQHandler ; 73:DMA1 Channel1
DCD DMA1_Channel2_IRQHandler ; 74:DMA1 Channel2
DCD DMA1_Channel3_IRQHandler ; 75:DMA1 Channel3
DCD DMA1_Channel4_IRQHandler ; 76:DMA1 Channel4
DCD 0 ; 77:Reserved
DCD 0 ; 78:Reserved
DCD CAN1_TX_IRQHandler ; 79:CAN1 TX
DCD CAN1_RX0_IRQHandler ; 80:CAN1 RX0
DCD CAN1_RX1_IRQHandler ; 81:CAN1 RX1
DCD CAN1_EWMC_IRQHandler ; 82:CAN1 EWMC
DCD USBFS_IRQHandler ; 83:USBFS
DCD DMA1_Channel5_IRQHandler ; 84:DMA1 Channel5
DCD DMA1_Channel6_IRQHandler ; 85:DMA1 Channel6
DCD DMA1_Channel7_IRQHandler ; 86:DMA1 Channel7
DCD USART5_IRQHandler ; 87:USART5
DCD I2C2_EV_IRQHandler ; 88:I2C2 Event
DCD I2C2_ER_IRQHandler ; 89:I2C2 Error
DCD USBHS_EP1_Out_IRQHandler ; 90:USBHS Endpoint 1 Out
DCD USBHS_EP1_In_IRQHandler ; 91:USBHS Endpoint 1 in
DCD USBHS_WKUP_IRQHandler ; 92:USBHS Wakeup through EXTI Line
DCD USBHS_IRQHandler ; 93:USBHS
DCD DCI_IRQHandler ; 94:DCI
DCD 0 ; 95:Reserved
DCD TRNG_IRQHandler ; 96:TRNG
DCD FPU_IRQHandler ; 97:FPU
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Default interrupt handlers.
;;
THUMB
PUBWEAK Reset_Handler
SECTION .text:CODE:NOROOT:REORDER(2)
Reset_Handler
LDR R0, =SystemInit
BLX R0
LDR R0, =__iar_program_start
BX R0
PUBWEAK NMI_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
NMI_Handler
B NMI_Handler
PUBWEAK HardFault_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
HardFault_Handler
B HardFault_Handler
PUBWEAK MemManage_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
MemManage_Handler
B MemManage_Handler
PUBWEAK BusFault_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
BusFault_Handler
B BusFault_Handler
PUBWEAK UsageFault_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
UsageFault_Handler
B UsageFault_Handler
PUBWEAK SVC_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
SVC_Handler
B SVC_Handler
PUBWEAK DebugMon_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
DebugMon_Handler
B DebugMon_Handler
PUBWEAK PendSV_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
PendSV_Handler
B PendSV_Handler
PUBWEAK SysTick_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
SysTick_Handler
B SysTick_Handler
PUBWEAK WWDGT_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
WWDGT_IRQHandler
B WWDGT_IRQHandler
PUBWEAK LVD_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
LVD_IRQHandler
B LVD_IRQHandler
PUBWEAK TAMPER_STAMP_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TAMPER_STAMP_IRQHandler
B TAMPER_STAMP_IRQHandler
PUBWEAK RTC_WKUP_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
RTC_WKUP_IRQHandler
B RTC_WKUP_IRQHandler
PUBWEAK FMC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
FMC_IRQHandler
B FMC_IRQHandler
PUBWEAK RCU_CTC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
RCU_CTC_IRQHandler
B RCU_CTC_IRQHandler
PUBWEAK EXTI0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI0_IRQHandler
B EXTI0_IRQHandler
PUBWEAK EXTI1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI1_IRQHandler
B EXTI1_IRQHandler
PUBWEAK EXTI2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI2_IRQHandler
B EXTI2_IRQHandler
PUBWEAK EXTI3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI3_IRQHandler
B EXTI3_IRQHandler
PUBWEAK EXTI4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI4_IRQHandler
B EXTI4_IRQHandler
PUBWEAK DMA0_Channel0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel0_IRQHandler
B DMA0_Channel0_IRQHandler
PUBWEAK DMA0_Channel1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel1_IRQHandler
B DMA0_Channel1_IRQHandler
PUBWEAK DMA0_Channel2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel2_IRQHandler
B DMA0_Channel2_IRQHandler
PUBWEAK DMA0_Channel3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel3_IRQHandler
B DMA0_Channel3_IRQHandler
PUBWEAK DMA0_Channel4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel4_IRQHandler
B DMA0_Channel4_IRQHandler
PUBWEAK DMA0_Channel5_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel5_IRQHandler
B DMA0_Channel5_IRQHandler
PUBWEAK DMA0_Channel6_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel6_IRQHandler
B DMA0_Channel6_IRQHandler
PUBWEAK ADC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
ADC_IRQHandler
B ADC_IRQHandler
PUBWEAK CAN0_TX_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN0_TX_IRQHandler
B CAN0_TX_IRQHandler
PUBWEAK CAN0_RX0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN0_RX0_IRQHandler
B CAN0_RX0_IRQHandler
PUBWEAK CAN0_RX1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN0_RX1_IRQHandler
B CAN0_RX1_IRQHandler
PUBWEAK CAN0_EWMC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN0_EWMC_IRQHandler
B CAN0_EWMC_IRQHandler
PUBWEAK EXTI5_9_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI5_9_IRQHandler
B EXTI5_9_IRQHandler
PUBWEAK TIMER0_BRK_TIMER8_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER0_BRK_TIMER8_IRQHandler
B TIMER0_BRK_TIMER8_IRQHandler
PUBWEAK TIMER0_UP_TIMER9_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER0_UP_TIMER9_IRQHandler
B TIMER0_UP_TIMER9_IRQHandler
PUBWEAK TIMER0_TRG_CMT_TIMER10_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER0_TRG_CMT_TIMER10_IRQHandler
B TIMER0_TRG_CMT_TIMER10_IRQHandler
PUBWEAK TIMER0_CC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER0_CC_IRQHandler
B TIMER0_CC_IRQHandler
PUBWEAK TIMER1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER1_IRQHandler
B TIMER1_IRQHandler
PUBWEAK TIMER2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER2_IRQHandler
B TIMER2_IRQHandler
PUBWEAK TIMER3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER3_IRQHandler
B TIMER3_IRQHandler
PUBWEAK I2C0_EV_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C0_EV_IRQHandler
B I2C0_EV_IRQHandler
PUBWEAK I2C0_ER_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C0_ER_IRQHandler
B I2C0_ER_IRQHandler
PUBWEAK I2C1_EV_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C1_EV_IRQHandler
B I2C1_EV_IRQHandler
PUBWEAK I2C1_ER_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C1_ER_IRQHandler
B I2C1_ER_IRQHandler
PUBWEAK SPI0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SPI0_IRQHandler
B SPI0_IRQHandler
PUBWEAK SPI1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SPI1_IRQHandler
B SPI1_IRQHandler
PUBWEAK USART0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USART0_IRQHandler
B USART0_IRQHandler
PUBWEAK USART1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USART1_IRQHandler
B USART1_IRQHandler
PUBWEAK USART2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USART2_IRQHandler
B USART2_IRQHandler
PUBWEAK EXTI10_15_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI10_15_IRQHandler
B EXTI10_15_IRQHandler
PUBWEAK RTC_Alarm_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
RTC_Alarm_IRQHandler
B RTC_Alarm_IRQHandler
PUBWEAK USBFS_WKUP_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBFS_WKUP_IRQHandler
B USBFS_WKUP_IRQHandler
PUBWEAK TIMER7_BRK_TIMER11_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER7_BRK_TIMER11_IRQHandler
B TIMER7_BRK_TIMER11_IRQHandler
PUBWEAK TIMER7_UP_TIMER12_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER7_UP_TIMER12_IRQHandler
B TIMER7_UP_TIMER12_IRQHandler
PUBWEAK TIMER7_TRG_CMT_TIMER13_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER7_TRG_CMT_TIMER13_IRQHandler
B TIMER7_TRG_CMT_TIMER13_IRQHandler
PUBWEAK TIMER7_CC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER7_CC_IRQHandler
B TIMER7_CC_IRQHandler
PUBWEAK DMA0_Channel7_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel7_IRQHandler
B DMA0_Channel7_IRQHandler
PUBWEAK SDIO_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SDIO_IRQHandler
B SDIO_IRQHandler
PUBWEAK TIMER4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER4_IRQHandler
B TIMER4_IRQHandler
PUBWEAK SPI2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SPI2_IRQHandler
B SPI2_IRQHandler
PUBWEAK UART3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
UART3_IRQHandler
B UART3_IRQHandler
PUBWEAK UART4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
UART4_IRQHandler
B UART4_IRQHandler
PUBWEAK TIMER5_DAC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER5_DAC_IRQHandler
B TIMER5_DAC_IRQHandler
PUBWEAK TIMER6_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER6_IRQHandler
B TIMER6_IRQHandler
PUBWEAK DMA1_Channel0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel0_IRQHandler
B DMA1_Channel0_IRQHandler
PUBWEAK DMA1_Channel1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel1_IRQHandler
B DMA1_Channel1_IRQHandler
PUBWEAK DMA1_Channel2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel2_IRQHandler
B DMA1_Channel2_IRQHandler
PUBWEAK DMA1_Channel3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel3_IRQHandler
B DMA1_Channel3_IRQHandler
PUBWEAK DMA1_Channel4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel4_IRQHandler
B DMA1_Channel4_IRQHandler
PUBWEAK CAN1_TX_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN1_TX_IRQHandler
B CAN1_TX_IRQHandler
PUBWEAK CAN1_RX0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN1_RX0_IRQHandler
B CAN1_RX0_IRQHandler
PUBWEAK CAN1_RX1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN1_RX1_IRQHandler
B CAN1_RX1_IRQHandler
PUBWEAK CAN1_EWMC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN1_EWMC_IRQHandler
B CAN1_EWMC_IRQHandler
PUBWEAK USBFS_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBFS_IRQHandler
B USBFS_IRQHandler
PUBWEAK DMA1_Channel5_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel5_IRQHandler
B DMA1_Channel5_IRQHandler
PUBWEAK DMA1_Channel6_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel6_IRQHandler
B DMA1_Channel6_IRQHandler
PUBWEAK DMA1_Channel7_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel7_IRQHandler
B DMA1_Channel7_IRQHandler
PUBWEAK USART5_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USART5_IRQHandler
B USART5_IRQHandler
PUBWEAK I2C2_EV_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C2_EV_IRQHandler
B I2C2_EV_IRQHandler
PUBWEAK I2C2_ER_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C2_ER_IRQHandler
B I2C2_ER_IRQHandler
PUBWEAK USBHS_EP1_Out_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBHS_EP1_Out_IRQHandler
B USBHS_EP1_Out_IRQHandler
PUBWEAK USBHS_EP1_In_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBHS_EP1_In_IRQHandler
B USBHS_EP1_In_IRQHandler
PUBWEAK USBHS_WKUP_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBHS_WKUP_IRQHandler
B USBHS_WKUP_IRQHandler
PUBWEAK USBHS_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBHS_IRQHandler
B USBHS_IRQHandler
PUBWEAK DCI_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DCI_IRQHandler
B DCI_IRQHandler
PUBWEAK TRNG_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TRNG_IRQHandler
B TRNG_IRQHandler
PUBWEAK FPU_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
FPU_IRQHandler
B FPU_IRQHandler
END

View File

@@ -0,0 +1,592 @@
;/*!
; \file startup_gd32f407.s
; \brief start up file
;*/
;/*
; Copyright (C) 2016 GigaDevice
; 2016-08-15, V1.0.1, firmware for GD32F4xx
;*/
MODULE ?cstartup
;; Forward declaration of sections.
SECTION CSTACK:DATA:NOROOT(3)
SECTION .intvec:CODE:NOROOT(2)
EXTERN __iar_program_start
EXTERN SystemInit
PUBLIC __vector_table
DATA
__vector_table
DCD sfe(CSTACK) ; top of stack
DCD Reset_Handler ; Vector Number 1,Reset Handler
DCD NMI_Handler ; Vector Number 2,NMI Handler
DCD HardFault_Handler ; Vector Number 3,Hard Fault Handler
DCD MemManage_Handler ; Vector Number 4,MPU Fault Handler
DCD BusFault_Handler ; Vector Number 5,Bus Fault Handler
DCD UsageFault_Handler ; Vector Number 6,Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; Vector Number 11,SVCall Handler
DCD DebugMon_Handler ; Vector Number 12,Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; Vector Number 14,PendSV Handler
DCD SysTick_Handler ; Vector Number 15,SysTick Handler
; External Interrupts
DCD WWDGT_IRQHandler ; 16:Window Watchdog Timer
DCD LVD_IRQHandler ; 17:LVD through EXTI Line detect
DCD TAMPER_STAMP_IRQHandler ; 18:Tamper and TimeStamp through EXTI Line detect
DCD RTC_WKUP_IRQHandler ; 19:RTC Wakeup through EXTI Line
DCD FMC_IRQHandler ; 20:FMC
DCD RCU_CTC_IRQHandler ; 21:RCU and CTC
DCD EXTI0_IRQHandler ; 22:EXTI Line 0
DCD EXTI1_IRQHandler ; 23:EXTI Line 1
DCD EXTI2_IRQHandler ; 24:EXTI Line 2
DCD EXTI3_IRQHandler ; 25:EXTI Line 3
DCD EXTI4_IRQHandler ; 26:EXTI Line 4
DCD DMA0_Channel0_IRQHandler ; 27:DMA0 Channel0
DCD DMA0_Channel1_IRQHandler ; 28:DMA0 Channel1
DCD DMA0_Channel2_IRQHandler ; 29:DMA0 Channel2
DCD DMA0_Channel3_IRQHandler ; 30:DMA0 Channel3
DCD DMA0_Channel4_IRQHandler ; 31:DMA0 Channel4
DCD DMA0_Channel5_IRQHandler ; 32:DMA0 Channel5
DCD DMA0_Channel6_IRQHandler ; 33:DMA0 Channel6
DCD ADC_IRQHandler ; 34:ADC
DCD CAN0_TX_IRQHandler ; 35:CAN0 TX
DCD CAN0_RX0_IRQHandler ; 36:CAN0 RX0
DCD CAN0_RX1_IRQHandler ; 37:CAN0 RX1
DCD CAN0_EWMC_IRQHandler ; 38:CAN0 EWMC
DCD EXTI5_9_IRQHandler ; 39:EXTI5 to EXTI9
DCD TIMER0_BRK_TIMER8_IRQHandler ; 40:TIMER0 Break and TIMER8
DCD TIMER0_UP_TIMER9_IRQHandler ; 41:TIMER0 Update and TIMER9
DCD TIMER0_TRG_CMT_TIMER10_IRQHandler ; 42:TIMER0 Trigger and Commucation and TIMER10
DCD TIMER0_CC_IRQHandler ; 43:TIMER0 Capture Compare
DCD TIMER1_IRQHandler ; 44:TIMER1
DCD TIMER2_IRQHandler ; 45:TIMER2
DCD TIMER3_IRQHandler ; 46:TIMER3
DCD I2C0_EV_IRQHandler ; 47:I2C0 Event
DCD I2C0_ER_IRQHandler ; 48:I2C0 Error
DCD I2C1_EV_IRQHandler ; 49:I2C1 Event
DCD I2C1_ER_IRQHandler ; 50:I2C1 Error
DCD SPI0_IRQHandler ; 51:SPI0
DCD SPI1_IRQHandler ; 52:SPI1
DCD USART0_IRQHandler ; 53:USART0
DCD USART1_IRQHandler ; 54:USART1
DCD USART2_IRQHandler ; 55:USART2
DCD EXTI10_15_IRQHandler ; 56:EXTI10 to EXTI15
DCD RTC_Alarm_IRQHandler ; 57:RTC Alarm
DCD USBFS_WKUP_IRQHandler ; 58:USBFS Wakeup
DCD TIMER7_BRK_TIMER11_IRQHandler ; 59:TIMER7 Break and TIMER11
DCD TIMER7_UP_TIMER12_IRQHandler ; 60:TIMER7 Update and TIMER12
DCD TIMER7_TRG_CMT_TIMER13_IRQHandler ; 61:TIMER7 Trigger and Commucation and TIMER13
DCD TIMER7_CC_IRQHandler ; 62:TIMER7 Capture Compare
DCD DMA0_Channel7_IRQHandler ; 63:DMA0 Channel7
DCD EXMC_IRQHandler ; 64:EXMC
DCD SDIO_IRQHandler ; 65:SDIO
DCD TIMER4_IRQHandler ; 66:TIMER4
DCD SPI2_IRQHandler ; 67:SPI2
DCD UART3_IRQHandler ; 68:UART3
DCD UART4_IRQHandler ; 69:UART4
DCD TIMER5_DAC_IRQHandler ; 70:TIMER5 and DAC0 DAC1 Underrun error
DCD TIMER6_IRQHandler ; 71:TIMER6
DCD DMA1_Channel0_IRQHandler ; 72:DMA1 Channel0
DCD DMA1_Channel1_IRQHandler ; 73:DMA1 Channel1
DCD DMA1_Channel2_IRQHandler ; 74:DMA1 Channel2
DCD DMA1_Channel3_IRQHandler ; 75:DMA1 Channel3
DCD DMA1_Channel4_IRQHandler ; 76:DMA1 Channel4
DCD ENET_IRQHandler ; 77:Ethernet
DCD ENET_WKUP_IRQHandler ; 78:Ethernet Wakeup through EXTI Line
DCD CAN1_TX_IRQHandler ; 79:CAN1 TX
DCD CAN1_RX0_IRQHandler ; 80:CAN1 RX0
DCD CAN1_RX1_IRQHandler ; 81:CAN1 RX1
DCD CAN1_EWMC_IRQHandler ; 82:CAN1 EWMC
DCD USBFS_IRQHandler ; 83:USBFS
DCD DMA1_Channel5_IRQHandler ; 84:DMA1 Channel5
DCD DMA1_Channel6_IRQHandler ; 85:DMA1 Channel6
DCD DMA1_Channel7_IRQHandler ; 86:DMA1 Channel7
DCD USART5_IRQHandler ; 87:USART5
DCD I2C2_EV_IRQHandler ; 88:I2C2 Event
DCD I2C2_ER_IRQHandler ; 89:I2C2 Error
DCD USBHS_EP1_Out_IRQHandler ; 90:USBHS Endpoint 1 Out
DCD USBHS_EP1_In_IRQHandler ; 91:USBHS Endpoint 1 in
DCD USBHS_WKUP_IRQHandler ; 92:USBHS Wakeup through EXTI Line
DCD USBHS_IRQHandler ; 93:USBHS
DCD DCI_IRQHandler ; 94:DCI
DCD 0 ; 95:Reserved
DCD TRNG_IRQHandler ; 96:TRNG
DCD FPU_IRQHandler ; 97:FPU
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Default interrupt handlers.
;;
THUMB
PUBWEAK Reset_Handler
SECTION .text:CODE:NOROOT:REORDER(2)
Reset_Handler
LDR R0, =SystemInit
BLX R0
LDR R0, =__iar_program_start
BX R0
PUBWEAK NMI_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
NMI_Handler
B NMI_Handler
PUBWEAK HardFault_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
HardFault_Handler
B HardFault_Handler
PUBWEAK MemManage_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
MemManage_Handler
B MemManage_Handler
PUBWEAK BusFault_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
BusFault_Handler
B BusFault_Handler
PUBWEAK UsageFault_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
UsageFault_Handler
B UsageFault_Handler
PUBWEAK SVC_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
SVC_Handler
B SVC_Handler
PUBWEAK DebugMon_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
DebugMon_Handler
B DebugMon_Handler
PUBWEAK PendSV_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
PendSV_Handler
B PendSV_Handler
PUBWEAK SysTick_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
SysTick_Handler
B SysTick_Handler
PUBWEAK WWDGT_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
WWDGT_IRQHandler
B WWDGT_IRQHandler
PUBWEAK LVD_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
LVD_IRQHandler
B LVD_IRQHandler
PUBWEAK TAMPER_STAMP_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TAMPER_STAMP_IRQHandler
B TAMPER_STAMP_IRQHandler
PUBWEAK RTC_WKUP_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
RTC_WKUP_IRQHandler
B RTC_WKUP_IRQHandler
PUBWEAK FMC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
FMC_IRQHandler
B FMC_IRQHandler
PUBWEAK RCU_CTC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
RCU_CTC_IRQHandler
B RCU_CTC_IRQHandler
PUBWEAK EXTI0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI0_IRQHandler
B EXTI0_IRQHandler
PUBWEAK EXTI1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI1_IRQHandler
B EXTI1_IRQHandler
PUBWEAK EXTI2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI2_IRQHandler
B EXTI2_IRQHandler
PUBWEAK EXTI3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI3_IRQHandler
B EXTI3_IRQHandler
PUBWEAK EXTI4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI4_IRQHandler
B EXTI4_IRQHandler
PUBWEAK DMA0_Channel0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel0_IRQHandler
B DMA0_Channel0_IRQHandler
PUBWEAK DMA0_Channel1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel1_IRQHandler
B DMA0_Channel1_IRQHandler
PUBWEAK DMA0_Channel2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel2_IRQHandler
B DMA0_Channel2_IRQHandler
PUBWEAK DMA0_Channel3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel3_IRQHandler
B DMA0_Channel3_IRQHandler
PUBWEAK DMA0_Channel4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel4_IRQHandler
B DMA0_Channel4_IRQHandler
PUBWEAK DMA0_Channel5_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel5_IRQHandler
B DMA0_Channel5_IRQHandler
PUBWEAK DMA0_Channel6_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel6_IRQHandler
B DMA0_Channel6_IRQHandler
PUBWEAK ADC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
ADC_IRQHandler
B ADC_IRQHandler
PUBWEAK CAN0_TX_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN0_TX_IRQHandler
B CAN0_TX_IRQHandler
PUBWEAK CAN0_RX0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN0_RX0_IRQHandler
B CAN0_RX0_IRQHandler
PUBWEAK CAN0_RX1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN0_RX1_IRQHandler
B CAN0_RX1_IRQHandler
PUBWEAK CAN0_EWMC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN0_EWMC_IRQHandler
B CAN0_EWMC_IRQHandler
PUBWEAK EXTI5_9_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI5_9_IRQHandler
B EXTI5_9_IRQHandler
PUBWEAK TIMER0_BRK_TIMER8_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER0_BRK_TIMER8_IRQHandler
B TIMER0_BRK_TIMER8_IRQHandler
PUBWEAK TIMER0_UP_TIMER9_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER0_UP_TIMER9_IRQHandler
B TIMER0_UP_TIMER9_IRQHandler
PUBWEAK TIMER0_TRG_CMT_TIMER10_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER0_TRG_CMT_TIMER10_IRQHandler
B TIMER0_TRG_CMT_TIMER10_IRQHandler
PUBWEAK TIMER0_CC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER0_CC_IRQHandler
B TIMER0_CC_IRQHandler
PUBWEAK TIMER1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER1_IRQHandler
B TIMER1_IRQHandler
PUBWEAK TIMER2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER2_IRQHandler
B TIMER2_IRQHandler
PUBWEAK TIMER3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER3_IRQHandler
B TIMER3_IRQHandler
PUBWEAK I2C0_EV_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C0_EV_IRQHandler
B I2C0_EV_IRQHandler
PUBWEAK I2C0_ER_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C0_ER_IRQHandler
B I2C0_ER_IRQHandler
PUBWEAK I2C1_EV_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C1_EV_IRQHandler
B I2C1_EV_IRQHandler
PUBWEAK I2C1_ER_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C1_ER_IRQHandler
B I2C1_ER_IRQHandler
PUBWEAK SPI0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SPI0_IRQHandler
B SPI0_IRQHandler
PUBWEAK SPI1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SPI1_IRQHandler
B SPI1_IRQHandler
PUBWEAK USART0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USART0_IRQHandler
B USART0_IRQHandler
PUBWEAK USART1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USART1_IRQHandler
B USART1_IRQHandler
PUBWEAK USART2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USART2_IRQHandler
B USART2_IRQHandler
PUBWEAK EXTI10_15_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI10_15_IRQHandler
B EXTI10_15_IRQHandler
PUBWEAK RTC_Alarm_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
RTC_Alarm_IRQHandler
B RTC_Alarm_IRQHandler
PUBWEAK USBFS_WKUP_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBFS_WKUP_IRQHandler
B USBFS_WKUP_IRQHandler
PUBWEAK TIMER7_BRK_TIMER11_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER7_BRK_TIMER11_IRQHandler
B TIMER7_BRK_TIMER11_IRQHandler
PUBWEAK TIMER7_UP_TIMER12_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER7_UP_TIMER12_IRQHandler
B TIMER7_UP_TIMER12_IRQHandler
PUBWEAK TIMER7_TRG_CMT_TIMER13_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER7_TRG_CMT_TIMER13_IRQHandler
B TIMER7_TRG_CMT_TIMER13_IRQHandler
PUBWEAK TIMER7_CC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER7_CC_IRQHandler
B TIMER7_CC_IRQHandler
PUBWEAK DMA0_Channel7_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel7_IRQHandler
B DMA0_Channel7_IRQHandler
PUBWEAK EXMC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXMC_IRQHandler
B EXMC_IRQHandler
PUBWEAK SDIO_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SDIO_IRQHandler
B SDIO_IRQHandler
PUBWEAK TIMER4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER4_IRQHandler
B TIMER4_IRQHandler
PUBWEAK SPI2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SPI2_IRQHandler
B SPI2_IRQHandler
PUBWEAK UART3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
UART3_IRQHandler
B UART3_IRQHandler
PUBWEAK UART4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
UART4_IRQHandler
B UART4_IRQHandler
PUBWEAK TIMER5_DAC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER5_DAC_IRQHandler
B TIMER5_DAC_IRQHandler
PUBWEAK TIMER6_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER6_IRQHandler
B TIMER6_IRQHandler
PUBWEAK DMA1_Channel0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel0_IRQHandler
B DMA1_Channel0_IRQHandler
PUBWEAK DMA1_Channel1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel1_IRQHandler
B DMA1_Channel1_IRQHandler
PUBWEAK DMA1_Channel2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel2_IRQHandler
B DMA1_Channel2_IRQHandler
PUBWEAK DMA1_Channel3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel3_IRQHandler
B DMA1_Channel3_IRQHandler
PUBWEAK DMA1_Channel4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel4_IRQHandler
B DMA1_Channel4_IRQHandler
PUBWEAK ENET_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
ENET_IRQHandler
B ENET_IRQHandler
PUBWEAK ENET_WKUP_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
ENET_WKUP_IRQHandler
B ENET_WKUP_IRQHandler
PUBWEAK CAN1_TX_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN1_TX_IRQHandler
B CAN1_TX_IRQHandler
PUBWEAK CAN1_RX0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN1_RX0_IRQHandler
B CAN1_RX0_IRQHandler
PUBWEAK CAN1_RX1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN1_RX1_IRQHandler
B CAN1_RX1_IRQHandler
PUBWEAK CAN1_EWMC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN1_EWMC_IRQHandler
B CAN1_EWMC_IRQHandler
PUBWEAK USBFS_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBFS_IRQHandler
B USBFS_IRQHandler
PUBWEAK DMA1_Channel5_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel5_IRQHandler
B DMA1_Channel5_IRQHandler
PUBWEAK DMA1_Channel6_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel6_IRQHandler
B DMA1_Channel6_IRQHandler
PUBWEAK DMA1_Channel7_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel7_IRQHandler
B DMA1_Channel7_IRQHandler
PUBWEAK USART5_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USART5_IRQHandler
B USART5_IRQHandler
PUBWEAK I2C2_EV_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C2_EV_IRQHandler
B I2C2_EV_IRQHandler
PUBWEAK I2C2_ER_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C2_ER_IRQHandler
B I2C2_ER_IRQHandler
PUBWEAK USBHS_EP1_Out_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBHS_EP1_Out_IRQHandler
B USBHS_EP1_Out_IRQHandler
PUBWEAK USBHS_EP1_In_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBHS_EP1_In_IRQHandler
B USBHS_EP1_In_IRQHandler
PUBWEAK USBHS_WKUP_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBHS_WKUP_IRQHandler
B USBHS_WKUP_IRQHandler
PUBWEAK USBHS_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBHS_IRQHandler
B USBHS_IRQHandler
PUBWEAK DCI_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DCI_IRQHandler
B DCI_IRQHandler
PUBWEAK TRNG_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TRNG_IRQHandler
B TRNG_IRQHandler
PUBWEAK FPU_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
FPU_IRQHandler
B FPU_IRQHandler
END

View File

@@ -0,0 +1,641 @@
;/*!
; \file startup_gd32f450.s
; \brief start up file
;*/
;/*
; Copyright (C) 2016 GigaDevice
; 2016-08-15, V1.0.1, firmware for GD32F4xx
;*/
MODULE ?cstartup
;; Forward declaration of sections.
SECTION CSTACK:DATA:NOROOT(3)
SECTION .intvec:CODE:NOROOT(2)
EXTERN __iar_program_start
EXTERN SystemInit
PUBLIC __vector_table
DATA
__vector_table
DCD sfe(CSTACK) ; top of stack
DCD Reset_Handler ; Vector Number 1,Reset Handler
DCD NMI_Handler ; Vector Number 2,NMI Handler
DCD HardFault_Handler ; Vector Number 3,Hard Fault Handler
DCD MemManage_Handler ; Vector Number 4,MPU Fault Handler
DCD BusFault_Handler ; Vector Number 5,Bus Fault Handler
DCD UsageFault_Handler ; Vector Number 6,Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; Vector Number 11,SVCall Handler
DCD DebugMon_Handler ; Vector Number 12,Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; Vector Number 14,PendSV Handler
DCD SysTick_Handler ; Vector Number 15,SysTick Handler
; External Interrupts
DCD WWDGT_IRQHandler ; 16:Window Watchdog Timer
DCD LVD_IRQHandler ; 17:LVD through EXTI Line detect
DCD TAMPER_STAMP_IRQHandler ; 18:Tamper and TimeStamp through EXTI Line detect
DCD RTC_WKUP_IRQHandler ; 19:RTC Wakeup through EXTI Line
DCD FMC_IRQHandler ; 20:FMC
DCD RCU_CTC_IRQHandler ; 21:RCU and CTC
DCD EXTI0_IRQHandler ; 22:EXTI Line 0
DCD EXTI1_IRQHandler ; 23:EXTI Line 1
DCD EXTI2_IRQHandler ; 24:EXTI Line 2
DCD EXTI3_IRQHandler ; 25:EXTI Line 3
DCD EXTI4_IRQHandler ; 26:EXTI Line 4
DCD DMA0_Channel0_IRQHandler ; 27:DMA0 Channel0
DCD DMA0_Channel1_IRQHandler ; 28:DMA0 Channel1
DCD DMA0_Channel2_IRQHandler ; 29:DMA0 Channel2
DCD DMA0_Channel3_IRQHandler ; 30:DMA0 Channel3
DCD DMA0_Channel4_IRQHandler ; 31:DMA0 Channel4
DCD DMA0_Channel5_IRQHandler ; 32:DMA0 Channel5
DCD DMA0_Channel6_IRQHandler ; 33:DMA0 Channel6
DCD ADC_IRQHandler ; 34:ADC
DCD CAN0_TX_IRQHandler ; 35:CAN0 TX
DCD CAN0_RX0_IRQHandler ; 36:CAN0 RX0
DCD CAN0_RX1_IRQHandler ; 37:CAN0 RX1
DCD CAN0_EWMC_IRQHandler ; 38:CAN0 EWMC
DCD EXTI5_9_IRQHandler ; 39:EXTI5 to EXTI9
DCD TIMER0_BRK_TIMER8_IRQHandler ; 40:TIMER0 Break and TIMER8
DCD TIMER0_UP_TIMER9_IRQHandler ; 41:TIMER0 Update and TIMER9
DCD TIMER0_TRG_CMT_TIMER10_IRQHandler ; 42:TIMER0 Trigger and Commucation and TIMER10
DCD TIMER0_CC_IRQHandler ; 43:TIMER0 Capture Compare
DCD TIMER1_IRQHandler ; 44:TIMER1
DCD TIMER2_IRQHandler ; 45:TIMER2
DCD TIMER3_IRQHandler ; 46:TIMER3
DCD I2C0_EV_IRQHandler ; 47:I2C0 Event
DCD I2C0_ER_IRQHandler ; 48:I2C0 Error
DCD I2C1_EV_IRQHandler ; 49:I2C1 Event
DCD I2C1_ER_IRQHandler ; 50:I2C1 Error
DCD SPI0_IRQHandler ; 51:SPI0
DCD SPI1_IRQHandler ; 52:SPI1
DCD USART0_IRQHandler ; 53:USART0
DCD USART1_IRQHandler ; 54:USART1
DCD USART2_IRQHandler ; 55:USART2
DCD EXTI10_15_IRQHandler ; 56:EXTI10 to EXTI15
DCD RTC_Alarm_IRQHandler ; 57:RTC Alarm
DCD USBFS_WKUP_IRQHandler ; 58:USBFS Wakeup
DCD TIMER7_BRK_TIMER11_IRQHandler ; 59:TIMER7 Break and TIMER11
DCD TIMER7_UP_TIMER12_IRQHandler ; 60:TIMER7 Update and TIMER12
DCD TIMER7_TRG_CMT_TIMER13_IRQHandler ; 61:TIMER7 Trigger and Commucation and TIMER13
DCD TIMER7_CC_IRQHandler ; 62:TIMER7 Capture Compare
DCD DMA0_Channel7_IRQHandler ; 63:DMA0 Channel7
DCD EXMC_IRQHandler ; 64:EXMC
DCD SDIO_IRQHandler ; 65:SDIO
DCD TIMER4_IRQHandler ; 66:TIMER4
DCD SPI2_IRQHandler ; 67:SPI2
DCD UART3_IRQHandler ; 68:UART3
DCD UART4_IRQHandler ; 69:UART4
DCD TIMER5_DAC_IRQHandler ; 70:TIMER5 and DAC0 DAC1 Underrun error
DCD TIMER6_IRQHandler ; 71:TIMER6
DCD DMA1_Channel0_IRQHandler ; 72:DMA1 Channel0
DCD DMA1_Channel1_IRQHandler ; 73:DMA1 Channel1
DCD DMA1_Channel2_IRQHandler ; 74:DMA1 Channel2
DCD DMA1_Channel3_IRQHandler ; 75:DMA1 Channel3
DCD DMA1_Channel4_IRQHandler ; 76:DMA1 Channel4
DCD ENET_IRQHandler ; 77:Ethernet
DCD ENET_WKUP_IRQHandler ; 78:Ethernet Wakeup through EXTI Line
DCD CAN1_TX_IRQHandler ; 79:CAN1 TX
DCD CAN1_RX0_IRQHandler ; 80:CAN1 RX0
DCD CAN1_RX1_IRQHandler ; 81:CAN1 RX1
DCD CAN1_EWMC_IRQHandler ; 82:CAN1 EWMC
DCD USBFS_IRQHandler ; 83:USBFS
DCD DMA1_Channel5_IRQHandler ; 84:DMA1 Channel5
DCD DMA1_Channel6_IRQHandler ; 85:DMA1 Channel6
DCD DMA1_Channel7_IRQHandler ; 86:DMA1 Channel7
DCD USART5_IRQHandler ; 87:USART5
DCD I2C2_EV_IRQHandler ; 88:I2C2 Event
DCD I2C2_ER_IRQHandler ; 89:I2C2 Error
DCD USBHS_EP1_Out_IRQHandler ; 90:USBHS Endpoint 1 Out
DCD USBHS_EP1_In_IRQHandler ; 91:USBHS Endpoint 1 in
DCD USBHS_WKUP_IRQHandler ; 92:USBHS Wakeup through EXTI Line
DCD USBHS_IRQHandler ; 93:USBHS
DCD DCI_IRQHandler ; 94:DCI
DCD 0 ; 95:Reserved
DCD TRNG_IRQHandler ; 96:TRNG
DCD FPU_IRQHandler ; 97:FPU
DCD UART6_IRQHandler ; 98:UART6
DCD UART7_IRQHandler ; 99:UART7
DCD SPI3_IRQHandler ; 100:SPI3
DCD SPI4_IRQHandler ; 101:SPI4
DCD SPI5_IRQHandler ; 102:SPI5
DCD 0 ; 103:Reserved
DCD TLI_IRQHandler ; 104:TLI
DCD TLI_ER_IRQHandler ; 105:TLI Error
DCD IPA_IRQHandler ; 106:IPA
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Default interrupt handlers.
;;
THUMB
PUBWEAK Reset_Handler
SECTION .text:CODE:NOROOT:REORDER(2)
Reset_Handler
LDR R0, =SystemInit
BLX R0
LDR R0, =__iar_program_start
BX R0
PUBWEAK NMI_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
NMI_Handler
B NMI_Handler
PUBWEAK HardFault_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
HardFault_Handler
B HardFault_Handler
PUBWEAK MemManage_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
MemManage_Handler
B MemManage_Handler
PUBWEAK BusFault_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
BusFault_Handler
B BusFault_Handler
PUBWEAK UsageFault_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
UsageFault_Handler
B UsageFault_Handler
PUBWEAK SVC_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
SVC_Handler
B SVC_Handler
PUBWEAK DebugMon_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
DebugMon_Handler
B DebugMon_Handler
PUBWEAK PendSV_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
PendSV_Handler
B PendSV_Handler
PUBWEAK SysTick_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
SysTick_Handler
B SysTick_Handler
PUBWEAK WWDGT_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
WWDGT_IRQHandler
B WWDGT_IRQHandler
PUBWEAK LVD_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
LVD_IRQHandler
B LVD_IRQHandler
PUBWEAK TAMPER_STAMP_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TAMPER_STAMP_IRQHandler
B TAMPER_STAMP_IRQHandler
PUBWEAK RTC_WKUP_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
RTC_WKUP_IRQHandler
B RTC_WKUP_IRQHandler
PUBWEAK FMC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
FMC_IRQHandler
B FMC_IRQHandler
PUBWEAK RCU_CTC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
RCU_CTC_IRQHandler
B RCU_CTC_IRQHandler
PUBWEAK EXTI0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI0_IRQHandler
B EXTI0_IRQHandler
PUBWEAK EXTI1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI1_IRQHandler
B EXTI1_IRQHandler
PUBWEAK EXTI2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI2_IRQHandler
B EXTI2_IRQHandler
PUBWEAK EXTI3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI3_IRQHandler
B EXTI3_IRQHandler
PUBWEAK EXTI4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI4_IRQHandler
B EXTI4_IRQHandler
PUBWEAK DMA0_Channel0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel0_IRQHandler
B DMA0_Channel0_IRQHandler
PUBWEAK DMA0_Channel1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel1_IRQHandler
B DMA0_Channel1_IRQHandler
PUBWEAK DMA0_Channel2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel2_IRQHandler
B DMA0_Channel2_IRQHandler
PUBWEAK DMA0_Channel3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel3_IRQHandler
B DMA0_Channel3_IRQHandler
PUBWEAK DMA0_Channel4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel4_IRQHandler
B DMA0_Channel4_IRQHandler
PUBWEAK DMA0_Channel5_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel5_IRQHandler
B DMA0_Channel5_IRQHandler
PUBWEAK DMA0_Channel6_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel6_IRQHandler
B DMA0_Channel6_IRQHandler
PUBWEAK ADC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
ADC_IRQHandler
B ADC_IRQHandler
PUBWEAK CAN0_TX_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN0_TX_IRQHandler
B CAN0_TX_IRQHandler
PUBWEAK CAN0_RX0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN0_RX0_IRQHandler
B CAN0_RX0_IRQHandler
PUBWEAK CAN0_RX1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN0_RX1_IRQHandler
B CAN0_RX1_IRQHandler
PUBWEAK CAN0_EWMC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN0_EWMC_IRQHandler
B CAN0_EWMC_IRQHandler
PUBWEAK EXTI5_9_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI5_9_IRQHandler
B EXTI5_9_IRQHandler
PUBWEAK TIMER0_BRK_TIMER8_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER0_BRK_TIMER8_IRQHandler
B TIMER0_BRK_TIMER8_IRQHandler
PUBWEAK TIMER0_UP_TIMER9_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER0_UP_TIMER9_IRQHandler
B TIMER0_UP_TIMER9_IRQHandler
PUBWEAK TIMER0_TRG_CMT_TIMER10_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER0_TRG_CMT_TIMER10_IRQHandler
B TIMER0_TRG_CMT_TIMER10_IRQHandler
PUBWEAK TIMER0_CC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER0_CC_IRQHandler
B TIMER0_CC_IRQHandler
PUBWEAK TIMER1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER1_IRQHandler
B TIMER1_IRQHandler
PUBWEAK TIMER2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER2_IRQHandler
B TIMER2_IRQHandler
PUBWEAK TIMER3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER3_IRQHandler
B TIMER3_IRQHandler
PUBWEAK I2C0_EV_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C0_EV_IRQHandler
B I2C0_EV_IRQHandler
PUBWEAK I2C0_ER_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C0_ER_IRQHandler
B I2C0_ER_IRQHandler
PUBWEAK I2C1_EV_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C1_EV_IRQHandler
B I2C1_EV_IRQHandler
PUBWEAK I2C1_ER_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C1_ER_IRQHandler
B I2C1_ER_IRQHandler
PUBWEAK SPI0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SPI0_IRQHandler
B SPI0_IRQHandler
PUBWEAK SPI1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SPI1_IRQHandler
B SPI1_IRQHandler
PUBWEAK USART0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USART0_IRQHandler
B USART0_IRQHandler
PUBWEAK USART1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USART1_IRQHandler
B USART1_IRQHandler
PUBWEAK USART2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USART2_IRQHandler
B USART2_IRQHandler
PUBWEAK EXTI10_15_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI10_15_IRQHandler
B EXTI10_15_IRQHandler
PUBWEAK RTC_Alarm_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
RTC_Alarm_IRQHandler
B RTC_Alarm_IRQHandler
PUBWEAK USBFS_WKUP_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBFS_WKUP_IRQHandler
B USBFS_WKUP_IRQHandler
PUBWEAK TIMER7_BRK_TIMER11_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER7_BRK_TIMER11_IRQHandler
B TIMER7_BRK_TIMER11_IRQHandler
PUBWEAK TIMER7_UP_TIMER12_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER7_UP_TIMER12_IRQHandler
B TIMER7_UP_TIMER12_IRQHandler
PUBWEAK TIMER7_TRG_CMT_TIMER13_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER7_TRG_CMT_TIMER13_IRQHandler
B TIMER7_TRG_CMT_TIMER13_IRQHandler
PUBWEAK TIMER7_CC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER7_CC_IRQHandler
B TIMER7_CC_IRQHandler
PUBWEAK DMA0_Channel7_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel7_IRQHandler
B DMA0_Channel7_IRQHandler
PUBWEAK EXMC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXMC_IRQHandler
B EXMC_IRQHandler
PUBWEAK SDIO_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SDIO_IRQHandler
B SDIO_IRQHandler
PUBWEAK TIMER4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER4_IRQHandler
B TIMER4_IRQHandler
PUBWEAK SPI2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SPI2_IRQHandler
B SPI2_IRQHandler
PUBWEAK UART3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
UART3_IRQHandler
B UART3_IRQHandler
PUBWEAK UART4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
UART4_IRQHandler
B UART4_IRQHandler
PUBWEAK TIMER5_DAC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER5_DAC_IRQHandler
B TIMER5_DAC_IRQHandler
PUBWEAK TIMER6_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER6_IRQHandler
B TIMER6_IRQHandler
PUBWEAK DMA1_Channel0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel0_IRQHandler
B DMA1_Channel0_IRQHandler
PUBWEAK DMA1_Channel1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel1_IRQHandler
B DMA1_Channel1_IRQHandler
PUBWEAK DMA1_Channel2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel2_IRQHandler
B DMA1_Channel2_IRQHandler
PUBWEAK DMA1_Channel3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel3_IRQHandler
B DMA1_Channel3_IRQHandler
PUBWEAK DMA1_Channel4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel4_IRQHandler
B DMA1_Channel4_IRQHandler
PUBWEAK ENET_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
ENET_IRQHandler
B ENET_IRQHandler
PUBWEAK ENET_WKUP_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
ENET_WKUP_IRQHandler
B ENET_WKUP_IRQHandler
PUBWEAK CAN1_TX_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN1_TX_IRQHandler
B CAN1_TX_IRQHandler
PUBWEAK CAN1_RX0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN1_RX0_IRQHandler
B CAN1_RX0_IRQHandler
PUBWEAK CAN1_RX1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN1_RX1_IRQHandler
B CAN1_RX1_IRQHandler
PUBWEAK CAN1_EWMC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN1_EWMC_IRQHandler
B CAN1_EWMC_IRQHandler
PUBWEAK USBFS_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBFS_IRQHandler
B USBFS_IRQHandler
PUBWEAK DMA1_Channel5_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel5_IRQHandler
B DMA1_Channel5_IRQHandler
PUBWEAK DMA1_Channel6_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel6_IRQHandler
B DMA1_Channel6_IRQHandler
PUBWEAK DMA1_Channel7_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel7_IRQHandler
B DMA1_Channel7_IRQHandler
PUBWEAK USART5_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USART5_IRQHandler
B USART5_IRQHandler
PUBWEAK I2C2_EV_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C2_EV_IRQHandler
B I2C2_EV_IRQHandler
PUBWEAK I2C2_ER_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C2_ER_IRQHandler
B I2C2_ER_IRQHandler
PUBWEAK USBHS_EP1_Out_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBHS_EP1_Out_IRQHandler
B USBHS_EP1_Out_IRQHandler
PUBWEAK USBHS_EP1_In_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBHS_EP1_In_IRQHandler
B USBHS_EP1_In_IRQHandler
PUBWEAK USBHS_WKUP_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBHS_WKUP_IRQHandler
B USBHS_WKUP_IRQHandler
PUBWEAK USBHS_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBHS_IRQHandler
B USBHS_IRQHandler
PUBWEAK DCI_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DCI_IRQHandler
B DCI_IRQHandler
PUBWEAK TRNG_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TRNG_IRQHandler
B TRNG_IRQHandler
PUBWEAK FPU_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
FPU_IRQHandler
B FPU_IRQHandler
PUBWEAK UART6_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
UART6_IRQHandler
B UART6_IRQHandler
PUBWEAK UART7_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
UART7_IRQHandler
B UART7_IRQHandler
PUBWEAK SPI3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SPI3_IRQHandler
B SPI3_IRQHandler
PUBWEAK SPI4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SPI4_IRQHandler
B SPI4_IRQHandler
PUBWEAK SPI5_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SPI5_IRQHandler
B SPI5_IRQHandler
PUBWEAK TLI_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TLI_IRQHandler
B TLI_IRQHandler
PUBWEAK TLI_ER_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TLI_ER_IRQHandler
B TLI_ER_IRQHandler
PUBWEAK IPA_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
IPA_IRQHandler
B IPA_IRQHandler
END

View File

@@ -0,0 +1,916 @@
/*!
\file system_gd32f4xx.c
\brief CMSIS Cortex-M4 Device Peripheral Access Layer Source File for
GD32F4xx Device Series
*/
/* Copyright (c) 2012 ARM LIMITED
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of ARM nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.
*
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
/* This file refers the CMSIS standard, some adjustments are made according to GigaDevice chips */
#include "gd32f4xx.h"
/* system frequency define */
#define __IRC16M (IRC16M_VALUE) /* internal 16 MHz RC oscillator frequency */
#define __HXTAL (HXTAL_VALUE) /* high speed crystal oscillator frequency */
#define __SYS_OSC_CLK (__IRC16M) /* main oscillator frequency */
/* select a system clock by uncommenting the following line */
//#define __SYSTEM_CLOCK_IRC16M (uint32_t)(__IRC16M)
//#define __SYSTEM_CLOCK_HXTAL (uint32_t)(__HXTAL)
//#define __SYSTEM_CLOCK_120M_PLL_IRC16M (uint32_t)(120000000)
#define __SYSTEM_CLOCK_120M_PLL_8M_HXTAL (uint32_t)(120000000)
//#define __SYSTEM_CLOCK_120M_PLL_25M_HXTAL (uint32_t)(120000000)
//#define __SYSTEM_CLOCK_168M_PLL_IRC16M (uint32_t)(168000000)
//#define __SYSTEM_CLOCK_168M_PLL_8M_HXTAL (uint32_t)(168000000)
//#define __SYSTEM_CLOCK_168M_PLL_25M_HXTAL (uint32_t)(168000000)
//#define __SYSTEM_CLOCK_200M_PLL_IRC16M (uint32_t)(200000000)
//#define __SYSTEM_CLOCK_200M_PLL_8M_HXTAL (uint32_t)(200000000)
//#define __SYSTEM_CLOCK_200M_PLL_25M_HXTAL (uint32_t)(200000000)
#define SEL_IRC16M 0x00U
#define SEL_HXTAL 0x01U
#define SEL_PLLP 0x02U
#define RCU_MODIFY {uint32_t i; \
RCU_CFG0 |= RCU_AHB_CKSYS_DIV2; \
for(i=0;i<20;i++);}
/* set the system clock frequency and declare the system clock configuration function */
#ifdef __SYSTEM_CLOCK_IRC16M
uint32_t SystemCoreClock = __SYSTEM_CLOCK_IRC16M;
static void system_clock_16m_irc16m(void);
#elif defined (__SYSTEM_CLOCK_HXTAL)
uint32_t SystemCoreClock = __SYSTEM_CLOCK_HXTAL;
static void system_clock_hxtal(void);
#elif defined (__SYSTEM_CLOCK_120M_PLL_IRC16M)
uint32_t SystemCoreClock = __SYSTEM_CLOCK_120M_PLL_IRC16M;
static void system_clock_120m_irc16m(void);
#elif defined (__SYSTEM_CLOCK_120M_PLL_8M_HXTAL)
uint32_t SystemCoreClock = __SYSTEM_CLOCK_120M_PLL_8M_HXTAL;
static void system_clock_120m_8m_hxtal(void);
#elif defined (__SYSTEM_CLOCK_120M_PLL_25M_HXTAL)
uint32_t SystemCoreClock = __SYSTEM_CLOCK_120M_PLL_25M_HXTAL;
static void system_clock_120m_25m_hxtal(void);
#elif defined (__SYSTEM_CLOCK_168M_PLL_IRC16M)
uint32_t SystemCoreClock = __SYSTEM_CLOCK_168M_PLL_IRC16M;
static void system_clock_168m_irc16m(void);
#elif defined (__SYSTEM_CLOCK_168M_PLL_8M_HXTAL)
uint32_t SystemCoreClock = __SYSTEM_CLOCK_168M_PLL_8M_HXTAL;
static void system_clock_168m_8m_hxtal(void);
#elif defined (__SYSTEM_CLOCK_168M_PLL_25M_HXTAL)
uint32_t SystemCoreClock = __SYSTEM_CLOCK_168M_PLL_25M_HXTAL;
static void system_clock_168m_25m_hxtal(void);
#elif defined (__SYSTEM_CLOCK_200M_PLL_IRC16M)
uint32_t SystemCoreClock = __SYSTEM_CLOCK_200M_PLL_IRC16M;
static void system_clock_200m_irc16m(void);
#elif defined (__SYSTEM_CLOCK_200M_PLL_8M_HXTAL)
uint32_t SystemCoreClock = __SYSTEM_CLOCK_200M_PLL_8M_HXTAL;
static void system_clock_200m_8m_hxtal(void);
#elif defined (__SYSTEM_CLOCK_200M_PLL_25M_HXTAL)
uint32_t SystemCoreClock = __SYSTEM_CLOCK_200M_PLL_25M_HXTAL;
static void system_clock_200m_25m_hxtal(void);
#endif /* __SYSTEM_CLOCK_IRC16M */
/* configure the system clock */
static void system_clock_config(void);
/*!
\brief setup the microcontroller system, initialize the system
\param[in] none
\param[out] none
\retval none
*/
void SystemInit (void)
{
/* FPU settings ------------------------------------------------------------*/
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
SCB->CPACR |= ((3UL << 10*2)|(3UL << 11*2)); /* set CP10 and CP11 Full Access */
#endif
/* Reset the RCU clock configuration to the default reset state ------------*/
/* Set IRC16MEN bit */
RCU_CTL |= RCU_CTL_IRC16MEN;
RCU_MODIFY
/* Reset CFG0 register */
RCU_CFG0 = 0x00000000U;
/* Reset HXTALEN, CKMEN and PLLEN bits */
RCU_CTL &= ~(RCU_CTL_PLLEN | RCU_CTL_CKMEN | RCU_CTL_HXTALEN);
/* Reset PLLCFGR register */
RCU_PLL = 0x24003010U;
/* Reset HSEBYP bit */
RCU_CTL &= ~(RCU_CTL_HXTALBPS);
/* Disable all interrupts */
RCU_INT = 0x00000000U;
/* Configure the System clock source, PLL Multiplier and Divider factors,
AHB/APBx prescalers and Flash settings ----------------------------------*/
system_clock_config();
}
/*!
\brief configure the system clock
\param[in] none
\param[out] none
\retval none
*/
static void system_clock_config(void)
{
#ifdef __SYSTEM_CLOCK_IRC16M
system_clock_16m_irc16m();
#elif defined (__SYSTEM_CLOCK_HXTAL)
system_clock_hxtal();
#elif defined (__SYSTEM_CLOCK_120M_PLL_IRC16M)
system_clock_120m_irc16m();
#elif defined (__SYSTEM_CLOCK_120M_PLL_8M_HXTAL)
system_clock_120m_8m_hxtal();
#elif defined (__SYSTEM_CLOCK_120M_PLL_25M_HXTAL)
system_clock_120m_25m_hxtal();
#elif defined (__SYSTEM_CLOCK_168M_PLL_IRC16M)
system_clock_168m_irc16m();
#elif defined (__SYSTEM_CLOCK_168M_PLL_8M_HXTAL)
system_clock_168m_8m_hxtal();
#elif defined (__SYSTEM_CLOCK_168M_PLL_25M_HXTAL)
system_clock_168m_25m_hxtal();
#elif defined (__SYSTEM_CLOCK_200M_PLL_IRC16M)
system_clock_200m_irc16m();
#elif defined (__SYSTEM_CLOCK_200M_PLL_8M_HXTAL)
system_clock_200m_8m_hxtal();
#elif defined (__SYSTEM_CLOCK_200M_PLL_25M_HXTAL)
system_clock_200m_25m_hxtal();
#endif /* __SYSTEM_CLOCK_IRC16M */
}
#ifdef __SYSTEM_CLOCK_IRC16M
/*!
\brief configure the system clock to 16M by IRC16M
\param[in] none
\param[out] none
\retval none
*/
static void system_clock_16m_irc16m(void)
{
uint32_t timeout = 0U;
uint32_t stab_flag = 0U;
/* enable IRC16M */
RCU_CTL |= RCU_CTL_IRC16MEN;
/* wait until IRC16M is stable or the startup time is longer than IRC16M_STARTUP_TIMEOUT */
do{
timeout++;
stab_flag = (RCU_CTL & RCU_CTL_IRC16MSTB);
}while((0U == stab_flag) && (IRC16M_STARTUP_TIMEOUT != timeout));
/* if fail */
if(0U == (RCU_CTL & RCU_CTL_IRC16MSTB)){
while(1){
}
}
/* AHB = SYSCLK */
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
/* APB2 = AHB */
RCU_CFG0 |= RCU_APB2_CKAHB_DIV1;
/* APB1 = AHB */
RCU_CFG0 |= RCU_APB1_CKAHB_DIV1;
/* select IRC16M as system clock */
RCU_CFG0 &= ~RCU_CFG0_SCS;
RCU_CFG0 |= RCU_CKSYSSRC_IRC16M;
/* wait until IRC16M is selected as system clock */
while(0 != (RCU_CFG0 & RCU_SCSS_IRC16M)){
}
}
#elif defined (__SYSTEM_CLOCK_HXTAL)
/*!
\brief configure the system clock to HXTAL
\param[in] none
\param[out] none
\retval none
*/
static void system_clock_hxtal(void)
{
uint32_t timeout = 0U;
uint32_t stab_flag = 0U;
/* enable HXTAL */
RCU_CTL |= RCU_CTL_HXTALEN;
/* wait until HXTAL is stable or the startup time is longer than HXTAL_STARTUP_TIMEOUT */
do{
timeout++;
stab_flag = (RCU_CTL & RCU_CTL_HXTALSTB);
}while((0U == stab_flag) && (HXTAL_STARTUP_TIMEOUT != timeout));
/* if fail */
if(0U == (RCU_CTL & RCU_CTL_HXTALSTB)){
while(1){
}
}
/* AHB = SYSCLK */
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
/* APB2 = AHB */
RCU_CFG0 |= RCU_APB2_CKAHB_DIV1;
/* APB1 = AHB */
RCU_CFG0 |= RCU_APB1_CKAHB_DIV1;
/* select HXTAL as system clock */
RCU_CFG0 &= ~RCU_CFG0_SCS;
RCU_CFG0 |= RCU_CKSYSSRC_HXTAL;
/* wait until HXTAL is selected as system clock */
while(0 == (RCU_CFG0 & RCU_SCSS_HXTAL)){
}
}
#elif defined (__SYSTEM_CLOCK_120M_PLL_IRC16M)
/*!
\brief configure the system clock to 120M by PLL which selects IRC16M as its clock source
\param[in] none
\param[out] none
\retval none
*/
static void system_clock_120m_irc16m(void)
{
uint32_t timeout = 0U;
uint32_t stab_flag = 0U;
/* enable IRC16M */
RCU_CTL |= RCU_CTL_IRC16MEN;
/* wait until IRC16M is stable or the startup time is longer than IRC16M_STARTUP_TIMEOUT */
do{
timeout++;
stab_flag = (RCU_CTL & RCU_CTL_IRC16MSTB);
}while((0U == stab_flag) && (IRC16M_STARTUP_TIMEOUT != timeout));
/* if fail */
if(0U == (RCU_CTL & RCU_CTL_IRC16MSTB)){
while(1){
}
}
RCU_APB1EN |= RCU_APB1EN_PMUEN;
PMU_CTL |= PMU_CTL_LDOVS;
/* IRC16M is stable */
/* AHB = SYSCLK */
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
/* APB2 = AHB/2 */
RCU_CFG0 |= RCU_APB2_CKAHB_DIV2;
/* APB1 = AHB/4 */
RCU_CFG0 |= RCU_APB1_CKAHB_DIV4;
/* Configure the main PLL, PLL_M = 16, PLL_N = 240, PLL_P = 2, PLL_Q = 5 */
RCU_PLL = (16U | (240U << 6U) | (((2U >> 1U) - 1U) << 16U) |
(RCU_PLLSRC_IRC16M) | (5U << 24U));
/* enable PLL */
RCU_CTL |= RCU_CTL_PLLEN;
/* wait until PLL is stable */
while(0U == (RCU_CTL & RCU_CTL_PLLSTB)){
}
/* Enable the high-drive to extend the clock frequency to 120 Mhz */
PMU_CTL |= PMU_CTL_HDEN;
while(0U == (PMU_CS & PMU_CS_HDRF)){
}
/* select the high-drive mode */
PMU_CTL |= PMU_CTL_HDS;
while(0U == (PMU_CS & PMU_CS_HDSRF)){
}
/* select PLL as system clock */
RCU_CFG0 &= ~RCU_CFG0_SCS;
RCU_CFG0 |= RCU_CKSYSSRC_PLLP;
/* wait until PLL is selected as system clock */
while(0U == (RCU_CFG0 & RCU_SCSS_PLLP)){
}
}
#elif defined (__SYSTEM_CLOCK_120M_PLL_8M_HXTAL)
/*!
\brief configure the system clock to 120M by PLL which selects HXTAL(8M) as its clock source
\param[in] none
\param[out] none
\retval none
*/
static void system_clock_120m_8m_hxtal(void)
{
uint32_t timeout = 0U;
uint32_t stab_flag = 0U;
/* enable HXTAL */
RCU_CTL |= RCU_CTL_HXTALEN;
/* wait until HXTAL is stable or the startup time is longer than HXTAL_STARTUP_TIMEOUT */
do{
timeout++;
stab_flag = (RCU_CTL & RCU_CTL_HXTALSTB);
}while((0U == stab_flag) && (HXTAL_STARTUP_TIMEOUT != timeout));
/* if fail */
if(0U == (RCU_CTL & RCU_CTL_HXTALSTB)){
while(1){
}
}
RCU_APB1EN |= RCU_APB1EN_PMUEN;
PMU_CTL |= PMU_CTL_LDOVS;
/* HXTAL is stable */
/* AHB = SYSCLK */
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
/* APB2 = AHB/2 */
RCU_CFG0 |= RCU_APB2_CKAHB_DIV2;
/* APB1 = AHB/4 */
RCU_CFG0 |= RCU_APB1_CKAHB_DIV4;
/* Configure the main PLL, PLL_M = 8, PLL_N = 240, PLL_P = 2, PLL_Q = 5 */
RCU_PLL = (8U | (240U << 6U) | (((2U >> 1U) - 1U) << 16U) |
(RCU_PLLSRC_HXTAL) | (5U << 24U));
/* enable PLL */
RCU_CTL |= RCU_CTL_PLLEN;
/* wait until PLL is stable */
while(0U == (RCU_CTL & RCU_CTL_PLLSTB)){
}
/* Enable the high-drive to extend the clock frequency to 120 Mhz */
PMU_CTL |= PMU_CTL_HDEN;
while(0U == (PMU_CS & PMU_CS_HDRF)){
}
/* select the high-drive mode */
PMU_CTL |= PMU_CTL_HDS;
while(0U == (PMU_CS & PMU_CS_HDSRF)){
}
/* select PLL as system clock */
RCU_CFG0 &= ~RCU_CFG0_SCS;
RCU_CFG0 |= RCU_CKSYSSRC_PLLP;
/* wait until PLL is selected as system clock */
while(0U == (RCU_CFG0 & RCU_SCSS_PLLP)){
}
}
#elif defined (__SYSTEM_CLOCK_120M_PLL_25M_HXTAL)
/*!
\brief configure the system clock to 120M by PLL which selects HXTAL(25M) as its clock source
\param[in] none
\param[out] none
\retval none
*/
static void system_clock_120m_25m_hxtal(void)
{
uint32_t timeout = 0U;
uint32_t stab_flag = 0U;
/* enable HXTAL */
RCU_CTL |= RCU_CTL_HXTALEN;
/* wait until HXTAL is stable or the startup time is longer than HXTAL_STARTUP_TIMEOUT */
do{
timeout++;
stab_flag = (RCU_CTL & RCU_CTL_HXTALSTB);
}while((0U == stab_flag) && (HXTAL_STARTUP_TIMEOUT != timeout));
/* if fail */
if(0U == (RCU_CTL & RCU_CTL_HXTALSTB)){
while(1){
}
}
RCU_APB1EN |= RCU_APB1EN_PMUEN;
PMU_CTL |= PMU_CTL_LDOVS;
/* HXTAL is stable */
/* AHB = SYSCLK */
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
/* APB2 = AHB/2 */
RCU_CFG0 |= RCU_APB2_CKAHB_DIV2;
/* APB1 = AHB/4 */
RCU_CFG0 |= RCU_APB1_CKAHB_DIV4;
/* Configure the main PLL, PLL_M = 25, PLL_N = 240, PLL_P = 2, PLL_Q = 5 */
RCU_PLL = (25U | (240U << 6U) | (((2U >> 1U) - 1U) << 16U) |
(RCU_PLLSRC_HXTAL) | (5U << 24U));
/* enable PLL */
RCU_CTL |= RCU_CTL_PLLEN;
/* wait until PLL is stable */
while(0U == (RCU_CTL & RCU_CTL_PLLSTB)){
}
/* Enable the high-drive to extend the clock frequency to 120 Mhz */
PMU_CTL |= PMU_CTL_HDEN;
while(0U == (PMU_CS & PMU_CS_HDRF)){
}
/* select the high-drive mode */
PMU_CTL |= PMU_CTL_HDS;
while(0U == (PMU_CS & PMU_CS_HDSRF)){
}
/* select PLL as system clock */
RCU_CFG0 &= ~RCU_CFG0_SCS;
RCU_CFG0 |= RCU_CKSYSSRC_PLLP;
/* wait until PLL is selected as system clock */
while(0U == (RCU_CFG0 & RCU_SCSS_PLLP)){
}
}
#elif defined (__SYSTEM_CLOCK_168M_PLL_IRC16M)
/*!
\brief configure the system clock to 168M by PLL which selects IRC16M as its clock source
\param[in] none
\param[out] none
\retval none
*/
static void system_clock_168m_irc16m(void)
{
uint32_t timeout = 0U;
uint32_t stab_flag = 0U;
/* enable IRC16M */
RCU_CTL |= RCU_CTL_IRC16MEN;
/* wait until IRC16M is stable or the startup time is longer than IRC16M_STARTUP_TIMEOUT */
do{
timeout++;
stab_flag = (RCU_CTL & RCU_CTL_IRC16MSTB);
}while((0U == stab_flag) && (IRC16M_STARTUP_TIMEOUT != timeout));
/* if fail */
if(0U == (RCU_CTL & RCU_CTL_IRC16MSTB)){
while(1){
}
}
RCU_APB1EN |= RCU_APB1EN_PMUEN;
PMU_CTL |= PMU_CTL_LDOVS;
/* IRC16M is stable */
/* AHB = SYSCLK */
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
/* APB2 = AHB/2 */
RCU_CFG0 |= RCU_APB2_CKAHB_DIV2;
/* APB1 = AHB/4 */
RCU_CFG0 |= RCU_APB1_CKAHB_DIV4;
/* Configure the main PLL, PLL_M = 16, PLL_N = 336, PLL_P = 2, PLL_Q = 7 */
RCU_PLL = (16U | (336U << 6U) | (((2U >> 1U) - 1U) << 16U) |
(RCU_PLLSRC_IRC16M) | (7U << 24U));
/* enable PLL */
RCU_CTL |= RCU_CTL_PLLEN;
/* wait until PLL is stable */
while(0U == (RCU_CTL & RCU_CTL_PLLSTB)){
}
/* Enable the high-drive to extend the clock frequency to 168 Mhz */
PMU_CTL |= PMU_CTL_HDEN;
while(0U == (PMU_CS & PMU_CS_HDRF)){
}
/* select the high-drive mode */
PMU_CTL |= PMU_CTL_HDS;
while(0U == (PMU_CS & PMU_CS_HDSRF)){
}
/* select PLL as system clock */
RCU_CFG0 &= ~RCU_CFG0_SCS;
RCU_CFG0 |= RCU_CKSYSSRC_PLLP;
/* wait until PLL is selected as system clock */
while(0U == (RCU_CFG0 & RCU_SCSS_PLLP)){
}
}
#elif defined (__SYSTEM_CLOCK_168M_PLL_8M_HXTAL)
/*!
\brief configure the system clock to 168M by PLL which selects HXTAL(8M) as its clock source
\param[in] none
\param[out] none
\retval none
*/
static void system_clock_168m_8m_hxtal(void)
{
uint32_t timeout = 0U;
/* enable HXTAL */
RCU_CTL |= RCU_CTL_HXTALEN;
/* wait until HXTAL is stable or the startup time is longer than HXTAL_STARTUP_TIMEOUT */
while((0U == (RCU_CTL & RCU_CTL_HXTALSTB)) && (HXTAL_STARTUP_TIMEOUT != timeout++)){
}
/* if fail */
if(0U == (RCU_CTL & RCU_CTL_HXTALSTB)){
while(1){
}
}
RCU_APB1EN |= RCU_APB1EN_PMUEN;
PMU_CTL |= PMU_CTL_LDOVS;
/* HXTAL is stable */
/* AHB = SYSCLK */
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
/* APB2 = AHB/2 */
RCU_CFG0 |= RCU_APB2_CKAHB_DIV2;
/* APB1 = AHB/4 */
RCU_CFG0 |= RCU_APB1_CKAHB_DIV4;
/* Configure the main PLL, PLL_M = 8, PLL_N = 336, PLL_P = 2, PLL_Q = 7 */
RCU_PLL = (8U | (336 << 6U) | (((2 >> 1U) -1U) << 16U) |
(RCU_PLLSRC_HXTAL) | (7 << 24U));
/* enable PLL */
RCU_CTL |= RCU_CTL_PLLEN;
/* wait until PLL is stable */
while(0U == (RCU_CTL & RCU_CTL_PLLSTB)){
}
/* Enable the high-drive to extend the clock frequency to 168 Mhz */
PMU_CTL |= PMU_CTL_HDEN;
while(0U == (PMU_CS & PMU_CS_HDRF)){
}
/* select the high-drive mode */
PMU_CTL |= PMU_CTL_HDS;
while(0U == (PMU_CS & PMU_CS_HDSRF)){
}
/* select PLL as system clock */
RCU_CFG0 &= ~RCU_CFG0_SCS;
RCU_CFG0 |= RCU_CKSYSSRC_PLLP;
/* wait until PLL is selected as system clock */
while(0U == (RCU_CFG0 & RCU_SCSS_PLLP)){
}
}
#elif defined (__SYSTEM_CLOCK_168M_PLL_25M_HXTAL)
/*!
\brief configure the system clock to 168M by PLL which selects HXTAL(25M) as its clock source
\param[in] none
\param[out] none
\retval none
*/
static void system_clock_168m_25m_hxtal(void)
{
uint32_t timeout = 0U;
uint32_t stab_flag = 0U;
/* enable HXTAL */
RCU_CTL |= RCU_CTL_HXTALEN;
/* wait until HXTAL is stable or the startup time is longer than HXTAL_STARTUP_TIMEOUT */
do{
timeout++;
stab_flag = (RCU_CTL & RCU_CTL_HXTALSTB);
}while((0U == stab_flag) && (HXTAL_STARTUP_TIMEOUT != timeout));
/* if fail */
if(0U == (RCU_CTL & RCU_CTL_HXTALSTB)){
while(1){
}
}
RCU_APB1EN |= RCU_APB1EN_PMUEN;
PMU_CTL |= PMU_CTL_LDOVS;
/* HXTAL is stable */
/* AHB = SYSCLK */
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
/* APB2 = AHB */
RCU_CFG0 |= RCU_APB2_CKAHB_DIV2;
/* APB1 = AHB */
RCU_CFG0 |= RCU_APB1_CKAHB_DIV4;
/* Configure the main PLL, PLL_M = 25, PLL_N = 336, PLL_P = 2, PLL_Q = 7 */
RCU_PLL = (25U | (336U << 6U) | (((2U >> 1U) - 1U) << 16U) |
(RCU_PLLSRC_HXTAL) | (7U << 24U));
/* enable PLL */
RCU_CTL |= RCU_CTL_PLLEN;
/* wait until PLL is stable */
while(0U == (RCU_CTL & RCU_CTL_PLLSTB)){
}
/* Enable the high-drive to extend the clock frequency to 168 Mhz */
PMU_CTL |= PMU_CTL_HDEN;
while(0U == (PMU_CS & PMU_CS_HDRF)){
}
/* select the high-drive mode */
PMU_CTL |= PMU_CTL_HDS;
while(0U == (PMU_CS & PMU_CS_HDSRF)){
}
/* select PLL as system clock */
RCU_CFG0 &= ~RCU_CFG0_SCS;
RCU_CFG0 |= RCU_CKSYSSRC_PLLP;
/* wait until PLL is selected as system clock */
while(0U == (RCU_CFG0 & RCU_SCSS_PLLP)){
}
}
#elif defined (__SYSTEM_CLOCK_200M_PLL_IRC16M)
/*!
\brief configure the system clock to 200M by PLL which selects IRC16M as its clock source
\param[in] none
\param[out] none
\retval none
*/
static void system_clock_200m_irc16m(void)
{
uint32_t timeout = 0U;
uint32_t stab_flag = 0U;
/* enable IRC16M */
RCU_CTL |= RCU_CTL_IRC16MEN;
/* wait until IRC16M is stable or the startup time is longer than IRC16M_STARTUP_TIMEOUT */
do{
timeout++;
stab_flag = (RCU_CTL & RCU_CTL_IRC16MSTB);
}while((0U == stab_flag) && (IRC16M_STARTUP_TIMEOUT != timeout));
/* if fail */
if(0U == (RCU_CTL & RCU_CTL_IRC16MSTB)){
while(1){
}
}
RCU_APB1EN |= RCU_APB1EN_PMUEN;
PMU_CTL |= PMU_CTL_LDOVS;
/* IRC16M is stable */
/* AHB = SYSCLK */
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
/* APB2 = AHB/2 */
RCU_CFG0 |= RCU_APB2_CKAHB_DIV2;
/* APB1 = AHB/4 */
RCU_CFG0 |= RCU_APB1_CKAHB_DIV4;
/* Configure the main PLL, PLL_M = 16, PLL_N = 400, PLL_P = 2, PLL_Q = 9 */
RCU_PLL = (16U | (400U << 6U) | (((2U >> 1U) - 1U) << 16U) |
(RCU_PLLSRC_IRC16M) | (9U << 24U));
/* enable PLL */
RCU_CTL |= RCU_CTL_PLLEN;
/* wait until PLL is stable */
while(0U == (RCU_CTL & RCU_CTL_PLLSTB)){
}
/* Enable the high-drive to extend the clock frequency to 200 Mhz */
PMU_CTL |= PMU_CTL_HDEN;
while(0U == (PMU_CS & PMU_CS_HDRF)){
}
/* select the high-drive mode */
PMU_CTL |= PMU_CTL_HDS;
while(0U == (PMU_CS & PMU_CS_HDSRF)){
}
/* select PLL as system clock */
RCU_CFG0 &= ~RCU_CFG0_SCS;
RCU_CFG0 |= RCU_CKSYSSRC_PLLP;
/* wait until PLL is selected as system clock */
while(0U == (RCU_CFG0 & RCU_SCSS_PLLP)){
}
}
#elif defined (__SYSTEM_CLOCK_200M_PLL_8M_HXTAL)
/*!
\brief configure the system clock to 200M by PLL which selects HXTAL(8M) as its clock source
\param[in] none
\param[out] none
\retval none
*/
static void system_clock_200m_8m_hxtal(void)
{
uint32_t timeout = 0U;
uint32_t stab_flag = 0U;
/* enable HXTAL */
RCU_CTL |= RCU_CTL_HXTALEN;
/* wait until HXTAL is stable or the startup time is longer than HXTAL_STARTUP_TIMEOUT */
do{
timeout++;
stab_flag = (RCU_CTL & RCU_CTL_HXTALSTB);
}while((0U == stab_flag) && (HXTAL_STARTUP_TIMEOUT != timeout));
/* if fail */
if(0U == (RCU_CTL & RCU_CTL_HXTALSTB)){
while(1){
}
}
RCU_APB1EN |= RCU_APB1EN_PMUEN;
PMU_CTL |= PMU_CTL_LDOVS;
/* HXTAL is stable */
/* AHB = SYSCLK */
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
/* APB2 = AHB/2 */
RCU_CFG0 |= RCU_APB2_CKAHB_DIV2;
/* APB1 = AHB/4 */
RCU_CFG0 |= RCU_APB1_CKAHB_DIV4;
/* Configure the main PLL, PLL_M = 8, PLL_N = 400, PLL_P = 2, PLL_Q = 9 */
RCU_PLL = (8U | (400U << 6U) | (((2U >> 1U) - 1U) << 16U) |
(RCU_PLLSRC_HXTAL) | (9U << 24U));
/* enable PLL */
RCU_CTL |= RCU_CTL_PLLEN;
/* wait until PLL is stable */
while(0U == (RCU_CTL & RCU_CTL_PLLSTB)){
}
/* Enable the high-drive to extend the clock frequency to 200 Mhz */
PMU_CTL |= PMU_CTL_HDEN;
while(0U == (PMU_CS & PMU_CS_HDRF)){
}
/* select the high-drive mode */
PMU_CTL |= PMU_CTL_HDS;
while(0U == (PMU_CS & PMU_CS_HDSRF)){
}
/* select PLL as system clock */
RCU_CFG0 &= ~RCU_CFG0_SCS;
RCU_CFG0 |= RCU_CKSYSSRC_PLLP;
/* wait until PLL is selected as system clock */
while(0U == (RCU_CFG0 & RCU_SCSS_PLLP)){
}
}
#elif defined (__SYSTEM_CLOCK_200M_PLL_25M_HXTAL)
/*!
\brief configure the system clock to 200M by PLL which selects HXTAL(25M) as its clock source
\param[in] none
\param[out] none
\retval none
*/
static void system_clock_200m_25m_hxtal(void)
{
uint32_t timeout = 0U;
uint32_t stab_flag = 0U;
/* enable HXTAL */
RCU_CTL |= RCU_CTL_HXTALEN;
/* wait until HXTAL is stable or the startup time is longer than HXTAL_STARTUP_TIMEOUT */
do{
timeout++;
stab_flag = (RCU_CTL & RCU_CTL_HXTALSTB);
}while((0U == stab_flag) && (HXTAL_STARTUP_TIMEOUT != timeout));
/* if fail */
if(0U == (RCU_CTL & RCU_CTL_HXTALSTB)){
while(1){
}
}
RCU_APB1EN |= RCU_APB1EN_PMUEN;
PMU_CTL |= PMU_CTL_LDOVS;
/* HXTAL is stable */
/* AHB = SYSCLK */
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
/* APB2 = AHB/2 */
RCU_CFG0 |= RCU_APB2_CKAHB_DIV2;
/* APB1 = AHB/4 */
RCU_CFG0 |= RCU_APB1_CKAHB_DIV4;
/* Configure the main PLL, PLL_M = 25, PLL_N = 400, PLL_P = 2, PLL_Q = 9 */
RCU_PLL = (25U | (400U << 6U) | (((2U >> 1U) - 1U) << 16U) |
(RCU_PLLSRC_HXTAL) | (9U << 24U));
/* enable PLL */
RCU_CTL |= RCU_CTL_PLLEN;
/* wait until PLL is stable */
while(0U == (RCU_CTL & RCU_CTL_PLLSTB)){
}
/* Enable the high-drive to extend the clock frequency to 200 Mhz */
PMU_CTL |= PMU_CTL_HDEN;
while(0U == (PMU_CS & PMU_CS_HDRF)){
}
/* select the high-drive mode */
PMU_CTL |= PMU_CTL_HDS;
while(0U == (PMU_CS & PMU_CS_HDSRF)){
}
/* select PLL as system clock */
RCU_CFG0 &= ~RCU_CFG0_SCS;
RCU_CFG0 |= RCU_CKSYSSRC_PLLP;
/* wait until PLL is selected as system clock */
while(0U == (RCU_CFG0 & RCU_SCSS_PLLP)){
}
}
#endif /* __SYSTEM_CLOCK_IRC16M */
/*!
\brief update the SystemCoreClock with current core clock retrieved from cpu registers
\param[in] none
\param[out] none
\retval none
*/
void SystemCoreClockUpdate (void)
{
uint32_t sws;
uint32_t pllpsc, plln, pllsel, pllp, ck_src, idx, clk_exp;
/* exponent of AHB, APB1 and APB2 clock divider */
const uint8_t ahb_exp[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
sws = GET_BITS(RCU_CFG0, 2, 3);
switch(sws){
/* IRC16M is selected as CK_SYS */
case SEL_IRC16M:
SystemCoreClock = IRC16M_VALUE;
break;
/* HXTAL is selected as CK_SYS */
case SEL_HXTAL:
SystemCoreClock = HXTAL_VALUE;
break;
/* PLLP is selected as CK_SYS */
case SEL_PLLP:
/* get the value of PLLPSC[5:0] */
pllpsc = GET_BITS(RCU_PLL, 0U, 5U);
plln = GET_BITS(RCU_PLL, 6U, 14U);
pllp = (GET_BITS(RCU_PLL, 16U, 17U) + 1U) * 2U;
/* PLL clock source selection, HXTAL or IRC8M/2 */
pllsel = (RCU_PLL & RCU_PLL_PLLSEL);
if (RCU_PLLSRC_HXTAL == pllsel) {
ck_src = HXTAL_VALUE;
} else {
ck_src = IRC16M_VALUE;
}
SystemCoreClock = ((ck_src / pllpsc) * plln)/pllp;
break;
/* IRC16M is selected as CK_SYS */
default:
SystemCoreClock = IRC16M_VALUE;
break;
}
/* calculate AHB clock frequency */
idx = GET_BITS(RCU_CFG0, 4, 7);
clk_exp = ahb_exp[idx];
SystemCoreClock = SystemCoreClock >> clk_exp;
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,697 @@
/**************************************************************************//**
* @file core_cm4_simd.h
* @brief CMSIS Cortex-M4 SIMD Header File
* @version V3.30
* @date 17. February 2014
*
* @note
*
******************************************************************************/
/* Copyright (c) 2009 - 2014 ARM LIMITED
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of ARM nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.
*
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#endif
#ifndef __CORE_CM4_SIMD_H
#define __CORE_CM4_SIMD_H
#ifdef __cplusplus
extern "C" {
#endif
/*******************************************************************************
* Hardware Abstraction Layer
******************************************************************************/
/* ################### Compiler specific Intrinsics ########################### */
/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
Access to dedicated SIMD instructions
@{
*/
#if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/
/* ARM armcc specific functions */
#define __SADD8 __sadd8
#define __QADD8 __qadd8
#define __SHADD8 __shadd8
#define __UADD8 __uadd8
#define __UQADD8 __uqadd8
#define __UHADD8 __uhadd8
#define __SSUB8 __ssub8
#define __QSUB8 __qsub8
#define __SHSUB8 __shsub8
#define __USUB8 __usub8
#define __UQSUB8 __uqsub8
#define __UHSUB8 __uhsub8
#define __SADD16 __sadd16
#define __QADD16 __qadd16
#define __SHADD16 __shadd16
#define __UADD16 __uadd16
#define __UQADD16 __uqadd16
#define __UHADD16 __uhadd16
#define __SSUB16 __ssub16
#define __QSUB16 __qsub16
#define __SHSUB16 __shsub16
#define __USUB16 __usub16
#define __UQSUB16 __uqsub16
#define __UHSUB16 __uhsub16
#define __SASX __sasx
#define __QASX __qasx
#define __SHASX __shasx
#define __UASX __uasx
#define __UQASX __uqasx
#define __UHASX __uhasx
#define __SSAX __ssax
#define __QSAX __qsax
#define __SHSAX __shsax
#define __USAX __usax
#define __UQSAX __uqsax
#define __UHSAX __uhsax
#define __USAD8 __usad8
#define __USADA8 __usada8
#define __SSAT16 __ssat16
#define __USAT16 __usat16
#define __UXTB16 __uxtb16
#define __UXTAB16 __uxtab16
#define __SXTB16 __sxtb16
#define __SXTAB16 __sxtab16
#define __SMUAD __smuad
#define __SMUADX __smuadx
#define __SMLAD __smlad
#define __SMLADX __smladx
#define __SMLALD __smlald
#define __SMLALDX __smlaldx
#define __SMUSD __smusd
#define __SMUSDX __smusdx
#define __SMLSD __smlsd
#define __SMLSDX __smlsdx
#define __SMLSLD __smlsld
#define __SMLSLDX __smlsldx
#define __SEL __sel
#define __QADD __qadd
#define __QSUB __qsub
#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
#define __SMMLA(ARG1,ARG2,ARG3) ( (int32_t)((((int64_t)(ARG1) * (ARG2)) + \
((int64_t)(ARG3) << 32) ) >> 32))
#elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/
/* GNU gcc specific functions */
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
#define __SSAT16(ARG1,ARG2) \
({ \
uint32_t __RES, __ARG1 = (ARG1); \
__ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
__RES; \
})
#define __USAT16(ARG1,ARG2) \
({ \
uint32_t __RES, __ARG1 = (ARG1); \
__ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
__RES; \
})
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UXTB16(uint32_t op1)
{
uint32_t result;
__ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SXTB16(uint32_t op1)
{
uint32_t result;
__ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
{
union llreg_u{
uint32_t w32[2];
uint64_t w64;
} llr;
llr.w64 = acc;
#ifndef __ARMEB__ // Little endian
__ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
#else // Big endian
__ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
#endif
return(llr.w64);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
{
union llreg_u{
uint32_t w32[2];
uint64_t w64;
} llr;
llr.w64 = acc;
#ifndef __ARMEB__ // Little endian
__ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
#else // Big endian
__ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
#endif
return(llr.w64);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
{
union llreg_u{
uint32_t w32[2];
uint64_t w64;
} llr;
llr.w64 = acc;
#ifndef __ARMEB__ // Little endian
__ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
#else // Big endian
__ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
#endif
return(llr.w64);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
{
union llreg_u{
uint32_t w32[2];
uint64_t w64;
} llr;
llr.w64 = acc;
#ifndef __ARMEB__ // Little endian
__ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
#else // Big endian
__ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
#endif
return(llr.w64);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SEL (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
#define __PKHBT(ARG1,ARG2,ARG3) \
({ \
uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
__ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
__RES; \
})
#define __PKHTB(ARG1,ARG2,ARG3) \
({ \
uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
if (ARG3 == 0) \
__ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \
else \
__ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
__RES; \
})
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
{
int32_t result;
__ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
#elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/
/* IAR iccarm specific functions */
#include <cmsis_iar.h>
#elif defined ( __TMS470__ ) /*---------------- TI CCS Compiler ------------------*/
/* TI CCS specific functions */
#include <cmsis_ccs.h>
#elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/
/* TASKING carm specific functions */
/* not yet supported */
#elif defined ( __CSMC__ ) /*------------------ COSMIC Compiler -------------------*/
/* Cosmic specific functions */
#include <cmsis_csm.h>
#endif
/*@} end of group CMSIS_SIMD_intrinsics */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CM4_SIMD_H */

View File

@@ -0,0 +1,461 @@
/*!
\file gd32f4xx_adc.h
\brief definitions for the ADC
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef GD32F4XX_ADC_H
#define GD32F4XX_ADC_H
#include "gd32f4xx.h"
/* ADC definitions */
#define ADC0 ADC_BASE
#define ADC1 (ADC_BASE + 0x100U)
#define ADC2 (ADC_BASE + 0x200U)
/* registers definitions */
#define ADC_STAT(adcx) REG32((adcx) + 0x00U) /*!< ADC status register */
#define ADC_CTL0(adcx) REG32((adcx) + 0x04U) /*!< ADC control register 0 */
#define ADC_CTL1(adcx) REG32((adcx) + 0x08U) /*!< ADC control register 1 */
#define ADC_SAMPT0(adcx) REG32((adcx) + 0x0CU) /*!< ADC sampling time register 0 */
#define ADC_SAMPT1(adcx) REG32((adcx) + 0x10U) /*!< ADC sampling time register 1 */
#define ADC_IOFF0(adcx) REG32((adcx) + 0x14U) /*!< ADC inserted channel data offset register 0 */
#define ADC_IOFF1(adcx) REG32((adcx) + 0x18U) /*!< ADC inserted channel data offset register 1 */
#define ADC_IOFF2(adcx) REG32((adcx) + 0x1CU) /*!< ADC inserted channel data offset register 2 */
#define ADC_IOFF3(adcx) REG32((adcx) + 0x20U) /*!< ADC inserted channel data offset register 3 */
#define ADC_WDHT(adcx) REG32((adcx) + 0x24U) /*!< ADC watchdog high threshold register */
#define ADC_WDLT(adcx) REG32((adcx) + 0x28U) /*!< ADC watchdog low threshold register */
#define ADC_RSQ0(adcx) REG32((adcx) + 0x2CU) /*!< ADC regular sequence register 0 */
#define ADC_RSQ1(adcx) REG32((adcx) + 0x30U) /*!< ADC regular sequence register 1 */
#define ADC_RSQ2(adcx) REG32((adcx) + 0x34U) /*!< ADC regular sequence register 2 */
#define ADC_ISQ(adcx) REG32((adcx) + 0x38U) /*!< ADC inserted sequence register */
#define ADC_IDATA0(adcx) REG32((adcx) + 0x3CU) /*!< ADC inserted data register 0 */
#define ADC_IDATA1(adcx) REG32((adcx) + 0x40U) /*!< ADC inserted data register 1 */
#define ADC_IDATA2(adcx) REG32((adcx) + 0x44U) /*!< ADC inserted data register 2 */
#define ADC_IDATA3(adcx) REG32((adcx) + 0x48U) /*!< ADC inserted data register 3 */
#define ADC_RDATA(adcx) REG32((adcx) + 0x4CU) /*!< ADC regular data register */
#define ADC_OVSAMPCTL(adcx) REG32((adcx) + 0x80U) /*!< ADC oversampling control register */
#define ADC_SSTAT REG32((ADC_BASE) + 0x300U) /*!< ADC summary status register */
#define ADC_SYNCCTL REG32((ADC_BASE) + 0x304U) /*!< ADC synchronization control register */
#define ADC_SYNCDATA REG32((ADC_BASE) + 0x308U) /*!< ADC synchronization regular data register */
/* bits definitions */
/* ADC_STAT */
#define ADC_STAT_WDE BIT(0) /*!< analog watchdog event flag */
#define ADC_STAT_EOC BIT(1) /*!< end of conversion */
#define ADC_STAT_EOIC BIT(2) /*!< inserted channel end of conversion */
#define ADC_STAT_STIC BIT(3) /*!< inserted channel start flag */
#define ADC_STAT_STRC BIT(4) /*!< regular channel start flag */
#define ADC_STAT_ROVF BIT(5) /*!< regular data register overflow */
/* ADC_CTL0 */
#define ADC_CTL0_WDCHSEL BITS(0,4) /*!< analog watchdog channel select bits */
#define ADC_CTL0_EOCIE BIT(5) /*!< interrupt enable for EOC */
#define ADC_CTL0_WDEIE BIT(6) /*!< analog watchdog interrupt enable */
#define ADC_CTL0_EOICIE BIT(7) /*!< interrupt enable for inserted channels */
#define ADC_CTL0_SM BIT(8) /*!< scan mode */
#define ADC_CTL0_WDSC BIT(9) /*!< when in scan mode, analog watchdog is effective on a single channel */
#define ADC_CTL0_ICA BIT(10) /*!< automatic inserted group conversion */
#define ADC_CTL0_DISRC BIT(11) /*!< discontinuous mode on regular channels */
#define ADC_CTL0_DISIC BIT(12) /*!< discontinuous mode on inserted channels */
#define ADC_CTL0_DISNUM BITS(13,15) /*!< discontinuous mode channel count */
#define ADC_CTL0_IWDEN BIT(22) /*!< analog watchdog enable on inserted channels */
#define ADC_CTL0_RWDEN BIT(23) /*!< analog watchdog enable on regular channels */
#define ADC_CTL0_DRES BITS(24,25) /*!< ADC data resolution */
#define ADC_CTL0_ROVFIE BIT(26) /*!< interrupt enable for ROVF */
/* ADC_CTL1 */
#define ADC_CTL1_ADCON BIT(0) /*!< ADC converter on */
#define ADC_CTL1_CTN BIT(1) /*!< continuous conversion */
#define ADC_CTL1_CLB BIT(2) /*!< ADC calibration */
#define ADC_CTL1_RSTCLB BIT(3) /*!< reset calibration */
#define ADC_CTL1_DMA BIT(8) /*!< direct memory access mode */
#define ADC_CTL1_DDM BIT(9) /*!< DMA disable mode */
#define ADC_CTL1_EOCM BIT(10) /*!< end of conversion mode */
#define ADC_CTL1_DAL BIT(11) /*!< data alignment */
#define ADC_CTL1_ETSIC BITS(16,19) /*!< external event select for inserted group */
#define ADC_CTL1_ETMIC BITS(20,21) /*!< external trigger conversion mode for inserted channels */
#define ADC_CTL1_SWICST BIT(22) /*!< start conversion of inserted channels */
#define ADC_CTL1_ETSRC BITS(24,27) /*!< external event select for regular group */
#define ADC_CTL1_ETMRC BITS(28,29) /*!< external trigger conversion mode for regular channels */
#define ADC_CTL1_SWRCST BIT(30) /*!< start conversion of regular channels */
/* ADC_SAMPTx x=0..1 */
#define ADC_SAMPTX_SPTN BITS(0,2) /*!< channel x sample time selection */
/* ADC_IOFFx x=0..3 */
#define ADC_IOFFX_IOFF BITS(0,11) /*!< data offset for inserted channel x */
/* ADC_WDHT */
#define ADC_WDHT_WDHT BITS(0,11) /*!< analog watchdog high threshold */
/* ADC_WDLT */
#define ADC_WDLT_WDLT BITS(0,11) /*!< analog watchdog low threshold */
/* ADC_RSQx */
#define ADC_RSQX_RSQN BITS(0,4) /*!< x conversion in regular sequence */
#define ADC_RSQ0_RL BITS(20,23) /*!< regular channel sequence length */
/* ADC_ISQ */
#define ADC_ISQ_ISQN BITS(0,4) /*!< x conversion in regular sequence */
#define ADC_ISQ_IL BITS(20,21) /*!< inserted sequence length */
/* ADC_IDATAx x=0..3*/
#define ADC_IDATAX_IDATAN BITS(0,15) /*!< inserted data x */
/* ADC_RDATA */
#define ADC_RDATA_RDATA BITS(0,15) /*!< regular data */
/* ADC_OVSAMPCTL */
#define ADC_OVSAMPCTL_OVSEN BIT(0) /*!< oversampling enable */
#define ADC_OVSAMPCTL_OVSR BITS(2,4) /*!< oversampling ratio */
#define ADC_OVSAMPCTL_OVSS BITS(5,8) /*!< oversampling shift */
#define ADC_OVSAMPCTL_TOVS BIT(9) /*!< triggered oversampling */
/* ADC_SSTAT */
#define ADC_SSTAT_WDE0 BIT(0) /*!< the mirror image of the WDE bit of ADC0 */
#define ADC_SSTAT_EOC0 BIT(1) /*!< the mirror image of the EOC bit of ADC0 */
#define ADC_SSTAT_EOIC0 BIT(2) /*!< the mirror image of the EOIC bit of ADC0 */
#define ADC_SSTAT_STIC0 BIT(3) /*!< the mirror image of the STIC bit of ADC0 */
#define ADC_SSTAT_STRC0 BIT(4) /*!< the mirror image of the STRC bit of ADC0 */
#define ADC_SSTAT_ROVF0 BIT(5) /*!< the mirror image of the ROVF bit of ADC0 */
#define ADC_SSTAT_WDE1 BIT(8) /*!< the mirror image of the WDE bit of ADC1 */
#define ADC_SSTAT_EOC1 BIT(9) /*!< the mirror image of the EOC bit of ADC1 */
#define ADC_SSTAT_EOIC1 BIT(10) /*!< the mirror image of the EOIC bit of ADC1 */
#define ADC_SSTAT_STIC1 BIT(11) /*!< the mirror image of the STIC bit of ADC1 */
#define ADC_SSTAT_STRC1 BIT(12) /*!< the mirror image of the STRC bit of ADC1 */
#define ADC_SSTAT_ROVF1 BIT(13) /*!< the mirror image of the ROVF bit of ADC1 */
#define ADC_SSTAT_WDE2 BIT(16) /*!< the mirror image of the WDE bit of ADC2 */
#define ADC_SSTAT_EOC2 BIT(17) /*!< the mirror image of the EOC bit of ADC2 */
#define ADC_SSTAT_EOIC2 BIT(18) /*!< the mirror image of the EOIC bit of ADC2 */
#define ADC_SSTAT_STIC2 BIT(19) /*!< the mirror image of the STIC bit of ADC2 */
#define ADC_SSTAT_STRC2 BIT(20) /*!< the mirror image of the STRC bit of ADC2 */
#define ADC_SSTAT_ROVF2 BIT(21) /*!< the mirror image of the ROVF bit of ADC2 */
/* ADC_SYNCCTL */
#define ADC_SYNCCTL_SYNCM BITS(0,4) /*!< ADC synchronization mode */
#define ADC_SYNCCTL_SYNCDLY BITS(8,11) /*!< ADC synchronization delay */
#define ADC_SYNCCTL_SYNCDDM BIT(13) /*!< ADC synchronization DMA disable mode */
#define ADC_SYNCCTL_SYNCDMA BITS(14,15) /*!< ADC synchronization DMA mode selection */
#define ADC_SYNCCTL_ADCCK BITS(16,18) /*!< ADC clock */
#define ADC_SYNCCTL_VBATEN BIT(22) /*!< channel 18 (1/4 voltate of external battery) enable of ADC0 */
#define ADC_SYNCCTL_TSVREN BIT(23) /*!< channel 16 (temperature sensor) and 17 (internal reference voltage) enable of ADC0 */
/* ADC_SYNCDATA */
#define ADC_SYNCDATA_SYNCDATA0 BITS(0,15) /*!< regular data1 in ADC synchronization mode */
#define ADC_SYNCDATA_SYNCDATA1 BITS(16,31) /*!< regular data2 in ADC synchronization mode */
/* constants definitions */
/* ADC channel group definitions */
#define ADC_REGULAR_CHANNEL ((uint8_t)0x00U) /*!< adc regular channel group */
#define ADC_INSERTED_CHANNEL ((uint8_t)0x01U) /*!< adc inserted channel group */
#define ADC_REGULAR_INSERTED_CHANNEL ((uint8_t)0x02U) /*!< both regular and inserted channel group */
/* external trigger mode for regular and inserted channel */
#define EXTERNAL_TRIGGER_DISABLE ((uint32_t)0x00000000U) /*!< external trigger disable */
#define EXTERNAL_TRIGGER_RISING ((uint32_t)0x00000001U) /*!< rising edge of external trigger */
#define EXTERNAL_TRIGGER_FALLING ((uint32_t)0x00000002U) /*!< falling edge of external trigger */
#define EXTERNAL_TRIGGER_RISING_FALLING ((uint32_t)0x00000003U) /*!< rising and falling edge of external trigger */
/* ADC inserted channel definitions */
#define ADC_INSERTED_CHANNEL_0 ((uint8_t)0x00U) /*!< adc inserted channel 0 */
#define ADC_INSERTED_CHANNEL_1 ((uint8_t)0x01U) /*!< adc inserted channel 1 */
#define ADC_INSERTED_CHANNEL_2 ((uint8_t)0x02U) /*!< adc inserted channel 2 */
#define ADC_INSERTED_CHANNEL_3 ((uint8_t)0x03U) /*!< adc inserted channel 3 */
/* ADC special function definitions */
#define ADC_SCAN_MODE ((uint8_t)0x00U) /*!< scan mode */
#define ADC_INSERTED_CHANNEL_AUTO ((uint8_t)0x01U) /*!< inserted channel group convert automatically */
#define ADC_VBAT_CHANNEL_SWITCH ((uint8_t)0x02U) /*!< VBAT channel */
#define ADC_TEMP_VREF_CHANNEL_SWITCH ((uint8_t)0x03U) /*!< Vref and Vtemp channel */
#define ADC_CONTINUOUS_MODE ((uint8_t)0x04U) /*!< continuous mode */
/* ADC channel definitions */
#define ADC_CHANNEL_0 ((uint8_t)0x00U) /*!< ADC channel 0 */
#define ADC_CHANNEL_1 ((uint8_t)0x01U) /*!< ADC channel 1 */
#define ADC_CHANNEL_2 ((uint8_t)0x02U) /*!< ADC channel 2 */
#define ADC_CHANNEL_3 ((uint8_t)0x03U) /*!< ADC channel 3 */
#define ADC_CHANNEL_4 ((uint8_t)0x04U) /*!< ADC channel 4 */
#define ADC_CHANNEL_5 ((uint8_t)0x05U) /*!< ADC channel 5 */
#define ADC_CHANNEL_6 ((uint8_t)0x06U) /*!< ADC channel 6 */
#define ADC_CHANNEL_7 ((uint8_t)0x07U) /*!< ADC channel 7 */
#define ADC_CHANNEL_8 ((uint8_t)0x08U) /*!< ADC channel 8 */
#define ADC_CHANNEL_9 ((uint8_t)0x09U) /*!< ADC channel 9 */
#define ADC_CHANNEL_10 ((uint8_t)0x0AU) /*!< ADC channel 10 */
#define ADC_CHANNEL_11 ((uint8_t)0x0BU) /*!< ADC channel 11 */
#define ADC_CHANNEL_12 ((uint8_t)0x0CU) /*!< ADC channel 12 */
#define ADC_CHANNEL_13 ((uint8_t)0x0DU) /*!< ADC channel 13 */
#define ADC_CHANNEL_14 ((uint8_t)0x0EU) /*!< ADC channel 14 */
#define ADC_CHANNEL_15 ((uint8_t)0x0FU) /*!< ADC channel 15 */
#define ADC_CHANNEL_16 ((uint8_t)0x10U) /*!< ADC channel 16 */
#define ADC_CHANNEL_17 ((uint8_t)0x11U) /*!< ADC channel 17 */
#define ADC_CHANNEL_18 ((uint8_t)0x12U) /*!< ADC channel 18 */
/* ADC channel sample time */
#define ADC_SAMPLETIME_3 ((uint8_t)0x00U) /*!< 3 sampling cycles */
#define ADC_SAMPLETIME_15 ((uint8_t)0x01U) /*!< 15 sampling cycles */
#define ADC_SAMPLETIME_28 ((uint8_t)0x02U) /*!< 28 sampling cycles */
#define ADC_SAMPLETIME_56 ((uint8_t)0x03U) /*!< 56 sampling cycles */
#define ADC_SAMPLETIME_84 ((uint8_t)0x04U) /*!< 84 sampling cycles */
#define ADC_SAMPLETIME_112 ((uint8_t)0x05U) /*!< 112 sampling cycles */
#define ADC_SAMPLETIME_144 ((uint8_t)0x06U) /*!< 144 sampling cycles */
#define ADC_SAMPLETIME_480 ((uint8_t)0x07U) /*!< 480 sampling cycles */
/* ADC data alignment */
#define ADC_DATAALIGN_RIGHT ((uint8_t)0x00U) /*!< LSB alignment */
#define ADC_DATAALIGN_LEFT ((uint8_t)0x01U) /*!< MSB alignment */
/* ADC status flag */
#define ADC_FLAG_WDE ADC_STAT_WDE /*!< analog watchdog event flag */
#define ADC_FLAG_EOC ADC_STAT_EOC /*!< end of conversion */
#define ADC_FLAG_EOIC ADC_STAT_EOIC /*!< inserted channel end of conversion */
#define ADC_FLAG_STIC ADC_STAT_STIC /*!< inserted channel start flag */
#define ADC_FLAG_STRC ADC_STAT_STRC /*!< regular channel start flag */
#define ADC_FLAG_ROVF ADC_STAT_ROVF /*!< regular data register overflow */
/* ADC interrupt flag */
#define ADC_INT_WDE ADC_STAT_WDE /*!< analog watchdog event interrupt */
#define ADC_INT_EOC ADC_STAT_EOC /*!< end of group conversion interrupt */
#define ADC_INT_EOIC ADC_STAT_EOIC /*!< end of inserted group conversion interrupt */
#define ADC_INT_ROVF ADC_STAT_ROVF /*!< regular data register overflow */
/* ADC resolution definitions */
#define CTL0_DRES(regval) (BITS(24,25) & ((uint32_t)(regval) << 24))
#define ADC_RESOLUTION_12B CTL0_DRES(0) /*!< 12-bit ADC resolution */
#define ADC_RESOLUTION_10B CTL0_DRES(1) /*!< 10-bit ADC resolution */
#define ADC_RESOLUTION_8B CTL0_DRES(2) /*!< 8-bit ADC resolution */
#define ADC_RESOLUTION_6B CTL0_DRES(3) /*!< 6-bit ADC resolution */
/* ADC external trigger select for regular channel */
#define CTL1_ETSRC(regval) (BITS(24,27) & ((uint32_t)(regval) << 24))
#define ADC_EXTTRIG_REGULAR_T0_CH0 CTL1_ETSRC(0) /*!< timer 0 CC0 event select */
#define ADC_EXTTRIG_REGULAR_T0_CH1 CTL1_ETSRC(1) /*!< timer 0 CC1 event select */
#define ADC_EXTTRIG_REGULAR_T0_CH2 CTL1_ETSRC(2) /*!< timer 0 CC2 event select */
#define ADC_EXTTRIG_REGULAR_T1_CH1 CTL1_ETSRC(3) /*!< timer 1 CC1 event select */
#define ADC_EXTTRIG_REGULAR_T1_CH2 CTL1_ETSRC(4) /*!< timer 1 CC2 event select */
#define ADC_EXTTRIG_REGULAR_T1_CH3 CTL1_ETSRC(5) /*!< timer 1 CC3 event select */
#define ADC_EXTTRIG_REGULAR_T1_TRGO CTL1_ETSRC(6) /*!< timer 1 TRGO event select */
#define ADC_EXTTRIG_REGULAR_T2_CH0 CTL1_ETSRC(7) /*!< timer 2 CC0 event select */
#define ADC_EXTTRIG_REGULAR_T2_TRGO CTL1_ETSRC(8) /*!< timer 2 TRGO event select */
#define ADC_EXTTRIG_REGULAR_T3_CH3 CTL1_ETSRC(9) /*!< timer 3 CC3 event select */
#define ADC_EXTTRIG_REGULAR_T4_CH0 CTL1_ETSRC(10) /*!< timer 4 CC0 event select */
#define ADC_EXTTRIG_REGULAR_T4_CH1 CTL1_ETSRC(11) /*!< timer 4 CC1 event select */
#define ADC_EXTTRIG_REGULAR_T4_CH2 CTL1_ETSRC(12) /*!< timer 4 CC2 event select */
#define ADC_EXTTRIG_REGULAR_T7_CH0 CTL1_ETSRC(13) /*!< timer 7 CC0 event select */
#define ADC_EXTTRIG_REGULAR_T7_TRGO CTL1_ETSRC(14) /*!< timer 7 TRGO event select */
#define ADC_EXTTRIG_REGULAR_EXTI_11 CTL1_ETSRC(15) /*!< extiline 11 select */
/* ADC external trigger select for inserted channel */
#define CTL1_ETSIC(regval) (BITS(16,19) & ((uint32_t)(regval) << 16))
#define ADC_EXTTRIG_INSERTED_T0_CH3 CTL1_ETSIC(0) /*!< timer0 capture compare 3 */
#define ADC_EXTTRIG_INSERTED_T0_TRGO CTL1_ETSIC(1) /*!< timer0 TRGO event */
#define ADC_EXTTRIG_INSERTED_T1_CH0 CTL1_ETSIC(2) /*!< timer1 capture compare 0 */
#define ADC_EXTTRIG_INSERTED_T1_TRGO CTL1_ETSIC(3) /*!< timer1 TRGO event */
#define ADC_EXTTRIG_INSERTED_T2_CH1 CTL1_ETSIC(4) /*!< timer2 capture compare 1 */
#define ADC_EXTTRIG_INSERTED_T2_CH3 CTL1_ETSIC(5) /*!< timer2 capture compare 3 */
#define ADC_EXTTRIG_INSERTED_T3_CH0 CTL1_ETSIC(6) /*!< timer3 capture compare 0 */
#define ADC_EXTTRIG_INSERTED_T3_CH1 CTL1_ETSIC(7) /*!< timer3 capture compare 1 */
#define ADC_EXTTRIG_INSERTED_T3_CH2 CTL1_ETSIC(8) /*!< timer3 capture compare 2 */
#define ADC_EXTTRIG_INSERTED_T3_TRGO CTL1_ETSIC(9) /*!< timer3 capture compare TRGO */
#define ADC_EXTTRIG_INSERTED_T4_CH3 CTL1_ETSIC(10) /*!< timer4 capture compare 3 */
#define ADC_EXTTRIG_INSERTED_T4_TRGO CTL1_ETSIC(11) /*!< timer4 capture compare TRGO */
#define ADC_EXTTRIG_INSERTED_T7_CH1 CTL1_ETSIC(12) /*!< timer7 capture compare 1 */
#define ADC_EXTTRIG_INSERTED_T7_CH2 CTL1_ETSIC(13) /*!< timer7 capture compare 2 */
#define ADC_EXTTRIG_INSERTED_T7_CH3 CTL1_ETSIC(14) /*!< timer7 capture compare 3 */
#define ADC_EXTTRIG_INSERTED_EXTI_15 CTL1_ETSIC(15) /*!< external interrupt line 15 */
/* ADC oversampling mode */
#define ADC_OVERSAMPLING_ALL_CONVERT 0U /*!< all oversampled conversions for a channel are done consecutively after a trigger */
#define ADC_OVERSAMPLING_ONE_CONVERT 1U /*!< each oversampled conversion for a channel needs a trigger */
/* ADC oversampling shift */
#define OVCTL_OVSS(regval) (BITS(5,8) & ((uint32_t)(regval) << 5))
#define ADC_OVERSAMPLING_SHIFT_NONE OVCTL_OVSS(0) /*!< no oversampling shift */
#define ADC_OVERSAMPLING_SHIFT_1B OVCTL_OVSS(1) /*!< 1-bit oversampling shift */
#define ADC_OVERSAMPLING_SHIFT_2B OVCTL_OVSS(2) /*!< 2-bit oversampling shift */
#define ADC_OVERSAMPLING_SHIFT_3B OVCTL_OVSS(3) /*!< 3-bit oversampling shift */
#define ADC_OVERSAMPLING_SHIFT_4B OVCTL_OVSS(4) /*!< 4-bit oversampling shift */
#define ADC_OVERSAMPLING_SHIFT_5B OVCTL_OVSS(5) /*!< 5-bit oversampling shift */
#define ADC_OVERSAMPLING_SHIFT_6B OVCTL_OVSS(6) /*!< 6-bit oversampling shift */
#define ADC_OVERSAMPLING_SHIFT_7B OVCTL_OVSS(7) /*!< 7-bit oversampling shift */
#define ADC_OVERSAMPLING_SHIFT_8B OVCTL_OVSS(8) /*!< 8-bit oversampling shift */
/* ADC oversampling ratio */
#define OVCTL_OVSR(regval) (BITS(2,4) & ((uint32_t)(regval) << 2))
#define ADC_OVERSAMPLING_RATIO_MUL2 OVCTL_OVSR(0) /*!< oversampling ratio multiple 2 */
#define ADC_OVERSAMPLING_RATIO_MUL4 OVCTL_OVSR(1) /*!< oversampling ratio multiple 4 */
#define ADC_OVERSAMPLING_RATIO_MUL8 OVCTL_OVSR(2) /*!< oversampling ratio multiple 8 */
#define ADC_OVERSAMPLING_RATIO_MUL16 OVCTL_OVSR(3) /*!< oversampling ratio multiple 16 */
#define ADC_OVERSAMPLING_RATIO_MUL32 OVCTL_OVSR(4) /*!< oversampling ratio multiple 32 */
#define ADC_OVERSAMPLING_RATIO_MUL64 OVCTL_OVSR(5) /*!< oversampling ratio multiple 64 */
#define ADC_OVERSAMPLING_RATIO_MUL128 OVCTL_OVSR(6) /*!< oversampling ratio multiple 128 */
#define ADC_OVERSAMPLING_RATIO_MUL256 OVCTL_OVSR(7) /*!< oversampling ratio multiple 256 */
/* configure the ADC clock for all the ADCs */
#define SYNCCTL_ADCCK(regval) (BITS(16,18) & ((uint32_t)(regval) << 16))
#define ADC_ADCCK_PCLK2_DIV2 SYNCCTL_ADCCK(0) /*!< PCLK2 div2 */
#define ADC_ADCCK_PCLK2_DIV4 SYNCCTL_ADCCK(1) /*!< PCLK2 div4 */
#define ADC_ADCCK_PCLK2_DIV6 SYNCCTL_ADCCK(2) /*!< PCLK2 div6 */
#define ADC_ADCCK_PCLK2_DIV8 SYNCCTL_ADCCK(3) /*!< PCLK2 div8 */
#define ADC_ADCCK_HCLK_DIV5 SYNCCTL_ADCCK(4) /*!< HCLK div5 */
#define ADC_ADCCK_HCLK_DIV6 SYNCCTL_ADCCK(5) /*!< HCLK div6 */
#define ADC_ADCCK_HCLK_DIV10 SYNCCTL_ADCCK(6) /*!< HCLK div10 */
#define ADC_ADCCK_HCLK_DIV20 SYNCCTL_ADCCK(7) /*!< HCLK div20 */
/* ADC synchronization mode */
#define ADC_SYNC_MODE_INDEPENDENT ((uint32_t)0x00000000U) /*!< ADC synchronization mode disabled.All the ADCs work independently */
#define ADC_DAUL_REGULAL_PARALLEL_INSERTED_PARALLEL ((uint32_t)0x00000001U) /*!< ADC0 and ADC1 work in combined regular parallel & inserted parallel mode. ADC2 works independently */
#define ADC_DAUL_REGULAL_PARALLEL_INSERTED_ROTATION ((uint32_t)0x00000002U) /*!< ADC0 and ADC1 work in combined regular parallel & trigger rotation mode. ADC2 works independently */
#define ADC_DAUL_INSERTED_PARALLEL ((uint32_t)0x00000005U) /*!< ADC0 and ADC1 work in inserted parallel mode. ADC2 works independently */
#define ADC_DAUL_REGULAL_PARALLEL ((uint32_t)0x00000006U) /*!< ADC0 and ADC1 work in regular parallel mode. ADC2 works independently */
#define ADC_DAUL_REGULAL_FOLLOW_UP ((uint32_t)0x00000007U) /*!< ADC0 and ADC1 work in follow-up mode. ADC2 works independently */
#define ADC_DAUL_INSERTED_TRRIGGER_ROTATION ((uint32_t)0x00000009U) /*!< ADC0 and ADC1 work in trigger rotation mode. ADC2 works independently */
#define ADC_ALL_REGULAL_PARALLEL_INSERTED_PARALLEL ((uint32_t)0x00000011U) /*!< all ADCs work in combined regular parallel & inserted parallel mode */
#define ADC_ALL_REGULAL_PARALLEL_INSERTED_ROTATION ((uint32_t)0x00000012U) /*!< all ADCs work in combined regular parallel & trigger rotation mode */
#define ADC_ALL_INSERTED_PARALLEL ((uint32_t)0x00000015U) /*!< all ADCs work in inserted parallel mode */
#define ADC_ALL_REGULAL_PARALLEL ((uint32_t)0x00000016U) /*!< all ADCs work in regular parallel mode */
#define ADC_ALL_REGULAL_FOLLOW_UP ((uint32_t)0x00000017U) /*!< all ADCs work in follow-up mode */
#define ADC_ALL_INSERTED_TRRIGGER_ROTATION ((uint32_t)0x00000019U) /*!< all ADCs work in trigger rotation mode */
/* ADC synchronization delay */
#define ADC_SYNC_DELAY_5CYCLE ((uint32_t)0x00000000U) /*!< the delay between 2 sampling phases in ADC synchronization modes to 5 ADC clock cycles. */
#define ADC_SYNC_DELAY_6CYCLE ((uint32_t)0x00000100U) /*!< the delay between 2 sampling phases in ADC synchronization modes to 6 ADC clock cycles. */
#define ADC_SYNC_DELAY_7CYCLE ((uint32_t)0x00000200U) /*!< the delay between 2 sampling phases in ADC synchronization modes to 7 ADC clock cycles. */
#define ADC_SYNC_DELAY_8CYCLE ((uint32_t)0x00000300U) /*!< the delay between 2 sampling phases in ADC synchronization modes to 8 ADC clock cycles. */
#define ADC_SYNC_DELAY_9CYCLE ((uint32_t)0x00000400U) /*!< the delay between 2 sampling phases in ADC synchronization modes to 9 ADC clock cycles. */
#define ADC_SYNC_DELAY_10CYCLE ((uint32_t)0x00000500U) /*!< the delay between 2 sampling phases in ADC synchronization modes to 10 ADC clock cycles. */
#define ADC_SYNC_DELAY_11CYCLE ((uint32_t)0x00000600U) /*!< the delay between 2 sampling phases in ADC synchronization modes to 11 ADC clock cycles. */
#define ADC_SYNC_DELAY_12CYCLE ((uint32_t)0x00000700U) /*!< the delay between 2 sampling phases in ADC synchronization modes to 12 ADC clock cycles. */
#define ADC_SYNC_DELAY_13CYCLE ((uint32_t)0x00000800U) /*!< the delay between 2 sampling phases in ADC synchronization modes to 13 ADC clock cycles. */
#define ADC_SYNC_DELAY_14CYCLE ((uint32_t)0x00000900U) /*!< the delay between 2 sampling phases in ADC synchronization modes to 14 ADC clock cycles. */
#define ADC_SYNC_DELAY_15CYCLE ((uint32_t)0x00000A00U) /*!< the delay between 2 sampling phases in ADC synchronization modes to 15 ADC clock cycles. */
#define ADC_SYNC_DELAY_16CYCLE ((uint32_t)0x00000B00U) /*!< the delay between 2 sampling phases in ADC synchronization modes to 16 ADC clock cycles. */
#define ADC_SYNC_DELAY_17CYCLE ((uint32_t)0x00000C00U) /*!< the delay between 2 sampling phases in ADC synchronization modes to 17 ADC clock cycles. */
#define ADC_SYNC_DELAY_18CYCLE ((uint32_t)0x00000D00U) /*!< the delay between 2 sampling phases in ADC synchronization modes to 18 ADC clock cycles. */
#define ADC_SYNC_DELAY_19CYCLE ((uint32_t)0x00000E00U) /*!< the delay between 2 sampling phases in ADC synchronization modes to 19 ADC clock cycles. */
#define ADC_SYNC_DELAY_20CYCLE ((uint32_t)0x00000F00U) /*!< the delay between 2 sampling phases in ADC synchronization modes to 20 ADC clock cycles. */
/* ADC synchronization DMA mode selection */
#define ADC_SYNC_DMA_DISABLE ((uint32_t)0x00000000U) /*!< ADC synchronization DMA disabled */
#define ADC_SYNC_DMA_MODE0 ((uint32_t)0x00004000U) /*!< ADC synchronization DMA mode 0 */
#define ADC_SYNC_DMA_MODE1 ((uint32_t)0x00008000U) /*!< ADC synchronization DMA mode 1 */
/* end of conversion mode */
#define ADC_EOC_SET_SEQUENCE ((uint8_t)0x00U) /*!< only at the end of a sequence of regular conversions, the EOC bit is set */
#define ADC_EOC_SET_CONVERSION ((uint8_t)0x01U) /*!< at the end of each regular conversion, the EOC bit is set */
/* function declarations */
/* ADC reset */
void adc_deinit(void);
/* enable ADC interface */
void adc_enable(uint32_t adc_periph);
/* disable ADC interface */
void adc_disable(uint32_t adc_periph);
/* ADC data alignment config */
void adc_data_alignment_config(uint32_t adc_periph , uint8_t data_alignment);
/* ADC resolution config */
void adc_resolution_config(uint32_t adc_periph , uint32_t resolution);
/* ADC calibration and reset calibration */
void adc_calibration_enable(uint32_t adc_periph);
/* ADC discontinuous mode config */
void adc_discontinuous_mode_config(uint32_t adc_periph , uint8_t adc_channel_group , uint8_t length);
/* config end of conversion mode */
void adc_end_of_conversion_config(uint32_t adc_periph , uint8_t end_selection);
/* ADC special function enable or disable */
void adc_special_function_config(uint32_t adc_periph , uint8_t function , ControlStatus newvalue);
/* configure the ADC clock for all the ADCs */
void adc_clock_config(uint32_t prescaler);
/* ADC channel */
/* configure the ADC clock for all the ADCs */
void adc_channel_16_to_18(uint8_t function,ControlStatus newvalue);
/* config the length of regular channel group or inserted channel group */
void adc_channel_length_config(uint32_t adc_periph , uint8_t adc_channel_group , uint32_t length);
/* ADC trigger */
/* ADC external trigger enable */
void adc_external_trigger_config(uint32_t adc_periph , uint8_t adc_channel_group , uint32_t trigger_mode);
/* ADC external trigger source config */
void adc_external_trigger_source_config(uint32_t adc_periph , uint8_t adc_channel_group , uint32_t external_trigger_source);
/* ADC software trigger enable */
void adc_software_trigger_enable(uint32_t adc_periph , uint8_t adc_channel_group);
/* ADC flag and interrupt */
/* get the ADC flag bits */
FlagStatus adc_flag_get(uint32_t adc_periph , uint32_t adc_flag);
/* clear the ADC flag bits */
void adc_flag_clear(uint32_t adc_periph , uint32_t adc_flag);
/* get the ADC interrupt bits */
FlagStatus adc_interrupt_flag_get(uint32_t adc_periph , uint32_t adc_interrupt);
/* clear the ADC flag */
void adc_interrupt_flag_clear(uint32_t adc_periph , uint32_t adc_interrupt);
/* ADC interrupt enable */
void adc_interrupt_enable(uint32_t adc_periph , uint32_t adc_interrupt);
/* ADC interrupt disable */
void adc_interrupt_disable(uint32_t adc_periph , uint32_t adc_interrupt);
/* ADC analog watchdog */
/* ADC analog watchdog single channel disable */
void adc_watchdog_single_channel_disable(uint32_t adc_periph );
/* ADC analog watchdog single channel enable */
void adc_watchdog_single_channel_enable(uint32_t adc_periph , uint8_t adc_channel);
/* adc analog watchdog group channel config */
void adc_watchdog_enable(uint32_t adc_periph , uint8_t adc_channel_group);
/* ADC analog watchdog disable */
void adc_watchdog_disable(uint32_t adc_periph , uint8_t adc_channel_group);
/* ADC analog watchdog threshold config */
void adc_watchdog_threshold_config(uint32_t adc_periph , uint16_t low_threshold , uint16_t high_threshold);
/* regular channel */
/* ADC regular channel config */
void adc_regular_channel_config(uint32_t adc_periph , uint8_t rank , uint8_t adc_channel , uint32_t sample_time);
/* ADC regular group data register read */
uint16_t adc_regular_data_read(uint32_t adc_periph);
/* inserted channel */
/* ADC inserted channel config */
void adc_inserted_channel_config(uint32_t adc_periph , uint8_t rank , uint8_t adc_channel , uint8_t sample_time);
/* ADC inserted channel offset config */
void adc_inserted_channel_offset_config(uint32_t adc_periph , uint8_t inserted_channel , uint16_t offset);
/* ADC inserted group data register read */
uint16_t adc_inserted_data_read(uint32_t adc_periph , uint8_t inserted_channel);
/* ADC DMA */
/* DMA request enable */
void adc_dma_mode_enable(uint32_t adc_periph);
/* DMA request disable */
void adc_dma_mode_disable(uint32_t adc_periph);
/* when DMA=1, the DMA engine issues a request at end of each regular conversion */
void adc_dma_request_after_last_enable(uint32_t adc_periph);
/* the DMA engine is disabled after the end of transfer signal from DMA controller is detected */
void adc_dma_request_after_last_disable(uint32_t adc_periph);
/* ADC oversample */
/* ADC oversample mode config */
void adc_oversample_mode_config(uint32_t adc_periph , uint8_t mode , uint16_t shift , uint8_t ratio);
/* ADC oversample mode enable */
void adc_oversample_mode_enable(uint32_t adc_periph );
/* ADC oversample mode disable */
void adc_oversample_mode_disable(uint32_t adc_periph );
/* ADC synchronization */
/* configure the ADC sync mode */
void adc_sync_mode_config(uint32_t sync_mode);
/* configure the delay between 2 sampling phases in ADC sync modes */
void adc_sync_delay_config(uint32_t sample_delay);
/* configure ADC sync DMA mode selection */
void adc_sync_dma_config(uint32_t dma_mode );
/* configure ADC sync DMA engine is disabled after the end of transfer signal from DMA controller is detected */
void adc_sync_dma_request_after_last_enable(void);
/* configure ADC sync DMA engine issues requests according to the SYNCDMA bits */
void adc_sync_dma_request_after_last_disable(void);
/* ADC sync regular data register read */
uint32_t adc_sync_regular_data_read(void);
#endif /* GD32F4XX_ADC_H */

View File

@@ -0,0 +1,652 @@
/*!
\file gd32f4xx_can.h
\brief definitions for the CAN
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#ifndef GD32F4XX_CAN_H
#define GD32F4XX_CAN_H
#include "gd32f4xx.h"
/* CAN definitions */
#define CAN0 CAN_BASE /*!< CAN0 base address */
#define CAN1 (CAN0 + 0x00000400U) /*!< CAN1 base address */
/* registers definitions */
#define CAN_CTL(canx) REG32((canx) + 0x00U) /*!< CAN control register */
#define CAN_STAT(canx) REG32((canx) + 0x04U) /*!< CAN status register */
#define CAN_TSTAT(canx) REG32((canx) + 0x08U) /*!< CAN transmit status register*/
#define CAN_RFIFO0(canx) REG32((canx) + 0x0CU) /*!< CAN receive FIFO0 register */
#define CAN_RFIFO1(canx) REG32((canx) + 0x10U) /*!< CAN receive FIFO1 register */
#define CAN_INTEN(canx) REG32((canx) + 0x14U) /*!< CAN interrupt enable register */
#define CAN_ERR(canx) REG32((canx) + 0x18U) /*!< CAN error register */
#define CAN_BT(canx) REG32((canx) + 0x1CU) /*!< CAN bit timing register */
#define CAN_TMI0(canx) REG32((canx) + 0x180U) /*!< CAN transmit mailbox0 identifier register */
#define CAN_TMP0(canx) REG32((canx) + 0x184U) /*!< CAN transmit mailbox0 property register */
#define CAN_TMDATA00(canx) REG32((canx) + 0x188U) /*!< CAN transmit mailbox0 data0 register */
#define CAN_TMDATA10(canx) REG32((canx) + 0x18CU) /*!< CAN transmit mailbox0 data1 register */
#define CAN_TMI1(canx) REG32((canx) + 0x190U) /*!< CAN transmit mailbox1 identifier register */
#define CAN_TMP1(canx) REG32((canx) + 0x194U) /*!< CAN transmit mailbox1 property register */
#define CAN_TMDATA01(canx) REG32((canx) + 0x198U) /*!< CAN transmit mailbox1 data0 register */
#define CAN_TMDATA11(canx) REG32((canx) + 0x19CU) /*!< CAN transmit mailbox1 data1 register */
#define CAN_TMI2(canx) REG32((canx) + 0x1A0U) /*!< CAN transmit mailbox2 identifier register */
#define CAN_TMP2(canx) REG32((canx) + 0x1A4U) /*!< CAN transmit mailbox2 property register */
#define CAN_TMDATA02(canx) REG32((canx) + 0x1A8U) /*!< CAN transmit mailbox2 data0 register */
#define CAN_TMDATA12(canx) REG32((canx) + 0x1ACU) /*!< CAN transmit mailbox2 data1 register */
#define CAN_RFIFOMI0(canx) REG32((canx) + 0x1B0U) /*!< CAN receive FIFO0 mailbox identifier register */
#define CAN_RFIFOMP0(canx) REG32((canx) + 0x1B4U) /*!< CAN receive FIFO0 mailbox property register */
#define CAN_RFIFOMDATA00(canx) REG32((canx) + 0x1B8U) /*!< CAN receive FIFO0 mailbox data0 register */
#define CAN_RFIFOMDATA10(canx) REG32((canx) + 0x1CCU) /*!< CAN receive FIFO0 mailbox data1 register */
#define CAN_RFIFOMI1(canx) REG32((canx) + 0x1C0U) /*!< CAN receive FIFO1 mailbox identifier register */
#define CAN_RFIFOMP1(canx) REG32((canx) + 0x1C4U) /*!< CAN receive FIFO1 mailbox property register */
#define CAN_RFIFOMDATA01(canx) REG32((canx) + 0x1C8U) /*!< CAN receive FIFO1 mailbox data0 register */
#define CAN_RFIFOMDATA11(canx) REG32((canx) + 0x1CCU) /*!< CAN receive FIFO1 mailbox data1 register */
#define CAN_FCTL(canx) REG32((canx) + 0x200U) /*!< CAN filter control register */
#define CAN_FMCFG(canx) REG32((canx) + 0x204U) /*!< CAN filter mode register */
#define CAN_FSCFG(canx) REG32((canx) + 0x20CU) /*!< CAN filter scale register */
#define CAN_FAFIFO(canx) REG32((canx) + 0x214U) /*!< CAN filter associated FIFO register */
#define CAN_FW(canx) REG32((canx) + 0x21CU) /*!< CAN filter working register */
#define CAN_F0DATA0(canx) REG32((canx) + 0x240U) /*!< CAN filter 0 data 0 register */
#define CAN_F1DATA0(canx) REG32((canx) + 0x248U) /*!< CAN filter 1 data 0 register */
#define CAN_F2DATA0(canx) REG32((canx) + 0x250U) /*!< CAN filter 2 data 0 register */
#define CAN_F3DATA0(canx) REG32((canx) + 0x258U) /*!< CAN filter 3 data 0 register */
#define CAN_F4DATA0(canx) REG32((canx) + 0x260U) /*!< CAN filter 4 data 0 register */
#define CAN_F5DATA0(canx) REG32((canx) + 0x268U) /*!< CAN filter 5 data 0 register */
#define CAN_F6DATA0(canx) REG32((canx) + 0x270U) /*!< CAN filter 6 data 0 register */
#define CAN_F7DATA0(canx) REG32((canx) + 0x278U) /*!< CAN filter 7 data 0 register */
#define CAN_F8DATA0(canx) REG32((canx) + 0x280U) /*!< CAN filter 8 data 0 register */
#define CAN_F9DATA0(canx) REG32((canx) + 0x288U) /*!< CAN filter 9 data 0 register */
#define CAN_F10DATA0(canx) REG32((canx) + 0x290U) /*!< CAN filter 10 data 0 register */
#define CAN_F11DATA0(canx) REG32((canx) + 0x298U) /*!< CAN filter 11 data 0 register */
#define CAN_F12DATA0(canx) REG32((canx) + 0x2A0U) /*!< CAN filter 12 data 0 register */
#define CAN_F13DATA0(canx) REG32((canx) + 0x2A8U) /*!< CAN filter 13 data 0 register */
#define CAN_F14DATA0(canx) REG32((canx) + 0x2B0U) /*!< CAN filter 14 data 0 register */
#define CAN_F15DATA0(canx) REG32((canx) + 0x2B8U) /*!< CAN filter 15 data 0 register */
#define CAN_F16DATA0(canx) REG32((canx) + 0x2C0U) /*!< CAN filter 16 data 0 register */
#define CAN_F17DATA0(canx) REG32((canx) + 0x2C8U) /*!< CAN filter 17 data 0 register */
#define CAN_F18DATA0(canx) REG32((canx) + 0x2D0U) /*!< CAN filter 18 data 0 register */
#define CAN_F19DATA0(canx) REG32((canx) + 0x2D8U) /*!< CAN filter 19 data 0 register */
#define CAN_F20DATA0(canx) REG32((canx) + 0x2E0U) /*!< CAN filter 20 data 0 register */
#define CAN_F21DATA0(canx) REG32((canx) + 0x2E8U) /*!< CAN filter 21 data 0 register */
#define CAN_F22DATA0(canx) REG32((canx) + 0x2F0U) /*!< CAN filter 22 data 0 register */
#define CAN_F23DATA0(canx) REG32((canx) + 0x3F8U) /*!< CAN filter 23 data 0 register */
#define CAN_F24DATA0(canx) REG32((canx) + 0x300U) /*!< CAN filter 24 data 0 register */
#define CAN_F25DATA0(canx) REG32((canx) + 0x308U) /*!< CAN filter 25 data 0 register */
#define CAN_F26DATA0(canx) REG32((canx) + 0x310U) /*!< CAN filter 26 data 0 register */
#define CAN_F27DATA0(canx) REG32((canx) + 0x318U) /*!< CAN filter 27 data 0 register */
#define CAN_F0DATA1(canx) REG32((canx) + 0x244U) /*!< CAN filter 0 data 1 register */
#define CAN_F1DATA1(canx) REG32((canx) + 0x24CU) /*!< CAN filter 1 data 1 register */
#define CAN_F2DATA1(canx) REG32((canx) + 0x254U) /*!< CAN filter 2 data 1 register */
#define CAN_F3DATA1(canx) REG32((canx) + 0x25CU) /*!< CAN filter 3 data 1 register */
#define CAN_F4DATA1(canx) REG32((canx) + 0x264U) /*!< CAN filter 4 data 1 register */
#define CAN_F5DATA1(canx) REG32((canx) + 0x26CU) /*!< CAN filter 5 data 1 register */
#define CAN_F6DATA1(canx) REG32((canx) + 0x274U) /*!< CAN filter 6 data 1 register */
#define CAN_F7DATA1(canx) REG32((canx) + 0x27CU) /*!< CAN filter 7 data 1 register */
#define CAN_F8DATA1(canx) REG32((canx) + 0x284U) /*!< CAN filter 8 data 1 register */
#define CAN_F9DATA1(canx) REG32((canx) + 0x28CU) /*!< CAN filter 9 data 1 register */
#define CAN_F10DATA1(canx) REG32((canx) + 0x294U) /*!< CAN filter 10 data 1 register */
#define CAN_F11DATA1(canx) REG32((canx) + 0x29CU) /*!< CAN filter 11 data 1 register */
#define CAN_F12DATA1(canx) REG32((canx) + 0x2A4U) /*!< CAN filter 12 data 1 register */
#define CAN_F13DATA1(canx) REG32((canx) + 0x2ACU) /*!< CAN filter 13 data 1 register */
#define CAN_F14DATA1(canx) REG32((canx) + 0x2B4U) /*!< CAN filter 14 data 1 register */
#define CAN_F15DATA1(canx) REG32((canx) + 0x2BCU) /*!< CAN filter 15 data 1 register */
#define CAN_F16DATA1(canx) REG32((canx) + 0x2C4U) /*!< CAN filter 16 data 1 register */
#define CAN_F17DATA1(canx) REG32((canx) + 0x24CU) /*!< CAN filter 17 data 1 register */
#define CAN_F18DATA1(canx) REG32((canx) + 0x2D4U) /*!< CAN filter 18 data 1 register */
#define CAN_F19DATA1(canx) REG32((canx) + 0x2DCU) /*!< CAN filter 19 data 1 register */
#define CAN_F20DATA1(canx) REG32((canx) + 0x2E4U) /*!< CAN filter 20 data 1 register */
#define CAN_F21DATA1(canx) REG32((canx) + 0x2ECU) /*!< CAN filter 21 data 1 register */
#define CAN_F22DATA1(canx) REG32((canx) + 0x2F4U) /*!< CAN filter 22 data 1 register */
#define CAN_F23DATA1(canx) REG32((canx) + 0x2FCU) /*!< CAN filter 23 data 1 register */
#define CAN_F24DATA1(canx) REG32((canx) + 0x304U) /*!< CAN filter 24 data 1 register */
#define CAN_F25DATA1(canx) REG32((canx) + 0x30CU) /*!< CAN filter 25 data 1 register */
#define CAN_F26DATA1(canx) REG32((canx) + 0x314U) /*!< CAN filter 26 data 1 register */
#define CAN_F27DATA1(canx) REG32((canx) + 0x31CU) /*!< CAN filter 27 data 1 register */
/* CAN transmit mailbox bank */
#define CAN_TMI(canx, bank) REG32((canx) + 0x180U + ((bank) * 0x10U)) /*!< CAN transmit mailbox identifier register */
#define CAN_TMP(canx, bank) REG32((canx) + 0x184U + ((bank) * 0x10U)) /*!< CAN transmit mailbox property register */
#define CAN_TMDATA0(canx, bank) REG32((canx) + 0x188U + ((bank) * 0x10U)) /*!< CAN transmit mailbox data0 register */
#define CAN_TMDATA1(canx, bank) REG32((canx) + 0x18CU + ((bank) * 0x10U)) /*!< CAN transmit mailbox data1 register */
/* CAN filter bank */
#define CAN_FDATA0(canx, bank) REG32((canx) + 0x240U + ((bank) * 0x8U) + 0x0U) /*!< CAN filter data 0 register */
#define CAN_FDATA1(canx, bank) REG32((canx) + 0x240U + ((bank) * 0x8U) + 0x4U) /*!< CAN filter data 1 register */
/* CAN receive fifo mailbox bank */
#define CAN_RFIFOMI(canx, bank) REG32((canx) + 0x1B0U + ((bank) * 0x10U)) /*!< CAN receive FIFO mailbox identifier register */
#define CAN_RFIFOMP(canx, bank) REG32((canx) + 0x1B4U + ((bank) * 0x10U)) /*!< CAN receive FIFO mailbox property register */
#define CAN_RFIFOMDATA0(canx, bank) REG32((canx) + 0x1B8U + ((bank) * 0x10U)) /*!< CAN receive FIFO mailbox data0 register */
#define CAN_RFIFOMDATA1(canx, bank) REG32((canx) + 0x1BCU + ((bank) * 0x10U)) /*!< CAN receive FIFO mailbox data1 register */
/* bits definitions */
/* CAN_CTL */
#define CAN_CTL_IWMOD BIT(0) /*!< initial working mode */
#define CAN_CTL_SLPWMOD BIT(1) /*!< sleep working mode */
#define CAN_CTL_TFO BIT(2) /*!< transmit FIFO order */
#define CAN_CTL_RFOD BIT(3) /*!< receive FIFO overwrite disable */
#define CAN_CTL_ARD BIT(4) /*!< automatic retransmission disable */
#define CAN_CTL_AWU BIT(5) /*!< automatic wakeup */
#define CAN_CTL_ABOR BIT(6) /*!< automatic bus-off recovery */
#define CAN_CTL_TTC BIT(7) /*!< time triggered communication */
#define CAN_CTL_SWRST BIT(15) /*!< CAN software reset */
#define CAN_CTL_DFZ BIT(16) /*!< CAN debug freeze */
/* CAN_STAT */
#define CAN_STAT_IWS BIT(0) /*!< initial working state */
#define CAN_STAT_SLPWS BIT(1) /*!< sleep working state */
#define CAN_STAT_ERRIF BIT(2) /*!< error interrupt flag*/
#define CAN_STAT_WUIF BIT(3) /*!< status change interrupt flag of wakeup from sleep working mode */
#define CAN_STAT_SLPIF BIT(4) /*!< status change interrupt flag of sleep working mode entering */
#define CAN_STAT_TS BIT(8) /*!< transmitting state */
#define CAN_STAT_RS BIT(9) /*!< receiving state */
#define CAN_STAT_LASTRX BIT(10) /*!< last sample value of rx pin */
#define CAN_STAT_RXL BIT(11) /*!< CAN rx signal */
/* CAN_TSTAT */
#define CAN_TSTAT_MTF0 BIT(0) /*!< mailbox0 transmit finished */
#define CAN_TSTAT_MTFNERR0 BIT(1) /*!< mailbox0 transmit finished and no error */
#define CAN_TSTAT_MAL0 BIT(2) /*!< mailbox0 arbitration lost */
#define CAN_TSTAT_MTE0 BIT(3) /*!< mailbox0 transmit error */
#define CAN_TSTAT_MST0 BIT(7) /*!< mailbox0 stop transmitting */
#define CAN_TSTAT_MTF1 BIT(8) /*!< mailbox1 transmit finished */
#define CAN_TSTAT_MTFNERR1 BIT(9) /*!< mailbox1 transmit finished and no error */
#define CAN_TSTAT_MAL1 BIT(10) /*!< mailbox1 arbitration lost */
#define CAN_TSTAT_MTE1 BIT(11) /*!< mailbox1 transmit error */
#define CAN_TSTAT_MST1 BIT(15) /*!< mailbox1 stop transmitting */
#define CAN_TSTAT_MTF2 BIT(16) /*!< mailbox2 transmit finished */
#define CAN_TSTAT_MTFNERR2 BIT(17) /*!< mailbox2 transmit finished and no error */
#define CAN_TSTAT_MAL2 BIT(18) /*!< mailbox2 arbitration lost */
#define CAN_TSTAT_MTE2 BIT(19) /*!< mailbox2 transmit error */
#define CAN_TSTAT_MST2 BIT(23) /*!< mailbox2 stop transmitting */
#define CAN_TSTAT_NUM BITS(24,25) /*!< mailbox number */
#define CAN_TSTAT_TME0 BIT(26) /*!< transmit mailbox0 empty */
#define CAN_TSTAT_TME1 BIT(27) /*!< transmit mailbox1 empty */
#define CAN_TSTAT_TME2 BIT(28) /*!< transmit mailbox2 empty */
#define CAN_TSTAT_TMLS0 BIT(29) /*!< last sending priority flag for mailbox0 */
#define CAN_TSTAT_TMLS1 BIT(30) /*!< last sending priority flag for mailbox1 */
#define CAN_TSTAT_TMLS2 BIT(31) /*!< last sending priority flag for mailbox2 */
/* CAN_RFIFO0 */
#define CAN_RFIFO0_RFL0 BITS(0,1) /*!< receive FIFO0 length */
#define CAN_RFIFO0_RFF0 BIT(3) /*!< receive FIFO0 full */
#define CAN_RFIFO0_RFO0 BIT(4) /*!< receive FIFO0 overfull */
#define CAN_RFIFO0_RFD0 BIT(5) /*!< receive FIFO0 dequeue */
/* CAN_RFIFO1 */
#define CAN_RFIFO1_RFL1 BITS(0,1) /*!< receive FIFO1 length */
#define CAN_RFIFO1_RFF1 BIT(3) /*!< receive FIFO1 full */
#define CAN_RFIFO1_RFO1 BIT(4) /*!< receive FIFO1 overfull */
#define CAN_RFIFO1_RFD1 BIT(5) /*!< receive FIFO1 dequeue */
/* CAN_INTEN */
#define CAN_INTEN_TMEIE BIT(0) /*!< transmit mailbox empty interrupt enable */
#define CAN_INTEN_RFNEIE0 BIT(1) /*!< receive FIFO0 not empty interrupt enable */
#define CAN_INTEN_RFFIE0 BIT(2) /*!< receive FIFO0 full interrupt enable */
#define CAN_INTEN_RFOIE0 BIT(3) /*!< receive FIFO0 overfull interrupt enable */
#define CAN_INTEN_RFNEIE1 BIT(4) /*!< receive FIFO1 not empty interrupt enable */
#define CAN_INTEN_RFFIE1 BIT(5) /*!< receive FIFO1 full interrupt enable */
#define CAN_INTEN_RFOIE1 BIT(6) /*!< receive FIFO1 overfull interrupt enable */
#define CAN_INTEN_WERRIE BIT(8) /*!< warning error interrupt enable */
#define CAN_INTEN_PERRIE BIT(9) /*!< passive error interrupt enable */
#define CAN_INTEN_BOIE BIT(10) /*!< bus-off interrupt enable */
#define CAN_INTEN_ERRNIE BIT(11) /*!< error number interrupt enable */
#define CAN_INTEN_ERRIE BIT(15) /*!< error interrupt enable */
#define CAN_INTEN_WUIE BIT(16) /*!< wakeup interrupt enable */
#define CAN_INTEN_SLPWIE BIT(17) /*!< sleep working interrupt enable */
/* CAN_ERR */
#define CAN_ERR_WERR BIT(0) /*!< warning error */
#define CAN_ERR_PERR BIT(1) /*!< passive error */
#define CAN_ERR_BOERR BIT(2) /*!< bus-off error */
#define CAN_ERR_ERRN BITS(4,6) /*!< error number */
#define CAN_ERR_TECNT BITS(16,23) /*!< transmit error count */
#define CAN_ERR_RECNT BITS(24,31) /*!< receive error count */
/* CAN_BT */
#define CAN_BT_BAUDPSC BITS(0,9) /*!< baudrate prescaler */
#define CAN_BT_BS1 BITS(16,19) /*!< bit segment 1 */
#define CAN_BT_BS2 BITS(20,22) /*!< bit segment 2 */
#define CAN_BT_SJW BITS(24,25) /*!< resynchronization jump width */
#define CAN_BT_LCMOD BIT(30) /*!< loopback communication mode */
#define CAN_BT_SCMOD BIT(31) /*!< silent communication mode */
/* CAN_TMIx */
#define CAN_TMI_TEN BIT(0) /*!< transmit enable */
#define CAN_TMI_FT BIT(1) /*!< frame type */
#define CAN_TMI_FF BIT(2) /*!< frame format */
#define CAN_TMI_EFID BITS(3,31) /*!< the frame identifier */
#define CAN_TMI_SFID BITS(21,31) /*!< the frame identifier */
/* CAN_TMPx */
#define CAN_TMP_DLENC BITS(0,3) /*!< data length code */
#define CAN_TMP_TSEN BIT(8) /*!< time stamp enable */
#define CAN_TMP_TS BITS(16,31) /*!< time stamp */
/* CAN_TMDATA0x */
#define CAN_TMDATA0_DB0 BITS(0,7) /*!< transmit data byte 0 */
#define CAN_TMDATA0_DB1 BITS(8,15) /*!< transmit data byte 1 */
#define CAN_TMDATA0_DB2 BITS(16,23) /*!< transmit data byte 2 */
#define CAN_TMDATA0_DB3 BITS(24,31) /*!< transmit data byte 3 */
/* CAN_TMDATA1x */
#define CAN_TMDATA1_DB4 BITS(0,7) /*!< transmit data byte 4 */
#define CAN_TMDATA1_DB5 BITS(8,15) /*!< transmit data byte 5 */
#define CAN_TMDATA1_DB6 BITS(16,23) /*!< transmit data byte 6 */
#define CAN_TMDATA1_DB7 BITS(24,31) /*!< transmit data byte 7 */
/* CAN_RFIFOMIx */
#define CAN_RFIFOMI_FT BIT(1) /*!< frame type */
#define CAN_RFIFOMI_FF BIT(2) /*!< frame format */
#define CAN_RFIFOMI_EFID BITS(3,31) /*!< the frame identifier */
#define CAN_RFIFOMI_SFID BITS(21,31) /*!< the frame identifier */
/* CAN_RFIFOMPx */
#define CAN_RFIFOMP_DLENC BITS(0,3) /*!< receive data length code */
#define CAN_RFIFOMP_FI BITS(8,15) /*!< filter index */
#define CAN_RFIFOMP_TS BITS(16,31) /*!< time stamp */
/* CAN_RFIFOMDATA0x */
#define CAN_RFIFOMDATA0_DB0 BITS(0,7) /*!< receive data byte 0 */
#define CAN_RFIFOMDATA0_DB1 BITS(8,15) /*!< receive data byte 1 */
#define CAN_RFIFOMDATA0_DB2 BITS(16,23) /*!< receive data byte 2 */
#define CAN_RFIFOMDATA0_DB3 BITS(24,31) /*!< receive data byte 3 */
/* CAN_RFIFOMDATA1x */
#define CAN_RFIFOMDATA1_DB4 BITS(0,7) /*!< receive data byte 4 */
#define CAN_RFIFOMDATA1_DB5 BITS(8,15) /*!< receive data byte 5 */
#define CAN_RFIFOMDATA1_DB6 BITS(16,23) /*!< receive data byte 6 */
#define CAN_RFIFOMDATA1_DB7 BITS(24,31) /*!< receive data byte 7 */
/* CAN_FCTL */
#define CAN_FCTL_FLD BIT(0) /*!< filter lock disable */
#define CAN_FCTL_HBC1F BITS(8,13) /*!< header bank of CAN1 filter */
/* CAN_FMCFG */
#define CAN_FMCFG_FMOD(regval) BIT(regval) /*!< filter mode, list or mask*/
/* CAN_FSCFG */
#define CAN_FSCFG_FS(regval) BIT(regval) /*!< filter scale, 32 bits or 16 bits*/
/* CAN_FAFIFO */
#define CAN_FAFIFOR_FAF(regval) BIT(regval) /*!< filter associated with FIFO */
/* CAN_FW */
#define CAN_FW_FW(regval) BIT(regval) /*!< filter working */
/* consts definitions */
/* define the CAN bit position and its register index offset */
#define CAN_REGIDX_BIT(regidx, bitpos) (((uint32_t)(regidx) << 6) | (uint32_t)(bitpos))
#define CAN_REG_VAL(canx, offset) (REG32((canx) + ((uint32_t)(offset) >> 6)))
#define CAN_BIT_POS(val) ((uint32_t)(val) & 0x1FU)
/* register offset */
#define STAT_REG_OFFSET ((uint8_t)0x04U) /*!< STAT register offset */
#define TSTAT_REG_OFFSET ((uint8_t)0x08U) /*!< TSTAT register offset */
#define RFIFO0_REG_OFFSET ((uint8_t)0x0CU) /*!< RFIFO0 register offset */
#define RFIFO1_REG_OFFSET ((uint8_t)0x10U) /*!< RFIFO1 register offset */
#define ERR_REG_OFFSET ((uint8_t)0x18U) /*!< ERR register offset */
/* CAN flags */
typedef enum
{
/* flags in TSTAT register */
CAN_FLAG_MTE2 = CAN_REGIDX_BIT(TSTAT_REG_OFFSET, 19U), /*!< mailbox 2 transmit error */
CAN_FLAG_MTE1 = CAN_REGIDX_BIT(TSTAT_REG_OFFSET, 11U), /*!< mailbox 1 transmit error */
CAN_FLAG_MTE0 = CAN_REGIDX_BIT(TSTAT_REG_OFFSET, 3U), /*!< mailbox 0 transmit error */
CAN_FLAG_MTF2 = CAN_REGIDX_BIT(TSTAT_REG_OFFSET, 16U), /*!< mailbox 2 transmit finished */
CAN_FLAG_MTF1 = CAN_REGIDX_BIT(TSTAT_REG_OFFSET, 8U), /*!< mailbox 1 transmit finished */
CAN_FLAG_MTF0 = CAN_REGIDX_BIT(TSTAT_REG_OFFSET, 0U), /*!< mailbox 0 transmit finished */
/* flags in RFIFO0 register */
CAN_FLAG_RFO0 = CAN_REGIDX_BIT(RFIFO0_REG_OFFSET, 4U), /*!< receive FIFO0 overfull */
CAN_FLAG_RFF0 = CAN_REGIDX_BIT(RFIFO0_REG_OFFSET, 3U), /*!< receive FIFO0 full */
/* flags in RFIFO1 register */
CAN_FLAG_RFO1 = CAN_REGIDX_BIT(RFIFO1_REG_OFFSET, 4U), /*!< receive FIFO1 overfull */
CAN_FLAG_RFF1 = CAN_REGIDX_BIT(RFIFO1_REG_OFFSET, 3U), /*!< receive FIFO1 full */
/* flags in ERR register */
CAN_FLAG_BOERR = CAN_REGIDX_BIT(ERR_REG_OFFSET, 2U), /*!< bus-off error */
CAN_FLAG_PERR = CAN_REGIDX_BIT(ERR_REG_OFFSET, 1U), /*!< passive error */
CAN_FLAG_WERR = CAN_REGIDX_BIT(ERR_REG_OFFSET, 0U), /*!< warning error */
}can_flag_enum;
/* CAN interrupt flags */
typedef enum
{
/* interrupt flags in STAT register */
CAN_INT_SLPIF = CAN_REGIDX_BIT(STAT_REG_OFFSET, 4U), /*!< status change interrupt flag of sleep working mode entering */
CAN_INT_WUIF = CAN_REGIDX_BIT(STAT_REG_OFFSET, 3U), /*!< status change interrupt flag of wakeup from sleep working mode */
CAN_INT_ERRIF = CAN_REGIDX_BIT(STAT_REG_OFFSET, 2U), /*!< error interrupt flag */
}can_interrupt_flag_enum;
/* CAN initiliaze parameters struct */
typedef struct
{
uint8_t working_mode; /*!< CAN working mode */
uint8_t resync_jump_width; /*!< CAN resynchronization jump width */
uint8_t time_segment_1; /*!< time segment 1 */
uint8_t time_segment_2; /*!< time segment 2 */
ControlStatus time_triggered; /*!< time triggered communication mode */
ControlStatus auto_bus_off_recovery; /*!< automatic bus-off recovery */
ControlStatus auto_wake_up; /*!< automatic wake-up mode */
ControlStatus auto_retrans; /*!< automatic retransmission mode */
ControlStatus rec_fifo_overwrite; /*!< receive FIFO overwrite mode */
ControlStatus trans_fifo_order; /*!< transmit FIFO order */
uint16_t prescaler; /*!< baudrate prescaler */
}can_parameter_struct;
/* CAN transmit message struct */
typedef struct
{
uint32_t tx_sfid; /*!< standard format frame identifier */
uint32_t tx_efid; /*!< extended format frame identifier */
uint8_t tx_ff; /*!< format of frame, standard or extended format */
uint8_t tx_ft; /*!< type of frame, data or remote */
uint8_t tx_dlen; /*!< data length */
uint8_t tx_data[8]; /*!< transmit data */
}can_trasnmit_message_struct;
/* CAN receive message struct */
typedef struct
{
uint32_t rx_sfid; /*!< standard format frame identifier */
uint32_t rx_efid; /*!< extended format frame identifier */
uint8_t rx_ff; /*!< format of frame, standard or extended format */
uint8_t rx_ft; /*!< type of frame, data or remote */
uint8_t rx_dlen; /*!< data length */
uint8_t rx_data[8]; /*!< receive data */
uint8_t rx_fi; /*!< filtering index */
} can_receive_message_struct;
/* CAN filter parameters struct */
typedef struct
{
uint16_t filter_list_high; /*!< filter list number high bits*/
uint16_t filter_list_low; /*!< filter list number low bits */
uint16_t filter_mask_high; /*!< filter mask number high bits */
uint16_t filter_mask_low; /*!< filter mask number low bits */
uint16_t filter_fifo_number; /*!< receive FIFO associated with the filter */
uint16_t filter_number; /*!< filter number */
uint16_t filter_mode; /*!< filter mode, list or mask */
uint16_t filter_bits; /*!< filter scale */
ControlStatus filter_enable; /*!< filter work or not */
}can_filter_parameter_struct;
/* CAN errors */
typedef enum
{
CAN_ERROR_NONE = 0, /*!< no error */
CAN_ERROR_FILL, /*!< fill error */
CAN_ERROR_FORMATE, /*!< format error */
CAN_ERROR_ACK, /*!< ACK error */
CAN_ERROR_BITRECESSIVE, /*!< bit recessive error */
CAN_ERROR_BITDOMINANTER, /*!< bit dominant error */
CAN_ERROR_CRC, /*!< CRC error */
CAN_ERROR_SOFTWARECFG /*!< software configure */
}can_error_enum;
/* transmit states */
typedef enum
{
CAN_TRANSMIT_FAILED = 0, /*!< CAN transmitted failure */
CAN_TRANSMIT_OK = 1, /*!< CAN transmitted success */
CAN_TRANSMIT_PENDING = 2, /*!< CAN transmitted pending */
CAN_TRANSMIT_NOMAILBOX = 4, /*!< no empty mailbox to be used for CAN */
}can_transmit_state_enum;
/* CAN baudrate prescaler*/
#define BT_BAUDPSC(regval) (BITS(0,9) & ((uint32_t)(regval) << 0))
/* CAN bit segment 1*/
#define BT_BS1(regval) (BITS(16,19) & ((uint32_t)(regval) << 16))
/* CAN bit segment 2*/
#define BT_BS2(regval) (BITS(20,22) & ((uint32_t)(regval) << 20))
/* CAN resynchronization jump width*/
#define BT_SJW(regval) (BITS(24,25) & ((uint32_t)(regval) << 24))
/* CAN communication mode*/
#define BT_MODE(regval) (BITS(30,31) & ((uint32_t)(regval) << 30))
/* CAN FDATA high 16 bits */
#define FDATA_MASK_HIGH(regval) (BITS(16,31) & ((uint32_t)(regval) << 16))
/* CAN FDATA low 16 bits */
#define FDATA_MASK_LOW(regval) (BITS(0,15) & ((uint32_t)(regval) << 0))
/* CAN1 filter start bank_number*/
#define FCTL_HBC1F(regval) (BITS(8,13) & ((uint32_t)(regval) << 8))
/* CAN transmit mailbox extended identifier*/
#define TMI_EFID(regval) (BITS(3,31) & ((uint32_t)(regval) << 3))
/* CAN transmit mailbox standard identifier*/
#define TMI_SFID(regval) (BITS(21,31) & ((uint32_t)(regval) << 21))
/* transmit data byte 0 */
#define TMDATA0_DB0(regval) (BITS(0,7) & ((uint32_t)(regval) << 0))
/* transmit data byte 1 */
#define TMDATA0_DB1(regval) (BITS(8,15) & ((uint32_t)(regval) << 8))
/* transmit data byte 2 */
#define TMDATA0_DB2(regval) (BITS(16,23) & ((uint32_t)(regval) << 16))
/* transmit data byte 3 */
#define TMDATA0_DB3(regval) (BITS(24,31) & ((uint32_t)(regval) << 24))
/* transmit data byte 4 */
#define TMDATA1_DB4(regval) (BITS(0,7) & ((uint32_t)(regval) << 0))
/* transmit data byte 5 */
#define TMDATA1_DB5(regval) (BITS(8,15) & ((uint32_t)(regval) << 8))
/* transmit data byte 6 */
#define TMDATA1_DB6(regval) (BITS(16,23) & ((uint32_t)(regval) << 16))
/* transmit data byte 7 */
#define TMDATA1_DB7(regval) (BITS(24,31) & ((uint32_t)(regval) << 24))
/* receive mailbox extended identifier*/
#define RFIFOMI_EFID(regval) GET_BITS((uint32_t)(regval), 3, 31)
/* receive mailbox standrad identifier*/
#define RFIFOMI_SFID(regval) GET_BITS((uint32_t)(regval), 21, 31)
/* receive data length */
#define RFIFOMP_DLENC(regval) GET_BITS((uint32_t)(regval), 0, 3)
#define RFIFOMP_FI(regval) GET_BITS((uint32_t)(regval), 8, 15)
/* receive data byte 0 */
#define RFIFOMDATA0_DB0(regval) GET_BITS((uint32_t)(regval), 0, 7)
/* receive data byte 1 */
#define RFIFOMDATA0_DB1(regval) GET_BITS((uint32_t)(regval), 8, 15)
/* receive data byte 2 */
#define RFIFOMDATA0_DB2(regval) GET_BITS((uint32_t)(regval), 16, 23)
/* receive data byte 3 */
#define RFIFOMDATA0_DB3(regval) GET_BITS((uint32_t)(regval), 24, 31)
/* receive data byte 4 */
#define RFIFOMDATA1_DB4(regval) GET_BITS((uint32_t)(regval), 0, 7)
/* receive data byte 5 */
#define RFIFOMDATA1_DB5(regval) GET_BITS((uint32_t)(regval), 8, 15)
/* receive data byte 6 */
#define RFIFOMDATA1_DB6(regval) GET_BITS((uint32_t)(regval), 16, 23)
/* receive data byte 7 */
#define RFIFOMDATA1_DB7(regval) GET_BITS((uint32_t)(regval), 24, 31)
/* CAN errors */
#define ERR_ERRN(regval) (BITS(4,6) & ((uint32_t)(regval) << 4))
#define CAN_ERRN_0 ERR_ERRN(0) /* no error */
#define CAN_ERRN_1 ERR_ERRN(1) /*!< fill error */
#define CAN_ERRN_2 ERR_ERRN(2) /*!< format error */
#define CAN_ERRN_3 ERR_ERRN(3) /*!< ACK error */
#define CAN_ERRN_4 ERR_ERRN(4) /*!< bit recessive error */
#define CAN_ERRN_5 ERR_ERRN(5) /*!< bit dominant error */
#define CAN_ERRN_6 ERR_ERRN(6) /*!< CRC error */
#define CAN_ERRN_7 ERR_ERRN(7) /*!< software error */
#define CAN_STATE_PENDING ((uint32_t)0x00000000U) /*!< CAN pending */
/* CAN communication mode */
#define CAN_NORMAL_MODE ((uint8_t)0x00U) /*!< normal communication mode */
#define CAN_LOOPBACK_MODE ((uint8_t)0x01U) /*!< loopback communication mode */
#define CAN_SILENT_MODE ((uint8_t)0x02U) /*!< silent communication mode */
#define CAN_SILENT_LOOPBACK_MODE ((uint8_t)0x03U) /*!< loopback and silent communication mode */
/* CAN resynchronisation jump width */
#define CAN_BT_SJW_1TQ ((uint8_t)0x00U) /*!< 1 time quanta */
#define CAN_BT_SJW_2TQ ((uint8_t)0x01U) /*!< 2 time quanta */
#define CAN_BT_SJW_3TQ ((uint8_t)0x02U) /*!< 3 time quanta */
#define CAN_BT_SJW_4TQ ((uint8_t)0x03U) /*!< 4 time quanta */
/* CAN time segment 1 */
#define CAN_BT_BS1_1TQ ((uint8_t)0x00U) /*!< 1 time quanta */
#define CAN_BT_BS1_2TQ ((uint8_t)0x01U) /*!< 2 time quanta */
#define CAN_BT_BS1_3TQ ((uint8_t)0x02U) /*!< 3 time quanta */
#define CAN_BT_BS1_4TQ ((uint8_t)0x03U) /*!< 4 time quanta */
#define CAN_BT_BS1_5TQ ((uint8_t)0x04U) /*!< 5 time quanta */
#define CAN_BT_BS1_6TQ ((uint8_t)0x05U) /*!< 6 time quanta */
#define CAN_BT_BS1_7TQ ((uint8_t)0x06U) /*!< 7 time quanta */
#define CAN_BT_BS1_8TQ ((uint8_t)0x07U) /*!< 8 time quanta */
#define CAN_BT_BS1_9TQ ((uint8_t)0x08U) /*!< 9 time quanta */
#define CAN_BT_BS1_10TQ ((uint8_t)0x09U) /*!< 10 time quanta */
#define CAN_BT_BS1_11TQ ((uint8_t)0x0AU) /*!< 11 time quanta */
#define CAN_BT_BS1_12TQ ((uint8_t)0x0BU) /*!< 12 time quanta */
#define CAN_BT_BS1_13TQ ((uint8_t)0x0CU) /*!< 13 time quanta */
#define CAN_BT_BS1_14TQ ((uint8_t)0x0DU) /*!< 14 time quanta */
#define CAN_BT_BS1_15TQ ((uint8_t)0x0EU) /*!< 15 time quanta */
#define CAN_BT_BS1_16TQ ((uint8_t)0x0FU) /*!< 16 time quanta */
/* CAN time segment 2 */
#define CAN_BT_BS2_1TQ ((uint8_t)0x00U) /*!< 1 time quanta */
#define CAN_BT_BS2_2TQ ((uint8_t)0x01U) /*!< 2 time quanta */
#define CAN_BT_BS2_3TQ ((uint8_t)0x02U) /*!< 3 time quanta */
#define CAN_BT_BS2_4TQ ((uint8_t)0x03U) /*!< 4 time quanta */
#define CAN_BT_BS2_5TQ ((uint8_t)0x04U) /*!< 5 time quanta */
#define CAN_BT_BS2_6TQ ((uint8_t)0x05U) /*!< 6 time quanta */
#define CAN_BT_BS2_7TQ ((uint8_t)0x06U) /*!< 7 time quanta */
#define CAN_BT_BS2_8TQ ((uint8_t)0x07U) /*!< 8 time quanta */
/* CAN mailbox number */
#define CAN_MAILBOX0 ((uint8_t)0x00U) /*!< mailbox0 */
#define CAN_MAILBOX1 ((uint8_t)0x01U) /*!< mailbox1 */
#define CAN_MAILBOX2 ((uint8_t)0x02U) /*!< mailbox2 */
#define CAN_NOMAILBOX ((uint8_t)0x03U) /*!< no mailbox empty */
/* CAN frame format */
#define CAN_FF_STANDARD ((uint32_t)0x00000000U) /*!< standard frame */
#define CAN_FF_EXTENDED ((uint32_t)0x00000004U) /*!< extended frame */
/* CAN receive fifo */
#define CAN_FIFO0 ((uint8_t)0x00U) /*!< receive FIFO0 */
#define CAN_FIFO1 ((uint8_t)0x01U) /*!< receive FIFO1 */
/* frame number of receive fifo */
#define CAN_RFIFO_RFL_MASK ((uint32_t)0x00000003U) /*!< mask for frame number in receive FIFOx */
#define CAN_SFID_MASK ((uint32_t)0x000007FFU) /*!< mask of standard identifier */
#define CAN_EFID_MASK ((uint32_t)0x1FFFFFFFU) /*!< mask of extended identifier */
/* CAN working mode */
#define CAN_MODE_INITIALIZE ((uint8_t)0x01U) /*!< CAN initialize mode */
#define CAN_MODE_NORMAL ((uint8_t)0x02U) /*!< CAN normal mode */
#define CAN_MODE_SLEEP ((uint8_t)0x04U) /*!< CAN sleep mode */
/* filter bits */
#define CAN_FILTERBITS_16BIT ((uint8_t)0x00U) /*!< CAN filter 16 bits */
#define CAN_FILTERBITS_32BIT ((uint8_t)0x01U) /*!< CAN filter 32 bits */
/* filter mode */
#define CAN_FILTERMODE_MASK ((uint8_t)0x00U) /*!< mask mode */
#define CAN_FILTERMODE_LIST ((uint8_t)0x01U) /*!< list mode */
/* filter 16 bits mask */
#define CAN_FILTER_MASK_16BITS ((uint32_t)0x0000FFFFU)
/* frame type */
#define CAN_FT_DATA ((uint32_t)0x00000000U) /*!< data frame */
#define CAN_FT_REMOTE ((uint32_t)0x00000002U) /*!< remote frame */
/* CAN timeout */
#define CAN_TIMEOUT ((uint32_t)0x0000FFFFU) /*!< timeout value */
/* function declarations */
/* initialization functions */
/* deinitialize CAN */
void can_deinit(uint32_t can_periph);
/* initialize CAN */
ErrStatus can_init(uint32_t can_periph, can_parameter_struct* can_parameter_init);
/* transmit functions */
/* CAN transmit message */
uint8_t can_message_transmit(uint32_t can_periph, can_trasnmit_message_struct* transmit_message);
/* CAN transmit state */
can_transmit_state_enum can_transmit_states(uint32_t can_periph, uint8_t mailbox_number);
/* CAN stop transmission */
void can_transmission_stop(uint32_t can_periph, uint8_t mailbox_number);
/* CAN transmit error number */
uint8_t can_transmit_error_number(uint32_t can_periph);
/* filter functions */
/* initialize CAN filter */
void can_filter_init(can_filter_parameter_struct* can_filter_parameter_init);
/* set can1 fliter start bank number */
void can1_filter_start_bank(uint8_t start_bank);
/* enable functions */
/* CAN debug freeze enable */
void can_debug_freeze_enable(uint32_t can_periph);
/* CAN debug freeze disable */
void can_debug_freeze_disable(uint32_t can_periph);
/* CAN time triggle mode enable */
void can_time_trigger_mode_enable(uint32_t can_periph);
/* CAN time triggle mode disable */
void can_time_trigger_mode_disable(uint32_t can_periph);
/* CAN interrupt enable */
void can_interrupt_enable(uint32_t can_periph, uint32_t interrupt);
/* CAN interrupt disable */
void can_interrupt_disable(uint32_t can_periph, uint32_t interrupt);
/* receive functions */
/* CAN receive message */
void can_message_receive(uint32_t can_periph, uint8_t fifo_number, can_receive_message_struct* receive_message);
/* CAN release fifo */
void can_fifo_release(uint32_t can_periph, uint8_t fifo_number);
/* CAN receive message length */
uint8_t can_receive_message_length(uint32_t can_periph, uint8_t fifo_number);
/* CAN receive error number */
uint8_t can_receive_error_number(uint32_t can_periph);
/* mode functions */
/* CAN working mode */
ErrStatus can_working_mode_set(uint32_t can_periph, uint8_t working_mode);
/* CAN wakeup from sleep mode */
ErrStatus can_wakeup(uint32_t can_periph);
/* flag functions */
/* CAN get error */
can_error_enum can_error_get(uint32_t can_periph);
/* CAN get flag state */
FlagStatus can_flag_get(uint32_t can_periph, can_flag_enum flag);
/* CAN clear flag state */
void can_flag_clear(uint32_t can_periph, can_flag_enum flag);
/* CAN get interrupt flag state */
FlagStatus can_interrupt_flag_get(uint32_t can_periph, can_interrupt_flag_enum flag);
/* CAN clear interrupt flag state */
void can_interrupt_flag_clear(uint32_t can_periph, can_interrupt_flag_enum flag);
#endif /* GD32F4XX_CAN_H */

View File

@@ -0,0 +1,55 @@
/*!
\file gd32f4xx_crc.h
\brief definitions for the CRC
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef GD32F4XX_CRC_H
#define GD32F4XX_CRC_H
#include "gd32f4xx.h"
/* CRC definitions */
#define CRC CRC_BASE
/* registers definitions */
#define CRC_DATA REG32(CRC + 0x00U) /*!< CRC data register */
#define CRC_FDATA REG32(CRC + 0x04U) /*!< CRC free data register */
#define CRC_CTL REG32(CRC + 0x08U) /*!< CRC control register */
/* bits definitions */
/* CRC_DATA */
#define CRC_DATA_DATA BITS(0,31) /*!< CRC calculation result bits */
/* CRC_FDATA */
#define CRC_FDATA_FDATA BITS(0,7) /*!< CRC free data bits */
/* CRC_CTL */
#define CRC_CTL_RST BIT(0) /*!< CRC reset CRC_DATA register bit */
/* function declarations */
/* deinit CRC calculation unit */
void crc_deinit(void);
/* reset data register to the value of initializaiton data register */
void crc_data_register_reset(void);
/* read the data register */
uint32_t crc_data_register_read(void);
/* read the free data register */
uint8_t crc_free_data_register_read(void);
/* write the free data register */
void crc_free_data_register_write(uint8_t free_data);
/* CRC calculate a 32-bit data */
uint32_t crc_single_data_calculate(uint32_t sdata);
/* CRC calculate a 32-bit data array */
uint32_t crc_block_data_calculate(uint32_t array[], uint32_t size);
#endif /* GD32F4XX_CRC_H */

View File

@@ -0,0 +1,168 @@
/*!
\file gd32f4xx_ctc.h
\brief definitions for the CTC
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef GD32F4XX_CTC_H
#define GD32F4XX_CTC_H
#include "gd32f4xx.h"
/* CTC definitions */
#define CTC CTC_BASE
/* registers definitions */
#define CTC_CTL0 REG32((CTC) + 0x00U) /*!< CTC control register 0 */
#define CTC_CTL1 REG32((CTC) + 0x04U) /*!< CTC control register 1 */
#define CTC_STAT REG32((CTC) + 0x08U) /*!< CTC status register */
#define CTC_INTC REG32((CTC) + 0x0CU) /*!< CTC interrupt clear register */
/* bits definitions */
/* CTC_CTL0 */
#define CTC_CTL0_CKOKIE BIT(0) /*!< clock trim OK(CKOKIF) interrupt enable */
#define CTC_CTL0_CKWARNIE BIT(1) /*!< clock trim warning(CKWARNIF) interrupt enable */
#define CTC_CTL0_ERRIE BIT(2) /*!< error(ERRIF) interrupt enable */
#define CTC_CTL0_EREFIE BIT(3) /*!< EREFIF interrupt enable */
#define CTC_CTL0_CNTEN BIT(5) /*!< CTC counter enable */
#define CTC_CTL0_AUTOTRIM BIT(6) /*!< hardware automatically trim mode */
#define CTC_CTL0_SWREFPUL BIT(7) /*!< software reference source sync pulse */
#define CTC_CTL0_TRIMVALUE BITS(8,13) /*!< IRC48M trim value */
/* CTC_CTL1 */
#define CTC_CTL1_RLVALUE BITS(0,15) /*!< CTC counter reload value */
#define CTC_CTL1_CKLIM BITS(16,23) /*!< clock trim base limit value */
#define CTC_CTL1_REFPSC BITS(24,26) /*!< reference signal source prescaler */
#define CTC_CTL1_REFSEL BITS(28,29) /*!< reference signal source selection */
#define CTC_CTL1_USBSOFSEL BIT(30) /*!< USBFS or USBHS SOF signal selection */
#define CTC_CTL1_REFPOL BIT(31) /*!< reference signal source polarity */
/* CTC_STAT */
#define CTC_STAT_CKOKIF BIT(0) /*!< clock trim OK interrupt flag */
#define CTC_STAT_CKWARNIF BIT(1) /*!< clock trim warning interrupt flag */
#define CTC_STAT_ERRIF BIT(2) /*!< error interrupt flag */
#define CTC_STAT_EREFIF BIT(3) /*!< expect reference interrupt flag */
#define CTC_STAT_CKERR BIT(8) /*!< clock trim error bit */
#define CTC_STAT_REFMISS BIT(9) /*!< reference sync pulse miss */
#define CTC_STAT_TRIMERR BIT(10) /*!< trim value error bit */
#define CTC_STAT_REFDIR BIT(15) /*!< CTC trim counter direction when reference sync pulse occurred */
#define CTC_STAT_REFCAP BITS(16,31) /*!< CTC counter capture when reference sync pulse occurred */
/* CTC_INTC */
#define CTC_INTC_CKOKIC BIT(0) /*!< CKOKIF interrupt clear bit */
#define CTC_INTC_CKWARNIC BIT(1) /*!< CKWARNIF interrupt clear bit */
#define CTC_INTC_ERRIC BIT(2) /*!< ERRIF interrupt clear bit */
#define CTC_INTC_EREFIC BIT(3) /*!< EREFIF interrupt clear bit */
/* constants definitions */
/* hardware automatically trim mode definitions */
#define CTC_HARDWARE_TRIM_MODE_ENABLE CTC_CTL0_AUTOTRIM /*!< hardware automatically trim mode enable*/
#define CTC_HARDWARE_TRIM_MODE_DISABLE ((uint32_t)0x00000000U) /*!< hardware automatically trim mode disable*/
/* reference signal source polarity definitions */
#define CTC_REFSOURCE_POLARITY_FALLING CTC_CTL1_REFPOL /*!< reference signal source polarity is falling edge*/
#define CTC_REFSOURCE_POLARITY_RISING ((uint32_t)0x00000000U) /*!< reference signal source polarity is rising edge*/
/* USBFS or USBHS SOF signal selection definitions */
#define CTC_USBSOFSEL_USBHS CTC_CTL1_USBSOFSEL /*!< USBHS SOF signal is selected*/
#define CTC_USBSOFSEL_USBFS ((uint32_t)0x00000000U) /*!< USBFS SOF signal is selected*/
/* reference signal source selection definitions */
#define CTL1_REFSEL(regval) (BITS(28,29) & ((uint32_t)(regval) << 28))
#define CTC_REFSOURCE_GPIO CTL1_REFSEL(0) /*!< GPIO is selected */
#define CTC_REFSOURCE_LXTAL CTL1_REFSEL(1) /*!< LXTAL is clock selected */
#define CTC_REFSOURCE_USBSOF CTL1_REFSEL(2) /*!< USBSOF is selected */
/* reference signal source prescaler definitions */
#define CTL1_REFPSC(regval) (BITS(24,26) & ((uint32_t)(regval) << 24))
#define CTC_REFSOURCE_PSC_OFF CTL1_REFPSC(0) /*!< reference signal not divided */
#define CTC_REFSOURCE_PSC_DIV2 CTL1_REFPSC(1) /*!< reference signal divided by 2 */
#define CTC_REFSOURCE_PSC_DIV4 CTL1_REFPSC(2) /*!< reference signal divided by 4 */
#define CTC_REFSOURCE_PSC_DIV8 CTL1_REFPSC(3) /*!< reference signal divided by 8 */
#define CTC_REFSOURCE_PSC_DIV16 CTL1_REFPSC(4) /*!< reference signal divided by 16 */
#define CTC_REFSOURCE_PSC_DIV32 CTL1_REFPSC(5) /*!< reference signal divided by 32 */
#define CTC_REFSOURCE_PSC_DIV64 CTL1_REFPSC(6) /*!< reference signal divided by 64 */
#define CTC_REFSOURCE_PSC_DIV128 CTL1_REFPSC(7) /*!< reference signal divided by 128 */
/* CTC interrupt enable definitions */
#define CTC_INT_CKOKIE CTC_CTL0_CKOKIE /*!< clock trim OK interrupt enable */
#define CTC_INT_CKWARNIE CTC_CTL0_CKWARNIE /*!< clock trim warning interrupt enable */
#define CTC_INT_ERRIE CTC_CTL0_ERRIE /*!< error interrupt enable */
#define CTC_INT_EREFIE CTC_CTL0_EREFIE /*!< expect reference interrupt enable */
/* CTC interrupt source definitions */
#define CTC_INT_CKOK CTC_STAT_CKOKIF /*!< clock trim OK interrupt flag */
#define CTC_INT_CKWARN CTC_STAT_CKWARNIF /*!< clock trim warning interrupt flag */
#define CTC_INT_ERR CTC_STAT_ERRIF /*!< error interrupt flag */
#define CTC_INT_EREF CTC_STAT_EREFIF /*!< expect reference interrupt flag */
#define CTC_INT_CKERR CTC_STAT_CKERR /*!< clock trim error bit */
#define CTC_INT_REFMISS CTC_STAT_REFMISS /*!< reference sync pulse miss */
#define CTC_INT_TRIMERR CTC_STAT_TRIMERR /*!< trim value error */
/* CTC flag definitions */
#define CTC_FLAG_CKOK CTC_STAT_CKOKIF /*!< clock trim OK flag */
#define CTC_FLAG_CKWARN CTC_STAT_CKWARNIF /*!< clock trim warning flag */
#define CTC_FLAG_ERR CTC_STAT_ERRIF /*!< error flag */
#define CTC_FLAG_EREF CTC_STAT_EREFIF /*!< expect reference flag */
#define CTC_FLAG_CKERR CTC_STAT_CKERR /*!< clock trim error bit */
#define CTC_FLAG_REFMISS CTC_STAT_REFMISS /*!< reference sync pulse miss */
#define CTC_FLAG_TRIMERR CTC_STAT_TRIMERR /*!< trim value error bit */
/* function declarations */
/* reset ctc clock trim controller */
void ctc_deinit(void);
/* enable the CTC interrupt */
void ctc_interrupt_enable(uint32_t ctc_interrupt);
/* disable the CTC interrupt */
void ctc_interrupt_disable(uint32_t ctc_interrupt);
/* get CTC interrupt flag */
FlagStatus ctc_interrupt_flag_get(uint32_t ctc_interrupt);
/* clear CTC interrupt flag */
void ctc_interrupt_flag_clear(uint32_t ctc_interrupt);
/* get CTC flag */
FlagStatus ctc_flag_get(uint32_t ctc_flag);
/* clear CTC flag */
void ctc_flag_clear(uint32_t ctc_flag);
/* configure the IRC48M trim value */
void ctc_irc48m_trim_value_config(uint8_t ctc_trim_value);
/* generate software reference source sync pulse */
void ctc_software_refsource_pulse_generate(void);
/* configure hardware automatically trim mode */
void ctc_hardware_trim_mode_config(uint32_t ctc_hardmode);
/* enable CTC counter */
void ctc_counter_enable(void);
/* disable CTC counter */
void ctc_counter_disable(void);
/* configure reference signal source polarity */
void ctc_refsource_polarity_config(uint32_t ctc_polarity);
/* select USBFS or USBHS SOF signal */
void ctc_usbsof_signal_select(uint32_t ctc_usbsof);
/* select reference signal source */
void ctc_refsource_signal_select(uint32_t ctc_refs);
/* configure reference signal source prescaler */
void ctc_refsource_prescaler_config(uint32_t ctc_prescaler);
/* configure clock trim base limit value */
void ctc_clock_limit_value_config(uint8_t ctc_limit_value);
/* configure CTC counter reload value */
void ctc_counter_reload_value_config(uint16_t ctc_reload_value);
/* read CTC counter capture value when reference sync pulse occurred */
uint16_t ctc_counter_capture_value_read(void);
/* read CTC trim counter direction when reference sync pulse occurred */
FlagStatus ctc_counter_direction_read(void);
/* read CTC counter reload value */
uint16_t ctc_counter_reload_value_read(void);
/* read the IRC48M trim value */
uint8_t ctc_irc48m_trim_value_read(void);
#endif /* GD32F4XX_CTC_H */

View File

@@ -0,0 +1,240 @@
/*!
\file gd32f4xx_dac.h
\brief definitions for the DAC
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#ifndef GD32F4XX_DAC_H
#define GD32F4XX_DAC_H
#include "gd32f4xx.h"
/* DACx(x=0,1) definitions */
#define DAC DAC_BASE
#define DAC0 0U
#define DAC1 1U
/* registers definitions */
#define DAC_CTL REG32(DAC + 0x00U) /*!< DAC control register */
#define DAC_SWT REG32(DAC + 0x04U) /*!< DAC software trigger register */
#define DAC0_R12DH REG32(DAC + 0x08U) /*!< DAC0 12-bit right-aligned data holding register */
#define DAC0_L12DH REG32(DAC + 0x0CU) /*!< DAC0 12-bit left-aligned data holding register */
#define DAC0_R8DH REG32(DAC + 0x10U) /*!< DAC0 8-bit right-aligned data holding register */
#define DAC1_R12DH REG32(DAC + 0x14U) /*!< DAC1 12-bit right-aligned data holding register */
#define DAC1_L12DH REG32(DAC + 0x18U) /*!< DAC1 12-bit left-aligned data holding register */
#define DAC1_R8DH REG32(DAC + 0x1CU) /*!< DAC1 8-bit right-aligned data holding register */
#define DACC_R12DH REG32(DAC + 0x20U) /*!< DAC concurrent mode 12-bit right-aligned data holding register */
#define DACC_L12DH REG32(DAC + 0x24U) /*!< DAC concurrent mode 12-bit left-aligned data holding register */
#define DACC_R8DH REG32(DAC + 0x28U) /*!< DAC concurrent mode 8-bit right-aligned data holding register */
#define DAC0_DO REG32(DAC + 0x2CU) /*!< DAC0 data output register */
#define DAC1_DO REG32(DAC + 0x30U) /*!< DAC1 data output register */
#define DAC_STAT REG32(DAC + 0x34U) /*!< DAC status register */
/* bits definitions */
/* DAC_CTL */
#define DAC_CTL_DEN0 BIT(0) /*!< DAC0 enable/disable bit */
#define DAC_CTL_DBOFF0 BIT(1) /*!< DAC0 output buffer turn on/turn off bit */
#define DAC_CTL_DTEN0 BIT(2) /*!< DAC0 trigger enable/disable bit */
#define DAC_CTL_DTSEL0 BITS(3,5) /*!< DAC0 trigger source selection enable/disable bits */
#define DAC_CTL_DWM0 BITS(6,7) /*!< DAC0 noise wave mode */
#define DAC_CTL_DWBW0 BITS(8,11) /*!< DAC0 noise wave bit width */
#define DAC_CTL_DDMAEN0 BIT(12) /*!< DAC0 DMA enable/disable bit */
#define DAC_CTL_DDUDRIE0 BIT(13) /*!< DAC0 DMA underrun interrupt enable/disable bit */
#define DAC_CTL_DEN1 BIT(16) /*!< DAC1 enable/disable bit */
#define DAC_CTL_DBOFF1 BIT(17) /*!< DAC1 output buffer turn on/turn off bit */
#define DAC_CTL_DTEN1 BIT(18) /*!< DAC1 trigger enable/disable bit */
#define DAC_CTL_DTSEL1 BITS(19,21) /*!< DAC1 trigger source selection enable/disable bits */
#define DAC_CTL_DWM1 BITS(22,23) /*!< DAC1 noise wave mode */
#define DAC_CTL_DWBW1 BITS(24,27) /*!< DAC1 noise wave bit width */
#define DAC_CTL_DDMAEN1 BIT(28) /*!< DAC1 DMA enable/disable bit */
#define DAC_CTL_DDUDRIE1 BIT(29) /*!< DAC1 DMA underrun interrupt enable/disable bit */
/* DAC_SWT */
#define DAC_SWT_SWTR0 BIT(0) /*!< DAC0 software trigger bit, cleared by hardware */
#define DAC_SWT_SWTR1 BIT(1) /*!< DAC1 software trigger bit, cleared by hardware */
/* DAC0_R12DH */
#define DAC0_R12DH_DAC0_DH BITS(0,11) /*!< DAC0 12-bit right-aligned data bits */
/* DAC0_L12DH */
#define DAC0_L12DH_DAC0_DH BITS(4,15) /*!< DAC0 12-bit left-aligned data bits */
/* DAC0_R8DH */
#define DAC0_R8DH_DAC0_DH BITS(0,7) /*!< DAC0 8-bit right-aligned data bits */
/* DAC1_R12DH */
#define DAC1_R12DH_DAC1_DH BITS(0,11) /*!< DAC1 12-bit right-aligned data bits */
/* DAC1_L12DH */
#define DAC1_L12DH_DAC1_DH BITS(4,15) /*!< DAC1 12-bit left-aligned data bits */
/* DAC1_R8DH */
#define DAC1_R8DH_DAC1_DH BITS(0,7) /*!< DAC1 8-bit right-aligned data bits */
/* DACC_R12DH */
#define DACC_R12DH_DAC0_DH BITS(0,11) /*!< DAC concurrent mode DAC0 12-bit right-aligned data bits */
#define DACC_R12DH_DAC1_DH BITS(16,27) /*!< DAC concurrent mode DAC1 12-bit right-aligned data bits */
/* DACC_L12DH */
#define DACC_L12DH_DAC0_DH BITS(4,15) /*!< DAC concurrent mode DAC0 12-bit left-aligned data bits */
#define DACC_L12DH_DAC1_DH BITS(20,31) /*!< DAC concurrent mode DAC1 12-bit left-aligned data bits */
/* DACC_R8DH */
#define DACC_R8DH_DAC0_DH BITS(0,7) /*!< DAC concurrent mode DAC0 8-bit right-aligned data bits */
#define DACC_R8DH_DAC1_DH BITS(16,23) /*!< DAC concurrent mode DAC1 8-bit right-aligned data bits */
/* DAC0_DO */
#define DAC0_DO_DAC0_DO BITS(0,11) /*!< DAC0 12-bit output data bits */
/* DAC1_DO */
#define DAC1_DO_DAC1_DO BITS(0,11) /*!< DAC1 12-bit output data bits */
/* DAC_STAT */
#define DAC_STAT_DDUDR0 BIT(13) /*!< DAC0 DMA underrun flag */
#define DAC_STAT_DDUDR1 BIT(29) /*!< DAC1 DMA underrun flag */
/* constants definitions */
/* DAC trigger source */
#define CTL_DTSEL(regval) (BITS(3,5) & ((uint32_t)(regval) << 3))
#define DAC_TRIGGER_T5_TRGO CTL_DTSEL(0) /*!< TIMER5 TRGO */
#define DAC_TRIGGER_T7_TRGO CTL_DTSEL(1) /*!< TIMER7 TRGO */
#define DAC_TRIGGER_T6_TRGO CTL_DTSEL(2) /*!< TIMER6 TRGO */
#define DAC_TRIGGER_T4_TRGO CTL_DTSEL(3) /*!< TIMER4 TRGO */
#define DAC_TRIGGER_T1_TRGO CTL_DTSEL(4) /*!< TIMER1 TRGO */
#define DAC_TRIGGER_T3_TRGO CTL_DTSEL(5) /*!< TIMER3 TRGO */
#define DAC_TRIGGER_EXTI_9 CTL_DTSEL(6) /*!< EXTI interrupt line9 event */
#define DAC_TRIGGER_SOFTWARE CTL_DTSEL(7) /*!< software trigger */
/* DAC noise wave mode */
#define CTL_DWM(regval) (BITS(6,7) & ((uint32_t)(regval) << 6))
#define DAC_WAVE_DISABLE CTL_DWM(0) /*!< wave disable */
#define DAC_WAVE_MODE_LFSR CTL_DWM(1) /*!< LFSR noise mode */
#define DAC_WAVE_MODE_TRIANGLE CTL_DWM(2) /*!< triangle noise mode */
/* DAC noise wave bit width */
#define DWBW(regval) (BITS(8,11) & ((uint32_t)(regval) << 8))
#define DAC_WAVE_BIT_WIDTH_1 DWBW(0) /*!< bit width of the wave signal is 1 */
#define DAC_WAVE_BIT_WIDTH_2 DWBW(1) /*!< bit width of the wave signal is 2 */
#define DAC_WAVE_BIT_WIDTH_3 DWBW(2) /*!< bit width of the wave signal is 3 */
#define DAC_WAVE_BIT_WIDTH_4 DWBW(3) /*!< bit width of the wave signal is 4 */
#define DAC_WAVE_BIT_WIDTH_5 DWBW(4) /*!< bit width of the wave signal is 5 */
#define DAC_WAVE_BIT_WIDTH_6 DWBW(5) /*!< bit width of the wave signal is 6 */
#define DAC_WAVE_BIT_WIDTH_7 DWBW(6) /*!< bit width of the wave signal is 7 */
#define DAC_WAVE_BIT_WIDTH_8 DWBW(7) /*!< bit width of the wave signal is 8 */
#define DAC_WAVE_BIT_WIDTH_9 DWBW(8) /*!< bit width of the wave signal is 9 */
#define DAC_WAVE_BIT_WIDTH_10 DWBW(9) /*!< bit width of the wave signal is 10 */
#define DAC_WAVE_BIT_WIDTH_11 DWBW(10) /*!< bit width of the wave signal is 11 */
#define DAC_WAVE_BIT_WIDTH_12 DWBW(11) /*!< bit width of the wave signal is 12 */
/* unmask LFSR bits in DAC LFSR noise mode */
#define DAC_LFSR_BIT0 DAC_WAVE_BIT_WIDTH_1 /*!< unmask the LFSR bit0 */
#define DAC_LFSR_BITS1_0 DAC_WAVE_BIT_WIDTH_2 /*!< unmask the LFSR bits[1:0] */
#define DAC_LFSR_BITS2_0 DAC_WAVE_BIT_WIDTH_3 /*!< unmask the LFSR bits[2:0] */
#define DAC_LFSR_BITS3_0 DAC_WAVE_BIT_WIDTH_4 /*!< unmask the LFSR bits[3:0] */
#define DAC_LFSR_BITS4_0 DAC_WAVE_BIT_WIDTH_5 /*!< unmask the LFSR bits[4:0] */
#define DAC_LFSR_BITS5_0 DAC_WAVE_BIT_WIDTH_6 /*!< unmask the LFSR bits[5:0] */
#define DAC_LFSR_BITS6_0 DAC_WAVE_BIT_WIDTH_7 /*!< unmask the LFSR bits[6:0] */
#define DAC_LFSR_BITS7_0 DAC_WAVE_BIT_WIDTH_8 /*!< unmask the LFSR bits[7:0] */
#define DAC_LFSR_BITS8_0 DAC_WAVE_BIT_WIDTH_9 /*!< unmask the LFSR bits[8:0] */
#define DAC_LFSR_BITS9_0 DAC_WAVE_BIT_WIDTH_10 /*!< unmask the LFSR bits[9:0] */
#define DAC_LFSR_BITS10_0 DAC_WAVE_BIT_WIDTH_11 /*!< unmask the LFSR bits[10:0] */
#define DAC_LFSR_BITS11_0 DAC_WAVE_BIT_WIDTH_12 /*!< unmask the LFSR bits[11:0] */
/* triangle amplitude in DAC triangle noise mode */
#define DAC_TRIANGLE_AMPLITUDE_1 DAC_WAVE_BIT_WIDTH_1 /*!< triangle amplitude is 1 */
#define DAC_TRIANGLE_AMPLITUDE_3 DAC_WAVE_BIT_WIDTH_2 /*!< triangle amplitude is 3 */
#define DAC_TRIANGLE_AMPLITUDE_7 DAC_WAVE_BIT_WIDTH_3 /*!< triangle amplitude is 7 */
#define DAC_TRIANGLE_AMPLITUDE_15 DAC_WAVE_BIT_WIDTH_4 /*!< triangle amplitude is 15 */
#define DAC_TRIANGLE_AMPLITUDE_31 DAC_WAVE_BIT_WIDTH_5 /*!< triangle amplitude is 31 */
#define DAC_TRIANGLE_AMPLITUDE_63 DAC_WAVE_BIT_WIDTH_6 /*!< triangle amplitude is 63 */
#define DAC_TRIANGLE_AMPLITUDE_127 DAC_WAVE_BIT_WIDTH_7 /*!< triangle amplitude is 127 */
#define DAC_TRIANGLE_AMPLITUDE_255 DAC_WAVE_BIT_WIDTH_8 /*!< triangle amplitude is 255 */
#define DAC_TRIANGLE_AMPLITUDE_511 DAC_WAVE_BIT_WIDTH_9 /*!< triangle amplitude is 511 */
#define DAC_TRIANGLE_AMPLITUDE_1023 DAC_WAVE_BIT_WIDTH_10 /*!< triangle amplitude is 1023 */
#define DAC_TRIANGLE_AMPLITUDE_2047 DAC_WAVE_BIT_WIDTH_11 /*!< triangle amplitude is 2047 */
#define DAC_TRIANGLE_AMPLITUDE_4095 DAC_WAVE_BIT_WIDTH_12 /*!< triangle amplitude is 4095 */
/* DAC data alignment */
#define DATA_ALIGN(regval) (BITS(0,1) & ((uint32_t)(regval) << 0))
#define DAC_ALIGN_12B_R DATA_ALIGN(0) /*!< data right 12b alignment */
#define DAC_ALIGN_12B_L DATA_ALIGN(1) /*!< data left 12b alignment */
#define DAC_ALIGN_8B_R DATA_ALIGN(2) /*!< data right 8b alignment */
/* function declarations */
/* deinitialize DAC */
void dac_deinit(void);
/* enable DAC */
void dac_enable(uint32_t dac_periph);
/* disable DAC */
void dac_disable(uint32_t dac_periph);
/* enable DAC DMA */
void dac_dma_enable(uint32_t dac_periph);
/* disable DAC DMA */
void dac_dma_disable(uint32_t dac_periph);
/* enable DAC output buffer */
void dac_output_buffer_enable(uint32_t dac_periph);
/* disable DAC output buffer */
void dac_output_buffer_disable(uint32_t dac_periph);
/* enable DAC trigger */
void dac_trigger_enable(uint32_t dac_periph);
/* disable DAC trigger */
void dac_trigger_disable(uint32_t dac_periph);
/* enable DAC software trigger */
void dac_software_trigger_enable(uint32_t dac_periph);
/* disable DAC software trigger */
void dac_software_trigger_disable(uint32_t dac_periph);
/* enable DAC interrupt(DAC0 DMA underrun interrupt) */
void dac_interrupt_enable(uint32_t dac_periph);
/* disable DAC interrupt(DAC0 DMA underrun interrupt) */
void dac_interrupt_disable(uint32_t dac_periph);
/* configure DAC trigger source */
void dac_trigger_source_config(uint32_t dac_periph, uint32_t triggersource);
/* configure DAC wave mode */
void dac_wave_mode_config(uint32_t dac_periph, uint32_t wave_mode);
/* configure DAC wave bit width */
void dac_wave_bit_width_config(uint32_t dac_periph, uint32_t bit_width);
/* configure DAC LFSR noise mode */
void dac_lfsr_noise_config(uint32_t dac_periph, uint32_t unmask_bits);
/* configure DAC triangle noise mode */
void dac_triangle_noise_config(uint32_t dac_periph, uint32_t amplitude);
/* get the last data output value */
uint16_t dac_output_value_get(uint32_t dac_periph);
/* set DAC data holding register value */
void dac_data_set(uint32_t dac_periph, uint32_t dac_align, uint16_t data);
/* set DAC concurrent mode data holding register value */
void dac_concurrent_data_set(uint32_t dac_align, uint16_t data0, uint16_t data1);
/* enable DAC concurrent mode */
void dac_concurrent_enable(void);
/* disable DAC concurrent mode */
void dac_concurrent_disable(void);
/* enable DAC concurrent software trigger */
void dac_concurrent_software_trigger_enable(void);
/* disable DAC concurrent software trigger */
void dac_concurrent_software_trigger_disable(void);
/* enable DAC concurrent buffer function */
void dac_concurrent_output_buffer_enable(void);
/* disable DAC concurrent buffer function */
void dac_concurrent_output_buffer_disable(void);
/* enable DAC concurrent interrupt */
void dac_concurrent_interrupt_enable(void);
/* disable DAC concurrent interrupt */
void dac_concurrent_interrupt_disable(void);
/* get the specified DAC flag(DAC DMA underrun flag) */
FlagStatus dac_flag_get(uint32_t dac_periph);
/* clear the specified DAC flag(DAC DMA underrun flag) */
void dac_flag_clear(uint32_t dac_periph);
/* get the specified DAC interrupt flag(DAC DMA underrun interrupt flag) */
FlagStatus dac_interrupt_flag_get(uint32_t dac_periph);
/* clear the specified DAC interrupt flag(DAC DMA underrun interrupt flag) */
void dac_interrupt_flag_clear(uint32_t dac_periph);
#endif /* GD32F4XX_DAC_H */

View File

@@ -0,0 +1,121 @@
/*!
\file gd32f4xx_dbg.h
\brief definitions for the DBG
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef GD32F4XX_DBG_H
#define GD32F4XX_DBG_H
#include "gd32f4xx.h"
/* DBG definitions */
#define DBG DBG_BASE
/* registers definitions */
#define DBG_ID REG32(DBG + 0x00U) /*!< DBG_ID code register */
#define DBG_CTL0 REG32(DBG + 0x04U) /*!< DBG control register 0 */
#define DBG_CTL1 REG32(DBG + 0x08U) /*!< DBG control register 1 */
#define DBG_CTL2 REG32(DBG + 0x0CU) /*!< DBG control register 2 */
/* bits definitions */
/* DBG_ID */
#define DBG_ID_ID_CODE BITS(0,31) /*!< DBG ID code values */
/* DBG_CTL0 */
#define DBG_CTL0_SLP_HOLD BIT(0) /*!< keep debugger connection during sleep mode */
#define DBG_CTL0_DSLP_HOLD BIT(1) /*!< keep debugger connection during deepsleep mode */
#define DBG_CTL0_STB_HOLD BIT(2) /*!< keep debugger connection during standby mode */
#define DBG_CTL0_TRACE_IOEN BIT(5) /*!< enable trace pin assignment */
#define DBG_CTL0_TRACE_MODE BITS(6,7) /*!< trace pin mode selection */
/* DBG_CTL1 */
#define DBG_CTL1_TIMER1_HOLD BIT(0) /*!< hold TIMER1 counter when core is halted */
#define DBG_CTL1_TIMER2_HOLD BIT(1) /*!< hold TIMER2 counter when core is halted */
#define DBG_CTL1_TIMER3_HOLD BIT(2) /*!< hold TIMER3 counter when core is halted */
#define DBG_CTL1_TIMER4_HOLD BIT(3) /*!< hold TIMER4 counter when core is halted */
#define DBG_CTL1_TIMER5_HOLD BIT(4) /*!< hold TIMER5 counter when core is halted */
#define DBG_CTL1_TIMER6_HOLD BIT(5) /*!< hold TIMER6 counter when core is halted */
#define DBG_CTL1_TIMER11_HOLD BIT(6) /*!< hold TIMER11 counter when core is halted */
#define DBG_CTL1_TIMER12_HOLD BIT(7) /*!< hold TIMER12 counter when core is halted */
#define DBG_CTL1_TIMER13_HOLD BIT(8) /*!< hold TIMER13 counter when core is halted */
#define DBG_CTL1_RTC_HOLD BIT(10) /*!< hold RTC calendar and wakeup counter when core is halted */
#define DBG_CTL1_WWDGT_HOLD BIT(11) /*!< debug WWDGT kept when core is halted */
#define DBG_CTL1_FWDGT_HOLD BIT(12) /*!< debug FWDGT kept when core is halted */
#define DBG_CTL1_I2C0_HOLD BIT(21) /*!< hold I2C0 smbus when core is halted */
#define DBG_CTL1_I2C1_HOLD BIT(22) /*!< hold I2C1 smbus when core is halted */
#define DBG_CTL1_I2C2_HOLD BIT(23) /*!< hold I2C2 smbus when core is halted */
#define DBG_CTL1_CAN0_HOLD BIT(25) /*!< debug CAN0 kept when core is halted */
#define DBG_CTL1_CAN1_HOLD BIT(26) /*!< debug CAN1 kept when core is halted */
/* DBG_CTL2 */
#define DBG_CTL2_TIMER0_HOLD BIT(0) /*!< hold TIMER0 counter when core is halted */
#define DBG_CTL2_TIMER7_HOLD BIT(1) /*!< hold TIMER7 counter when core is halted */
#define DBG_CTL2_TIMER8_HOLD BIT(16) /*!< hold TIMER8 counter when core is halted */
#define DBG_CTL2_TIMER9_HOLD BIT(17) /*!< hold TIMER9 counter when core is halted */
#define DBG_CTL2_TIMER10_HOLD BIT(18) /*!< hold TIMER10 counter when core is halted */
/* constants definitions */
#define DBG_LOW_POWER_SLEEP DBG_CTL0_SLP_HOLD /*!< keep debugger connection during sleep mode */
#define DBG_LOW_POWER_DEEPSLEEP DBG_CTL0_DSLP_HOLD /*!< keep debugger connection during deepsleep mode */
#define DBG_LOW_POWER_STANDBY DBG_CTL0_STB_HOLD /*!< keep debugger connection during standby mode */
typedef enum
{
DBG_TIMER1_HOLD = BIT(0), /*!< hold TIMER1 counter when core is halted */
DBG_TIMER2_HOLD = BIT(1), /*!< hold TIMER2 counter when core is halted */
DBG_TIMER3_HOLD = BIT(2), /*!< hold TIMER3 counter when core is halted */
DBG_TIMER4_HOLD = BIT(3), /*!< hold TIMER4 counter when core is halted */
DBG_TIMER5_HOLD = BIT(4), /*!< hold TIMER5 counter when core is halted */
DBG_TIMER6_HOLD = BIT(5), /*!< hold TIMER6 counter when core is halted */
DBG_TIMER11_HOLD = BIT(6), /*!< hold TIMER11 counter when core is halted */
DBG_TIMER12_HOLD = BIT(7), /*!< hold TIMER12 counter when core is halted */
DBG_TIMER13_HOLD = BIT(8), /*!< hold TIMER13 counter when core is halted */
DBG_RTC_HOLD = BIT(10), /*!< hold RTC calendar and wakeup counter when core is halted */
DBG_WWDGT_HOLD = BIT(11), /*!< debug WWDGT kept when core is halted */
DBG_FWDGT_HOLD = BIT(12), /*!< debug FWDGT kept when core is halted */
DBG_I2C0_HOLD = BIT(21), /*!< hold I2C0 smbus when core is halted */
DBG_I2C1_HOLD = BIT(22), /*!< hold I2C1 smbus when core is halted */
DBG_I2C2_HOLD = BIT(23), /*!< hold I2C2 smbus when core is halted */
DBG_CAN0_HOLD = BIT(25), /*!< debug CAN0 kept when core is halted */
DBG_CAN1_HOLD = BIT(26), /*!< debug CAN1 kept when core is halted */
DBG_TIMER0_HOLD = (BIT(0) | BIT(30)), /*!< hold TIMER0 counter when core is halted */
DBG_TIMER7_HOLD = (BIT(1) | BIT(30)), /*!< hold TIMER7 counter when core is halted */
DBG_TIMER8_HOLD = (BIT(16) | BIT(30)), /*!< hold TIMER8 counter when core is halted */
DBG_TIMER9_HOLD = (BIT(17) | BIT(30)), /*!< hold TIMER9 counter when core is halted */
DBG_TIMER10_HOLD = (BIT(18) | BIT(30)), /*!< hold TIMER10 counter when core is halted */
}dbg_periph_enum;
#define CTL0_TRACE_MODE(regval) (BITS(6,7)&((uint32_t)(regval)<<6))
#define TRACE_MODE_ASYNC CTL0_TRACE_MODE(0) /*!< trace pin used for async mode */
#define TRACE_MODE_SYNC_DATASIZE_1 CTL0_TRACE_MODE(1) /*!< trace pin used for sync mode and data size is 1 */
#define TRACE_MODE_SYNC_DATASIZE_2 CTL0_TRACE_MODE(2) /*!< trace pin used for sync mode and data size is 2 */
#define TRACE_MODE_SYNC_DATASIZE_4 CTL0_TRACE_MODE(3) /*!< trace pin used for sync mode and data size is 4 */
/* function declarations */
/* read DBG_ID code register */
uint32_t dbg_id_get(void);
/* enable low power behavior when the MCU is in debug mode */
void dbg_low_power_enable(uint32_t dbg_low_power);
/* disable low power behavior when the MCU is in debug mode */
void dbg_low_power_disable(uint32_t dbg_low_power);
/* enable peripheral behavior when the MCU is in debug mode */
void dbg_periph_enable(dbg_periph_enum dbg_periph);
/* disable peripheral behavior when the MCU is in debug mode */
void dbg_periph_disable(dbg_periph_enum dbg_periph);
/* enable trace pin assignment */
void dbg_trace_pin_enable(void);
/* disable trace pin assignment */
void dbg_trace_pin_disable(void);
/* set trace pin mode */
void dbg_trace_pin_mode_set(uint32_t trace_mode);
#endif /* GD32F4XX_DBG_H */

View File

@@ -0,0 +1,200 @@
/*!
\file gd32f4xx_dci.h
\brief definitions for the DCI
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef GD32F4XX_DCI_H
#define GD32F4XX_DCI_H
#include "gd32f4xx.h"
/* DCI definitions */
#define DCI DCI_BASE
/* registers definitions */
#define DCI_CTL REG32(DCI + 0x00U) /*!< DCI control register */
#define DCI_STAT0 REG32(DCI + 0x04U) /*!< DCI status register 0 */
#define DCI_STAT1 REG32(DCI + 0x08U) /*!< DCI status register 1 */
#define DCI_INTEN REG32(DCI + 0x0CU) /*!< DCI interrupt enable register */
#define DCI_INTF REG32(DCI + 0x10U) /*!< DCI interrupt flag register */
#define DCI_INTC REG32(DCI + 0x14U) /*!< DCI interrupt clear register */
#define DCI_SC REG32(DCI + 0x18U) /*!< DCI synchronization codes register */
#define DCI_SCUMSK REG32(DCI + 0x1CU) /*!< DCI synchronization codes unmask register */
#define DCI_CWSPOS REG32(DCI + 0x20U) /*!< DCI cropping window start position register */
#define DCI_CWSZ REG32(DCI + 0x24U) /*!< DCI cropping window size register */
#define DCI_DATA REG32(DCI + 0x28U) /*!< DCI data register */
/* bits definitions */
/* DCI_CTL */
#define DCI_CTL_CAP BIT(0) /*!< capture enable */
#define DCI_CTL_SNAP BIT(1) /*!< snapshot mode */
#define DCI_CTL_WDEN BIT(2) /*!< window enable */
#define DCI_CTL_JM BIT(3) /*!< jpeg mode */
#define DCI_CTL_ESM BIT(4) /*!< embedded synchronous mode */
#define DCI_CTL_CKS BIT(5) /*!< clock polarity selection */
#define DCI_CTL_HPS BIT(6) /*!< horizontal polarity selection */
#define DCI_CTL_VPS BIT(7) /*!< vertical polarity selection */
#define DCI_CTL_FR BITS(8,9) /*!< frame rate */
#define DCI_CTL_DCIF BITS(10,11) /*!< digital camera interface format */
#define DCI_CTL_DCIEN BIT(14) /*!< dci enable */
/* DCI_STAT0 */
#define DCI_STAT0_HS BIT(0) /*!< HS line status */
#define DCI_STAT0_VS BIT(1) /*!< VS line status */
#define DCI_STAT0_FV BIT(2) /*!< FIFO valid */
/* DCI_STAT1 */
#define DCI_STAT1_EFF BIT(0) /*!< end of frame flag */
#define DCI_STAT1_OVRF BIT(1) /*!< FIFO overrun flag */
#define DCI_STAT1_ESEF BIT(2) /*!< embedded synchronous error flag */
#define DCI_STAT1_VSF BIT(3) /*!< vsync flag */
#define DCI_STAT1_ELF BIT(4) /*!< end of line flag */
/* DCI_INTEN */
#define DCI_INTEN_EFIE BIT(0) /*!< end of frame interrupt enable */
#define DCI_INTEN_OVRIE BIT(1) /*!< FIFO overrun interrupt enable */
#define DCI_INTEN_ESEIE BIT(2) /*!< embedded synchronous error interrupt enable */
#define DCI_INTEN_VSIE BIT(3) /*!< vsync interrupt enable */
#define DCI_INTEN_ELIE BIT(4) /*!< end of line interrupt enable */
/* DCI_INTF */
#define DCI_INTF_EFIF BIT(0) /*!< end of frame interrupt flag */
#define DCI_INTF_OVRIF BIT(1) /*!< FIFO overrun interrupt flag */
#define DCI_INTF_ESEIF BIT(2) /*!< embedded synchronous error interrupt flag */
#define DCI_INTF_VSIF BIT(3) /*!< vsync interrupt flag */
#define DCI_INTF_ELIF BIT(4) /*!< end of line interrupt flag */
/* DCI_INTC */
#define DCI_INTC_EFFC BIT(0) /*!< clear end of frame flag */
#define DCI_INTC_OVRFC BIT(1) /*!< clear FIFO overrun flag */
#define DCI_INTC_ESEFC BIT(2) /*!< clear embedded synchronous error flag */
#define DCI_INTC_VSFC BIT(3) /*!< vsync flag clear */
#define DCI_INTC_ELFC BIT(4) /*!< end of line flag clear */
/* DCI_SC */
#define DCI_SC_FS BITS(0,7) /*!< frame start code in embedded synchronous mode */
#define DCI_SC_LS BITS(8,15) /*!< line start code in embedded synchronous mode */
#define DCI_SC_LE BITS(16,23) /*!< line end code in embedded synchronous mode */
#define DCI_SC_FE BITS(24,31) /*!< frame end code in embedded synchronous mode */
/* DCI_SCUNMSK */
#define DCI_SCUMSK_FSM BITS(0,7) /*!< frame start code unmask bits in embedded synchronous mode */
#define DCI_SCUMSK_LSM BITS(8,15) /*!< line start code unmask bits in embedded synchronous mode */
#define DCI_SCUMSK_LEM BITS(16,23) /*!< line end code unmask bits in embedded synchronous mode */
#define DCI_SCUMSK_FEM BITS(24,31) /*!< frame end code unmask bits in embedded synchronous mode */
/* DCI_CWSPOS */
#define DCI_CWSPOS_WHSP BITS(0,13) /*!< window horizontal start position */
#define DCI_CWSPOS_WVSP BITS(16,28) /*!< window vertical start position */
/* DCI_CWSZ */
#define DCI_CWSZ_WHSZ BITS(0,13) /*!< window horizontal size */
#define DCI_CWSZ_WVSZ BITS(16,29) /*!< window vertical size */
/* constants definitions */
/* DCI parameter struct definitions */
typedef struct
{
uint32_t capture_mode; /*!< DCI capture mode: continuous or snapshot */
uint32_t clock_polarity; /*!< clock polarity selection */
uint32_t hsync_polarity; /*!< horizontal polarity selection */
uint32_t vsync_polarity; /*!< vertical polarity selection */
uint32_t frame_rate; /*!< frame capture rate */
uint32_t interface_format; /*!< digital camera interface format */
}dci_parameter_struct;
#define DCI_CAPTURE_MODE_CONTINUOUS ((uint32_t)0x00000000U) /*!< continuous capture mode */
#define DCI_CAPTURE_MODE_SNAPSHOT DCI_CTL_SNAP /*!< snapshot capture mode */
#define DCI_CK_POLARITY_FALLING ((uint32_t)0x00000000U) /*!< capture at falling edge */
#define DCI_CK_POLARITY_RISING DCI_CTL_CKS /*!< capture at rising edge */
#define DCI_HSYNC_POLARITY_LOW ((uint32_t)0x00000000U) /*!< low level during blanking period */
#define DCI_HSYNC_POLARITY_HIGH DCI_CTL_HPS /*!< high level during blanking period */
#define DCI_VSYNC_POLARITY_LOW ((uint32_t)0x00000000U) /*!< low level during blanking period */
#define DCI_VSYNC_POLARITY_HIGH DCI_CTL_VPS /*!< high level during blanking period*/
#define CTL_FR(regval) (BITS(8,9)&((uint32_t)(regval) << 8U))
#define DCI_FRAME_RATE_ALL CTL_FR(0) /*!< capture all frames */
#define DCI_FRAME_RATE_1_2 CTL_FR(1) /*!< capture one in 2 frames */
#define DCI_FRAME_RATE_1_4 CTL_FR(2) /*!< capture one in 4 frames */
#define CTL_DCIF(regval) (BITS(10,11)&((uint32_t)(regval) << 10U))
#define DCI_INTERFACE_FORMAT_8BITS CTL_DCIF(0) /*!< 8-bit data on every pixel clock */
#define DCI_INTERFACE_FORMAT_10BITS CTL_DCIF(1) /*!< 10-bit data on every pixel clock */
#define DCI_INTERFACE_FORMAT_12BITS CTL_DCIF(2) /*!< 12-bit data on every pixel clock */
#define DCI_INTERFACE_FORMAT_14BITS CTL_DCIF(3) /*!< 14-bit data on every pixel clock */
/* DCI interrupt constants definitions */
#define DCI_INT_EF ((uint32_t)0x00000001U) /*!< end of frame interrupt */
#define DCI_INT_OVR ((uint32_t)0x00000002U) /*!< FIFO overrun interrupt */
#define DCI_INT_ESE ((uint32_t)0x00000004U) /*!< embedded synchronous error interrupt */
#define DCI_INT_VS ((uint32_t)0x00000008U) /*!< vsync interrupt */
#define DCI_INT_EL ((uint32_t)0x00000010U) /*!< end of line interrupt */
/* DCI flag definitions */
#define DCI_FLAG_HS ((uint8_t)0x01U) /*!< HS line status */
#define DCI_FLAG_VS ((uint8_t)0x02U) /*!< VS line status */
#define DCI_FLAG_FV ((uint8_t)0x03U) /*!< FIFO valid */
#define DCI_FLAG_EFF ((uint8_t)0x04U) /*!< end of frame flag */
#define DCI_FLAG_OVRF ((uint8_t)0x05U) /*!< FIFO overrun flag */
#define DCI_FLAG_ESEF ((uint8_t)0x06U) /*!< embedded synchronous error flag */
#define DCI_FLAG_VSF ((uint8_t)0x07U) /*!< vsync flag */
#define DCI_FLAG_ELF ((uint8_t)0x08U) /*!< end of line flag */
/* function declarations */
/* DCI deinit */
void dci_deinit(void);
/* initialize DCI registers */
void dci_init(dci_parameter_struct* dci_struct);
/* enable DCI function */
void dci_enable(void);
/* disble DCI function */
void dci_disable(void);
/* enable DCI capture */
void dci_capture_enable(void);
/* disble DCI capture */
void dci_capture_disable(void);
/* enable DCI jpeg mode */
void dci_jpeg_enable(void);
/* disble DCI jpeg mode */
void dci_jpeg_disable(void);
/* enable cropping window function */
void dci_crop_window_enable(void);
/* disble cropping window function */
void dci_crop_window_disable(void);
/* config DCI cropping window */
void dci_crop_window_config(uint16_t start_x, uint16_t start_y, uint16_t size_width, uint16_t size_height);
/* enable sync codes function */
void dci_sync_codes_enable(void);
/* disble sync codes function */
void dci_sync_codes_disable(void);
/* config sync codes */
void dci_sync_codes_config(uint8_t frame_start, uint8_t line_start, uint8_t line_end, uint8_t frame_end);
/* config sync codes unmask */
void dci_sync_codes_unmask_config(uint8_t frame_start, uint8_t line_start, uint8_t line_end, uint8_t frame_end);
/* read DCI data register */
uint32_t dci_data_read(void);
/* enable specified DCI interrupt */
void dci_interrupt_enable(uint32_t interrupt);
/* disble specified DCI interrupt */
void dci_interrupt_disable(uint32_t interrupt);
/* clear specified interrupt */
void dci_interrupt_clear(uint32_t interrupt);
/* get specified flag */
FlagStatus dci_flag_get(uint32_t flag);
/* get specified interrupt flag */
FlagStatus dci_interrupt_flag_get(uint32_t interrupt);
#endif /* GD32F4XX_DCI_H */

View File

@@ -0,0 +1,380 @@
/*!
\file gd32f4xx_dma.h
\brief definitions for the DMA
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef GD32F4XX_DMA_H
#define GD32F4XX_DMA_H
#include "gd32f4xx.h"
/* DMA definitions */
#define DMA0 (DMA_BASE) /*!< DMA0 base address */
#define DMA1 (DMA_BASE + 0x0400U) /*!< DMA1 base address */
/* registers definitions */
#define DMA_INTF0(dmax) REG32((dmax) + 0x00U) /*!< DMA interrupt flag register 0 */
#define DMA_INTF1(dmax) REG32((dmax) + 0x04U) /*!< DMA interrupt flag register 1 */
#define DMA_INTC0(dmax) REG32((dmax) + 0x08U) /*!< DMA interrupt flag clear register 0 */
#define DMA_INTC1(dmax) REG32((dmax) + 0x0CU) /*!< DMA interrupt flag clear register 1 */
#define DMA_CH0CTL(dmax) REG32((dmax) + 0x10U) /*!< DMA channel 0 control register */
#define DMA_CH0CNT(dmax) REG32((dmax) + 0x14U) /*!< DMA channel 0 counter register */
#define DMA_CH0PADDR(dmax) REG32((dmax) + 0x18U) /*!< DMA channel 0 peripheral base address register */
#define DMA_CH0M0ADDR(dmax) REG32((dmax) + 0x1CU) /*!< DMA channel 0 memory 0 base address register */
#define DMA_CH0M1ADDR(dmax) REG32((dmax) + 0x20U) /*!< DMA channel 0 memory 1 base address register */
#define DMA_CH0FCTL(dmax) REG32((dmax) + 0x24U) /*!< DMA channel 0 FIFO control register */
#define DMA_CH1CTL(dmax) REG32((dmax) + 0x28U) /*!< DMA channel 1 control register */
#define DMA_CH1CNT(dmax) REG32((dmax) + 0x2CU) /*!< DMA channel 1 counter register */
#define DMA_CH1PADDR(dmax) REG32((dmax) + 0x30U) /*!< DMA channel 1 peripheral base address register */
#define DMA_CH1M0ADDR(dmax) REG32((dmax) + 0x34U) /*!< DMA channel 1 memory 0 base address register */
#define DMA_CH1M1ADDR(dmax) REG32((dmax) + 0x38U) /*!< DMA channel 1 memory 1 base address register */
#define DMA_CH1FCTL(dmax) REG32((dmax) + 0x3CU) /*!< DMA channel 1 FIFO control register */
#define DMA_CH2CTL(dmax) REG32((dmax) + 0x40U) /*!< DMA channel 2 control register */
#define DMA_CH2CNT(dmax) REG32((dmax) + 0x44U) /*!< DMA channel 2 counter register */
#define DMA_CH2PADDR(dmax) REG32((dmax) + 0x48U) /*!< DMA channel 2 peripheral base address register */
#define DMA_CH2M0ADDR(dmax) REG32((dmax) + 0x4CU) /*!< DMA channel 2 memory 0 base address register */
#define DMA_CH2M1ADDR(dmax) REG32((dmax) + 0x50U) /*!< DMA channel 2 memory 1 base address register */
#define DMA_CH2FCTL(dmax) REG32((dmax) + 0x54U) /*!< DMA channel 2 FIFO control register */
#define DMA_CH3CTL(dmax) REG32((dmax) + 0x58U) /*!< DMA channel 3 control register */
#define DMA_CH3CNT(dmax) REG32((dmax) + 0x5CU) /*!< DMA channel 3 counter register */
#define DMA_CH3PADDR(dmax) REG32((dmax) + 0x60U) /*!< DMA channel 3 peripheral base address register */
#define DMA_CH3M0ADDR(dmax) REG32((dmax) + 0x64U) /*!< DMA channel 3 memory 0 base address register */
#define DMA_CH3M1ADDR(dmax) REG32((dmax) + 0x68U) /*!< DMA channel 3 memory 1 base address register */
#define DMA_CH3FCTL(dmax) REG32((dmax) + 0x6CU) /*!< DMA channel 3 FIFO control register */
#define DMA_CH4CTL(dmax) REG32((dmax) + 0x70U) /*!< DMA channel 4 control register */
#define DMA_CH4CNT(dmax) REG32((dmax) + 0x74U) /*!< DMA channel 4 counter register */
#define DMA_CH4PADDR(dmax) REG32((dmax) + 0x78U) /*!< DMA channel 4 peripheral base address register */
#define DMA_CH4M0ADDR(dmax) REG32((dmax) + 0x7CU) /*!< DMA channel 4 memory 0 base address register */
#define DMA_CH4M1ADDR(dmax) REG32((dmax) + 0x80U) /*!< DMA channel 4 memory 1 base address register */
#define DMA_CH4FCTL(dmax) REG32((dmax) + 0x84U) /*!< DMA channel 4 FIFO control register */
#define DMA_CH5CTL(dmax) REG32((dmax) + 0x88U) /*!< DMA channel 5 control register */
#define DMA_CH5CNT(dmax) REG32((dmax) + 0x8CU) /*!< DMA channel 5 counter register */
#define DMA_CH5PADDR(dmax) REG32((dmax) + 0x90U) /*!< DMA channel 5 peripheral base address register */
#define DMA_CH5M0ADDR(dmax) REG32((dmax) + 0x94U) /*!< DMA channel 5 memory 0 base address register */
#define DMA_CH5M1ADDR(dmax) REG32((dmax) + 0x98U) /*!< DMA channel 5 memory 1 base address register */
#define DMA_CH5FCTL(dmax) REG32((dmax) + 0x9CU) /*!< DMA channel 5 FIFO control register */
#define DMA_CH6CTL(dmax) REG32((dmax) + 0xA0U) /*!< DMA channel 6 control register */
#define DMA_CH6CNT(dmax) REG32((dmax) + 0xA4U) /*!< DMA channel 6 counter register */
#define DMA_CH6PADDR(dmax) REG32((dmax) + 0xA8U) /*!< DMA channel 6 peripheral base address register */
#define DMA_CH6M0ADDR(dmax) REG32((dmax) + 0xACU) /*!< DMA channel 6 memory 0 base address register */
#define DMA_CH6M1ADDR(dmax) REG32((dmax) + 0xB0U) /*!< DMA channel 6 memory 1 base address register */
#define DMA_CH6FCTL(dmax) REG32((dmax) + 0xB4U) /*!< DMA channel 6 FIFO control register */
#define DMA_CH7CTL(dmax) REG32((dmax) + 0xB8U) /*!< DMA channel 7 control register */
#define DMA_CH7CNT(dmax) REG32((dmax) + 0xBCU) /*!< DMA channel 7 counter register */
#define DMA_CH7PADDR(dmax) REG32((dmax) + 0xC0U) /*!< DMA channel 7 peripheral base address register */
#define DMA_CH7M0ADDR(dmax) REG32((dmax) + 0xC4U) /*!< DMA channel 7 memory 0 base address register */
#define DMA_CH7M1ADDR(dmax) REG32((dmax) + 0xC8U) /*!< DMA channel 7 memory 1 base address register */
#define DMA_CH7FCTL(dmax) REG32((dmax) + 0xCCU) /*!< DMA channel 7 FIFO control register */
/* bits definitions */
/* DMA_INTF */
#define DMA_INTF_FEEIF BIT(0) /*!< FIFO error and exception flag */
#define DMA_INTF_SDEIF BIT(2) /*!< single data mode exception flag */
#define DMA_INTF_TAEIF BIT(3) /*!< transfer access error flag */
#define DMA_INTF_HTFIF BIT(4) /*!< half transfer finish flag */
#define DMA_INTF_FTFIF BIT(5) /*!< full transger finish flag */
/* DMA_INTC */
#define DMA_INTC_FEEIFC BIT(0) /*!< clear FIFO error and exception flag */
#define DMA_INTC_SDEIFC BIT(2) /*!< clear single data mode exception flag */
#define DMA_INTC_TAEIFC BIT(3) /*!< clear single data mode exception flag */
#define DMA_INTC_HTFIFC BIT(4) /*!< clear half transfer finish flag */
#define DMA_INTC_FTFIFC BIT(5) /*!< clear full transger finish flag */
/* DMA_CHxCTL,x=0..7 */
#define DMA_CHXCTL_CHEN BIT(0) /*!< channel x enable */
#define DMA_CHXCTL_SDEIE BIT(1) /*!< enable bit for channel x single data mode exception interrupt */
#define DMA_CHXCTL_TAEIE BIT(2) /*!< enable bit for channel x tranfer access error interrupt */
#define DMA_CHXCTL_HTFIE BIT(3) /*!< enable bit for channel x half transfer finish interrupt */
#define DMA_CHXCTL_FTFIE BIT(4) /*!< enable bit for channel x full transfer finish interrupt */
#define DMA_CHXCTL_TFCS BIT(5) /*!< transfer flow controller select */
#define DMA_CHXCTL_TM BITS(6,7) /*!< transfer mode */
#define DMA_CHXCTL_CMEN BIT(8) /*!< circulation mode */
#define DMA_CHXCTL_PNAGA BIT(9) /*!< next address generation algorithm of peripheral */
#define DMA_CHXCTL_MNAGA BIT(10) /*!< next address generation algorithm of memory */
#define DMA_CHXCTL_PWIDTH BITS(11,12) /*!< transfer width of peipheral */
#define DMA_CHXCTL_MWIDTH BITS(13,14) /*!< transfer width of memory */
#define DMA_CHXCTL_PAIF BIT(15) /*!< peripheral address increment fixed */
#define DMA_CHXCTL_PRIO BITS(16,17) /*!< priority level */
#define DMA_CHXCTL_SBMEN BIT(18) /*!< switch-buffer mode enable */
#define DMA_CHXCTL_MBS BIT(19) /*!< memory buffer select */
#define DMA_CHXCTL_PBURST BITS(21,22) /*!< transfer burst type of peripheral */
#define DMA_CHXCTL_MBURST BITS(23,24) /*!< transfer burst type of memory */
#define DMA_CHXCTL_PERIEN BITS(25,27) /*!< peripheral enable */
/* DMA_CHxCNT,x=0..7 */
#define DMA_CHXCNT_CNT BITS(0,15) /*!< transfer counter */
/* DMA_CHxPADDR,x=0..7 */
#define DMA_CHXPADDR_PADDR BITS(0,31) /*!< peripheral base address */
/* DMA_CHxM0ADDR,x=0..7 */
#define DMA_CHXM0ADDR_M0ADDR BITS(0,31) /*!< memory 0 base address */
/* DMA_CHxM1ADDR,x=0..7 */
#define DMA_CHXM1ADDR_M0ADDR BITS(0,31) /*!< memory 1 base address */
/* DMA_CHxFCTL,x=0..7 */
#define DMA_CHXFCTL_FCCV BITS(0,1) /*!< FIFO counter critical value */
#define DMA_CHXFCTL_MDMEN BIT(2) /*!< multi-data mode enable */
#define DMA_CHXFCTL_FCNT BITS(3,5) /*!< FIFO counter */
#define DMA_CHXFCTL_FEEIE BIT(7) /*!< FIFO exception interrupt enable */
/* constants definitions */
/* DMA channel select */
typedef enum
{
DMA_CH0 = 0, /*!< DMA Channel 0 */
DMA_CH1, /*!< DMA Channel 1 */
DMA_CH2, /*!< DMA Channel 2 */
DMA_CH3, /*!< DMA Channel 3 */
DMA_CH4, /*!< DMA Channel 4 */
DMA_CH5, /*!< DMA Channel 5 */
DMA_CH6, /*!< DMA Channel 6 */
DMA_CH7 /*!< DMA Channel 7 */
} dma_channel_enum;
/* DMA peripheral select */
typedef enum
{
DMA_SUBPERI0 = 0, /*!< DMA Peripheral 0 */
DMA_SUBPERI1, /*!< DMA Peripheral 1 */
DMA_SUBPERI2, /*!< DMA Peripheral 2 */
DMA_SUBPERI3, /*!< DMA Peripheral 3 */
DMA_SUBPERI4, /*!< DMA Peripheral 4 */
DMA_SUBPERI5, /*!< DMA Peripheral 5 */
DMA_SUBPERI6, /*!< DMA Peripheral 6 */
DMA_SUBPERI7 /*!< DMA Peripheral 7 */
} dma_subperipheral_enum;
/* DMA multidata mode initialize struct */
typedef struct
{
uint32_t periph_addr; /*!< peripheral base address */
uint32_t periph_width; /*!< transfer data size of peripheral */
uint32_t periph_inc; /*!< peripheral increasing mode */
uint32_t memory0_addr; /*!< memory 0 base address */
uint32_t memory_width; /*!< transfer data size of memory */
uint32_t memory_inc; /*!< memory increasing mode */
uint32_t memory_burst_width; /*!< multi data mode enable */
uint32_t periph_burst_width; /*!< multi data mode enable */
uint32_t critical_value; /*!< FIFO critical */
uint32_t circular_mode;
uint32_t direction; /*!< channel data transfer direction */
uint32_t number; /*!< channel transfer number */
uint32_t priority; /*!< channel priority level */
}dma_multi_data_parameter_struct;
/* DMA singledata mode initialize struct */
typedef struct
{
uint32_t periph_addr; /*!< peripheral base address */
uint32_t periph_inc; /*!< peripheral increasing mode */
uint32_t memory0_addr; /*!< memory 0 base address */
uint32_t memory_inc; /*!< memory increasing mode */
uint32_t periph_memory_width; /*!< transfer data size of peripheral */
uint32_t circular_mode; /*!< DMA circular mode */
uint32_t direction; /*!< channel data transfer direction */
uint32_t number; /*!< channel transfer number */
uint32_t priority; /*!< channel priority level */
} dma_single_data_parameter_struct;
#define DMA_FLAG_ADD(flag,channel) ((uint32_t)((flag)<<((((uint32_t)(channel)*6U))+((uint32_t)(((uint32_t)(channel)) >> 1U)&0x01U)*4U))) /*!< DMA channel flag shift */
/* DMA_register address */
#define DMA_CHCTL(dma,channel) REG32(((dma) + 0x10U) + 0x18U*(channel)) /*!< the address of DMA channel CHXCTL register */
#define DMA_CHCNT(dma,channel) REG32(((dma) + 0x14U) + 0x18U*(channel)) /*!< the address of DMA channel CHXCNT register */
#define DMA_CHPADDR(dma,channel) REG32(((dma) + 0x18U) + 0x18U*(channel)) /*!< the address of DMA channel CHXPADDR register */
#define DMA_CHM0ADDR(dma,channel) REG32(((dma) + 0x1CU) + 0x18U*(channel)) /*!< the address of DMA channel CHXM0ADDR register */
#define DMA_CHM1ADDR(dma,channel) REG32(((dma) + 0x20U) + 0x18U*(channel)) /*!< the address of DMA channel CHXM1ADDR register */
#define DMA_CHFCTL(dma,channel) REG32(((dma) + 0x24U) + 0x18U*(channel)) /*!< the address of DMA channel CHXMADDR register */
/* peripheral select */
#define CHCTL_PERIEN(regval) (BITS(25,27) & ((uint32_t)(regval) << 25))
#define DMA_PERIPH_0_SELECT CHCTL_PERIEN(0) /*!< peripheral 0 select */
#define DMA_PERIPH_1_SELECT CHCTL_PERIEN(1) /*!< peripheral 1 select */
#define DMA_PERIPH_2_SELECT CHCTL_PERIEN(2) /*!< peripheral 2 select */
#define DMA_PERIPH_3_SELECT CHCTL_PERIEN(3) /*!< peripheral 3 select */
#define DMA_PERIPH_4_SELECT CHCTL_PERIEN(4) /*!< peripheral 4 select */
#define DMA_PERIPH_5_SELECT CHCTL_PERIEN(5) /*!< peripheral 5 select */
#define DMA_PERIPH_6_SELECT CHCTL_PERIEN(6) /*!< peripheral 6 select */
#define DMA_PERIPH_7_SELECT CHCTL_PERIEN(7) /*!< peripheral 7 select */
/* burst type of memory */
#define CHCTL_MBURST(regval) (BITS(23,24) & ((uint32_t)(regval) << 23))
#define DMA_MEMORY_BURST_SINGLE CHCTL_MBURST(0) /*!< single burst */
#define DMA_MEMORY_BURST_4_BEAT CHCTL_MBURST(1) /*!< 4-beat burst */
#define DMA_MEMORY_BURST_8_BEAT CHCTL_MBURST(2) /*!< 8-beat burst */
#define DMA_MEMORY_BURST_16_BEAT CHCTL_MBURST(3) /*!< 16-beat burst */
/* burst type of peripheral */
#define CHCTL_PBURST(regval) (BITS(21,22) & ((uint32_t)(regval) << 21))
#define DMA_PERIPH_BURST_SINGLE CHCTL_PBURST(0) /*!< single burst */
#define DMA_PERIPH_BURST_4_BEAT CHCTL_PBURST(1) /*!< 4-beat burst */
#define DMA_PERIPH_BURST_8_BEAT CHCTL_PBURST(2) /*!< 8-beat burst */
#define DMA_PERIPH_BURST_16_BEAT CHCTL_PBURST(3) /*!< 16-beat burst */
/* channel priority level */
#define CHCTL_PRIO(regval) (BITS(16,17) & ((uint32_t)(regval) << 16))
#define DMA_PRIORITY_LOW CHCTL_PRIO(0) /*!< low priority */
#define DMA_PRIORITY_MEDIUM CHCTL_PRIO(1) /*!< medium priority */
#define DMA_PRIORITY_HIGH CHCTL_PRIO(2) /*!< high priority */
#define DMA_PRIORITY_ULTRA_HIGH CHCTL_PRIO(3) /*!< ultra high priority */
/* transfer data width of memory */
#define CHCTL_MWIDTH(regval) (BITS(13,14) & ((uint32_t)(regval) << 13))
#define DMA_MEMORY_WIDTH_8BIT CHCTL_MWIDTH(0) /*!< transfer data width of memory is 8-bit */
#define DMA_MEMORY_WIDTH_16BIT CHCTL_MWIDTH(1) /*!< transfer data width of memory is 16-bit */
#define DMA_MEMORY_WIDTH_32BIT CHCTL_MWIDTH(2) /*!< transfer data width of memory is 32-bit */
/* transfer data width of peripheral */
#define CHCTL_PWIDTH(regval) (BITS(11,12) & ((uint32_t)(regval) << 11))
#define DMA_PERIPH_WIDTH_8BIT CHCTL_PWIDTH(0) /*!< transfer data width of peripheral is 8-bit */
#define DMA_PERIPH_WIDTH_16BIT CHCTL_PWIDTH(1) /*!< transfer data width of peripheral is 16-bit */
#define DMA_PERIPH_WIDTH_32BIT CHCTL_PWIDTH(2) /*!< transfer data width of peripheral is 32-bit */
/* channel transfer mode */
#define CHCTL_TM(regval) (BITS(6,7) & ((uint32_t)(regval) << 6))
#define DMA_PERIPH_TO_MEMORY CHCTL_TM(0) /*!< read from peripheral and write to memory */
#define DMA_MEMORY_TO_PERIPH CHCTL_TM(1) /*!< read from memory and write to peripheral */
#define DMA_MEMORY_TO_MEMORY CHCTL_TM(2) /*!< read from memory and write to memory */
/* FIFO counter critical value */
#define CHFCTL_FCCV(regval) (BITS(0,1) & ((uint32_t)(regval) << 0))
#define DMA_FIFO_1_WORD CHFCTL_FCCV(0) /*!< critical value 1 word */
#define DMA_FIFO_2_WORD CHFCTL_FCCV(1) /*!< critical value 2 word */
#define DMA_FIFO_3_WORD CHFCTL_FCCV(2) /*!< critical value 3 word */
#define DMA_FIFO_4_WORD CHFCTL_FCCV(3) /*!< critical value 4 word */
/* memory select */
#define DMA_MEMORY_0 ((uint32_t)0x00000000U) /*!< select memory 0 */
#define DMA_MEMORY_1 ((uint32_t)0x00000001U) /*!< select memory 1 */
/* DMA circular mode */
#define DMA_CIRCULAR_MODE_ENABLE ((uint32_t)0x00000000U) /*!< circular mode enable */
#define DMA_CIRCULAR_MODE_DISABLE ((uint32_t)0x00000001U) /*!< circular mode disable */
/* DMA flow controller select */
#define DMA_FLOW_CONTROLLER_DMA ((uint32_t)0x00000000U) /*!< DMA is the flow controler */
#define DMA_FLOW_CONTROLLER_PERI ((uint32_t)0x00000001U) /*!< peripheral is the flow controler */
/* peripheral increasing mode */
#define DMA_PERIPH_INCREASE_ENABLE ((uint32_t)0x00000000U) /*!< next address of peripheral is increasing address mode */
#define DMA_PERIPH_INCREASE_DISABLE ((uint32_t)0x00000001U) /*!< next address of peripheral is fixed address mode */
#define DMA_PERIPH_INCREASE_FIX ((uint32_t)0x00000002U) /*!< next address of peripheral is increasing fixed */
/* memory increasing mode */
#define DMA_MEMORY_INCREASE_ENABLE ((uint32_t)0x00000000U) /*!< next address of memory is increasing address mode */
#define DMA_MEMORY_INCREASE_DISABLE ((uint32_t)0x00000001U) /*!< next address of memory is fixed address mode */
/* FIFO status */
#define DMA_FIFO_STATUS_NODATA ((uint32_t)0x00000000U) /*!< the data in the FIFO less than 1 word */
#define DMA_FIFO_STATUS_1_WORD ((uint32_t)0x00000001U) /*!< the data in the FIFO more than 1 word, less than 2 words */
#define DMA_FIFO_STATUS_2_WORD ((uint32_t)0x00000002U) /*!< the data in the FIFO more than 2 word, less than 3 words */
#define DMA_FIFO_STATUS_3_WORD ((uint32_t)0x00000003U) /*!< the data in the FIFO more than 3 word, less than 4 words */
#define DMA_FIFO_STATUS_EMPTY ((uint32_t)0x00000004U) /*!< the data in the FIFO is empty */
#define DMA_FIFO_STATUS_FULL ((uint32_t)0x00000005U) /*!< the data in the FIFO is full */
/* DMA reset value */
#define DMA_CHCTL_RESET_VALUE ((uint32_t)0x00000000U) /*!< the reset value of DMA channel CHXCTL register */
#define DMA_CHCNT_RESET_VALUE ((uint32_t)0x00000000U) /*!< the reset value of DMA channel CHXCNT register */
#define DMA_CHPADDR_RESET_VALUE ((uint32_t)0x00000000U) /*!< the reset value of DMA channel CHXPADDR register */
#define DMA_CHMADDR_RESET_VALUE ((uint32_t)0x00000000U) /*!< the reset value of DMA channel CHXMADDR register */
#define DMA_CHINTF_RESET_VALUE ((uint32_t)0x0000003DU) /*!< clear DMA channel CHXINTFS register */
#define DMA_CHFCTL_RESET_VALUE ((uint32_t)0x00000000U) /*!< the reset value of DMA channel CHXFCTL register */
/* function declarations */
/* deinitialize DMA a channel registers */
void dma_deinit(uint32_t dma_periph,dma_channel_enum channelx);
/* DMA single data mode initialize */
void dma_single_data_mode_init(uint32_t dma_periph,dma_channel_enum channelx,dma_single_data_parameter_struct init_struct);
/* DMA multi data mode initialize */
void dma_multi_data_mode_init(uint32_t dma_periph,dma_channel_enum channelx,dma_multi_data_parameter_struct init_struct);
/* set DMA peripheral base address */
void dma_periph_address_config(uint32_t dma_periph,dma_channel_enum channelx,uint32_t address);
/* set DMA Memory base address */
void dma_memory_address_config(uint32_t dma_periph,dma_channel_enum channelx,uint8_t memory_flag,uint32_t address);
/* set the number of remaining data to be transferred by the DMA */
void dma_transfer_number_config(uint32_t dma_periph,dma_channel_enum channelx,uint32_t number);
/* get the number of remaining data to be transferred by the DMA */
uint32_t dma_transfer_number_get(uint32_t dma_periph,dma_channel_enum channelx);
/* configure priority level of DMA channel */
void dma_priority_config(uint32_t dma_periph,dma_channel_enum channelx,uint32_t priority);
/* configure transfer burst beats of memory */
void dma_memory_burst_beats_config (uint32_t dma_periph,dma_channel_enum channelx,uint32_t mbeat);
/* configure transfer burst beats of peripheral */
void dma_periph_burst_beats_config (uint32_t dma_periph,dma_channel_enum channelx,uint32_t pbeat);
/* configure transfer data size of memory */
void dma_memory_width_config (uint32_t dma_periph,dma_channel_enum channelx,uint32_t msize);
/* configure transfer data size of peripheral */
void dma_periph_width_config (uint32_t dma_periph,dma_channel_enum channelx,uint32_t psize);
/* configure next address increasement algorithm of memory */
void dma_memory_address_generation_config(uint32_t dma_periph,dma_channel_enum channelx,uint8_t generation_algorithm);
/* configure next address increasement algorithm of peripheral */
void dma_peripheral_address_generation_config(uint32_t dma_periph,dma_channel_enum channelx,uint8_t generation_algorithm);
/* enable DMA circulation mode */
void dma_circulation_enable(uint32_t dma_periph,dma_channel_enum channelx);
/* disable DMA circulation mode */
void dma_circulation_disable(uint32_t dma_periph,dma_channel_enum channelx);
/* enable DMA channel */
void dma_channel_enable(uint32_t dma_periph,dma_channel_enum channelx);
/* disable DMA channel */
void dma_channel_disable(uint32_t dma_periph,dma_channel_enum channelx);
/* configure the direction of data transfer on the channel */
void dma_transfer_direction_config(uint32_t dma_periph,dma_channel_enum channelx,uint8_t direction);
/* DMA switch buffer mode config */
void dma_switch_buffer_mode_config(uint32_t dma_periph,dma_channel_enum channelx,uint32_t memory1_addr,uint32_t memory_select);
/* DMA using memory get */
uint32_t dma_using_memory_get(uint32_t dma_periph,dma_channel_enum channelx);
/* DMA channel peripheral select */
void dma_channel_subperipheral_select(uint32_t dma_periph,dma_channel_enum channelx,dma_subperipheral_enum sub_periph);
/* DMA flow controller configure */
void dma_flow_controller_config(uint32_t dma_periph,dma_channel_enum channelx,uint32_t controller);
/* DMA flow controller enable */
void dma_switch_buffer_mode_enable(uint32_t dma_periph,dma_channel_enum channelx,ControlStatus newvalue);
/* DMA FIFO status get */
uint32_t dma_fifo_status_get(uint32_t dma_periph,dma_channel_enum channelx);
/* check DMA flag is set or not */
FlagStatus dma_flag_get(uint32_t dma_periph,dma_channel_enum channelx,uint32_t flag);
/* clear DMA a channel flag */
void dma_flag_clear(uint32_t dma_periph,dma_channel_enum channelx,uint32_t flag);
/* check DMA flag is set or not */
FlagStatus dma_interrupt_flag_get(uint32_t dma_periph,dma_channel_enum channelx,uint32_t interrupt);
/* clear DMA a channel flag */
void dma_interrupt_flag_clear(uint32_t dma_periph,dma_channel_enum channelx,uint32_t interrupt);
/* enable DMA interrupt */
void dma_interrupt_enable(uint32_t dma_periph,dma_channel_enum channelx,uint32_t source);
/* disable DMA interrupt */
void dma_interrupt_disable(uint32_t dma_periph,dma_channel_enum channelx,uint32_t source);
#endif /* GD32F4XX_DMA_H */

View File

@@ -0,0 +1,781 @@
/*!
\file gd32f4xx_exmc.h
\brief definitions for the EXMC
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#ifndef GD32F4XX_EXMC_H
#define GD32F4XX_EXMC_H
#include "gd32f4xx.h"
/* EXMC definitions */
#define EXMC (EXMC_BASE) /*!< EXMC register base address */
#define EXMC_NOR_PSRAM (EXMC_BASE - 0x40000000) /*!< EXMC NOR/PSRAM base address */
#define EXMC_NAND (EXMC_BASE - 0x30000000) /*!< EXMC NAND base address */
#define EXMC_PCCARD (EXMC_BASE - 0x10000000) /*!< EXMC PC card base address */
#define EXMC_SDRAM (EXMC_BASE + 0x20000000) /*!< EXMC SDRAM base address */
/* registers definitions */
/* NOR/PSRAM */
#define EXMC_SNCTL0 REG32(EXMC + 0x00U) /*!< EXMC SRAM/NOR flash control register */
#define EXMC_SNTCFG0 REG32(EXMC + 0x04U) /*!< EXMC SRAM/NOR flash timing configuration register */
#define EXMC_SNWTCFG0 REG32(EXMC + 0x104U) /*!< EXMC SRAM/NOR flash write timing configuration register */
#define EXMC_SNCTL1 REG32(EXMC + 0x08U) /*!< EXMC SRAM/NOR flash control register */
#define EXMC_SNTCFG1 REG32(EXMC + 0x0CU) /*!< EXMC SRAM/NOR flash timing configuration register */
#define EXMC_SNWTCFG1 REG32(EXMC + 0x10CU) /*!< EXMC SRAM/NOR flash write timing configuration register */
#define EXMC_SNCTL2 REG32(EXMC + 0x10U) /*!< EXMC SRAM/NOR flash control register */
#define EXMC_SNTCFG2 REG32(EXMC + 0x14U) /*!< EXMC SRAM/NOR flash timing configuration register */
#define EXMC_SNWTCFG2 REG32(EXMC + 0x114U) /*!< EXMC SRAM/NOR flash write timing configuration register */
#define EXMC_SNCTL3 REG32(EXMC + 0x18U) /*!< EXMC SRAM/NOR flash control register */
#define EXMC_SNTCFG3 REG32(EXMC + 0x1CU) /*!< EXMC SRAM/NOR flash timing configuration register */
#define EXMC_SNWTCFG3 REG32(EXMC + 0x11CU) /*!< EXMC SRAM/NOR flash write timing configuration register */
/* NAND/PC card */
#define EXMC_NPCTL1 REG32(EXMC + 0x60U) /*!< EXMC NAND/PC card control register */
#define EXMC_NPINTEN1 REG32(EXMC + 0x64U) /*!< EXMC NAND/PC card interrupt enable register */
#define EXMC_NPCTCFG1 REG32(EXMC + 0x68U) /*!< EXMC NAND/PC card common space timing configuration register */
#define EXMC_NPATCFG1 REG32(EXMC + 0x6CU) /*!< EXMC NAND/PC card attribute space timing configuration register */
#define EXMC_NECC1 REG32(EXMC + 0x74U) /*!< EXMC NAND ECC register */
#define EXMC_NPCTL2 REG32(EXMC + 0x80U) /*!< EXMC NAND/PC card control register */
#define EXMC_NPINTEN2 REG32(EXMC + 0x84U) /*!< EXMC NAND/PC card interrupt enable register */
#define EXMC_NPCTCFG2 REG32(EXMC + 0x88U) /*!< EXMC NAND/PC card common space timing configuration register */
#define EXMC_NPATCFG2 REG32(EXMC + 0x8CU) /*!< EXMC NAND/PC card attribute space timing configuration register */
#define EXMC_NECC2 REG32(EXMC + 0x94U) /*!< EXMC NAND ECC register */
#define EXMC_NPCTL3 REG32(EXMC + 0xA0U) /*!< EXMC NAND/PC card control register */
#define EXMC_NPINTEN3 REG32(EXMC + 0xA4U) /*!< EXMC NAND/PC card interrupt enable register */
#define EXMC_NPCTCFG3 REG32(EXMC + 0xA8U) /*!< EXMC NAND/PC card common space timing configuration register */
#define EXMC_NPATCFG3 REG32(EXMC + 0xACU) /*!< EXMC NAND/PC card attribute space timing configuration register */
#define EXMC_PIOTCFG3 REG32(EXMC + 0xB0U) /*!< EXMC PC card I/O space timing configuration register */
/* SDRAM */
#define EXMC_SDCTL0 REG32(EXMC + 0x140U) /*!< EXMC SDRAM control register */
#define EXMC_SDTCFG0 REG32(EXMC + 0x148U) /*!< EXMC SDRAM timing configuration register register */
#define EXMC_SDCTL1 REG32(EXMC + 0x144U) /*!< EXMC SDRAM control register */
#define EXMC_SDTCFG1 REG32(EXMC + 0x14CU) /*!< EXMC SDRAM timing configuration register register */
#define EXMC_SDCMD REG32(EXMC + 0x150U) /*!< EXMC SDRAM command register */
#define EXMC_SDARI REG32(EXMC + 0x154U) /*!< EXMC SDRAM auto-refresh interval register */
#define EXMC_SDSTAT REG32(EXMC + 0x158U) /*!< EXMC SDRAM status register */
#define EXMC_SDRSCTL REG32(EXMC + 0x180U) /*!< EXMC SDRAM read sample control register */
/* SQPI PSRAM */
#define EXMC_SINIT REG32(EXMC + 0x310U) /*!< EXMC SPI initialization register */
#define EXMC_SRCMD REG32(EXMC + 0x320U) /*!< EXMC SPI read command register */
#define EXMC_SWCMD REG32(EXMC + 0x330U) /*!< EXMC SPI write command register */
#define EXMC_SIDL REG32(EXMC + 0x340U) /*!< EXMC SPI ID low register */
#define EXMC_SIDH REG32(EXMC + 0x350U) /*!< EXMC SPI ID high register */
/* bits definitions */
/* EXMC_SNCTLx,x=0..3 */
#define EXMC_SNCTL_NRBKEN BIT(0) /*!< NOR bank enable */
#define EXMC_SNCTL_NRMUX BIT(1) /*!< NOR bank memory address/data multiplexing */
#define EXMC_SNCTL_NRTP BITS(2,3) /*!< NOR bank memory type */
#define EXMC_SNCTL_NRW BITS(4,5) /*!< NOR bank memory data bus width */
#define EXMC_SNCTL_NREN BIT(6) /*!< NOR flash access enable */
#define EXMC_SNCTL_SBRSTEN BIT(8) /*!< synchronous burst enable */
#define EXMC_SNCTL_NRWTPOL BIT(9) /*!< NWAIT signal polarity */
#define EXMC_SNCTL_WRAPEN BIT(10) /*!< wrapped burst mode enable */
#define EXMC_SNCTL_NRWTCFG BIT(11) /*!< NWAIT signal configuration, only work in synchronous mode */
#define EXMC_SNCTL_WREN BIT(12) /*!< write enable */
#define EXMC_SNCTL_NRWTEN BIT(13) /*!< NWAIT signal enable */
#define EXMC_SNCTL_EXMODEN BIT(14) /*!< extended mode enable */
#define EXMC_SNCTL_ASYNCWAIT BIT(15) /*!< asynchronous wait */
#define EXMC_SNCTL_CPS BITS(16,18) /*!< CRAM page size */
#define EXMC_SNCTL_SYNCWR BIT(19) /*!< synchronous write */
#define EXMC_SNCTL_CCK BIT(20) /*!< consecutive clock */
/* EXMC_SNTCFGx,x=0..3 */
#define EXMC_SNTCFG_ASET BITS(0,3) /*!< address setup time */
#define EXMC_SNTCFG_AHLD BITS(4,7) /*!< address hold time */
#define EXMC_SNTCFG_DSET BITS(8,15) /*!< data setup time */
#define EXMC_SNTCFG_BUSLAT BITS(16,19) /*!< bus latency */
#define EXMC_SNTCFG_CKDIV BITS(20,23) /*!< synchronous clock divide ratio */
#define EXMC_SNTCFG_DLAT BITS(24,27) /*!< data latency for NOR flash */
#define EXMC_SNTCFG_ASYNCMOD BITS(28,29) /*!< asynchronous access mode */
/* EXMC_SNWTCFGx,x=0..3 */
#define EXMC_SNWTCFG_WASET BITS(0,3) /*!< address setup time */
#define EXMC_SNWTCFG_WAHLD BITS(4,7) /*!< address hold time */
#define EXMC_SNWTCFG_WDSET BITS(8,15) /*!< data setup time */
#define EXMC_SNWTCFG_WBUSLAT BITS(16,19) /*!< bus latency */
#define EXMC_SNWTCFG_WASYNCMOD BITS(28,29) /*!< asynchronous access mode */
/* EXMC_NPCTLx,x=1..3 */
#define EXMC_NPCTL_NDWTEN BIT(1) /*!< wait feature enable */
#define EXMC_NPCTL_NDBKEN BIT(2) /*!< NAND bank enable */
#define EXMC_NPCTL_NDTP BIT(3) /*!< NAND bank memory type */
#define EXMC_NPCTL_NDW BITS(4,5) /*!< NAND bank memory data bus width */
#define EXMC_NPCTL_ECCEN BIT(6) /*!< ECC enable */
#define EXMC_NPCTL_CTR BITS(9,12) /*!< CLE to RE delay */
#define EXMC_NPCTL_ATR BITS(13,16) /*!< ALE to RE delay */
#define EXMC_NPCTL_ECCSZ BITS(17,19) /*!< ECC size */
/* EXMC_NPINTENx,x=1..3 */
#define EXMC_NPINTEN_INTRS BIT(0) /*!< interrupt rising edge status */
#define EXMC_NPINTEN_INTHS BIT(1) /*!< interrupt high-level status */
#define EXMC_NPINTEN_INTFS BIT(2) /*!< interrupt falling edge status */
#define EXMC_NPINTEN_INTREN BIT(3) /*!< interrupt rising edge detection enable */
#define EXMC_NPINTEN_INTHEN BIT(4) /*!< interrupt high-level detection enable */
#define EXMC_NPINTEN_INTFEN BIT(5) /*!< interrupt falling edge detection enable */
#define EXMC_NPINTEN_INTEPT BIT(6) /*!< FIFO empty flag */
/* EXMC_NPCTCFGx,x=1..3 */
#define EXMC_NPCTCFG_COMSET BITS(0,7) /*!< common memory data bus HiZ time */
#define EXMC_NPCTCFG_COMWAIT BITS(8,15) /*!< common memory hold time */
#define EXMC_NPCTCFG_COMHLD BITS(16,23) /*!< common memory wait time */
#define EXMC_NPCTCFG_COMHIZ BITS(24,31) /*!< common memory setup time */
/* EXMC_NPATCFGx,x=1..3 */
#define EXMC_NPATCFG_ATTSET BITS(0,7) /*!< attribute memory data bus HiZ time */
#define EXMC_NPATCFG_ATTWAIT BITS(8,15) /*!< attribute memory hold time */
#define EXMC_NPATCFG_ATTHLD BITS(16,23) /*!< attribute memory wait time */
#define EXMC_NPATCFG_ATTHIZ BITS(24,31) /*!< attribute memory setup time */
/* EXMC_PIOTCFG3 */
#define EXMC_PIOTCFG3_IOSET BITS(0,7) /*!< IO space data bus HiZ time */
#define EXMC_PIOTCFG3_IOWAIT BITS(8,15) /*!< IO space hold time */
#define EXMC_PIOTCFG3_IOHLD BITS(16,23) /*!< IO space wait time */
#define EXMC_PIOTCFG3_IOHIZ BITS(24,31) /*!< IO space setup time */
/* EXMC_NECCx,x=1..2 */
#define EXMC_NECC_ECC BITS(0,31) /*!< ECC result */
/* EXMC_SDCTLx,x=0..1 */
#define EXMC_SDCTL_CAW BITS(0,1) /*!< column address bit width */
#define EXMC_SDCTL_RAW BITS(2,3) /*!< row address bit width */
#define EXMC_SDCTL_SDW BITS(4,5) /*!< SDRAM data bus width */
#define EXMC_SDCTL_NBK BIT(6) /*!< number of banks */
#define EXMC_SDCTL_CL BIT(7,8) /*!< CAS Latency */
#define EXMC_SDCTL_WPEN BIT(9) /*!< write protection enable */
#define EXMC_SDCTL_SDCLK BITS(10,11) /*!< SDRAM clock configuration */
#define EXMC_SDCTL_BRSTRD BIT(12) /*!< burst read */
#define EXMC_SDCTL_PIPED BITS(13,14) /*!< pipeline delay */
/* EXMC_SDTCFGx,x=0..1 */
#define EXMC_SDTCFG_LMRD BITS(0,3) /*!< load mode register delay */
#define EXMC_SDTCFG_XSRD BITS(4,7) /*!< exit self-refresh delay */
#define EXMC_SDTCFG_RASD BITS(8,11) /*!< row address select delay */
#define EXMC_SDTCFG_ARFD BITS(12,15) /*!< auto refresh delay */
#define EXMC_SDTCFG_WRD BITS(16,19) /*!< write recovery delay */
#define EXMC_SDTCFG_RPD BITS(20,23) /*!< row precharge delay */
#define EXMC_SDTCFG_RCD BITS(24,27) /*!< row to column delay */
/* EXMC_SDCMD */
#define EXMC_SDCMD_CMD BITS(0,2) /*!< command */
#define EXMC_SDCMD_DS1 BIT(3) /*!< device select 1 */
#define EXMC_SDCMD_DS0 BIT(4) /*!< device select 0 */
#define EXMC_SDCMD_NARF BITS(5,8) /*!< number of successive auto-refresh */
#define EXMC_SDCMD_MRC BITS(9,21) /*!< mode register content */
/* EXMC_SDARI */
#define EXMC_SDARI_REC BIT(0) /*!< refresh error flag clear */
#define EXMC_SDARI_ARINTV BITS(1,13) /*!< auto-refresh interval */
#define EXMC_SDARI_REIE BIT(14) /*!< interrupt refresh error enable */
/* EXMC_SDSTAT */
#define EXMC_SDSDAT_REIF BIT(0) /*!< refresh error interrupt flag */
#define EXMC_SDSDAT_STA0 BITS(1,2) /*!< device 0 status */
#define EXMC_SDSDAT_STA1 BITS(3,4) /*!< device 1 status */
#define EXMC_SDSDAT_NRDY BIT(5) /*!< not ready status */
/* EXMC_SDRSCTL */
#define EXMC_SDRSCTL_RSEN BIT(0) /*!< read sample enable */
#define EXMC_SDRSCTL_SSCR BIT(1) /*!< select sample cycle of read data */
#define EXMC_SDRSCTL_SDSC BITS(4,7) /*!< select the delayed sample clock of read data */
/* EXMC_SINIT */
#define EXMC_SINIT_CMDBIT BITS(16,17) /*!< bit number of SPI PSRAM command phase */
#define EXMC_SINIT_ARDBIT BITS(24,28) /*!< bit number of SPI PSRAM address phase */
#define EXMC_SINIT_IDL BITS(29,30) /*!< SPI PSRAM ID length */
#define EXMC_SINIT_POL BIT(31) /*!< read data sample polarity */
/* EXMC_SRCMD */
#define EXMC_SRCMD_RCMD BITS(0,15) /*!< SPI read command for AHB read transfer */
#define EXMC_SRCMD_RWAITCYCLE BITS(16,19) /*!< SPI read wait cycle number after address phase */
#define EXMC_SRCMD_RMODE BITS(20,21) /*!< SPI PSRAM read command mode */
#define EXMC_SRCMD_RDID BIT(31) /*!< send SPI read ID command */
/* EXMC_SWCMD */
#define EXMC_SWCMD_WCMD BITS(0,15) /*!< send SPI special command */
#define EXMC_SWCMD_WWAITCYCLE BITS(16,19) /*!< SPI PSRAM write command mode */
#define EXMC_SWCMD_WMODE BITS(20,21) /*!< SPI write wait cycle number after address phase */
#define EXMC_SWCMD_SC BIT(31) /*!< SPI write command for AHB write transfer */
/* EXMC_SIDL */
#define EXMC_SIDL_SIDL BITS(0,31) /*!< ID low data saved for SPI read ID command */
/* EXMC_SIDH */
#define EXMC_SIDL_SIDH BITS(0,31) /*!< ID high Data saved for SPI read ID command */
/* constants definitions */
/* EXMC NOR/SRAM timing initialize struct */
typedef struct
{
uint32_t asyn_access_mode; /*!< asynchronous access mode */
uint32_t syn_data_latency; /*!< configure the data latency */
uint32_t syn_clk_division; /*!< configure the clock divide ratio */
uint32_t bus_latency; /*!< configure the bus latency */
uint32_t asyn_data_setuptime; /*!< configure the data setup time,asynchronous access mode valid */
uint32_t asyn_address_holdtime; /*!< configure the address hold time,asynchronous access mode valid */
uint32_t asyn_address_setuptime; /*!< configure the data setup time,asynchronous access mode valid */
}exmc_norsram_timing_parameter_struct;
/* EXMC NOR/SRAM initialize struct */
typedef struct
{
uint32_t norsram_region; /*!< select the region of EXMC NOR/SRAM bank */
uint32_t write_mode; /*!< the write mode, synchronous mode or asynchronous mode */
uint32_t extended_mode; /*!< enable or disable the extended mode */
uint32_t asyn_wait; /*!< enable or disable the asynchronous wait function */
uint32_t nwait_signal; /*!< enable or disable the NWAIT signal while in synchronous bust mode */
uint32_t memory_write; /*!< enable or disable the write operation */
uint32_t nwait_config; /*!< NWAIT signal configuration */
uint32_t wrap_burst_mode; /*!< enable or disable the wrap burst mode */
uint32_t nwait_polarity; /*!< specifies the polarity of NWAIT signal from memory */
uint32_t burst_mode; /*!< enable or disable the burst mode */
uint32_t databus_width; /*!< specifies the databus width of external memory */
uint32_t memory_type; /*!< specifies the type of external memory */
uint32_t address_data_mux; /*!< specifies whether the data bus and address bus are multiplexed */
exmc_norsram_timing_parameter_struct* read_write_timing; /*!< timing parameters for read and write if the extendedmode is not used or the timing
parameters for read if the extendedmode is used. */
exmc_norsram_timing_parameter_struct* write_timing; /*!< timing parameters for write when the extendedmode is used. */
}exmc_norsram_parameter_struct;
/* EXMC NAND/PC card timing initialize struct */
typedef struct
{
uint32_t databus_hiztime; /*!< configure the dadtabus HiZ time for write operation */
uint32_t holdtime; /*!< configure the address hold time(or the data hold time for write operation) */
uint32_t waittime; /*!< configure the minimum wait time */
uint32_t setuptime; /*!< configure the address setup time */
}exmc_nand_pccard_timing_parameter_struct;
/* EXMC NAND initialize struct */
typedef struct
{
uint32_t nand_bank; /*!< select the bank of NAND */
uint32_t ecc_size; /*!< the page size for the ECC calculation */
uint32_t atr_latency; /*!< configure the latency of ALE low to RB low */
uint32_t ctr_latency; /*!< configure the latency of CLE low to RB low */
uint32_t ecc_logic; /*!< enable or disable the ECC calculation logic */
uint32_t databus_width; /*!< the NAND flash databus width */
uint32_t wait_feature; /*!< enables or disables the wait feature */
exmc_nand_pccard_timing_parameter_struct* common_space_timing; /*!< the timing parameters for NAND flash Common Space */
exmc_nand_pccard_timing_parameter_struct* attribute_space_timing; /*!< the timing parameters for NAND flash Attribute Space */
}exmc_nand_parameter_struct;
/* EXMC PC card initialize struct */
typedef struct
{
uint32_t atr_latency; /*!< configure the latency of ALE low to RB low */
uint32_t ctr_latency; /*!< configure the latency of CLE low to RB low */
uint32_t wait_feature; /*!< enables or disables the Wait feature */
exmc_nand_pccard_timing_parameter_struct* common_space_timing; /*!< the timing parameters for NAND flash Common Space */
exmc_nand_pccard_timing_parameter_struct* attribute_space_timing; /*!< the timing parameters for NAND flash Attribute Space */
exmc_nand_pccard_timing_parameter_struct* io_space_timing; /*!< the timing parameters for NAND flash IO Space */
}exmc_pccard_parameter_struct;;
/* EXMC SDRAM timing initialize struct */
typedef struct
{
uint32_t row_to_column_delay; /*!< configure the row to column delay */
uint32_t row_precharge_delay; /*!< configure the row precharge delay */
uint32_t write_recovery_delay; /*!< configure the write recovery delay */
uint32_t auto_refresh_delay; /*!< configure the auto refresh delay */
uint32_t row_address_select_delay; /*!< configure the row address select delay */
uint32_t exit_selfrefresh_delay; /*!< configure the exit self-refresh delay */
uint32_t load_mode_register_delay; /*!< configure the load mode register delay */
}exmc_sdram_timing_parameter_struct;
/* EXMC SDRAM initialize struct */
typedef struct
{
uint32_t sdram_device; /*!< device of SDRAM */
uint32_t pipeline_read_delay; /*!< the delay for reading data after CAS latency in HCLK clock cycles */
uint32_t brust_read_switch; /*!< enable or disable the burst read */
uint32_t sdclock_config; /*!< the SDCLK memory clock for both SDRAM banks */
uint32_t write_protection; /*!< enable or disable SDRAM bank write protection function */
uint32_t cas_latency; /*!< configure the SDRAM CAS latency */
uint32_t internal_bank_number; /*!< the number internal banks */
uint32_t data_width; /*!< the databus width of SDRAM memory */
uint32_t row_address_width; /*!< the bit width of a row address */
uint32_t column_address_width; /*!< the bit width of a column address */
exmc_sdram_timing_parameter_struct* timing; /*!< the timing parameters for write and read SDRAM */
}exmc_sdram_parameter_struct;
/* EXMC SDRAM command initialize struct */
typedef struct
{
uint32_t mode_register_content; /*!< the SDRAM mode register content */
uint32_t auto_refresh_number; /*!< the number of successive auto-refresh cycles will be send when CMD = 011 */
uint32_t bank_select; /*!< the bank which command will be sent to */
uint32_t command; /*!< the commands that will be sent to SDRAM */
}exmc_sdram_command_parameter_struct;
/* EXMC SQPISRAM initialize struct */
typedef struct{
uint32_t sample_polarity; /*!< read data sample polarity */
uint32_t id_length; /*!< SPI PSRAM ID length */
uint32_t address_bits; /*!< bit number of SPI PSRAM address phase */
uint32_t command_bits; /*!< bit number of SPI PSRAM command phase */
}exmc_sqpipsram_parameter_struct;
/* EXMC_register address */
#define EXMC_SNCTL(bank) REG32(EXMC + 0x08U*((uint32_t)(bank))) /*!< EXMC SRAM/NOR flash control register */
#define EXMC_SNTCFG(bank) REG32(EXMC + 0x04U + 0x08U*(bank)) /*!< EXMC SRAM/NOR flash timing configuration register */
#define EXMC_SNWTCFG(bank) REG32(EXMC + 0x104U + 0x08U*(bank)) /*!< EXMC SRAM/NOR flash write timing configuration register */
#define EXMC_NPCTL(bank) REG32(EXMC + 0x40U + 0x20U*(bank)) /*!< EXMC NAND/PC card control register */
#define EXMC_NPINTEN(bank) REG32(EXMC + 0x44U + 0x20U*(bank)) /*!< EXMC NAND/PC card interrupt enable register */
#define EXMC_NPCTCFG(bank) REG32(EXMC + 0x48U + 0x20U*(bank)) /*!< EXMC NAND/PC card common space timing configuration register */
#define EXMC_NPATCFG(bank) REG32(EXMC + 0x4CU + 0x20U*(bank)) /*!< EXMC NAND/PC card attribute space timing configuration register */
#define EXMC_NECC(bank) REG32(EXMC + 0x54U + 0x20U*(bank)) /*!< EXMC NAND ECC register */
#define EXMC_SDCTL(bank) REG32(EXMC + 0x140U + 0x4U*((bank) - 0x4U)) /*!< EXMC SDRAM control register */
#define EXMC_SDTCFG(bank) REG32(EXMC + 0x148U + 0x4U*((bank) - 0x4U)) /*!< EXMC SDRAM timing configuration register */
/* CRAM page size */
#define SNCTL_CPS(regval) (BITS(16,18) & ((uint32_t)(regval) << 16))
#define EXMC_CRAM_AUTO_SPLIT SNCTL_CPS(0) /*!< automatic burst split on page boundary crossing */
#define EXMC_CRAM_PAGE_SIZE_128_BYTES SNCTL_CPS(1) /*!< page size is 128 bytes */
#define EXMC_CRAM_PAGE_SIZE_256_BYTES SNCTL_CPS(2) /*!< page size is 256 bytes */
#define EXMC_CRAM_PAGE_SIZE_512_BYTES SNCTL_CPS(3) /*!< page size is 512 bytes */
#define EXMC_CRAM_PAGE_SIZE_1024_BYTES SNCTL_CPS(4) /*!< page size is 1024 bytes */
/* NOR bank memory data bus width */
#define SNCTL_NRW(regval) (BITS(4,5) & ((uint32_t)(regval) << 4))
#define EXMC_NOR_DATABUS_WIDTH_8B SNCTL_NRW(0) /*!< NOR data width 8 bits */
#define EXMC_NOR_DATABUS_WIDTH_16B SNCTL_NRW(1) /*!< NOR data width 16 bits */
/* NOR bank memory type */
#define SNCTL_NRTP(regval) (BITS(2,3) & ((uint32_t)(regval) << 2))
#define EXMC_MEMORY_TYPE_SRAM SNCTL_NRTP(0) /*!< SRAM,ROM */
#define EXMC_MEMORY_TYPE_PSRAM SNCTL_NRTP(1) /*!< PSRAM,CRAM */
#define EXMC_MEMORY_TYPE_NOR SNCTL_NRTP(2) /*!< NOR flash */
/* asynchronous access mode */
#define SNTCFG_ASYNCMOD(regval) (BITS(28,29) & ((uint32_t)(regval) << 28))
#define EXMC_ACCESS_MODE_A SNTCFG_ASYNCMOD(0) /*!< mode A access */
#define EXMC_ACCESS_MODE_B SNTCFG_ASYNCMOD(1) /*!< mode B access */
#define EXMC_ACCESS_MODE_C SNTCFG_ASYNCMOD(2) /*!< mode C access */
#define EXMC_ACCESS_MODE_D SNTCFG_ASYNCMOD(3) /*!< mode D access */
/* data latency for NOR flash */
#define SNTCFG_DLAT(regval) (BITS(24,27) & ((uint32_t)(regval) << 24))
#define EXMC_DATALAT_2_CLK SNTCFG_DLAT(0) /*!< data latency 2 EXMC_CLK */
#define EXMC_DATALAT_3_CLK SNTCFG_DLAT(1) /*!< data latency 3 EXMC_CLK */
#define EXMC_DATALAT_4_CLK SNTCFG_DLAT(2) /*!< data latency 4 EXMC_CLK */
#define EXMC_DATALAT_5_CLK SNTCFG_DLAT(3) /*!< data latency 5 EXMC_CLK */
#define EXMC_DATALAT_6_CLK SNTCFG_DLAT(4) /*!< data latency 6 EXMC_CLK */
#define EXMC_DATALAT_7_CLK SNTCFG_DLAT(5) /*!< data latency 7 EXMC_CLK */
#define EXMC_DATALAT_8_CLK SNTCFG_DLAT(6) /*!< data latency 8 EXMC_CLK */
#define EXMC_DATALAT_9_CLK SNTCFG_DLAT(7) /*!< data latency 9 EXMC_CLK */
#define EXMC_DATALAT_10_CLK SNTCFG_DLAT(8) /*!< data latency 10 EXMC_CLK */
#define EXMC_DATALAT_11_CLK SNTCFG_DLAT(9) /*!< data latency 11 EXMC_CLK */
#define EXMC_DATALAT_12_CLK SNTCFG_DLAT(10) /*!< data latency 12 EXMC_CLK */
#define EXMC_DATALAT_13_CLK SNTCFG_DLAT(11) /*!< data latency 13 EXMC_CLK */
#define EXMC_DATALAT_14_CLK SNTCFG_DLAT(12) /*!< data latency 14 EXMC_CLK */
#define EXMC_DATALAT_15_CLK SNTCFG_DLAT(13) /*!< data latency 15 EXMC_CLK */
#define EXMC_DATALAT_16_CLK SNTCFG_DLAT(14) /*!< data latency 16 EXMC_CLK */
#define EXMC_DATALAT_17_CLK SNTCFG_DLAT(15) /*!< data latency 17 EXMC_CLK */
/* synchronous clock divide ratio */
#define SNTCFG_CKDIV(regval) (BITS(20,23) & ((uint32_t)(regval) << 20))
#define EXMC_SYN_CLOCK_RATIO_DISABLE SNTCFG_CKDIV(0) /*!< EXMC_CLK disable */
#define EXMC_SYN_CLOCK_RATIO_2_CLK SNTCFG_CKDIV(1) /*!< EXMC_CLK = 2*HCLK */
#define EXMC_SYN_CLOCK_RATIO_3_CLK SNTCFG_CKDIV(2) /*!< EXMC_CLK = 3*HCLK */
#define EXMC_SYN_CLOCK_RATIO_4_CLK SNTCFG_CKDIV(3) /*!< EXMC_CLK = 4*HCLK */
#define EXMC_SYN_CLOCK_RATIO_5_CLK SNTCFG_CKDIV(4) /*!< EXMC_CLK = 5*HCLK */
#define EXMC_SYN_CLOCK_RATIO_6_CLK SNTCFG_CKDIV(5) /*!< EXMC_CLK = 6*HCLK */
#define EXMC_SYN_CLOCK_RATIO_7_CLK SNTCFG_CKDIV(6) /*!< EXMC_CLK = 7*HCLK */
#define EXMC_SYN_CLOCK_RATIO_8_CLK SNTCFG_CKDIV(7) /*!< EXMC_CLK = 8*HCLK */
#define EXMC_SYN_CLOCK_RATIO_9_CLK SNTCFG_CKDIV(8) /*!< EXMC_CLK = 9*HCLK */
#define EXMC_SYN_CLOCK_RATIO_10_CLK SNTCFG_CKDIV(9) /*!< EXMC_CLK = 10*HCLK */
#define EXMC_SYN_CLOCK_RATIO_11_CLK SNTCFG_CKDIV(10) /*!< EXMC_CLK = 11*HCLK */
#define EXMC_SYN_CLOCK_RATIO_12_CLK SNTCFG_CKDIV(11) /*!< EXMC_CLK = 12*HCLK */
#define EXMC_SYN_CLOCK_RATIO_13_CLK SNTCFG_CKDIV(12) /*!< EXMC_CLK = 13*HCLK */
#define EXMC_SYN_CLOCK_RATIO_14_CLK SNTCFG_CKDIV(13) /*!< EXMC_CLK = 14*HCLK */
#define EXMC_SYN_CLOCK_RATIO_15_CLK SNTCFG_CKDIV(14) /*!< EXMC_CLK = 15*HCLK */
#define EXMC_SYN_CLOCK_RATIO_16_CLK SNTCFG_CKDIV(15) /*!< EXMC_CLK = 16*HCLK */
/* ECC size */
#define NPCTL_ECCSZ(regval) (BITS(17,19) & ((uint32_t)(regval) << 17))
#define EXMC_ECC_SIZE_256BYTES NPCTL_ECCSZ(0) /* 256 bytes */
#define EXMC_ECC_SIZE_512BYTES NPCTL_ECCSZ(1) /* 512 bytes */
#define EXMC_ECC_SIZE_1024BYTES NPCTL_ECCSZ(2) /* 1024 bytes */
#define EXMC_ECC_SIZE_2048BYTES NPCTL_ECCSZ(3) /* 2048 bytes */
#define EXMC_ECC_SIZE_4096BYTES NPCTL_ECCSZ(4) /* 4096 bytes */
#define EXMC_ECC_SIZE_8192BYTES NPCTL_ECCSZ(5) /* 8192 bytes */
/* ALE to RE delay */
#define NPCTL_ATR(regval) (BITS(13,16) & ((uint32_t)(regval) << 13))
#define EXMC_ALE_RE_DELAY_1_HCLK NPCTL_ATR(0) /* ALE to RE delay = 1*HCLK */
#define EXMC_ALE_RE_DELAY_2_HCLK NPCTL_ATR(1) /* ALE to RE delay = 2*HCLK */
#define EXMC_ALE_RE_DELAY_3_HCLK NPCTL_ATR(2) /* ALE to RE delay = 3*HCLK */
#define EXMC_ALE_RE_DELAY_4_HCLK NPCTL_ATR(3) /* ALE to RE delay = 4*HCLK */
#define EXMC_ALE_RE_DELAY_5_HCLK NPCTL_ATR(4) /* ALE to RE delay = 5*HCLK */
#define EXMC_ALE_RE_DELAY_6_HCLK NPCTL_ATR(5) /* ALE to RE delay = 6*HCLK */
#define EXMC_ALE_RE_DELAY_7_HCLK NPCTL_ATR(6) /* ALE to RE delay = 7*HCLK */
#define EXMC_ALE_RE_DELAY_8_HCLK NPCTL_ATR(7) /* ALE to RE delay = 8*HCLK */
#define EXMC_ALE_RE_DELAY_9_HCLK NPCTL_ATR(8) /* ALE to RE delay = 9*HCLK */
#define EXMC_ALE_RE_DELAY_10_HCLK NPCTL_ATR(9) /* ALE to RE delay = 10*HCLK */
#define EXMC_ALE_RE_DELAY_11_HCLK NPCTL_ATR(10) /* ALE to RE delay = 11*HCLK */
#define EXMC_ALE_RE_DELAY_12_HCLK NPCTL_ATR(11) /* ALE to RE delay = 12*HCLK */
#define EXMC_ALE_RE_DELAY_13_HCLK NPCTL_ATR(12) /* ALE to RE delay = 13*HCLK */
#define EXMC_ALE_RE_DELAY_14_HCLK NPCTL_ATR(13) /* ALE to RE delay = 14*HCLK */
#define EXMC_ALE_RE_DELAY_15_HCLK NPCTL_ATR(14) /* ALE to RE delay = 15*HCLK */
#define EXMC_ALE_RE_DELAY_16_HCLK NPCTL_ATR(15) /* ALE to RE delay = 16*HCLK */
/* CLE to RE delay */
#define NPCTL_CTR(regval) (BITS(9,12) & ((uint32_t)(regval) << 9))
#define EXMC_CLE_RE_DELAY_1_HCLK NPCTL_CTR(0) /* CLE to RE delay = 1*HCLK */
#define EXMC_CLE_RE_DELAY_2_HCLK NPCTL_CTR(1) /* CLE to RE delay = 2*HCLK */
#define EXMC_CLE_RE_DELAY_3_HCLK NPCTL_CTR(2) /* CLE to RE delay = 3*HCLK */
#define EXMC_CLE_RE_DELAY_4_HCLK NPCTL_CTR(3) /* CLE to RE delay = 4*HCLK */
#define EXMC_CLE_RE_DELAY_5_HCLK NPCTL_CTR(4) /* CLE to RE delay = 5*HCLK */
#define EXMC_CLE_RE_DELAY_6_HCLK NPCTL_CTR(5) /* CLE to RE delay = 6*HCLK */
#define EXMC_CLE_RE_DELAY_7_HCLK NPCTL_CTR(6) /* CLE to RE delay = 7*HCLK */
#define EXMC_CLE_RE_DELAY_8_HCLK NPCTL_CTR(7) /* CLE to RE delay = 8*HCLK */
#define EXMC_CLE_RE_DELAY_9_HCLK NPCTL_CTR(8) /* CLE to RE delay = 9*HCLK */
#define EXMC_CLE_RE_DELAY_10_HCLK NPCTL_CTR(9) /* CLE to RE delay = 10*HCLK */
#define EXMC_CLE_RE_DELAY_11_HCLK NPCTL_CTR(10) /* CLE to RE delay = 11*HCLK */
#define EXMC_CLE_RE_DELAY_12_HCLK NPCTL_CTR(11) /* CLE to RE delay = 12*HCLK */
#define EXMC_CLE_RE_DELAY_13_HCLK NPCTL_CTR(12) /* CLE to RE delay = 13*HCLK */
#define EXMC_CLE_RE_DELAY_14_HCLK NPCTL_CTR(13) /* CLE to RE delay = 14*HCLK */
#define EXMC_CLE_RE_DELAY_15_HCLK NPCTL_CTR(14) /* CLE to RE delay = 15*HCLK */
#define EXMC_CLE_RE_DELAY_16_HCLK NPCTL_CTR(15) /* CLE to RE delay = 16*HCLK */
/* NAND bank memory data bus width */
#define NPCTL_NDW(regval) (BITS(4,5) & ((uint32_t)(regval) << 4))
#define EXMC_NAND_DATABUS_WIDTH_8B NPCTL_NDW(0) /*!< NAND data width 8 bits */
#define EXMC_NAND_DATABUS_WIDTH_16B NPCTL_NDW(1) /*!< NAND data width 16 bits */
/* SDRAM pipeline delay */
#define SDCTL_PIPED(regval) (BITS(13,14) & ((uint32_t)(regval) << 13))
#define EXMC_PIPELINE_DELAY_0_HCLK SDCTL_PIPED(0) /*!< 0 HCLK clock cycle delay */
#define EXMC_PIPELINE_DELAY_1_HCLK SDCTL_PIPED(1) /*!< 1 HCLK clock cycle delay */
#define EXMC_PIPELINE_DELAY_2_HCLK SDCTL_PIPED(2) /*!< 2 HCLK clock cycle delay */
/* SDRAM clock configuration */
#define SDCTL_SDCLK(regval) (BITS(10,11) & ((uint32_t)(regval) << 10))
#define EXMC_SDCLK_DISABLE SDCTL_SDCLK(0) /*!< SDCLK memory clock disabled */
#define EXMC_SDCLK_PERIODS_2_HCLK SDCTL_SDCLK(2) /*!< SDCLK memory period = 2*HCLK */
#define EXMC_SDCLK_PERIODS_3_HCLK SDCTL_SDCLK(3) /*!< SDCLK memory period = 3*HCLK */
/* CAS latency */
#define SDCTL_CL(regval) (BITS(7,8) & ((uint32_t)(regval) << 7))
#define EXMC_CAS_LATENCY_1_SDCLK SDCTL_CL(1) /*!< CAS latency is 1 memory clock cycle */
#define EXMC_CAS_LATENCY_2_SDCLK SDCTL_CL(2) /*!< CAS latency is 2 memory clock cycle */
#define EXMC_CAS_LATENCY_3_SDCLK SDCTL_CL(3) /*!< CAS latency is 3 memory clock cycle */
/* SDRAM data bus width */
#define SDCTL_SDW(regval) (BITS(4,5) & ((uint32_t)(regval) << 4))
#define EXMC_SDRAM_DATABUS_WIDTH_8B SDCTL_SDW(0) /*!< SDRAM data width 8 bits */
#define EXMC_SDRAM_DATABUS_WIDTH_16B SDCTL_SDW(1) /*!< SDRAM data width 16 bits */
#define EXMC_SDRAM_DATABUS_WIDTH_32B SDCTL_SDW(2) /*!< SDRAM data width 32 bits */
/* SDRAM row address bit width */
#define SDCTL_RAW(regval) (BITS(2,3) & ((uint32_t)(regval) << 2))
#define EXMC_SDRAM_ROW_ADDRESS_11 SDCTL_RAW(0) /*!< row address bit width is 11 bits */
#define EXMC_SDRAM_ROW_ADDRESS_12 SDCTL_RAW(1) /*!< row address bit width is 12 bits */
#define EXMC_SDRAM_ROW_ADDRESS_13 SDCTL_RAW(2) /*!< row address bit width is 13 bits */
/* SDRAM column address bit width */
#define SDCTL_CAW(regval) (BITS(0,1) & ((uint32_t)(regval) << 0))
#define EXMC_SDRAM_COW_ADDRESS_8 SDCTL_CAW(0) /*!< column address bit width is 8 bits */
#define EXMC_SDRAM_COW_ADDRESS_9 SDCTL_CAW(1) /*!< column address bit width is 9 bits */
#define EXMC_SDRAM_COW_ADDRESS_10 SDCTL_CAW(2) /*!< column address bit width is 10 bits */
#define EXMC_SDRAM_COW_ADDRESS_11 SDCTL_CAW(3) /*!< column address bit width is 11 bits */
/* SDRAM number of successive auto-refresh */
#define SDCMD_NARF(regval) (BITS(5,8) & ((uint32_t)(regval) << 5))
#define EXMC_SDRAM_AUTO_REFLESH_1_SDCLK SDCMD_NARF(0) /*!< 1 auto-refresh cycle */
#define EXMC_SDRAM_AUTO_REFLESH_2_SDCLK SDCMD_NARF(1) /*!< 2 auto-refresh cycles */
#define EXMC_SDRAM_AUTO_REFLESH_3_SDCLK SDCMD_NARF(2) /*!< 3 auto-refresh cycles */
#define EXMC_SDRAM_AUTO_REFLESH_4_SDCLK SDCMD_NARF(3) /*!< 4 auto-refresh cycles */
#define EXMC_SDRAM_AUTO_REFLESH_5_SDCLK SDCMD_NARF(4) /*!< 5 auto-refresh cycles */
#define EXMC_SDRAM_AUTO_REFLESH_6_SDCLK SDCMD_NARF(5) /*!< 6 auto-refresh cycles */
#define EXMC_SDRAM_AUTO_REFLESH_7_SDCLK SDCMD_NARF(6) /*!< 7 auto-refresh cycles */
#define EXMC_SDRAM_AUTO_REFLESH_8_SDCLK SDCMD_NARF(7) /*!< 8 auto-refresh cycles */
#define EXMC_SDRAM_AUTO_REFLESH_9_SDCLK SDCMD_NARF(8) /*!< 9 auto-refresh cycles */
#define EXMC_SDRAM_AUTO_REFLESH_10_SDCLK SDCMD_NARF(9) /*!< 10 auto-refresh cycles */
#define EXMC_SDRAM_AUTO_REFLESH_11_SDCLK SDCMD_NARF(10) /*!< 11 auto-refresh cycles */
#define EXMC_SDRAM_AUTO_REFLESH_12_SDCLK SDCMD_NARF(11) /*!< 12 auto-refresh cycles */
#define EXMC_SDRAM_AUTO_REFLESH_13_SDCLK SDCMD_NARF(12) /*!< 13 auto-refresh cycles */
#define EXMC_SDRAM_AUTO_REFLESH_14_SDCLK SDCMD_NARF(13) /*!< 14 auto-refresh cycles */
#define EXMC_SDRAM_AUTO_REFLESH_15_SDCLK SDCMD_NARF(14) /*!< 15 auto-refresh cycles */
/* SDRAM command select */
#define SDCMD_CMD(regval) (BITS(0,2) & ((uint32_t)(regval) << 0))
#define EXMC_SDRAM_NORMAL_OPERATION SDCMD_CMD(0) /*!< normal operation command */
#define EXMC_SDRAM_CLOCK_ENABLE SDCMD_CMD(1) /*!< clock enable command */
#define EXMC_SDRAM_PRECHARGE_ALL SDCMD_CMD(2) /*!< precharge all command */
#define EXMC_SDRAM_AUTO_REFRESH SDCMD_CMD(3) /*!< auto-refresh command */
#define EXMC_SDRAM_LOAD_MODE_REGISTER SDCMD_CMD(4) /*!< load mode register command */
#define EXMC_SDRAM_SELF_REFRESH SDCMD_CMD(5) /*!< self-refresh command */
#define EXMC_SDRAM_POWERDOWN_ENTRY SDCMD_CMD(6) /*!< power-down entry command */
/* SDRAM the delayed sample clock of read data */
#define SDRSCTL_SDSC(regval) (BITS(4,7) & ((uint32_t)(regval) << 4))
#define EXMC_SDRAM_0_DELAY_CELL SDRSCTL_SDSC(0) /*!< select the clock after 0 delay cell */
#define EXMC_SDRAM_1_DELAY_CELL SDRSCTL_SDSC(1) /*!< select the clock after 1 delay cell */
#define EXMC_SDRAM_2_DELAY_CELL SDRSCTL_SDSC(2) /*!< select the clock after 2 delay cell */
#define EXMC_SDRAM_3_DELAY_CELL SDRSCTL_SDSC(3) /*!< select the clock after 3 delay cell */
#define EXMC_SDRAM_4_DELAY_CELL SDRSCTL_SDSC(4) /*!< select the clock after 4 delay cell */
#define EXMC_SDRAM_5_DELAY_CELL SDRSCTL_SDSC(5) /*!< select the clock after 5 delay cell */
#define EXMC_SDRAM_6_DELAY_CELL SDRSCTL_SDSC(6) /*!< select the clock after 6 delay cell */
#define EXMC_SDRAM_7_DELAY_CELL SDRSCTL_SDSC(7) /*!< select the clock after 7 delay cell */
#define EXMC_SDRAM_8_DELAY_CELL SDRSCTL_SDSC(8) /*!< select the clock after 8 delay cell */
#define EXMC_SDRAM_9_DELAY_CELL SDRSCTL_SDSC(9) /*!< select the clock after 9 delay cell */
#define EXMC_SDRAM_10_DELAY_CELL SDRSCTL_SDSC(10) /*!< select the clock after 10 delay cell */
#define EXMC_SDRAM_11_DELAY_CELL SDRSCTL_SDSC(11) /*!< select the clock after 11 delay cell */
#define EXMC_SDRAM_12_DELAY_CELL SDRSCTL_SDSC(12) /*!< select the clock after 12 delay cell */
#define EXMC_SDRAM_13_DELAY_CELL SDRSCTL_SDSC(13) /*!< select the clock after 13 delay cell */
#define EXMC_SDRAM_14_DELAY_CELL SDRSCTL_SDSC(14) /*!< select the clock after 14 delay cell */
#define EXMC_SDRAM_15_DELAY_CELL SDRSCTL_SDSC(15) /*!< select the clock after 15 delay cell */
/* SPI PSRAM ID length */
#define SINIT_IDL(regval) (BITS(29,30) & ((uint32_t)(regval) << 29))
#define EXMC_SQPIPSRAM_ID_LENGTH_64B SINIT_IDL(0) /*!< SPI PSRAM ID length is 64 bits */
#define EXMC_SQPIPSRAM_ID_LENGTH_32B SINIT_IDL(1) /*!< SPI PSRAM ID length is 32 bits */
#define EXMC_SQPIPSRAM_ID_LENGTH_16B SINIT_IDL(2) /*!< SPI PSRAM ID length is 16 bits */
#define EXMC_SQPIPSRAM_ID_LENGTH_8B SINIT_IDL(3) /*!< SPI PSRAM ID length is 8 bits */
/* SPI PSRAM bit number of address phase */
#define SINIT_ADRBIT(regval) (BITS(24,28) & ((uint32_t)(regval) << 24))
#define EXMC_SQPIPSRAM_ADDR_LENGTH_1B SINIT_ADRBIT(1) /*!< SPI PSRAM address is 1 bit */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_2B SINIT_ADRBIT(2) /*!< SPI PSRAM address is 2 bits */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_3B SINIT_ADRBIT(3) /*!< SPI PSRAM address is 3 bits */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_4B SINIT_ADRBIT(4) /*!< SPI PSRAM address is 4 bits */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_5B SINIT_ADRBIT(5) /*!< SPI PSRAM address is 5 bits */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_6B SINIT_ADRBIT(6) /*!< SPI PSRAM address is 6 bits */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_7B SINIT_ADRBIT(7) /*!< SPI PSRAM address is 7 bits */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_8B SINIT_ADRBIT(8) /*!< SPI PSRAM address is 8 bits */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_9B SINIT_ADRBIT(9) /*!< SPI PSRAM address is 9 bits */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_10B SINIT_ADRBIT(10) /*!< SPI PSRAM address is 10 bits */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_11B SINIT_ADRBIT(11) /*!< SPI PSRAM address is 11 bits */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_12B SINIT_ADRBIT(12) /*!< SPI PSRAM address is 12 bits */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_13B SINIT_ADRBIT(13) /*!< SPI PSRAM address is 13 bits */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_14B SINIT_ADRBIT(14) /*!< SPI PSRAM address is 14 bits */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_15B SINIT_ADRBIT(15) /*!< SPI PSRAM address is 15 bits */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_16B SINIT_ADRBIT(16) /*!< SPI PSRAM address is 16 bits */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_17B SINIT_ADRBIT(17) /*!< SPI PSRAM address is 17 bits */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_18B SINIT_ADRBIT(18) /*!< SPI PSRAM address is 18 bits */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_19B SINIT_ADRBIT(19) /*!< SPI PSRAM address is 19 bits */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_20B SINIT_ADRBIT(20) /*!< SPI PSRAM address is 20 bits */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_21B SINIT_ADRBIT(21) /*!< SPI PSRAM address is 21 bits */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_22B SINIT_ADRBIT(22) /*!< SPI PSRAM address is 22 bits */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_23B SINIT_ADRBIT(23) /*!< SPI PSRAM address is 23 bits */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_24B SINIT_ADRBIT(24) /*!< SPI PSRAM address is 24 bits */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_25B SINIT_ADRBIT(25) /*!< SPI PSRAM address is 25 bits */
#define EXMC_SQPIPSRAM_ADDR_LENGTH_26B SINIT_ADRBIT(26) /*!< SPI PSRAM address is 26 bits */
/* SPI PSRAM bit number of command phase */
#define SINIT_CMDBIT(regval) (BITS(16,17) & ((uint32_t)(regval) << 16))
#define EXMC_SQPIPSRAM_COMMAND_LENGTH_4B SINIT_CMDBIT(0) /*!< SPI PSRAM command is 4 bits */
#define EXMC_SQPIPSRAM_COMMAND_LENGTH_8B SINIT_CMDBIT(1) /*!< SPI PSRAM command is 8 bits */
#define EXMC_SQPIPSRAM_COMMAND_LENGTH_16B SINIT_CMDBIT(2) /*!< SPI PSRAM command is 16 bits */
/* SPI PSRAM read command mode */
#define SRCMD_RMODE(regval) (BITS(20,21) & ((uint32_t)(regval) << 20))
#define EXMC_SQPIPSRAM_READ_MODE_DISABLE SRCMD_RMODE(0) /*!< not SPI mode */
#define EXMC_SQPIPSRAM_READ_MODE_SPI SRCMD_RMODE(1) /*!< SPI mode */
#define EXMC_SQPIPSRAM_READ_MODE_SQPI SRCMD_RMODE(2) /*!< SQPI mode */
#define EXMC_SQPIPSRAM_READ_MODE_QPI SRCMD_RMODE(3) /*!< QPI mode */
/* SPI PSRAM write command mode */
#define SRCMD_WMODE(regval) (BITS(20,21) & ((uint32_t)(regval) << 20))
#define EXMC_SQPIPSRAM_WRITE_MODE_DISABLE SRCMD_WMODE(0) /*!< not SPI mode */
#define EXMC_SQPIPSRAM_WRITE_MODE_SPI SRCMD_WMODE(1) /*!< SPI mode */
#define EXMC_SQPIPSRAM_WRITE_MODE_SQPI SRCMD_WMODE(2) /*!< SQPI mode */
#define EXMC_SQPIPSRAM_WRITE_MODE_QPI SRCMD_WMODE(3) /*!< QPI mode */
/* EXMC NOR/SRAM bank region definition */
#define EXMC_BANK0_NORSRAM_REGION0 ((uint32_t)0x00000000U) /*!< bank0 NOR/SRAM region0 */
#define EXMC_BANK0_NORSRAM_REGION1 ((uint32_t)0x00000001U) /*!< bank0 NOR/SRAM region1 */
#define EXMC_BANK0_NORSRAM_REGION2 ((uint32_t)0x00000002U) /*!< bank0 NOR/SRAM region2 */
#define EXMC_BANK0_NORSRAM_REGION3 ((uint32_t)0x00000003U) /*!< bank0 NOR/SRAM region3 */
/* EXMC consecutive clock */
#define EXMC_CLOCK_SYN_MODE ((uint32_t)0x00000000U) /*!< EXMC_CLK is generated only during synchronous access */
#define EXMC_CLOCK_UNCONDITIONALLY ((uint32_t)0x00010000U) /*!< EXMC_CLK is generated unconditionally */
/* EXMC NOR/SRAM write mode */
#define EXMC_ASYN_WRITE ((uint32_t)0x00000000U) /*!< asynchronous write mode */
#define EXMC_SYN_WRITE ((uint32_t)0x00080000U) /*!< synchronous write mode */
/* EXMC NWAIT signal configuration */
#define EXMC_NWAIT_CONFIG_BEFORE ((uint32_t)0x00000000U) /*!< NWAIT signal is active one data cycle before wait state */
#define EXMC_NWAIT_CONFIG_DURING ((uint32_t)0x00000800U) /*!< NWAIT signal is active during wait state */
/* EXMC NWAIT signal polarity configuration */
#define EXMC_NWAIT_POLARITY_LOW ((uint32_t)0x00000000U) /*!< low level is active of NWAIT */
#define EXMC_NWAIT_POLARITY_HIGH ((uint32_t)0x00000200U) /*!< high level is active of NWAIT */
/* EXMC NAND/PC card bank definition */
#define EXMC_BANK1_NAND ((uint32_t)0x00000001U) /*!< bank1 NAND flash */
#define EXMC_BANK2_NAND ((uint32_t)0x00000002U) /*!< bank2 NAND flash */
#define EXMC_BANK3_PCCARD ((uint32_t)0x00000003U) /*!< bank3 PC card */
/* EXMC SDRAM bank definition */
#define EXMC_SDRAM_DEVICE0 ((uint32_t)0x00000004U) /*!< SDRAM device0 */
#define EXMC_SDRAM_DEVICE1 ((uint32_t)0x00000005U) /*!< SDRAM device1 */
/* EXMC SDRAM internal banks */
#define EXMC_SDRAM_2_INTER_BANK ((uint32_t)0x00000000U) /*!< 2 internal banks */
#define EXMC_SDRAM_4_INTER_BANK ((uint32_t)0x00000040U) /*!< 4 internal banks */
/* SDRAM device0 select */
#define EXMC_SDRAM_DEVICE0_UNSELECT ((uint32_t)0x00000000U) /*!< NAND data width 8 bits */
#define EXMC_SDRAM_DEVICE0_SELECT ((uint32_t)0x00000010U) /*!< NAND data width 16 bits */
/* SDRAM device1 select */
#define EXMC_SDRAM_DEVICE1_UNSELECT ((uint32_t)0x00000000U) /*!< NAND data width 8 bits */
#define EXMC_SDRAM_DEVICE1_SELECT ((uint32_t)0x00000008U) /*!< NAND data width 16 bits */
/* SDRAM device status */
#define EXMC_SDRAM_DEVICE_NORMAL ((uint32_t)0x00000000U) /*!< normal status */
#define EXMC_SDRAM_DEVICE_SELF_REFRESH ((uint32_t)0x00000001U) /*!< self refresh status */
#define EXMC_SDRAM_DEVICE_POWER_DOWN ((uint32_t)0x00000002U) /*!< power down status */
/* sample cycle of read data */
#define EXMC_SDRAM_READSAMPLE_0_EXTRAHCLK ((uint32_t)0x00000000U) /*!< add 0 extra HCLK cycle to the read data sample clock besides the delay chain */
#define EXMC_SDRAM_READSAMPLE_1_EXTRAHCLK ((uint32_t)0x00000002U) /*!< add 1 extra HCLK cycle to the read data sample clock besides the delay chain */
/* read data sample polarity */
#define EXMC_SDRAM_SAMPLE_RISING_EDGE ((uint32_t)0x00000000U) /*!< sample data at rising edge */
#define EXMC_SDRAM_SAMPLE_FALLING_EDGE ((uint32_t)0x80000000U) /*!< sample data at falling edge */
/* SQPI SRAM command flag */
#define EXMC_SEND_COMMAND_FLAG_RDID EXMC_SRCMD_RDID /*!< EXMC_SRCMD_RDID flag bit */
#define EXMC_SEND_COMMAND_FLAG_SC EXMC_SWCMD_SC /*!< EXMC_SWCMD_SC flag bit */
/* EXMC flag bits */
#define EXMC_NAND_PCCARD_FLAG_RISE EXMC_NPINTEN_INTRS /*!< interrupt rising edge status */
#define EXMC_NAND_PCCARD_FLAG_LEVEL EXMC_NPINTEN_INTHS /*!< interrupt high-level status */
#define EXMC_NAND_PCCARD_FLAG_FALL EXMC_NPINTEN_INTFS /*!< interrupt falling edge status */
#define EXMC_NAND_PCCARD_FLAG_FIFOE EXMC_NPINTEN_INTEPT /*!< FIFO empty flag */
#define EXMC_SDRAM_FLAG_REFRESH EXMC_SDSDAT_REIF /*!< refresh error interrupt flag */
#define EXMC_SDRAM_FLAG_NREADY EXMC_SDSDAT_NRDY /*!< not ready status */
/* EXMC interrupt flag bits */
#define EXMC_NAND_PCCARD_INT_RISE EXMC_NPINTENx_INTREN /*!< interrupt rising edge detection enable */
#define EXMC_NAND_PCCARD_INT_LEVEL EXMC_NPINTENx_INTHEN /*!< interrupt high-level detection enable */
#define EXMC_NAND_PCCARD_INT_FALL EXMC_NPINTENx_INTFEN /*!< interrupt falling edge detection enable */
#define EXMC_SDRAM_INT_REFRESH EXMC_SDARI_REIE /*!< interrupt refresh error enable */
/* function declarations */
/* deinitialize EXMC NOR/SRAM region */
void exmc_norsram_deinit(uint32_t exmc_norsram_region);
/* initialize EXMC NOR/SRAM region */
void exmc_norsram_init(exmc_norsram_parameter_struct* exmc_norsram_init_struct);
/* exmc_norsram_parameter_struct parameter initialize */
void exmc_norsram_parameter_init(exmc_norsram_parameter_struct* exmc_norsram_init_struct);
/* consecutive clock configure */
void exmc_norsram_consecutive_clock_config(uint32_t clock_mode);
/* CRAM page size configure */
void exmc_norsram_page_size_config(uint32_t exmc_norsram_region, uint32_t page_size);
/* EXMC NOR/SRAM bank enable */
void exmc_norsram_enable(uint32_t exmc_norsram_region);
/* EXMC NOR/SRAM bank disable */
void exmc_norsram_disable(uint32_t exmc_norsram_region);
/* deinitialize EXMC NAND bank */
void exmc_nand_deinit(uint32_t exmc_nand_bank);
/* initialize EXMC NAND bank */
void exmc_nand_init(exmc_nand_parameter_struct* exmc_nand_init_struct);
/* exmc_norsram_parameter_struct parameter initialize */
void exmc_nand_parameter_init(exmc_nand_parameter_struct* exmc_nand_init_struct);
/* EXMC NAND bank enable */
void exmc_nand_enable(uint32_t exmc_nand_bank);
/* EXMC NAND bank disable */
void exmc_nand_disable(uint32_t exmc_nand_bank);
/* enable or disable the EXMC NAND ECC function */
void exmc_nand_ecc_config(uint32_t exmc_nand_bank, ControlStatus newvalue);
/* get the EXMC ECC value */
uint32_t exmc_ecc_get(uint32_t exmc_nand_bank);
/* deinitialize EXMC PC card bank */
void exmc_pccard_deinit(void);
/* initialize EXMC PC card bank */
void exmc_pccard_init(exmc_pccard_parameter_struct* exmc_pccard_init_struct);
/* exmc_pccard_parameter_struct parameter initialize */
void exmc_pccard_parameter_init(exmc_pccard_parameter_struct* exmc_pccard_init_struct);
/* EXMC PC card bank enable */
void exmc_pccard_enable(void);
/* EXMC PC card bank disable */
void exmc_pccard_disable(void);
/* deinitialize EXMC SDRAM device */
void exmc_sdram_deinit(uint32_t exmc_sdram_device);
/* initialize EXMC SDRAM device */
void exmc_sdram_init(exmc_sdram_parameter_struct* exmc_sdram_init_struct);
/* exmc_sdram_parameter_struct parameter initialize */
void exmc_sdram_parameter_init(exmc_sdram_parameter_struct* exmc_sdram_init_struct);
/* configure the SDRAM memory command */
void exmc_sdram_command_config(exmc_sdram_command_parameter_struct* exmc_sdram_command_init_struct);
/* set auto-refresh interval */
void exmc_sdram_refresh_count_set(uint32_t exmc_count);
/* set the number of successive auto-refresh command */
void exmc_sdram_autorefresh_number_set(uint32_t exmc_number);
/* config the write protection function */
void exmc_sdram_write_protection_config(uint32_t exmc_sdram_device, ControlStatus newvalue);
/* get the status of SDRAM device0 or device1 */
uint32_t exmc_sdram_bankstatus_get(uint32_t exmc_sdram_device);
/* configure the delayed sample clock of read data */
void exmc_sdram_readsample_config(uint32_t delay_cell, uint32_t extra_hclk);
/* enable or disable read sample */
void exmc_sdram_readsample_enable(ControlStatus newvalue);
/* deinitialize EXMC SQPIPSRAM */
void exmc_sqpipsram_deinit(void);
/* initialize EXMC SQPIPSRAM */
void exmc_sqpipsram_init(exmc_sqpipsram_parameter_struct* exmc_sqpipsram_init_struct);
/* exmc_sqpipsram_parameter_struct parameter initialize */
void exmc_sqpipsram_parameter_init(exmc_sqpipsram_parameter_struct* exmc_sqpipsram_init_struct);
/* set the read command */
void exmc_sqpipsram_read_command_set(uint32_t read_command_mode,uint32_t read_wait_cycle,uint32_t read_command_code);
/* set the write command */
void exmc_sqpipsram_write_command_set(uint32_t write_command_mode,uint32_t write_wait_cycle,uint32_t write_command_code);
/* send SPI read ID command */
void exmc_sqpipsram_read_id_command_send(void);
/* send SPI special command which does not have address and data phase */
void exmc_sqpipsram_write_cmd_send(void);
/* get the EXMC SPI ID low data */
uint32_t exmc_sqpipsram_low_id_get(void);
/* get the EXMC SPI ID high data */
uint32_t exmc_sqpipsram_high_id_get(void);
/* get the bit value of EXMC send write command bit or read ID command */
FlagStatus exmc_sqpipsram_send_command_state_get(uint32_t send_command_flag);
/* check EXMC flag is set or not */
FlagStatus exmc_flag_get(uint32_t exmc_bank,uint32_t flag);
/* clear EXMC flag */
void exmc_flag_clear(uint32_t exmc_bank,uint32_t flag);
/* check EXMC flag is set or not */
FlagStatus exmc_interrupt_flag_get(uint32_t exmc_bank,uint32_t interrupt_source);
/* clear EXMC one channel flag */
void exmc_interrupt_flag_clear(uint32_t exmc_bank,uint32_t interrupt_source);
/* enable EXMC interrupt */
void exmc_interrupt_enable(uint32_t exmc_bank,uint32_t interrupt_source);
/* disable EXMC interrupt */
void exmc_interrupt_disable(uint32_t exmc_bank,uint32_t interrupt_source);
#endif /* GD32F4XX_EXMC_H */

View File

@@ -0,0 +1,250 @@
/*!
\file gd32f4xx_exti.h
\brief definitions for the EXTI
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#ifndef GD32F4XX_EXTI_H
#define GD32F4XX_EXTI_H
#include "gd32f4xx.h"
/* EXTI definitions */
#define EXTI EXTI_BASE
/* registers definitions */
#define EXTI_INTEN REG32(EXTI + 0x00U) /*!< interrupt enable register */
#define EXTI_EVEN REG32(EXTI + 0x04U) /*!< event enable register */
#define EXTI_RTEN REG32(EXTI + 0x08U) /*!< rising edge trigger enable register */
#define EXTI_FTEN REG32(EXTI + 0x0CU) /*!< falling trigger enable register */
#define EXTI_SWIEV REG32(EXTI + 0x10U) /*!< software interrupt event register */
#define EXTI_PD REG32(EXTI + 0x14U) /*!< pending register */
/* bits definitions */
/* EXTI_INTEN */
#define EXTI_INTEN_INTEN0 BIT(0) /*!< interrupt from line 0 */
#define EXTI_INTEN_INTEN1 BIT(1) /*!< interrupt from line 1 */
#define EXTI_INTEN_INTEN2 BIT(2) /*!< interrupt from line 2 */
#define EXTI_INTEN_INTEN3 BIT(3) /*!< interrupt from line 3 */
#define EXTI_INTEN_INTEN4 BIT(4) /*!< interrupt from line 4 */
#define EXTI_INTEN_INTEN5 BIT(5) /*!< interrupt from line 5 */
#define EXTI_INTEN_INTEN6 BIT(6) /*!< interrupt from line 6 */
#define EXTI_INTEN_INTEN7 BIT(7) /*!< interrupt from line 7 */
#define EXTI_INTEN_INTEN8 BIT(8) /*!< interrupt from line 8 */
#define EXTI_INTEN_INTEN9 BIT(9) /*!< interrupt from line 9 */
#define EXTI_INTEN_INTEN10 BIT(10) /*!< interrupt from line 10 */
#define EXTI_INTEN_INTEN11 BIT(11) /*!< interrupt from line 11 */
#define EXTI_INTEN_INTEN12 BIT(12) /*!< interrupt from line 12 */
#define EXTI_INTEN_INTEN13 BIT(13) /*!< interrupt from line 13 */
#define EXTI_INTEN_INTEN14 BIT(14) /*!< interrupt from line 14 */
#define EXTI_INTEN_INTEN15 BIT(15) /*!< interrupt from line 15 */
#define EXTI_INTEN_INTEN16 BIT(16) /*!< interrupt from line 16 */
#define EXTI_INTEN_INTEN17 BIT(17) /*!< interrupt from line 17 */
#define EXTI_INTEN_INTEN18 BIT(18) /*!< interrupt from line 18 */
#define EXTI_INTEN_INTEN19 BIT(19) /*!< interrupt from line 19 */
#define EXTI_INTEN_INTEN20 BIT(20) /*!< interrupt from line 20 */
#define EXTI_INTEN_INTEN21 BIT(21) /*!< interrupt from line 21 */
#define EXTI_INTEN_INTEN22 BIT(22) /*!< interrupt from line 22 */
/* EXTI_EVEN */
#define EXTI_EVEN_EVEN0 BIT(0) /*!< event from line 0 */
#define EXTI_EVEN_EVEN1 BIT(1) /*!< event from line 1 */
#define EXTI_EVEN_EVEN2 BIT(2) /*!< event from line 2 */
#define EXTI_EVEN_EVEN3 BIT(3) /*!< event from line 3 */
#define EXTI_EVEN_EVEN4 BIT(4) /*!< event from line 4 */
#define EXTI_EVEN_EVEN5 BIT(5) /*!< event from line 5 */
#define EXTI_EVEN_EVEN6 BIT(6) /*!< event from line 6 */
#define EXTI_EVEN_EVEN7 BIT(7) /*!< event from line 7 */
#define EXTI_EVEN_EVEN8 BIT(8) /*!< event from line 8 */
#define EXTI_EVEN_EVEN9 BIT(9) /*!< event from line 9 */
#define EXTI_EVEN_EVEN10 BIT(10) /*!< event from line 10 */
#define EXTI_EVEN_EVEN11 BIT(11) /*!< event from line 11 */
#define EXTI_EVEN_EVEN12 BIT(12) /*!< event from line 12 */
#define EXTI_EVEN_EVEN13 BIT(13) /*!< event from line 13 */
#define EXTI_EVEN_EVEN14 BIT(14) /*!< event from line 14 */
#define EXTI_EVEN_EVEN15 BIT(15) /*!< event from line 15 */
#define EXTI_EVEN_EVEN16 BIT(16) /*!< event from line 16 */
#define EXTI_EVEN_EVEN17 BIT(17) /*!< event from line 17 */
#define EXTI_EVEN_EVEN18 BIT(18) /*!< event from line 18 */
#define EXTI_EVEN_EVEN19 BIT(19) /*!< event from line 19 */
#define EXTI_EVEN_EVEN20 BIT(20) /*!< event from line 20 */
#define EXTI_EVEN_EVEN21 BIT(21) /*!< event from line 21 */
#define EXTI_EVEN_EVEN22 BIT(22) /*!< event from line 22 */
/* EXTI_RTEN */
#define EXTI_RTEN_RTEN0 BIT(0) /*!< rising edge from line 0 */
#define EXTI_RTEN_RTEN1 BIT(1) /*!< rising edge from line 1 */
#define EXTI_RTEN_RTEN2 BIT(2) /*!< rising edge from line 2 */
#define EXTI_RTEN_RTEN3 BIT(3) /*!< rising edge from line 3 */
#define EXTI_RTEN_RTEN4 BIT(4) /*!< rising edge from line 4 */
#define EXTI_RTEN_RTEN5 BIT(5) /*!< rising edge from line 5 */
#define EXTI_RTEN_RTEN6 BIT(6) /*!< rising edge from line 6 */
#define EXTI_RTEN_RTEN7 BIT(7) /*!< rising edge from line 7 */
#define EXTI_RTEN_RTEN8 BIT(8) /*!< rising edge from line 8 */
#define EXTI_RTEN_RTEN9 BIT(9) /*!< rising edge from line 9 */
#define EXTI_RTEN_RTEN10 BIT(10) /*!< rising edge from line 10 */
#define EXTI_RTEN_RTEN11 BIT(11) /*!< rising edge from line 11 */
#define EXTI_RTEN_RTEN12 BIT(12) /*!< rising edge from line 12 */
#define EXTI_RTEN_RTEN13 BIT(13) /*!< rising edge from line 13 */
#define EXTI_RTEN_RTEN14 BIT(14) /*!< rising edge from line 14 */
#define EXTI_RTEN_RTEN15 BIT(15) /*!< rising edge from line 15 */
#define EXTI_RTEN_RTEN16 BIT(16) /*!< rising edge from line 16 */
#define EXTI_RTEN_RTEN17 BIT(17) /*!< rising edge from line 17 */
#define EXTI_RTEN_RTEN18 BIT(18) /*!< rising edge from line 18 */
#define EXTI_RTEN_RTEN19 BIT(19) /*!< rising edge from line 19 */
#define EXTI_RTEN_RTEN20 BIT(20) /*!< rising edge from line 20 */
#define EXTI_RTEN_RTEN21 BIT(21) /*!< rising edge from line 21 */
#define EXTI_RTEN_RTEN22 BIT(22) /*!< rising edge from line 22 */
/* EXTI_FTEN */
#define EXTI_FTEN_FTEN0 BIT(0) /*!< falling edge from line 0 */
#define EXTI_FTEN_FTEN1 BIT(1) /*!< falling edge from line 1 */
#define EXTI_FTEN_FTEN2 BIT(2) /*!< falling edge from line 2 */
#define EXTI_FTEN_FTEN3 BIT(3) /*!< falling edge from line 3 */
#define EXTI_FTEN_FTEN4 BIT(4) /*!< falling edge from line 4 */
#define EXTI_FTEN_FTEN5 BIT(5) /*!< falling edge from line 5 */
#define EXTI_FTEN_FTEN6 BIT(6) /*!< falling edge from line 6 */
#define EXTI_FTEN_FTEN7 BIT(7) /*!< falling edge from line 7 */
#define EXTI_FTEN_FTEN8 BIT(8) /*!< falling edge from line 8 */
#define EXTI_FTEN_FTEN9 BIT(9) /*!< falling edge from line 9 */
#define EXTI_FTEN_FTEN10 BIT(10) /*!< falling edge from line 10 */
#define EXTI_FTEN_FTEN11 BIT(11) /*!< falling edge from line 11 */
#define EXTI_FTEN_FTEN12 BIT(12) /*!< falling edge from line 12 */
#define EXTI_FTEN_FTEN13 BIT(13) /*!< falling edge from line 13 */
#define EXTI_FTEN_FTEN14 BIT(14) /*!< falling edge from line 14 */
#define EXTI_FTEN_FTEN15 BIT(15) /*!< falling edge from line 15 */
#define EXTI_FTEN_FTEN16 BIT(16) /*!< falling edge from line 16 */
#define EXTI_FTEN_FTEN17 BIT(17) /*!< falling edge from line 17 */
#define EXTI_FTEN_FTEN18 BIT(18) /*!< falling edge from line 18 */
#define EXTI_FTEN_FTEN19 BIT(19) /*!< falling edge from line 19 */
#define EXTI_FTEN_FTEN20 BIT(20) /*!< falling edge from line 20 */
#define EXTI_FTEN_FTEN21 BIT(21) /*!< falling edge from line 21 */
#define EXTI_FTEN_FTEN22 BIT(22) /*!< falling edge from line 22 */
/* EXTI_SWIEV */
#define EXTI_SWIEV_SWIEV0 BIT(0) /*!< software interrupt/event request from line 0 */
#define EXTI_SWIEV_SWIEV1 BIT(1) /*!< software interrupt/event request from line 1 */
#define EXTI_SWIEV_SWIEV2 BIT(2) /*!< software interrupt/event request from line 2 */
#define EXTI_SWIEV_SWIEV3 BIT(3) /*!< software interrupt/event request from line 3 */
#define EXTI_SWIEV_SWIEV4 BIT(4) /*!< software interrupt/event request from line 4 */
#define EXTI_SWIEV_SWIEV5 BIT(5) /*!< software interrupt/event request from line 5 */
#define EXTI_SWIEV_SWIEV6 BIT(6) /*!< software interrupt/event request from line 6 */
#define EXTI_SWIEV_SWIEV7 BIT(7) /*!< software interrupt/event request from line 7 */
#define EXTI_SWIEV_SWIEV8 BIT(8) /*!< software interrupt/event request from line 8 */
#define EXTI_SWIEV_SWIEV9 BIT(9) /*!< software interrupt/event request from line 9 */
#define EXTI_SWIEV_SWIEV10 BIT(10) /*!< software interrupt/event request from line 10 */
#define EXTI_SWIEV_SWIEV11 BIT(11) /*!< software interrupt/event request from line 11 */
#define EXTI_SWIEV_SWIEV12 BIT(12) /*!< software interrupt/event request from line 12 */
#define EXTI_SWIEV_SWIEV13 BIT(13) /*!< software interrupt/event request from line 13 */
#define EXTI_SWIEV_SWIEV14 BIT(14) /*!< software interrupt/event request from line 14 */
#define EXTI_SWIEV_SWIEV15 BIT(15) /*!< software interrupt/event request from line 15 */
#define EXTI_SWIEV_SWIEV16 BIT(16) /*!< software interrupt/event request from line 16 */
#define EXTI_SWIEV_SWIEV17 BIT(17) /*!< software interrupt/event request from line 17 */
#define EXTI_SWIEV_SWIEV18 BIT(18) /*!< software interrupt/event request from line 18 */
#define EXTI_SWIEV_SWIEV19 BIT(19) /*!< software interrupt/event request from line 19 */
#define EXTI_SWIEV_SWIEV20 BIT(20) /*!< software interrupt/event request from line 20 */
#define EXTI_SWIEV_SWIEV21 BIT(21) /*!< software interrupt/event request from line 21 */
#define EXTI_SWIEV_SWIEV22 BIT(22) /*!< software interrupt/event request from line 22 */
/* EXTI_PD */
#define EXTI_PD_PD0 BIT(0) /*!< interrupt/event pending status from line 0 */
#define EXTI_PD_PD1 BIT(1) /*!< interrupt/event pending status from line 1 */
#define EXTI_PD_PD2 BIT(2) /*!< interrupt/event pending status from line 2 */
#define EXTI_PD_PD3 BIT(3) /*!< interrupt/event pending status from line 3 */
#define EXTI_PD_PD4 BIT(4) /*!< interrupt/event pending status from line 4 */
#define EXTI_PD_PD5 BIT(5) /*!< interrupt/event pending status from line 5 */
#define EXTI_PD_PD6 BIT(6) /*!< interrupt/event pending status from line 6 */
#define EXTI_PD_PD7 BIT(7) /*!< interrupt/event pending status from line 7 */
#define EXTI_PD_PD8 BIT(8) /*!< interrupt/event pending status from line 8 */
#define EXTI_PD_PD9 BIT(9) /*!< interrupt/event pending status from line 9 */
#define EXTI_PD_PD10 BIT(10) /*!< interrupt/event pending status from line 10 */
#define EXTI_PD_PD11 BIT(11) /*!< interrupt/event pending status from line 11 */
#define EXTI_PD_PD12 BIT(12) /*!< interrupt/event pending status from line 12 */
#define EXTI_PD_PD13 BIT(13) /*!< interrupt/event pending status from line 13 */
#define EXTI_PD_PD14 BIT(14) /*!< interrupt/event pending status from line 14 */
#define EXTI_PD_PD15 BIT(15) /*!< interrupt/event pending status from line 15 */
#define EXTI_PD_PD16 BIT(16) /*!< interrupt/event pending status from line 16 */
#define EXTI_PD_PD17 BIT(17) /*!< interrupt/event pending status from line 17 */
#define EXTI_PD_PD18 BIT(18) /*!< interrupt/event pending status from line 18 */
#define EXTI_PD_PD19 BIT(19) /*!< interrupt/event pending status from line 19 */
#define EXTI_PD_PD20 BIT(20) /*!< interrupt/event pending status from line 20 */
#define EXTI_PD_PD21 BIT(21) /*!< interrupt/event pending status from line 21 */
#define EXTI_PD_PD22 BIT(22) /*!< interrupt/event pending status from line 22 */
/* constants definitions */
/* EXTI line number */
typedef enum
{
EXTI_0 = BIT(0), /*!< EXTI line 0 */
EXTI_1 = BIT(1), /*!< EXTI line 1 */
EXTI_2 = BIT(2), /*!< EXTI line 2 */
EXTI_3 = BIT(3), /*!< EXTI line 3 */
EXTI_4 = BIT(4), /*!< EXTI line 4 */
EXTI_5 = BIT(5), /*!< EXTI line 5 */
EXTI_6 = BIT(6), /*!< EXTI line 6 */
EXTI_7 = BIT(7), /*!< EXTI line 7 */
EXTI_8 = BIT(8), /*!< EXTI line 8 */
EXTI_9 = BIT(9), /*!< EXTI line 9 */
EXTI_10 = BIT(10), /*!< EXTI line 10 */
EXTI_11 = BIT(11), /*!< EXTI line 11 */
EXTI_12 = BIT(12), /*!< EXTI line 12 */
EXTI_13 = BIT(13), /*!< EXTI line 13 */
EXTI_14 = BIT(14), /*!< EXTI line 14 */
EXTI_15 = BIT(15), /*!< EXTI line 15 */
EXTI_16 = BIT(16), /*!< EXTI line 16 */
EXTI_17 = BIT(17), /*!< EXTI line 17 */
EXTI_18 = BIT(18), /*!< EXTI line 18 */
EXTI_19 = BIT(19), /*!< EXTI line 19 */
EXTI_20 = BIT(20), /*!< EXTI line 20 */
EXTI_21 = BIT(21), /*!< EXTI line 21 */
EXTI_22 = BIT(22), /*!< EXTI line 22 */
}exti_line_enum;
/* external interrupt and event */
typedef enum
{
EXTI_INTERRUPT = 0, /*!< EXTI interrupt mode */
EXTI_EVENT /*!< EXTI event mode */
}exti_mode_enum;
/* interrupt trigger mode */
typedef enum
{
EXTI_TRIG_RISING = 0, /*!< EXTI rising edge trigger */
EXTI_TRIG_FALLING, /*!< EXTI falling edge trigger */
EXTI_TRIG_BOTH /*!< EXTI rising and falling edge trigger */
}exti_trig_type_enum;
/* function declarations */
/* deinitialize the EXTI */
void exti_deinit(void);
/* enable the configuration of EXTI initialize */
void exti_init(exti_line_enum linex, exti_mode_enum mode, exti_trig_type_enum trig_type);
/* enable the interrupts from EXTI line x */
void exti_interrupt_enable(exti_line_enum linex);
/* enable the events from EXTI line x */
void exti_event_enable(exti_line_enum linex);
/* disable the interrupts from EXTI line x */
void exti_interrupt_disable(exti_line_enum linex);
/* disable the events from EXTI line x */
void exti_event_disable(exti_line_enum linex);
/* get EXTI lines pending flag */
FlagStatus exti_flag_get(exti_line_enum linex);
/* clear EXTI lines pending flag */
void exti_flag_clear(exti_line_enum linex);
/* get EXTI lines flag when the interrupt flag is set */
FlagStatus exti_interrupt_flag_get(exti_line_enum linex);
/* clear EXTI lines pending flag */
void exti_interrupt_flag_clear(exti_line_enum linex);
/* EXTI software interrupt event enable */
void exti_software_interrupt_enable(exti_line_enum linex);
/* EXTI software interrupt event disable */
void exti_software_interrupt_disable(exti_line_enum linex);
#endif /* GD32F4XX_EXTI_H */

View File

@@ -0,0 +1,367 @@
/*!
\file gd32f4xx_fmc.h
\brief definitions for the FMC
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#ifndef GD32F4XX_FMC_H
#define GD32F4XX_FMC_H
#include "gd32f4xx.h"
/* FMC and option byte definition */
#define FMC FMC_BASE /*!< FMC register base address */
#define OB OB_BASE /*!< option byte base address */
/* registers definitions */
#define FMC_WS REG32((FMC) + 0x00U) /*!< FMC wait state register */
#define FMC_KEY REG32((FMC) + 0x04U) /*!< FMC unlock key register */
#define FMC_OBKEY REG32((FMC) + 0x08U) /*!< FMC option byte unlock key register */
#define FMC_STAT REG32((FMC) + 0x0CU) /*!< FMC status register */
#define FMC_CTL REG32((FMC) + 0x10U) /*!< FMC control register */
#define FMC_OBCTL0 REG32((FMC) + 0x14U) /*!< FMC option byte control register 0 */
#define FMC_OBCTL1 REG32((FMC) + 0x18U) /*!< FMC option byte control register 1 */
#define FMC_WSEN REG32((FMC) + 0xFCU) /*!< FMC wait state enable register */
#define FMC_PID REG32((FMC) + 0x100U) /*!< FMC product ID register */
#define OB_WP1 REG32((OB) + 0x00000008U) /*!< option byte write protection 1 */
#define OB_USER REG32((OB) + 0x00010000U) /*!< option byte user value*/
#define OB_SPC REG32((OB) + 0x00010001U) /*!< option byte security protection value */
#define OB_WP0 REG32((OB) + 0x00010008U) /*!< option byte write protection 0 */
/* bits definitions */
/* FMC_WS */
#define FMC_WC_WSCNT BITS(0,3) /*!< wait state counter */
/* FMC_KEY */
#define FMC_KEY_KEY BITS(0,31) /*!< FMC main flash key bits */
/* FMC_OBKEY */
#define FMC_OBKEY_OBKEY BITS(0,31) /*!< option byte key bits */
/* FMC_STAT */
#define FMC_STAT_END BIT(0) /*!< end of operation flag bit */
#define FMC_STAT_OPERR BIT(1) /*!< flash operation error flag bit */
#define FMC_STAT_WPERR BIT(4) /*!< erase/Program protection error flag bit */
#define FMC_STAT_PGMERR BIT(6) /*!< program size not match error flag bit */
#define FMC_STAT_PGSERR BIT(7) /*!< program sequence error flag bit */
#define FMC_STAT_RDDERR BIT(8) /*!< read D-bus protection error flag bit */
#define FMC_STAT_BUSY BIT(16) /*!< flash busy flag bit */
/* FMC_CTL */
#define FMC_CTL_PG BIT(0) /*!< main flash program command bit */
#define FMC_CTL_SER BIT(1) /*!< main flash sector erase command bit */
#define FMC_CTL_MER0 BIT(2) /*!< main flash mass erase for bank0 command bit */
#define FMC_CTL_SN BITS(3,7) /*!< select which sector number to be erased */
#define FMC_CTL_PSZ BITS(8,9) /*!< program size bit */
#define FMC_CTL_MER1 BIT(15) /*!< main flash mass erase for bank1 command bit */
#define FMC_CTL_START BIT(16) /*!< send erase command to FMC bit */
#define FMC_CTL_ENDIE BIT(24) /*!< end of operation interrupt enable bit */
#define FMC_CTL_ERRIE BIT(25) /*!< error interrupt enable bit */
#define FMC_CTL_LK BIT(31) /*!< FMC_CTL lock bit */
/* FMC_OBCTL0 */
#define FMC_OBCTL0_OB_LK BIT(0) /*!< FMC_OBCTL0 lock bit */
#define FMC_OBCTL0_OB_START BIT(1) /*!< send option byte change command to FMC bit */
#define FMC_OBCTL0_BOR_TH BITS(2,3) /*!< option byte BOR threshold value */
#define FMC_OBCTL0_BB BIT(4) /*!< option byte boot bank value */
#define FMC_OBCTL0_NWDG_HW BIT(5) /*!< option byte watchdog value */
#define FMC_OBCTL0_NRST_DPSLP BIT(6) /*!< option byte deepsleep reset value */
#define FMC_OBCTL0_NRST_STDBY BIT(7) /*!< option byte standby reset value */
#define FMC_OBCTL0_SPC BITS(8,15) /*!< option byte Security Protection code */
#define FMC_OBCTL0_WP0 BITS(16,27) /*!< erase/program protection of each sector when DRP is 0 */
#define FMC_OBCTL0_DBS BIT(30) /*!< double banks or single bank selection when flash size is 1M bytes */
#define FMC_OBCTL0_DRP BIT(31) /*!< D-bus read protection bit */
/* FMC_OBCTL1 */
#define FMC_OBCTL1_WP1 BITS(16,27) /*!< erase/program protection of each sector when DRP is 0 */
/* FMC_WSEN */
#define FMC_WSEN_WSEN BIT(0) /*!< FMC wait state enable bit */
/* FMC_PID */
#define FMC_PID_PID BITS(0,31) /*!< product ID bits */
/* constants definitions */
/* fmc state */
typedef enum
{
FMC_READY, /*!< the operation has been completed */
FMC_BUSY, /*!< the operation is in progress */
FMC_RDDERR, /*!< read D-bus protection error */
FMC_PGSERR, /*!< program sequence error */
FMC_PGMERR, /*!< program size not match error */
FMC_WPERR, /*!< erase/program protection error */
FMC_OPERR, /*!< operation error */
FMC_PGERR, /*!< program error */
}fmc_state_enum;
/* unlock key */
#define UNLOCK_KEY0 ((uint32_t)0x45670123U) /*!< unlock key 0 */
#define UNLOCK_KEY1 ((uint32_t)0xCDEF89ABU) /*!< unlock key 1 */
#define OB_UNLOCK_KEY0 ((uint32_t)0x08192A3BU) /*!< ob unlock key 0 */
#define OB_UNLOCK_KEY1 ((uint32_t)0x4C5D6E7FU) /*!< ob unlock key 1 */
/* option byte write protection */
#define OB_LWP ((uint32_t)0x000000FFU) /*!< write protection low bits */
#define OB_HWP ((uint32_t)0x0000FF00U) /*!< write protection high bits */
/* FMC wait state counter */
#define WC_WSCNT(regval) (BITS(0,3) & ((uint32_t)(regval)))
#define WS_WSCNT_0 WC_WSCNT(0) /*!< FMC 0 wait */
#define WS_WSCNT_1 WC_WSCNT(1) /*!< FMC 1 wait */
#define WS_WSCNT_2 WC_WSCNT(2) /*!< FMC 2 wait */
#define WS_WSCNT_3 WC_WSCNT(3) /*!< FMC 3 wait */
#define WS_WSCNT_4 WC_WSCNT(4) /*!< FMC 4 wait */
#define WS_WSCNT_5 WC_WSCNT(5) /*!< FMC 5 wait */
#define WS_WSCNT_6 WC_WSCNT(6) /*!< FMC 6 wait */
#define WS_WSCNT_7 WC_WSCNT(7) /*!< FMC 7 wait */
#define WS_WSCNT_8 WC_WSCNT(8) /*!< FMC 8 wait */
#define WS_WSCNT_9 WC_WSCNT(9) /*!< FMC 9 wait */
#define WS_WSCNT_10 WC_WSCNT(10) /*!< FMC 10 wait */
#define WS_WSCNT_11 WC_WSCNT(11) /*!< FMC 11 wait */
#define WS_WSCNT_12 WC_WSCNT(12) /*!< FMC 12 wait */
#define WS_WSCNT_13 WC_WSCNT(13) /*!< FMC 13 wait */
#define WS_WSCNT_14 WC_WSCNT(14) /*!< FMC 14 wait */
#define WS_WSCNT_15 WC_WSCNT(15) /*!< FMC 15 wait */
/* option byte BOR threshold value */
#define OBCTL0_BOR_TH(regval) (BITS(2,3) & ((uint32_t)(regval))<< 2)
#define OB_BOR_TH_VALUE3 OBCTL0_BOR_TH(0) /*!< BOR threshold value 3 */
#define OB_BOR_TH_VALUE2 OBCTL0_BOR_TH(1) /*!< BOR threshold value 2 */
#define OB_BOR_TH_VALUE1 OBCTL0_BOR_TH(2) /*!< BOR threshold value 1 */
#define OB_BOR_TH_OFF OBCTL0_BOR_TH(3) /*!< no BOR function */
/* option byte boot bank value */
#define OBCTL0_BB(regval) (BIT(4) & ((uint32_t)(regval)<<4))
#define OB_BB_DISABLE OBCTL0_BB(0) /*!< boot from bank0 */
#define OB_BB_ENABLE OBCTL0_BB(1) /*!< boot from bank1 or bank0 if bank1 is void */
/* option byte software/hardware free watch dog timer */
#define OBCTL0_NWDG_HW(regval) (BIT(5) & ((uint32_t)(regval))<< 5)
#define OB_FWDGT_SW OBCTL0_NWDG_HW(1) /*!< software free watchdog */
#define OB_FWDGT_HW OBCTL0_NWDG_HW(0) /*!< hardware free watchdog */
/* option byte reset or not entering deep sleep mode */
#define OBCTL0_NRST_DPSLP(regval) (BIT(6) & ((uint32_t)(regval))<< 6)
#define OB_DEEPSLEEP_NRST OBCTL0_NRST_DPSLP(1) /*!< no reset when entering deepsleep mode */
#define OB_DEEPSLEEP_RST OBCTL0_NRST_DPSLP(0) /*!< generate a reset instead of entering deepsleep mode */
/* option byte reset or not entering standby mode */
#define OBCTL0_NRST_STDBY(regval) (BIT(7) & ((uint32_t)(regval))<< 7)
#define OB_STDBY_NRST OBCTL0_NRST_STDBY(1) /*!< no reset when entering deepsleep mode */
#define OB_STDBY_RST OBCTL0_NRST_STDBY(0) /*!< generate a reset instead of entering standby mode */
/* read protect configure */
#define FMC_NSPC ((uint8_t)0xAAU) /*!< no security protection */
#define FMC_LSPC ((uint8_t)0xABU) /*!< low security protection */
#define FMC_HSPC ((uint8_t)0xCCU) /*!< high security protection */
/* option bytes write protection */
#define OB_WP_0 ((uint32_t)0x00000001U) /*!< erase/program protection of sector 0 */
#define OB_WP_1 ((uint32_t)0x00000002U) /*!< erase/program protection of sector 1 */
#define OB_WP_2 ((uint32_t)0x00000004U) /*!< erase/program protection of sector 2 */
#define OB_WP_3 ((uint32_t)0x00000008U) /*!< erase/program protection of sector 3 */
#define OB_WP_4 ((uint32_t)0x00000010U) /*!< erase/program protection of sector 4 */
#define OB_WP_5 ((uint32_t)0x00000020U) /*!< erase/program protection of sector 5 */
#define OB_WP_6 ((uint32_t)0x00000040U) /*!< erase/program protection of sector 6 */
#define OB_WP_7 ((uint32_t)0x00000080U) /*!< erase/program protection of sector 7 */
#define OB_WP_8 ((uint32_t)0x00000100U) /*!< erase/program protection of sector 8 */
#define OB_WP_9 ((uint32_t)0x00000200U) /*!< erase/program protection of sector 9 */
#define OB_WP_10 ((uint32_t)0x00000400U) /*!< erase/program protection of sector 10 */
#define OB_WP_11 ((uint32_t)0x00000800U) /*!< erase/program protection of sector 11 */
#define OB_WP_12 ((uint32_t)0x00000001U) /*!< erase/program protection of sector 12 */
#define OB_WP_13 ((uint32_t)0x00000002U) /*!< erase/program protection of sector 13 */
#define OB_WP_14 ((uint32_t)0x00000004U) /*!< erase/program protection of sector 14 */
#define OB_WP_15 ((uint32_t)0x00000008U) /*!< erase/program protection of sector 15 */
#define OB_WP_16 ((uint32_t)0x00000010U) /*!< erase/program protection of sector 16 */
#define OB_WP_17 ((uint32_t)0x00000020U) /*!< erase/program protection of sector 17 */
#define OB_WP_18 ((uint32_t)0x00000040U) /*!< erase/program protection of sector 18 */
#define OB_WP_19 ((uint32_t)0x00000080U) /*!< erase/program protection of sector 19 */
#define OB_WP_20 ((uint32_t)0x00000100U) /*!< erase/program protection of sector 20 */
#define OB_WP_21 ((uint32_t)0x00000200U) /*!< erase/program protection of sector 21 */
#define OB_WP_22 ((uint32_t)0x00000400U) /*!< erase/program protection of sector 22 */
#define OB_WP_23_30 ((uint32_t)0x00000800U) /*!< erase/program protection of sector 23~30 */
#define OB_WP_ALL ((uint32_t)0x00000FFFU) /*!< erase/program protection of all sectors */
/* option bytes D-bus read protection */
#define OB_DRP_0 ((uint32_t)0x00000001U) /*!< D-bus read protection protection of sector 0 */
#define OB_DRP_1 ((uint32_t)0x00000002U) /*!< D-bus read protection protection of sector 1 */
#define OB_DRP_2 ((uint32_t)0x00000004U) /*!< D-bus read protection protection of sector 2 */
#define OB_DRP_3 ((uint32_t)0x00000008U) /*!< D-bus read protection protection of sector 3 */
#define OB_DRP_4 ((uint32_t)0x00000010U) /*!< D-bus read protection protection of sector 4 */
#define OB_DRP_5 ((uint32_t)0x00000020U) /*!< D-bus read protection protection of sector 5 */
#define OB_DRP_6 ((uint32_t)0x00000040U) /*!< D-bus read protection protection of sector 6 */
#define OB_DRP_7 ((uint32_t)0x00000080U) /*!< D-bus read protection protection of sector 7 */
#define OB_DRP_8 ((uint32_t)0x00000100U) /*!< D-bus read protection protection of sector 8 */
#define OB_DRP_9 ((uint32_t)0x00000200U) /*!< D-bus read protection protection of sector 9 */
#define OB_DRP_10 ((uint32_t)0x00000400U) /*!< D-bus read protection protection of sector 10 */
#define OB_DRP_11 ((uint32_t)0x00000800U) /*!< D-bus read protection protection of sector 11 */
#define OB_DRP_12 ((uint32_t)0x00000001U) /*!< D-bus read protection protection of sector 12 */
#define OB_DRP_13 ((uint32_t)0x00000002U) /*!< D-bus read protection protection of sector 13 */
#define OB_DRP_14 ((uint32_t)0x00000004U) /*!< D-bus read protection protection of sector 14 */
#define OB_DRP_15 ((uint32_t)0x00000008U) /*!< D-bus read protection protection of sector 15 */
#define OB_DRP_16 ((uint32_t)0x00000010U) /*!< D-bus read protection protection of sector 16 */
#define OB_DRP_17 ((uint32_t)0x00000020U) /*!< D-bus read protection protection of sector 17 */
#define OB_DRP_18 ((uint32_t)0x00000040U) /*!< D-bus read protection protection of sector 18 */
#define OB_DRP_19 ((uint32_t)0x00000080U) /*!< D-bus read protection protection of sector 19 */
#define OB_DRP_20 ((uint32_t)0x00000100U) /*!< D-bus read protection protection of sector 20 */
#define OB_DRP_21 ((uint32_t)0x00000200U) /*!< D-bus read protection protection of sector 21 */
#define OB_DRP_22 ((uint32_t)0x00000400U) /*!< D-bus read protection protection of sector 22 */
#define OB_DRP_23_30 ((uint32_t)0x00000800U) /*!< D-bus read protection protection of sector 23~30 */
#define OB_DRP_ALL ((uint32_t)0x00000FFFU) /*!< D-bus read protection protection of all sectors */
/* double banks or single bank selection when flash size is 1M bytes */
#define OBCTL0_DBS(regval) (BIT(30) & ((uint32_t)(regval)<<30))
#define OB_DBS_DISABLE OBCTL0_DBS(0) /*!< single bank when flash size is 1M bytes */
#define OB_DBS_ENABLE OBCTL0_DBS(1) /*!< double bank when flash size is 1M bytes */
/* option bytes D-bus read protection mode */
#define OBCTL0_DRP(regval) (BIT(31) & ((uint32_t)(regval)<<31))
#define OB_DRP_DISABLE OBCTL0_DRP(0) /*!< the WPx bits used as erase/program protection of each sector */
#define OB_DRP_ENABLE OBCTL0_DRP(1) /*!< the WPx bits used as erase/program protection and D-bus read protection of each sector */
/* FMC sectors */
#define CTL_SN(regval) (BITS(3,7) & ((uint32_t)(regval))<< 3)
#define CTL_SECTOR_NUMBER_0 CTL_SN(0) /*!< sector 0 */
#define CTL_SECTOR_NUMBER_1 CTL_SN(1) /*!< sector 1 */
#define CTL_SECTOR_NUMBER_2 CTL_SN(2) /*!< sector 2 */
#define CTL_SECTOR_NUMBER_3 CTL_SN(3) /*!< sector 3 */
#define CTL_SECTOR_NUMBER_4 CTL_SN(4) /*!< sector 4 */
#define CTL_SECTOR_NUMBER_5 CTL_SN(5) /*!< sector 5 */
#define CTL_SECTOR_NUMBER_6 CTL_SN(6) /*!< sector 6 */
#define CTL_SECTOR_NUMBER_7 CTL_SN(7) /*!< sector 7 */
#define CTL_SECTOR_NUMBER_8 CTL_SN(8) /*!< sector 8 */
#define CTL_SECTOR_NUMBER_9 CTL_SN(9) /*!< sector 9 */
#define CTL_SECTOR_NUMBER_10 CTL_SN(10) /*!< sector 10 */
#define CTL_SECTOR_NUMBER_11 CTL_SN(11) /*!< sector 11 */
#define CTL_SECTOR_NUMBER_24 CTL_SN(12) /*!< sector 24 */
#define CTL_SECTOR_NUMBER_25 CTL_SN(13) /*!< sector 25 */
#define CTL_SECTOR_NUMBER_26 CTL_SN(14) /*!< sector 26 */
#define CTL_SECTOR_NUMBER_27 CTL_SN(15) /*!< sector 27 */
#define CTL_SECTOR_NUMBER_12 CTL_SN(16) /*!< sector 12 */
#define CTL_SECTOR_NUMBER_13 CTL_SN(17) /*!< sector 13 */
#define CTL_SECTOR_NUMBER_14 CTL_SN(18) /*!< sector 14 */
#define CTL_SECTOR_NUMBER_15 CTL_SN(19) /*!< sector 15 */
#define CTL_SECTOR_NUMBER_16 CTL_SN(20) /*!< sector 16 */
#define CTL_SECTOR_NUMBER_17 CTL_SN(21) /*!< sector 17 */
#define CTL_SECTOR_NUMBER_18 CTL_SN(22) /*!< sector 18 */
#define CTL_SECTOR_NUMBER_19 CTL_SN(23) /*!< sector 19 */
#define CTL_SECTOR_NUMBER_20 CTL_SN(24) /*!< sector 20 */
#define CTL_SECTOR_NUMBER_21 CTL_SN(25) /*!< sector 21 */
#define CTL_SECTOR_NUMBER_22 CTL_SN(26) /*!< sector 22 */
#define CTL_SECTOR_NUMBER_23 CTL_SN(27) /*!< sector 23 */
#define CTL_SECTOR_NUMBER_28 CTL_SN(28) /*!< sector 28 */
#define CTL_SECTOR_NUMBER_29 CTL_SN(29) /*!< sector 29 */
#define CTL_SECTOR_NUMBER_30 CTL_SN(30) /*!< sector 30 */
/* FMC program size */
#define CTL_PSZ(regval) (BITS(8,9) & ((uint32_t)(regval))<< 8)
#define CTL_PSZ_BYTE CTL_PSZ(0) /*!< FMC program by byte access */
#define CTL_PSZ_HALF_WORD CTL_PSZ(1) /*!< FMC program by half-word access */
#define CTL_PSZ_WORD CTL_PSZ(2) /*!< FMC program by word access */
/* FMC interrupt enable */
#define FMC_INTEN_END ((uint32_t)0x01000000U) /*!< enable FMC end of program interrupt */
#define FMC_INTEN_ERR ((uint32_t)0x02000000U) /*!< enable FMC error interrupt */
/* FMC flags */
#define FMC_FLAG_END ((uint32_t)0x00000001U) /*!< FMC end of operation flag bit */
#define FMC_FLAG_OPERR ((uint32_t)0x00000002U) /*!< FMC operation error flag bit */
#define FMC_FLAG_WPERR ((uint32_t)0x00000010U) /*!< FMC erase/program protection error flag bit */
#define FMC_FLAG_PGMERR ((uint32_t)0x00000040U) /*!< FMC program size not match error flag bit */
#define FMC_FLAG_PGSERR ((uint32_t)0x00000080U) /*!< FMC program sequence error flag bit */
#define FMC_FLAG_RDDERR ((uint32_t)0x00000100U) /*!< FMC read D-bus protection error flag bit */
#define FMC_FLAG_BUSY ((uint32_t)0x00010000U) /*!< FMC busy flag */
/* function declarations */
/* FMC main memory programming functions */
/* set the FMC wait state counter */
void fmc_wscnt_set(uint32_t wscnt);
/* unlock the main FMC operation */
void fmc_unlock(void);
/* lock the main FMC operation */
void fmc_lock(void);
/* FMC erase sector */
fmc_state_enum fmc_sector_erase(uint32_t fmc_sector);
/* FMC erase whole chip */
fmc_state_enum fmc_mass_erase(void);
/* FMC erase whole bank0 */
fmc_state_enum fmc_bank0_erase(void);
/* FMC erase whole bank1 */
fmc_state_enum fmc_bank1_erase(void);
/* FMC program a word at the corresponding address */
fmc_state_enum fmc_word_program(uint32_t address, uint32_t data);
/* FMC program a half word at the corresponding address */
fmc_state_enum fmc_halfword_program(uint32_t address, uint16_t data);
/* FMC program a byte at the corresponding address */
fmc_state_enum fmc_byte_program(uint32_t address, uint8_t data);
/* FMC option bytes programming functions */
/* unlock the option byte operation */
void ob_unlock(void);
/* lock the option byte operation */
void ob_lock(void);
/* send option byte change command */
void ob_start(void);
/* enable write protect */
void ob_write_protection0_enable(uint32_t ob_wp);
/* disable write protect */
void ob_write_protection0_disable(uint32_t ob_wp);
/* enable write protect */
void ob_write_protection1_enable(uint32_t ob_wp);
/* disable write protect */
void ob_write_protection1_disable(uint32_t ob_wp);
/* configure the erase/program protection mode */
void ob_drp_config(uint32_t ob_drp);
/* enable the erase/program protection mode */
void ob_drp0_enable(uint32_t ob_drp);
/* disable the erase/program protection mode */
void ob_drp0_disable(uint32_t ob_drp);
/* enable the erase/program protection mode */
void ob_drp1_enable(uint32_t ob_drp);
/* disable the erase/program protection mode */
void ob_drp1_disable(uint32_t ob_drp);
/* set the option byte security protection level */
void ob_security_protection_config(uint8_t ob_spc);
/* write the FMC option byte user */
void ob_user_write(uint32_t ob_fwdgt, uint32_t ob_deepsleep, uint32_t ob_stdby);
/* option byte BOR threshold value */
void ob_user_bor_threshold(uint32_t ob_bor_th);
/* configure the boot mode */
void ob_boot_mode_config(uint32_t boot_mode);
/* get the FMC option byte user */
uint8_t ob_user_get(void);
/* get the FMC option byte write protection */
uint16_t ob_write_protection0_get(void);
/* get the FMC option byte write protection */
uint16_t ob_write_protection1_get(void);
/* get the FMC erase/program protection and D-bus read protection option bytes value */
uint16_t ob_drp0_get(void);
/* get the FMC erase/program protection and D-bus read protection option bytes value */
uint16_t ob_drp1_get(void);
/* get option byte security protection code value */
FlagStatus ob_spc_get(void);
/* get the FMC threshold value */
uint8_t ob_user_bor_threshold_get(void);
/* FMC interrupts and flags management functions */
/* enable FMC interrupt */
void fmc_interrupt_enable(uint32_t fmc_int);
/* disable FMC interrupt */
void fmc_interrupt_disable(uint32_t fmc_int);
/* get flag set or reset */
FlagStatus fmc_flag_get(uint32_t fmc_flag);
/* clear the FMC pending flag */
void fmc_flag_clear(uint32_t fmc_flag);
/* return the FMC state */
fmc_state_enum fmc_state_get(void);
/* check FMC ready or not */
fmc_state_enum fmc_ready_wait(void);
#endif /* GD32F4XX_FMC_H */

View File

@@ -0,0 +1,75 @@
/*!
\file gd32f4xx_fwdgt.h
\brief definitions for the FWDGT
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef GD32F4XX_FWDGT_H
#define GD32F4XX_FWDGT_H
#include "gd32f4xx.h"
/* FWDGT definitions */
#define FWDGT FWDGT_BASE
/* registers definitions */
#define FWDGT_CTL REG32((FWDGT) + 0x00U) /*!< FWDGT control register */
#define FWDGT_PSC REG32((FWDGT) + 0x04U) /*!< FWDGT prescaler register */
#define FWDGT_RLD REG32((FWDGT) + 0x08U) /*!< FWDGT reload register */
#define FWDGT_STAT REG32((FWDGT) + 0x0CU) /*!< FWDGT status register */
/* bits definitions */
/* FWDGT_CTL */
#define FWDGT_CTL_CMD BITS(0,15) /*!< FWDGT command value */
/* FWDGT_PSC */
#define FWDGT_PSC_PSC BITS(0,2) /*!< FWDGT prescaler divider value */
/* FWDGT_RLD */
#define FWDGT_RLD_RLD BITS(0,11) /*!< FWDGT counter reload value */
/* FWDGT_STAT */
#define FWDGT_STAT_PUD BIT(0) /*!< FWDGT prescaler divider value update */
#define FWDGT_STAT_RUD BIT(1) /*!< FWDGT counter reload value update */
/* constants definitions */
/* psc register value */
#define PSC_PSC(regval) (BITS(0,2) & ((uint32_t)(regval) << 0))
#define FWDGT_PSC_DIV4 ((uint8_t)PSC_PSC(0)) /*!< FWDGT prescaler set to 4 */
#define FWDGT_PSC_DIV8 ((uint8_t)PSC_PSC(1)) /*!< FWDGT prescaler set to 8 */
#define FWDGT_PSC_DIV16 ((uint8_t)PSC_PSC(2)) /*!< FWDGT prescaler set to 16 */
#define FWDGT_PSC_DIV32 ((uint8_t)PSC_PSC(3)) /*!< FWDGT prescaler set to 32 */
#define FWDGT_PSC_DIV64 ((uint8_t)PSC_PSC(4)) /*!< FWDGT prescaler set to 64 */
#define FWDGT_PSC_DIV128 ((uint8_t)PSC_PSC(5)) /*!< FWDGT prescaler set to 128 */
#define FWDGT_PSC_DIV256 ((uint8_t)PSC_PSC(6)) /*!< FWDGT prescaler set to 256 */
/* control value */
#define FWDGT_WRITEACCESS_ENABLE ((uint16_t)0x5555U) /*!< FWDGT_CTL bits write access enable value */
#define FWDGT_WRITEACCESS_DISABLE ((uint16_t)0x0000U) /*!< FWDGT_CTL bits write access disable value */
#define FWDGT_KEY_RELOAD ((uint16_t)0xAAAAU) /*!< FWDGT_CTL bits fwdgt counter reload value */
#define FWDGT_KEY_ENABLE ((uint16_t)0xCCCCU) /*!< FWDGT_CTL bits fwdgt counter enable value */
/* FWDGT timeout value */
#define FWDGT_PSC_TIMEOUT ((uint32_t)0x000FFFFFU) /*!< FWDGT_PSC register write operation state flag timeout */
#define FWDGT_RLD_TIMEOUT ((uint32_t)0x000FFFFFU) /*!< FWDGT_RLD register write operation state flag timeout */
/* function declarations */
/* disable write access to FWDGT_PSC and FWDGT_RLD */
void fwdgt_write_disable(void);
/* start the free watchdog timer counter */
void fwdgt_enable(void);
/* reload the counter of FWDGT */
void fwdgt_counter_reload(void);
/* configure counter reload value, and prescaler divider value */
ErrStatus fwdgt_config(uint16_t reload_value, uint8_t prescaler_div);
/* get flag state of FWDGT */
FlagStatus fwdgt_flag_get(uint16_t flag);
#endif /* GD32F4XX_FWDGT_H */

View File

@@ -0,0 +1,383 @@
/*!
\file gd32f4xx_gpio.h
\brief definitions for the GPIO
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef GD32F4XX_GPIO_H
#define GD32F4XX_GPIO_H
#include "gd32f4xx.h"
/* GPIOx(x=A,B,C,D,E,F,G,H,I) definitions */
#define GPIOA (GPIO_BASE + 0x00000000U)
#define GPIOB (GPIO_BASE + 0x00000400U)
#define GPIOC (GPIO_BASE + 0x00000800U)
#define GPIOD (GPIO_BASE + 0x00000C00U)
#define GPIOE (GPIO_BASE + 0x00001000U)
#define GPIOF (GPIO_BASE + 0x00001400U)
#define GPIOG (GPIO_BASE + 0x00001800U)
#define GPIOH (GPIO_BASE + 0x00001C00U)
#define GPIOI (GPIO_BASE + 0x00002000U)
/* registers definitions */
#define GPIO_CTL(gpiox) REG32((gpiox) + 0x00U) /*!< GPIO port control register */
#define GPIO_OMODE(gpiox) REG32((gpiox) + 0x04U) /*!< GPIO port output mode register */
#define GPIO_OSPD(gpiox) REG32((gpiox) + 0x08U) /*!< GPIO port output speed register */
#define GPIO_PUD(gpiox) REG32((gpiox) + 0x0CU) /*!< GPIO port pull-up/pull-down register */
#define GPIO_ISTAT(gpiox) REG32((gpiox) + 0x10U) /*!< GPIO port input status register */
#define GPIO_OCTL(gpiox) REG32((gpiox) + 0x14U) /*!< GPIO port output control register */
#define GPIO_BOP(gpiox) REG32((gpiox) + 0x18U) /*!< GPIO port bit operation register */
#define GPIO_LOCK(gpiox) REG32((gpiox) + 0x1CU) /*!< GPIO port configuration lock register */
#define GPIO_AFSEL0(gpiox) REG32((gpiox) + 0x20U) /*!< GPIO alternate function selected register 0 */
#define GPIO_AFSEL1(gpiox) REG32((gpiox) + 0x24U) /*!< GPIO alternate function selected register 1 */
#define GPIO_BC(gpiox) REG32((gpiox) + 0x28U) /*!< GPIO bit clear register */
#define GPIO_TG(gpiox) REG32((gpiox) + 0x2CU) /*!< GPIO port bit toggle register */
/* bits definitions */
/* GPIO_CTL */
#define GPIO_CTL_CTL0 BITS(0,1) /*!< pin 0 configuration bits */
#define GPIO_CTL_CTL1 BITS(2,3) /*!< pin 1 configuration bits */
#define GPIO_CTL_CTL2 BITS(4,5) /*!< pin 2 configuration bits */
#define GPIO_CTL_CTL3 BITS(6,7) /*!< pin 3 configuration bits */
#define GPIO_CTL_CTL4 BITS(8,9) /*!< pin 4 configuration bits */
#define GPIO_CTL_CTL5 BITS(10,11) /*!< pin 5 configuration bits */
#define GPIO_CTL_CTL6 BITS(12,13) /*!< pin 6 configuration bits */
#define GPIO_CTL_CTL7 BITS(14,15) /*!< pin 7 configuration bits */
#define GPIO_CTL_CTL8 BITS(16,17) /*!< pin 8 configuration bits */
#define GPIO_CTL_CTL9 BITS(18,19) /*!< pin 9 configuration bits */
#define GPIO_CTL_CTL10 BITS(20,21) /*!< pin 10 configuration bits */
#define GPIO_CTL_CTL11 BITS(22,23) /*!< pin 11 configuration bits */
#define GPIO_CTL_CTL12 BITS(24,25) /*!< pin 12 configuration bits */
#define GPIO_CTL_CTL13 BITS(26,27) /*!< pin 13 configuration bits */
#define GPIO_CTL_CTL14 BITS(28,29) /*!< pin 14 configuration bits */
#define GPIO_CTL_CTL15 BITS(30,31) /*!< pin 15 configuration bits */
/* GPIO_OMODE */
#define GPIO_OMODE_OM0 BIT(0) /*!< pin 0 output mode bit */
#define GPIO_OMODE_OM1 BIT(1) /*!< pin 1 output mode bit */
#define GPIO_OMODE_OM2 BIT(2) /*!< pin 2 output mode bit */
#define GPIO_OMODE_OM3 BIT(3) /*!< pin 3 output mode bit */
#define GPIO_OMODE_OM4 BIT(4) /*!< pin 4 output mode bit */
#define GPIO_OMODE_OM5 BIT(5) /*!< pin 5 output mode bit */
#define GPIO_OMODE_OM6 BIT(6) /*!< pin 6 output mode bit */
#define GPIO_OMODE_OM7 BIT(7) /*!< pin 7 output mode bit */
#define GPIO_OMODE_OM8 BIT(8) /*!< pin 8 output mode bit */
#define GPIO_OMODE_OM9 BIT(9) /*!< pin 9 output mode bit */
#define GPIO_OMODE_OM10 BIT(10) /*!< pin 10 output mode bit */
#define GPIO_OMODE_OM11 BIT(11) /*!< pin 11 output mode bit */
#define GPIO_OMODE_OM12 BIT(12) /*!< pin 12 output mode bit */
#define GPIO_OMODE_OM13 BIT(13) /*!< pin 13 output mode bit */
#define GPIO_OMODE_OM14 BIT(14) /*!< pin 14 output mode bit */
#define GPIO_OMODE_OM15 BIT(15) /*!< pin 15 output mode bit */
/* GPIO_OSPD */
#define GPIO_OSPD_OSPD0 BITS(0,1) /*!< pin 0 output max speed bits */
#define GPIO_OSPD_OSPD1 BITS(2,3) /*!< pin 1 output max speed bits */
#define GPIO_OSPD_OSPD2 BITS(4,5) /*!< pin 2 output max speed bits */
#define GPIO_OSPD_OSPD3 BITS(6,7) /*!< pin 3 output max speed bits */
#define GPIO_OSPD_OSPD4 BITS(8,9) /*!< pin 4 output max speed bits */
#define GPIO_OSPD_OSPD5 BITS(10,11) /*!< pin 5 output max speed bits */
#define GPIO_OSPD_OSPD6 BITS(12,13) /*!< pin 6 output max speed bits */
#define GPIO_OSPD_OSPD7 BITS(14,15) /*!< pin 7 output max speed bits */
#define GPIO_OSPD_OSPD8 BITS(16,17) /*!< pin 8 output max speed bits */
#define GPIO_OSPD_OSPD9 BITS(18,19) /*!< pin 9 output max speed bits */
#define GPIO_OSPD_OSPD10 BITS(20,21) /*!< pin 10 output max speed bits */
#define GPIO_OSPD_OSPD11 BITS(22,23) /*!< pin 11 output max speed bits */
#define GPIO_OSPD_OSPD12 BITS(24,25) /*!< pin 12 output max speed bits */
#define GPIO_OSPD_OSPD13 BITS(26,27) /*!< pin 13 output max speed bits */
#define GPIO_OSPD_OSPD14 BITS(28,29) /*!< pin 14 output max speed bits */
#define GPIO_OSPD_OSPD15 BITS(30,31) /*!< pin 15 output max speed bits */
/* GPIO_PUD */
#define GPIO_PUD_PUD0 BITS(0,1) /*!< pin 0 pull-up or pull-down bits */
#define GPIO_PUD_PUD1 BITS(2,3) /*!< pin 1 pull-up or pull-down bits */
#define GPIO_PUD_PUD2 BITS(4,5) /*!< pin 2 pull-up or pull-down bits */
#define GPIO_PUD_PUD3 BITS(6,7) /*!< pin 3 pull-up or pull-down bits */
#define GPIO_PUD_PUD4 BITS(8,9) /*!< pin 4 pull-up or pull-down bits */
#define GPIO_PUD_PUD5 BITS(10,11) /*!< pin 5 pull-up or pull-down bits */
#define GPIO_PUD_PUD6 BITS(12,13) /*!< pin 6 pull-up or pull-down bits */
#define GPIO_PUD_PUD7 BITS(14,15) /*!< pin 7 pull-up or pull-down bits */
#define GPIO_PUD_PUD8 BITS(16,17) /*!< pin 8 pull-up or pull-down bits */
#define GPIO_PUD_PUD9 BITS(18,19) /*!< pin 9 pull-up or pull-down bits */
#define GPIO_PUD_PUD10 BITS(20,21) /*!< pin 10 pull-up or pull-down bits */
#define GPIO_PUD_PUD11 BITS(22,23) /*!< pin 11 pull-up or pull-down bits */
#define GPIO_PUD_PUD12 BITS(24,25) /*!< pin 12 pull-up or pull-down bits */
#define GPIO_PUD_PUD13 BITS(26,27) /*!< pin 13 pull-up or pull-down bits */
#define GPIO_PUD_PUD14 BITS(28,29) /*!< pin 14 pull-up or pull-down bits */
#define GPIO_PUD_PUD15 BITS(30,31) /*!< pin 15 pull-up or pull-down bits */
/* GPIO_ISTAT */
#define GPIO_ISTAT_ISTAT0 BIT(0) /*!< pin 0 input status */
#define GPIO_ISTAT_ISTAT1 BIT(1) /*!< pin 1 input status */
#define GPIO_ISTAT_ISTAT2 BIT(2) /*!< pin 2 input status */
#define GPIO_ISTAT_ISTAT3 BIT(3) /*!< pin 3 input status */
#define GPIO_ISTAT_ISTAT4 BIT(4) /*!< pin 4 input status */
#define GPIO_ISTAT_ISTAT5 BIT(5) /*!< pin 5 input status */
#define GPIO_ISTAT_ISTAT6 BIT(6) /*!< pin 6 input status */
#define GPIO_ISTAT_ISTAT7 BIT(7) /*!< pin 7 input status */
#define GPIO_ISTAT_ISTAT8 BIT(8) /*!< pin 8 input status */
#define GPIO_ISTAT_ISTAT9 BIT(9) /*!< pin 9 input status */
#define GPIO_ISTAT_ISTAT10 BIT(10) /*!< pin 10 input status */
#define GPIO_ISTAT_ISTAT11 BIT(11) /*!< pin 11 input status */
#define GPIO_ISTAT_ISTAT12 BIT(12) /*!< pin 12 input status */
#define GPIO_ISTAT_ISTAT13 BIT(13) /*!< pin 13 input status */
#define GPIO_ISTAT_ISTAT14 BIT(14) /*!< pin 14 input status */
#define GPIO_ISTAT_ISTAT15 BIT(15) /*!< pin 15 input status */
/* GPIO_OCTL */
#define GPIO_OCTL_OCTL0 BIT(0) /*!< pin 0 output bit */
#define GPIO_OCTL_OCTL1 BIT(1) /*!< pin 1 output bit */
#define GPIO_OCTL_OCTL2 BIT(2) /*!< pin 2 output bit */
#define GPIO_OCTL_OCTL3 BIT(3) /*!< pin 3 output bit */
#define GPIO_OCTL_OCTL4 BIT(4) /*!< pin 4 output bit */
#define GPIO_OCTL_OCTL5 BIT(5) /*!< pin 5 output bit */
#define GPIO_OCTL_OCTL6 BIT(6) /*!< pin 6 output bit */
#define GPIO_OCTL_OCTL7 BIT(7) /*!< pin 7 output bit */
#define GPIO_OCTL_OCTL8 BIT(8) /*!< pin 8 output bit */
#define GPIO_OCTL_OCTL9 BIT(9) /*!< pin 9 output bit */
#define GPIO_OCTL_OCTL10 BIT(10) /*!< pin 10 output bit */
#define GPIO_OCTL_OCTL11 BIT(11) /*!< pin 11 output bit */
#define GPIO_OCTL_OCTL12 BIT(12) /*!< pin 12 output bit */
#define GPIO_OCTL_OCTL13 BIT(13) /*!< pin 13 output bit */
#define GPIO_OCTL_OCTL14 BIT(14) /*!< pin 14 output bit */
#define GPIO_OCTL_OCTL15 BIT(15) /*!< pin 15 output bit */
/* GPIO_BOP */
#define GPIO_BOP_BOP0 BIT(0) /*!< pin 0 set bit */
#define GPIO_BOP_BOP1 BIT(1) /*!< pin 1 set bit */
#define GPIO_BOP_BOP2 BIT(2) /*!< pin 2 set bit */
#define GPIO_BOP_BOP3 BIT(3) /*!< pin 3 set bit */
#define GPIO_BOP_BOP4 BIT(4) /*!< pin 4 set bit */
#define GPIO_BOP_BOP5 BIT(5) /*!< pin 5 set bit */
#define GPIO_BOP_BOP6 BIT(6) /*!< pin 6 set bit */
#define GPIO_BOP_BOP7 BIT(7) /*!< pin 7 set bit */
#define GPIO_BOP_BOP8 BIT(8) /*!< pin 8 set bit */
#define GPIO_BOP_BOP9 BIT(9) /*!< pin 9 set bit */
#define GPIO_BOP_BOP10 BIT(10) /*!< pin 10 set bit */
#define GPIO_BOP_BOP11 BIT(11) /*!< pin 11 set bit */
#define GPIO_BOP_BOP12 BIT(12) /*!< pin 12 set bit */
#define GPIO_BOP_BOP13 BIT(13) /*!< pin 13 set bit */
#define GPIO_BOP_BOP14 BIT(14) /*!< pin 14 set bit */
#define GPIO_BOP_BOP15 BIT(15) /*!< pin 15 set bit */
#define GPIO_BOP_CR0 BIT(16) /*!< pin 0 clear bit */
#define GPIO_BOP_CR1 BIT(17) /*!< pin 1 clear bit */
#define GPIO_BOP_CR2 BIT(18) /*!< pin 2 clear bit */
#define GPIO_BOP_CR3 BIT(19) /*!< pin 3 clear bit */
#define GPIO_BOP_CR4 BIT(20) /*!< pin 4 clear bit */
#define GPIO_BOP_CR5 BIT(21) /*!< pin 5 clear bit */
#define GPIO_BOP_CR6 BIT(22) /*!< pin 6 clear bit */
#define GPIO_BOP_CR7 BIT(23) /*!< pin 7 clear bit */
#define GPIO_BOP_CR8 BIT(24) /*!< pin 8 clear bit */
#define GPIO_BOP_CR9 BIT(25) /*!< pin 9 clear bit */
#define GPIO_BOP_CR10 BIT(26) /*!< pin 10 clear bit */
#define GPIO_BOP_CR11 BIT(27) /*!< pin 11 clear bit */
#define GPIO_BOP_CR12 BIT(28) /*!< pin 12 clear bit */
#define GPIO_BOP_CR13 BIT(29) /*!< pin 13 clear bit */
#define GPIO_BOP_CR14 BIT(30) /*!< pin 14 clear bit */
#define GPIO_BOP_CR15 BIT(31) /*!< pin 15 clear bit */
/* GPIO_LOCK */
#define GPIO_LOCK_LK0 BIT(0) /*!< pin 0 lock bit */
#define GPIO_LOCK_LK1 BIT(1) /*!< pin 1 lock bit */
#define GPIO_LOCK_LK2 BIT(2) /*!< pin 2 lock bit */
#define GPIO_LOCK_LK3 BIT(3) /*!< pin 3 lock bit */
#define GPIO_LOCK_LK4 BIT(4) /*!< pin 4 lock bit */
#define GPIO_LOCK_LK5 BIT(5) /*!< pin 5 lock bit */
#define GPIO_LOCK_LK6 BIT(6) /*!< pin 6 lock bit */
#define GPIO_LOCK_LK7 BIT(7) /*!< pin 7 lock bit */
#define GPIO_LOCK_LK8 BIT(8) /*!< pin 8 lock bit */
#define GPIO_LOCK_LK9 BIT(9) /*!< pin 9 lock bit */
#define GPIO_LOCK_LK10 BIT(10) /*!< pin 10 lock bit */
#define GPIO_LOCK_LK11 BIT(11) /*!< pin 11 lock bit */
#define GPIO_LOCK_LK12 BIT(12) /*!< pin 12 lock bit */
#define GPIO_LOCK_LK13 BIT(13) /*!< pin 13 lock bit */
#define GPIO_LOCK_LK14 BIT(14) /*!< pin 14 lock bit */
#define GPIO_LOCK_LK15 BIT(15) /*!< pin 15 lock bit */
#define GPIO_LOCK_LKK BIT(16) /*!< pin sequence lock key */
/* GPIO_AFSEL0 */
#define GPIO_AFSEL0_SEL0 BITS(0,3) /*!< pin 0 alternate function selected */
#define GPIO_AFSEL0_SEL1 BITS(4,7) /*!< pin 1 alternate function selected */
#define GPIO_AFSEL0_SEL2 BITS(8,11) /*!< pin 2 alternate function selected */
#define GPIO_AFSEL0_SEL3 BITS(12,15) /*!< pin 3 alternate function selected */
#define GPIO_AFSEL0_SEL4 BITS(16,19) /*!< pin 4 alternate function selected */
#define GPIO_AFSEL0_SEL5 BITS(20,23) /*!< pin 5 alternate function selected */
#define GPIO_AFSEL0_SEL6 BITS(24,27) /*!< pin 6 alternate function selected */
#define GPIO_AFSEL0_SEL7 BITS(28,31) /*!< pin 7 alternate function selected */
/* GPIO_AFSEL1 */
#define GPIO_AFSEL1_SEL8 BITS(0,3) /*!< pin 8 alternate function selected */
#define GPIO_AFSEL1_SEL9 BITS(4,7) /*!< pin 9 alternate function selected */
#define GPIO_AFSEL1_SEL10 BITS(8,11) /*!< pin 10 alternate function selected */
#define GPIO_AFSEL1_SEL11 BITS(12,15) /*!< pin 11 alternate function selected */
#define GPIO_AFSEL1_SEL12 BITS(16,19) /*!< pin 12 alternate function selected */
#define GPIO_AFSEL1_SEL13 BITS(20,23) /*!< pin 13 alternate function selected */
#define GPIO_AFSEL1_SEL14 BITS(24,27) /*!< pin 14 alternate function selected */
#define GPIO_AFSEL1_SEL15 BITS(28,31) /*!< pin 15 alternate function selected */
/* GPIO_BC */
#define GPIO_BC_CR0 BIT(0) /*!< pin 0 clear bit */
#define GPIO_BC_CR1 BIT(1) /*!< pin 1 clear bit */
#define GPIO_BC_CR2 BIT(2) /*!< pin 2 clear bit */
#define GPIO_BC_CR3 BIT(3) /*!< pin 3 clear bit */
#define GPIO_BC_CR4 BIT(4) /*!< pin 4 clear bit */
#define GPIO_BC_CR5 BIT(5) /*!< pin 5 clear bit */
#define GPIO_BC_CR6 BIT(6) /*!< pin 6 clear bit */
#define GPIO_BC_CR7 BIT(7) /*!< pin 7 clear bit */
#define GPIO_BC_CR8 BIT(8) /*!< pin 8 clear bit */
#define GPIO_BC_CR9 BIT(9) /*!< pin 9 clear bit */
#define GPIO_BC_CR10 BIT(10) /*!< pin 10 clear bit */
#define GPIO_BC_CR11 BIT(11) /*!< pin 11 clear bit */
#define GPIO_BC_CR12 BIT(12) /*!< pin 12 clear bit */
#define GPIO_BC_CR13 BIT(13) /*!< pin 13 clear bit */
#define GPIO_BC_CR14 BIT(14) /*!< pin 14 clear bit */
#define GPIO_BC_CR15 BIT(15) /*!< pin 15 clear bit */
/* GPIO_TG */
#define GPIO_TG_TG0 BIT(0) /*!< pin 0 toggle bit */
#define GPIO_TG_TG1 BIT(1) /*!< pin 1 toggle bit */
#define GPIO_TG_TG2 BIT(2) /*!< pin 2 toggle bit */
#define GPIO_TG_TG3 BIT(3) /*!< pin 3 toggle bit */
#define GPIO_TG_TG4 BIT(4) /*!< pin 4 toggle bit */
#define GPIO_TG_TG5 BIT(5) /*!< pin 5 toggle bit */
#define GPIO_TG_TG6 BIT(6) /*!< pin 6 toggle bit */
#define GPIO_TG_TG7 BIT(7) /*!< pin 7 toggle bit */
#define GPIO_TG_TG8 BIT(8) /*!< pin 8 toggle bit */
#define GPIO_TG_TG9 BIT(9) /*!< pin 9 toggle bit */
#define GPIO_TG_TG10 BIT(10) /*!< pin 10 toggle bit */
#define GPIO_TG_TG11 BIT(11) /*!< pin 11 toggle bit */
#define GPIO_TG_TG12 BIT(12) /*!< pin 12 toggle bit */
#define GPIO_TG_TG13 BIT(13) /*!< pin 13 toggle bit */
#define GPIO_TG_TG14 BIT(14) /*!< pin 14 toggle bit */
#define GPIO_TG_TG15 BIT(15) /*!< pin 15 toggle bit */
/* constants definitions */
typedef FlagStatus bit_status;
/* output mode definitions */
#define CTL_CLTR(regval) (BITS(0,1) & ((uint32_t)(regval) << 0))
#define GPIO_MODE_INPUT CTL_CLTR(0) /*!< input mode */
#define GPIO_MODE_OUTPUT CTL_CLTR(1) /*!< output mode */
#define GPIO_MODE_AF CTL_CLTR(2) /*!< alternate function mode */
#define GPIO_MODE_ANALOG CTL_CLTR(3) /*!< analog mode */
/* pull up pull down definitions */
#define PUD_PUPD(regval) (BITS(0,1) & ((uint32_t)(regval) << 0))
#define GPIO_PUPD_NONE PUD_PUPD(0) /*!< without weak pull-up and pull-down resistors */
#define GPIO_PUPD_PULLUP PUD_PUPD(1) /*!< with weak pull-up resistor */
#define GPIO_PUPD_PULLDOWN PUD_PUPD(2) /*!< with weak pull-down resistor */
/* gpio pin definitions */
#define GPIO_PIN_0 BIT(0) /*!< GPIO pin 0 */
#define GPIO_PIN_1 BIT(1) /*!< GPIO pin 1 */
#define GPIO_PIN_2 BIT(2) /*!< GPIO pin 2 */
#define GPIO_PIN_3 BIT(3) /*!< GPIO pin 3 */
#define GPIO_PIN_4 BIT(4) /*!< GPIO pin 4 */
#define GPIO_PIN_5 BIT(5) /*!< GPIO pin 5 */
#define GPIO_PIN_6 BIT(6) /*!< GPIO pin 6 */
#define GPIO_PIN_7 BIT(7) /*!< GPIO pin 7 */
#define GPIO_PIN_8 BIT(8) /*!< GPIO pin 8 */
#define GPIO_PIN_9 BIT(9) /*!< GPIO pin 9 */
#define GPIO_PIN_10 BIT(10) /*!< GPIO pin 10 */
#define GPIO_PIN_11 BIT(11) /*!< GPIO pin 11 */
#define GPIO_PIN_12 BIT(12) /*!< GPIO pin 12 */
#define GPIO_PIN_13 BIT(13) /*!< GPIO pin 13 */
#define GPIO_PIN_14 BIT(14) /*!< GPIO pin 14 */
#define GPIO_PIN_15 BIT(15) /*!< GPIO pin 15 */
#define GPIO_PIN_ALL ((uint32_t)(0xFFFF)) /*!< GPIO pin all */
/* gpio ctlr values */
#define GPIO_MODE_SET(n, mode) ((uint32_t)((uint32_t)(mode) << (2U * (n))))
#define GPIO_MODE_MASK(n) (0x3U << (2U * (n)))
/* gpio pull up pull down values */
#define GPIO_PUPD_SET(n, pupd) ((uint32_t)((uint32_t)(pupd) << (2U * (n))))
#define GPIO_PUPD_MASK(n) (0x3U << (2U * (n)))
/* gpio output speed values */
#define GPIO_OSPEED_SET(n, speed) ((uint32_t)((uint32_t)(speed) << (2U * (n))))
#define GPIO_OSPEED_MASK(n) (0x3U << (2U * (n)))
/* gpio output type */
#define GPIO_OTYPE_PP ((uint8_t)(0x00)) /*!< push pull mode */
#define GPIO_OTYPE_OD ((uint8_t)(0x01)) /*!< open drain mode */
/* gpio output max speed level */
#define OSPD_OSPD(regval) (BITS(0,1) & ((uint32_t)(regval) << 0))
#define GPIO_OSPEED_LEVEL0 OSPD_OSPD(0) /*!< output max speed level 0 */
#define GPIO_OSPEED_LEVEL1 OSPD_OSPD(1) /*!< output max speed level 1 */
#define GPIO_OSPEED_LEVEL2 OSPD_OSPD(2) /*!< output max speed level 2 */
#define GPIO_OSPEED_LEVEL3 OSPD_OSPD(3) /*!< output max speed level 3 */
/* gpio output max speed value */
#define GPIO_OSPEED_2MHZ GPIO_OSPEED_LEVEL0 /*!< output max speed 2M */
#define GPIO_OSPEED_25MHZ GPIO_OSPEED_LEVEL1 /*!< output max speed 25M */
#define GPIO_OSPEED_50MHZ GPIO_OSPEED_LEVEL2 /*!< output max speed 50M */
#define GPIO_OSPEED_200MHZ GPIO_OSPEED_LEVEL3 /*!< output max speed 200M */
/* gpio alternate function values */
#define GPIO_AFR_SET(n, af) ((uint32_t)((uint32_t)(af) << (4U * (n))))
#define GPIO_AFR_MASK(n) (0xFU << (4U * (n)))
/* gpio alternate function */
#define AF(regval) (BITS(0,3) & ((uint32_t)(regval) << 0))
#define GPIO_AF_0 AF(0) /*!< alternate function selected 0 */
#define GPIO_AF_1 AF(1) /*!< alternate function selected 1 */
#define GPIO_AF_2 AF(2) /*!< alternate function selected 2 */
#define GPIO_AF_3 AF(3) /*!< alternate function selected 3 */
#define GPIO_AF_4 AF(4) /*!< alternate function selected 4 */
#define GPIO_AF_5 AF(5) /*!< alternate function selected 5 */
#define GPIO_AF_6 AF(6) /*!< alternate function selected 6 */
#define GPIO_AF_7 AF(7) /*!< alternate function selected 7 */
#define GPIO_AF_8 AF(8) /*!< alternate function selected 8 */
#define GPIO_AF_9 AF(9) /*!< alternate function selected 9 */
#define GPIO_AF_10 AF(10) /*!< alternate function selected 10 */
#define GPIO_AF_11 AF(11) /*!< alternate function selected 11 */
#define GPIO_AF_12 AF(12) /*!< alternate function selected 12 */
#define GPIO_AF_13 AF(13) /*!< alternate function selected 13 */
#define GPIO_AF_14 AF(14) /*!< alternate function selected 14 */
#define GPIO_AF_15 AF(15) /*!< alternate function selected 15 */
/* function declarations */
/* reset GPIO port */
void gpio_deinit(uint32_t gpio_periph);
/* set GPIO mode */
void gpio_mode_set(uint32_t gpio_periph,uint32_t mode,uint32_t pull_up_down,uint32_t pin);
/* set GPIO output type and speed */
void gpio_output_options_set(uint32_t gpio_periph,uint8_t otype,uint32_t speed,uint32_t pin);
/* set GPIO pin bit */
void gpio_bit_set(uint32_t gpio_periph,uint32_t pin);
/* reset GPIO pin bit */
void gpio_bit_reset(uint32_t gpio_periph,uint32_t pin);
/* write data to the specified GPIO pin */
void gpio_bit_write(uint32_t gpio_periph,uint32_t pin,bit_status bit_value);
/* write data to the specified GPIO port */
void gpio_port_write(uint32_t gpio_periph,uint16_t data);
/* get GPIO pin input status */
FlagStatus gpio_input_bit_get(uint32_t gpio_periph,uint32_t pin);
/* get GPIO port input status */
uint16_t gpio_input_port_get(uint32_t gpio_periph);
/* get GPIO pin output status */
FlagStatus gpio_output_bit_get(uint32_t gpio_periph,uint32_t pin);
/* get GPIO port output status */
uint16_t gpio_output_port_get(uint32_t gpio_periph);
/* set GPIO alternate function */
void gpio_af_set(uint32_t gpio_periph,uint32_t alt_func_num,uint32_t pin);
/* lock GPIO pin bit */
void gpio_pin_lock(uint32_t gpio_periph,uint32_t pin);
/* toggle GPIO pin status */
void gpio_bit_toggle(uint32_t gpio_periph,uint32_t pin);
/* toggle GPIO port status */
void gpio_port_toggle(uint32_t gpio_periph);
#endif /* GD32F4XX_GPIO_H */

View File

@@ -0,0 +1,331 @@
/*!
\file gd32f4xx_i2c.h
\brief definitions for the I2C
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef GD32F4XX_I2C_H
#define GD32F4XX_I2C_H
#include "gd32f4xx.h"
/* I2Cx(x=0,1,2) definitions */
#define I2C0 I2C_BASE
#define I2C1 (I2C_BASE+0x400U)
#define I2C2 (I2C_BASE+0x800U)
/* registers definitions */
#define I2C_CTL0(i2cx) REG32((i2cx) + 0x00U) /*!< I2C control register 0 */
#define I2C_CTL1(i2cx) REG32((i2cx) + 0x04U) /*!< I2C control register 1 */
#define I2C_SADDR0(i2cx) REG32((i2cx) + 0x08U) /*!< I2C slave address register 0*/
#define I2C_SADDR1(i2cx) REG32((i2cx) + 0x0CU) /*!< I2C slave address register */
#define I2C_DATA(i2cx) REG32((i2cx) + 0x10U) /*!< I2C transfer buffer register */
#define I2C_STAT0(i2cx) REG32((i2cx) + 0x14U) /*!< I2C transfer status register 0 */
#define I2C_STAT1(i2cx) REG32((i2cx) + 0x18U) /*!< I2C transfer status register */
#define I2C_CKCFG(i2cx) REG32((i2cx) + 0x1CU) /*!< I2C clock configure register */
#define I2C_RT(i2cx) REG32((i2cx) + 0x20U) /*!< I2C rise time register */
#define I2C_FCTL(i2cx) REG32((i2cx) + 0x24U) /*!< I2C filter control register */
#define I2C_SAMCS(i2cx) REG32((i2cx) + 0x80U) /*!< I2C SAM control and status register */
/* bits definitions */
/* I2Cx_CTL0 */
#define I2C_CTL0_I2CEN BIT(0) /*!< peripheral enable */
#define I2C_CTL0_SMBEN BIT(1) /*!< SMBus mode */
#define I2C_CTL0_SMBSEL BIT(3) /*!< SMBus type */
#define I2C_CTL0_ARPEN BIT(4) /*!< ARP enable */
#define I2C_CTL0_PECEN BIT(5) /*!< PEC enable */
#define I2C_CTL0_GCEN BIT(6) /*!< general call enable */
#define I2C_CTL0_DISSTRC BIT(7) /*!< clock stretching disable (slave mode) */
#define I2C_CTL0_START BIT(8) /*!< start generation */
#define I2C_CTL0_STOP BIT(9) /*!< stop generation */
#define I2C_CTL0_ACKEN BIT(10) /*!< acknowledge enable */
#define I2C_CTL0_POAP BIT(11) /*!< acknowledge/PEC position (for data reception) */
#define I2C_CTL0_PECTRANS BIT(12) /*!< packet error checking */
#define I2C_CTL0_SALT BIT(13) /*!< SMBus alert */
#define I2C_CTL0_SRESET BIT(15) /*!< software reset */
/* I2Cx_CTL1 */
#define I2C_CTL1_I2CCLK BITS(0,5) /*!< I2CCLK[5:0] bits (peripheral clock frequency) */
#define I2C_CTL1_ERRIE BIT(8) /*!< error interrupt inable */
#define I2C_CTL1_EVIE BIT(9) /*!< event interrupt enable */
#define I2C_CTL1_BUFIE BIT(10) /*!< buffer interrupt enable */
#define I2C_CTL1_DMAON BIT(11) /*!< DMA requests enable */
#define I2C_CTL1_DMALST BIT(12) /*!< DMA last transfer */
/* I2Cx_SADDR0 */
#define I2C_SADDR0_ADDRESS0 BIT(0) /*!< bit 0 of a 10-bit address */
#define I2C_SADDR0_ADDRESS BITS(1,7) /*!< 7-bit address or bits 7:1 of a 10-bit address */
#define I2C_SADDR0_ADDRESS_H BITS(8,9) /*!< highest two bits of a 10-bit address */
#define I2C_SADDR0_ADDFORMAT BIT(15) /*!< address mode for the I2C slave */
/* I2Cx_SADDR1 */
#define I2C_SADDR1_DUADEN BIT(0) /*!< aual-address mode switch */
#define I2C_SADDR1_ADDRESS2 BITS(1,7) /*!< second I2C address for the slave in dual-address mode */
/* I2Cx_DATA */
#define I2C_DATA_TRB BITS(0,7) /*!< 8-bit data register */
/* I2Cx_STAT0 */
#define I2C_STAT0_SBSEND BIT(0) /*!< start bit (master mode) */
#define I2C_STAT0_ADDSEND BIT(1) /*!< address sent (master mode)/matched (slave mode) */
#define I2C_STAT0_BTC BIT(2) /*!< byte transfer finished */
#define I2C_STAT0_ADD10SEND BIT(3) /*!< 10-bit header sent (master mode) */
#define I2C_STAT0_STPDET BIT(4) /*!< stop detection (slave mode) */
#define I2C_STAT0_RBNE BIT(6) /*!< data register not empty (receivers) */
#define I2C_STAT0_TBE BIT(7) /*!< data register empty (transmitters) */
#define I2C_STAT0_BERR BIT(8) /*!< bus error */
#define I2C_STAT0_LOSTARB BIT(9) /*!< arbitration lost (master mode) */
#define I2C_STAT0_AERR BIT(10) /*!< acknowledge failure */
#define I2C_STAT0_OUERR BIT(11) /*!< overrun/underrun */
#define I2C_STAT0_PECERR BIT(12) /*!< PEC error in reception */
#define I2C_STAT0_SMBTO BIT(14) /*!< timeout signal in SMBus mode */
#define I2C_STAT0_SMBALT BIT(15) /*!< SMBus alert status */
/* I2Cx_STAT1 */
#define I2C_STAT1_MASTER BIT(0) /*!< master/slave */
#define I2C_STAT1_I2CBSY BIT(1) /*!< bus busy */
#define I2C_STAT1_TRS BIT(2) /*!< transmitter/receiver */
#define I2C_STAT1_RXGC BIT(4) /*!< general call address (slave mode) */
#define I2C_STAT1_DEFSMB BIT(5) /*!< SMBus device default address (slave mode) */
#define I2C_STAT1_HSTSMB BIT(6) /*!< SMBus host header (slave mode) */
#define I2C_STAT1_DUMODF BIT(7) /*!< dual flag (slave mode) */
#define I2C_STAT1_ECV BITS(8,15) /*!< packet error checking register */
/* I2Cx_CKCFG */
#define I2C_CKCFG_CLKC BITS(0,11) /*!< clock control register in fast/standard mode (master mode) */
#define I2C_CKCFG_DTCY BIT(14) /*!< fast mode duty cycle */
#define I2C_CKCFG_FAST BIT(15) /*!< I2C speed selection in master mode */
/* I2Cx_RT */
#define I2C_RT_RISETIME BITS(0,5) /*!< maximum rise time in fast/standard mode (Master mode) */
/* I2Cx_FCTL */
#define I2C_FCTL_DF BITS(0,3) /*!< digital noise filter */
#define I2C_FCTL_AFD BIT(4) /*!< analog noise filter disable */
/* I2Cx_SAMCS */
#define I2C_SAMCS_SAMEN BIT(0) /*!< SAM_V interface enable */
#define I2C_SAMCS_STOEN BIT(1) /*!< SAM_V interface timeout detect enable */
#define I2C_SAMCS_TFFIE BIT(4) /*!< txframe fall interrupt enable */
#define I2C_SAMCS_TFRIE BIT(5) /*!< txframe rise interrupt enable */
#define I2C_SAMCS_RFFIE BIT(6) /*!< rxframe fall interrupt enable */
#define I2C_SAMCS_RFRIE BIT(7) /*!< rxframe rise interrupt enable */
#define I2C_SAMCS_TXF BIT(8) /*!< level of txframe signal */
#define I2C_SAMCS_RXF BIT(9) /*!< level of rxframe signal */
#define I2C_SAMCS_TFF BIT(12) /*!< txframe fall flag, cleared by software write 0 */
#define I2C_SAMCS_TFR BIT(13) /*!< txframe rise flag, cleared by software write 0 */
#define I2C_SAMCS_RFF BIT(14) /*!< rxframe fall flag, cleared by software write 0 */
#define I2C_SAMCS_RFR BIT(15) /*!< rxframe rise flag, cleared by software write 0 */
/* constants definitions */
/* the digital noise filter can filter spikes's length */
typedef enum {
I2C_DF_DISABLE, /*!< disable digital noise filter */
I2C_DF_1PCLK, /*!< enable digital noise filter and the maximum filtered spiker's length 1 PCLK1 */
I2C_DF_2PCLKS, /*!< enable digital noise filter and the maximum filtered spiker's length 2 PCLK1 */
I2C_DF_3PCLKS, /*!< enable digital noise filter and the maximum filtered spiker's length 3 PCLK1 */
I2C_DF_4PCLKS, /*!< enable digital noise filter and the maximum filtered spiker's length 4 PCLK1 */
I2C_DF_5PCLKS, /*!< enable digital noise filter and the maximum filtered spiker's length 5 PCLK1 */
I2C_DF_6PCLKS, /*!< enable digital noise filter and the maximum filtered spiker's length 6 PCLK1 */
I2C_DF_7PCLKS, /*!< enable digital noise filter and the maximum filtered spiker's length 7 PCLK1 */
I2C_DF_8PCLKS, /*!< enable digital noise filter and the maximum filtered spiker's length 8 PCLK1 */
I2C_DF_9PCLKS, /*!< enable digital noise filter and the maximum filtered spiker's length 9 PCLK1 */
I2C_DF_10PCLKS, /*!< enable digital noise filter and the maximum filtered spiker's length 10 PCLK1 */
I2C_DF_11PCLKS, /*!< enable digital noise filter and the maximum filtered spiker's length 11 PCLK1 */
I2C_DF_12PCLKS, /*!< enable digital noise filter and the maximum filtered spiker's length 12 PCLK1 */
I2C_DF_13PCLKS, /*!< enable digital noise filter and the maximum filtered spiker's length 13 PCLK1 */
I2C_DF_14PCLKS, /*!< enable digital noise filter and the maximum filtered spiker's length 14 PCLK1 */
I2C_DF_15PCLKS /*!< enable digital noise filter and the maximum filtered spiker's length 15 PCLK1 */
}i2c_digital_filter_enum;
/* SMBus/I2C mode switch and SMBus type selection */
#define I2C_I2CMODE_ENABLE ((uint32_t)0x00000000U) /*!< I2C mode */
#define I2C_SMBUSMODE_ENABLE I2C_CTL0_SMBEN /*!< SMBus mode */
/* SMBus/I2C mode switch and SMBus type selection */
#define I2C_SMBUS_DEVICE ((uint32_t)0x00000000U) /*!< SMBus mode device type */
#define I2C_SMBUS_HOST I2C_CTL0_SMBSEL /*!< SMBus mode host type */
/* I2C transfer direction */
#define I2C_TRANSMITTER (~BIT(0)) /*!< transmitter */
#define I2C_RECEIVER BIT(0) /*!< receiver */
/* whether or not to send an ACK */
#define I2C_ACK_ENABLE ((uint8_t)0x01U) /*!< ACK will be sent */
#define I2C_ACK_DISABLE ((uint8_t)0x00U) /*!< ACK will be not sent */
/* I2C POAP position*/
#define I2C_ACKPOS_CURRENT ((uint8_t)0x01U) /*!< ACKEN bit decides whether to send ACK or not for the current */
#define I2C_ACKPOS_NEXT ((uint8_t)0x00U) /*!< ACKEN bit decides whether to send ACK or not for the next byte */
/* I2C dual-address mode switch */
#define I2C_DUADEN_DISABLE ((uint8_t)0x00U) /*!< dual-address mode disabled */
#define I2C_DUADEN_ENABLE ((uint8_t)0x01U) /*!< dual-address mode enabled */
/* whether or not to stretch SCL low */
#define I2C_SCLSTRETCH_ENABLE ((uint32_t)0x00000000U) /*!< SCL stretching is enabled */
#define I2C_SCLSTRETCH_DISABLE I2C_CTL0_DISSTRC /*!< SCL stretching is disabled */
/* whether or not to response to a General Call */
#define I2C_GCEN_ENABLE I2C_CTL0_GCEN /*!< slave will response to a general call */
#define I2C_GCEN_DISABLE ((uint32_t)0x00000000U) /*!< slave will not response to a general call */
/* software reset I2C */
#define I2C_SRESET_SET I2C_CTL0_SRESET /*!< I2C is under reset */
#define I2C_SRESET_RESET ((uint32_t)0x00000000U) /*!< I2C is not under reset */
/* I2C DMA mode configure */
/* DMA mode switch */
#define I2C_DMA_ON I2C_CTL1_DMAON /*!< DMA mode enabled */
#define I2C_DMA_OFF ((uint32_t)0x00000000U) /*!< DMA mode disabled */
/* flag indicating DMA last transfer */
#define I2C_DMALST_ON I2C_CTL1_DMALST /*!< next DMA EOT is the last transfer */
#define I2C_DMALST_OFF ((uint32_t)0x00000000U) /*!< next DMA EOT is not the last transfer */
/* I2C PEC configure */
/* PEC enable */
#define I2C_PEC_ENABLE I2C_CTL0_PECEN /*!< PEC calculation on */
#define I2C_PEC_DISABLE ((uint32_t)0x00000000U) /*!< PEC calculation off */
/* PEC transfer */
#define I2C_PECTRANS_ENABLE I2C_CTL0_PECTRANS /*!< transfer PEC */
#define I2C_PECTRANS_DISABLE ((uint32_t)0x00000000U) /*!< not transfer PEC value */
/* I2C SMBus configure */
/* issue or not alert through SMBA pin */
#define I2C_SALTSEND_ENABLE I2C_CTL0_SALT /*!< issue alert through SMBA pin */
#define I2C_SALTSEND_DISABLE ((uint32_t)0x00000000U) /*!< not issue alert through SMBA */
/* ARP protocol in SMBus switch */
#define I2C_ARP_ENABLE I2C_CTL0_ARPEN /*!< ARP is enabled */
#define I2C_ARP_DISABLE ((uint32_t)0x00000000U) /*!< ARP is disabled */
/* I2C state */
/* I2C bit state */
#define I2C_SBSEND BIT(0) /*!< start condition sent out in master mode */
#define I2C_ADDSEND BIT(1) /*!< address is sent in master mode or received and matches in slave mode */
#define I2C_BTC BIT(2) /*!< byte transmission finishes */
#define I2C_ADD10SEND BIT(3) /*!< header of 10-bit address is sent in master mode */
#define I2C_STPDET BIT(4) /*!< etop condition detected in slave mode */
#define I2C_RBNE BIT(6) /*!< I2C_DATA is not Empty during receiving */
#define I2C_TBE BIT(7) /*!< I2C_DATA is empty during transmitting */
#define I2C_BERR BIT(8) /*!< a bus error occurs indication a unexpected start or stop condition on I2C bus */
#define I2C_LOSTARB BIT(9) /*!< arbitration lost in master mode */
#define I2C_AERR BIT(10) /*!< acknowledge error */
#define I2C_OUERR BIT(11) /*!< over-run or under-run situation occurs in slave mode */
#define I2C_PECERR BIT(12) /*!< PEC error when receiving data */
#define I2C_SMBTO BIT(14) /*!< timeout signal in SMBus mode */
#define I2C_SMBALT BIT(15) /*!< SMBus alert status */
#define I2C_MASTER (BIT(0)|BIT(31)) /*!< a flag indicating whether I2C block is in master or slave mode */
#define I2C_I2CBSY (BIT(1)|BIT(31)) /*!< busy flag */
#define I2C_TRS (BIT(2)|BIT(31)) /*!< whether the I2C is a transmitter or a receiver */
#define I2C_RXGC (BIT(4)|BIT(31)) /*!< general call address (00h) received */
#define I2C_DEFSMB (BIT(5)|BIT(31)) /*!< default address of SMBus device */
#define I2C_HSTSMB (BIT(6)|BIT(31)) /*!< SMBus host header detected in slave mode */
#define I2C_DUMODF (BIT(7)|BIT(31)) /*!< dual flag in slave mode indicating which address is matched in dual-address mode */
/* I2C duty cycle in fast mode */
#define CKCFG_DTCY(regval) (BIT(14) & ((uint32_t)(regval) << 14))
#define I2C_DTCY_2 CKCFG_DTCY(0) /*!< I2C fast mode Tlow/Thigh = 2 */
#define I2C_DTCY_16_9 CKCFG_DTCY(1) /*!< I2C fast mode Tlow/Thigh = 16/9 */
/* address mode for the I2C slave */
#define SADDR0_ADDFORMAT(regval) (BIT(15) & ((regval) << 15))
#define I2C_ADDFORMAT_7BITS SADDR0_ADDFORMAT(0) /*!< address:7 bits */
#define I2C_ADDFORMAT_10BITS SADDR0_ADDFORMAT(1) /*!< address:10 bits */
/* function declarations */
/* reset I2C */
void i2c_deinit(uint32_t i2c_periph);
/* I2C clock configure */
void i2c_clock_config(uint32_t i2c_periph,uint32_t clkspeed,uint32_t dutycyc);
/* I2C address configure */
void i2c_mode_addr_config(uint32_t i2c_periph,uint32_t i2cmod,uint32_t addformat,uint32_t addr);
/* SMBus type selection */
void i2c_smbus_type_config(uint32_t i2c_periph,uint32_t type);
/* whether or not to send an ACK */
void i2c_ack_config(uint32_t i2c_periph,uint8_t ack);
/* I2C POAP position configure */
void i2c_ackpos_config(uint32_t i2c_periph,uint8_t pos);
/* master send slave address */
void i2c_master_addressing(uint32_t i2c_periph,uint8_t addr,uint32_t trandirection);
/* dual-address mode switch */
void i2c_dualaddr_enable(uint32_t i2c_periph, uint8_t dualaddr);
/* enable i2c */
void i2c_enable(uint32_t i2c_periph);
/* disable i2c */
void i2c_disable(uint32_t i2c_periph);
/* generate a START condition on I2C bus */
void i2c_start_on_bus(uint32_t i2c_periph);
/* generate a STOP condition on I2C bus */
void i2c_stop_on_bus(uint32_t i2c_periph);
/* i2c transmit data function */
void i2c_transmit_data(uint32_t i2c_periph,uint8_t data);
/* i2c receive data function */
uint8_t i2c_receive_data(uint32_t i2c_periph);
/* I2C DMA mode enable */
void i2c_dma_enable(uint32_t i2c_periph,uint32_t dmastste);
/* flag indicating DMA last transfer */
void i2c_dma_last_transfer_enable(uint32_t i2c_periph,uint32_t dmalast);
/* whether to stretch SCL low when data is not ready in slave mode */
void i2c_stretch_scl_low_config(uint32_t i2c_periph,uint32_t stretchpara );
/* whether or not to response to a general call */
void i2c_slave_response_to_gcall_config(uint32_t i2c_periph,uint32_t gcallpara);
/* software reset I2C */
void i2c_software_reset_config(uint32_t i2c_periph, uint32_t sreset);
/* check i2c state */
FlagStatus i2c_flag_get(uint32_t i2c_periph,uint32_t state);
/* clear i2c state */
void i2c_flag_clear(uint32_t i2c_periph,uint32_t state);
/* enable i2c interrupt */
void i2c_interrupt_enable(uint32_t i2c_periph,uint32_t inttype);
/* disable i2c interrupt */
void i2c_interrupt_disable(uint32_t i2c_periph,uint32_t inttype);
/* I2C PEC calculation on or off */
void i2c_pec_enable(uint32_t i2c_periph,uint32_t pecstate);
/* I2C whether to transfer PEC value */
void i2c_pec_transfer_enable(uint32_t i2c_periph,uint32_t pecpara);
/* packet error checking value */
uint8_t i2c_pec_value(uint32_t i2c_periph);
/* I2C issue alert through SMBA pin */
void i2c_smbus_alert_issue(uint32_t i2c_periph,uint32_t smbuspara);
/* I2C ARP protocol in SMBus switch */
void i2c_smbus_arp_enable(uint32_t i2c_periph,uint32_t arpstate);
/* I2C analog noise filter disable */
void i2c_analog_noise_filter_disable(uint32_t i2c_periph);
/* I2C analog noise filter enable */
void i2c_analog_noise_filter_enable(uint32_t i2c_periph);
/* digital noise filter */
void i2c_digital_noise_filter_config(uint32_t i2c_periph,i2c_digital_filter_enum dfilterpara);
/* enable SAM_V interface */
void i2c_sam_enable(uint32_t i2c_periph);
/* disable SAM_V interface */
void i2c_sam_disable(uint32_t i2c_periph);
/* enable SAM_V interface timeout detect */
void i2c_sam_timeout_enable(uint32_t i2c_periph);
/* disable SAM_V interface timeout detect */
void i2c_sam_timeout_disable(uint32_t i2c_periph);
/* enable the specified I2C SAM interrupt */
void i2c_sam_interrupt_enable(uint32_t i2c_periph,uint32_t inttype);
/* disable the specified I2C SAM interrupt */
void i2c_sam_interrupt_disable(uint32_t i2c_periph,uint32_t inttype);
/* check i2c SAM state */
FlagStatus i2c_sam_flag_get(uint32_t i2c_periph,uint32_t samstate);
/* clear i2c SAM state */
void i2c_sam_flag_clear(uint32_t i2c_periph,uint32_t samstate);
#endif /* GD32F4XX_I2C_H */

View File

@@ -0,0 +1,320 @@
/*!
\file gd32f4xx_ipa.h
\brief definitions for the IPA
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef GD32F4XX_IPA_H
#define GD32F4XX_IPA_H
#include "gd32f4xx.h"
/* TLI definitions */
#define IPA IPA_BASE /*!< IPA base address */
/* bits definitions */
/* registers definitions */
#define IPA_CTL REG32(IPA + 0x00U) /*!< IPA control register */
#define IPA_INTF REG32(IPA + 0x04U) /*!< IPA interrupt flag register */
#define IPA_INTC REG32(IPA + 0x08U) /*!< IPA interrupt flag clear register */
#define IPA_FMADDR REG32(IPA + 0x0CU) /*!< IPA foreground memory base address register */
#define IPA_FLOFF REG32(IPA + 0x10U) /*!< IPA foreground line offset register */
#define IPA_BMADDR REG32(IPA + 0x14U) /*!< IPA background memory base address register */
#define IPA_BLOFF REG32(IPA + 0x18U) /*!< IPA background line offset register */
#define IPA_FPCTL REG32(IPA + 0x1CU) /*!< IPA foreground pixel control register */
#define IPA_FPV REG32(IPA + 0x20U) /*!< IPA foreground pixel value register */
#define IPA_BPCTL REG32(IPA + 0x24U) /*!< IPA background pixel control register */
#define IPA_BPV REG32(IPA + 0x28U) /*!< IPA background pixel value register */
#define IPA_FLMADDR REG32(IPA + 0x2CU) /*!< IPA foreground LUT memory base address register */
#define IPA_BLMADDR REG32(IPA + 0x30U) /*!< IPA background LUT memory base address register */
#define IPA_DPCTL REG32(IPA + 0x34U) /*!< IPA destination pixel control register */
#define IPA_DPV REG32(IPA + 0x38U) /*!< IPA destination pixel value register */
#define IPA_DMADDR REG32(IPA + 0x3CU) /*!< IPA destination memory base address register */
#define IPA_DLOFF REG32(IPA + 0x40U) /*!< IPA destination line offset register */
#define IPA_IMS REG32(IPA + 0x44U) /*!< IPA image size register */
#define IPA_LM REG32(IPA + 0x48U) /*!< IPA line mark register */
#define IPA_ITCTL REG32(IPA + 0x4CU) /*!< IPA inter-timer control register */
/* IPA_CTL */
#define IPA_CTL_TEN BIT(0) /*!< transfer enable */
#define IPA_CTL_THU BIT(1) /*!< transfer hang up */
#define IPA_CTL_TST BIT(2) /*!< transfer stop */
#define IPA_CTL_TAEIE BIT(8) /*!< enable bit for transfer access error interrupt */
#define IPA_CTL_FTFIE BIT(9) /*!< enable bit for full transfer finish interrup */
#define IPA_CTL_TLMIE BIT(10) /*!< enable bit for transfer line mark interrupt */
#define IPA_CTL_LACIE BIT(11) /*!< enable bit for LUT access conflict interrupt */
#define IPA_CTL_LLFIE BIT(12) /*!< enable bit for LUT loading finish interrupt */
#define IPA_CTL_WCFIE BIT(13) /*!< enable bit for wrong configuration interrupt */
#define IPA_CTL_PFCM BITS(16,17) /*!< pixel format convert mode */
/* IPA_INTF */
#define IPA_INTF_TAEIF BIT(0) /*!< transfer access error interrupt flag */
#define IPA_INTF_FTFIF BIT(1) /*!< full transfer finish interrupt flag */
#define IPA_INTF_TLMIF BIT(2) /*!< transfer line mark interrupt flag */
#define IPA_INTF_LACIF BIT(3) /*!< LUT access conflict interrupt flag */
#define IPA_INTF_LLFIF BIT(4) /*!< LUT loading finish interrupt flag */
#define IPA_INTF_WCFIF BIT(5) /*!< wrong configuration interrupt flag */
/* IPA_INTC */
#define IPA_INTC_TAEIFC BIT(0) /*!< clear bit for transfer access error interrupt flag */
#define IPA_INTC_FTFIFC BIT(1) /*!< clear bit for full transfer finish interrupt flag */
#define IPA_INTC_TLMIFC BIT(2) /*!< clear bit for transfer line mark interrupt flag */
#define IPA_INTC_LACIFC BIT(3) /*!< clear bit for LUT access conflict interrupt flag */
#define IPA_INTC_LLFIFC BIT(4) /*!< clear bit for LUT loading finish interrupt flag */
#define IPA_INTC_WCFIFC BIT(5) /*!< clear bit for wrong configuration interrupt flag */
/* IPA_FMADDR */
#define IPA_FMADDR_FMADDR BITS(0,31) /*!< foreground memory base address */
/* IPA_FLOFF */
#define IPA_FLOFF_FLOFF BITS(0,13) /*!< foreground line offset */
/* IPA_BMADDR */
#define IPA_BMADDR_BMADDR BITS(0,31) /*!< background memory base address */
/* IPA_BLOFF */
#define IPA_BLOFF_BLOFF BITS(0,13) /*!< background line offset */
/* IPA_FPCTL */
#define IPA_FPCTL_FPF BITS(0,3) /*!< foreground pixel format */
#define IPA_FPCTL_FLPF BIT(4) /*!< foreground LUT pixel format */
#define IPA_FPCTL_FLLEN BIT(5) /*!< foreground LUT loading enable */
#define IPA_FPCTL_FCNP BITS(8,15) /*!< foreground LUT number of pixel */
#define IPA_FPCTL_FAVCA BITS(16,17) /*!< foreground alpha value calculation algorithm */
#define IPA_FPCTL_FPDAV BITS(24,31) /*!< foreground pre- defined alpha value */
/* IPA_FPV */
#define IPA_FPV_FPDBV BITS(0,7) /*!< foreground pre-defined red value */
#define IPA_FPV_FPDGV BITS(8,15) /*!< foreground pre-defined green value */
#define IPA_FPV_FPDRV BITS(16,23) /*!< foreground pre-defined red value */
/* IPA_BPCTL */
#define IPA_BPCTL_BPF BITS(0,3) /*!< background pixel format */
#define IPA_BPCTL_BLPF BIT(4) /*!< background LUT pixel format */
#define IPA_BPCTL_BLLEN BIT(5) /*!< background LUT loading enable */
#define IPA_BPCTL_BCNP BITS(8,15) /*!< background LUT number of pixel */
#define IPA_BPCTL_BAVCA BITS(16,17) /*!< background alpha value calculation algorithm */
#define IPA_BPCTL_BPDAV BITS(24,31) /*!< background pre- defined alpha value */
/* IPA_BPV */
#define IPA_BPV_BPDBV BITS(0,7) /*!< background pre-defined blue value */
#define IPA_BPV_BPDGV BITS(8,15) /*!< background pre-defined green value */
#define IPA_BPV_BPDRV BITS(16,23) /*!< background pre-defined red value */
/* IPA_FLMADDR */
#define IPA_FLMADDR_FLMADDR BITS(0,31) /*!< foreground LUT memory base address */
/* IPA_BLMADDR */
#define IPA_BLMADDR_BLMADDR BITS(0,31) /*!< background LUT memory base address */
/* IPA_DPCTL */
#define IPA_DPCTL_DPF BITS(0,2) /*!< destination pixel control register */
/* IPA_DPV */
/* destination pixel format ARGB8888 */
#define IPA_DPV_DPDBV_0 BITS(0,7) /*!< destination pre-defined blue value */
#define IPA_DPV_DPDGV_0 BITS(8,15) /*!< destination pre-defined green value */
#define IPA_DPV_DPDRV_0 BITS(16,23) /*!< destination pre-defined red value */
#define IPA_DPV_DPDAV_0 BITS(24,31) /*!< destination pre-defined alpha value */
/* destination pixel format RGB8888 */
#define IPA_DPV_DPDBV_1 BITS(0,7) /*!< destination pre-defined blue value */
#define IPA_DPV_DPDGV_1 BITS(8,15) /*!< destination pre-defined green value */
#define IPA_DPV_DPDRV_1 BITS(16,23) /*!< destination pre-defined red value */
/* destination pixel format RGB565 */
#define IPA_DPV_DPDBV_2 BITS(0,4) /*!< destination pre-defined blue value */
#define IPA_DPV_DPDGV_2 BITS(5,10) /*!< destination pre-defined green value */
#define IPA_DPV_DPDRV_2 BITS(11,15) /*!< destination pre-defined red value */
/* destination pixel format ARGB1555 */
#define IPA_DPV_DPDBV_3 BITS(0,4) /*!< destination pre-defined blue value */
#define IPA_DPV_DPDGV_3 BITS(5,9) /*!< destination pre-defined green value */
#define IPA_DPV_DPDRV_3 BITS(10,14) /*!< destination pre-defined red value */
#define IPA_DPV_DPDAV_3 BIT(15) /*!< destination pre-defined alpha value */
/* destination pixel format ARGB4444 */
#define IPA_DPV_DPDBV_4 BITS(0,3) /*!< destination pre-defined blue value */
#define IPA_DPV_DPDGV_4 BITS(4,7) /*!< destination pre-defined green value */
#define IPA_DPV_DPDRV_4 BITS(8,11) /*!< destination pre-defined red value */
#define IPA_DPV_DPDAV_4 BITS(12,15) /*!< destination pre-defined alpha value */
/* IPA_DMADDR */
#define IPA_DMADDR_DMADDR BITS(0,31) /*!< destination memory base address */
/* IPA_DLOFF */
#define IPA_DLOFF_DLOFF BITS(0,13) /*!< destination line offset */
/* IPA_IMS */
#define IPA_IMS_HEIGHT BITS(0,15) /*!< height of the image to be processed */
#define IPA_IMS_WIDTH BITS(16,29) /*!< width of the image to be processed */
/* IPA_LM */
#define IPA_LM_LM BITS(0,15) /*!< line mark */
/* IPA_ITCTL */
#define IPA_ITCTL_ITEN BIT(0) /*!< inter-timer enable */
#define IPA_ITCTL_NCCI BITS(8,15) /*!< number of clock cycles interval */
/* constants definitions */
/* IPA foreground parameter struct definitions */
typedef struct
{
uint32_t foreground_memaddr; /*!< foreground memory base address */
uint32_t foreground_lineoff; /*!< foreground line offset */
uint32_t foreground_prealpha; /*!< foreground pre-defined alpha value */
uint32_t foreground_alpha_algorithm; /*!< foreground alpha value calculation algorithm */
uint32_t foreground_pf; /*!< foreground pixel format */
uint32_t foreground_prered; /*!< foreground pre-defined red value */
uint32_t foreground_pregreen; /*!< foreground pre-defined green value */
uint32_t foreground_preblue; /*!< foreground pre-defined blue value */
}ipa_foreground_parameter_struct;
/* IPA background parameter struct definitions */
typedef struct
{
uint32_t background_memaddr; /*!< background memory base address */
uint32_t background_lineoff; /*!< background line offset */
uint32_t background_prealpha; /*!< background pre-defined alpha value */
uint32_t background_alpha_algorithm; /*!< background alpha value calculation algorithm */
uint32_t background_pf; /*!< background pixel format */
uint32_t background_prered; /*!< background pre-defined red value */
uint32_t background_pregreen; /*!< background pre-defined green value */
uint32_t background_preblue; /*!< background pre-defined blue value */
}ipa_background_parameter_struct;
/* IPA destination parameter struct definitions */
typedef struct
{
uint32_t destination_memaddr; /*!< destination memory base address */
uint32_t destination_lineoff; /*!< destination line offset */
uint32_t destination_prealpha; /*!< destination pre-defined alpha value */
uint32_t destination_pf; /*!< destination pixel format */
uint32_t destination_prered; /*!< destination pre-defined red value */
uint32_t destination_pregreen; /*!< destination pre-defined green value */
uint32_t destination_preblue; /*!< destination pre-defined blue value */
uint32_t image_width; /*!< width of the image to be processed */
uint32_t image_height; /*!< height of the image to be processed */
}ipa_destination_parameter_struct;
/* destination pixel format */
typedef enum
{
IPA_DPF_ARGB8888, /*!< destination pixel format ARGB8888 */
IPA_DPF_RGB888, /*!< destination pixel format RGB888 */
IPA_DPF_RGB565, /*!< destination pixel format RGB565 */
IPA_DPF_ARGB1555, /*!< destination pixel format ARGB1555 */
IPA_DPF_ARGB4444 /*!< destination pixel format ARGB4444 */
} ipa_dpf_enum;
/* LUT pixel format */
#define IPA_LUT_PF_ARGB8888 ((uint8_t)0x00U) /*!< LUT pixel format ARGB8888 */
#define IPA_LUT_PF_RGB888 ((uint8_t)0x01U) /*!< LUT pixel format RGB888 */
/* Inter-timer */
#define IPA_INTER_TIMER_DISABLE ((uint8_t)0x00U) /*!< Inter-timer disable */
#define IPA_INTER_TIMER_ENABLE ((uint8_t)0x01U) /*!< Inter-timer enable */
/* IPA pixel format convert mode */
#define CTL_PFCM(regval) (BITS(16,17) & ((regval) << 16))
#define IPA_FGTODE CTL_PFCM(0) /*!< foreground memory to destination memory without pixel format convert */
#define IPA_FGTODE_PF_CONVERT CTL_PFCM(1) /*!< foreground memory to destination memory with pixel format convert */
#define IPA_FGBGTODE CTL_PFCM(2) /*!< blending foreground and background memory to destination memory */
#define IPA_FILL_UP_DE CTL_PFCM(3) /*!< fill up destination memory with specific color */
/* foreground alpha value calculation algorithm */
#define FPCTL_FAVCA(regval) (BITS(16,17) & ((regval) << 16))
#define IPA_FG_ALPHA_MODE_0 FPCTL_FAVCA(0) /*!< no effect */
#define IPA_FG_ALPHA_MODE_1 FPCTL_FAVCA(1) /*!< FPDAV[7:0] is selected as the foreground alpha value */
#define IPA_FG_ALPHA_MODE_2 FPCTL_FAVCA(2) /*!< FPDAV[7:0] multiplied by read alpha value */
/* background alpha value calculation algorithm */
#define BPCTL_BAVCA(regval) (BITS(16,17) & ((regval) << 16))
#define IPA_BG_ALPHA_MODE_0 BPCTL_BAVCA(0) /*!< no effect */
#define IPA_BG_ALPHA_MODE_1 BPCTL_BAVCA(1) /*!< BPDAV[7:0] is selected as the background alpha value */
#define IPA_BG_ALPHA_MODE_2 BPCTL_BAVCA(2) /*!< BPDAV[7:0] multiplied by read alpha value */
/* foreground pixel format */
#define FPCTL_PPF(regval) (BITS(0,3) & ((regval)))
#define FOREGROUND_PPF_ARGB8888 FPCTL_PPF(0) /*!< foreground pixel format ARGB8888 */
#define FOREGROUND_PPF_RGB888 FPCTL_PPF(1) /*!< foreground pixel format RGB888 */
#define FOREGROUND_PPF_RGB565 FPCTL_PPF(2) /*!< foreground pixel format RGB565 */
#define FOREGROUND_PPF_ARG1555 FPCTL_PPF(3) /*!< foreground pixel format ARGB1555 */
#define FOREGROUND_PPF_ARGB4444 FPCTL_PPF(4) /*!< foreground pixel format ARGB4444 */
#define FOREGROUND_PPF_L8 FPCTL_PPF(5) /*!< foreground pixel format L8 */
#define FOREGROUND_PPF_AL44 FPCTL_PPF(6) /*!< foreground pixel format AL44 */
#define FOREGROUND_PPF_AL88 FPCTL_PPF(7) /*!< foreground pixel format AL88 */
#define FOREGROUND_PPF_L4 FPCTL_PPF(8) /*!< foreground pixel format L4 */
#define FOREGROUND_PPF_A8 FPCTL_PPF(9) /*!< foreground pixel format A8 */
#define FOREGROUND_PPF_A4 FPCTL_PPF(10) /*!< foreground pixel format A4 */
/* background pixel format */
#define BPCTL_PPF(regval) (BITS(0,3) & ((regval)))
#define BACKGROUND_PPF_ARGB8888 BPCTL_PPF(0) /*!< background pixel format ARGB8888 */
#define BACKGROUND_PPF_RGB888 BPCTL_PPF(1) /*!< background pixel format RGB888 */
#define BACKGROUND_PPF_RGB565 BPCTL_PPF(2) /*!< background pixel format RGB565 */
#define BACKGROUND_PPF_ARG1555 BPCTL_PPF(3) /*!< background pixel format ARGB1555 */
#define BACKGROUND_PPF_ARGB4444 BPCTL_PPF(4) /*!< background pixel format ARGB4444 */
#define BACKGROUND_PPF_L8 BPCTL_PPF(5) /*!< background pixel format L8 */
#define BACKGROUND_PPF_AL44 BPCTL_PPF(6) /*!< background pixel format AL44 */
#define BACKGROUND_PPF_AL88 BPCTL_PPF(7) /*!< background pixel format AL88 */
#define BACKGROUND_PPF_L4 BPCTL_PPF(8) /*!< background pixel format L4 */
#define BACKGROUND_PPF_A8 BPCTL_PPF(9) /*!< background pixel format A8 */
#define BACKGROUND_PPF_A4 BPCTL_PPF(10) /*!< background pixel format A4 */
/* function declarations */
/* deinitialize IPA */
void ipa_deinit(void);
/* IPA transfer enable */
void ipa_transfer_enable(void);
/* IPA transfer hang up enable */
void ipa_transfer_hangup_enable(void);
/* IPA transfer hang up disable */
void ipa_transfer_hangup_disable(void);
/* IPA transfer stop enable */
void ipa_transfer_stop_enable(void);
/* IPA transfer stop disable */
void ipa_transfer_stop_disable(void);
/* IPA foreground LUT loading enable */
void ipa_foreground_lut_loading_enable(void);
/* IPA background LUT loading enable */
void ipa_background_lut_loading_enable(void);
/* IPA transfer enable */
void ipa_pixel_format_convert_mod(uint32_t pfcm);
/* initialize foreground parameters */
void ipa_foreground_init(ipa_foreground_parameter_struct* foreground_struct);
/* initialize background parameters */
void ipa_background_init(ipa_background_parameter_struct* background_struct);
/* initialize destination parameters */
void ipa_destination_init(ipa_destination_parameter_struct* destination_struct);
/* initialize IPA foreground LUT parameters */
void ipa_foreground_lut_init(uint32_t fg_lut_num,uint8_t fg_lut_pf, uint32_t fg_lut_addr);
/* initialize IPA background LUT parameters */
void ipa_background_lut_init(uint32_t bg_lut_num,uint8_t bg_lut_pf, uint32_t bg_lut_addr);
/* configure line mark */
void ipa_line_mark_config(uint32_t linenum);
/* Inter-timer enable or disable */
void ipa_inter_timer_config(uint8_t timercfg);
/* number of clock cycles interval set */
void ipa_interval_clock_num_config(uint32_t clk_num );
/* IPA interrupt enable */
void ipa_interrupt_enable(uint32_t inttype);
/* IPA interrupt disable */
void ipa_interrupt_disable(uint32_t inttype);
/* get IPA interrupt flag */
FlagStatus ipa_interrupt_flag_get(uint32_t intflag);
/* clear IPA interrupt flag */
void ipa_interrupt_flag_clear(uint32_t intflag);
#endif /* GD32F4XX_IPA_H */

View File

@@ -0,0 +1,161 @@
/*!
\file gd32f4xx_iref.h
\brief definitions for the IREF
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef GD32F4XX_IREF_H
#define GD32F4XX_IREF_H
#include "gd32f4xx.h"
/* IREF definitions */
#define IREF IREF_BASE /*!< IREF base address */
/* registers definitions */
#define IREF_CTL REG32(IREF + 0x300U) /*!< IREF control register */
/* bits definitions */
/* IREF_CTL */
#define IREF_CTL_CSDT BITS(0,5) /*!< current step data */
#define IREF_CTL_SCMOD BIT(7) /*!< sink current mode */
#define IREF_CTL_CPT BITS(8,12) /*!< current precision trim */
#define IREF_CTL_SSEL BIT(14) /*!< step selection */
#define IREF_CTL_CREN BIT(15) /*!< current reference enable */
/* constants definitions */
/* IREF current precision trim */
#define CTL_CPT(regval) (BITS(8,12) & ((uint32_t)(regval) << 8))
#define IREF_CUR_PRECISION_TRIM_0 CTL_CPT(0) /*!< IREF current precision trim 0 */
#define IREF_CUR_PRECISION_TRIM_1 CTL_CPT(1) /*!< IREF current precision trim 1 */
#define IREF_CUR_PRECISION_TRIM_2 CTL_CPT(2) /*!< IREF current precision trim 2 */
#define IREF_CUR_PRECISION_TRIM_3 CTL_CPT(3) /*!< IREF current precision trim 3 */
#define IREF_CUR_PRECISION_TRIM_4 CTL_CPT(4) /*!< IREF current precision trim 4 */
#define IREF_CUR_PRECISION_TRIM_5 CTL_CPT(5) /*!< IREF current precision trim 5 */
#define IREF_CUR_PRECISION_TRIM_6 CTL_CPT(6) /*!< IREF current precision trim 6 */
#define IREF_CUR_PRECISION_TRIM_7 CTL_CPT(7) /*!< IREF current precision trim 7 */
#define IREF_CUR_PRECISION_TRIM_8 CTL_CPT(8) /*!< IREF current precision trim 8 */
#define IREF_CUR_PRECISION_TRIM_9 CTL_CPT(9) /*!< IREF current precision trim 9 */
#define IREF_CUR_PRECISION_TRIM_10 CTL_CPT(10) /*!< IREF current precision trim 10 */
#define IREF_CUR_PRECISION_TRIM_11 CTL_CPT(11) /*!< IREF current precision trim 11 */
#define IREF_CUR_PRECISION_TRIM_12 CTL_CPT(12) /*!< IREF current precision trim 12 */
#define IREF_CUR_PRECISION_TRIM_13 CTL_CPT(13) /*!< IREF current precision trim 13 */
#define IREF_CUR_PRECISION_TRIM_14 CTL_CPT(14) /*!< IREF current precision trim 14 */
#define IREF_CUR_PRECISION_TRIM_15 CTL_CPT(15) /*!< IREF current precision trim 15 */
#define IREF_CUR_PRECISION_TRIM_16 CTL_CPT(16) /*!< IREF current precision trim 16 */
#define IREF_CUR_PRECISION_TRIM_17 CTL_CPT(17) /*!< IREF current precision trim 17 */
#define IREF_CUR_PRECISION_TRIM_18 CTL_CPT(18) /*!< IREF current precision trim 18 */
#define IREF_CUR_PRECISION_TRIM_19 CTL_CPT(19) /*!< IREF current precision trim 19 */
#define IREF_CUR_PRECISION_TRIM_20 CTL_CPT(20) /*!< IREF current precision trim 20 */
#define IREF_CUR_PRECISION_TRIM_21 CTL_CPT(21) /*!< IREF current precision trim 21 */
#define IREF_CUR_PRECISION_TRIM_22 CTL_CPT(22) /*!< IREF current precision trim 22 */
#define IREF_CUR_PRECISION_TRIM_23 CTL_CPT(23) /*!< IREF current precision trim 23 */
#define IREF_CUR_PRECISION_TRIM_24 CTL_CPT(24) /*!< IREF current precision trim 24 */
#define IREF_CUR_PRECISION_TRIM_25 CTL_CPT(25) /*!< IREF current precision trim 25 */
#define IREF_CUR_PRECISION_TRIM_26 CTL_CPT(26) /*!< IREF current precision trim 26 */
#define IREF_CUR_PRECISION_TRIM_27 CTL_CPT(27) /*!< IREF current precision trim 27 */
#define IREF_CUR_PRECISION_TRIM_28 CTL_CPT(28) /*!< IREF current precision trim 28 */
#define IREF_CUR_PRECISION_TRIM_29 CTL_CPT(29) /*!< IREF current precision trim 29 */
#define IREF_CUR_PRECISION_TRIM_30 CTL_CPT(30) /*!< IREF current precision trim 30 */
#define IREF_CUR_PRECISION_TRIM_31 CTL_CPT(31) /*!< IREF current precision trim 31 */
/* IREF current step */
#define CTL_CSDT(regval) (BITS(0,5) & ((uint32_t)(regval) << 0))
#define IREF_CUR_STEP_DATA_0 CTL_CSDT(0) /*!< IREF current step data 0 */
#define IREF_CUR_STEP_DATA_1 CTL_CSDT(1) /*!< IREF current step data 1 */
#define IREF_CUR_STEP_DATA_2 CTL_CSDT(2) /*!< IREF current step data 2 */
#define IREF_CUR_STEP_DATA_3 CTL_CSDT(3) /*!< IREF current step data 3 */
#define IREF_CUR_STEP_DATA_4 CTL_CSDT(4) /*!< IREF current step data 4 */
#define IREF_CUR_STEP_DATA_5 CTL_CSDT(5) /*!< IREF current step data 5 */
#define IREF_CUR_STEP_DATA_6 CTL_CSDT(6) /*!< IREF current step data 6 */
#define IREF_CUR_STEP_DATA_7 CTL_CSDT(7) /*!< IREF current step data 7 */
#define IREF_CUR_STEP_DATA_8 CTL_CSDT(8) /*!< IREF current step data 8 */
#define IREF_CUR_STEP_DATA_9 CTL_CSDT(9) /*!< IREF current step data 9 */
#define IREF_CUR_STEP_DATA_10 CTL_CSDT(10) /*!< IREF current step data 10 */
#define IREF_CUR_STEP_DATA_11 CTL_CSDT(11) /*!< IREF current step data 11 */
#define IREF_CUR_STEP_DATA_12 CTL_CSDT(12) /*!< IREF current step data 12 */
#define IREF_CUR_STEP_DATA_13 CTL_CSDT(13) /*!< IREF current step data 13 */
#define IREF_CUR_STEP_DATA_14 CTL_CSDT(14) /*!< IREF current step data 14 */
#define IREF_CUR_STEP_DATA_15 CTL_CSDT(15) /*!< IREF current step data 15 */
#define IREF_CUR_STEP_DATA_16 CTL_CSDT(16) /*!< IREF current step data 16 */
#define IREF_CUR_STEP_DATA_17 CTL_CSDT(17) /*!< IREF current step data 17 */
#define IREF_CUR_STEP_DATA_18 CTL_CSDT(18) /*!< IREF current step data 18 */
#define IREF_CUR_STEP_DATA_19 CTL_CSDT(19) /*!< IREF current step data 19 */
#define IREF_CUR_STEP_DATA_20 CTL_CSDT(20) /*!< IREF current step data 20 */
#define IREF_CUR_STEP_DATA_21 CTL_CSDT(21) /*!< IREF current step data 21 */
#define IREF_CUR_STEP_DATA_22 CTL_CSDT(22) /*!< IREF current step data 22 */
#define IREF_CUR_STEP_DATA_23 CTL_CSDT(23) /*!< IREF current step data 23 */
#define IREF_CUR_STEP_DATA_24 CTL_CSDT(24) /*!< IREF current step data 24 */
#define IREF_CUR_STEP_DATA_25 CTL_CSDT(25) /*!< IREF current step data 25 */
#define IREF_CUR_STEP_DATA_26 CTL_CSDT(26) /*!< IREF current step data 26 */
#define IREF_CUR_STEP_DATA_27 CTL_CSDT(27) /*!< IREF current step data 27 */
#define IREF_CUR_STEP_DATA_28 CTL_CSDT(28) /*!< IREF current step data 28 */
#define IREF_CUR_STEP_DATA_29 CTL_CSDT(29) /*!< IREF current step data 29 */
#define IREF_CUR_STEP_DATA_30 CTL_CSDT(30) /*!< IREF current step data 30 */
#define IREF_CUR_STEP_DATA_31 CTL_CSDT(31) /*!< IREF current step data 31 */
#define IREF_CUR_STEP_DATA_32 CTL_CSDT(32) /*!< IREF current step data 32 */
#define IREF_CUR_STEP_DATA_33 CTL_CSDT(33) /*!< IREF current step data 33 */
#define IREF_CUR_STEP_DATA_34 CTL_CSDT(34) /*!< IREF current step data 34 */
#define IREF_CUR_STEP_DATA_35 CTL_CSDT(35) /*!< IREF current step data 35 */
#define IREF_CUR_STEP_DATA_36 CTL_CSDT(36) /*!< IREF current step data 36 */
#define IREF_CUR_STEP_DATA_37 CTL_CSDT(37) /*!< IREF current step data 37 */
#define IREF_CUR_STEP_DATA_38 CTL_CSDT(38) /*!< IREF current step data 38 */
#define IREF_CUR_STEP_DATA_39 CTL_CSDT(39) /*!< IREF current step data 39 */
#define IREF_CUR_STEP_DATA_40 CTL_CSDT(40) /*!< IREF current step data 40 */
#define IREF_CUR_STEP_DATA_41 CTL_CSDT(41) /*!< IREF current step data 41 */
#define IREF_CUR_STEP_DATA_42 CTL_CSDT(42) /*!< IREF current step data 42 */
#define IREF_CUR_STEP_DATA_43 CTL_CSDT(43) /*!< IREF current step data 43 */
#define IREF_CUR_STEP_DATA_44 CTL_CSDT(44) /*!< IREF current step data 44 */
#define IREF_CUR_STEP_DATA_45 CTL_CSDT(45) /*!< IREF current step data 45 */
#define IREF_CUR_STEP_DATA_46 CTL_CSDT(46) /*!< IREF current step data 46 */
#define IREF_CUR_STEP_DATA_47 CTL_CSDT(47) /*!< IREF current step data 47 */
#define IREF_CUR_STEP_DATA_48 CTL_CSDT(48) /*!< IREF current step data 48 */
#define IREF_CUR_STEP_DATA_49 CTL_CSDT(49) /*!< IREF current step data 49 */
#define IREF_CUR_STEP_DATA_50 CTL_CSDT(50) /*!< IREF current step data 50 */
#define IREF_CUR_STEP_DATA_51 CTL_CSDT(51) /*!< IREF current step data 51 */
#define IREF_CUR_STEP_DATA_52 CTL_CSDT(52) /*!< IREF current step data 52 */
#define IREF_CUR_STEP_DATA_53 CTL_CSDT(53) /*!< IREF current step data 53 */
#define IREF_CUR_STEP_DATA_54 CTL_CSDT(54) /*!< IREF current step data 54 */
#define IREF_CUR_STEP_DATA_55 CTL_CSDT(55) /*!< IREF current step data 54 */
#define IREF_CUR_STEP_DATA_56 CTL_CSDT(56) /*!< IREF current step data 54 */
#define IREF_CUR_STEP_DATA_57 CTL_CSDT(57) /*!< IREF current step data 57 */
#define IREF_CUR_STEP_DATA_58 CTL_CSDT(58) /*!< IREF current step data 58 */
#define IREF_CUR_STEP_DATA_59 CTL_CSDT(59) /*!< IREF current step data 59 */
#define IREF_CUR_STEP_DATA_60 CTL_CSDT(60) /*!< IREF current step data 60 */
#define IREF_CUR_STEP_DATA_61 CTL_CSDT(61) /*!< IREF current step data 61 */
#define IREF_CUR_STEP_DATA_62 CTL_CSDT(62) /*!< IREF current step data 62 */
#define IREF_CUR_STEP_DATA_63 CTL_CSDT(63) /*!< IREF current step data 63 */
/* IREF mode selection */
#define IREF_STEP(regval) (BIT(14) & ((uint32_t)(regval) << 14))
#define IREF_MODE_LOW_POWER IREF_STEP(0) /*!< low power, 1uA step */
#define IREF_MODE_HIGH_CURRENT IREF_STEP(1) /*!< high current, 8uA step */
/* IREF sink current mode*/
#define IREF_CURRENT(regval) (BIT(7) & ((uint32_t)(regval) << 7))
#define IREF_SOURCE_CURRENT IREF_CURRENT(0) /*!< IREF source current */
#define IREF_SINK_CURRENT IREF_CURRENT(1) /*!< IREF sink current */
/* function declarations */
/* deinit IREF */
void iref_deinit(void);
/* enable IREF */
void iref_enable(void);
/* disable IREF */
void iref_disable(void);
/* set IREF mode*/
void iref_mode_set(uint32_t step);
/* set IREF sink current mode*/
void iref_sink_set(uint32_t sinkmode);
/* set IREF current precision trim value */
void iref_precision_trim_value_set(uint32_t precisiontrim);
/* set IREF step data*/
void iref_step_data_config(uint32_t stepdata);
#endif /* GD32F4XX_IREF_H */

View File

@@ -0,0 +1,68 @@
/*!
\file gd32f4xx_misc.h
\brief definitions for the MISC
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef GD32F4XX_MISC_H
#define GD32F4XX_MISC_H
#include "gd32f4xx.h"
/* constants definitions */
/* set the RAM and FLASH base address */
#define NVIC_VECTTAB_RAM ((uint32_t)0x20000000) /*!< RAM base address */
#define NVIC_VECTTAB_FLASH ((uint32_t)0x08000000) /*!< Flash base address */
/* set the NVIC vector table offset mask */
#define NVIC_VECTTAB_OFFSET_MASK ((uint32_t)0x1FFFFF80)
/* the register key mask, if you want to do the write operation, you should write 0x5FA to VECTKEY bits */
#define NVIC_AIRCR_VECTKEY_MASK ((uint32_t)0x05FA0000)
/* priority group - define the pre-emption priority and the subpriority */
#define NVIC_PRIGROUP_PRE0_SUB4 ((uint32_t)0x700) /*!< 0 bits for pre-emption priority 4 bits for subpriority */
#define NVIC_PRIGROUP_PRE1_SUB3 ((uint32_t)0x600) /*!< 1 bits for pre-emption priority 3 bits for subpriority */
#define NVIC_PRIGROUP_PRE2_SUB2 ((uint32_t)0x500) /*!< 2 bits for pre-emption priority 2 bits for subpriority */
#define NVIC_PRIGROUP_PRE3_SUB1 ((uint32_t)0x400) /*!< 3 bits for pre-emption priority 1 bits for subpriority */
#define NVIC_PRIGROUP_PRE4_SUB0 ((uint32_t)0x300) /*!< 4 bits for pre-emption priority 0 bits for subpriority */
/* choose the method to enter or exit the lowpower mode */
#define SCB_SCR_SLEEPONEXIT ((uint8_t)0x02) /*!< choose the the system whether enter low power mode by exiting from ISR */
#define SCB_SCR_SLEEPDEEP ((uint8_t)0x04) /*!< choose the the system enter the DEEPSLEEP mode or SLEEP mode */
#define SCB_SCR_SEVONPEND ((uint8_t)0x10) /*!< choose the interrupt source that can wake up the lowpower mode */
#define SCB_LPM_SLEEP_EXIT_ISR SCB_SCR_SLEEPONEXIT
#define SCB_LPM_DEEPSLEEP SCB_SCR_SLEEPDEEP
#define SCB_LPM_WAKE_BY_ALL_INT SCB_SCR_SEVONPEND
/* choose the systick clock source */
#define SYSTICK_CLKSOURCE_HCLK_DIV8 ((uint32_t)0xFFFFFFFBU) /*!< systick clock source is from HCLK/8 */
#define SYSTICK_CLKSOURCE_HCLK ((uint32_t)0x00000004U) /*!< systick clock source is from HCLK */
/* function declarations */
/* set the priority group */
void nvic_priority_group_set(uint32_t nvic_prigroup);
/* enable NVIC request */
void nvic_irq_enable(uint8_t nvic_irq, uint8_t nvic_irq_pre_priority, uint8_t nvic_irq_sub_priority);
/* disable NVIC request */
void nvic_irq_disable(uint8_t nvic_irq);
/* set the NVIC vector table base address */
void nvic_vector_table_set(uint32_t nvic_vict_tab, uint32_t offset);
/* set the state of the low power mode */
void system_lowpower_set(uint8_t lowpower_mode);
/* reset the state of the low power mode */
void system_lowpower_reset(uint8_t lowpower_mode);
/* set the systick clock source */
void systick_clksource_set(uint32_t systick_clksource);
#endif /* GD32F4XX_MISC_H */

View File

@@ -0,0 +1,173 @@
/*!
\file gd32f4xx_pmu.h
\brief definitions for the PMU
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#ifndef GD32F4XX_PMU_H
#define GD32F4XX_PMU_H
#include "gd32f4xx.h"
/* PMU definitions */
#define PMU PMU_BASE /*!< PMU base address */
/* registers definitions */
#define PMU_CTL REG32((PMU) + 0x00U) /*!< PMU control register */
#define PMU_CS REG32((PMU) + 0x04U) /*!< PMU control and status register */
/* bits definitions */
/* PMU_CTL */
#define PMU_CTL_LDOLP BIT(0) /*!< LDO low power mode */
#define PMU_CTL_STBMOD BIT(1) /*!< standby mode */
#define PMU_CTL_WURST BIT(2) /*!< wakeup flag reset */
#define PMU_CTL_STBRST BIT(3) /*!< standby flag reset */
#define PMU_CTL_LVDEN BIT(4) /*!< low voltage detector enable */
#define PMU_CTL_LVDT BITS(5,7) /*!< low voltage detector threshold */
#define PMU_CTL_BKPWEN BIT(8) /*!< backup domain write enable */
#define PMU_CTL_LDLP BIT(10) /*!< low-driver mode when use low power LDO */
#define PMU_CTL_LDNP BIT(11) /*!< low-driver mode when use normal power LDO */
#define PMU_CTL_LDOVS BITS(14,15) /*!< LDO output voltage select */
#define PMU_CTL_HDEN BIT(16) /*!< high-driver mode enable */
#define PMU_CTL_HDS BIT(17) /*!< high-driver mode switch */
#define PMU_CTL_LDEN BITS(18,19) /*!< low-driver mode enable in deep-sleep mode */
/* PMU_CS */
#define PMU_CS_WUF BIT(0) /*!< wakeup flag */
#define PMU_CS_STBF BIT(1) /*!< standby flag */
#define PMU_CS_LVDF BIT(2) /*!< low voltage detector status flag */
#define PMU_CS_BLDORF BIT(3) /*!< backup SRAM LDO ready flag */
#define PMU_CS_WUPEN BIT(8) /*!< wakeup pin enable */
#define PMU_CS_BLDOON BIT(9) /*!< backup SRAM LDO on */
#define PMU_CS_LDOVSRF BIT(14) /*!< LDO voltage select ready flag */
#define PMU_CS_HDRF BIT(16) /*!< high-driver ready flag */
#define PMU_CS_HDSRF BIT(17) /*!< high-driver switch ready flag */
#define PMU_CS_LDRF BITS(18,19) /*!< Low-driver mode ready flag */
/* constants definitions */
/* PMU low voltage detector threshold definitions */
#define CTL_LVDT(regval) (BITS(5,7)&((uint32_t)(regval)<<5))
#define PMU_LVDT_0 CTL_LVDT(0) /*!< voltage threshold is 2.2V */
#define PMU_LVDT_1 CTL_LVDT(1) /*!< voltage threshold is 2.3V */
#define PMU_LVDT_2 CTL_LVDT(2) /*!< voltage threshold is 2.4V */
#define PMU_LVDT_3 CTL_LVDT(3) /*!< voltage threshold is 2.5V */
#define PMU_LVDT_4 CTL_LVDT(4) /*!< voltage threshold is 2.6V */
#define PMU_LVDT_5 CTL_LVDT(5) /*!< voltage threshold is 2.7V */
#define PMU_LVDT_6 CTL_LVDT(6) /*!< voltage threshold is 2.8V */
#define PMU_LVDT_7 CTL_LVDT(7) /*!< voltage threshold is 2.9V */
/* PMU LDO output voltage select definitions */
#define CTL_LDOVS(regval) (BITS(14,15)&((uint32_t)(regval)<<14))
#define PMU_LDOVS_LOW CTL_LDOVS(1) /*!< LDO output voltage low mode */
#define PMU_LDOVS_MID CTL_LDOVS(2) /*!< LDO output voltage mid mode */
#define PMU_LDOVS_HIGH CTL_LDOVS(3) /*!< LDO output voltage high mode */
/* PMU low-driver mode enable in deep-sleep mode */
#define CTL_LDEN(regval) (BITS(18,19)&((uint32_t)(regval)<<18))
#define PMU_LOWDRIVER_DISABLE CTL_LDEN(0) /*!< low-driver mode disable in deep-sleep mode */
#define PMU_LOWDRIVER_ENABLE CTL_LDEN(3) /*!< low-driver mode enable in deep-sleep mode */
/* PMU high-driver mode switch */
#define CTL_HDS(regval) (BIT(17)&((uint32_t)(regval)<<17))
#define PMU_HIGHDR_SWITCH_NONE CTL_HDS(0) /*!< no high-driver mode switch */
#define PMU_HIGHDR_SWITCH_EN CTL_HDS(1) /*!< high-driver mode switch */
/* PMU low-driver mode when use low power LDO */
#define CTL_LDLP(regval) (BIT(10)&((uint32_t)(regval)<<10))
#define PMU_NORMALDR_LOWPWR CTL_LDLP(0) /*!< normal driver when use low power LDO */
#define PMU_LOWDR_LOWPWR CTL_LDLP(1) /*!< low-driver mode enabled when LDEN is 11 and use low power LDO */
/* PMU low-driver mode when use normal power LDO */
#define CTL_LDNP(regval) (BIT(11)&((uint32_t)(regval)<<11))
#define PMU_NORMALDR_NORMALPWR CTL_LDNP(0) /*!< normal driver when use normal power LDO */
#define PMU_LOWDR_NORMALPWR CTL_LDNP(1) /*!< low-driver mode enabled when LDEN is 11 and use normal power LDO */
/* PMU low power mode ready flag definitions */
#define CS_LDRF(regval) (BITS(18,19)&((uint32_t)(regval)<<18))
#define PMU_LDRF_NORMAL CS_LDRF(0) /*!< normal driver in deep-sleep mode */
#define PMU_LDRF_LOWDRIVER CS_LDRF(3) /*!< low-driver mode in deep-sleep mode */
/* PMU backup SRAM LDO on or off */
#define CS_BLDOON(regval) (BIT(9)&((uint32_t)(regval)<<9))
#define PMU_BLDOON_OFF CS_BLDOON(0) /*!< backup SRAM LDO off */
#define PMU_BLDOON_ON CS_BLDOON(1) /*!< the backup SRAM LDO on */
/* PMU flag definitions */
#define PMU_FLAG_WAKEUP PMU_CS_WUF /*!< wakeup flag status */
#define PMU_FLAG_STANDBY PMU_CS_STBF /*!< standby flag status */
#define PMU_FLAG_LVD PMU_CS_LVDF /*!< lvd flag status */
#define PMU_FLAG_BLDORF PMU_CS_BLDORF /*!< backup SRAM LDO ready flag */
#define PMU_FLAG_LDOVSRF PMU_CS_LDOVSRF /*!< LDO voltage select ready flag */
#define PMU_FLAG_HDRF PMU_CS_HDRF /*!< high-driver ready flag */
#define PMU_FLAG_HDSRF PMU_CS_HDSRF /*!< high-driver switch ready flag */
#define PMU_FLAG_LDRF PMU_CS_LDRF /*!< low-driver mode ready flag */
/* PMU ldo definitions */
#define PMU_LDO_NORMAL ((uint32_t)0x00000000U) /*!< LDO normal work when PMU enter deepsleep mode */
#define PMU_LDO_LOWPOWER PMU_CTL_LDOLP /*!< LDO work at low power status when PMU enter deepsleep mode */
/* PMU flag reset definitions */
#define PMU_FLAG_RESET_WAKEUP ((uint8_t)0x00U) /*!< wakeup flag reset */
#define PMU_FLAG_RESET_STANDBY ((uint8_t)0x01U) /*!< standby flag reset */
/* PMU command constants definitions */
#define WFI_CMD ((uint8_t)0x00U) /*!< use WFI command */
#define WFE_CMD ((uint8_t)0x01U) /*!< use WFE command */
/* function declarations */
/* reset PMU register */
void pmu_deinit(void);
/* select low voltage detector threshold */
void pmu_lvd_select(uint32_t lvdt_n);
/* LDO output voltage select */
void pmu_ldo_output_select(uint32_t ldo_output);
/* PMU lvd disable */
void pmu_lvd_disable(void);
/* functions of low-driver mode and high-driver mode in deep-sleep mode */
/* high-driver mode switch */
void pmu_highdriver_switch_select(uint32_t highdr_switch);
/* high-driver mode enable */
void pmu_highdriver_mode_enable(void);
/* high-driver mode disable */
void pmu_highdriver_mode_disable(void);
/* low-driver mode enable in deep-sleep mode */
void pmu_low_driver_mode_enable(uint32_t lowdr_mode);
/* in deep-sleep mode, low-driver mode when use low power LDO */
void pmu_lowdriver_lowpower_config(uint32_t mode);
/* in deep-sleep mode, low-driver mode when use normal power LDO */
void pmu_lowdriver_normalpower_config(uint32_t mode);
/* set PMU mode */
/* PMU work at sleep mode */
void pmu_to_sleepmode(uint8_t sleepmodecmd);
/* PMU work at deepsleep mode */
void pmu_to_deepsleepmode(uint32_t ldo, uint8_t deepsleepmodecmd);
/* PMU work at standby mode */
void pmu_to_standbymode(uint8_t standbymodecmd);
/* PMU wakeup pin enable */
void pmu_wakeup_pin_enable(void);
/* PMU wakeup pin disable */
void pmu_wakeup_pin_disable(void);
/* backup related functions */
/* backup SRAM LDO on */
void pmu_backup_ldo_config(uint32_t bkp_ldo);
/* backup domain write enable */
void pmu_backup_write_enable(void);
/* backup domain write disable */
void pmu_backup_write_disable(void);
/* flag functions */
/* reset flag bit */
void pmu_flag_reset(uint32_t flag_reset);
/* get flag status */
FlagStatus pmu_flag_get(uint32_t pmu_flag);
#endif /* GD32F4XX_PMU_H */

View File

@@ -0,0 +1,597 @@
/*!
\file gd32f4xx_rtc.h
\brief definitions for the RTC
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef GD32F4XX_RTC_H
#define GD32F4XX_RTC_H
#include "gd32f4xx.h"
/* RTC definitions */
#define RTC RTC_BASE
/* registers definitions */
#define RTC_TIME REG32((RTC) + 0x00U) /*!< RTC time of day register */
#define RTC_DATE REG32((RTC) + 0x04U) /*!< RTC date register */
#define RTC_CTL REG32((RTC) + 0x08U) /*!< RTC control register */
#define RTC_STAT REG32((RTC) + 0x0CU) /*!< RTC status register */
#define RTC_PSC REG32((RTC) + 0x10U) /*!< RTC time prescaler register */
#define RTC_WUT REG32((RTC) + 0x14U) /*!< RTC wakeup timer regiser */
#define RTC_COSC REG32((RTC) + 0x18U) /*!< RTC coarse calibration register */
#define RTC_ALRM0TD REG32((RTC) + 0x1CU) /*!< RTC alarm 0 time and date register */
#define RTC_ALRM1TD REG32((RTC) + 0x20U) /*!< RTC alarm 1 time and date register */
#define RTC_WPK REG32((RTC) + 0x24U) /*!< RTC write protection key register */
#define RTC_SS REG32((RTC) + 0x28U) /*!< RTC sub second register */
#define RTC_SHIFTCTL REG32((RTC) + 0x2CU) /*!< RTC shift function control register */
#define RTC_TTS REG32((RTC) + 0x30U) /*!< RTC time of timestamp register */
#define RTC_DTS REG32((RTC) + 0x34U) /*!< RTC date of timestamp register */
#define RTC_SSTS REG32((RTC) + 0x38U) /*!< RTC sub second of timestamp register */
#define RTC_HRFC REG32((RTC) + 0x3CU) /*!< RTC high resolution frequency compensation registor */
#define RTC_TAMP REG32((RTC) + 0x40U) /*!< RTC tamper register */
#define RTC_ALRM0SS REG32((RTC) + 0x44U) /*!< RTC alarm 0 sub second register */
#define RTC_ALRM1SS REG32((RTC) + 0x48U) /*!< RTC alarm 1 sub second register */
#define RTC_BKP0 REG32((RTC) + 0x50U) /*!< RTC backup register */
#define RTC_BKP1 REG32((RTC) + 0x54U) /*!< RTC backup register */
#define RTC_BKP2 REG32((RTC) + 0x58U) /*!< RTC backup register */
#define RTC_BKP3 REG32((RTC) + 0x5CU) /*!< RTC backup register */
#define RTC_BKP4 REG32((RTC) + 0x60U) /*!< RTC backup register */
#define RTC_BKP5 REG32((RTC) + 0x64U) /*!< RTC backup register */
#define RTC_BKP6 REG32((RTC) + 0x68U) /*!< RTC backup register */
#define RTC_BKP7 REG32((RTC) + 0x6CU) /*!< RTC backup register */
#define RTC_BKP8 REG32((RTC) + 0x70U) /*!< RTC backup register */
#define RTC_BKP9 REG32((RTC) + 0x74U) /*!< RTC backup register */
#define RTC_BKP10 REG32((RTC) + 0x78U) /*!< RTC backup register */
#define RTC_BKP11 REG32((RTC) + 0x7CU) /*!< RTC backup register */
#define RTC_BKP12 REG32((RTC) + 0x80U) /*!< RTC backup register */
#define RTC_BKP13 REG32((RTC) + 0x84U) /*!< RTC backup register */
#define RTC_BKP14 REG32((RTC) + 0x88U) /*!< RTC backup register */
#define RTC_BKP15 REG32((RTC) + 0x8CU) /*!< RTC backup register */
#define RTC_BKP16 REG32((RTC) + 0x90U) /*!< RTC backup register */
#define RTC_BKP17 REG32((RTC) + 0x94U) /*!< RTC backup register */
#define RTC_BKP18 REG32((RTC) + 0x98U) /*!< RTC backup register */
#define RTC_BKP19 REG32((RTC) + 0x9CU) /*!< RTC backup register */
/* bits definitions */
/* RTC_TIME */
#define RTC_TIME_SCU BITS(0,3) /*!< second units in BCD code */
#define RTC_TIME_SCT BITS(4,6) /*!< second tens in BCD code */
#define RTC_TIME_MNU BITS(8,11) /*!< minute units in BCD code */
#define RTC_TIME_MNT BITS(12,14) /*!< minute tens in BCD code */
#define RTC_TIME_HRU BITS(16,19) /*!< hour units in BCD code */
#define RTC_TIME_HRT BITS(20,21) /*!< hour tens in BCD code */
#define RTC_TIME_PM BIT(22) /*!< AM/PM notation */
/* RTC_DATE */
#define RTC_DATE_DAYU BITS(0,3) /*!< date units in BCD code */
#define RTC_DATE_DAYT BITS(4,5) /*!< date tens in BCD code */
#define RTC_DATE_MONU BITS(8,11) /*!< month units in BCD code */
#define RTC_DATE_MONT BIT(12) /*!< month tens in BCD code */
#define RTC_DATE_DOW BITS(13,15) /*!< day of week units */
#define RTC_DATE_YRU BITS(16,19) /*!< year units in BCD code */
#define RTC_DATE_YRT BITS(20,23) /*!< year tens in BCD code */
/* RTC_CTL */
#define RTC_CTL_WTCS BITS(0,2) /*!< auto wakeup timer clock selection */
#define RTC_CTL_TSEG BIT(3) /*!< valid event edge of time-stamp */
#define RTC_CTL_REFEN BIT(4) /*!< reference clock detection function enable */
#define RTC_CTL_BPSHAD BIT(5) /*!< shadow registers bypass control */
#define RTC_CTL_CS BIT(6) /*!< display format of clock system */
#define RTC_CTL_CCEN BIT(7) /*!< coarse calibration function enable */
#define RTC_CTL_ALRM0EN BIT(8) /*!< alarm0 function enable */
#define RTC_CTL_ALRM1EN BIT(9) /*!< alarm1 function enable */
#define RTC_CTL_WTEN BIT(10) /*!< auto wakeup timer function enable */
#define RTC_CTL_TSEN BIT(11) /*!< time-stamp function enable */
#define RTC_CTL_ALRM0IE BIT(12) /*!< RTC alarm0 interrupt enable */
#define RTC_CTL_ALRM1IE BIT(13) /*!< RTC alarm1 interrupt enable */
#define RTC_CTL_WTIE BIT(14) /*!< auto wakeup timer interrupt enable */
#define RTC_CTL_TSIE BIT(15) /*!< time-stamp interrupt enable */
#define RTC_CTL_A1H BIT(16) /*!< add 1 hour(summer time change) */
#define RTC_CTL_S1H BIT(17) /*!< subtract 1 hour(winter time change) */
#define RTC_CTL_DSM BIT(18) /*!< daylight saving mark */
#define RTC_CTL_COS BIT(19) /*!< calibration output selection */
#define RTC_CTL_OPOL BIT(20) /*!< output polarity */
#define RTC_CTL_OS BITS(21,22) /*!< output selection */
#define RTC_CTL_COEN BIT(23) /*!< calibration output enable */
/* RTC_STAT */
#define RTC_STAT_ALRM0WF BIT(0) /*!< alarm0 configuration can be write flag */
#define RTC_STAT_ALRM1WF BIT(1) /*!< alarm1 configuration can be write flag */
#define RTC_STAT_WTWF BIT(2) /*!< wakeup timer can be write flag */
#define RTC_STAT_SOPF BIT(3) /*!< shift function operation pending flag */
#define RTC_STAT_YCM BIT(4) /*!< year configuration mark status flag */
#define RTC_STAT_RSYNF BIT(5) /*!< register synchronization flag */
#define RTC_STAT_INITF BIT(6) /*!< initialization state flag */
#define RTC_STAT_INITM BIT(7) /*!< enter initialization mode */
#define RTC_STAT_ALRM0F BIT(8) /*!< alarm0 occurs flag */
#define RTC_STAT_ALRM1F BIT(9) /*!< alarm1 occurs flag */
#define RTC_STAT_WTF BIT(10) /*!< wakeup timer occurs flag */
#define RTC_STAT_TSF BIT(11) /*!< time-stamp flag */
#define RTC_STAT_TSOVRF BIT(12) /*!< time-stamp overflow flag */
#define RTC_STAT_TP0F BIT(13) /*!< RTC tamper 0 detected flag */
#define RTC_STAT_TP1F BIT(14) /*!< RTC tamper 1 detected flag */
#define RTC_STAT_SCPF BIT(16) /*!< smooth calibration pending flag */
/* RTC_PSC */
#define RTC_PSC_FACTOR_S BITS(0,14) /*!< synchronous prescaler factor */
#define RTC_PSC_FACTOR_A BITS(16,22) /*!< asynchronous prescaler factor */
/* RTC_WUT */
#define RTC_WUT_WTRV BITS(0,15) /*!< auto wakeup timer reloads value */
/* RTC_COSC */
#define RTC_COSC_COSS BITS(0,4) /*!< coarse calibration step */
#define RTC_COSC_COSD BIT(7) /*!< coarse calibration direction */
/* RTC_ALRMxTD */
#define RTC_ALRMXTD_SCU BITS(0,3) /*!< second units in BCD code */
#define RTC_ALRMXTD_SCT BITS(4,6) /*!< second tens in BCD code */
#define RTC_ALRMXTD_MSKS BIT(7) /*!< alarm second mask bit */
#define RTC_ALRMXTD_MNU BITS(8,11) /*!< minutes units in BCD code */
#define RTC_ALRMXTD_MNT BITS(12,14) /*!< minutes tens in BCD code */
#define RTC_ALRMXTD_MSKM BIT(15) /*!< alarm minutes mask bit */
#define RTC_ALRMXTD_HRU BITS(16,19) /*!< hour units in BCD code */
#define RTC_ALRMXTD_HRT BITS(20,21) /*!< hour units in BCD code */
#define RTC_ALRMXTD_PM BIT(22) /*!< AM/PM flag */
#define RTC_ALRMXTD_MSKH BIT(23) /*!< alarm hour mask bit */
#define RTC_ALRMXTD_DAYU BITS(24,27) /*!< date units or week day in BCD code */
#define RTC_ALRMXTD_DAYT BITS(28,29) /*!< date tens in BCD code */
#define RTC_ALRMXTD_DOWS BIT(30) /*!< day of week selection */
#define RTC_ALRMXTD_MSKD BIT(31) /*!< alarm date mask bit */
/* RTC_WPK */
#define RTC_WPK_WPK BITS(0,7) /*!< key for write protection */
/* RTC_SS */
#define RTC_SS_SSC BITS(0,15) /*!< sub second value */
/* RTC_SHIFTCTL */
#define RTC_SHIFTCTL_SFS BITS(0,14) /*!< subtract a fraction of a second */
#define RTC_SHIFTCTL_A1S BIT(31) /*!< one second add */
/* RTC_TTS */
#define RTC_TTS_SCU BITS(0,3) /*!< second units in BCD code */
#define RTC_TTS_SCT BITS(4,6) /*!< second units in BCD code */
#define RTC_TTS_MNU BITS(8,11) /*!< minute units in BCD code */
#define RTC_TTS_MNT BITS(12,14) /*!< minute tens in BCD code */
#define RTC_TTS_HRU BITS(16,19) /*!< hour units in BCD code */
#define RTC_TTS_HRT BITS(20,21) /*!< hour tens in BCD code */
#define RTC_TTS_PM BIT(22) /*!< AM/PM notation */
/* RTC_DTS */
#define RTC_DTS_DAYU BITS(0,3) /*!< date units in BCD code */
#define RTC_DTS_DAYT BITS(4,5) /*!< date tens in BCD code */
#define RTC_DTS_MONU BITS(8,11) /*!< month units in BCD code */
#define RTC_DTS_MONT BIT(12) /*!< month tens in BCD code */
#define RTC_DTS_DOW BITS(13,15) /*!< day of week units */
/* RTC_SSTS */
#define RTC_SSTS_SSC BITS(0,15) /*!< timestamp sub second units */
/* RTC_HRFC */
#define RTC_HRFC_CMSK BITS(0,8) /*!< calibration mask number */
#define RTC_HRFC_CWND16 BIT(13) /*!< calibration window select 16 seconds */
#define RTC_HRFC_CWND8 BIT(14) /*!< calibration window select 16 seconds */
#define RTC_HRFC_FREQI BIT(15) /*!< increase RTC frequency by 488.5ppm */
/* RTC_TAMP */
#define RTC_TAMP_TP0EN BIT(0) /*!< tamper 0 detection enable */
#define RTC_TAMP_TP0EG BIT(1) /*!< tamper 0 event trigger edge for RTC tamp 0 input */
#define RTC_TAMP_TPIE BIT(2) /*!< tamper detection interrupt enable */
#define RTC_TAMP_TP1EN BIT(3) /*!< tamper 1 detection enable */
#define RTC_TAMP_TP1EG BIT(4) /*!< Tamper 1 event trigger edge for RTC tamp 1 input */
#define RTC_TAMP_TPTS BIT(7) /*!< make tamper function used for timestamp function */
#define RTC_TAMP_FREQ BITS(8,10) /*!< sample frequency of tamper event detection */
#define RTC_TAMP_FLT BITS(11,12) /*!< RTC tamp x filter count setting */
#define RTC_TAMP_PRCH BITS(13,14) /*!< precharge duration time of RTC tamp x */
#define RTC_TAMP_DISPU BIT(15) /*!< RTC tamp x pull up disable bit */
#define RTC_TAMP_TP0SEL BIT(16) /*!< Tamper 0 function input mapping selection */
#define RTC_TAMP_TSSEL BIT(17) /*!< Timestamp input mapping selection */
#define RTC_TAMP_AOT BIT(18) /*!< RTC_ALARM output Type */
/* RTC_ALRM0SS */
#define RTC_ALRM0SS_SSC BITS(0,14) /*!< alarm0 sub second value */
#define RTC_ALRM0SS_MASKSSC BITS(24,27) /*!< mask control bit of SS */
/* RTC_ALRM1SS */
#define RTC_ALRM1SS_SSC BITS(0,14) /*!< alarm1 sub second value */
#define RTC_ALRM1SS_MASKSSC BITS(24,27) /*!< mask control bit of SS */
/* constants definitions */
/* structure for initialization of the RTC */
typedef struct
{
uint8_t year; /*!< RTC year value: 0x0 - 0x99(BCD format) */
uint8_t month; /*!< RTC month value */
uint8_t date; /*!< RTC date value: 0x1 - 0x31(BCD format) */
uint8_t day_of_week; /*!< RTC weekday value */
uint8_t hour; /*!< RTC hour value */
uint8_t minute; /*!< RTC minute value: 0x0 - 0x59(BCD format) */
uint8_t second; /*!< RTC second value: 0x0 - 0x59(BCD format) */
uint16_t factor_asyn; /*!< RTC asynchronous prescaler value: 0x0 - 0x7F */
uint16_t factor_syn; /*!< RTC synchronous prescaler value: 0x0 - 0x7FFF */
uint32_t am_pm; /*!< RTC AM/PM value */
uint32_t display_format; /*!< RTC time notation */
}rtc_parameter_struct;
/* structure for RTC alarm configuration */
typedef struct
{
uint32_t alarm_mask; /*!< RTC alarm mask */
uint32_t weekday_or_date; /*!< specify RTC alarm is on date or weekday */
uint8_t alarm_day; /*!< RTC alarm date or weekday value*/
uint8_t alarm_hour; /*!< RTC alarm hour value */
uint8_t alarm_minute; /*!< RTC alarm minute value: 0x0 - 0x59(BCD format) */
uint8_t alarm_second; /*!< RTC alarm second value: 0x0 - 0x59(BCD format) */
uint32_t am_pm; /*!< RTC alarm AM/PM value */
}rtc_alarm_struct;
/* structure for RTC time-stamp configuration */
typedef struct
{
uint8_t timestamp_month; /*!< RTC time-stamp month value */
uint8_t timestamp_date; /*!< RTC time-stamp date value: 0x1 - 0x31(BCD format) */
uint8_t timestamp_day; /*!< RTC time-stamp weekday value */
uint8_t timestamp_hour; /*!< RTC time-stamp hour value */
uint8_t timestamp_minute; /*!< RTC time-stamp minute value: 0x0 - 0x59(BCD format) */
uint8_t timestamp_second; /*!< RTC time-stamp second value: 0x0 - 0x59(BCD format) */
uint32_t am_pm; /*!< RTC time-stamp AM/PM value */
}rtc_timestamp_struct;
/* structure for RTC tamper configuration */
typedef struct
{
uint32_t tamper_source; /*!< RTC tamper source */
uint32_t tamper_trigger; /*!< RTC tamper trigger */
uint32_t tamper_filter; /*!< RTC tamper consecutive samples needed during a voltage level detection */
uint32_t tamper_sample_frequency; /*!< RTC tamper sampling frequency during a voltage level detection */
ControlStatus tamper_precharge_enable; /*!< RTC tamper precharge feature during a voltage level detection */
uint32_t tamper_precharge_time; /*!< RTC tamper precharge duration if precharge feature is enabled */
ControlStatus tamper_with_timestamp; /*!< RTC tamper time-stamp feature */
}rtc_tamper_struct;
/* time register value */
#define TIME_SC(regval) (BITS(0,6) & ((uint32_t)(regval) << 0)) /*!< write value to RTC_TIME_SC bit field */
#define GET_TIME_SC(regval) GET_BITS((regval),0,6) /*!< get value of RTC_TIME_SC bit field */
#define TIME_MN(regval) (BITS(8,14) & ((uint32_t)(regval) << 8)) /*!< write value to RTC_TIME_MN bit field */
#define GET_TIME_MN(regval) GET_BITS((regval),8,14) /*!< get value of RTC_TIME_MN bit field */
#define TIME_HR(regval) (BITS(16,21) & ((uint32_t)(regval) << 16)) /*!< write value to RTC_TIME_HR bit field */
#define GET_TIME_HR(regval) GET_BITS((regval),16,21) /*!< get value of RTC_TIME_HR bit field */
#define RTC_AM ((uint32_t)0x00000000U) /*!< AM format */
#define RTC_PM RTC_TIME_PM /*!< PM format */
/* date register value */
#define DATE_DAY(regval) (BITS(0,5) & ((uint32_t)(regval) << 0)) /*!< write value to RTC_DATE_DAY bit field */
#define GET_DATE_DAY(regval) GET_BITS((regval),0,5) /*!< get value of RTC_DATE_DAY bit field */
#define DATE_MON(regval) (BITS(8,12) & ((uint32_t)(regval) << 8)) /*!< write value to RTC_DATE_MON bit field */
#define GET_DATE_MON(regval) GET_BITS((regval),8,12) /*!< get value of RTC_DATE_MON bit field */
#define RTC_JAN ((uint8_t)0x01U) /*!< janurary */
#define RTC_FEB ((uint8_t)0x02U) /*!< february */
#define RTC_MAR ((uint8_t)0x03U) /*!< march */
#define RTC_APR ((uint8_t)0x04U) /*!< april */
#define RTC_MAY ((uint8_t)0x05U) /*!< may */
#define RTC_JUN ((uint8_t)0x06U) /*!< june */
#define RTC_JUL ((uint8_t)0x07U) /*!< july */
#define RTC_AUG ((uint8_t)0x08U) /*!< august */
#define RTC_SEP ((uint8_t)0x09U) /*!< september */
#define RTC_OCT ((uint8_t)0x10U) /*!< october */
#define RTC_NOV ((uint8_t)0x11U) /*!< november */
#define RTC_DEC ((uint8_t)0x12U) /*!< december */
#define DATE_DOW(regval) (BITS(13,15) & ((uint32_t)(regval) << 13)) /*!< write value to RTC_DATE_DOW bit field */
#define GET_DATE_DOW(regval) GET_BITS((uint32_t)(regval),13,15) /*!< get value of RTC_DATE_DOW bit field */
#define RTC_MONDAY ((uint8_t)0x01) /*!< monday */
#define RTC_TUESDAY ((uint8_t)0x02) /*!< tuesday */
#define RTC_WEDSDAY ((uint8_t)0x03) /*!< wednesday */
#define RTC_THURSDAY ((uint8_t)0x04) /*!< thursday */
#define RTC_FRIDAY ((uint8_t)0x05) /*!< friday */
#define RTC_SATURDAY ((uint8_t)0x06) /*!< saturday */
#define RTC_SUNDAY ((uint8_t)0x07) /*!< sunday */
#define DATE_YR(regval) (BITS(16,23) & ((uint32_t)(regval) << 16)) /*!< write value to RTC_DATE_YR bit field */
#define GET_DATE_YR(regval) GET_BITS((regval),16,23) /*!< get value of RTC_DATE_YR bit field */
/* ctl register value */
#define CTL_OS(regval) (BITS(21,22) & ((uint32_t)(regval) << 21)) /*!< write value to RTC_CTL_OS bit field */
#define RTC_OS_DISABLE CTL_OS(0) /*!< disable output RTC_ALARM */
#define RTC_OS_ALARM0 CTL_OS(1) /*!< enable alarm0 flag output */
#define RTC_OS_ALARM1 CTL_OS(2) /*!< enable alarm1 flag output */
#define RTC_OS_WAKEUP CTL_OS(3) /*!< enable wakeup flag output */
#define RTC_CALIBRATION_512HZ RTC_CTL_COEN /*!< calibration output of 512Hz is enable */
#define RTC_CALIBRATION_1HZ (RTC_CTL_COEN | RTC_CTL_COS) /*!< calibration output of 1Hz is enable */
#define RTC_ALARM0_HIGH RTC_OS_ALARM0 /*!< enable alarm0 flag output with high level */
#define RTC_ALARM0_LOW (RTC_OS_ALARM0 | RTC_CTL_OPOL) /*!< enable alarm0 flag output with low level*/
#define RTC_ALARM1_HIGH RTC_OS_ALARM1 /*!< enable alarm1 flag output with high level */
#define RTC_ALARM1_LOW (RTC_OS_ALARM1 | RTC_CTL_OPOL) /*!< enable alarm1 flag output with low level*/
#define RTC_WAKEUP_HIGH RTC_OS_WAKEUP /*!< enable wakeup flag output with high level */
#define RTC_WAKEUP_LOW (RTC_OS_WAKEUP | RTC_CTL_OPOL) /*!< enable wakeup flag output with low level*/
#define RTC_24HOUR ((uint32_t)0x00000000U) /*!< 24-hour format */
#define RTC_12HOUR RTC_CTL_CS /*!< 12-hour format */
#define RTC_TIMESTAMP_RISING_EDGE ((uint32_t)0x00000000U) /*!< rising edge is valid event edge for time-stamp event */
#define RTC_TIMESTAMP_FALLING_EDGE RTC_CTL_TSEG /*!< falling edge is valid event edge for time-stamp event */
/* psc register value */
#define PSC_FACTOR_S(regval) (BITS(0,14) & ((uint32_t)(regval) << 0)) /*!< write value to RTC_PSC_FACTOR_S bit field */
#define GET_PSC_FACTOR_S(regval) GET_BITS((regval),0,14) /*!< get value of RTC_PSC_FACTOR_S bit field */
#define PSC_FACTOR_A(regval) (BITS(16,22) & ((uint32_t)(regval) << 16)) /*!< write value to RTC_PSC_FACTOR_A bit field */
#define GET_PSC_FACTOR_A(regval) GET_BITS((regval),16,22) /*!< get value of RTC_PSC_FACTOR_A bit field */
/* alrmtd register value */
#define ALRMTD_SC(regval) (BITS(0,6) & ((uint32_t)(regval)<< 0)) /*!< write value to RTC_ALRMTD_SC bit field */
#define GET_ALRMTD_SC(regval) GET_BITS((regval),0,6) /*!< get value of RTC_ALRMTD_SC bit field */
#define ALRMTD_MN(regval) (BITS(8,14) & ((uint32_t)(regval) << 8)) /*!< write value to RTC_ALRMTD_MN bit field */
#define GET_ALRMTD_MN(regval) GET_BITS((regval),8,14) /*!< get value of RTC_ALRMTD_MN bit field */
#define ALRMTD_HR(regval) (BITS(16,21) & ((uint32_t)(regval) << 16)) /*!< write value to RTC_ALRMTD_HR bit field */
#define GET_ALRMTD_HR(regval) GET_BITS((regval),16,21) /*!< get value of RTC_ALRMTD_HR bit field */
#define ALRMTD_DAY(regval) (BITS(24,29) & ((uint32_t)(regval) << 24)) /*!< write value to RTC_ALRMTD_DAY bit field */
#define GET_ALRMTD_DAY(regval) GET_BITS((regval),24,29) /*!< get value of RTC_ALRMTD_DAY bit field */
#define RTC_ALARM_NONE_MASK ((uint32_t)0x00000000U) /*!< alarm none mask */
#define RTC_ALARM_DATE_MASK RTC_ALRMXTD_MSKD /*!< alarm date mask */
#define RTC_ALARM_HOUR_MASK RTC_ALRMXTD_MSKH /*!< alarm hour mask */
#define RTC_ALARM_MINUTE_MASK RTC_ALRMXTD_MSKM /*!< alarm minute mask */
#define RTC_ALARM_SECOND_MASK RTC_ALRMXTD_MSKS /*!< alarm second mask */
#define RTC_ALARM_ALL_MASK (RTC_ALRMXTD_MSKD|RTC_ALRMXTD_MSKH|RTC_ALRMXTD_MSKM|RTC_ALRMXTD_MSKS) /*!< alarm all mask */
#define RTC_ALARM_DATE_SELECTED ((uint32_t)0x00000000U) /*!< alarm date format selected */
#define RTC_ALARM_WEEKDAY_SELECTED RTC_ALRMXTD_DOWS /*!< alarm weekday format selected */
/* wpk register value */
#define WPK_WPK(regval) (BITS(0,7) & ((uint32_t)(regval) << 0)) /*!< write value to RTC_WPK_WPK bit field */
/* ss register value */
#define SS_SSC(regval) (BITS(0,15) & ((uint32_t)(regval) << 0)) /*!< write value to RTC_SS_SSC bit field */
/* shiftctl register value */
#define SHIFTCTL_SFS(regval) (BITS(0,14) & ((uint32_t)(regval) << 0)) /*!< write value to RTC_SHIFTCTL_SFS bit field */
#define RTC_SHIFT_ADD1S_RESET ((uint32_t)0x00000000U) /*!< not add 1 second */
#define RTC_SHIFT_ADD1S_SET RTC_SHIFTCTL_A1S /*!< add one second to the clock */
/* tts register value */
#define TTS_SC(regval) (BITS(0,6) & ((uint32_t)(regval) << 0)) /*!< write value to RTC_TTS_SC bit field */
#define GET_TTS_SC(regval) GET_BITS((regval),0,6) /*!< get value of RTC_TTS_SC bit field */
#define TTS_MN(regval) (BITS(8,14) & ((uint32_t)(regval) << 8)) /*!< write value to RTC_TTS_MN bit field */
#define GET_TTS_MN(regval) GET_BITS((regval),8,14) /*!< get value of RTC_TTS_MN bit field */
#define TTS_HR(regval) (BITS(16,21) & ((uint32_t)(regval) << 16)) /*!< write value to RTC_TTS_HR bit field */
#define GET_TTS_HR(regval) GET_BITS((regval),16,21) /*!< get value of RTC_TTS_HR bit field */
/* dts register value */
#define DTS_DAY(regval) (BITS(0,5) & ((uint32_t)(regval) << 0)) /*!< write value to RTC_DTS_DAY bit field */
#define GET_DTS_DAY(regval) GET_BITS((regval),0,5) /*!< get value of RTC_DTS_DAY bit field */
#define DTS_MON(regval) (BITS(8,12) & ((uint32_t)(regval) << 8)) /*!< write value to RTC_DTS_MON bit field */
#define GET_DTS_MON(regval) GET_BITS((regval),8,11) /*!< get value of RTC_DTS_MON bit field */
#define DTS_DOW(regval) (BITS(13,15) & ((uint32_t)(regval) << 13)) /*!< write value to RTC_DTS_DOW bit field */
#define GET_DTS_DOW(regval) GET_BITS((regval),13,15) /*!< get value of RTC_DTS_DOW bit field */
/* ssts register value */
#define SSTS_SSC(regval) (BITS(0,15) & ((uint32_t)(regval) << 0)) /*!< write value to RTC_SSTS_SSC bit field */
/* hrfc register value */
#define HRFC_CMSK(regval) (BITS(0,8) & ((uint32_t)(regval) << 0)) /*!< write value to RTC_HRFC_CMSK bit field */
#define RTC_CALIBRATION_WINDOW_32S ((uint32_t)0x00000000U) /*!< 2exp20 RTCCLK cycles, 32s if RTCCLK = 32768 Hz */
#define RTC_CALIBRATION_WINDOW_16S RTC_HRFC_CWND16 /*!< 2exp19 RTCCLK cycles, 16s if RTCCLK = 32768 Hz */
#define RTC_CALIBRATION_WINDOW_8S RTC_HRFC_CWND8 /*!< 2exp18 RTCCLK cycles, 8s if RTCCLK = 32768 Hz */
#define RTC_CALIBRATION_PLUS_SET RTC_HRFC_FREQI /*!< increase RTC frequency by 488.5ppm */
#define RTC_CALIBRATION_PLUS_RESET ((uint32_t)0x00000000U) /*!< no effect */
/* tamp register value */
#define TAMP_FREQ(regval) (BITS(8,10) & ((uint32_t)(regval) << 10)) /*!< write value to RTC_TAMP_FREQ bit field */
#define RTC_FREQ_DIV32768 TAMP_FREQ(0) /*!< sample once every 32768 RTCCLK(1Hz if RTCCLK=32.768KHz) */
#define RTC_FREQ_DIV16384 TAMP_FREQ(1) /*!< sample once every 16384 RTCCLK(2Hz if RTCCLK=32.768KHz) */
#define RTC_FREQ_DIV8192 TAMP_FREQ(2) /*!< sample once every 8192 RTCCLK(4Hz if RTCCLK=32.768KHz) */
#define RTC_FREQ_DIV4096 TAMP_FREQ(3) /*!< sample once every 4096 RTCCLK(8Hz if RTCCLK=32.768KHz) */
#define RTC_FREQ_DIV2048 TAMP_FREQ(4) /*!< sample once every 2048 RTCCLK(16Hz if RTCCLK=32.768KHz) */
#define RTC_FREQ_DIV1024 TAMP_FREQ(5) /*!< sample once every 1024 RTCCLK(32Hz if RTCCLK=32.768KHz) */
#define RTC_FREQ_DIV512 TAMP_FREQ(6) /*!< sample once every 512 RTCCLK(64Hz if RTCCLK=32.768KHz) */
#define RTC_FREQ_DIV256 TAMP_FREQ(7) /*!< sample once every 256 RTCCLK(128Hz if RTCCLK=32.768KHz) */
#define TAMP_FLT(regval) (BITS(11,12) & ((uint32_t)(regval) << 11)) /*!< write value to RTC_TAMP_FLT bit field */
#define RTC_FLT_EDGE TAMP_FLT(0) /*!< detecting tamper event using edge mode. precharge duration is disabled automatically */
#define RTC_FLT_2S TAMP_FLT(1) /*!< detecting tamper event using level mode.2 consecutive valid level samples will make a effective tamper event */
#define RTC_FLT_4S TAMP_FLT(2) /*!< detecting tamper event using level mode.4 consecutive valid level samples will make an effective tamper event */
#define RTC_FLT_8S TAMP_FLT(3) /*!< detecting tamper event using level mode.8 consecutive valid level samples will make a effective tamper event */
#define TAMP_PRCH(regval) (BITS(13,14) & ((uint32_t)(regval) << 13)) /*!< write value to RTC_TAMP_PRCH bit field */
#define RTC_PRCH_1C TAMP_PRCH(0) /*!< 1 RTC clock prechagre time before each sampling */
#define RTC_PRCH_2C TAMP_PRCH(1) /*!< 2 RTC clock prechagre time before each sampling */
#define RTC_PRCH_4C TAMP_PRCH(2) /*!< 4 RTC clock prechagre time before each sampling */
#define RTC_PRCH_8C TAMP_PRCH(3) /*!< 8 RTC clock prechagre time before each sampling */
#define RTC_TAMPER0 RTC_TAMP_TP0EN /*!< tamper 0 detection enable */
#define RTC_TAMPER1 RTC_TAMP_TP1EN /*!< tamper 1 detection enable */
#define RTC_TAMPER_TRIGGER_EDGE_RISING ((uint32_t)0x00000000U) /*!< tamper detection is in rising edge mode */
#define RTC_TAMPER_TRIGGER_EDGE_FALLING RTC_TAMP_TP0EG /*!< tamper detection is in falling edge mode */
#define RTC_TAMPER_TRIGGER_LEVEL_LOW ((uint32_t)0x00000000U) /*!< tamper detection is in low level mode */
#define RTC_TAMPER_TRIGGER_LEVEL_HIGH RTC_TAMP_TP0EG /*!< tamper detection is in high level mode */
#define RTC_TAMPER_TRIGGER_POS ((uint32_t)0x00000001U) /* shift position of trigger relative to source */
#define RTC_ALARM_OUTPUT_OD ((uint32_t)0x00000000U) /*!< RTC alarm output open-drain mode */
#define RTC_ALARM_OUTPUT_PP RTC_TAMP_AOT /*!< RTC alarm output push-pull mode */
/* ALRMXSS register value */
#define ALRMXSS_SSC(regval) (BITS(0,14) & ((uint32_t)(regval)<< 0)) /*!< write value to RTC_ALRMXSS_SSC bit field */
#define ALRMXSS_MASKSSC(regval) (BITS(24,27) & ((uint32_t)(regval) << 24)) /*!< write value to RTC_ALRMXSS_MASKSSC bit field */
#define RTC_MASKSSC_0_14 ALRMXSS_MASKSSC(0) /*!< mask alarm subsecond configuration */
#define RTC_MASKSSC_1_14 ALRMXSS_MASKSSC(1) /*!< mask RTC_ALRMXSS_SSC[14:1], and RTC_ALRMXSS_SSC[0] is to be compared */
#define RTC_MASKSSC_2_14 ALRMXSS_MASKSSC(2) /*!< mask RTC_ALRMXSS_SSC[14:2], and RTC_ALRMXSS_SSC[1:0] is to be compared */
#define RTC_MASKSSC_3_14 ALRMXSS_MASKSSC(3) /*!< mask RTC_ALRMXSS_SSC[14:3], and RTC_ALRMXSS_SSC[2:0] is to be compared */
#define RTC_MASKSSC_4_14 ALRMXSS_MASKSSC(4) /*!< mask RTC_ALRMXSS_SSC[14:4]], and RTC_ALRMXSS_SSC[3:0] is to be compared */
#define RTC_MASKSSC_5_14 ALRMXSS_MASKSSC(5) /*!< mask RTC_ALRMXSS_SSC[14:5], and RTC_ALRMXSS_SSC[4:0] is to be compared */
#define RTC_MASKSSC_6_14 ALRMXSS_MASKSSC(6) /*!< mask RTC_ALRMXSS_SSC[14:6], and RTC_ALRMXSS_SSC[5:0] is to be compared */
#define RTC_MASKSSC_7_14 ALRMXSS_MASKSSC(7) /*!< mask RTC_ALRMXSS_SSC[14:7], and RTC_ALRMXSS_SSC[6:0] is to be compared */
#define RTC_MASKSSC_8_14 ALRMXSS_MASKSSC(8) /*!< mask RTC_ALRMXSS_SSC[14:7], and RTC_ALRMXSS_SSC[6:0] is to be compared */
#define RTC_MASKSSC_9_14 ALRMXSS_MASKSSC(9) /*!< mask RTC_ALRMXSS_SSC[14:9], and RTC_ALRMXSS_SSC[8:0] is to be compared */
#define RTC_MASKSSC_10_14 ALRMXSS_MASKSSC(10) /*!< mask RTC_ALRMXSS_SSC[14:10], and RTC_ALRMXSS_SSC[9:0] is to be compared */
#define RTC_MASKSSC_11_14 ALRMXSS_MASKSSC(11) /*!< mask RTC_ALRMXSS_SSC[14:11], and RTC_ALRMXSS_SSC[10:0] is to be compared */
#define RTC_MASKSSC_12_14 ALRMXSS_MASKSSC(12) /*!< mask RTC_ALRMXSS_SSC[14:12], and RTC_ALRMXSS_SSC[11:0] is to be compared */
#define RTC_MASKSSC_13_14 ALRMXSS_MASKSSC(13) /*!< mask RTC_ALRMXSS_SSC[14:13], and RTC_ALRMXSS_SSC[12:0] is to be compared */
#define RTC_MASKSSC_14 ALRMXSS_MASKSSC(14) /*!< mask RTC_ALRMXSS_SSC[14], and RTC_ALRMXSS_SSC[13:0] is to be compared */
#define RTC_MASKSSC_NONE ALRMXSS_MASKSSC(15) /*!< mask none, and RTC_ALRMXSS_SSC[14:0] is to be compared */
/* RTC interrupt source */
#define RTC_INT_TIMESTAMP RTC_CTL_TSIE /*!< time-stamp interrupt enable */
#define RTC_INT_ALARM0 RTC_CTL_ALRM0IE /*!< RTC alarm0 interrupt enable */
#define RTC_INT_ALARM1 RTC_CTL_ALRM1IE /*!< RTC alarm1 interrupt enable */
#define RTC_INT_TAMP RTC_TAMP_TPIE /*!< tamper detection interrupt enable */
#define RTC_INT_WAKEUP RTC_CTL_WTIE /*!< RTC wakeup timer interrupt enable */
/* write protect key */
#define RTC_UNLOCK_KEY1 ((uint8_t)0xCAU) /*!< RTC unlock key1 */
#define RTC_UNLOCK_KEY2 ((uint8_t)0x53U) /*!< RTC unlock key2 */
#define RTC_LOCK_KEY ((uint8_t)0xFFU) /*!< RTC lock key */
/* registers reset value */
#define RTC_REGISTER_RESET ((uint32_t)0x00000000U) /*!< RTC common register reset value */
#define RTC_DATE_RESET ((uint32_t)0x00002101U) /*!< RTC_DATE register reset value */
#define RTC_STAT_RESET ((uint32_t)0x00000000U) /*!< RTC_STAT register reset value */
#define RTC_PSC_RESET ((uint32_t)0x007F00FFU) /*!< RTC_PSC register reset value */
#define RTC_WUT_RESET ((uint32_t)0x0000FFFFU) /*!< RTC_WUT register reset value */
/* RTC alarm */
#define RTC_ALARM0 ((uint8_t)0x01U) /*!< RTC alarm 0 */
#define RTC_ALARM1 ((uint8_t)0x02U) /*!< RTC alarm 1 */
/* RTC coarse calibration direction */
#define CALIB_INCREASE ((uint8_t)0x01U) /*!< RTC coarse calibration increase */
#define CALIB_DECREASE ((uint8_t)0x02U) /*!< RTC coarse calibration decrease */
/* RTC wakeup timer clock */
#define CTL_WTCS(regval) (BITS(0,2) & ((regval)<< 0))
#define WAKEUP_RTCCK_DIV16 CTL_WTCS(0) /*!< wakeup timer clock is RTC clock divided by 16 */
#define WAKEUP_RTCCK_DIV8 CTL_WTCS(1) /*!< wakeup timer clock is RTC clock divided by 8 */
#define WAKEUP_RTCCK_DIV4 CTL_WTCS(2) /*!< wakeup timer clock is RTC clock divided by 4 */
#define WAKEUP_RTCCK_DIV2 CTL_WTCS(3) /*!< wakeup timer clock is RTC clock divided by 2 */
#define WAKEUP_CKSPRE CTL_WTCS(4) /*!< wakeup timer clock is ckapre */
#define WAKEUP_CKSPRE_2EXP16 CTL_WTCS(6) /*!< wakeup timer clock is ckapre and wakeup timer add 2exp16 */
/* RTC_AF pin */
#define RTC_AF0_TIMESTAMP ((uint32_t)0x00000000) /*!< RTC_AF0 use for timestamp */
#define RTC_AF1_TIMESTAMP RTC_TAMP_TSSEL /*!< RTC_AF1 use for timestamp */
#define RTC_AF0_TAMPER0 ((uint32_t)0x00000000) /*!< RTC_AF0 use for tamper0 */
#define RTC_AF1_TAMPER0 RTC_TAMP_TP0SEL /*!< RTC_AF1 use for tamper0 */
/* function declarations */
/* reset most of the RTC registers */
ErrStatus rtc_deinit(void);
/* initialize RTC registers */
ErrStatus rtc_init(rtc_parameter_struct* rtc_initpara_struct);
/* enter RTC init mode */
ErrStatus rtc_init_mode_enter(void);
/* exit RTC init mode */
void rtc_init_mode_exit(void);
/* wait until RTC_TIME and RTC_DATE registers are synchronized with APB clock, and the shadow registers are updated */
ErrStatus rtc_register_sync_wait(void);
/* get current time and date */
void rtc_current_time_get(rtc_parameter_struct* rtc_initpara_struct);
/* get current subsecond value */
uint32_t rtc_subsecond_get(void);
/* configure RTC alarm */
void rtc_alarm_config(uint8_t rtc_alarm, rtc_alarm_struct* rtc_alarm_time);
/* configure subsecond of RTC alarm */
void rtc_alarm_subsecond_config(uint8_t rtc_alarm, uint32_t mask_subsecond, uint32_t subsecond);
/* get RTC alarm */
void rtc_alarm_get(uint8_t rtc_alarm,rtc_alarm_struct* rtc_alarm_time);
/* get RTC alarm subsecond */
uint32_t rtc_alarm_subsecond_get(uint8_t rtc_alarm);
/* enable RTC alarm */
void rtc_alarm_enable(uint8_t rtc_alarm);
/* disable RTC alarm */
ErrStatus rtc_alarm_disable(uint8_t rtc_alarm);
/* enable RTC time-stamp */
void rtc_timestamp_enable(uint32_t edge);
/* disable RTC time-stamp */
void rtc_timestamp_disable(void);
/* get RTC timestamp time and date */
void rtc_timestamp_get(rtc_timestamp_struct* rtc_timestamp);
/* get RTC time-stamp subsecond */
uint32_t rtc_timestamp_subsecond_get(void);
/* RTC time-stamp pin map */
void rtc_timestamp_pin_map(uint32_t rtc_af);
/* enable RTC tamper */
void rtc_tamper_enable(rtc_tamper_struct* rtc_tamper);
/* disable RTC tamper */
void rtc_tamper_disable(uint32_t source);
/* RTC tamper0 pin map */
void rtc_tamper0_pin_map(uint32_t rtc_af);
/* enable specified RTC interrupt */
void rtc_interrupt_enable(uint32_t interrupt);
/* disble specified RTC interrupt */
void rtc_interrupt_disable(uint32_t interrupt);
/* check specified flag */
FlagStatus rtc_flag_get(uint32_t flag);
/* clear specified flag */
void rtc_flag_clear(uint32_t flag);
/* configure RTC alarm output source */
void rtc_alarm_output_config(uint32_t source, uint32_t mode);
/* configure RTC calibration output source */
void rtc_calibration_output_config(uint32_t source);
/* adjust the daylight saving time by adding or substracting one hour from the current time */
void rtc_hour_adjust(uint32_t operation);
/* adjust RTC second or subsecond value of current time */
ErrStatus rtc_second_adjust(uint32_t add, uint32_t minus);
/* enable RTC bypass shadow registers function */
void rtc_bypass_shadow_enable(void);
/* disable RTC bypass shadow registers function */
void rtc_bypass_shadow_disable(void);
/* enable RTC reference clock detection function */
ErrStatus rtc_refclock_detection_enable(void);
/* disable RTC reference clock detection function */
ErrStatus rtc_refclock_detection_disable(void);
/* enable RTC wakeup timer */
void rtc_wakeup_enable(void);
/* disable RTC wakeup timer */
ErrStatus rtc_wakeup_disable(void);
/* set auto wakeup timer clock */
ErrStatus rtc_wakeup_clock_set(uint8_t wakeup_clock);
/* set auto wakeup timer value */
ErrStatus rtc_wakeup_timer_set(uint16_t wakeup_timer);
/* get auto wakeup timer value */
uint16_t rtc_wakeup_timer_get(void);
/* configure RTC smooth calibration */
ErrStatus rtc_smooth_calibration_config(uint32_t window, uint32_t plus, uint32_t minus);
/* enable RTC coarse calibration */
ErrStatus rtc_coarse_calibration_enable(void);
/* disable RTC coarse calibration */
ErrStatus rtc_coarse_calibration_disable(void);
/* configure RTC coarse calibration direction and step */
ErrStatus rtc_coarse_calibration_config(uint8_t direction, uint8_t step);
#endif /* GD32F4XX_RTC_H */

View File

@@ -0,0 +1,378 @@
/*!
\file gd32f4xx_sdio.h
\brief definitions for the SDIO
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef GD32F4XX_SDIO_H
#define GD32F4XX_SDIO_H
#include "gd32f4xx.h"
/* SDIO definitions */
#define SDIO SDIO_BASE
/* registers definitions */
#define SDIO_PWRCTL REG32(SDIO + 0x00U) /*!< SDIO power control register */
#define SDIO_CLKCTL REG32(SDIO + 0x04U) /*!< SDIO clock control register */
#define SDIO_CMDAGMT REG32(SDIO + 0x08U) /*!< SDIO command argument register */
#define SDIO_CMDCTL REG32(SDIO + 0x0CU) /*!< SDIO command control register */
#define SDIO_RSPCMDIDX REG32(SDIO + 0x10U) /*!< SDIO command index response register */
#define SDIO_RESP0 REG32(SDIO + 0x14U) /*!< SDIO response register 0 */
#define SDIO_RESP1 REG32(SDIO + 0x18U) /*!< SDIO response register 1 */
#define SDIO_RESP2 REG32(SDIO + 0x1CU) /*!< SDIO response register 2 */
#define SDIO_RESP3 REG32(SDIO + 0x20U) /*!< SDIO response register 3 */
#define SDIO_DATATO REG32(SDIO + 0x24U) /*!< SDIO data timeout register */
#define SDIO_DATALEN REG32(SDIO + 0x28U) /*!< SDIO data length register */
#define SDIO_DATACTL REG32(SDIO + 0x2CU) /*!< SDIO data control register */
#define SDIO_DATACNT REG32(SDIO + 0x30U) /*!< SDIO data counter register */
#define SDIO_STAT REG32(SDIO + 0x34U) /*!< SDIO status register */
#define SDIO_INTC REG32(SDIO + 0x38U) /*!< SDIO interrupt clear register */
#define SDIO_INTEN REG32(SDIO + 0x3CU) /*!< SDIO interrupt enable register */
#define SDIO_FIFOCNT REG32(SDIO + 0x48U) /*!< SDIO FIFO counter register */
#define SDIO_FIFO REG32(SDIO + 0x80U) /*!< SDIO FIFO data register */
/* bits definitions */
/* SDIO_PWRCTL */
#define SDIO_PWRCTL_PWRCTL BITS(0,1) /*!< SDIO power control bits */
/* SDIO_CLKCTL */
#define SDIO_CLKCTL_DIV BITS(0,7) /*!< clock division */
#define SDIO_CLKCTL_CLKEN BIT(8) /*!< SDIO_CLK clock output enable bit */
#define SDIO_CLKCTL_CLKPWRSAV BIT(9) /*!< SDIO_CLK clock dynamic switch on/off for power saving */
#define SDIO_CLKCTL_CLKBYP BIT(10) /*!< clock bypass enable bit */
#define SDIO_CLKCTL_BUSMODE BITS(11,12) /*!< SDIO card bus mode control bit */
#define SDIO_CLKCTL_CLKEDGE BIT(13) /*!< SDIO_CLK clock edge selection bit */
#define SDIO_CLKCTL_HWCLKEN BIT(14) /*!< hardware clock control enable bit */
#define SDIO_CLKCTL_DIV8 BIT(31) /*!< MSB of clock division */
/* SDIO_CMDAGMT */
#define SDIO_CMDAGMT_CMDAGMT BITS(0,31) /*!< SDIO card command argument */
/* SDIO_CMDCTL */
#define SDIO_CMDCTL_CMDIDX BITS(0,5) /*!< command index */
#define SDIO_CMDCTL_CMDRESP BITS(6,7) /*!< command response type bits */
#define SDIO_CMDCTL_INTWAIT BIT(8) /*!< interrupt wait instead of timeout */
#define SDIO_CMDCTL_WAITDEND BIT(9) /*!< wait for ends of data transfer */
#define SDIO_CMDCTL_CSMEN BIT(10) /*!< command state machine(CSM) enable bit */
#define SDIO_CMDCTL_SUSPEND BIT(11) /*!< SD I/O suspend command(SD I/O only) */
#define SDIO_CMDCTL_ENCMDC BIT(12) /*!< CMD completion signal enabled (CE-ATA only) */
#define SDIO_CMDCTL_NINTEN BIT(13) /*!< no CE-ATA interrupt (CE-ATA only) */
#define SDIO_CMDCTL_ATAEN BIT(14) /*!< CE-ATA command enable(CE-ATA only) */
/* SDIO_DATATO */
#define SDIO_DATATO_DATATO BITS(0,31) /*!< data timeout period */
/* SDIO_DATALEN */
#define SDIO_DATALEN_DATALEN BITS(0,24) /*!< data transfer length */
/* SDIO_DATACTL */
#define SDIO_DATACTL_DATAEN BIT(0) /*!< data transfer enabled bit */
#define SDIO_DATACTL_DATADIR BIT(1) /*!< data transfer direction */
#define SDIO_DATACTL_TRANSMOD BIT(2) /*!< data transfer mode */
#define SDIO_DATACTL_DMAEN BIT(3) /*!< DMA enable bit */
#define SDIO_DATACTL_BLKSZ BITS(4,7) /*!< data block size */
#define SDIO_DATACTL_RWEN BIT(8) /*!< read wait mode enabled(SD I/O only) */
#define SDIO_DATACTL_RWSTOP BIT(9) /*!< read wait stop(SD I/O only) */
#define SDIO_DATACTL_RWTYPE BIT(10) /*!< read wait type(SD I/O only) */
#define SDIO_DATACTL_IOEN BIT(11) /*!< SD I/O specific function enable(SD I/O only) */
/* SDIO_STAT */
#define SDIO_STAT_CCRCERR BIT(0) /*!< command response received (CRC check failed) */
#define SDIO_STAT_DTCRCERR BIT(1) /*!< data block sent/received (CRC check failed) */
#define SDIO_STAT_CMDTMOUT BIT(2) /*!< command response timeout */
#define SDIO_STAT_DTTMOUT BIT(3) /*!< data timeout */
#define SDIO_STAT_TXURE BIT(4) /*!< transmit FIFO underrun error occurs */
#define SDIO_STAT_RXORE BIT(5) /*!< received FIFO overrun error occurs */
#define SDIO_STAT_CMDRECV BIT(6) /*!< command response received (CRC check passed) */
#define SDIO_STAT_CMDSEND BIT(7) /*!< command sent (no response required) */
#define SDIO_STAT_DTEND BIT(8) /*!< data end (data counter, SDIO_DATACNT, is zero) */
#define SDIO_STAT_STBITE BIT(9) /*!< start bit error in the bus */
#define SDIO_STAT_DTBLKEND BIT(10) /*!< data block sent/received (CRC check passed) */
#define SDIO_STAT_CMDRUN BIT(11) /*!< command transmission in progress */
#define SDIO_STAT_TXRUN BIT(12) /*!< data transmission in progress */
#define SDIO_STAT_RXRUN BIT(13) /*!< data reception in progress */
#define SDIO_STAT_TFH BIT(14) /*!< transmit FIFO is half empty: at least 8 words can be written into the FIFO */
#define SDIO_STAT_RFH BIT(15) /*!< receive FIFO is half full: at least 8 words can be read in the FIFO */
#define SDIO_STAT_TFF BIT(16) /*!< transmit FIFO is full */
#define SDIO_STAT_RFF BIT(17) /*!< receive FIFO is full */
#define SDIO_STAT_TFE BIT(18) /*!< transmit FIFO is empty */
#define SDIO_STAT_RFE BIT(19) /*!< receive FIFO is empty */
#define SDIO_STAT_TXDTVAL BIT(20) /*!< data is valid in transmit FIFO */
#define SDIO_STAT_RXDTVAL BIT(21) /*!< data is valid in receive FIFO */
#define SDIO_STAT_SDIOINT BIT(22) /*!< SD I/O interrupt received */
#define SDIO_STAT_ATAEND BIT(23) /*!< CE-ATA command completion signal received (only for CMD61) */
/* SDIO_INTC */
#define SDIO_INTC_CCRCERRC BIT(0) /*!< CCRCERR flag clear bit */
#define SDIO_INTC_DTCRCERRC BIT(1) /*!< DTCRCERR flag clear bit */
#define SDIO_INTC_CMDTMOUTC BIT(2) /*!< CMDTMOUT flag clear bit */
#define SDIO_INTC_DTTMOUTC BIT(3) /*!< DTTMOUT flag clear bit */
#define SDIO_INTC_TXUREC BIT(4) /*!< TXURE flag clear bit */
#define SDIO_INTC_RXOREC BIT(5) /*!< RXORE flag clear bit */
#define SDIO_INTC_CMDRECVC BIT(6) /*!< CMDRECV flag clear bit */
#define SDIO_INTC_CMDSENDC BIT(7) /*!< CMDSEND flag clear bit */
#define SDIO_INTC_DTENDC BIT(8) /*!< DTEND flag clear bit */
#define SDIO_INTC_STBITEC BIT(9) /*!< STBITE flag clear bit */
#define SDIO_INTC_DTBLKENDC BIT(10) /*!< DTBLKEND flag clear bit */
#define SDIO_INTC_SDIOINTC BIT(22) /*!< SDIOINT flag clear bit */
#define SDIO_INTC_ATAENDC BIT(23) /*!< ATAEND flag clear bit */
/* SDIO_INTEN */
#define SDIO_INTEN_CCRCERRIE BIT(0) /*!< command response CRC fail interrupt enable */
#define SDIO_INTEN_DTCRCERRIE BIT(1) /*!< data CRC fail interrupt enable */
#define SDIO_INTEN_CMDTMOUTIE BIT(2) /*!< command response timeout interrupt enable */
#define SDIO_INTEN_DTTMOUTIE BIT(3) /*!< data timeout interrupt enable */
#define SDIO_INTEN_TXUREIE BIT(4) /*!< transmit FIFO underrun error interrupt enable */
#define SDIO_INTEN_RXOREIE BIT(5) /*!< received FIFO overrun error interrupt enable */
#define SDIO_INTEN_CMDRECVIE BIT(6) /*!< command response received interrupt enable */
#define SDIO_INTEN_CMDSENDIE BIT(7) /*!< command sent interrupt enable */
#define SDIO_INTEN_DTENDIE BIT(8) /*!< data end interrupt enable */
#define SDIO_INTEN_STBITEIE BIT(9) /*!< start bit error interrupt enable */
#define SDIO_INTEN_DTBLKENDIE BIT(10) /*!< data block end interrupt enable */
#define SDIO_INTEN_CMDRUNIE BIT(11) /*!< command transmission interrupt enable */
#define SDIO_INTEN_TXRUNIE BIT(12) /*!< data transmission interrupt enable */
#define SDIO_INTEN_RXRUNIE BIT(13) /*!< data reception interrupt enable */
#define SDIO_INTEN_TFHIE BIT(14) /*!< transmit FIFO half empty interrupt enable */
#define SDIO_INTEN_RFHIE BIT(15) /*!< receive FIFO half full interrupt enable */
#define SDIO_INTEN_TFFIE BIT(16) /*!< transmit FIFO full interrupt enable */
#define SDIO_INTEN_RFFIE BIT(17) /*!< receive FIFO full interrupt enable */
#define SDIO_INTEN_TFEIE BIT(18) /*!< transmit FIFO empty interrupt enable */
#define SDIO_INTEN_RFEIE BIT(19) /*!< receive FIFO empty interrupt enable */
#define SDIO_INTEN_TXDTVALIE BIT(20) /*!< data valid in transmit FIFO interrupt enable */
#define SDIO_INTEN_RXDTVALIE BIT(21) /*!< data valid in receive FIFO interrupt enable */
#define SDIO_INTEN_SDIOINTIE BIT(22) /*!< SD I/O interrupt received interrupt enable */
#define SDIO_INTEN_ATAENDIE BIT(23) /*!< CE-ATA command completion signal received interrupt enable */
/* SDIO_FIFO */
#define SDIO_FIFO_FIFODT BITS(0,31) /*!< receive FIFO data or transmit FIFO data */
/* constants definitions */
/* SDIO flags */
#define SDIO_FLAG_CCRCERR BIT(0) /*!< command response received (CRC check failed) flag */
#define SDIO_FLAG_DTCRCERR BIT(1) /*!< data block sent/received (CRC check failed) flag */
#define SDIO_FLAG_CMDTMOUT BIT(2) /*!< command response timeout flag */
#define SDIO_FLAG_DTTMOUT BIT(3) /*!< data timeout flag */
#define SDIO_FLAG_TXURE BIT(4) /*!< transmit FIFO underrun error occurs flag */
#define SDIO_FLAG_RXORE BIT(5) /*!< received FIFO overrun error occurs flag */
#define SDIO_FLAG_CMDRECV BIT(6) /*!< command response received (CRC check passed) flag */
#define SDIO_FLAG_CMDSEND BIT(7) /*!< command sent (no response required) flag */
#define SDIO_FLAG_DTEND BIT(8) /*!< data end (data counter, SDIO_DATACNT, is zero) flag */
#define SDIO_FLAG_STBITE BIT(9) /*!< start bit error in the bus flag */
#define SDIO_FLAG_DTBLKEND BIT(10) /*!< data block sent/received (CRC check passed) flag */
#define SDIO_FLAG_CMDRUN BIT(11) /*!< command transmission in progress flag */
#define SDIO_FLAG_TXRUN BIT(12) /*!< data transmission in progress flag */
#define SDIO_FLAG_RXRUN BIT(13) /*!< data reception in progress flag */
#define SDIO_FLAG_TFH BIT(14) /*!< transmit FIFO is half empty flag: at least 8 words can be written into the FIFO */
#define SDIO_FLAG_RFH BIT(15) /*!< receive FIFO is half full flag: at least 8 words can be read in the FIFO */
#define SDIO_FLAG_TFF BIT(16) /*!< transmit FIFO is full flag */
#define SDIO_FLAG_RFF BIT(17) /*!< receive FIFO is full flag */
#define SDIO_FLAG_TFE BIT(18) /*!< transmit FIFO is empty flag */
#define SDIO_FLAG_RFE BIT(19) /*!< receive FIFO is empty flag */
#define SDIO_FLAG_TXDTVAL BIT(20) /*!< data is valid in transmit FIFO flag */
#define SDIO_FLAG_RXDTVAL BIT(21) /*!< data is valid in receive FIFO flag */
#define SDIO_FLAG_SDIOINT BIT(22) /*!< SD I/O interrupt received flag */
#define SDIO_FLAG_ATAEND BIT(23) /*!< CE-ATA command completion signal received (only for CMD61) flag */
/* SDIO interrupt flags */
#define SDIO_INT_CCRCERR BIT(0) /*!< SDIO CCRCERR interrupt */
#define SDIO_INT_DTCRCERR BIT(1) /*!< SDIO DTCRCERR interrupt */
#define SDIO_INT_CMDTMOUT BIT(2) /*!< SDIO CMDTMOUT interrupt */
#define SDIO_INT_DTTMOUT BIT(3) /*!< SDIO DTTMOUT interrupt */
#define SDIO_INT_TXURE BIT(4) /*!< SDIO TXURE interrupt */
#define SDIO_INT_RXORE BIT(5) /*!< SDIO RXORE interrupt */
#define SDIO_INT_CMDRECV BIT(6) /*!< SDIO CMDRECV interrupt */
#define SDIO_INT_CMDSEND BIT(7) /*!< SDIO CMDSEND interrupt */
#define SDIO_INT_DTEND BIT(8) /*!< SDIO DTEND interrupt */
#define SDIO_INT_STBITE BIT(9) /*!< SDIO STBITE interrupt */
#define SDIO_INT_DTBLKEND BIT(10) /*!< SDIO DTBLKEND interrupt */
#define SDIO_INT_CMDRUN BIT(11) /*!< SDIO CMDRUN interrupt */
#define SDIO_INT_TXRUN BIT(12) /*!< SDIO TXRUN interrupt */
#define SDIO_INT_RXRUN BIT(13) /*!< SDIO RXRUN interrupt */
#define SDIO_INT_TFH BIT(14) /*!< SDIO TFH interrupt */
#define SDIO_INT_RFH BIT(15) /*!< SDIO RFH interrupt */
#define SDIO_INT_TFF BIT(16) /*!< SDIO TFF interrupt */
#define SDIO_INT_RFF BIT(17) /*!< SDIO RFF interrupt */
#define SDIO_INT_TFE BIT(18) /*!< SDIO TFE interrupt */
#define SDIO_INT_RFE BIT(19) /*!< SDIO RFE interrupt */
#define SDIO_INT_TXDTVAL BIT(20) /*!< SDIO TXDTVAL interrupt */
#define SDIO_INT_RXDTVAL BIT(21) /*!< SDIO RXDTVAL interrupt */
#define SDIO_INT_SDIOINT BIT(22) /*!< SDIO SDIOINT interrupt */
#define SDIO_INT_ATAEND BIT(23) /*!< SDIO ATAEND interrupt */
/* SDIO power control */
#define PWRCTL_PWRCTL(regval) (BITS(0,1) & ((uint32_t)(regval) << 0))
#define SDIO_POWER_OFF PWRCTL_PWRCTL(0) /*!< SDIO power off */
#define SDIO_POWER_ON PWRCTL_PWRCTL(3) /*!< SDIO power on */
/* SDIO card bus mode control */
#define CLKCTL_BUSMODE(regval) (BITS(11,12) & ((uint32_t)(regval) << 11))
#define SDIO_BUSMODE_1BIT CLKCTL_BUSMODE(0) /*!< 1-bit SDIO card bus mode */
#define SDIO_BUSMODE_4BIT CLKCTL_BUSMODE(1) /*!< 4-bit SDIO card bus mode */
#define SDIO_BUSMODE_8BIT CLKCTL_BUSMODE(2) /*!< 8-bit SDIO card bus mode */
/* SDIO_CLK clock edge selection */
#define SDIO_SDIOCLKEDGE_RISING (uint32_t)0x00000000U /*!< select the rising edge of the SDIOCLK to generate SDIO_CLK */
#define SDIO_SDIOCLKEDGE_FALLING SDIO_CLKCTL_CLKEDGE /*!< select the falling edge of the SDIOCLK to generate SDIO_CLK */
/* clock bypass enable or disable */
#define SDIO_CLOCKBYPASS_DISABLE (uint32_t)0x00000000U /*!< no bypass */
#define SDIO_CLOCKBYPASS_ENABLE SDIO_CLKCTL_CLKBYP /*!< clock bypass */
/* SDIO_CLK clock dynamic switch on/off for power saving */
#define SDIO_CLOCKPWRSAVE_DISABLE (uint32_t)0x00000000U /*!< SDIO_CLK clock is always on */
#define SDIO_CLOCKPWRSAVE_ENABLE SDIO_CLKCTL_CLKPWRSAV /*!< SDIO_CLK closed when bus is idle */
/* SDIO command response type */
#define CMDCTL_CMDRESP(regval) (BITS(6,7) & ((uint32_t)(regval) << 6))
#define SDIO_RESPONSETYPE_NO CMDCTL_CMDRESP(0) /*!< no response */
#define SDIO_RESPONSETYPE_SHORT CMDCTL_CMDRESP(1) /*!< short response */
#define SDIO_RESPONSETYPE_LONG CMDCTL_CMDRESP(3) /*!< long response */
/* command state machine wait type */
#define SDIO_WAITTYPE_NO (uint32_t)0x00000000U /*!< not wait interrupt */
#define SDIO_WAITTYPE_INTERRUPT SDIO_CMDCTL_INTWAIT /*!< wait interrupt */
#define SDIO_WAITTYPE_DATAEND SDIO_CMDCTL_WAITDEND /*!< wait the end of data transfer */
#define SDIO_RESPONSE0 (uint32_t)0x00000000U /*!< card response[31:0]/card response[127:96] */
#define SDIO_RESPONSE1 (uint32_t)0x00000001U /*!< card response[95:64] */
#define SDIO_RESPONSE2 (uint32_t)0x00000002U /*!< card response[63:32] */
#define SDIO_RESPONSE3 (uint32_t)0x00000003U /*!< card response[31:1], plus bit 0 */
/* SDIO data block size */
#define DATACTL_BLKSZ(regval) (BITS(4,7) & ((uint32_t)(regval) << 4))
#define SDIO_DATABLOCKSIZE_1BYTE DATACTL_BLKSZ(0) /*!< block size = 1 byte */
#define SDIO_DATABLOCKSIZE_2BYTES DATACTL_BLKSZ(1) /*!< block size = 2 bytes */
#define SDIO_DATABLOCKSIZE_4BYTES DATACTL_BLKSZ(2) /*!< block size = 4 bytes */
#define SDIO_DATABLOCKSIZE_8BYTES DATACTL_BLKSZ(3) /*!< block size = 8 bytes */
#define SDIO_DATABLOCKSIZE_16BYTES DATACTL_BLKSZ(4) /*!< block size = 16 bytes */
#define SDIO_DATABLOCKSIZE_32BYTES DATACTL_BLKSZ(5) /*!< block size = 32 bytes */
#define SDIO_DATABLOCKSIZE_64BYTES DATACTL_BLKSZ(6) /*!< block size = 64 bytes */
#define SDIO_DATABLOCKSIZE_128BYTES DATACTL_BLKSZ(7) /*!< block size = 128 bytes */
#define SDIO_DATABLOCKSIZE_256BYTES DATACTL_BLKSZ(8) /*!< block size = 256 bytes */
#define SDIO_DATABLOCKSIZE_512BYTES DATACTL_BLKSZ(9) /*!< block size = 512 bytes */
#define SDIO_DATABLOCKSIZE_1024BYTES DATACTL_BLKSZ(10) /*!< block size = 1024 bytes */
#define SDIO_DATABLOCKSIZE_2048BYTES DATACTL_BLKSZ(11) /*!< block size = 2048 bytes */
#define SDIO_DATABLOCKSIZE_4096BYTES DATACTL_BLKSZ(12) /*!< block size = 4096 bytes */
#define SDIO_DATABLOCKSIZE_8192BYTES DATACTL_BLKSZ(13) /*!< block size = 8192 bytes */
#define SDIO_DATABLOCKSIZE_16384BYTES DATACTL_BLKSZ(14) /*!< block size = 16384 bytes */
/* SDIO data transfer mode */
#define SDIO_TRANSMODE_BLOCK (uint32_t)0x00000000U /*!< block transfer */
#define SDIO_TRANSMODE_STREAM SDIO_DATACTL_TRANSMOD /*!< stream transfer or SDIO multibyte transfer */
/* SDIO data transfer direction */
#define SDIO_TRANSDIRECTION_TOCARD (uint32_t)0x00000000U /*!< write data to card */
#define SDIO_TRANSDIRECTION_TOSDIO SDIO_DATACTL_DATADIR /*!< read data from card */
/* SDIO read wait type */
#define SDIO_READWAITTYPE_DAT2 (uint32_t)0x00000000U /*!< read wait control using SDIO_DAT[2] */
#define SDIO_READWAITTYPE_CLK SDIO_DATACTL_RWTYPE /*!< read wait control by stopping SDIO_CLK */
/* function declarations */
/* deinitialize the SDIO */
void sdio_deinit(void);
/* configure the SDIO clock */
void sdio_clock_config(uint32_t clock_edge, uint32_t clock_bypass, uint32_t clock_powersave, uint16_t clock_division);
/* enable hardware clock control */
void sdio_hardware_clock_enable(void);
/* disable hardware clock control */
void sdio_hardware_clock_disable(void);
/* set different SDIO card bus mode */
void sdio_bus_mode_set(uint32_t bus_mode);
/* set the SDIO power state */
void sdio_power_state_set(uint32_t power_state);
/* get the SDIO power state */
uint32_t sdio_power_state_get(void);
/* enable SDIO_CLK clock output */
void sdio_clock_enable(void);
/* disable SDIO_CLK clock output */
void sdio_clock_disable(void);
/* configure the command index, argument, response type, wait type and CSM to send command */
/* configure the command and response */
void sdio_command_response_config(uint32_t cmd_index, uint32_t cmd_argument, uint32_t response_type);
/* set the command state machine wait type */
void sdio_wait_type_set(uint32_t wait_type);
/* enable the CSM(command state machine) */
void sdio_csm_enable(void);
/* disable the CSM(command state machine) */
void sdio_csm_disable(void);
/* get the last response command index */
uint8_t sdio_command_index_get(void);
/* get the response for the last received command */
uint32_t sdio_response_get(uint32_t sdio_responsex);
/* configure the data timeout, length, block size, transfer mode, direction and DSM for data transfer */
/* configure the data timeout, data length and data block size */
void sdio_data_config(uint32_t data_timeout, uint32_t data_length, uint32_t data_blocksize);
/* configure the data transfer mode and direction */
void sdio_data_transfer_config(uint32_t transfer_mode, uint32_t transfer_direction);
/* enable the DSM(data state machine) for data transfer */
void sdio_dsm_enable(void);
/* disable the DSM(data state machine) */
void sdio_dsm_disable(void);
/* write data(one word) to the transmit FIFO */
void sdio_data_write(uint32_t data);
/* read data(one word) from the receive FIFO */
uint32_t sdio_data_read(void);
/* get the number of remaining data bytes to be transferred to card */
uint32_t sdio_data_counter_get(void);
/* get the number of words remaining to be written or read from FIFO */
uint32_t sdio_fifo_counter_get(void);
/* enable the DMA request for SDIO */
void sdio_dma_enable(void);
/* disable the DMA request for SDIO */
void sdio_dma_disable(void);
/* get the flags state of SDIO */
FlagStatus sdio_flag_get(uint32_t flag);
/* clear the pending flags of SDIO */
void sdio_flag_clear(uint32_t flag);
/* enable the SDIO interrupt */
void sdio_interrupt_enable(uint32_t int_flag);
/* disable the SDIO interrupt */
void sdio_interrupt_disable(uint32_t int_flag);
/* get the interrupt flags state of SDIO */
FlagStatus sdio_interrupt_flag_get(uint32_t int_flag);
/* clear the interrupt pending flags of SDIO */
void sdio_interrupt_flag_clear(uint32_t int_flag);
/* enable the read wait mode(SD I/O only) */
void sdio_readwait_enable(void);
/* disable the read wait mode(SD I/O only) */
void sdio_readwait_disable(void);
/* enable the function that stop the read wait process(SD I/O only) */
void sdio_stop_readwait_enable(void);
/* disable the function that stop the read wait process(SD I/O only) */
void sdio_stop_readwait_disable(void);
/* set the read wait type(SD I/O only) */
void sdio_readwait_type_set(uint32_t readwait_type);
/* enable the SD I/O mode specific operation(SD I/O only) */
void sdio_operation_enable(void);
/* disable the SD I/O mode specific operation(SD I/O only) */
void sdio_operation_disable(void);
/* enable the SD I/O suspend operation(SD I/O only) */
void sdio_suspend_enable(void);
/* disable the SD I/O suspend operation(SD I/O only) */
void sdio_suspend_disable(void);
/* enable the CE-ATA command(CE-ATA only) */
void sdio_ceata_command_enable(void);
/* disable the CE-ATA command(CE-ATA only) */
void sdio_ceata_command_disable(void);
/* enable the CE-ATA interrupt(CE-ATA only) */
void sdio_ceata_interrupt_enable(void);
/* disable the CE-ATA interrupt(CE-ATA only) */
void sdio_ceata_interrupt_disable(void);
/* enable the CE-ATA command completion signal(CE-ATA only) */
void sdio_ceata_command_completion_enable(void);
/* disable the CE-ATA command completion signal(CE-ATA only) */
void sdio_ceata_command_completion_disable(void);
#endif /* GD32F4XX_SDIO_H */

View File

@@ -0,0 +1,327 @@
/*!
\file gd32f4xx_spi.h
\brief definitions for the SPI
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#ifndef GD32F4XX_SPI_H
#define GD32F4XX_SPI_H
#include "gd32f4xx.h"
/* SPIx(x=0,1,2,3,4,5) definitions */
#define SPI0 (SPI_BASE + 0x0000F800U)
#define SPI1 SPI_BASE
#define SPI2 (SPI_BASE + 0x00000400U)
#define SPI3 (SPI_BASE + 0x0000FC00U)
#define SPI4 (SPI_BASE + 0x00011800U)
#define SPI5 (SPI_BASE + 0x00011C00U)
/* I2Sx_ADD(x=1,2) definitions */
#define I2S1_ADD I2S_ADD_BASE
#define I2S2_ADD (I2S_ADD_BASE + 0x00000C00U)
/* SPI registers definitions */
#define SPI_CTL0(spix) REG32((spix) + 0x00U) /*!< SPI control register 0 */
#define SPI_CTL1(spix) REG32((spix) + 0x04U) /*!< SPI control register 1*/
#define SPI_STAT(spix) REG32((spix) + 0x08U) /*!< SPI status register */
#define SPI_DATA(spix) REG32((spix) + 0x0CU) /*!< SPI data register */
#define SPI_CRCPOLY(spix) REG32((spix) + 0x10U) /*!< SPI CRC polynomial register */
#define SPI_RCRC(spix) REG32((spix) + 0x14U) /*!< SPI receive CRC register */
#define SPI_TCRC(spix) REG32((spix) + 0x18U) /*!< SPI transmit CRC register */
#define SPI_I2SCTL(spix) REG32((spix) + 0x1CU) /*!< SPI I2S control register */
#define SPI_I2SPSC(spix) REG32((spix) + 0x20U) /*!< SPI I2S clock prescaler register */
#define SPI_QCTL(spix) REG32((spix) + 0x80U) /*!< SPI quad mode control register */
/* I2S_ADD registers definitions */
#define I2S_ADD_CTL0(i2sx_add) REG32((i2sx_add) + 0x00U) /*!< I2S_ADD control register 0 */
#define I2S_ADD_CTL1(i2sx_add) REG32((i2sx_add) + 0x04U) /*!< I2S_ADD control register 1*/
#define I2S_ADD_STAT(i2sx_add) REG32((i2sx_add) + 0x08U) /*!< I2S_ADD status register */
#define I2S_ADD_DATA(i2sx_add) REG32((i2sx_add) + 0x0CU) /*!< I2S_ADD data register */
#define I2S_ADD_CRCPOLY(i2sx_add) REG32((i2sx_add) + 0x10U) /*!< I2S_ADD CRC polynomial register */
#define I2S_ADD_RCRC(i2sx_add) REG32((i2sx_add) + 0x14U) /*!< I2S_ADD receive CRC register */
#define I2S_ADD_TCRC(i2sx_add) REG32((i2sx_add) + 0x18U) /*!< I2S_ADD transmit CRC register */
#define I2S_ADD_I2SCTL(i2sx_add) REG32((i2sx_add) + 0x1CU) /*!< I2S_ADD I2S control register */
#define I2S_ADD_I2SPSC(i2sx_add) REG32((i2sx_add) + 0x20U) /*!< I2S_ADD I2S clock prescaler register */
/* bits definitions */
/* SPI_CTL0 */
#define SPI_CTL0_CKPH BIT(0) /*!< clock phase selection*/
#define SPI_CTL0_CKPL BIT(1) /*!< clock polarity selection */
#define SPI_CTL0_MSTMOD BIT(2) /*!< master mode enable */
#define SPI_CTL0_PSC BITS(3,5) /*!< master clock prescaler selection */
#define SPI_CTL0_SPIEN BIT(6) /*!< SPI enable*/
#define SPI_CTL0_LF BIT(7) /*!< lsb first mode */
#define SPI_CTL0_SWNSS BIT(8) /*!< nss pin selection in nss software mode */
#define SPI_CTL0_SWNSSEN BIT(9) /*!< nss software mode selection */
#define SPI_CTL0_RO BIT(10) /*!< receive only */
#define SPI_CTL0_FF16 BIT(11) /*!< data frame size */
#define SPI_CTL0_CRCNT BIT(12) /*!< CRC next transfer */
#define SPI_CTL0_CRCEN BIT(13) /*!< CRC calculation enable */
#define SPI_CTL0_BDOEN BIT(14) /*!< bidirectional transmit output enable*/
#define SPI_CTL0_BDEN BIT(15) /*!< bidirectional enable */
/* SPI_CTL1 */
#define SPI_CTL1_DMAREN BIT(0) /*!< receive buffer dma enable */
#define SPI_CTL1_DMATEN BIT(1) /*!< transmit buffer dma enable */
#define SPI_CTL1_NSSDRV BIT(2) /*!< drive nss output */
#define SPI_CTL1_TMOD BIT(4) /*!< SPI TI mode enable */
#define SPI_CTL1_ERRIE BIT(5) /*!< errors interrupt enable */
#define SPI_CTL1_RBNEIE BIT(6) /*!< receive buffer not empty interrupt enable */
#define SPI_CTL1_TBEIE BIT(7) /*!< transmit buffer empty interrupt enable */
/* SPI_STAT */
#define SPI_STAT_RBNE BIT(0) /*!< receive buffer not empty */
#define SPI_STAT_TBE BIT(1) /*!< transmit buffer empty */
#define SPI_STAT_I2SCH BIT(2) /*!< I2S channel side */
#define SPI_STAT_TXURERR BIT(3) /*!< I2S transmission underrun error bit */
#define SPI_STAT_CRCERR BIT(4) /*!< SPI CRC error bit */
#define SPI_STAT_CONFERR BIT(5) /*!< SPI configuration error bit */
#define SPI_STAT_RXORERR BIT(6) /*!< SPI reception overrun error bit */
#define SPI_STAT_TRANS BIT(7) /*!< transmitting on-going bit */
#define SPI_STAT_FERR BIT(8) /*!< format error bit */
/* SPI_DATA */
#define SPI_DATA_DATA BITS(0,15) /*!< data transfer register */
/* SPI_CRCPOLY */
#define SPI_CRCPOLY_CPR BITS(0,15) /*!< CRC polynomial register */
/* SPI_RCRC */
#define SPI_RCRC_RCR BITS(0,15) /*!< RX CRC register */
/* SPI_TCRC */
#define SPI_TCRC_TCR BITS(0,15) /*!< RX CRC register */
/* SPI_I2SCTL */
#define SPI_I2SCTL_CHLEN BIT(0) /*!< channel length */
#define SPI_I2SCTL_DTLEN BITS(1,2) /*!< data length */
#define SPI_I2SCTL_CKPL BIT(3) /*!< idle state clock polarity */
#define SPI_I2SCTL_I2SSTD BITS(4,5) /*!< I2S standard selection */
#define SPI_I2SCTL_PCMSMOD BIT(7) /*!< PCM frame synchronization mode */
#define SPI_I2SCTL_I2SOPMOD BITS(8,9) /*!< I2S operation mode */
#define SPI_I2SCTL_I2SEN BIT(10) /*!< I2S enable */
#define SPI_I2SCTL_I2SSEL BIT(11) /*!< I2S mode selection */
/* SPI_I2S_PSC */
#define SPI_I2SPSC_DIV BITS(0,7) /*!< dividing factor for the prescaler */
#define SPI_I2SPSC_OF BIT(8) /*!< odd factor for the prescaler */
#define SPI_I2SPSC_MCKOEN BIT(9) /*!< I2S MCK output enable */
/* SPI_SPI_QCTL(only SPI5) */
#define SPI_QCTL_QMOD BIT(0) /*!< quad-SPI mode enable */
#define SPI_QCTL_QRD BIT(1) /*!< quad-SPI mode read select */
#define SPI_QCTL_IO23_DRV BIT(2) /*!< drive SPI_IO2 and SPI_IO3 enable */
/* constants definitions */
/* SPI and I2S parameter struct definitions */
typedef struct
{
uint32_t device_mode; /*!< SPI master or slave */
uint32_t trans_mode; /*!< SPI transtype */
uint32_t frame_size; /*!< SPI frame size */
uint32_t nss; /*!< SPI nss control by handware or software */
uint32_t endian; /*!< SPI big endian or little endian */
uint32_t clock_polarity_phase; /*!< SPI clock phase and polarity */
uint32_t prescale; /*!< SPI prescale factor */
}spi_parameter_struct;
/* SPI struct parameter options */
#define SPI_MASTER (SPI_CTL0_MSTMOD | SPI_CTL0_SWNSS) /*!< SPI as master */
#define SPI_SLAVE ((uint32_t)0x00000000U) /*!< SPI as slave */
#define SPI_BIDIRECTIONAL_TRANSMIT SPI_CTL0_BDOEN /*!< SPI work in transmit-only mode */
#define SPI_BIDIRECTIONAL_RECEIVE ~SPI_CTL0_BDOEN /*!< SPI work in receive-only mode */
#define SPI_TRANSMODE_FULLDUPLEX ((uint32_t)0x00000000U) /*!< SPI receive and send data at fullduplex communication */
#define SPI_TRANSMODE_RECEIVEONLY SPI_CTL0_RO /*!< SPI only receive data */
#define SPI_TRANSMODE_BDRECEIVE SPI_CTL0_BDEN /*!< bidirectional receive data */
#define SPI_TRANSMODE_BDTRANSMIT (SPI_CTL0_BDEN | SPI_CTL0_BDOEN) /*!< bidirectional transmit data*/
#define SPI_FRAMESIZE_16BIT SPI_CTL0_FF16 /*!< SPI frame size is 16 bits */
#define SPI_FRAMESIZE_8BIT ((uint32_t)0x00000000U) /*!< SPI frame size is 8 bits */
#define SPI_NSS_SOFT SPI_CTL0_SWNSSEN /*!< SPI nss control by sofrware */
#define SPI_NSS_HARD ((uint32_t)0x00000000U) /*!< SPI nss control by hardware */
#define SPI_ENDIAN_MSB ((uint32_t)0x00000000U) /*!< SPI transmit way is big endian: transmit MSB first */
#define SPI_ENDIAN_LSB SPI_CTL0_LF /*!< SPI transmit way is little endian: transmit LSB first */
#define SPI_CK_PL_LOW_PH_1EDGE ((uint32_t)0x00000000U) /*!< SPI clock polarity is low level and phase is first edge */
#define SPI_CK_PL_HIGH_PH_1EDGE SPI_CTL0_CKPL /*!< SPI clock polarity is high level and phase is first edge */
#define SPI_CK_PL_LOW_PH_2EDGE SPI_CTL0_CKPH /*!< SPI clock polarity is low level and phase is second edge */
#define SPI_CK_PL_HIGH_PH_2EDGE (SPI_CTL0_CKPL|SPI_CTL0_CKPH) /*!< SPI clock polarity is high level and phase is second edge */
#define CTL0_PSC(regval) (BITS(3,5)&((uint32_t)(regval)<<3))
#define SPI_PSC_2 CTL0_PSC(0) /*!< SPI clock prescale factor is 2 */
#define SPI_PSC_4 CTL0_PSC(1) /*!< SPI clock prescale factor is 4 */
#define SPI_PSC_8 CTL0_PSC(2) /*!< SPI clock prescale factor is 8 */
#define SPI_PSC_16 CTL0_PSC(3) /*!< SPI clock prescale factor is 16 */
#define SPI_PSC_32 CTL0_PSC(4) /*!< SPI clock prescale factor is 32 */
#define SPI_PSC_64 CTL0_PSC(5) /*!< SPI clock prescale factor is 64 */
#define SPI_PSC_128 CTL0_PSC(6) /*!< SPI clock prescale factor is 128 */
#define SPI_PSC_256 CTL0_PSC(7) /*!< SPI clock prescale factor is 256 */
/* I2S parameter options */
#define I2S_AUDIOSAMPLE_8K ((uint32_t)8000U) /*!< I2S audio sample rate is 8KHz */
#define I2S_AUDIOSAMPLE_11K ((uint32_t)11025U) /*!< I2S audio sample rate is 11KHz */
#define I2S_AUDIOSAMPLE_16K ((uint32_t)16000U) /*!< I2S audio sample rate is 16KHz */
#define I2S_AUDIOSAMPLE_22K ((uint32_t)22050U) /*!< I2S audio sample rate is 22KHz */
#define I2S_AUDIOSAMPLE_32K ((uint32_t)32000U) /*!< I2S audio sample rate is 32KHz */
#define I2S_AUDIOSAMPLE_44K ((uint32_t)44100U) /*!< I2S audio sample rate is 44KHz */
#define I2S_AUDIOSAMPLE_48K ((uint32_t)48000U) /*!< I2S audio sample rate is 48KHz */
#define I2S_AUDIOSAMPLE_96K ((uint32_t)96000U) /*!< I2S audio sample rate is 96KHz */
#define I2S_AUDIOSAMPLE_192K ((uint32_t)192000U) /*!< I2S audio sample rate is 192KHz */
#define I2SCTL_DTLEN(regval) (BITS(1,2)&((uint32_t)(regval)<<1))
#define I2S_FRAMEFORMAT_DT16B_CH16B I2SCTL_DTLEN(0) /*!< I2S data length is 16 bit and channel length is 16 bit */
#define I2S_FRAMEFORMAT_DT16B_CH32B (I2SCTL_DTLEN(0)|SPI_I2SCTL_CHLEN) /*!< I2S data length is 16 bit and channel length is 32 bit */
#define I2S_FRAMEFORMAT_DT24B_CH32B (I2SCTL_DTLEN(1)|SPI_I2SCTL_CHLEN) /*!< I2S data length is 24 bit and channel length is 32 bit */
#define I2S_FRAMEFORMAT_DT32B_CH32B (I2SCTL_DTLEN(2)|SPI_I2SCTL_CHLEN) /*!< I2S data length is 32 bit and channel length is 32 bit */
#define I2S_MCKOUT_DISABLE ((uint32_t)0x00000000U) /*!< I2S master clock output disable */
#define I2S_MCKOUT_ENABLE SPI_I2SPSC_MCKOEN /*!< I2S master clock output enable */
#define I2SCTL_I2SOPMOD(regval) (BITS(8,9)&((uint32_t)(regval)<<8))
#define I2S_MODE_SLAVETX I2SCTL_I2SOPMOD(0) /*!< I2S slave transmit mode */
#define I2S_MODE_SLAVERX I2SCTL_I2SOPMOD(1) /*!< I2S slave receive mode */
#define I2S_MODE_MASTERTX I2SCTL_I2SOPMOD(2) /*!< I2S master transmit mode */
#define I2S_MODE_MASTERRX I2SCTL_I2SOPMOD(3) /*!< I2S master receive mode */
#define I2SCTL_I2SSTD(regval) (BITS(4,5)&((uint32_t)(regval)<<4))
#define I2S_STD_PHILLIPS I2SCTL_I2SSTD(0) /*!< I2S phillips standard */
#define I2S_STD_MSB I2SCTL_I2SSTD(1) /*!< I2S MSB standard */
#define I2S_STD_LSB I2SCTL_I2SSTD(2) /*!< I2S LSB standard */
#define I2S_STD_PCMSHORT I2SCTL_I2SSTD(3) /*!< I2S PCM short standard */
#define I2S_STD_PCMLONG (I2SCTL_I2SSTD(3)|SPI_I2SCTL_PCMSMOD) /*!< I2S PCM long standard */
#define I2S_CKPL_LOW ((uint32_t)0x00000000U) /*!< I2S clock polarity low level */
#define I2S_CKPL_HIGH SPI_I2SCTL_CKPL /*!< I2S clock polarity high level */
/* SPI DMA constants definitions */
#define SPI_DMA_TRANSMIT ((uint8_t)0x00U) /*!< SPI transmit data use DMA */
#define SPI_DMA_RECEIVE ((uint8_t)0x01U) /*!< SPI receive data use DMA */
/* SPI CRC constants definitions */
#define SPI_CRC_TX ((uint8_t)0x00U) /*!< SPI transmit CRC value */
#define SPI_CRC_RX ((uint8_t)0x01U) /*!< SPI receive CRC value */
/* SPI interrupt constants definitions */
#define SPI_I2S_INT_TBE ((uint8_t)0x00U) /*!< transmit buffer empty interrupt */
#define SPI_I2S_INT_RBNE ((uint8_t)0x01U) /*!< receive buffer not empty interrupt */
#define SPI_I2S_INT_RXORERR ((uint8_t)0x02U) /*!< overrun interrupt */
#define SPI_INT_CONFERR ((uint8_t)0x03U) /*!< config error interrupt */
#define SPI_INT_CRCERR ((uint8_t)0x04U) /*!< CRC error interrupt */
#define I2S_INT_TXURERR ((uint8_t)0x05U) /*!< underrun error interrupt */
#define SPI_I2S_INT_ERR ((uint8_t)0x06U) /*!< error interrupt */
#define SPI_I2S_INT_FERR ((uint8_t)0x07U) /*!< format error interrupt */
/* SPI flag definitions */
#define SPI_FLAG_RBNE SPI_STAT_RBNE /*!< receive buffer not empty flag */
#define SPI_FLAG_TBE SPI_STAT_TBE /*!< transmit buffer empty flag */
#define SPI_FLAG_CRCERR SPI_STAT_CRCERR /*!< CRC error flag */
#define SPI_FLAG_CONFERR SPI_STAT_CONFERR /*!< mode config error flag */
#define SPI_FLAG_RXORERR SPI_STAT_RXORERR /*!< receive overrun error flag */
#define SPI_FLAG_TRANS SPI_STAT_TRANS /*!< transmit on-going flag */
#define SPI_FLAG_FERR SPI_STAT_FERR /*!< format error interrupt flag */
#define I2S_FLAG_RBNE SPI_STAT_RBNE /*!< receive buffer not empty flag */
#define I2S_FLAG_TBE SPI_STAT_TBE /*!< transmit buffer empty flag */
#define I2S_FLAG_CH SPI_STAT_I2SCH /*!< channel side flag */
#define I2S_FLAG_TXURERR SPI_STAT_TXURERR /*!< underrun error flag */
#define I2S_FLAG_RXORERR SPI_STAT_RXORERR /*!< overrun error flag */
#define I2S_FLAG_TRANS SPI_STAT_TRANS /*!< transmit on-going flag */
#define I2S_FLAG_FERR SPI_STAT_FERR /*!< format error interrupt flag */
/* function declarations */
/* reset SPI and I2S */
void spi_i2s_deinit(uint32_t spi_periph);
/* initialize SPI parameter */
void spi_init(uint32_t spi_periph,spi_parameter_struct* spi_struct);
/* enable SPI */
void spi_enable(uint32_t spi_periph);
/* disable SPI */
void spi_disable(uint32_t spi_periph);
/* initialize I2S parameter */
void i2s_init(uint32_t spi_periph,uint32_t i2s_mode,uint32_t i2s_standard,uint32_t i2s_ckpl);
/* configure I2S prescale */
void i2s_psc_config(uint32_t spi_periph,uint32_t i2s_audiosample,uint32_t i2s_frameformat,uint32_t i2s_mckout);
/* enable I2S */
void i2s_enable(uint32_t spi_periph);
/* disable I2S */
void i2s_disable(uint32_t spi_periph);
/* enable SPI nss output */
void spi_nss_output_enable(uint32_t spi_periph);
/* disable SPI nss output */
void spi_nss_output_disable(uint32_t spi_periph);
/* SPI nss pin high level in software mode */
void spi_nss_internal_high(uint32_t spi_periph);
/* SPI nss pin low level in software mode */
void spi_nss_internal_low(uint32_t spi_periph);
/* enable SPI DMA */
void spi_dma_enable(uint32_t spi_periph,uint8_t spi_dma);
/* disable SPI DMA */
void spi_dma_disable(uint32_t spi_periph,uint8_t spi_dma);
/* configure SPI/I2S data frame format */
void spi_i2s_data_frame_format_config(uint32_t spi_periph,uint16_t frame_format);
/* SPI transmit data */
void spi_i2s_data_transmit(uint32_t spi_periph,uint16_t data);
/* SPI receive data */
uint16_t spi_i2s_data_receive(uint32_t spi_periph);
/* configure SPI bidirectional transfer direction */
void spi_bidirectional_transfer_config(uint32_t spi_periph,uint32_t transfer_direction);
/* enable SPI interrupt */
void spi_i2s_interrupt_enable(uint32_t spi_periph,uint8_t spi_i2s_int);
/* disable SPI interrupt */
void spi_i2s_interrupt_disable(uint32_t spi_periph,uint8_t spi_i2s_int);
/* get SPI and I2S interrupt status*/
FlagStatus spi_i2s_interrupt_flag_get(uint32_t spi_periph,uint8_t spi_i2s_int);
/* get SPI and I2S flag status */
FlagStatus spi_i2s_flag_get(uint32_t spi_periph,uint32_t spi_i2s_flag);
/* clear SPI CRC error flag status */
void spi_crc_error_clear(uint32_t spi_periph);
/* set SPI CRC polynomial */
void spi_crc_polynomial_set(uint32_t spi_periph,uint16_t crc_poly);
/* get SPI CRC polynomial */
uint16_t spi_crc_polynomial_get(uint32_t spi_periph);
/* turn on SPI CRC function */
void spi_crc_on(uint32_t spi_periph);
/* turn off SPI CRC function */
void spi_crc_off(uint32_t spi_periph);
/* SPI next data is CRC value */
void spi_crc_next(uint32_t spi_periph);
/* get SPI CRC send value or receive value */
uint16_t spi_crc_get(uint32_t spi_periph,uint8_t spi_crc);
/* enable SPI TI mode */
void spi_ti_mode_enable(uint32_t spi_periph);
/* disable SPI TI mode */
void spi_ti_mode_disable(uint32_t spi_periph);
/* configure i2s full duplex mode */
void i2s_full_duplex_mode_config(uint32_t i2s_add_periph,uint32_t i2s_mode,uint32_t i2s_standard,uint32_t i2s_ckpl,uint32_t i2s_frameformat);
/* enable quad wire SPI */
void qspi_enable(uint32_t spi_periph);
/* disable quad wire SPI */
void qspi_disable(uint32_t spi_periph);
/* enable quad wire SPI write */
void qspi_write_enable(uint32_t spi_periph);
/* enable quad wire SPI read */
void qspi_read_enable(uint32_t spi_periph);
/* enable quad wire SPI_IO2 and SPI_IO3 pin output */
void qspi_io23_output_enable(uint32_t spi_periph);
/* disable quad wire SPI_IO2 and SPI_IO3 pin output */
void qspi_io23_output_disable(uint32_t spi_periph);
#endif /* GD32F4XX_SPI_H */

View File

@@ -0,0 +1,158 @@
/*!
\file gd32f4xx_syscfg.h
\brief definitions for the SYSCFG
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef GD32F4XX_SYSCFG_H
#define GD32F4XX_SYSCFG_H
#include "gd32f4xx.h"
/* SYSCFG definitions */
#define SYSCFG SYSCFG_BASE
/* registers definitions */
#define SYSCFG_CFG0 REG32(SYSCFG + 0x00U) /*!< system configuration register 0 */
#define SYSCFG_CFG1 REG32(SYSCFG + 0x04U) /*!< system configuration register 1 */
#define SYSCFG_EXTISS0 REG32(SYSCFG + 0x08U) /*!< EXTI sources selection register 0 */
#define SYSCFG_EXTISS1 REG32(SYSCFG + 0x0CU) /*!< EXTI sources selection register 1 */
#define SYSCFG_EXTISS2 REG32(SYSCFG + 0x10U) /*!< EXTI sources selection register 2 */
#define SYSCFG_EXTISS3 REG32(SYSCFG + 0x14U) /*!< EXTI sources selection register 3 */
#define SYSCFG_CPSCTL REG32(SYSCFG + 0x20U) /*!< system I/O compensation control register */
/* SYSCFG_CFG0 bits definitions */
#define SYSCFG_CFG0_BOOT_MODE BITS(0,2) /*!< SYSCFG memory remap config */
#define SYSCFG_CFG0_FMC_SWP BIT(8) /*!< FMC memory swap config */
#define SYSCFG_CFG0_EXMC_SWP BITS(10,11) /*!< EXMC memory swap config */
/* SYSCFG_CFG1 bits definitions */
#define SYSCFG_CFG1_ENET_PHY_SEL BIT(23) /*!< Ethernet PHY selection config */
/* SYSCFG_EXTISS0 bits definitions */
#define SYSCFG_EXTISS0_EXTI0_SS BITS(0,3) /*!< EXTI 0 configuration */
#define SYSCFG_EXTISS0_EXTI1_SS BITS(4,7) /*!< EXTI 1 configuration */
#define SYSCFG_EXTISS0_EXTI2_SS BITS(8,11) /*!< EXTI 2 configuration */
#define SYSCFG_EXTISS0_EXTI3_SS BITS(12,15) /*!< EXTI 3 configuration */
/* SYSCFG_EXTISS1 bits definitions */
#define SYSCFG_EXTISS1_EXTI4_SS BITS(0,3) /*!< EXTI 4 configuration */
#define SYSCFG_EXTISS1_EXTI5_SS BITS(4,7) /*!< EXTI 5 configuration */
#define SYSCFG_EXTISS1_EXTI6_SS BITS(8,11) /*!< EXTI 6 configuration */
#define SYSCFG_EXTISS1_EXTI7_SS BITS(12,15) /*!< EXTI 7 configuration */
/* SYSCFG_EXTISS2 bits definitions */
#define SYSCFG_EXTISS2_EXTI8_SS BITS(0,3) /*!< EXTI 8 configuration */
#define SYSCFG_EXTISS2_EXTI9_SS BITS(4,7) /*!< EXTI 9 configuration */
#define SYSCFG_EXTISS2_EXTI10_SS BITS(8,11) /*!< EXTI 10 configuration */
#define SYSCFG_EXTISS2_EXTI11_SS BITS(12,15) /*!< EXTI 11 configuration */
/* SYSCFG_EXTISS3 bits definitions */
#define SYSCFG_EXTISS3_EXTI12_SS BITS(0,3) /*!< EXTI 12 configuration */
#define SYSCFG_EXTISS3_EXTI13_SS BITS(4,7) /*!< EXTI 13 configuration */
#define SYSCFG_EXTISS3_EXTI14_SS BITS(8,11) /*!< EXTI 14 configuration */
#define SYSCFG_EXTISS3_EXTI15_SS BITS(12,15) /*!< EXTI 15 configuration */
/* SYSCFG_CPSCTL bits definitions */
#define SYSCFG_CPSCTL_CPS_EN BIT(0) /*!< I/O compensation cell enable */
#define SYSCFG_CPSCTL_CPS_RDY BIT(8) /*!< I/O compensation cell is ready or not */
/* constants definitions */
/* boot mode definitions */
#define SYSCFG_BOOTMODE_FLASH ((uint8_t)0x00U) /*!< main flash memory remap */
#define SYSCFG_BOOTMODE_BOOTLOADER ((uint8_t)0x01U) /*!< boot loader remap */
#define SYSCFG_BOOTMODE_EXMC_SRAM ((uint8_t)0x02U) /*!< SRAM/NOR 0 and 1 of EXMC remap */
#define SYSCFG_BOOTMODE_SRAM ((uint8_t)0x03U) /*!< SRAM0 of on-chip SRAM remap */
#define SYSCFG_BOOTMODE_EXMC_SDRAM ((uint8_t)0x04U) /*!< SDRAM bank0 of EXMC remap */
/* FMC swap definitions */
#define SYSCFG_FMC_SWP_BANK0 ((uint32_t)0x00000000U) /*!< main flash Bank 0 is mapped at address 0x08000000 */
#define SYSCFG_FMC_SWP_BANK1 ((uint32_t)0x00000100U) /*!< main flash Bank 1 is mapped at address 0x08000000 */
/* EXMC swap enable/disable */
#define SYSCFG_EXMC_SWP_ENABLE ((uint32_t)0x00000400U) /*!< SDRAM bank 0 and bank 1 are swapped with NAND bank 1 and PC card */
#define SYSCFG_EXMC_SWP_DISABLE ((uint32_t)0x00000000U) /*!< no memory mapping swap */
/* EXTI source select definition */
#define EXTISS0 ((uint8_t)0x00U) /*!< EXTI source select GPIOx pin 0~3 */
#define EXTISS1 ((uint8_t)0x01U) /*!< EXTI source select GPIOx pin 4~7 */
#define EXTISS2 ((uint8_t)0x02U) /*!< EXTI source select GPIOx pin 8~11 */
#define EXTISS3 ((uint8_t)0x03U) /*!< EXTI source select GPIOx pin 12~15 */
/* EXTI source select mask bits definition */
#define EXTI_SS_MASK BITS(0,3)
/* EXTI source select jumping step definition */
#define EXTI_SS_JSTEP ((uint8_t)(0x04U))
/* EXTI source select moving step definition */
#define EXTI_SS_MSTEP(pin) (EXTI_SS_JSTEP*((pin)%EXTI_SS_JSTEP))
/* EXTI source port definitions */
#define EXTI_SOURCE_GPIOA ((uint8_t)0x00U) /*!< EXTI GPIOA configuration */
#define EXTI_SOURCE_GPIOB ((uint8_t)0x01U) /*!< EXTI GPIOB configuration */
#define EXTI_SOURCE_GPIOC ((uint8_t)0x02U) /*!< EXTI GPIOC configuration */
#define EXTI_SOURCE_GPIOD ((uint8_t)0x03U) /*!< EXTI GPIOD configuration */
#define EXTI_SOURCE_GPIOE ((uint8_t)0x04U) /*!< EXTI GPIOE configuration */
#define EXTI_SOURCE_GPIOF ((uint8_t)0x05U) /*!< EXTI GPIOF configuration */
#define EXTI_SOURCE_GPIOG ((uint8_t)0x06U) /*!< EXTI GPIOG configuration */
#define EXTI_SOURCE_GPIOH ((uint8_t)0x07U) /*!< EXTI GPIOH configuration */
#define EXTI_SOURCE_GPIOI ((uint8_t)0x08U) /*!< EXTI GPIOI configuration */
/* EXTI source pin definitions */
#define EXTI_SOURCE_PIN0 ((uint8_t)0x00U) /*!< EXTI GPIO pin0 configuration */
#define EXTI_SOURCE_PIN1 ((uint8_t)0x01U) /*!< EXTI GPIO pin1 configuration */
#define EXTI_SOURCE_PIN2 ((uint8_t)0x02U) /*!< EXTI GPIO pin2 configuration */
#define EXTI_SOURCE_PIN3 ((uint8_t)0x03U) /*!< EXTI GPIO pin3 configuration */
#define EXTI_SOURCE_PIN4 ((uint8_t)0x04U) /*!< EXTI GPIO pin4 configuration */
#define EXTI_SOURCE_PIN5 ((uint8_t)0x05U) /*!< EXTI GPIO pin5 configuration */
#define EXTI_SOURCE_PIN6 ((uint8_t)0x06U) /*!< EXTI GPIO pin6 configuration */
#define EXTI_SOURCE_PIN7 ((uint8_t)0x07U) /*!< EXTI GPIO pin7 configuration */
#define EXTI_SOURCE_PIN8 ((uint8_t)0x08U) /*!< EXTI GPIO pin8 configuration */
#define EXTI_SOURCE_PIN9 ((uint8_t)0x09U) /*!< EXTI GPIO pin9 configuration */
#define EXTI_SOURCE_PIN10 ((uint8_t)0x0AU) /*!< EXTI GPIO pin10 configuration */
#define EXTI_SOURCE_PIN11 ((uint8_t)0x0BU) /*!< EXTI GPIO pin11 configuration */
#define EXTI_SOURCE_PIN12 ((uint8_t)0x0CU) /*!< EXTI GPIO pin12 configuration */
#define EXTI_SOURCE_PIN13 ((uint8_t)0x0DU) /*!< EXTI GPIO pin13 configuration */
#define EXTI_SOURCE_PIN14 ((uint8_t)0x0EU) /*!< EXTI GPIO pin14 configuration */
#define EXTI_SOURCE_PIN15 ((uint8_t)0x0FU) /*!< EXTI GPIO pin15 configuration */
/* ethernet PHY selection */
#define SYSCFG_ENET_PHY_MII ((uint32_t)0x00000000U)
#define SYSCFG_ENET_PHY_RMII ((uint32_t)0x00800000U)
/* I/O compensation cell enable/disable */
#define SYSCFG_COMPENSATION_ENABLE ((uint32_t)0x00000001U)
#define SYSCFG_COMPENSATION_DISABLE ((uint32_t)0x00000000U)
/* function declarations */
/* deinit syscfg module */
void syscfg_deinit(void);
/* configure the boot mode */
void syscfg_bootmode_config(uint8_t syscfg_bootmode);
/* FMC memory mapping swap */
void syscfg_fmc_swap_config(uint32_t syscfg_fmc_swap);
/* configure the EXMC swap */
void syscfg_exmc_swap_config(uint32_t syscfg_exmc_swap);
/* configure the GPIO pin as EXTI Line */
void syscfg_exti_line_config(uint8_t exti_port, uint8_t exti_pin);
/* configure the PHY interface for the ethernet MAC */
void syscfg_enet_phy_interface_config(uint32_t syscfg_enet_phy_interface);
/* configure the I/O compensation cell */
void syscfg_compensation_config(uint32_t syscfg_compensation);
/* check the I/O compensation cell is ready or not */
FlagStatus syscfg_flag_get(void);
#endif /* GD32F4XX_SYSCFG_H */

View File

@@ -0,0 +1,735 @@
/*!
\file gd32f4xx_timer.h
\brief definitions for the TIMER
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#ifndef GD32F4XX_TIMER_H
#define GD32F4XX_TIMER_H
#include "gd32f4xx.h"
/* TIMERx(x=0..13) definitions */
#define TIMER0 (TIMER_BASE + 0x00010000U)
#define TIMER1 (TIMER_BASE + 0x00000000U)
#define TIMER2 (TIMER_BASE + 0x00000400U)
#define TIMER3 (TIMER_BASE + 0x00000800U)
#define TIMER4 (TIMER_BASE + 0x00000C00U)
#define TIMER5 (TIMER_BASE + 0x00001000U)
#define TIMER6 (TIMER_BASE + 0x00001400U)
#define TIMER7 (TIMER_BASE + 0x00010400U)
#define TIMER8 (TIMER_BASE + 0x00014000U)
#define TIMER9 (TIMER_BASE + 0x00014400U)
#define TIMER10 (TIMER_BASE + 0x00014800U)
#define TIMER11 (TIMER_BASE + 0x00001800U)
#define TIMER12 (TIMER_BASE + 0x00001C00U)
#define TIMER13 (TIMER_BASE + 0x00002000U)
/* registers definitions */
#define TIMER_CTL0(timerx) REG32((timerx) + 0x00U) /*!< TIMER control register 0 */
#define TIMER_CTL1(timerx) REG32((timerx) + 0x04U) /*!< TIMER control register 1 */
#define TIMER_SMCFG(timerx) REG32((timerx) + 0x08U) /*!< TIMER slave mode configuration register */
#define TIMER_DMAINTEN(timerx) REG32((timerx) + 0x0CU) /*!< TIMER DMA and interrupt enable register */
#define TIMER_INTF(timerx) REG32((timerx) + 0x10U) /*!< TIMER interrupt flag register */
#define TIMER_SWEVG(timerx) REG32((timerx) + 0x14U) /*!< TIMER software event generation register */
#define TIMER_CHCTL0(timerx) REG32((timerx) + 0x18U) /*!< TIMER channel control register 0 */
#define TIMER_CHCTL1(timerx) REG32((timerx) + 0x1CU) /*!< TIMER channel control register 1 */
#define TIMER_CHCTL2(timerx) REG32((timerx) + 0x20U) /*!< TIMER channel control register 2 */
#define TIMER_CNT(timerx) REG32((timerx) + 0x24U) /*!< TIMER counter register */
#define TIMER_PSC(timerx) REG32((timerx) + 0x28U) /*!< TIMER prescaler register */
#define TIMER_CAR(timerx) REG32((timerx) + 0x2CU) /*!< TIMER counter auto reload register */
#define TIMER_CREP(timerx) REG32((timerx) + 0x30U) /*!< TIMER counter repetition register */
#define TIMER_CH0CV(timerx) REG32((timerx) + 0x34U) /*!< TIMER channel 0 capture/compare value register */
#define TIMER_CH1CV(timerx) REG32((timerx) + 0x38U) /*!< TIMER channel 1 capture/compare value register */
#define TIMER_CH2CV(timerx) REG32((timerx) + 0x3CU) /*!< TIMER channel 2 capture/compare value register */
#define TIMER_CH3CV(timerx) REG32((timerx) + 0x40U) /*!< TIMER channel 3 capture/compare value register */
#define TIMER_CCHP(timerx) REG32((timerx) + 0x44U) /*!< TIMER complementary channel protection register */
#define TIMER_DMACFG(timerx) REG32((timerx) + 0x48U) /*!< TIMER DMA configuration register */
#define TIMER_DMATB(timerx) REG32((timerx) + 0x4CU) /*!< TIMER DMA transfer buffer register */
#define TIMER_IRMP(timerx) REG32((timerx) + 0x50U) /*!< TIMER channel input remap register */
#define TIMER_CFG(timerx) REG32((timerx) + 0xFCU) /*!< TIMER configuration register */
/* bits definitions */
/* TIMER_CTL0 */
#define TIMER_CTL0_CEN BIT(0) /*!< TIMER counter enable */
#define TIMER_CTL0_UPDIS BIT(1) /*!< update disable */
#define TIMER_CTL0_UPS BIT(2) /*!< update source */
#define TIMER_CTL0_SPM BIT(3) /*!< single pulse mode */
#define TIMER_CTL0_DIR BIT(4) /*!< timer counter direction */
#define TIMER_CTL0_CAM BITS(5,6) /*!< center-aligned mode selection */
#define TIMER_CTL0_ARSE BIT(7) /*!< auto-reload shadow enable */
#define TIMER_CTL0_CKDIV BITS(8,9) /*!< clock division */
/* TIMER_CTL1 */
#define TIMER_CTL1_CCSE BIT(0) /*!< commutation control shadow enable */
#define TIMER_CTL1_CCUC BIT(2) /*!< commutation control shadow register update control */
#define TIMER_CTL1_DMAS BIT(3) /*!< DMA request source selection */
#define TIMER_CTL1_MMC BITS(4,6) /*!< master mode control */
#define TIMER_CTL1_TI0S BIT(7) /*!< channel 0 trigger input selection(hall mode selection) */
#define TIMER_CTL1_ISO0 BIT(8) /*!< idle state of channel 0 output */
#define TIMER_CTL1_ISO0N BIT(9) /*!< idle state of channel 0 complementary output */
#define TIMER_CTL1_ISO1 BIT(10) /*!< idle state of channel 1 output */
#define TIMER_CTL1_ISO1N BIT(11) /*!< idle state of channel 1 complementary output */
#define TIMER_CTL1_ISO2 BIT(12) /*!< idle state of channel 2 output */
#define TIMER_CTL1_ISO2N BIT(13) /*!< idle state of channel 2 complementary output */
#define TIMER_CTL1_ISO3 BIT(14) /*!< idle state of channel 3 output */
/* TIMER_SMCFG */
#define TIMER_SMCFG_SMC BITS(0,2) /*!< slave mode control */
#define TIMER_SMCFG_TRGS BITS(4,6) /*!< trigger selection */
#define TIMER_SMCFG_MSM BIT(7) /*!< master-slave mode */
#define TIMER_SMCFG_ETFC BITS(8,11) /*!< external trigger filter control */
#define TIMER_SMCFG_ETPSC BITS(12,13) /*!< external trigger prescaler */
#define TIMER_SMCFG_SMC1 BIT(14) /*!< part of SMC for enable external clock mode 1 */
#define TIMER_SMCFG_ETP BIT(15) /*!< external trigger polarity */
/* TIMER_DMAINTEN */
#define TIMER_DMAINTEN_UPIE BIT(0) /*!< update interrupt enable */
#define TIMER_DMAINTEN_CH0IE BIT(1) /*!< channel 0 interrupt enable */
#define TIMER_DMAINTEN_CH1IE BIT(2) /*!< channel 1 interrupt enable */
#define TIMER_DMAINTEN_CH2IE BIT(3) /*!< channel 2 interrupt enable */
#define TIMER_DMAINTEN_CH3IE BIT(4) /*!< channel 3 interrupt enable */
#define TIMER_DMAINTEN_CMTIE BIT(5) /*!< commutation DMA request enable */
#define TIMER_DMAINTEN_TRGIE BIT(6) /*!< trigger interrupt enable */
#define TIMER_DMAINTEN_BRKIE BIT(7) /*!< break interrupt enable */
#define TIMER_DMAINTEN_UPDEN BIT(8) /*!< update DMA request enable */
#define TIMER_DMAINTEN_CH0DEN BIT(8) /*!< channel 0 DMA request enable */
#define TIMER_DMAINTEN_CH1DEN BIT(10) /*!< channel 1 DMA request enable */
#define TIMER_DMAINTEN_CH2DEN BIT(11) /*!< channel 2 DMA request enable */
#define TIMER_DMAINTEN_CH3DEN BIT(12) /*!< channel 3 DMA request enable */
#define TIMER_DMAINTEN_CMTDEN BIT(13) /*!< channel control update DMA request enable */
#define TIMER_DMAINTEN_TRGDEN BIT(14) /*!< trigger DMA request enable */
/* TIMER_INTF */
#define TIMER_INTF_UPIF BIT(0) /*!< update interrupt flag */
#define TIMER_INTF_CH0IF BIT(1) /*!< channel 0 interrupt flag */
#define TIMER_INTF_CH1IF BIT(2) /*!< channel 1 interrupt flag */
#define TIMER_INTF_CH2IF BIT(3) /*!< channel 2 interrupt flag */
#define TIMER_INTF_CH3IF BIT(4) /*!< channel 3 interrupt flag */
#define TIMER_INTF_CMTIF BIT(5) /*!< channel commutation interrupt flag */
#define TIMER_INTF_TRGIF BIT(6) /*!< trigger interrupt flag */
#define TIMER_INTF_BRKIF BIT(7) /*!< break interrupt flag */
#define TIMER_INTF_CH0OF BIT(9) /*!< channel 0 overcapture flag */
#define TIMER_INTF_CH1OF BIT(10) /*!< channel 1 overcapture flag */
#define TIMER_INTF_CH2OF BIT(11) /*!< channel 2 overcapture flag */
#define TIMER_INTF_CH3OF BIT(12) /*!< channel 3 overcapture flag */
/* TIMER_SWEVG */
#define TIMER_SWEVG_UPG BIT(0) /*!< update event generate */
#define TIMER_SWEVG_CH0G BIT(1) /*!< channel 0 capture or compare event generation */
#define TIMER_SWEVG_CH1G BIT(2) /*!< channel 1 capture or compare event generation */
#define TIMER_SWEVG_CH2G BIT(3) /*!< channel 2 capture or compare event generation */
#define TIMER_SWEVG_CH3G BIT(4) /*!< channel 3 capture or compare event generation */
#define TIMER_SWEVG_CMTG BIT(5) /*!< channel commutation event generation */
#define TIMER_SWEVG_TRGG BIT(6) /*!< trigger event generation */
#define TIMER_SWEVG_BRKG BIT(7) /*!< break event generation */
/* TIMER_CHCTL0 */
/* output compare mode */
#define TIMER_CHCTL0_CH0MS BITS(0,1) /*!< channel 0 mode selection */
#define TIMER_CHCTL0_CH0COMFEN BIT(2) /*!< channel 0 output compare fast enable */
#define TIMER_CHCTL0_CH0COMSEN BIT(3) /*!< channel 0 output compare shadow enable */
#define TIMER_CHCTL0_CH0COMCTL BITS(4,6) /*!< channel 0 output compare mode */
#define TIMER_CHCTL0_CH0COMCEN BIT(7) /*!< channel 0 output compare clear enable */
#define TIMER_CHCTL0_CH1MS BITS(8,9) /*!< channel 1 mode selection */
#define TIMER_CHCTL0_CH1COMFEN BIT(10) /*!< channel 1 output compare fast enable */
#define TIMER_CHCTL0_CH1COMSEN BIT(11) /*!< channel 1 output compare shadow enable */
#define TIMER_CHCTL0_CH1COMCTL BITS(12,14) /*!< channel 1 output compare mode */
#define TIMER_CHCTL0_CH1COMCEN BIT(15) /*!< channel 1 output compare clear enable */
/* input capture mode */
#define TIMER_CHCTL0_CH0CAPPSC BITS(2,3) /*!< channel 0 input capture prescaler */
#define TIMER_CHCTL0_CH0CAPFLT BITS(4,7) /*!< channel 0 input capture filter control */
#define TIMER_CHCTL0_CH1CAPPSC BITS(10,11) /*!< channel 1 input capture prescaler */
#define TIMER_CHCTL0_CH1CAPFLT BITS(12,15) /*!< channel 1 input capture filter control */
/* TIMER_CHCTL1 */
/* output compare mode */
#define TIMER_CHCTL1_CH2MS BITS(0,1) /*!< channel 2 mode selection */
#define TIMER_CHCTL1_CH2COMFEN BIT(2) /*!< channel 2 output compare fast enable */
#define TIMER_CHCTL1_CH2COMSEN BIT(3) /*!< channel 2 output compare shadow enable */
#define TIMER_CHCTL1_CH2COMCTL BITS(4,6) /*!< channel 2 output compare mode */
#define TIMER_CHCTL1_CH2COMCEN BIT(7) /*!< channel 2 output compare clear enable */
#define TIMER_CHCTL1_CH3MS BITS(8,9) /*!< channel 3 mode selection */
#define TIMER_CHCTL1_CH3COMFEN BIT(10) /*!< channel 3 output compare fast enable */
#define TIMER_CHCTL1_CH3COMSEN BIT(11) /*!< channel 3 output compare shadow enable */
#define TIMER_CHCTL1_CH3COMCTL BITS(12,14) /*!< channel 3 output compare mode */
#define TIMER_CHCTL1_CH3COMCEN BIT(15) /*!< channel 3 output compare clear enable */
/* input capture mode */
#define TIMER_CHCTL1_CH2CAPPSC BITS(2,3) /*!< channel 2 input capture prescaler */
#define TIMER_CHCTL1_CH2CAPFLT BITS(4,7) /*!< channel 2 input capture filter control */
#define TIMER_CHCTL1_CH3CAPPSC BITS(10,11) /*!< channel 3 input capture prescaler */
#define TIMER_CHCTL1_CH3CAPFLT BITS(12,15) /*!< channel 3 input capture filter control */
/* TIMER_CHCTL2 */
#define TIMER_CHCTL2_CH0EN BIT(0) /*!< channel 0 enable */
#define TIMER_CHCTL2_CH0P BIT(1) /*!< channel 0 polarity */
#define TIMER_CHCTL2_CH0NEN BIT(2) /*!< channel 0 complementary output enable */
#define TIMER_CHCTL2_CH0NP BIT(3) /*!< channel 0 complementary output polarity */
#define TIMER_CHCTL2_CH1EN BIT(4) /*!< channel 1 enable */
#define TIMER_CHCTL2_CH1P BIT(5) /*!< channel 1 polarity */
#define TIMER_CHCTL2_CH1NEN BIT(6) /*!< channel 1 complementary output enable */
#define TIMER_CHCTL2_CH1NP BIT(7) /*!< channel 1 complementary output polarity */
#define TIMER_CHCTL2_CH2EN BIT(8) /*!< channel 2 enable */
#define TIMER_CHCTL2_CH2P BIT(9) /*!< channel 2 polarity */
#define TIMER_CHCTL2_CH2NEN BIT(10) /*!< channel 2 complementary output enable */
#define TIMER_CHCTL2_CH2NP BIT(11) /*!< channel 2 complementary output polarity */
#define TIMER_CHCTL2_CH3EN BIT(12) /*!< channel 3 enable */
#define TIMER_CHCTL2_CH3P BIT(13) /*!< channel 3 polarity */
/* TIMER_CNT */
#define TIMER_CNT_CNT16 BITS(0,15) /*!< 16 bit timer counter */
#define TIMER_CNT_CNT32 BITS(0,31) /*!< 32 bit(TIMER1,TIMER4) timer counter */
/* TIMER_PSC */
#define TIMER_PSC_PSC BITS(0,15) /*!< prescaler value of the counter clock */
/* TIMER_CAR */
#define TIMER_CAR_CARL16 BITS(0,15) /*!< 16 bit counter auto reload value */
#define TIMER_CAR_CARL32 BITS(0,31) /*!< 32 bit(TIMER1,TIMER4) counter auto reload value */
/* TIMER_CREP */
#define TIMER_CREP_CREP BITS(0,7) /*!< counter repetition value */
/* TIMER_CH0CV */
#define TIMER_CH0CV_CH0VAL16 BITS(0,15) /*!< 16 bit capture/compare value of channel 0 */
#define TIMER_CH0CV_CH0VAL32 BITS(0,31) /*!< 32 bit(TIMER1,TIMER4) capture/compare value of channel 0 */
/* TIMER_CH1CV */
#define TIMER_CH1CV_CH1VAL16 BITS(0,15) /*!< 16 bit capture/compare value of channel 1 */
#define TIMER_CH1CV_CH1VAL32 BITS(0,31) /*!< 32 bit(TIMER1,TIMER4) capture/compare value of channel 1 */
/* TIMER_CH2CV */
#define TIMER_CH2CV_CH2VAL16 BITS(0,15) /*!< 16 bit capture/compare value of channel 2 */
#define TIMER_CH2CV_CH2VAL32 BITS(0,31) /*!< 32 bit(TIMER1,TIMER4) capture/compare value of channel 2 */
/* TIMER_CH3CV */
#define TIMER_CH3CV_CH3VAL16 BITS(0,15) /*!< 16 bit capture/compare value of channel 3 */
#define TIMER_CH3CV_CH3VAL32 BITS(0,31) /*!< 32 bit(TIMER1,TIMER4) capture/compare value of channel 3 */
/* TIMER_CCHP */
#define TIMER_CCHP_DTCFG BITS(0,7) /*!< dead time configure */
#define TIMER_CCHP_PROT BITS(8,9) /*!< complementary register protect control */
#define TIMER_CCHP_IOS BIT(10) /*!< idle mode off-state configure */
#define TIMER_CCHP_ROS BIT(11) /*!< run mode off-state configure */
#define TIMER_CCHP_BRKEN BIT(12) /*!< break enable */
#define TIMER_CCHP_BRKP BIT(13) /*!< break polarity */
#define TIMER_CCHP_OAEN BIT(14) /*!< output automatic enable */
#define TIMER_CCHP_POEN BIT(15) /*!< primary output enable */
/* TIMER_DMACFG */
#define TIMER_DMACFG_DMATA BITS(0,4) /*!< DMA transfer access start address */
#define TIMER_DMACFG_DMATC BITS(8,12) /*!< DMA transfer count */
/* TIMER_DMATB */
#define TIMER_DMATB_DMATB BITS(0,15) /*!< DMA transfer buffer address */
/* TIMER_IRMP */
#define TIMER1_IRMP_ITI1_RMP BITS(10,11) /*!< TIMER1 internal trigger input 1 remap */
#define TIMER4_IRMP_CI3_RMP BITS(6,7) /*!< TIMER4 channel 3 input remap */
#define TIMER10_IRMP_ITI1_RMP BITS(0,1) /*!< TIMER10 internal trigger input 1 remap */
/* TIMER_CFG */
#define TIMER_CFG_OUTSEL BIT(0) /*!< the output value selection */
#define TIMER_CFG_CHVSEL BIT(1) /*!< write CHxVAL register selection */
/* constants definitions */
/* TIMER init parameter struct definitions*/
typedef struct
{
uint16_t prescaler; /*!< prescaler value */
uint16_t alignedmode; /*!< aligned mode */
uint16_t counterdirection; /*!< counter direction */
uint32_t period; /*!< period value */
uint16_t clockdivision; /*!< clock division value */
uint8_t repetitioncounter; /*!< the counter repetition value */
}timer_parameter_struct;
/* break parameter struct definitions*/
typedef struct
{
uint16_t runoffstate; /*!< run mode off-state */
uint32_t ideloffstate; /*!< idle mode off-state */
uint16_t deadtime; /*!< dead time */
uint16_t breakpolarity; /*!< break polarity */
uint16_t outputautostate; /*!< output automatic enable */
uint16_t protectmode; /*!< complementary register protect control */
uint16_t breakstate; /*!< break enable */
}timer_break_parameter_struct;
/* channel output parameter struct definitions */
typedef struct
{
uint32_t outputstate; /*!< channel output state */
uint16_t outputnstate; /*!< channel complementary output state */
uint16_t ocpolarity; /*!< channel output polarity */
uint16_t ocnpolarity; /*!< channel complementary output polarity */
uint16_t ocidlestate; /*!< idle state of channel output */
uint16_t ocnidlestate; /*!< idle state of channel complementary output */
}timer_oc_parameter_struct;
/* channel input parameter struct definitions */
typedef struct
{
uint16_t icpolarity; /*!< channel input polarity */
uint16_t icselection; /*!< channel input mode selection */
uint16_t icprescaler; /*!< channel input capture prescaler */
uint16_t icfilter; /*!< channel input capture filter control */
}timer_ic_parameter_struct;
/* TIMER interrupt source */
#define TIMER_INT_UP ((uint32_t)0x00000001U) /*!< update interrupt */
#define TIMER_INT_CH0 ((uint32_t)0x00000002U) /*!< channel 0 interrupt */
#define TIMER_INT_CH1 ((uint32_t)0x00000004U) /*!< channel 1 interrupt */
#define TIMER_INT_CH2 ((uint32_t)0x00000008U) /*!< channel 2 interrupt */
#define TIMER_INT_CH3 ((uint32_t)0x00000010U) /*!< channel 3 interrupt */
#define TIMER_INT_CMT ((uint32_t)0x00000020U) /*!< channel commutation interrupt flag */
#define TIMER_INT_TRG ((uint32_t)0x00000040U) /*!< trigger interrupt */
#define TIMER_INT_BRK ((uint32_t)0x00000080U) /*!< break interrupt */
/* TIMER flag */
#define TIMER_FLAG_UP ((uint32_t)0x00000001U) /*!< update flag */
#define TIMER_FLAG_CH0 ((uint32_t)0x00000002U) /*!< channel 0 flag */
#define TIMER_FLAG_CH1 ((uint32_t)0x00000004U) /*!< channel 1 flag */
#define TIMER_FLAG_CH2 ((uint32_t)0x00000008U) /*!< channel 2 flag */
#define TIMER_FLAG_CH3 ((uint32_t)0x00000010U) /*!< channel 3 flag */
#define TIMER_FLAG_CMT ((uint32_t)0x00000020U) /*!< channel control update flag */
#define TIMER_FLAG_TRG ((uint32_t)0x00000040U) /*!< trigger flag */
#define TIMER_FLAG_BRK ((uint32_t)0x00000080U) /*!< break flag */
#define TIMER_FLAG_CH0OF ((uint32_t)0x00000200U) /*!< channel 0 overcapture flag */
#define TIMER_FLAG_CH1OF ((uint32_t)0x00000400U) /*!< channel 1 overcapture flag */
#define TIMER_FLAG_CH2OF ((uint32_t)0x00000800U) /*!< channel 2 overcapture flag */
#define TIMER_FLAG_CH3OF ((uint32_t)0x00001000U) /*!< channel 3 overcapture flag */
/* TIMER DMA source enable */
#define TIMER_DMA_UPD ((uint16_t)0x0100U) /*!< update DMA enable */
#define TIMER_DMA_CH0D ((uint16_t)0x0200U) /*!< channel 0 DMA enable */
#define TIMER_DMA_CH1D ((uint16_t)0x0400U) /*!< channel 1 DMA enable */
#define TIMER_DMA_CH2D ((uint16_t)0x0800U) /*!< channel 2 DMA enable */
#define TIMER_DMA_CH3D ((uint16_t)0x1000U) /*!< channel 3 DMA enable */
#define TIMER_DMA_CMTD ((uint16_t)0x2000U) /*!< commutation DMA request enable */
#define TIMER_DMA_TRGD ((uint16_t)0x4000U) /*!< trigger DMA enable */
/* channel DMA request source selection */
#define TIMER_DMAREQUEST_UPDATEEVENT ((uint8_t)0x00U) /*!< DMA request of channel y is sent when update event occurs */
#define TIMER_DMAREQUEST_CHANNELEVENT ((uint8_t)0x01U) /*!< DMA request of channel y is sent when channel y event occurs */
/* DMA access base address */
#define DMACFG_DMATA(regval) (BITS(0, 4) & ((uint32_t)(regval) << 0U))
#define TIMER_DMACFG_DMATA_CTL0 DMACFG_DMATA(0) /*!< DMA transfer address is TIMER_CTL0 */
#define TIMER_DMACFG_DMATA_CTL1 DMACFG_DMATA(1) /*!< DMA transfer address is TIMER_CTL1 */
#define TIMER_DMACFG_DMATA_SMCFG DMACFG_DMATA(2) /*!< DMA transfer address is TIMER_SMCFG */
#define TIMER_DMACFG_DMATA_DMAINTEN DMACFG_DMATA(3) /*!< DMA transfer address is TIMER_DMAINTEN */
#define TIMER_DMACFG_DMATA_INTF DMACFG_DMATA(4) /*!< DMA transfer address is TIMER_INTF */
#define TIMER_DMACFG_DMATA_SWEVG DMACFG_DMATA(5) /*!< DMA transfer address is TIMER_SWEVG */
#define TIMER_DMACFG_DMATA_CHCTL0 DMACFG_DMATA(6) /*!< DMA transfer address is TIMER_CHCTL0 */
#define TIMER_DMACFG_DMATA_CHCTL1 DMACFG_DMATA(7) /*!< DMA transfer address is TIMER_CHCTL1 */
#define TIMER_DMACFG_DMATA_CHCTL2 DMACFG_DMATA(8) /*!< DMA transfer address is TIMER_CHCTL2 */
#define TIMER_DMACFG_DMATA_CNT DMACFG_DMATA(9) /*!< DMA transfer address is TIMER_CNT */
#define TIMER_DMACFG_DMATA_PSC DMACFG_DMATA(10) /*!< DMA transfer address is TIMER_PSC */
#define TIMER_DMACFG_DMATA_CAR DMACFG_DMATA(11) /*!< DMA transfer address is TIMER_CAR */
#define TIMER_DMACFG_DMATA_CREP DMACFG_DMATA(12) /*!< DMA transfer address is TIMER_CREP */
#define TIMER_DMACFG_DMATA_CH0CV DMACFG_DMATA(13) /*!< DMA transfer address is TIMER_CH0CV */
#define TIMER_DMACFG_DMATA_CH1CV DMACFG_DMATA(14) /*!< DMA transfer address is TIMER_CH1CV */
#define TIMER_DMACFG_DMATA_CH2CV DMACFG_DMATA(15) /*!< DMA transfer address is TIMER_CH2CV */
#define TIMER_DMACFG_DMATA_CH3CV DMACFG_DMATA(16) /*!< DMA transfer address is TIMER_CH3CV */
#define TIMER_DMACFG_DMATA_CCHP DMACFG_DMATA(17) /*!< DMA transfer address is TIMER_CCHP */
#define TIMER_DMACFG_DMATA_DMACFG DMACFG_DMATA(18) /*!< DMA transfer address is TIMER_DMACFG */
#define TIMER_DMACFG_DMATA_DMATB DMACFG_DMATA(19) /*!< DMA transfer address is TIMER_DMATB */
/* DMA access burst length */
#define DMACFG_DMATC(regval) (BITS(8, 12) & ((uint32_t)(regval) << 8U))
#define TIMER_DMACFG_DMATC_1TRANSFER DMACFG_DMATC(0) /*!< DMA transfer 1 time */
#define TIMER_DMACFG_DMATC_2TRANSFER DMACFG_DMATC(1) /*!< DMA transfer 2 times */
#define TIMER_DMACFG_DMATC_3TRANSFER DMACFG_DMATC(2) /*!< DMA transfer 3 times */
#define TIMER_DMACFG_DMATC_4TRANSFER DMACFG_DMATC(3) /*!< DMA transfer 4 times */
#define TIMER_DMACFG_DMATC_5TRANSFER DMACFG_DMATC(4) /*!< DMA transfer 5 times */
#define TIMER_DMACFG_DMATC_6TRANSFER DMACFG_DMATC(5) /*!< DMA transfer 6 times */
#define TIMER_DMACFG_DMATC_7TRANSFER DMACFG_DMATC(6) /*!< DMA transfer 7 times */
#define TIMER_DMACFG_DMATC_8TRANSFER DMACFG_DMATC(7) /*!< DMA transfer 8 times */
#define TIMER_DMACFG_DMATC_9TRANSFER DMACFG_DMATC(8) /*!< DMA transfer 9 times */
#define TIMER_DMACFG_DMATC_10TRANSFER DMACFG_DMATC(9) /*!< DMA transfer 10 times */
#define TIMER_DMACFG_DMATC_11TRANSFER DMACFG_DMATC(10) /*!< DMA transfer 11 times */
#define TIMER_DMACFG_DMATC_12TRANSFER DMACFG_DMATC(11) /*!< DMA transfer 12 times */
#define TIMER_DMACFG_DMATC_13TRANSFER DMACFG_DMATC(12) /*!< DMA transfer 13 times */
#define TIMER_DMACFG_DMATC_14TRANSFER DMACFG_DMATC(13) /*!< DMA transfer 14 times */
#define TIMER_DMACFG_DMATC_15TRANSFER DMACFG_DMATC(14) /*!< DMA transfer 15 times */
#define TIMER_DMACFG_DMATC_16TRANSFER DMACFG_DMATC(15) /*!< DMA transfer 16 times */
#define TIMER_DMACFG_DMATC_17TRANSFER DMACFG_DMATC(16) /*!< DMA transfer 17 times */
#define TIMER_DMACFG_DMATC_18TRANSFER DMACFG_DMATC(17) /*!< DMA transfer 18 times */
/* TIMER software event generation source */
#define TIMER_EVENT_SRC_UPG ((uint16_t)0x0001U) /*!< update event generation */
#define TIMER_EVENT_SRC_CH0G ((uint16_t)0x0002U) /*!< channel 0 capture or compare event generation */
#define TIMER_EVENT_SRC_CH1G ((uint16_t)0x0004U) /*!< channel 1 capture or compare event generation */
#define TIMER_EVENT_SRC_CH2G ((uint16_t)0x0008U) /*!< channel 2 capture or compare event generation */
#define TIMER_EVENT_SRC_CH3G ((uint16_t)0x0010U) /*!< channel 3 capture or compare event generation */
#define TIMER_EVENT_SRC_CMTG ((uint16_t)0x0020U) /*!< channel commutation event generation */
#define TIMER_EVENT_SRC_TRGG ((uint16_t)0x0040U) /*!< trigger event generation */
#define TIMER_EVENT_SRC_BRKG ((uint16_t)0x0080U) /*!< break event generation */
/* center-aligned mode selection */
#define CTL0_CAM(regval) ((uint16_t)(BITS(5, 6) & ((uint32_t)(regval) << 5U)))
#define TIMER_COUNTER_EDGE CTL0_CAM(0) /*!< edge-aligned mode */
#define TIMER_COUNTER_CENTER_DOWN CTL0_CAM(1) /*!< center-aligned and counting down assert mode */
#define TIMER_COUNTER_CENTER_UP CTL0_CAM(2) /*!< center-aligned and counting up assert mode */
#define TIMER_COUNTER_CENTER_BOTH CTL0_CAM(3) /*!< center-aligned and counting up/down assert mode */
/* TIMER prescaler reload mode */
#define TIMER_PSC_RELOAD_NOW ((uint8_t)0x00U) /*!< the prescaler is loaded right now */
#define TIMER_PSC_RELOAD_UPDATE ((uint8_t)0x01U) /*!< the prescaler is loaded at the next update event */
/* count direction */
#define TIMER_COUNTER_UP ((uint16_t)0x0000U) /*!< counter up direction */
#define TIMER_COUNTER_DOWN ((uint16_t)0x0010U) /*!< counter down direction */
/* specify division ratio between TIMER clock and dead-time and sampling clock */
#define CTL0_CKDIV(regval) ((uint16_t)(BITS(8, 9) & ((uint32_t)(regval) << 8U)))
#define TIMER_CKDIV_DIV1 CTL0_CKDIV(0) /*!< clock division value is 1,fDTS=fTIMER_CK */
#define TIMER_CKDIV_DIV2 CTL0_CKDIV(1) /*!< clock division value is 2,fDTS= fTIMER_CK/2 */
#define TIMER_CKDIV_DIV4 CTL0_CKDIV(2) /*!< clock division value is 4, fDTS= fTIMER_CK/4 */
/* single pulse mode */
#define TIMER_SP_MODE_SINGLE ((uint8_t)0x00U) /*!< single pulse mode */
#define TIMER_SP_MODE_REPETITIVE ((uint8_t)0x01U) /*!< repetitive pulse mode */
/* update source */
#define TIMER_UPDATE_SRC_REGULAR ((uint8_t)0x00U) /*!< update generate only by counter overflow/underflow */
#define TIMER_UPDATE_SRC_GLOBAL ((uint8_t)0x01U) /*!< update generate by setting of UPG bit or the counter overflow/underflow,or the slave mode controller trigger */
/* run mode off-state configure */
#define TIMER_ROS_STATE_ENABLE ((uint32_t)0x00000800U) /*!< when POEN bit is set, the channel output signals (CHx_O/CHx_ON) are enabled, with relationship to CHxEN/CHxNEN bits */
#define TIMER_ROS_STATE_DISABLE ((uint32_t)0x00000000U) /*!< when POEN bit is set, the channel output signals (CHx_O/CHx_ON) are disabled */
/* idle mode off-state configure */
#define TIMER_IOS_STATE_ENABLE ((uint16_t)0x0400U) /*!< when POEN bit is reset, he channel output signals (CHx_O/CHx_ON) are enabled, with relationship to CHxEN/CHxNEN bits */
#define TIMER_IOS_STATE_DISABLE ((uint16_t)0x0000U) /*!< when POEN bit is reset, the channel output signals (CHx_O/CHx_ON) are disabled */
/* break input polarity */
#define TIMER_BREAK_POLARITY_LOW ((uint16_t)0x0000U) /*!< break input polarity is low */
#define TIMER_BREAK_POLARITY_HIGH ((uint16_t)0x2000U) /*!< break input polarity is high */
/* output automatic enable */
#define TIMER_OUTAUTO_ENABLE ((uint16_t)0x4000U) /*!< output automatic enable */
#define TIMER_OUTAUTO_DISABLE ((uint16_t)0x0000U) /*!< output automatic disable */
/* complementary register protect control */
#define CCHP_PROT(regval) ((uint16_t)(BITS(8, 9) & ((uint32_t)(regval) << 8U)))
#define TIMER_CCHP_PROT_OFF CCHP_PROT(0) /*!< protect disable */
#define TIMER_CCHP_PROT_0 CCHP_PROT(1) /*!< PROT mode 0 */
#define TIMER_CCHP_PROT_1 CCHP_PROT(2) /*!< PROT mode 1 */
#define TIMER_CCHP_PROT_2 CCHP_PROT(3) /*!< PROT mode 2 */
/* break input enable */
#define TIMER_BREAK_ENABLE ((uint16_t)0x1000U) /*!< break input enable */
#define TIMER_BREAK_DISABLE ((uint16_t)0x0000U) /*!< break input disable */
/* TIMER channel y(y=0,1,2,3) */
#define TIMER_CH_0 ((uint16_t)0x0000U) /*!< TIMER channel 0(TIMERx(x=0..4,7..13)) */
#define TIMER_CH_1 ((uint16_t)0x0001U) /*!< TIMER channel 1(TIMERx(x=0..4,7,8,11)) */
#define TIMER_CH_2 ((uint16_t)0x0002U) /*!< TIMER channel 2(TIMERx(x=0..4,7)) */
#define TIMER_CH_3 ((uint16_t)0x0003U) /*!< TIMER channel 3(TIMERx(x=0..4,7)) */
/* channel enable state*/
#define TIMER_CCX_ENABLE ((uint32_t)0x00000001U) /*!< channel enable */
#define TIMER_CCX_DISABLE ((uint32_t)0x00000000U) /*!< channel disable */
/* channel complementary output enable state*/
#define TIMER_CCXN_ENABLE ((uint16_t)0x0004U) /*!< channel complementary enable */
#define TIMER_CCXN_DISABLE ((uint16_t)0x0000U) /*!< channel complementary disable */
/* channel output polarity */
#define TIMER_OC_POLARITY_HIGH ((uint16_t)0x0000U) /*!< channel output polarity is high */
#define TIMER_OC_POLARITY_LOW ((uint16_t)0x0002U) /*!< channel output polarity is low */
/* channel complementary output polarity */
#define TIMER_OCN_POLARITY_HIGH ((uint16_t)0x0000U) /*!< channel complementary output polarity is high */
#define TIMER_OCN_POLARITY_LOW ((uint16_t)0x0008U) /*!< channel complementary output polarity is low */
/* idle state of channel output */
#define TIMER_OC_IDLE_STATE_HIGH ((uint16_t)0x0100) /*!< idle state of channel output is high */
#define TIMER_OC_IDLE_STATE_LOW ((uint16_t)0x0000) /*!< idle state of channel output is low */
/* idle state of channel complementary output */
#define TIMER_OCN_IDLE_STATE_HIGH ((uint16_t)0x0200U) /*!< idle state of channel complementary output is high */
#define TIMER_OCN_IDLE_STATE_LOW ((uint16_t)0x0000U) /*!< idle state of channel complementary output is low */
/* channel output compare mode */
#define TIMER_OC_MODE_TIMING ((uint16_t)0x0000U) /*!< timing mode */
#define TIMER_OC_MODE_ACTIVE ((uint16_t)0x0010U) /*!< active mode */
#define TIMER_OC_MODE_INACTIVE ((uint16_t)0x0020U) /*!< inactive mode */
#define TIMER_OC_MODE_TOGGLE ((uint16_t)0x0030U) /*!< toggle mode */
#define TIMER_OC_MODE_LOW ((uint16_t)0x0040U) /*!< force low mode */
#define TIMER_OC_MODE_HIGH ((uint16_t)0x0050U) /*!< force high mode */
#define TIMER_OC_MODE_PWM0 ((uint16_t)0x0060U) /*!< PWM0 mode */
#define TIMER_OC_MODE_PWM1 ((uint16_t)0x0070U) /*!< PWM1 mode*/
/* channel output compare shadow enable */
#define TIMER_OC_SHADOW_ENABLE ((uint16_t)0x0008U) /*!< channel output shadow state enable */
#define TIMER_OC_SHADOW_DISABLE ((uint16_t)0x0000U) /*!< channel output shadow state disable */
/* channel output compare fast enable */
#define TIMER_OC_FAST_ENABLE ((uint16_t)0x0004) /*!< channel output fast function enable */
#define TIMER_OC_FAST_DISABLE ((uint16_t)0x0000) /*!< channel output fast function disable */
/* channel output compare clear enable. */
#define TIMER_OC_CLEAR_ENABLE ((uint16_t)0x0080U) /*!< channel output clear function enable */
#define TIMER_OC_CLEAR_DISABLE ((uint16_t)0x0000U) /*!< channel output clear function disable */
/* channel control shadow register update control */
#define TIMER_UPDATECTL_CCU ((uint8_t)0x00U) /*!< the shadow registers update by when CMTG bit is set */
#define TIMER_UPDATECTL_CCUTRI ((uint8_t)0x01U) /*!< the shadow registers update by when CMTG bit is set or an rising edge of TRGI occurs */
/* channel input capture polarity */
#define TIMER_IC_POLARITY_RISING ((uint16_t)0x0000U) /*!< input capture rising edge */
#define TIMER_IC_POLARITY_FALLING ((uint16_t)0x0002U) /*!< input capture falling edge */
#define TIMER_IC_POLARITY_BOTH_EDGE ((uint16_t)0x000AU) /*!< input capture both edge */
/* timer input capture selection */
#define TIMER_IC_SELECTION_DIRECTTI ((uint16_t)0x0001U) /*!< channel y is configured as input and icy is mapped on CIy */
#define TIMER_IC_SELECTION_INDIRECTTI ((uint16_t)0x0002U) /*!< channel y is configured as input and icy is mapped on opposite input */
#define TIMER_IC_SELECTION_ITS ((uint16_t)0x0003U) /*!< channel y is configured as input and icy is mapped on ITS */
/* channel input capture prescaler */
#define TIMER_IC_PSC_DIV1 ((uint16_t)0x0000U) /*!< no prescaler */
#define TIMER_IC_PSC_DIV2 ((uint16_t)0x0004U) /*!< divided by 2 */
#define TIMER_IC_PSC_DIV4 ((uint16_t)0x0008U) /*!< divided by 4*/
#define TIMER_IC_PSC_DIV8 ((uint16_t)0x000CU) /*!< divided by 8 */
/* trigger selection */
#define SMCFG_TRGSEL(regval) (BITS(4, 6) & ((uint32_t)(regval) << 4U))
#define TIMER_SMCFG_TRGSEL_ITI0 SMCFG_TRGSEL(0) /*!< internal trigger 0 */
#define TIMER_SMCFG_TRGSEL_ITI1 SMCFG_TRGSEL(1) /*!< internal trigger 1 */
#define TIMER_SMCFG_TRGSEL_ITI2 SMCFG_TRGSEL(2) /*!< internal trigger 2 */
#define TIMER_SMCFG_TRGSEL_ITI3 SMCFG_TRGSEL(3) /*!< internal trigger 3 */
#define TIMER_SMCFG_TRGSEL_CI0F_ED SMCFG_TRGSEL(4) /*!< TI0 Edge Detector */
#define TIMER_SMCFG_TRGSEL_CI0FE0 SMCFG_TRGSEL(5) /*!< filtered TIMER input 0 */
#define TIMER_SMCFG_TRGSEL_CI1FE1 SMCFG_TRGSEL(6) /*!< filtered TIMER input 1 */
#define TIMER_SMCFG_TRGSEL_ETIFP SMCFG_TRGSEL(7) /*!< external trigger */
/* master mode control */
#define CTL1_MMC(regval) (BITS(4, 6) & ((uint32_t)(regval) << 4U))
#define TIMER_TRI_OUT_SRC_RESET CTL1_MMC(0) /*!< the UPG bit as trigger output */
#define TIMER_TRI_OUT_SRC_ENABLE CTL1_MMC(1) /*!< the counter enable signal TIMER_CTL0_CEN as trigger output */
#define TIMER_TRI_OUT_SRC_UPDATE CTL1_MMC(2) /*!< update event as trigger output */
#define TIMER_TRI_OUT_SRC_CC0 CTL1_MMC(3) /*!< a capture or a compare match occurred in channal0 as trigger output TRGO */
#define TIMER_TRI_OUT_SRC_O0CPRE CTL1_MMC(4) /*!< O0CPRE as trigger output */
#define TIMER_TRI_OUT_SRC_O1CPRE CTL1_MMC(5) /*!< O1CPRE as trigger output */
#define TIMER_TRI_OUT_SRC_O2CPRE CTL1_MMC(6) /*!< O2CPRE as trigger output */
#define TIMER_TRI_OUT_SRC_O3CPRE CTL1_MMC(7) /*!< O3CPRE as trigger output */
/* slave mode control */
#define SMCFG_SMC(regval) (BITS(0, 2) & ((uint32_t)(regval) << 0U))
#define TIMER_SLAVE_MODE_DISABLE SMCFG_SMC(0) /*!< slave mode disable */
#define TIMER_ENCODER_MODE0 SMCFG_SMC(1) /*!< encoder mode 0 */
#define TIMER_ENCODER_MODE1 SMCFG_SMC(2) /*!< encoder mode 1 */
#define TIMER_ENCODER_MODE2 SMCFG_SMC(3) /*!< encoder mode 2 */
#define TIMER_SLAVE_MODE_RESTART SMCFG_SMC(4) /*!< restart mode */
#define TIMER_SLAVE_MODE_PAUSE SMCFG_SMC(5) /*!< pause mode */
#define TIMER_SLAVE_MODE_EVENT SMCFG_SMC(6) /*!< event mode */
#define TIMER_SLAVE_MODE_EXTERNAL0 SMCFG_SMC(7) /*!< external clock mode 0 */
/* master slave mode selection */
#define TIMER_MASTER_SLAVE_MODE_ENABLE ((uint8_t)0x00U) /*!< master slave mode enable */
#define TIMER_MASTER_SLAVE_MODE_DISABLE ((uint8_t)0x01U) /*!< master slave mode disable */
/* external trigger prescaler */
#define SMCFG_ETPSC(regval) (BITS(12, 13) & ((uint32_t)(regval) << 12U))
#define TIMER_EXT_TRI_PSC_OFF SMCFG_ETPSC(0) /*!< no divided */
#define TIMER_EXT_TRI_PSC_DIV2 SMCFG_ETPSC(1) /*!< divided by 2 */
#define TIMER_EXT_TRI_PSC_DIV4 SMCFG_ETPSC(2) /*!< divided by 4 */
#define TIMER_EXT_TRI_PSC_DIV8 SMCFG_ETPSC(3) /*!< divided by 8 */
/* external trigger polarity */
#define TIMER_ETP_FALLING TIMER_SMCFG_ETP /*!< active low or falling edge active */
#define TIMER_ETP_RISING ((uint32_t)0x00000000U) /*!< active high or rising edge active */
/* channel 0 trigger input selection */
#define TIMER_HALLINTERFACE_ENABLE ((uint8_t)0x00U) /*!< TIMER hall sensor mode enable */
#define TIMER_HALLINTERFACE_DISABLE ((uint8_t)0x01U) /*!< TIMER hall sensor mode disable */
/* timer1 internal trigger input1 remap */
#define TIMER1_IRMP(regval) (BITS(10, 11) & ((uint32_t)(regval) << 10U))
#define TIMER1_ITI1_RMP_TIMER7_TRGO TIMER1_IRMP(0) /*!< timer1 internal trigger input 1 remap to TIMER7_TRGO */
#define TIMER1_ITI1_RMP_ETHERNET_PTP TIMER1_IRMP(1) /*!< timer1 internal trigger input 1 remap to ethernet PTP */
#define TIMER1_ITI1_RMP_USB_FS_SOF TIMER1_IRMP(2) /*!< timer1 internal trigger input 1 remap to USB FS SOF */
#define TIMER1_ITI1_RMP_USB_HS_SOF TIMER1_IRMP(3) /*!< timer1 internal trigger input 1 remap to USB HS SOF */
/* timer4 channel 3 input remap */
#define TIMER4_IRMP(regval) (BITS(6, 7) & ((uint32_t)(regval) << 6U))
#define TIMER4_CI3_RMP_GPIO TIMER4_IRMP(0) /*!< timer4 channel 3 input remap to GPIO pin */
#define TIMER4_CI3_RMP_IRC32K TIMER4_IRMP(1) /*!< timer4 channel 3 input remap to IRC32K */
#define TIMER4_CI3_RMP_LXTAL TIMER4_IRMP(2) /*!< timer4 channel 3 input remap to LXTAL */
#define TIMER4_CI3_RMP_RTC_WAKEUP_INT TIMER4_IRMP(3) /*!< timer4 channel 3 input remap to RTC wakeup interrupt */
/* timer10 internal trigger input1 remap */
#define TIMER10_IRMP(regval) (BITS(0, 1) & ((uint32_t)(regval) << 0U))
#define TIMER10_ITI1_RMP_GPIO TIMER10_IRMP(0) /*!< timer10 internal trigger input1 remap based on GPIO setting */
#define TIMER10_ITI1_RMP_RTC_HXTAL_DIV TIMER10_IRMP(2) /*!< timer10 internal trigger input1 remap HXTAL _DIV(clock used for RTC which is HXTAL clock divided by RTCDIV bits in RCU_CFG0 register) */
/* timerx(x=0,1,2,13,14,15,16) write cc register selection */
#define TIMER_CCSEL_DISABLE ((uint16_t)0x0000U) /*!< write CC register selection disable */
#define TIMER_CCSEL_ENABLE ((uint16_t)0x0002U) /*!< write CC register selection enable */
/* the output value selection */
#define TIMER_OUTSEL_DISABLE ((uint16_t)0x0000U) /*!< output value selection disable */
#define TIMER_OUTSEL_ENABLE ((uint16_t)0x0001U) /*!< output value selection enable */
/* function declarations */
/* TIMER timebase*/
/* deinit a TIMER */
void timer_deinit(uint32_t timer_periph);
/* initialize TIMER counter */
void timer_init(uint32_t timer_periph, timer_parameter_struct* timer_initpara);
/* enable a TIMER */
void timer_enable(uint32_t timer_periph);
/* disable a TIMER */
void timer_disable(uint32_t timer_periph);
/* enable the auto reload shadow function */
void timer_auto_reload_shadow_enable(uint32_t timer_periph);
/* disable the auto reload shadow function */
void timer_auto_reload_shadow_disable(uint32_t timer_periph);
/* enable the update event */
void timer_update_event_enable(uint32_t timer_periph);
/* disable the update event */
void timer_update_event_disable(uint32_t timer_periph);
/* set TIMER counter alignment mode */
void timer_counter_alignment(uint32_t timer_periph,uint16_t timer_aligned);
/* set TIMER counter up direction */
void timer_counter_up_direction(uint32_t timer_periph);
/* set TIMER counter down direction */
void timer_counter_down_direction(uint32_t timer_periph);
/* configure TIMER prescaler */
void timer_prescaler_config(uint32_t timer_periph,uint16_t timer_prescaler,uint8_t timer_pscreload);
/* configure TIMER repetition register value */
void timer_repetition_value_config(uint32_t timer_periph,uint16_t timer_repetition);
/* configure TIMER autoreload register value */
void timer_autoreload_value_config(uint32_t timer_periph,uint32_t timer_autoreload);
/* configure TIMER counter register value */
void timer_counter_value_config(uint32_t timer_periph , uint32_t timer_counter);
/* read TIMER counter value */
uint32_t timer_counter_read(uint32_t timer_periph);
/* read TIMER prescaler value */
uint16_t timer_prescaler_read(uint32_t timer_periph);
/* configure TIMER single pulse mode */
void timer_single_pulse_mode_config(uint32_t timer_periph,uint8_t timer_spmode);
/* configure TIMER update source */
void timer_update_source_config(uint32_t timer_periph,uint8_t timer_update);
/* TIMER interrupt and flag*/
/* enable the TIMER interrupt */
void timer_interrupt_enable(uint32_t timer_periph,uint32_t timer_interrupt);
/* disable the TIMER interrupt */
void timer_interrupt_disable(uint32_t timer_periph,uint32_t timer_interrupt);
/* get timer interrupt flag */
FlagStatus timer_interrupt_flag_get(uint32_t timer_periph,uint32_t timer_interrupt);
/* clear TIMER interrupt flag */
void timer_interrupt_flag_clear(uint32_t timer_periph,uint32_t timer_interrupt);
/* get TIMER flags */
FlagStatus timer_flag_get(uint32_t timer_periph , uint32_t timer_flag);
/* clear TIMER flags */
void timer_flag_clear(uint32_t timer_periph , uint32_t timer_flag);
/* timer DMA and event*/
/* enable the TIMER DMA */
void timer_dma_enable(uint32_t timer_periph,uint16_t timer_dma);
/* disable the TIMER DMA */
void timer_dma_disable(uint32_t timer_periph,uint16_t timer_dma);
/* channel DMA request source selection */
void timer_channel_dma_request_source_select(uint32_t timer_periph,uint8_t dma_request);
/* configure the TIMER DMA transfer */
void timer_dma_transfer_config(uint32_t timer_periph,uint32_t dma_baseaddr,uint32_t dma_lenth);
/* software generate events */
void timer_event_software_generate(uint32_t timer_periph,uint16_t timer_event);
/* timer channel complementary protection */
/* configure TIMER break function */
void timer_break_config(uint32_t timer_periph,timer_break_parameter_struct* timer_bkdtpara);
/* enable TIMER break function */
void timer_break_enable(uint32_t timer_periph);
/* disable TIMER break function */
void timer_break_disable(uint32_t timer_periph);
/* enable TIMER output automatic function */
void timer_automatic_output_enable(uint32_t timer_periph);
/* disable TIMER output automatic function */
void timer_automatic_output_disable(uint32_t timer_periph);
/* configure TIMER primary output function */
void timer_primary_output_config(uint32_t timer_periph,ControlStatus newvalue);
/* channel capture/compare control shadow register enable */
void timer_channel_control_shadow_config(uint32_t timer_periph,ControlStatus newvalue);
/* configure TIMER channel control shadow register update control */
void timer_channel_control_shadow_update_config(uint32_t timer_periph,uint8_t timer_ccuctl);
/* TIMER channel output */
/* configure TIMER channel output function */
void timer_channel_output_config(uint32_t timer_periph,uint16_t timer_channel,timer_oc_parameter_struct* timer_ocpara);
/* configure TIMER channel output compare mode */
void timer_channel_output_mode_config(uint32_t timer_periph,uint16_t timer_channel,uint16_t timer_ocmode);
/* configure TIMER channel output pulse value */
void timer_channel_output_pulse_value_config(uint32_t timer_periph,uint16_t timer_channel,uint32_t timer_pluse);
/* configure TIMER channel output shadow function */
void timer_channel_output_shadow_config(uint32_t timer_periph,uint16_t timer_channel,uint16_t timer_ocshadow);
/* configure TIMER channel output fast function */
void timer_channel_output_fast_config(uint32_t timer_periph,uint16_t timer_channel,uint16_t timer_ocfast);
/* configure TIMER channel output clear function */
void timer_channel_output_clear_config(uint32_t timer_periph,uint16_t timer_channel,uint16_t timer_occlear);
/* configure TIMER channel output polarity */
void timer_channel_output_polarity_config(uint32_t timer_periph,uint16_t timer_channel,uint16_t timer_ocpolarity);
/* configure TIMER channel complementary output polarity */
void timer_channel_complementary_output_polarity_config(uint32_t timer_periph,uint16_t timer_channel,uint16_t timer_ocnpolarity);
/* configure TIMER channel enable state */
void timer_channel_output_state_config(uint32_t timer_periph,uint16_t timer_channel,uint32_t timer_state);
/* configure TIMER channel complementary output enable state */
void timer_channel_complementary_output_state_config(uint32_t timer_periph,uint16_t timer_channel,uint16_t timer_ocnstate);
/* TIMER channel input */
/* configure TIMER input capture parameter */
void timer_input_capture_config(uint32_t timer_periph,uint16_t timer_channel,timer_ic_parameter_struct* timer_icpara);
/* configure TIMER channel input capture prescaler value */
void timer_channel_input_capture_prescaler_config(uint32_t timer_periph,uint16_t timer_channel,uint16_t timer_prescaler);
/* read TIMER channel capture compare register value */
uint32_t timer_channel_capture_value_register_read(uint32_t timer_periph,uint16_t timer_channel);
/* configure TIMER input pwm capture function */
void timer_input_pwm_capture_config(uint32_t timer_periph,uint16_t timer_channel,timer_ic_parameter_struct* timer_icpwm);
/* configure TIMER hall sensor mode */
void timer_hall_mode_config(uint32_t timer_periph,uint8_t timer_hallmode);
/* TIMER master and slave */
/* select TIMER input trigger source */
void timer_input_trigger_source_select(uint32_t timer_periph,uint32_t timer_intrigger);
/* select TIMER master mode output trigger source */
void timer_master_output_trigger_source_select(uint32_t timer_periph,uint32_t timer_outrigger);
/* select TIMER slave mode */
void timer_slave_mode_select(uint32_t timer_periph,uint32_t timer_slavemode);
/* configure TIMER master slave mode */
void timer_master_slave_mode_config(uint32_t timer_periph,uint8_t timer_masterslave);
/* configure TIMER external trigger input */
void timer_external_trigger_config(uint32_t timer_periph,uint32_t timer_extprescaler,uint32_t timer_expolarity,uint32_t timer_extfilter);
/* configure TIMER quadrature decoder mode */
void timer_quadrature_decoder_mode_config(uint32_t timer_periph,uint32_t timer_decomode,uint16_t timer_ic0polarity,uint16_t timer_ic1polarity);
/* configure TIMER internal clock mode */
void timer_internal_clock_config(uint32_t timer_periph);
/* configure TIMER the internal trigger as external clock input */
void timer_internal_trigger_as_external_clock_config(uint32_t timer_periph, uint32_t timer_intrigger);
/* configure TIMER the external trigger as external clock input */
void timer_external_trigger_as_external_clock_config(uint32_t timer_periph,uint32_t timer_extrigger,uint16_t timer_expolarity,uint32_t timer_extfilter);
/* configure TIMER the external clock mode 0 */
void timer_external_clock_mode0_config(uint32_t timer_periph,uint32_t timer_extprescaler,uint32_t timer_expolarity,uint32_t timer_extfilter);
/* configure TIMER the external clock mode 1 */
void timer_external_clock_mode1_config(uint32_t timer_periph,uint32_t timer_extprescaler,uint32_t timer_expolarity,uint32_t timer_extfilter);
/* disable TIMER the external clock mode 1 */
void timer_external_clock_mode1_disable(uint32_t timer_periph);
/* configure TIMER channel remap function */
void timer_channel_remap_config(uint32_t timer_periph,uint32_t timer_remap);
/* TIMER configure */
/* configure TIMER write CHxVAL register selection */
void timer_write_cc_register_config(uint32_t timer_periph, uint16_t timer_ccsel);
/* configure TIMER output value selection */
void timer_output_value_selection_config(uint32_t timer_periph, uint16_t timer_outsel);
#endif /* GD32F4XX_TIMER_H */

View File

@@ -0,0 +1,326 @@
/*!
\file gd32f4xx_tli.h
\brief definitions for the TLI
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#ifndef GD32F4XX_TLI_H
#define GD32F4XX_TLI_H
#include "gd32f4xx.h"
/* TLI definitions */
#define TLI TLI_BASE /*!< TLI base address */
/* TLI layer definitions */
#define LAYER0 TLI_BASE /*!< Layer0 base address */
#define LAYER1 (TLI_BASE+0x80) /*!< Layer1 base address */
/* registers definitions */
#define TLI_SPSZ REG32(TLI + 0x08U) /*!< TLI synchronous pulse size register */
#define TLI_BPSZ REG32(TLI + 0x0CU) /*!< TLI back-porch size register */
#define TLI_ASZ REG32(TLI + 0x10U) /*!< TLI active size register */
#define TLI_TSZ REG32(TLI + 0x14U) /*!< TLI total size register */
#define TLI_CTL REG32(TLI + 0x18U) /*!< TLI control register */
#define TLI_RL REG32(TLI + 0x24U) /*!< TLI reload Layer register */
#define TLI_BGC REG32(TLI + 0x2CU) /*!< TLI background color register */
#define TLI_INTEN REG32(TLI + 0x34U) /*!< TLI interrupt enable register */
#define TLI_INTF REG32(TLI + 0x38U) /*!< TLI interrupt flag register */
#define TLI_INTC REG32(TLI + 0x3CU) /*!< TLI interrupt flag clear register */
#define TLI_LM REG32(TLI + 0x40U) /*!< TLI line mark register */
#define TLI_CPPOS REG32(TLI + 0x44U) /*!< TLI current pixel position register */
#define TLI_STAT REG32(TLI + 0x48U) /*!< TLI status register */
#define TLI_LxCTL(layerx) REG32((layerx) + 0x84U) /*!< TLI layer x control register */
#define TLI_LxHPOS(layerx) REG32((layerx) + 0x88U) /*!< TLI layer x horizontal position parameters register */
#define TLI_LxVPOS(layerx) REG32((layerx) + 0x8CU) /*!< TLI layer x vertical position parameters register */
#define TLI_LxCKEY(layerx) REG32((layerx) + 0x90U) /*!< TLI layer x color key register */
#define TLI_LxPPF(layerx) REG32((layerx) + 0x94U) /*!< TLI layer x packeted pixel format register */
#define TLI_LxSA(layerx) REG32((layerx) + 0x98U) /*!< TLI layer x specified alpha register */
#define TLI_LxDC(layerx) REG32((layerx) + 0x9CU) /*!< TLI layer x default color register */
#define TLI_LxBLEND(layerx) REG32((layerx) + 0xA0U) /*!< TLI layer x blending register */
#define TLI_LxFBADDR(layerx) REG32((layerx) + 0xACU) /*!< TLI layer x frame base address register */
#define TLI_LxFLLEN(layerx) REG32((layerx) + 0xB0U) /*!< TLI layer x frame line length register */
#define TLI_LxFTLN(layerx) REG32((layerx) + 0xB4U) /*!< TLI layer x frame total line number register */
#define TLI_LxLUT(layerx) REG32((layerx) + 0xC4U) /*!< TLI ayer x Look Up Table register */
/* bits definitions */
/* TLI_SPSZ */
#define TLI_SPSZ_VPSZ BITS(0,11) /*!< size of the vertical synchronous pulse */
#define TLI_SPSZ_HPSZ BITS(16,27) /*!< size of the horizontal synchronous pulse */
/* TLI_BPSZ */
#define TLI_BPSZ_VBPSZ BITS(0,11) /*!< size of the vertical back porch plus synchronous pulse */
#define TLI_BPSZ_HBPSZ BITS(16,27) /*!< size of the horizontal back porch plus synchronous pulse */
/* TLI_ASZ */
#define TLI_ASZ_VASZ BITS(0,11) /*!< size of the vertical active area width plus back porch and synchronous pulse */
#define TLI_ASZ_HASZ BITS(16,27) /*!< size of the horizontal active area width plus back porch and synchronous pulse */
/* TLI_SPSZ */
#define TLI_TSZ_VTSZ BITS(0,11) /*!< vertical total size of the display, including active area, back porch, synchronous pulse and front porch */
#define TLI_TSZ_HTSZ BITS(16,27) /*!< horizontal total size of the display, including active area, back porch, synchronous pulse and front porch */
/* TLI_CTL */
#define TLI_CTL_TLIEN BIT(0) /*!< TLI enable bit */
#define TLI_CTL_BDB BITS(4,6) /*!< blue channel dither bits number */
#define TLI_CTL_GDB BITS(8,10) /*!< green channel dither bits number */
#define TLI_CTL_RDB BITS(12,14) /*!< red channel dither bits number */
#define TLI_CTL_DFEN BIT(16) /*!< dither function enable */
#define TLI_CTL_CLKPS BIT(28) /*!< pixel clock polarity selection */
#define TLI_CTL_DEPS BIT(29) /*!< data enable polarity selection */
#define TLI_CTL_VPPS BIT(30) /*!< vertical pulse polarity selection */
#define TLI_CTL_HPPS BIT(31) /*!< horizontal pulse polarity selection */
/* TLI_RL */
#define TLI_RL_RQR BIT(0) /*!< request reload */
#define TLI_RL_FBR BIT(1) /*!< frame blank reload */
/* TLI_BGC */
#define TLI_BGC_BVB BITS(0,7) /*!< background value blue */
#define TLI_BGC_BVG BITS(8,15) /*!< background value green */
#define TLI_BGC_BVR BITS(16,23) /*!< background value red */
/* TLI_INTEN */
#define TLI_INTEN_LMIE BIT(0) /*!< line mark interrupt enable */
#define TLI_INTEN_FEIE BIT(1) /*!< FIFO error interrupt enable */
#define TLI_INTEN_TEIE BIT(2) /*!< transaction error interrupt enable */
#define TLI_INTEN_LCRIE BIT(3) /*!< layer configuration reloaded interrupt enable */
/* TLI_INTF */
#define TLI_INTF_LMF BIT(0) /*!< line mark flag */
#define TLI_INTF_FEF BIT(1) /*!< FIFO error flag */
#define TLI_INTF_TEF BIT(2) /*!< transaction error flag */
#define TLI_INTF_LCRF BIT(3) /*!< layer configuration reloaded flag */
/* TLI_INTC */
#define TLI_INTC_LMC BIT(0) /*!< line mark flag clear */
#define TLI_INTC_FEC BIT(1) /*!< FIFO error flag clear */
#define TLI_INTC_TEC BIT(2) /*!< transaction error flag clear */
#define TLI_INTC_LCRC BIT(3) /*!< layer configuration reloaded flag clear */
/* TLI_LM */
#define TLI_LM_LM BITS(0,10) /*!< line mark value */
/* TLI_CPPOS */
#define TLI_CPPOS_VPOS BITS(0,15) /*!< vertical position */
#define TLI_CPPOS_HPOS BITS(16,31) /*!< horizontal position */
/* TLI_STAT */
#define TLI_STAT_VDE BIT(0) /*!< current VDE status */
#define TLI_STAT_HDE BIT(1) /*!< current HDE status */
#define TLI_STAT_VS BIT(2) /*!< current VS status of the TLI */
#define TLI_STAT_HS BIT(3) /*!< current HS status of the TLI */
/* TLI_LxCTL */
#define TLI_LxCTL_LEN BIT(0) /*!< layer enable */
#define TLI_LxCTL_CKEYEN BIT(1) /*!< color keying enable */
#define TLI_LxCTL_LUTEN BIT(4) /*!< LUT enable */
/* TLI_LxHPOS */
#define TLI_LxHPOS_WLP BITS(0,11) /*!< window left position */
#define TLI_LxHPOS_WRP BITS(16,27) /*!< window right position */
/* TLI_LxVPOS */
#define TLI_LxVPOS_WTP BITS(0,11) /*!< window top position */
#define TLI_LxVPOS_WBP BITS(16,27) /*!< window bottom position */
/* TLI_LxCKEY */
#define TLI_LxCKEY_CKEYB BITS(0,7) /*!< color key blue */
#define TLI_LxCKEY_CKEYG BITS(8,15) /*!< color key green */
#define TLI_LxCKEY_CKEYR BITS(16,23) /*!< color key red */
/* TLI_LxPPF */
#define TLI_LxPPF_PPF BITS(0,2) /*!< packeted pixel format */
/* TLI_LxSA */
#define TLI_LxSA_SA BITS(0,7) /*!< specified alpha */
/* TLI_LxDC */
#define TLI_LxDC_DCB BITS(0,7) /*!< the default color blue */
#define TLI_LxDC_DCG BITS(8,15) /*!< the default color green */
#define TLI_LxDC_DCR BITS(16,23) /*!< the default color red */
#define TLI_LxDC_DCA BITS(24,31) /*!< the default color alpha */
/* TLI_LxBLEND */
#define TLI_LxBLEND_ACF2 BITS(0,2) /*!< alpha calculation factor 2 of blending method */
#define TLI_LxBLEND_ACF1 BITS(8,10) /*!< alpha calculation factor 1 of blending method */
/* TLI_LxFBADDR */
#define TLI_LxFBADDR_FBADD BITS(0,31) /*!< frame buffer base address */
/* TLI_LxFLLEN */
#define TLI_LxFLLEN_FLL BITS(0,12) /*!< frame line length */
#define TLI_LxFLLEN_STDOFF BITS(16,28) /*!< frame buffer stride offset */
/* TLI_LxFTLN */
#define TLI_LxFTLN_FTLN BITS(0,10) /*!< frame total line number */
/* TLI_LxLUT */
#define TLI_LxLUT_TB BITS(0,7) /*!< blue channel of a LUT entry */
#define TLI_LxLUT_TG BITS(8,15) /*!< green channel of a LUT entry */
#define TLI_LxLUT_TR BITS(16,23) /*!< red channel of a LUT entry */
#define TLI_LxLUT_TADD BITS(24,31) /*!< look up table write address */
/* constants definitions */
/* TLI parameter struct definitions */
typedef struct
{
uint32_t synpsz_vpsz; /*!< size of the vertical synchronous pulse */
uint32_t synpsz_hpsz; /*!< size of the horizontal synchronous pulse */
uint32_t backpsz_vbpsz; /*!< size of the vertical back porch plus synchronous pulse */
uint32_t backpsz_hbpsz; /*!< size of the horizontal back porch plus synchronous pulse */
uint32_t activesz_vasz; /*!< size of the vertical active area width plus back porch and synchronous pulse */
uint32_t activesz_hasz; /*!< size of the horizontal active area width plus back porch and synchronous pulse */
uint32_t totalsz_vtsz; /*!< vertical total size of the display */
uint32_t totalsz_htsz; /*!< horizontal total size of the display */
uint32_t backcolor_red; /*!< background value red */
uint32_t backcolor_green; /*!< background value green */
uint32_t backcolor_blue; /*!< background value blue */
uint32_t signalpolarity_hs; /*!< horizontal pulse polarity selection */
uint32_t signalpolarity_vs; /*!< vertical pulse polarity selection */
uint32_t signalpolarity_de; /*!< data enable polarity selection */
uint32_t signalpolarity_pixelck; /*!< pixel clock polarity selection */
}tli_parameter_struct;
/* TLI Layer parameter struct definitions */
typedef struct
{
uint32_t layer_window_rightpos; /*!< window right position */
uint32_t layer_window_leftpos; /*!< window left position */
uint32_t layer_window_bottompos; /*!< window bottom position */
uint32_t layer_window_toppos; /*!< window top position */
uint32_t layer_ppf; /*!< packeted pixel format */
uint32_t layer_sa; /*!< specified alpha */
uint32_t layer_default_alpha; /*!< the default color alpha */
uint32_t layer_default_red; /*!< the default color red */
uint32_t layer_default_green; /*!< the default color green */
uint32_t layer_default_blue; /*!< the default color blue */
uint32_t layer_acf1; /*!< alpha calculation factor 1 of blending method */
uint32_t layer_acf2; /*!< alpha calculation factor 2 of blending method */
uint32_t layer_frame_bufaddr; /*!< frame buffer base address */
uint32_t layer_frame_buf_stride_offset; /*!< frame buffer stride offset */
uint32_t layer_frame_line_length; /*!< frame line length */
uint32_t layer_frame_total_line_number; /*!< frame total line number */
}tli_layer_parameter_struct;
/* TLI layer LUT parameter struct definitions */
typedef struct
{
uint32_t layer_table_addr; /*!< look up table write address */
uint32_t layer_lut_channel_red; /*!< red channel of a LUT entry */
uint32_t layer_lut_channel_green; /*!< green channel of a LUT entry */
uint32_t layer_lut_channel_blue; /*!< blue channel of a LUT entry */
}tli_layer_lut_parameter_struct;
/* packeted pixel format */
typedef enum
{
LAYER_PPF_ARGB8888, /*!< layerx pixel format ARGB8888 */
LAYER_PPF_RGB888, /*!< layerx pixel format RGB888 */
LAYER_PPF_RGB565, /*!< layerx pixel format RGB565 */
LAYER_PPF_ARGB1555, /*!< layerx pixel format ARGB1555 */
LAYER_PPF_ARGB4444, /*!< layerx pixel format ARGB4444 */
LAYER_PPF_L8, /*!< layerx pixel format L8 */
LAYER_PPF_AL44, /*!< layerx pixel format AL44 */
LAYER_PPF_AL88 /*!< layerx pixel format AL88 */
} tli_layer_ppf_enum;
/* layer reload configure */
#define TLI_FRAME_BLANK_RELOAD_EN ((uint8_t)0x00U) /*!< the layer configuration will be reloaded at frame blank */
#define TLI_REQUEST_RELOAD_EN ((uint8_t)0x01U) /*!< the layer configuration will be reloaded after this bit sets */
/* dither Function */
#define TLI_DITHER_DISABLE ((uint8_t)0x00U) /*!< dither function disable */
#define TLI_DITHER_ENABLE ((uint8_t)0x01U) /*!< dither function enable */
/* horizontal pulse polarity selection */
#define TLI_HSYN_ACTLIVE_LOW ((uint32_t)0x00000000U) /*!< horizontal synchronous pulse active low */
#define TLI_HSYN_ACTLIVE_HIGHT TLI_CTL_HPPS /*!< horizontal synchronous pulse active high */
/* vertical pulse polarity selection */
#define TLI_VSYN_ACTLIVE_LOW ((uint32_t)0x00000000U) /*!< vertical synchronous pulse active low */
#define TLI_VSYN_ACTLIVE_HIGHT TLI_CTL_VPPS /*!< vertical synchronous pulse active high */
/* pixel Clock Polarity Selection */
#define TLI_PIXEL_CLOCK_TLI ((uint32_t)0x00000000U) /*!< pixel clock is TLI clock */
#define TLI_PIXEL_CLOCK_INVERTEDTLI TLI_CTL_CLKPS /*!< pixel clock is inverted TLI clock */
/* data Enable Polarity Selection */
#define TLI_DE_ACTLIVE_LOW ((uint32_t)0x00000000U) /*!< data enable active low */
#define TLI_DE_ACTLIVE_HIGHT TLI_CTL_DEPS /*!< data enable active high */
/* alpha calculation factor 1 of blending method */
#define LxBLEND_ACF1(regval) (BITS(8,10) & ((regval)<<8))
#define LAYER_ACF1_SA LxBLEND_ACF1(4) /*!< normalization specified alpha */
#define LAYER_ACF1_PASA LxBLEND_ACF1(6) /*!< normalization pixel alpha * normalization specified alpha */
/* alpha calculation factor 2 of blending method*/
#define LxBLEND_ACF2(regval) (BITS(0,2) & ((regval)))
#define LAYER_ACF2_SA LxBLEND_ACF2(5) /*!< normalization specified alpha */
#define LAYER_ACF2_PASA LxBLEND_ACF2(7) /*!< normalization pixel alpha x normalization specified alpha */
/* function declarations */
/* deinitialize TLI */
void tli_deinit(void);
/* initialize TLI */
void tli_init(tli_parameter_struct *tli_struct);
/* TLI dither function enable */
void tli_dither_config(uint8_t ditherstat);
/* enable TLI */
void tli_enable(void);
/* disable TLI */
void tli_disable(void);
/* TLI reload mode config*/
void tli_reload_config(uint8_t reloadmod);
/* TLI interrupt enable */
void tli_interrupt_enable(uint32_t inttype);
/* TLI interrupt disable */
void tli_interrupt_disable(uint32_t inttype);
/* get TLI interrupt flag */
FlagStatus tli_interrupt_flag_get(uint32_t intflag);
/* clear TLI interrupt flag */
void tli_interrupt_flag_clear(uint32_t intflag);
/* set line mark value */
void tli_line_mark_set(uint32_t linenum);
/* get current displayed position */
uint32_t tli_current_pos_get(void);
/* get TLI state */
FlagStatus tli_flag_get(uint32_t state);
/* TLI layer enable */
void tli_layer_enable(uint32_t layerx);
/* TLI layer disable */
void tli_layer_disable(uint32_t layerx);
/* TLI layer color keying enable */
void tli_color_key_enable(uint32_t layerx);
/* TLI layer color keying disable */
void tli_color_key_disable(uint32_t layerx);
/* TLI layer LUT enable */
void tli_lut_enable(uint32_t layerx);
/* TLI layer LUT disable */
void tli_lut_disable(uint32_t layerx);
/* TLI layer initialize */
void tli_layer_init(uint32_t layerx,tli_layer_parameter_struct *layer_struct);
/* TLI layer initialize */
void tli_layer_window_offset_modify(uint32_t layerx,uint32_t offset_x,uint32_t offset_y);
/* TLI layer lut initialize */
void tli_lut_init(uint32_t layerx,tli_layer_lut_parameter_struct *lut_struct);
/* TLI layer key initialize */
void tli_ckey_init(uint32_t layerx,uint32_t redkey,uint32_t greenkey,uint32_t bluekey);
#endif /* GD32F4XX_TLI_H */

View File

@@ -0,0 +1,78 @@
/*!
\file gd32f4xx_trng.h
\brief definitions for the TRNG
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef GD32F4XX_TRNG_H
#define GD32F4XX_TRNG_H
#include "gd32f4xx.h"
/* EXTI definitions */
#define TRNG TRNG_BASE
/* registers definitions */
#define TRNG_CTL REG32(TRNG + 0x00U) /*!< interrupt enable register */
#define TRNG_STAT REG32(TRNG + 0x04U) /*!< event enable register */
#define TRNG_DATA REG32(TRNG + 0x08U) /*!< rising edge trigger enable register */
/* bits definitions */
/* TRNG_CTL */
#define TRNG_CTL_TRNGEN BIT(2) /*!< TRNG enable bit */
#define TRNG_CTL_IE BIT(3) /*!< interrupt enable bit */
/* TRNG_STAT */
#define TRNG_STAT_DRDY BIT(0) /*!< random data ready status bit */
#define TRNG_STAT_CECS BIT(1) /*!< clock error current status */
#define TRNG_STAT_SECS BIT(2) /*!< seed error current status */
#define TRNG_STAT_CEIF BIT(5) /*!< clock error interrupt flag */
#define TRNG_STAT_SEIF BIT(6) /*!< seed error interrupt flag */
/* TRNG_DATA */
#define TRNG_DATA_TRNDATA BITS(0,31) /*!< 32-Bit Random data */
/* constants definitions */
/* trng status flag */
typedef enum
{
TRNG_FLAG_DRDY = TRNG_STAT_DRDY, /*!< random Data ready status */
TRNG_FLAG_CECS = TRNG_STAT_CECS, /*!< clock error current status */
TRNG_FLAG_SECS = TRNG_STAT_SECS /*!< seed error current status */
}trng_flag_enum;
/* trng inerrupt flag */
typedef enum
{
TRNG_INT_FLAG_CEIF = TRNG_STAT_CEIF, /*!< clock error interrupt flag */
TRNG_INT_FLAG_SEIF = TRNG_STAT_SEIF /*!< seed error interrupt flag */
}trng_int_flag_enum;
/* function declarations */
/* deinitialize the TRNG */
void trng_deinit(void);
/* enable the TRNG interface */
void trng_enable(void);
/* disable the TRNG interface */
void trng_disable(void);
/* get the true random data */
uint32_t trng_get_true_random_data(void);
/* get the trng status flags */
FlagStatus trng_flag_get(trng_flag_enum flag);
/* clear the trng status flags */
void trng_flag_clear(trng_flag_enum flag);
/* the trng interrupt enable */
void trng_interrupt_enable(void);
/* the trng interrupt disable */
void trng_interrupt_disable(void);
/* get the trng interrupt flags */
FlagStatus trng_interrupt_flag_get(trng_int_flag_enum int_flag);
/* clear the trng interrupt flags */
void trng_interrupt_flag_clear(trng_int_flag_enum int_flag);
#endif /* GD32F4XX_TRNG_H */

View File

@@ -0,0 +1,467 @@
/*!
\file gd32f4xx_usart.h
\brief definitions for the USART
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#ifndef GD32F4XX_USART_H
#define GD32F4XX_USART_H
#include "gd32f4xx.h"
/* USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7) definitions */
#define USART1 USART_BASE /*!< USART1 base address */
#define USART2 (USART_BASE+0x00000400U) /*!< USART2 base address */
#define UART3 (USART_BASE+0x00000800U) /*!< UART3 base address */
#define UART4 (USART_BASE+0x00000C00U) /*!< UART4 base address */
#define UART6 (USART_BASE+0x00003400U) /*!< UART6 base address */
#define UART7 (USART_BASE+0x00003800U) /*!< UART7 base address */
#define USART0 (USART_BASE+0x0000CC00U) /*!< USART0 base address */
#define USART5 (USART_BASE+0x0000D000U) /*!< USART5 base address */
/* registers definitions */
#define USART_STAT0(usartx) REG32((usartx) + 0x00U) /*!< USART status register 0 */
#define USART_DATA(usartx) REG32((usartx) + 0x04U) /*!< USART data register */
#define USART_BAUD(usartx) REG32((usartx) + 0x08U) /*!< USART baud rate register */
#define USART_CTL0(usartx) REG32((usartx) + 0x0CU) /*!< USART control register 0 */
#define USART_CTL1(usartx) REG32((usartx) + 0x10U) /*!< USART control register 1 */
#define USART_CTL2(usartx) REG32((usartx) + 0x14U) /*!< USART control register 2 */
#define USART_GP(usartx) REG32((usartx) + 0x18U) /*!< USART guard time and prescaler register */
#define USART_CTL3(usartx) REG32((usartx) + 0x80U) /*!< USART control register 3 */
#define USART_RT(usartx) REG32((usartx) + 0x84U) /*!< USART receiver timeout register */
#define USART_STAT1(usartx) REG32((usartx) + 0x88U) /*!< USART status register 1 */
#define USART_CHC(usartx) REG32((usartx) + 0xC0U) /*!< USART coherence control register */
/* bits definitions */
/* USARTx_STAT0 */
#define USART_STAT0_PERR BIT(0) /*!< parity error flag */
#define USART_STAT0_FERR BIT(1) /*!< frame error flag */
#define USART_STAT0_NERR BIT(2) /*!< noise error flag */
#define USART_STAT0_ORERR BIT(3) /*!< overrun error */
#define USART_STAT0_IDLEF BIT(4) /*!< IDLE frame detected flag */
#define USART_STAT0_RBNE BIT(5) /*!< read data buffer not empty */
#define USART_STAT0_TC BIT(6) /*!< transmission complete */
#define USART_STAT0_TBE BIT(7) /*!< transmit data buffer empty */
#define USART_STAT0_LBDF BIT(8) /*!< LIN break detected flag */
#define USART_STAT0_CTSF BIT(9) /*!< CTS change flag */
/* USARTx_DATA */
#define USART_DATA_DATA BITS(0,8) /*!< transmit or read data value */
/* USARTx_BAUD */
#define USART_BAUD_FRADIV BITS(0,3) /*!< fraction part of baud-rate divider */
#define USART_BAUD_INTDIV BITS(4,15) /*!< integer part of baud-rate divider */
/* USARTx_CTL0 */
#define USART_CTL0_SBKCMD BIT(0) /*!< send break command */
#define USART_CTL0_RWU BIT(1) /*!< receiver wakeup from mute mode */
#define USART_CTL0_REN BIT(2) /*!< receiver enable */
#define USART_CTL0_TEN BIT(3) /*!< transmitter enable */
#define USART_CTL0_IDLEIE BIT(4) /*!< idle line detected interrupt enable */
#define USART_CTL0_RBNEIE BIT(5) /*!< read data buffer not empty interrupt and overrun error interrupt enable */
#define USART_CTL0_TCIE BIT(6) /*!< transmission complete interrupt enable */
#define USART_CTL0_TBEIE BIT(7) /*!< transmitter buffer empty interrupt enable */
#define USART_CTL0_PERRIE BIT(8) /*!< parity error interrupt enable */
#define USART_CTL0_PM BIT(9) /*!< parity mode */
#define USART_CTL0_PCEN BIT(10) /*!< parity check function enable */
#define USART_CTL0_WM BIT(11) /*!< wakeup method in mute mode */
#define USART_CTL0_WL BIT(12) /*!< word length */
#define USART_CTL0_UEN BIT(13) /*!< USART enable */
#define USART_CTL0_OVSMOD BIT(15) /*!< oversample mode */
/* USARTx_CTL1 */
#define USART_CTL1_ADDR BITS(0,3) /*!< address of USART */
#define USART_CTL1_LBLEN BIT(5) /*!< LIN break frame length */
#define USART_CTL1_LBDIE BIT(6) /*!< LIN break detected interrupt eanble */
#define USART_CTL1_CLEN BIT(8) /*!< CK length */
#define USART_CTL1_CPH BIT(9) /*!< CK phase */
#define USART_CTL1_CPL BIT(10) /*!< CK polarity */
#define USART_CTL1_CKEN BIT(11) /*!< CK pin enable */
#define USART_CTL1_STB BITS(12,13) /*!< STOP bits length */
#define USART_CTL1_LMEN BIT(14) /*!< LIN mode enable */
/* USARTx_CTL2 */
#define USART_CTL2_ERRIE BIT(0) /*!< error interrupt enable */
#define USART_CTL2_IREN BIT(1) /*!< IrDA mode enable */
#define USART_CTL2_IRLP BIT(2) /*!< IrDA low-power */
#define USART_CTL2_HDEN BIT(3) /*!< half-duplex enable */
#define USART_CTL2_NKEN BIT(4) /*!< NACK enable in smartcard mode */
#define USART_CTL2_SCEN BIT(5) /*!< smartcard mode enable */
#define USART_CTL2_DENR BIT(6) /*!< DMA request enable for reception */
#define USART_CTL2_DENT BIT(7) /*!< DMA request enable for transmission */
#define USART_CTL2_RTSEN BIT(8) /*!< RTS enable */
#define USART_CTL2_CTSEN BIT(9) /*!< CTS enable */
#define USART_CTL2_CTSIE BIT(10) /*!< CTS interrupt enable */
#define USART_CTL2_OSB BIT(11) /*!< one sample bit method */
/* USARTx_GP */
#define USART_GP_PSC BITS(0,7) /*!< prescaler value for dividing the system clock */
#define USART_GP_GUAT BITS(8,15) /*!< guard time value in smartcard mode */
/* USARTx_CTL3 */
#define USART_CTL3_RTEN BIT(0) /*!< receiver timeout enable */
#define USART_CTL3_SCRTNUM BITS(1,3) /*!< smartcard auto-retry number */
#define USART_CTL3_RTIE BIT(4) /*!< interrupt enable bit of receive timeout event */
#define USART_CTL3_EBIE BIT(5) /*!< interrupt enable bit of end of block event */
#define USART_CTL3_RINV BIT(8) /*!< RX pin level inversion */
#define USART_CTL3_TINV BIT(9) /*!< TX pin level inversion */
#define USART_CTL3_DINV BIT(10) /*!< data bit level inversion */
#define USART_CTL3_MSBF BIT(11) /*!< most significant bit first */
/* USARTx_RT */
#define USART_RT_RT BITS(0,23) /*!< receiver timeout threshold */
#define USART_RT_BL BITS(24,31) /*!< block length */
/* USARTx_STAT1 */
#define USART_STAT1_RTF BIT(11) /*!< receiver timeout flag */
#define USART_STAT1_EBF BIT(12) /*!< end of block flag */
#define USART_STAT1_BSY BIT(16) /*!< busy flag */
/* USARTx_CHC */
#define USART_CHC_HCM BIT(0) /*!< hardware flow control coherence mode */
#define USART_CHC_PCM BIT(1) /*!< parity check coherence mode */
#define USART_CHC_BCM BIT(2) /*!< break frame coherence mode */
#define USART_CHC_EPERR BIT(8) /*!< early parity error flag */
/* constants definitions */
/* define the USART bit position and its register index offset */
#define USART_REGIDX_BIT(regidx, bitpos) (((uint32_t)(regidx) << 6) | (uint32_t)(bitpos))
#define USART_REG_VAL(usartx, offset) (REG32((usartx) + ((uint32_t)(offset) >> 6)))
#define USART_BIT_POS(val) ((uint32_t)(val) & 0x1FU)
/* register offset */
#define STAT0_REG_OFFSET 0x00U /*!< STAT0 register offset */
#define STAT1_REG_OFFSET 0x88U /*!< STAT1 register offset */
#define CHC_REG_OFFSET 0xC0U /*!< CHC register offset */
#define CTL0_REG_OFFSET 0x0CU /*!< CTL0 register offset */
#define CTL1_REG_OFFSET 0x10U /*!< CTL1 register offset */
#define CTL2_REG_OFFSET 0x14U /*!< CTL2 register offset */
#define CTL3_REG_OFFSET 0x80U /*!< CTL3 register offset */
/* USART flags */
typedef enum
{
/* flags in STAT0 register */
USART_FLAG_CTSF = USART_REGIDX_BIT(STAT0_REG_OFFSET, 9U), /*!< CTS change flag */
USART_FLAG_LBDF = USART_REGIDX_BIT(STAT0_REG_OFFSET, 8U), /*!< LIN break detected flag */
USART_FLAG_TBE = USART_REGIDX_BIT(STAT0_REG_OFFSET, 7U), /*!< transmit data buffer empty */
USART_FLAG_TC = USART_REGIDX_BIT(STAT0_REG_OFFSET, 6U), /*!< transmission complete */
USART_FLAG_RBNE = USART_REGIDX_BIT(STAT0_REG_OFFSET, 5U), /*!< read data buffer not empty */
USART_FLAG_IDLEF = USART_REGIDX_BIT(STAT0_REG_OFFSET, 4U), /*!< IDLE frame detected flag */
USART_FLAG_ORERR = USART_REGIDX_BIT(STAT0_REG_OFFSET, 3U), /*!< overrun error */
USART_FLAG_NERR = USART_REGIDX_BIT(STAT0_REG_OFFSET, 2U), /*!< noise error flag */
USART_FLAG_FERR = USART_REGIDX_BIT(STAT0_REG_OFFSET, 1U), /*!< frame error flag */
USART_FLAG_PERR = USART_REGIDX_BIT(STAT0_REG_OFFSET, 0U), /*!< parity error flag */
/* flags in STAT1 register */
USART_FLAG_BSY = USART_REGIDX_BIT(STAT1_REG_OFFSET, 16U), /*!< busy flag */
USART_FLAG_EBF = USART_REGIDX_BIT(STAT1_REG_OFFSET, 12U), /*!< end of block flag */
USART_FLAG_RTF = USART_REGIDX_BIT(STAT1_REG_OFFSET, 11U), /*!< receiver timeout flag */
/* flags in CHC register */
USART_FLAG_EPERR = USART_REGIDX_BIT(CHC_REG_OFFSET, 8U), /*!< early parity error flag */
}usart_flag_enum;
/* USART interrupt flags */
typedef enum
{
/* interrupt flags in CTL0 register */
USART_INT_PERRIE = USART_REGIDX_BIT(CTL0_REG_OFFSET, 8U), /*!< parity error interrupt */
USART_INT_TBEIE = USART_REGIDX_BIT(CTL0_REG_OFFSET, 7U), /*!< transmitter buffer empty interrupt */
USART_INT_TCIE = USART_REGIDX_BIT(CTL0_REG_OFFSET, 6U), /*!< transmission complete interrupt */
USART_INT_RBNEIE = USART_REGIDX_BIT(CTL0_REG_OFFSET, 5U), /*!< read data buffer not empty interrupt and overrun error interrupt */
USART_INT_IDLEIE = USART_REGIDX_BIT(CTL0_REG_OFFSET, 4U), /*!< IDLE line detected interrupt */
/* interrupt flags in CTL1 register */
USART_INT_LBDIE = USART_REGIDX_BIT(CTL1_REG_OFFSET, 6U), /*!< LIN break detected interrupt */
/* interrupt flags in CTL2 register */
USART_INT_CTSIE = USART_REGIDX_BIT(CTL2_REG_OFFSET, 10U), /*!< CTS interrupt */
USART_INT_ERRIE = USART_REGIDX_BIT(CTL2_REG_OFFSET, 0U), /*!< error interrupt */
/* interrupt flags in CTL3 register */
USART_INT_EBIE = USART_REGIDX_BIT(CTL3_REG_OFFSET, 5U), /*!< interrupt enable bit of end of block event */
USART_INT_RTIE = USART_REGIDX_BIT(CTL3_REG_OFFSET, 4U), /*!< interrupt enable bit of receive timeout event */
}usart_interrupt_flag_enum;
/* USART invert configure */
typedef enum
{
/* data bit level inversion */
USART_DINV_ENABLE, /*!< data bit level inversion */
USART_DINV_DISABLE, /*!< data bit level not inversion */
/* TX pin level inversion */
USART_TXPIN_ENABLE, /*!< TX pin level inversion */
USART_TXPIN_DISABLE, /*!< TX pin level not inversion */
/* RX pin level inversion */
USART_RXPIN_ENABLE, /*!< RX pin level inversion */
USART_RXPIN_DISABLE, /*!< RX pin level not inversion */
}usart_invert_enum;
/* USART receiver configure */
#define CTL0_REN(regval) (BIT(2) & ((uint32_t)(regval) << 2))
#define USART_RECEIVE_ENABLE CTL0_REN(1) /*!< enable receiver */
#define USART_RECEIVE_DISABLE CTL0_REN(0) /*!< disable receiver */
/* USART transmitter configure */
#define CTL0_TEN(regval) (BIT(3) & ((uint32_t)(regval) << 3))
#define USART_TRANSMIT_ENABLE CTL0_TEN(1) /*!< enable transmitter */
#define USART_TRANSMIT_DISABLE CTL0_TEN(0) /*!< disable transmitter */
/* USART parity bits definitions */
#define CTL0_PM(regval) (BITS(9,10) & ((uint32_t)(regval) << 9))
#define USART_PM_NONE CTL0_PM(0) /*!< no parity */
#define USART_PM_EVEN CTL0_PM(2) /*!< even parity */
#define USART_PM_ODD CTL0_PM(3) /*!< odd parity */
/* USART wakeup method in mute mode */
#define CTL0_WM(regval) (BIT(11) & ((uint32_t)(regval) << 11))
#define USART_WM_IDLE CTL0_WM(0) /*!< idle Line */
#define USART_WM_ADDR CTL0_WM(1) /*!< address mask */
/* USART word length definitions */
#define CTL0_WL(regval) (BIT(12) & ((uint32_t)(regval) << 12))
#define USART_WL_8BIT CTL0_WL(0) /*!< 8 bits */
#define USART_WL_9BIT CTL0_WL(1) /*!< 9 bits */
/* USART oversampling mode definitions */
#define CTL0_OVSMOD(regval) (BIT(15) & ((uint32_t)(regval) << 15))
#define USART_OVSMOD_16 CTL0_OVSMOD(0) /*!< 16 bits */
#define USART_OVSMOD_8 CTL0_OVSMOD(1) /*!< 8 bits */
/* USART stop bits definitions */
#define CTL1_STB(regval) (BITS(12,13) & ((uint32_t)(regval) << 12))
#define USART_STB_1BIT CTL1_STB(0) /*!< 1 bit */
#define USART_STB_0_5BIT CTL1_STB(1) /*!< 0.5 bit */
#define USART_STB_2BIT CTL1_STB(2) /*!< 2 bits */
#define USART_STB_1_5BIT CTL1_STB(3) /*!< 1.5 bits */
/* USART LIN break frame length */
#define CTL1_LBLEN(regval) (BIT(5) & ((uint32_t)(regval) << 5))
#define USART_LBLEN_10B CTL1_LBLEN(0) /*!< 10 bits */
#define USART_LBLEN_11B CTL1_LBLEN(1) /*!< 11 bits */
/* USART CK length */
#define CTL1_CLEN(regval) (BIT(8) & ((uint32_t)(regval) << 8))
#define USART_CLEN_NONE CTL1_CLEN(0) /*!< there are 7 CK pulses for an 8 bit frame and 8 CK pulses for a 9 bit frame */
#define USART_CLEN_EN CTL1_CLEN(1) /*!< there are 8 CK pulses for an 8 bit frame and 9 CK pulses for a 9 bit frame */
/* USART clock phase */
#define CTL1_CPH(regval) (BIT(9) & ((uint32_t)(regval) << 9))
#define USART_CPH_1CK CTL1_CPH(0) /*!< first clock transition is the first data capture edge */
#define USART_CPH_2CK CTL1_CPH(1) /*!< second clock transition is the first data capture edge */
/* USART clock polarity */
#define CTL1_CPL(regval) (BIT(10) & ((uint32_t)(regval) << 10))
#define USART_CPL_LOW CTL1_CPL(0) /*!< steady low value on CK pin */
#define USART_CPL_HIGH CTL1_CPL(1) /*!< steady high value on CK pin */
/* USART DMA request for receive configure */
#define CLT2_DENR(regval) (BIT(6) & ((uint32_t)(regval) << 6))
#define USART_DENR_ENABLE CLT2_DENR(1) /*!< DMA request enable for reception */
#define USART_DENR_DISABLE CLT2_DENR(0) /*!< DMA request disable for reception */
/* USART DMA request for transmission configure */
#define CLT2_DENT(regval) (BIT(7) & ((uint32_t)(regval) << 7))
#define USART_DENT_ENABLE CLT2_DENT(1) /*!< DMA request enable for transmission */
#define USART_DENT_DISABLE CLT2_DENT(0) /*!< DMA request disable for transmission */
/* USART RTS configure */
#define CLT2_RTSEN(regval) (BIT(8) & ((uint32_t)(regval) << 8))
#define USART_RTS_ENABLE CLT2_RTSEN(1) /*!< RTS enable */
#define USART_RTS_DISABLE CLT2_RTSEN(0) /*!< RTS disable */
/* USART CTS configure */
#define CLT2_CTSEN(regval) (BIT(9) & ((uint32_t)(regval) << 9))
#define USART_CTS_ENABLE CLT2_CTSEN(1) /*!< CTS enable */
#define USART_CTS_DISABLE CLT2_CTSEN(0) /*!< CTS disable */
/* USART one sample bit method configure */
#define CTL2_OSB(regval) (BIT(11) & ((uint32_t)(regval) << 11))
#define USART_OSB_1bit CTL2_OSB(1) /*!< 1 bit */
#define USART_OSB_3bit CTL2_OSB(0) /*!< 3 bits */
/* USART IrDA low-power enable */
#define CTL2_IRLP(regval) (BIT(2) & ((uint32_t)(regval) << 2))
#define USART_IRLP_LOW CTL2_IRLP(1) /*!< low-power */
#define USART_IRLP_NORMAL CTL2_IRLP(0) /*!< normal */
/* USART data is transmitted/received with the LSB/MSB first */
#define CTL3_MSBF(regval) (BIT(11) & ((uint32_t)(regval) << 11))
#define USART_MSBF_LSB CTL3_MSBF(0) /*!< LSB first */
#define USART_MSBF_MSB CTL3_MSBF(1) /*!< MSB first */
/* break frame coherence mode */
#define CHC_BCM(regval) (BIT(2) & ((uint32_t)(regval) << 2))
#define USART_BCM_NONE CHC_BCM(0) /*!< no parity error is detected */
#define USART_BCM_EN CHC_BCM(1) /*!< parity error is detected */
/* USART parity check coherence mode */
#define CHC_PCM(regval) (BIT(1) & ((uint32_t)(regval) << 1))
#define USART_PCM_NONE CHC_PCM(0) /*!< not check parity */
#define USART_PCM_EN CHC_PCM(1) /*!< check the parity */
/* USART hardware flow control coherence mode */
#define CHC_HCM(regval) (BIT(0) & ((uint32_t)(regval) << 0))
#define USART_HCM_NONE CHC_HCM(0) /*!< nRTS signal equals to the rxne status register */
#define USART_HCM_EN CHC_HCM(1) /*!< nRTS signal is set when the last data bit has been sampled */
/* interrupt enable in USART_CTL0 */
#define USART_INTEN_PERRIE ((uint32_t)0x10000100U) /*!< parity error interrupt */
#define USART_INTEN_TBEIE ((uint32_t)0x10000080U) /*!< transmitter buffer empty interrupt */
#define USART_INTEN_TCIE ((uint32_t)0x10000040U) /*!< transmission complete interrupt */
#define USART_INTEN_RBNEIE ((uint32_t)0x10000020U) /*!< read data buffer not empty interrupt and overrun error interrupt */
#define USART_INTEN_IDLEIE ((uint32_t)0x10000010U) /*!< IDLE line detected interrupt */
/* interrupt enable flag in USART_CTL1 */
#define USART_INTEN_LBDIE ((uint32_t)0x20000040U) /*!< LIN break detected interrupt */
/* interrupt enable flag in USART_CTL2 */
#define USART_INTEN_ERRIE ((uint32_t)0x40000001U) /*!< error interrupt */
#define USART_INTEN_CTSIE ((uint32_t)0x40000400U) /*!< CTS interrupt*/
/* interrupt enable flag in USART_CTL3 */
#define USART_INTEN_RTIE ((uint32_t)0x80000010U) /*!< interrupt enable bit of receive timeout event */
#define USART_INTEN_EBIE ((uint32_t)0x80000020U) /*!< interrupt enable bit of end of block event */
#define USART_INTEN_MASK ((uint32_t)0x00000FFFU) /*!< USART interrupt mask */
#define USART_INTS_CTL0 ((uint32_t)0x10000000U) /*!< interrupt in USART_CTL0 */
#define USART_INTS_CTL1 ((uint32_t)0x20000000U) /*!< interrupt in USART_CTL1 */
#define USART_INTS_CTL2 ((uint32_t)0x40000000U) /*!< interrupt in USART_CTL2 */
#define USART_INTS_CTL3 ((uint32_t)0x80000000U) /*!< interrupt in USART_CTL3 */
/* function declarations */
/* initialization functions */
/* reset USART */
void usart_deinit(uint32_t usart_periph);
/* configure usart baud rate value */
void usart_baudrate_set(uint32_t usart_periph, uint32_t baudval);
/* configure usart parity function */
void usart_parity_config(uint32_t usart_periph, uint32_t paritycfg);
/* configure usart word length */
void usart_word_length_set(uint32_t usart_periph, uint32_t wlen);
/* configure usart stop bit length */
void usart_stop_bit_set(uint32_t usart_periph, uint32_t stblen);
/* USART normal mode communication */
/* enable usart */
void usart_enable(uint32_t usart_periph);
/* disable usart */
void usart_disable(uint32_t usart_periph);
/* configure USART transmitter */
void usart_transmit_config(uint32_t usart_periph, uint32_t txconfig);
/* configure USART receiver */
void usart_receive_config(uint32_t usart_periph, uint32_t rxconfig);
/* data is transmitted/received with the LSB/MSB first */
void usart_data_first_config(uint32_t usart_periph, uint32_t msbf);
/* configure USART inverted */
void usart_invert_config(uint32_t usart_periph, usart_invert_enum invertpara);
/* configure the USART oversample mode */
void usart_oversample_config(uint32_t usart_periph, uint32_t oversamp);
/* configure sample bit method */
void usart_sample_bit_config(uint32_t usart_periph, uint32_t obsm);
/* enable receiver timeout */
void usart_receiver_timeout_enable(uint32_t usart_periph);
/* disable receiver timeout */
void usart_receiver_timeout_disable(uint32_t usart_periph);
/* configure receiver timeout threshold */
void usart_receiver_timeout_threshold_config(uint32_t usart_periph, uint32_t rtimeout);
/* USART transmit data function */
void usart_data_transmit(uint32_t usart_periph, uint32_t data);
/* USART receive data function */
uint16_t usart_data_receive(uint32_t usart_periph);
/* multi-processor communication */
/* configure address of the USART */
void usart_address_config(uint32_t usart_periph, uint8_t addr);
/* enable mute mode */
void usart_mute_mode_enable(uint32_t usart_periph);
/* disable mute mode */
void usart_mute_mode_disable(uint32_t usart_periph);
/* configure wakeup method in mute mode */
void usart_mute_mode_wakeup_config(uint32_t usart_periph, uint32_t wmehtod);
/* LIN mode communication */
/* LIN mode enable */
void usart_lin_mode_enable(uint32_t usart_periph);
/* LIN mode disable */
void usart_lin_mode_disable(uint32_t usart_periph);
/* LIN break detection length */
void usart_lin_break_dection_length_config(uint32_t usart_periph, uint32_t lblen);
/* send break frame */
void usart_send_break(uint32_t usart_periph);
/* half-duplex communication */
/* half-duplex enable */
void usart_halfduplex_enable(uint32_t usart_periph);
/* half-duplex disable */
void usart_halfduplex_disable(uint32_t usart_periph);
/* synchronous communication */
/* clock enable */
void usart_synchronous_clock_enable(uint32_t usart_periph);
/* clock disable */
void usart_synchronous_clock_disable(uint32_t usart_periph);
/* configure usart synchronous mode parameters */
void usart_synchronous_clock_config(uint32_t usart_periph, uint32_t clen, uint32_t cph, uint32_t cpl);
/* smartcard communication */
/* guard time value configure in smartcard mode */
void usart_guard_time_config(uint32_t usart_periph,uint32_t gaut);
/* smartcard mode enable */
void usart_smartcard_mode_enable(uint32_t usart_periph);
/* smartcard mode disable */
void usart_smartcard_mode_disable(uint32_t usart_periph);
/* NACK enable in smartcard mode */
void usart_smartcard_mode_nack_enable(uint32_t usart_periph);
/* NACK disable in smartcard mode */
void usart_smartcard_mode_nack_disable(uint32_t usart_periph);
/* smartcard auto-retry number configure */
void usart_smartcard_autoretry_config(uint32_t usart_periph, uint32_t scrtnum);
/* block length configure */
void usart_block_length_config(uint32_t usart_periph, uint32_t bl);
/* IrDA communication */
/* enable IrDA mode */
void usart_irda_mode_enable(uint32_t usart_periph);
/* disable IrDA mode */
void usart_irda_mode_disable(uint32_t usart_periph);
/* configure the peripheral clock prescaler */
void usart_prescaler_config(uint32_t usart_periph, uint32_t psc);
/* configure IrDA low-power */
void usart_irda_lowpower_config(uint32_t usart_periph, uint32_t irlp);
/* hardware flow communication */
/* configure hardware flow control RTS */
void usart_hardware_flow_rts_config(uint32_t usart_periph, uint32_t rtsconfig);
/* configure hardware flow control CTS */
void usart_hardware_flow_cts_config(uint32_t usart_periph, uint32_t ctsconfig);
/* coherence control */
/* configure break frame coherence mode */
void usart_break_frame_coherence_config(uint32_t usart_periph, uint32_t bcm);
/* configure parity check coherence mode */
void usart_parity_check_coherence_config(uint32_t usart_periph, uint32_t pcm);
/* configure hardware flow control coherence mode */
void usart_hardware_flow_coherence_config(uint32_t usart_periph, uint32_t hcm);
/* configure USART DMA for reception */
void usart_dma_receive_config(uint32_t usart_periph, uint32_t dmacmd);
/* configure USART DMA for transmission */
void usart_dma_transmit_config(uint32_t usart_periph, uint32_t dmacmd);
/* flag functions */
/* get flag in STAT0/STAT1/CHC register */
FlagStatus usart_flag_get(uint32_t usart_periph, usart_flag_enum flag);
/* clear flag in STAT0/STAT1/CHC register */
void usart_flag_clear(uint32_t usart_periph, usart_flag_enum flag);
/* interrupt functions */
/* enable USART interrupt */
void usart_interrupt_enable(uint32_t usart_periph, uint32_t int_flag);
/* disable USART interrupt */
void usart_interrupt_disable(uint32_t usart_periph, uint32_t int_flag);
/* get USART interrupt enable flag */
FlagStatus usart_interrupt_flag_get(uint32_t usart_periph, uint32_t int_flag);
#endif /* GD32F4XX_USART_H */

View File

@@ -0,0 +1,63 @@
/*!
\file gd32f4xx_wwdgt.h
\brief definitions for the WWDGT
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef GD32F4XX_WWDGT_H
#define GD32F4XX_WWDGT_H
#include "gd32f4xx.h"
/* WWDGT definitions */
#define WWDGT WWDGT_BASE
/* registers definitions */
#define WWDGT_CTL REG32((WWDGT) + 0x00U) /*!< WWDGT control register */
#define WWDGT_CFG REG32((WWDGT) + 0x04U) /*!< WWDGT configuration register */
#define WWDGT_STAT REG32((WWDGT) + 0x08U) /*!< WWDGT status register */
/* bits definitions */
/* WWDGT_CTL */
#define WWDGT_CTL_CNT BITS(0,6) /*!< WWDGT counter value */
#define WWDGT_CTL_WDGTEN BIT(7) /*!< WWDGT counter enable */
/* WWDGT_CFG */
#define WWDGT_CFG_WIN BITS(0,6) /*!< WWDGT counter window value */
#define WWDGT_CFG_PSC BITS(7,8) /*!< WWDGT prescaler divider value */
#define WWDGT_CFG_EWIE BIT(9) /*!< early wakeup interrupt enable */
/* WWDGT_STAT */
#define WWDGT_STAT_EWIF BIT(0) /*!< early wakeup interrupt flag */
/* constants definitions */
#define CFG_PSC(regval) (BITS(7,8) & ((uint32_t)(regval) << 7)) /*!< write value to WWDGT_CFG_PSC bit field */
#define WWDGT_CFG_PSC_DIV1 CFG_PSC(0) /*!< the time base of WWDGT = (PCLK1/4096)/1 */
#define WWDGT_CFG_PSC_DIV2 CFG_PSC(1) /*!< the time base of WWDGT = (PCLK1/4096)/2 */
#define WWDGT_CFG_PSC_DIV4 CFG_PSC(2) /*!< the time base of WWDGT = (PCLK1/4096)/4 */
#define WWDGT_CFG_PSC_DIV8 CFG_PSC(3) /*!< the time base of WWDGT = (PCLK1/4096)/8 */
/* function declarations */
/* reset the window watchdog timer configuration */
void wwdgt_deinit(void);
/* start the window watchdog timer counter */
void wwdgt_enable(void);
/* configure the window watchdog timer counter value */
void wwdgt_counter_update(uint16_t counter_value);
/* configure counter value, window value, and prescaler divider value */
void wwdgt_config(uint16_t counter, uint16_t window, uint32_t prescaler);
/* enable early wakeup interrupt of WWDGT */
void wwdgt_interrupt_enable(void);
/* check early wakeup interrupt state of WWDGT */
FlagStatus wwdgt_flag_get(void);
/* clear early wakeup interrupt state of WWDGT */
void wwdgt_flag_clear(void);
#endif /* GD32F4XX_WWDGT_H */

View File

@@ -0,0 +1,847 @@
/*!
\file gd32f4xx_can.c
\brief CAN driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#include "gd32f4xx_can.h"
/*!
\brief deinitialize CAN
\param[in] can_periph
\arg CANx(x=0,1)
\param[out] none
\retval none
*/
void can_deinit(uint32_t can_periph)
{
if(CAN0 == can_periph){
rcu_periph_reset_enable(RCU_CAN0RST);
rcu_periph_reset_disable(RCU_CAN0RST);
}else{
rcu_periph_reset_enable(RCU_CAN1RST);
rcu_periph_reset_disable(RCU_CAN1RST);
}
}
/*!
\brief initialize CAN
\param[in] can_periph
\arg CANx(x=0,1)
\param[in] can_parameter_init: parameters for CAN initializtion
working_mode: CAN_NORMAL_MODE, CAN_LOOPBACK_MODE, CAN_SILENT_MODE, CAN_SILENT_LOOPBACK_MODE
resync_jump_width: CAN_BT_SJW_xTQ(x=1, 2, 3, 4)
time_segment_1: CAN_BT_BS1_xTQ(1..16)
time_segment_2: CAN_BT_BS2_xTQ(1..8)
time_triggered: ENABLE or DISABLE
auto_bus_off_recovery: ENABLE or DISABLE
auto_wake_up: ENABLE or DISABLE
auto_retrans: ENABLE or DISABLE
rec_fifo_overwrite: ENABLE or DISABLE
trans_fifo_order: ENABLE or DISABLE
prescaler: 0x0001 - 0x03FF
\param[out] none
\retval ErrStatus: SUCCESS or ERROR
*/
ErrStatus can_init(uint32_t can_periph, can_parameter_struct* can_parameter_init)
{
uint32_t timeout = CAN_TIMEOUT;
ErrStatus flag = ERROR;
/* disable sleep mode */
CAN_CTL(can_periph) &= ~CAN_CTL_SLPWMOD;
/* enable initialize mode */
CAN_CTL(can_periph) |= CAN_CTL_IWMOD;
/* wait ACK */
while((CAN_STAT_IWS != (CAN_STAT(can_periph) & CAN_STAT_IWS)) && (timeout)){
timeout--;
}
/* check initialize working success */
if(CAN_STAT_IWS != (CAN_STAT(can_periph) & CAN_STAT_IWS)){
flag = ERROR;
}else{
/* set the bit timing register */
CAN_BT(can_periph) = (BT_MODE((uint32_t)can_parameter_init->working_mode) | \
BT_SJW((uint32_t)can_parameter_init->resync_jump_width) | \
BT_BS1((uint32_t)can_parameter_init->time_segment_1) | \
BT_BS2((uint32_t)can_parameter_init->time_segment_2) | \
BT_BAUDPSC(((uint32_t)(can_parameter_init->prescaler) - 1U)));
/* time trigger communication mode */
if(ENABLE == can_parameter_init->time_triggered){
CAN_CTL(can_periph) |= CAN_CTL_TTC;
}else{
CAN_CTL(can_periph) &= ~CAN_CTL_TTC;
}
/* automatic bus-off managment */
if(ENABLE == can_parameter_init->auto_bus_off_recovery){
CAN_CTL(can_periph) |= CAN_CTL_ABOR;
}else{
CAN_CTL(can_periph) &= ~CAN_CTL_ABOR;
}
/* automatic wakeup mode */
if(ENABLE == can_parameter_init->auto_wake_up){
CAN_CTL(can_periph) |= CAN_CTL_AWU;
}else{
CAN_CTL(can_periph) &= ~CAN_CTL_AWU;
}
/* automatic retransmission mode */
if(ENABLE == can_parameter_init->auto_retrans){
CAN_CTL(can_periph) |= CAN_CTL_ARD;
}else{
CAN_CTL(can_periph) &= ~CAN_CTL_ARD;
}
/* receive fifo overwrite mode */
if(ENABLE == can_parameter_init->rec_fifo_overwrite){
CAN_CTL(can_periph) |= CAN_CTL_RFOD;
}else{
CAN_CTL(can_periph) &= ~CAN_CTL_RFOD;
}
/* transmit fifo order */
if(ENABLE == can_parameter_init->trans_fifo_order){
CAN_CTL(can_periph) |= CAN_CTL_TFO;
}else{
CAN_CTL(can_periph) &= ~CAN_CTL_TFO;
}
/* disable initialize mode */
CAN_CTL(can_periph) &= ~CAN_CTL_IWMOD;
timeout = CAN_TIMEOUT;
/* wait the ACK */
while((CAN_STAT_IWS == (CAN_STAT(can_periph) & CAN_STAT_IWS)) && (timeout)){
timeout--;
}
/* check exit initialize mode */
if(CAN_STAT_IWS == (CAN_STAT(can_periph) & CAN_STAT_IWS)){
flag = SUCCESS;
}
}
return flag;
}
/*!
\brief initialize CAN filter
\param[in] can_filter_parameter_init: struct for CAN filter initialization
filter_list_high: 0x0000 - 0xFFFF
filter_list_low: 0x0000 - 0xFFFF
filter_mask_high: 0x0000 - 0xFFFF
filter_mask_low: 0x0000 - 0xFFFF
filter_fifo_number: CAN_FIFO0, CAN_FIFO1
filter_number: 0 - 27
filter_mode: CAN_FILTERMODE_MASK, CAN_FILTERMODE_LIST
filter_bits: CAN_FILTERBITS_32BIT, CAN_FILTERBITS_16BIT
filter_enable: ENABLE or DISABLE
\param[out] none
\retval none
*/
void can_filter_init(can_filter_parameter_struct* can_filter_parameter_init)
{
uint32_t val = 0U;
val = ((uint32_t)1) << (can_filter_parameter_init->filter_number);
/* filter lock disable */
CAN_FCTL(CAN0) |= CAN_FCTL_FLD;
/* disable filter */
CAN_FW(CAN0) &= ~(uint32_t)val;
/* filter 16 bits */
if(CAN_FILTERBITS_16BIT == can_filter_parameter_init->filter_bits){
/* set filter 16 bits */
CAN_FSCFG(CAN0) &= ~(uint32_t)val;
/* first 16 bits list and first 16 bits mask or first 16 bits list and second 16 bits list */
CAN_FDATA0(CAN0, can_filter_parameter_init->filter_number) = \
FDATA_MASK_HIGH((can_filter_parameter_init->filter_mask_low) & CAN_FILTER_MASK_16BITS) | \
FDATA_MASK_LOW((can_filter_parameter_init->filter_list_low) & CAN_FILTER_MASK_16BITS);
/* second 16 bits list and second 16 bits mask or third 16 bits list and fourth 16 bits list */
CAN_FDATA1(CAN0, can_filter_parameter_init->filter_number) = \
FDATA_MASK_HIGH((can_filter_parameter_init->filter_mask_high) & CAN_FILTER_MASK_16BITS) | \
FDATA_MASK_LOW((can_filter_parameter_init->filter_list_high) & CAN_FILTER_MASK_16BITS);
}
/* filter 32 bits */
if(CAN_FILTERBITS_32BIT == can_filter_parameter_init->filter_bits){
/* set filter 32 bits */
CAN_FSCFG(CAN0) |= (uint32_t)val;
/* 32 bits list or first 32 bits list */
CAN_FDATA0(CAN0, can_filter_parameter_init->filter_number) = \
FDATA_MASK_HIGH((can_filter_parameter_init->filter_list_high) & CAN_FILTER_MASK_16BITS) |
FDATA_MASK_LOW((can_filter_parameter_init->filter_list_low) & CAN_FILTER_MASK_16BITS);
/* 32 bits mask or second 32 bits list */
CAN_FDATA1(CAN0, can_filter_parameter_init->filter_number) = \
FDATA_MASK_HIGH((can_filter_parameter_init->filter_mask_high) & CAN_FILTER_MASK_16BITS) |
FDATA_MASK_LOW((can_filter_parameter_init->filter_mask_low) & CAN_FILTER_MASK_16BITS);
}
/* filter mode */
if(CAN_FILTERMODE_MASK == can_filter_parameter_init->filter_mode){
/* mask mode */
CAN_FMCFG(CAN0) &= ~(uint32_t)val;
}else{
/* list mode */
CAN_FMCFG(CAN0) |= (uint32_t)val;
}
/* filter FIFO */
if(CAN_FIFO0 == (can_filter_parameter_init->filter_fifo_number)){
/* FIFO0 */
CAN_FAFIFO(CAN0) &= ~(uint32_t)val;
}else{
/* FIFO1 */
CAN_FAFIFO(CAN0) |= (uint32_t)val;
}
/* filter working */
if(ENABLE == can_filter_parameter_init->filter_enable){
CAN_FW(CAN0) |= (uint32_t)val;
}
/* filter lock enable */
CAN_FCTL(CAN0) &= ~CAN_FCTL_FLD;
}
/*!
\brief set CAN1 fliter start bank number
\param[in] can1_start_bank_number
\arg (1..27)
\param[out] none
\retval none
*/
void can1_filter_start_bank(uint8_t start_bank)
{
/* filter lock disable */
CAN_FCTL(CAN0) |= CAN_FCTL_FLD;
/* set CAN1 filter start number */
CAN_FCTL(CAN0) &= ~(uint32_t)CAN_FCTL_HBC1F;
CAN_FCTL(CAN0) |= FCTL_HBC1F(start_bank);
/* filter lock enaable */
CAN_FCTL(CAN0) &= ~CAN_FCTL_FLD;
}
/*!
\brief enable CAN debug freeze
\param[in] can_periph
\arg CANx(x=0,1)
\param[out] none
\retval none
*/
void can_debug_freeze_enable(uint32_t can_periph)
{
CAN_CTL(can_periph) |= CAN_CTL_DFZ;
if(CAN0 == can_periph){
dbg_periph_enable(DBG_CAN0_HOLD);
}else{
dbg_periph_enable(DBG_CAN1_HOLD);
}
}
/*!
\brief disable CAN debug freeze
\param[in] can_periph
\arg CANx(x=0,1)
\param[out] none
\retval none
*/
void can_debug_freeze_disable(uint32_t can_periph)
{
CAN_CTL(can_periph) &= ~CAN_CTL_DFZ;
if(CAN0 == can_periph){
dbg_periph_disable(DBG_CAN0_HOLD);
}else{
dbg_periph_disable(DBG_CAN0_HOLD);
}
}
/*!
\brief enable CAN time trigger mode
\param[in] can_periph
\arg CANx(x=0,1)
\param[out] none
\retval none
*/
void can_time_trigger_mode_enable(uint32_t can_periph)
{
uint8_t mailbox_number;
/* enable the tcc mode */
CAN_CTL(can_periph) |= CAN_CTL_TTC;
/* enable time stamp */
for(mailbox_number=0U; mailbox_number<3U; mailbox_number++){
CAN_TMP(can_periph, mailbox_number) |= CAN_TMP_TSEN;
}
}
/*!
\brief disable CAN time trigger mode
\param[in] can_periph
\arg CANx(x=0,1)
\param[out] none
\retval none
*/
void can_time_trigger_mode_disable(uint32_t can_periph)
{
uint8_t mailbox_number;
/* disable the TCC mode */
CAN_CTL(can_periph) &= ~CAN_CTL_TTC;
/* reset TSEN bits */
for(mailbox_number=0U; mailbox_number<3U; mailbox_number++){
CAN_TMP(can_periph, mailbox_number) &= ~CAN_TMP_TSEN;
}
}
/*!
\brief CAN transmit message
\param[in] can_periph
\arg CANx(x=0,1)
\param[in] transmit_message: struct for CAN transmit message
tx_sfid: 0x00000000 - 0x000007FF
tx_efid: 0x00000000 - 0x1FFFFFFF
tx_ff CAN_FF_STANDARD, CAN_FF_EXTENDED
tx_ft: CAN_FT_DATA, CAN_FT_REMOTE
tx_dlenc: 1 - 7
tx_data[]: 0x00 - 0xFF
\param[out] none
\retval none
*/
uint8_t can_message_transmit(uint32_t can_periph, can_trasnmit_message_struct* transmit_message)
{
uint8_t mailbox_number = CAN_MAILBOX0;
/* select one empty mailbox */
if(CAN_TSTAT_TME0 == (CAN_TSTAT(can_periph)&CAN_TSTAT_TME0)){
mailbox_number = CAN_MAILBOX0;
}else if(CAN_TSTAT_TME1 == (CAN_TSTAT(can_periph)&CAN_TSTAT_TME1)){
mailbox_number = CAN_MAILBOX1;
}else if(CAN_TSTAT_TME2 == (CAN_TSTAT(can_periph)&CAN_TSTAT_TME2)){
mailbox_number = CAN_MAILBOX2;
}else{
mailbox_number = CAN_NOMAILBOX;
}
if(CAN_NOMAILBOX == mailbox_number){
return CAN_NOMAILBOX;
}
CAN_TMI(can_periph, mailbox_number) &= CAN_TMI_TEN;
if(CAN_FF_STANDARD == transmit_message->tx_ff){
/* set transmit mailbox standard identifier */
CAN_TMI(can_periph, mailbox_number) |= (uint32_t)(TMI_SFID(transmit_message->tx_sfid) | \
transmit_message->tx_ft);
}else{
/* set transmit mailbox extended identifier */
CAN_TMI(can_periph, mailbox_number) |= (uint32_t)(TMI_EFID(transmit_message->tx_efid) | \
transmit_message->tx_ff | \
transmit_message->tx_ft);
}
/* set the data length */
transmit_message->tx_dlen &= (uint8_t)(CAN_TMP_DLENC);
CAN_TMP(can_periph, mailbox_number) &= ((uint32_t)~CAN_TMP_DLENC);
CAN_TMP(can_periph, mailbox_number) |= transmit_message->tx_dlen;
/* set the data */
CAN_TMDATA0(can_periph, mailbox_number) = TMDATA0_DB3(transmit_message->tx_data[3]) | \
TMDATA0_DB2(transmit_message->tx_data[2]) | \
TMDATA0_DB1(transmit_message->tx_data[1]) | \
TMDATA0_DB0(transmit_message->tx_data[0]);
CAN_TMDATA1(can_periph, mailbox_number) = TMDATA1_DB7(transmit_message->tx_data[7]) | \
TMDATA1_DB6(transmit_message->tx_data[6]) | \
TMDATA1_DB5(transmit_message->tx_data[5]) | \
TMDATA1_DB4(transmit_message->tx_data[4]);
/* enable transmission */
CAN_TMI(can_periph, mailbox_number) |= CAN_TMI_TEN;
return mailbox_number;
}
/*!
\brief CAN transmit state
\param[in] can_periph
\arg CANx(x=0,1)
\param[in] mailbox_number
\arg CAN_MAILBOX(x=0,1,2)
\param[out] none
\retval can_transmit_state_enum
*/
can_transmit_state_enum can_transmit_states(uint32_t can_periph, uint8_t mailbox_number)
{
can_transmit_state_enum state = CAN_TRANSMIT_FAILED;
uint32_t val = 0U;
switch(mailbox_number){
case CAN_MAILBOX0:
val = CAN_TSTAT(can_periph) & (CAN_TSTAT_MTF0 | CAN_TSTAT_MTFNERR0 | CAN_TSTAT_TME0);
break;
case CAN_MAILBOX1:
val = CAN_TSTAT(can_periph) & (CAN_TSTAT_MTF1 | CAN_TSTAT_MTFNERR1 | CAN_TSTAT_TME1);
break;
case CAN_MAILBOX2:
val = CAN_TSTAT(can_periph) & (CAN_TSTAT_MTF2 | CAN_TSTAT_MTFNERR2 | CAN_TSTAT_TME2);
break;
default:
val = CAN_TRANSMIT_FAILED;
break;
}
switch(val){
/* transmit succeeded */
case (CAN_TSTAT_MTF0 | CAN_TSTAT_MTFNERR0 | CAN_TSTAT_TME0):
state = CAN_TRANSMIT_OK;
break;
case (CAN_TSTAT_MTF1 | CAN_TSTAT_MTFNERR1 | CAN_TSTAT_TME1):
state = CAN_TRANSMIT_OK;
break;
case (CAN_TSTAT_MTF2 | CAN_TSTAT_MTFNERR2 | CAN_TSTAT_TME2):
state = CAN_TRANSMIT_OK;
break;
default:
state = CAN_TRANSMIT_FAILED;
break;
}
return state;
}
/*!
\brief CAN stop transmission
\param[in] can_periph
\arg CANx(x=0,1)
\param[in] mailbox_number
\arg CAN_MAILBOXx(x=0,1,2)
\param[out] none
\retval none
*/
void can_transmission_stop(uint32_t can_periph, uint8_t mailbox_number)
{
if(CAN_MAILBOX0 == mailbox_number){
CAN_TSTAT(can_periph) |= CAN_TSTAT_MST0;
}else if(CAN_MAILBOX1 == mailbox_number){
CAN_TSTAT(can_periph) |= CAN_TSTAT_MST1;
}else if(CAN_MAILBOX2 == mailbox_number){
CAN_TSTAT(can_periph) |= CAN_TSTAT_MST2;
}else{
/* illegal parameter*/
}
}
/*!
\brief CAN receive message
\param[in] can_periph
\arg CANx(x=0,1)
\param[in] fifo_number
\arg CAN_FIFO0x(x=0,1)
\param[out] receive_message: struct for CAN receive message
rx_sfid: 0x00000000 - 0x000007FF
rx_efid: 0x00000000 - 0x1FFFFFFF
rx_ff: CAN_FF_STANDARD, CAN_FF_EXTENDED
rx_ft: CAN_FT_DATA, CAN_FT_REMOTE
rx_dlenc: 1 - 7
rx_data[]: 0x00 - 0xFF
rx_fi: 0 - 27
\retval none
*/
void can_message_receive(uint32_t can_periph, uint8_t fifo_number, can_receive_message_struct* receive_message)
{
/* get the frame format */
receive_message->rx_ff = (uint8_t)(CAN_RFIFOMI_FF & CAN_RFIFOMI(can_periph, fifo_number));
if(CAN_FF_STANDARD == receive_message->rx_ff){
/* get standard identifier */
receive_message -> rx_sfid = (uint32_t)(RFIFOMI_SFID(CAN_RFIFOMI(can_periph, fifo_number)));
}else{
/* get extended identifier */
receive_message -> rx_efid = (uint32_t)(RFIFOMI_EFID(CAN_RFIFOMI(can_periph, fifo_number)));
}
/* get frame type */
receive_message -> rx_ft = (uint8_t)(CAN_RFIFOMI_FT & CAN_RFIFOMI(can_periph, fifo_number));
/* get recevie data length */
receive_message -> rx_dlen = (uint8_t)(RFIFOMP_DLENC(CAN_RFIFOMP(can_periph, fifo_number)));
/* filtering index */
receive_message -> rx_fi = (uint8_t)(RFIFOMP_FI(CAN_RFIFOMP(can_periph, fifo_number)));
/* receive data */
receive_message -> rx_data[0] = (uint8_t)(RFIFOMDATA0_DB0(CAN_RFIFOMDATA0(can_periph, fifo_number)));
receive_message -> rx_data[1] = (uint8_t)(RFIFOMDATA0_DB1(CAN_RFIFOMDATA0(can_periph, fifo_number)));
receive_message -> rx_data[2] = (uint8_t)(RFIFOMDATA0_DB2(CAN_RFIFOMDATA0(can_periph, fifo_number)));
receive_message -> rx_data[3] = (uint8_t)(RFIFOMDATA0_DB3(CAN_RFIFOMDATA0(can_periph, fifo_number)));
receive_message -> rx_data[4] = (uint8_t)(RFIFOMDATA1_DB4(CAN_RFIFOMDATA1(can_periph, fifo_number)));
receive_message -> rx_data[5] = (uint8_t)(RFIFOMDATA1_DB5(CAN_RFIFOMDATA1(can_periph, fifo_number)));
receive_message -> rx_data[6] = (uint8_t)(RFIFOMDATA1_DB6(CAN_RFIFOMDATA1(can_periph, fifo_number)));
receive_message -> rx_data[7] = (uint8_t)(RFIFOMDATA1_DB7(CAN_RFIFOMDATA1(can_periph, fifo_number)));
/* release FIFO */
if(CAN_FIFO0 == fifo_number){
CAN_RFIFO0(can_periph) |= CAN_RFIFO0_RFD0;
}else{
CAN_RFIFO1(can_periph) |= CAN_RFIFO1_RFD1;
}
}
/*!
\brief release FIFO0
\param[in] can_periph
\arg CANx(x=0,1)
\arg CAN_FIFOx(x=0,1)
\param[out] none
\retval none
*/
void can_fifo_release(uint32_t can_periph, uint8_t fifo_number)
{
if(CAN_FIFO0 == fifo_number){
CAN_RFIFO0(can_periph) |= CAN_RFIFO0_RFD0;
}else if(CAN_FIFO1 == fifo_number){
CAN_RFIFO1(can_periph) |= CAN_RFIFO1_RFD1;
}else{
/* illegal parameter */
}
}
/*!
\brief CAN receive message length
\param[in] can_periph
\arg CANx(x=0,1)
\arg CAN_FIFOx(x=0,1)
\param[out] none
\retval message length
*/
uint8_t can_receive_message_length(uint32_t can_periph, uint8_t fifo_number)
{
uint8_t val = 0U;
if(CAN_FIFO0 == fifo_number){
val = (uint8_t)(CAN_RFIFO0(can_periph) & CAN_RFIFO_RFL_MASK);
}else if(CAN_FIFO1 == fifo_number){
val = (uint8_t)(CAN_RFIFO1(can_periph) & CAN_RFIFO_RFL_MASK);
}else{
/* illegal parameter */
}
return val;
}
/*!
\brief set CAN working mode
\param[in] can_periph
\arg CANx(x=0,1)
\param[in] can_working_mode
\arg CAN_INITIALIZE_MODE
\arg CAN_NORMAL_MODE
\arg CAN_SLEEP_MODE
\param[out] none
\retval ErrStatus: SUCCESS or ERROR
*/
ErrStatus can_working_mode_set(uint32_t can_periph, uint8_t working_mode)
{
ErrStatus flag = ERROR;
/* timeout for IWS or also for SLPWS bits*/
uint32_t timeout = CAN_TIMEOUT;
if(CAN_MODE_INITIALIZE == working_mode){
/* disable sleep mode */
CAN_CTL(can_periph) &= (~(uint32_t)CAN_CTL_SLPWMOD);
/* set initialize mode */
CAN_CTL(can_periph) |= (uint8_t)CAN_CTL_IWMOD;
/* wait the acknowledge */
while((CAN_STAT_IWS != (CAN_STAT(can_periph) & CAN_STAT_IWS)) && (0U != timeout)){
timeout--;
}
if(CAN_STAT_IWS != (CAN_STAT(can_periph) & CAN_STAT_IWS)){
flag = ERROR;
}else{
flag = SUCCESS;
}
}else if(CAN_MODE_NORMAL == working_mode){
/* enter normal mode */
CAN_CTL(can_periph) &= ~(uint32_t)(CAN_CTL_SLPWMOD | CAN_CTL_IWMOD);
/* wait the acknowledge */
while((0U != (CAN_STAT(can_periph) & (CAN_STAT_IWS | CAN_STAT_SLPWS))) && (0U != timeout)){
timeout--;
}
if(0U != (CAN_STAT(can_periph) & (CAN_STAT_IWS | CAN_STAT_SLPWS))){
flag = ERROR;
}else{
flag = SUCCESS;
}
}else if(CAN_MODE_SLEEP == working_mode){
/* disable initialize mode */
CAN_CTL(can_periph) &= (~(uint32_t)CAN_CTL_IWMOD);
/* set sleep mode */
CAN_CTL(can_periph) |= (uint8_t)CAN_CTL_SLPWMOD;
/* wait the acknowledge */
while((CAN_STAT_SLPWS != (CAN_STAT(can_periph) & CAN_STAT_SLPWS)) && (0U != timeout)){
timeout--;
}
if (CAN_STAT_SLPWS != (CAN_STAT(can_periph) & CAN_STAT_SLPWS)){
flag = ERROR;
}else{
flag = SUCCESS;
}
}else{
flag = ERROR;
}
return flag;
}
/*!
\brief wake up CAN
\param[in] can_periph
\arg CANx(x=0,1)
\param[out] none
\retval ErrStatus: SUCCESS or ERROR
*/
ErrStatus can_wakeup(uint32_t can_periph)
{
ErrStatus flag = ERROR;
uint32_t timeout = CAN_TIMEOUT;
/* wakeup */
CAN_CTL(can_periph) &= ~CAN_CTL_SLPWMOD;
while((0U != (CAN_STAT(can_periph) & CAN_STAT_SLPWS)) && (0U != timeout)){
timeout--;
}
if(0U != (CAN_STAT(can_periph) & CAN_STAT_SLPWS)){
flag = ERROR;
}else{
flag = SUCCESS;
}
return flag;
}
/*!
\brief get CAN error type
\param[in] can_periph
\arg CANx(x=0,1)
\param[out] none
\retval can_error_enum
*/
can_error_enum can_error_get(uint32_t can_periph)
{
can_error_enum error;
error = CAN_ERROR_NONE;
/* get error type */
error = (can_error_enum)((CAN_ERR(can_periph) & CAN_ERR_ERRN) >> 4U);
return error;
}
/*!
\brief CAN receive error number
\param[in] can_periph
\arg CANx(x=0,1)
\param[out] none
\retval error number
*/
uint8_t can_receive_error_number(uint32_t can_periph)
{
uint8_t val;
val = (uint8_t)((CAN_ERR(can_periph) & CAN_ERR_RECNT) >> 24U);
return val;
}
/*!
\brief CAN transmit error number
\param[in] can_periph
\arg CANx(x=0,1)
\param[out] none
\retval error number
*/
uint8_t can_transmit_error_number(uint32_t can_periph)
{
uint8_t val;
val = (uint8_t)((CAN_ERR(can_periph) & CAN_ERR_TECNT) >> 16U);
return val;
}
/*!
\brief enable CAN interrupt
\param[in] can_periph
\arg CANx(x=0,1)
\param[in] interrupt
\arg CAN_INTEN_TMEIE
\arg CAN_INTEN_RFNEIE0
\arg CAN_INTEN_RFFIE0
\arg CAN_INTEN_RFOIE0
\arg CAN_INTEN_RFNEIE1
\arg CAN_INTEN_RFFIE1
\arg CAN_INTEN_RFOIE1
\arg CAN_INTEN_WERRIE
\arg CAN_INTEN_PERRIE
\arg CAN_INTEN_BOIE
\arg CAN_INTEN_ERRNIE
\arg CAN_INTEN_ERRIE
\arg CAN_INTEN_WUIE
\arg CAN_INTEN_SLPWIE
\param[out] none
\retval none
*/
void can_interrupt_enable(uint32_t can_periph, uint32_t interrupt)
{
CAN_INTEN(can_periph) |= interrupt;
}
/*!
\brief disable CAN interrupt
\param[in] can_periph
\arg CANx(x=0,1)
\param[in] interrupt
\arg CAN_INTEN_TMEIE
\arg CAN_INTEN_RFNEIE0
\arg CAN_INTEN_RFFIE0
\arg CAN_INTEN_RFOIE0
\arg CAN_INTEN_RFNEIE1
\arg CAN_INTEN_RFFIE1
\arg CAN_INTEN_RFOIE1
\arg CAN_INTEN_WERRIE
\arg CAN_INTEN_PERRIE
\arg CAN_INTEN_BOIE
\arg CAN_INTEN_ERRNIE
\arg CAN_INTEN_ERRIE
\arg CAN_INTEN_WUIE
\arg CAN_INTEN_SLPWIE
\param[out] none
\retval none
*/
void can_interrupt_disable(uint32_t can_periph, uint32_t interrupt)
{
CAN_INTEN(can_periph) &= ~interrupt;
}
/*!
\brief get CAN flag state
\param[in] can_periph
\arg CANx(x=0,1)
\param[in] flag: CAN flags, refer to can_flag_enum
only one parameter can be selected which is shown as below:
\arg CAN_FLAG_MTE2
\arg CAN_FLAG_MTE1
\arg CAN_FLAG_MTE0
\arg CAN_FLAG_MTF2
\arg CAN_FLAG_MTF1
\arg CAN_FLAG_MTF0
\arg CAN_FLAG_RFO0
\arg CAN_FLAG_RFF0
\arg CAN_FLAG_RFO1
\arg CAN_FLAG_RFF1
\arg CAN_FLAG_BOERR
\arg CAN_FLAG_PERR
\arg CAN_FLAG_WERR
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus can_flag_get(uint32_t can_periph, can_flag_enum flag)
{
if(RESET != (CAN_REG_VAL(can_periph, flag) & BIT(CAN_BIT_POS(flag)))){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear CAN flag state
\param[in] can_periph
\arg CANx(x=0,1)
\param[in] flag: CAN flags, refer to can_flag_enum
only one parameter can be selected which is shown as below:
\arg CAN_FLAG_MTE2
\arg CAN_FLAG_MTE1
\arg CAN_FLAG_MTE0
\arg CAN_FLAG_MTF2
\arg CAN_FLAG_MTF1
\arg CAN_FLAG_MTF0
\arg CAN_FLAG_RFO0
\arg CAN_FLAG_RFF0
\arg CAN_FLAG_RFO1
\arg CAN_FLAG_RFF1
\param[out] none
\retval none
*/
void can_flag_clear(uint32_t can_periph, can_flag_enum flag)
{
CAN_REG_VAL(can_periph, flag) |= BIT(CAN_BIT_POS(flag));
}
/*!
\brief get CAN interrupt flag state
\param[in] can_periph
\arg CANx(x=0,1)
\param[in] flag: CAN interrupt flags, refer to can_interrupt_flag_enum
only one parameter can be selected which is shown as below:
\arg CAN_INT_SLPIF
\arg CAN_INT_WUIF
\arg CAN_INT_ERRIF
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus can_interrupt_flag_get(uint32_t can_periph, can_interrupt_flag_enum flag)
{
FlagStatus inten = RESET;
FlagStatus temp = RESET;
FlagStatus status1 = RESET;
FlagStatus status2 = RESET;
switch(flag){
/* get the status of sleep working interrupt enable bit */
case CAN_INT_SLPIF:
inten = (FlagStatus)(CAN_INTEN(can_periph) & CAN_INTEN_SLPWIE);
break;
/* get the status of wakeup interrupt enable bit */
case CAN_INT_WUIF:
inten = (FlagStatus)(CAN_INTEN(can_periph) & CAN_INTEN_WUIE);
break;
/* get the status of error falgs and its enable bit */
case CAN_INT_ERRIF:
/* check if the BOERR bit in CAN_ERR register and BOIE bit in CAN_INTEN register are set */
status1 = (FlagStatus)(CAN_INTEN(can_periph) & CAN_INTEN_BOIE);
status2 = (FlagStatus)(CAN_ERR(can_periph) & CAN_ERR_BOERR);
if((RESET != status1) && (RESET != status2)){
inten = SET;
}
/* check if the WERR bit in CAN_ERR register and WERRIE bit in CAN_INTEN register are set */
status1 = (FlagStatus)(CAN_INTEN(can_periph) & CAN_INTEN_WERRIE);
status2 = (FlagStatus)(CAN_ERR(can_periph) & CAN_ERR_WERR);
if((RESET != status1) && (RESET != status2)){
inten = SET;
}
/* check if the PERR bit in CAN_ERR register and PERRIE bit in CAN_INTEN register are set */
status1 = (FlagStatus)(CAN_INTEN(can_periph) & CAN_INTEN_PERRIE);
status2 = (FlagStatus)(CAN_ERR(can_periph) & CAN_ERR_PERR);
if((RESET != status1) && (RESET != status2)){
inten = SET;
}
/* check if the ERRN bit in CAN_ERR register and ERRNIE bit in CAN_INTEN register are set */
status1 = (FlagStatus)(CAN_INTEN(can_periph) & CAN_INTEN_ERRNIE);
status2 = (FlagStatus)(CAN_ERR(can_periph) & CAN_ERR_ERRN);
if((RESET != status1) && (RESET != status2)){
inten = SET;
}
break;
default:
break;
}
/* get the interrupt flag */
temp = (FlagStatus)(CAN_REG_VAL(can_periph, flag) & BIT(CAN_BIT_POS(flag)));
/* check the interrupt enable bit and corresponding flag bit are set */
if((RESET != inten) && (RESET != temp)){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear CAN interrupt flag state
\param[in] can_periph
\arg CANx(x=0,1)
\param[in] flag: CAN interrupt flags, refer to can_interrupt_flag_enum
only one parameter can be selected which is shown as below:
\arg CAN_INT_SLPIF
\arg CAN_INT_WUIF
\arg CAN_INT_ERRIF
\param[out] none
\retval none
*/
void can_interrupt_flag_clear(uint32_t can_periph, can_interrupt_flag_enum flag)
{
CAN_REG_VAL(can_periph, flag) |= BIT(CAN_BIT_POS(flag));
}

View File

@@ -0,0 +1,101 @@
/*!
\file gd32f4xx_crc.c
\brief CRC driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#include "gd32f4xx_crc.h"
/*!
\brief deinit CRC calculation unit
\param[in] none
\param[out] none
\retval none
*/
void crc_deinit(void)
{
CRC_DATA = (uint32_t)0xFFFFFFFFU;
CRC_FDATA = (uint32_t)0x00000000U;
CRC_CTL = CRC_CTL_RST;
}
/*!
\brief reset data register to the value of initializaiton data register
\param[in] none
\param[out] none
\retval none
*/
void crc_data_register_reset(void)
{
CRC_CTL |= (uint32_t)CRC_CTL_RST;
}
/*!
\brief read the data register
\param[in] none
\param[out] none
\retval 32-bit value of the data register
*/
uint32_t crc_data_register_read(void)
{
uint32_t data;
data = CRC_DATA;
return (data);
}
/*!
\brief read the free data register
\param[in] none
\param[out] none
\retval 8-bit value of the free data register
*/
uint8_t crc_free_data_register_read(void)
{
uint8_t fdata;
fdata = (uint8_t)CRC_FDATA;
return (fdata);
}
/*!
\brief write the free data register
\param[in] free_data: specify 8-bit data
\param[out] none
\retval none
*/
void crc_free_data_register_write(uint8_t free_data)
{
CRC_FDATA = (uint32_t)free_data;
}
/*!
\brief CRC calculate a 32-bit data
\param[in] sdata: specify 32-bit data
\param[out] none
\retval 32-bit CRC calculate value
*/
uint32_t crc_single_data_calculate(uint32_t sdata)
{
CRC_DATA = sdata;
return (CRC_DATA);
}
/*!
\brief CRC calculate a 32-bit data array
\param[in] array: pointer to an array of 32 bit data words
\param[in] size: size of the array
\param[out] none
\retval 32-bit CRC calculate value
*/
uint32_t crc_block_data_calculate(uint32_t array[], uint32_t size)
{
uint32_t index;
for(index = 0U; index < size; index++){
CRC_DATA = array[index];
}
return (CRC_DATA);
}

View File

@@ -0,0 +1,358 @@
/*!
\file gd32f4xx_ctc.c
\brief CTC driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#include "gd32f4xx_ctc.h"
#define CTC_FLAG_MASK ((uint32_t)0x00000700U)
/*!
\brief reset CTC clock trim controller
\param[in] none
\param[out] none
\retval none
*/
void ctc_deinit(void)
{
/* reset CTC */
rcu_periph_reset_enable(RCU_CTCRST);
rcu_periph_reset_disable(RCU_CTCRST);
}
/*!
\brief configure the IRC48M trim value
\param[in] ctc_trim_value: 8-bit IRC48M trim value
\param[out] none
\retval none
*/
void ctc_irc48m_trim_value_config(uint8_t ctc_trim_value)
{
/* clear TRIMVALUE bits */
CTC_CTL0 &= (~(uint32_t)CTC_CTL0_TRIMVALUE);
/* set TRIMVALUE bits */
CTC_CTL0 |= ((uint32_t)ctc_trim_value << 8);
}
/*!
\brief generate software reference source sync pulse
\param[in] none
\param[out] none
\retval none
*/
void ctc_software_refsource_pulse_generate(void)
{
CTC_CTL0 |= (uint32_t)CTC_CTL0_SWREFPUL;
}
/*!
\brief configure hardware automatically trim mode
\param[in] ctc_hardmode:
\arg CTC_HARDWARE_TRIM_MODE_ENABLE: hardware automatically trim mode enable
\arg CTC_HARDWARE_TRIM_MODE_DISABLE: hardware automatically trim mode disable
\param[out] none
\retval none
*/
void ctc_hardware_trim_mode_config(uint32_t ctc_hardmode)
{
CTC_CTL0 &= (uint32_t)(~CTC_CTL0_AUTOTRIM);
CTC_CTL0 |= (uint32_t)ctc_hardmode;
}
/*!
\brief enable CTC counter
\param[in] none
\param[out] none
\retval none
*/
void ctc_counter_enable(void)
{
CTC_CTL0 |= (uint32_t)CTC_CTL0_CNTEN;
}
/*!
\brief disable CTC counter
\param[in] none
\param[out] none
\retval none
*/
void ctc_counter_disable(void)
{
CTC_CTL0 &= (uint32_t)(~CTC_CTL0_CNTEN);
}
/*!
\brief configure reference signal source polarity
\param[in] ctc_polarity:
\arg CTC_REFSOURCE_POLARITY_FALLING: reference signal source polarity is falling edge
\arg CTC_REFSOURCE_POLARITY_RISING: reference signal source polarity is rising edge
\param[out] none
\retval none
*/
void ctc_refsource_polarity_config(uint32_t ctc_polarity)
{
CTC_CTL1 &= (uint32_t)(~CTC_CTL1_REFPOL);
CTC_CTL1 |= (uint32_t)ctc_polarity;
}
/*!
\brief select USBFS or USBHS SOF signal
\param[in] ctc_usbsof:
\arg CTC_USBSOFSEL_USBHS: USBHS SOF signal is selected
\arg CTC_USBSOFSEL_USBFS: USBFS SOF signal is selected
\param[out] none
\retval none
*/
void ctc_usbsof_signal_select(uint32_t ctc_usbsof)
{
CTC_CTL1 &= (uint32_t)(~CTC_CTL1_USBSOFSEL);
CTC_CTL1 |= (uint32_t)ctc_usbsof;
}
/*!
\brief select reference signal source
\param[in] ctc_refs:
\arg CTC_REFSOURCE_GPIO: GPIO is selected
\arg CTC_REFSOURCE_LXTAL: LXTAL is clock selected
\arg CTC_REFSOURCE_USBSOF: USBSOF is selected
\param[out] none
\retval none
*/
void ctc_refsource_signal_select(uint32_t ctc_refs)
{
CTC_CTL1 &= (uint32_t)(~CTC_CTL1_REFSEL);
CTC_CTL1 |= (uint32_t)ctc_refs;
}
/*!
\brief configure reference signal source prescaler
\param[in] ctc_prescaler:
\arg CTC_REFSOURCE_PSC_OFF: reference signal not divided
\arg CTC_REFSOURCE_PSC_DIV2: reference signal divided by 2
\arg CTC_REFSOURCE_PSC_DIV4: reference signal divided by 4
\arg CTC_REFSOURCE_PSC_DIV8: reference signal divided by 8
\arg CTC_REFSOURCE_PSC_DIV16: reference signal divided by 16
\arg CTC_REFSOURCE_PSC_DIV32: reference signal divided by 32
\arg CTC_REFSOURCE_PSC_DIV64: reference signal divided by 64
\arg CTC_REFSOURCE_PSC_DIV128: reference signal divided by 128
\param[out] none
\retval none
*/
void ctc_refsource_prescaler_config(uint32_t ctc_prescaler)
{
CTC_CTL1 &= (uint32_t)(~CTC_CTL1_REFPSC);
CTC_CTL1 |= (uint32_t)ctc_prescaler;
}
/*!
\brief configure clock trim base limit value
\param[in] ctc_limit_value: 8-bit clock trim base limit value
\param[out] none
\retval none
*/
void ctc_clock_limit_value_config(uint8_t ctc_limit_value)
{
CTC_CTL1 &= (uint32_t)(~CTC_CTL1_CKLIM);
CTC_CTL1 |= (uint32_t)((uint32_t)ctc_limit_value << 16);
}
/*!
\brief configure CTC counter reload value
\param[in] ctc_reload_value: 16-bit CTC counter reload value
\param[out] none
\retval none
*/
void ctc_counter_reload_value_config(uint16_t ctc_reload_value)
{
CTC_CTL1 &= (uint32_t)(~CTC_CTL1_RLVALUE);
CTC_CTL1 |= (uint32_t)ctc_reload_value;
}
/*!
\brief read CTC counter capture value when reference sync pulse occurred
\param[in] none
\param[out] none
\retval the 16-bit CTC counter capture value
*/
uint16_t ctc_counter_capture_value_read(void)
{
uint16_t capture_value = 0U;
capture_value = (uint16_t)((CTC_STAT & CTC_STAT_REFCAP)>> 16);
return (capture_value);
}
/*!
\brief read CTC trim counter direction when reference sync pulse occurred
\param[in] none
\param[out] none
\retval FlagStatus: SET or RESET
\arg SET: CTC trim counter direction is down-counting
\arg RESET: CTC trim counter direction is up-counting
*/
FlagStatus ctc_counter_direction_read(void)
{
if(RESET != (CTC_STAT & CTC_STAT_REFDIR)){
return SET;
}else{
return RESET;
}
}
/*!
\brief read CTC counter reload value
\param[in] none
\param[out] none
\retval the 16-bit CTC counter reload value
*/
uint16_t ctc_counter_reload_value_read(void)
{
uint16_t reload_value = 0U;
reload_value = (uint16_t)(CTC_CTL1 & CTC_CTL1_RLVALUE);
return (reload_value);
}
/*!
\brief read the IRC48M trim value
\param[in] none
\param[out] none
\retval the 8-bit IRC48M trim value
*/
uint8_t ctc_irc48m_trim_value_read(void)
{
uint8_t trim_value = 0U;
trim_value = (uint8_t)((CTC_CTL0 & CTC_CTL0_TRIMVALUE) >> 8);
return (trim_value);
}
/*!
\brief enable the CTC interrupt
\param[in] ctc_interrupt: CTC interrupt enable
\arg CTC_INT_CKOKIE: clock trim OK interrupt enable
\arg CTC_INT_CKWARNIE: clock trim warning interrupt enable
\arg CTC_INT_ERRIE: error interrupt enable
\arg CTC_INT_EREFIE: expect reference interrupt enable
\param[out] none
\retval none
*/
void ctc_interrupt_enable(uint32_t ctc_interrupt)
{
CTC_CTL0 |= (uint32_t)ctc_interrupt;
}
/*!
\brief disable the CTC interrupt
\param[in] ctc_interrupt: CTC interrupt enable source
\arg CTC_INT_CKOKIE: clock trim OK interrupt enable
\arg CTC_INT_CKWARNIE: clock trim warning interrupt enable
\arg CTC_INT_ERRIE: error interrupt enable
\arg CTC_INT_EREFIE: expect reference interrupt enable
\param[out] none
\retval none
*/
void ctc_interrupt_disable(uint32_t ctc_interrupt)
{
CTC_CTL0 &= (uint32_t)(~ctc_interrupt);
}
/*!
\brief get CTC interrupt flag
\param[in] ctc_interrupt: the CTC interrupt flag
\arg CTC_INT_CKOK: clock trim OK interrupt
\arg CTC_INT_CKWARN: clock trim warning interrupt
\arg CTC_INT_ERR: error interrupt
\arg CTC_INT_EREF: expect reference interrupt
\arg CTC_INT_CKERR: clock trim error bit interrupt
\arg CTC_INT_REFMISS: reference sync pulse miss interrupt
\arg CTC_INT_TRIMERR: trim value error interrupt
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus ctc_interrupt_flag_get(uint32_t ctc_interrupt)
{
uint32_t interrupt = 0U, intenable = 0U;
if(ctc_interrupt & CTC_FLAG_MASK){
intenable = CTC_CTL0 & CTC_INT_ERRIE;
}else{
intenable = CTC_CTL0 & ctc_interrupt;
}
interrupt = CTC_STAT & ctc_interrupt;
if(interrupt && intenable){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear CTC interrupt flag
\param[in] ctc_interrupt: the CTC interrupt flag
\arg CTC_INT_CKOK: clock trim OK interrupt
\arg CTC_INT_CKWARN: clock trim warning interrupt
\arg CTC_INT_ERR: error interrupt
\arg CTC_INT_EREF: expect reference interrupt
\arg CTC_INT_CKERR: clock trim error bit interrupt
\arg CTC_INT_REFMISS: reference sync pulse miss interrupt
\arg CTC_INT_TRIMERR: trim value error interrupt
\param[out] none
\retval none
*/
void ctc_interrupt_flag_clear(uint32_t ctc_interrupt)
{
if(ctc_interrupt & CTC_FLAG_MASK){
CTC_INTC |= CTC_INTC_ERRIC;
}else{
CTC_INTC |= ctc_interrupt;
}
}
/*!
\brief get CTC flag
\param[in] ctc_flag: the CTC flag
\arg CTC_FLAG_CKOK: clock trim OK flag
\arg CTC_FLAG_CKWARN: clock trim warning flag
\arg CTC_FLAG_ERR: error flag
\arg CTC_FLAG_EREF: expect reference flag
\arg CTC_FLAG_CKERR: clock trim error bit
\arg CTC_FLAG_REFMISS: reference sync pulse miss
\arg CTC_FLAG_TRIMERR: trim value error bit
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus ctc_flag_get(uint32_t ctc_flag)
{
if(RESET != (CTC_STAT & ctc_flag)){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear CTC flag
\param[in] ctc_flag: the CTC flag
\arg CTC_FLAG_CKOK: clock trim OK flag
\arg CTC_FLAG_CKWARN: clock trim warning flag
\arg CTC_FLAG_ERR: error flag
\arg CTC_FLAG_EREF: expect reference flag
\arg CTC_FLAG_CKERR: clock trim error bit
\arg CTC_FLAG_REFMISS: reference sync pulse miss
\arg CTC_FLAG_TRIMERR: trim value error bit
\param[out] none
\retval none
*/
void ctc_flag_clear(uint32_t ctc_flag)
{
if(ctc_flag & CTC_FLAG_MASK){
CTC_INTC |= CTC_INTC_ERRIC;
}else{
CTC_INTC |= ctc_flag;
}
}

View File

@@ -0,0 +1,650 @@
/*!
\file gd32f4xx_dac.c
\brief DAC driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#include "gd32f4xx_dac.h"
/*!
\brief deinitialize DAC
\param[in] none
\param[out] none
\retval none
*/
void dac_deinit(void)
{
rcu_periph_reset_enable(RCU_DACRST);
rcu_periph_reset_disable(RCU_DACRST);
}
/*!
\brief enable DAC
\param[in] dac_periph
\arg DACx(x =0,1)
\param[out] none
\retval none
*/
void dac_enable(uint32_t dac_periph)
{
if(DAC0 == dac_periph){
DAC_CTL |= DAC_CTL_DEN0;
}else{
DAC_CTL |= DAC_CTL_DEN1;
}
}
/*!
\brief disable DAC
\param[in] dac_periph
\arg DACx(x =0,1)
\param[out] none
\retval none
*/
void dac_disable(uint32_t dac_periph)
{
if(DAC0 == dac_periph){
DAC_CTL &= ~DAC_CTL_DEN0;
}else{
DAC_CTL &= ~DAC_CTL_DEN1;
}
}
/*!
\brief enable DAC DMA function
\param[in] dac_periph
\arg DACx(x=0,1)
\param[out] none
\retval none
*/
void dac_dma_enable(uint32_t dac_periph)
{
if(DAC0 == dac_periph){
DAC_CTL |= DAC_CTL_DDMAEN0;
}else{
DAC_CTL |= DAC_CTL_DDMAEN1;
}
}
/*!
\brief disable DAC DMA function
\param[in] dac_periph
\arg DACx(x=0,1)
\param[out] none
\retval none
*/
void dac_dma_disable(uint32_t dac_periph)
{
if(DAC0 == dac_periph){
DAC_CTL &= ~DAC_CTL_DDMAEN0;
}else{
DAC_CTL &= ~DAC_CTL_DDMAEN1;
}
}
/*!
\brief enable DAC output buffer
\param[in] dac_periph
\arg DACx(x =0,1)
\param[out] none
\retval none
*/
void dac_output_buffer_enable(uint32_t dac_periph)
{
if(DAC0 == dac_periph){
DAC_CTL &= ~DAC_CTL_DBOFF0;
}else{
DAC_CTL &= ~DAC_CTL_DBOFF1;
}
}
/*!
\brief disable DAC output buffer
\param[in] dac_periph
\arg DACx(x =0,1)
\param[out] none
\retval none
*/
void dac_output_buffer_disable(uint32_t dac_periph)
{
if(DAC0 == dac_periph){
DAC_CTL |= DAC_CTL_DBOFF0;
}else{
DAC_CTL |= DAC_CTL_DBOFF1;
}
}
/*!
\brief enable DAC trigger
\param[in] dac_periph
\arg DACx(x =0,1)
\param[out] none
\retval none
*/
void dac_trigger_enable(uint32_t dac_periph)
{
if(DAC0 == dac_periph){
DAC_CTL |= DAC_CTL_DTEN0;
}else{
DAC_CTL |= DAC_CTL_DTEN1;
}
}
/*!
\brief disable DAC trigger
\param[in] dac_periph
\arg DACx(x =0,1)
\param[out] none
\retval none
*/
void dac_trigger_disable(uint32_t dac_periph)
{
if(DAC0 == dac_periph){
DAC_CTL &= ~DAC_CTL_DTEN0;
}else{
DAC_CTL &= ~DAC_CTL_DTEN1;
}
}
/*!
\brief enable DAC software trigger
\param[in] dac_periph
\arg DACx(x =0,1)
\retval none
*/
void dac_software_trigger_enable(uint32_t dac_periph)
{
if(DAC0 == dac_periph){
DAC_SWT |= DAC_SWT_SWTR0;
}else{
DAC_SWT |= DAC_SWT_SWTR1;
}
}
/*!
\brief disable DAC software trigger
\param[in] dac_periph
\arg DACx(x =0,1)
\param[out] none
\retval none
*/
void dac_software_trigger_disable(uint32_t dac_periph)
{
if(DAC0 == dac_periph){
DAC_SWT &= ~DAC_SWT_SWTR0;
}else{
DAC_SWT &= ~DAC_SWT_SWTR1;
}
}
/*!
\brief enable DAC interrupt(DAC0 DMA underrun interrupt)
\param[in] dac_periph
\arg DACx(x=0,1)
\param[out] none
\retval none
*/
void dac_interrupt_enable(uint32_t dac_periph)
{
if(DAC0 == dac_periph){
DAC_CTL |= DAC_CTL_DDUDRIE0;
}else{
DAC_CTL |= DAC_CTL_DDUDRIE1;
}
}
/*!
\brief disable DAC interrupt(DAC0 DMA underrun interrupt)
\param[in] dac_periph
\arg DACx(x=0,1)
\param[out] none
\retval none
*/
void dac_interrupt_disable(uint32_t dac_periph)
{
if(DAC0 == dac_periph){
DAC_CTL &= ~DAC_CTL_DDUDRIE0;
}else{
DAC_CTL &= ~DAC_CTL_DDUDRIE1;
}
}
/*!
\brief set DAC trigger source
\param[in] dac_periph
\arg DACx(x =0,1)
\param[in] triggersource: external triggers of DAC
\arg DAC_TRIGGER_T1_TRGO: TIMER1 TRGO
\arg DAC_TRIGGER_T3_TRGO: TIMER3 TRGO
\arg DAC_TRIGGER_T4_TRGO: TIMER4 TRGO
\arg DAC_TRIGGER_T5_TRGO: TIMER5 TRGO
\arg DAC_TRIGGER_T6_TRGO: TIMER6 TRGO
\arg DAC_TRIGGER_T7_TRGO: TIMER7 TRGO
\arg DAC_TRIGGER_EXTI_9: EXTI interrupt line9 event
\arg DAC_TRIGGER_SOFTWARE: software trigger
\param[out] none
\retval none
*/
void dac_trigger_source_config(uint32_t dac_periph,uint32_t triggersource)
{
if(DAC0 == dac_periph){
DAC_CTL &= ~DAC_CTL_DTSEL0;
DAC_CTL |= triggersource;
}else{
DAC_CTL &= ~DAC_CTL_DTSEL1;
DAC_CTL |= (triggersource << 16);
}
}
/*!
\brief configure DAC wave mode
\param[in] dac_periph
\arg DACx(x=0,1)
\param[in] wave_mode
\arg DAC_WAVE_DISABLE: wave disable
\arg DAC_WAVE_MODE_LFSR: LFSR noise mode
\arg DAC_WAVE_MODE_TRIANGLE: triangle noise mode
\param[out] none
\retval none
*/
void dac_wave_mode_config(uint32_t dac_periph, uint32_t wave_mode)
{
if(DAC0 == dac_periph){
DAC_CTL &= ~DAC_CTL_DWM0;
DAC_CTL |= wave_mode;
}else{
DAC_CTL &= ~DAC_CTL_DWM1;
DAC_CTL |= wave_mode << 16;
}
}
/*!
\brief configure DAC wave bit width
\param[in] dac_periph
\arg DACx(x=0,1)
\param[in] bit_width
\arg DAC_WAVE_BIT_WIDTH_1: bit width of the wave signal is 1
\arg DAC_WAVE_BIT_WIDTH_2: bit width of the wave signal is 2
\arg DAC_WAVE_BIT_WIDTH_3: bit width of the wave signal is 3
\arg DAC_WAVE_BIT_WIDTH_4: bit width of the wave signal is 4
\arg DAC_WAVE_BIT_WIDTH_5: bit width of the wave signal is 5
\arg DAC_WAVE_BIT_WIDTH_6: bit width of the wave signal is 6
\arg DAC_WAVE_BIT_WIDTH_7: bit width of the wave signal is 7
\arg DAC_WAVE_BIT_WIDTH_8: bit width of the wave signal is 8
\arg DAC_WAVE_BIT_WIDTH_9: bit width of the wave signal is 9
\arg DAC_WAVE_BIT_WIDTH_10: bit width of the wave signal is 10
\arg DAC_WAVE_BIT_WIDTH_11: bit width of the wave signal is 11
\arg DAC_WAVE_BIT_WIDTH_12: bit width of the wave signal is 12
\param[out] none
\retval none
*/
void dac_wave_bit_width_config(uint32_t dac_periph, uint32_t bit_width)
{
if(DAC0 == dac_periph){
DAC_CTL &= ~DAC_CTL_DWBW0;
DAC_CTL |= bit_width;
}else{
DAC_CTL &= ~DAC_CTL_DWBW1;
DAC_CTL |= bit_width << 16;
}
}
/*!
\brief configure DAC LFSR noise mode
\param[in] dac_periph
\arg DACx(x=0,1)
\param[in] unmask_bits
\arg DAC_LFSR_BIT0: unmask the LFSR bit0
\arg DAC_LFSR_BITS1_0: unmask the LFSR bits[1:0]
\arg DAC_LFSR_BITS2_0: unmask the LFSR bits[2:0]
\arg DAC_LFSR_BITS3_0: unmask the LFSR bits[3:0]
\arg DAC_LFSR_BITS4_0: unmask the LFSR bits[4:0]
\arg DAC_LFSR_BITS5_0: unmask the LFSR bits[5:0]
\arg DAC_LFSR_BITS6_0: unmask the LFSR bits[6:0]
\arg DAC_LFSR_BITS7_0: unmask the LFSR bits[7:0]
\arg DAC_LFSR_BITS8_0: unmask the LFSR bits[8:0]
\arg DAC_LFSR_BITS9_0: unmask the LFSR bits[9:0]
\arg DAC_LFSR_BITS10_0: unmask the LFSR bits[10:0]
\arg DAC_LFSR_BITS11_0: unmask the LFSR bits[11:0]
\param[out] none
\retval none
*/
void dac_lfsr_noise_config(uint32_t dac_periph, uint32_t unmask_bits)
{
if(DAC0 == dac_periph){
DAC_CTL &= ~DAC_CTL_DWBW0;
DAC_CTL |= unmask_bits;
}else{
DAC_CTL &= ~DAC_CTL_DWBW1;
DAC_CTL |= unmask_bits << 16;
}
}
/*!
\brief configure DAC triangle noise mode
\param[in] dac_periph
\arg DACx(x=0,1)
\param[in] amplitude
\arg DAC_TRIANGLE_AMPLITUDE_1: triangle amplitude is 1
\arg DAC_TRIANGLE_AMPLITUDE_3: triangle amplitude is 3
\arg DAC_TRIANGLE_AMPLITUDE_7: triangle amplitude is 7
\arg DAC_TRIANGLE_AMPLITUDE_15: triangle amplitude is 15
\arg DAC_TRIANGLE_AMPLITUDE_31: triangle amplitude is 31
\arg DAC_TRIANGLE_AMPLITUDE_63: triangle amplitude is 63
\arg DAC_TRIANGLE_AMPLITUDE_127: triangle amplitude is 127
\arg DAC_TRIANGLE_AMPLITUDE_255: triangle amplitude is 255
\arg DAC_TRIANGLE_AMPLITUDE_511: triangle amplitude is 511
\arg DAC_TRIANGLE_AMPLITUDE_1023: triangle amplitude is 1023
\arg DAC_TRIANGLE_AMPLITUDE_2047: triangle amplitude is 2047
\arg DAC_TRIANGLE_AMPLITUDE_4095: triangle amplitude is 4095
\param[out] none
\retval none
*/
void dac_triangle_noise_config(uint32_t dac_periph, uint32_t amplitude)
{
if(DAC0 == dac_periph){
DAC_CTL &= ~DAC_CTL_DWBW0;
DAC_CTL |= amplitude;
}else{
DAC_CTL &= ~DAC_CTL_DWBW1;
DAC_CTL |= amplitude << 16;
}
}
/*!
\brief get DAC output value
\param[in] dac_periph
\arg DACx(x=0,1)
\param[out] none
\retval DAC output data
*/
uint16_t dac_output_value_get(uint32_t dac_periph)
{
uint16_t data = 0U;
if(DAC0 == dac_periph){
data = (uint16_t)DAC0_DO;
}else{
data = (uint16_t)DAC1_DO;
}
return data;
}
/*!
\brief enable DAC concurrent mode
\param[in] none
\param[out] none
\retval none
*/
void dac_concurrent_enable(void)
{
uint32_t ctl = 0U;
ctl = DAC_CTL_DEN0 | DAC_CTL_DEN1;
DAC_CTL |= (ctl);
}
/*!
\brief disable DAC concurrent mode
\param[in] none
\param[out] none
\retval none
*/
void dac_concurrent_disable(void)
{
uint32_t ctl = 0U;
ctl = DAC_CTL_DEN0 | DAC_CTL_DEN1;
DAC_CTL &= (~ctl);
}
/*!
\brief enable DAC concurrent software trigger function
\param[in] none
\param[out] none
\retval none
*/
void dac_concurrent_software_trigger_enable(void)
{
uint32_t swt = 0U;
swt = DAC_SWT_SWTR0 | DAC_SWT_SWTR1;
DAC_SWT |= (swt);
}
/*!
\brief disable DAC concurrent software trigger function
\param[in] none
\param[out] none
\retval none
*/
void dac_concurrent_software_trigger_disable(void)
{
uint32_t swt = 0U;
swt = DAC_SWT_SWTR0 | DAC_SWT_SWTR1;
DAC_SWT &= (~swt);
}
/*!
\brief enable DAC concurrent buffer function
\param[in] none
\param[out] none
\retval none
*/
void dac_concurrent_output_buffer_enable(void)
{
uint32_t ctl = 0U;
ctl = DAC_CTL_DBOFF0 | DAC_CTL_DBOFF1;
DAC_CTL &= (~ctl);
}
/*!
\brief disable DAC concurrent buffer function
\param[in] none
\param[out] none
\retval none
*/
void dac_concurrent_output_buffer_disable(void)
{
uint32_t ctl = 0U;
ctl = DAC_CTL_DBOFF0 | DAC_CTL_DBOFF1;
DAC_CTL |= (ctl);
}
/*!
\brief enable DAC concurrent interrupt funcution
\param[in] none
\param[out] none
\retval none
*/
void dac_concurrent_interrupt_enable(void)
{
uint32_t ctl = 0U;
ctl = DAC_CTL_DDUDRIE0 | DAC_CTL_DDUDRIE1;
DAC_CTL |= (ctl);
}
/*!
\brief disable DAC concurrent interrupt funcution
\param[in] none
\param[out] none
\retval none
*/
void dac_concurrent_interrupt_disable(void)
{
uint32_t ctl = 0U;
ctl = DAC_CTL_DDUDRIE0 | DAC_CTL_DDUDRIE1;
DAC_CTL &= (~ctl);
}
/*!
\brief set the DAC specified data holding register value
\param[in] dac_periph
\arg DACx(x=0,1)
\param[in] dac_align
\arg DAC_ALIGN_8B_R: data right 8b alignment
\arg DAC_ALIGN_12B_R: data right 12b alignment
\arg DAC_ALIGN_12B_L: data left 12b alignment
\param[in] data: data to be loaded
\param[out] none
\retval none
*/
void dac_data_set(uint32_t dac_periph, uint32_t dac_align, uint16_t data)
{
if(DAC0 == dac_periph){
switch(dac_align){
/* data right 12b alignment */
case DAC_ALIGN_12B_R:
DAC0_R12DH = data;
break;
/* data left 12b alignment */
case DAC_ALIGN_12B_L:
DAC0_L12DH = data;
break;
/* data right 8b alignment */
case DAC_ALIGN_8B_R:
DAC0_R8DH = data;
break;
default:
break;
}
}else{
switch(dac_align){
/* data right 12b alignment */
case DAC_ALIGN_12B_R:
DAC1_R12DH = data;
break;
/* data left 12b alignment */
case DAC_ALIGN_12B_L:
DAC1_L12DH = data;
break;
/* data right 8b alignment */
case DAC_ALIGN_8B_R:
DAC1_R8DH = data;
break;
default:
break;
}
}
}
/*!
\brief set DAC concurrent mode data holding register value
\param[in] dac_align
\arg DAC_ALIGN_8B_R: data right 8b alignment
\arg DAC_ALIGN_12B_R: data right 12b alignment
\arg DAC_ALIGN_12B_L: data left 12b alignment
\param[in] data0: data to be loaded
\param[in] data1: data to be loaded
\param[out] none
\retval none
*/
void dac_concurrent_data_set(uint32_t dac_align, uint16_t data0, uint16_t data1)
{
uint32_t data = 0U;
switch(dac_align){
/* data right 12b alignment */
case DAC_ALIGN_12B_R:
data = ((uint32_t)data1 << 16) | data0;
DACC_R12DH = data;
break;
/* data left 12b alignment */
case DAC_ALIGN_12B_L:
data = ((uint32_t)data1 << 16) | data0;
DACC_L12DH = data;
break;
/* data right 8b alignment */
case DAC_ALIGN_8B_R:
data = ((uint32_t)data1 << 8) | data0;
DACC_R8DH = data;
break;
default:
break;
}
}
/*!
\brief get the specified DAC flag(DAC DMA underrun flag)
\param[in] dac_periph
\arg DACx(x=0,1)
\param[out] none
\retval the state of dac bit(SET or RESET)
*/
FlagStatus dac_flag_get(uint32_t dac_periph)
{
FlagStatus temp_flag = RESET;
if(DAC0 == dac_periph){
/* check the DMA underrun flag */
if(RESET != (DAC_STAT & DAC_STAT_DDUDR0)){
temp_flag = SET;
}
}else{
/* check the DMA underrun flag */
if(RESET != (DAC_STAT & DAC_STAT_DDUDR1)){
temp_flag = SET;
}
}
return temp_flag;
}
/*!
\brief clear the specified DAC flag(DAC DMA underrun flag)
\param[in] dac_periph
\arg DACx(x=0,1)
\param[out] none
\retval none
*/
void dac_flag_clear(uint32_t dac_periph)
{
if(DAC0 == dac_periph){
DAC_STAT |= DAC_STAT_DDUDR0;
}else{
DAC_STAT |= DAC_STAT_DDUDR1;
}
}
/*!
\brief get the specified DAC interrupt flag(DAC DMA underrun interrupt flag)
\param[in] dac_periph
\arg DACx(x=0,1)
\param[out] none
\retval the state of DAC interrupt flag(SET or RESET)
*/
FlagStatus dac_interrupt_flag_get(uint32_t dac_periph)
{
FlagStatus temp_flag = RESET;
uint32_t ddudr_flag = 0U, ddudrie_flag = 0U;
if(DAC0 == dac_periph){
/* check the DMA underrun flag and DAC DMA underrun interrupt enable flag */
ddudr_flag = DAC_STAT & DAC_STAT_DDUDR0;
ddudrie_flag = DAC_CTL & DAC_CTL_DDUDRIE0;
if((RESET != ddudr_flag) && (RESET != ddudrie_flag)){
temp_flag = SET;
}
}else{
/* check the DMA underrun flag and DAC DMA underrun interrupt enable flag */
ddudr_flag = DAC_STAT & DAC_STAT_DDUDR1;
ddudrie_flag = DAC_CTL & DAC_CTL_DDUDRIE1;
if((RESET != ddudr_flag) && (RESET != ddudrie_flag)){
temp_flag = SET;
}
}
return temp_flag;
}
/*!
\brief clear the specified DAC interrupt flag(DAC DMA underrun interrupt flag)
\param[in] dac_periph
\arg DACx(x=0,1)
\param[out] none
\retval none
*/
void dac_interrupt_flag_clear(uint32_t dac_periph)
{
if(DAC0 == dac_periph){
DAC_STAT |= DAC_STAT_DDUDR0;
}else{
DAC_STAT |= DAC_STAT_DDUDR1;
}
}

View File

@@ -0,0 +1,122 @@
/*!
\file gd32f4xx_dbg.c
\brief DBG driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#include "gd32f4xx_dbg.h"
/*!
\brief read DBG_ID code register
\param[in] none
\param[out] none
\retval DBG_ID code
*/
uint32_t dbg_id_get(void)
{
return DBG_ID;
}
/*!
\brief enable low power behavior when the mcu is in debug mode
\param[in] dbg_low_power:
this parameter can be any combination of the following values:
\arg DBG_LOW_POWER_SLEEP: keep debugger connection during sleep mode
\arg DBG_LOW_POWER_DEEPSLEEP: keep debugger connection during deepsleep mode
\arg DBG_LOW_POWER_STANDBY: keep debugger connection during standby mode
\param[out] none
\retval none
*/
void dbg_low_power_enable(uint32_t dbg_low_power)
{
DBG_CTL0 |= dbg_low_power;
}
/*!
\brief disable low power behavior when the mcu is in debug mode
\param[in] dbg_low_power:
this parameter can be any combination of the following values:
\arg DBG_LOW_POWER_SLEEP: donot keep debugger connection during sleep mode
\arg DBG_LOW_POWER_DEEPSLEEP: donot keep debugger connection during deepsleep mode
\arg DBG_LOW_POWER_STANDBY: donot keep debugger connection during standby mode
\param[out] none
\retval none
*/
void dbg_low_power_disable(uint32_t dbg_low_power)
{
DBG_CTL0 &= ~dbg_low_power;
}
/*!
\brief enable peripheral behavior when the mcu is in debug mode
\param[in] dbg_periph: dbg_periph_enum
\param[out] none
\retval none
*/
void dbg_periph_enable(dbg_periph_enum dbg_periph)
{
if(RESET == ((uint32_t)dbg_periph & BIT(30))){
DBG_CTL1 |= (uint32_t)dbg_periph;
}else{
DBG_CTL2 |= ((uint32_t)dbg_periph & (~BIT(30)));
}
}
/*!
\brief disable peripheral behavior when the mcu is in debug mode
\param[in] dbg_periph: dbg_periph_enum
\param[out] none
\retval none
*/
void dbg_periph_disable(dbg_periph_enum dbg_periph)
{
if(RESET == ((uint32_t)dbg_periph & BIT(30))){
DBG_CTL1 &= ~(uint32_t)dbg_periph;
}else{
DBG_CTL2 &= ~((uint32_t)dbg_periph & (~BIT(30)));
}
}
/*!
\brief enable trace pin assignment
\param[in] none
\param[out] none
\retval none
*/
void dbg_trace_pin_enable(void)
{
DBG_CTL0 |= DBG_CTL0_TRACE_IOEN;
}
/*!
\brief disable trace pin assignment
\param[in] none
\param[out] none
\retval none
*/
void dbg_trace_pin_disable(void)
{
DBG_CTL0 &= ~DBG_CTL0_TRACE_IOEN;
}
/*!
\brief trace pin mode selection
\param[in] trace_mode:
\arg TRACE_MODE_ASYNC: trace pin used for async mode
\arg TRACE_MODE_SYNC_DATASIZE_1: trace pin used for sync mode and data size is 1
\arg TRACE_MODE_SYNC_DATASIZE_2: trace pin used for sync mode and data size is 2
\arg TRACE_MODE_SYNC_DATASIZE_4: trace pin used for sync mode and data size is 4
\param[out] none
\retval none
*/
void dbg_trace_pin_mode_set(uint32_t trace_mode)
{
DBG_CTL0 &= ~DBG_CTL0_TRACE_MODE;
DBG_CTL0 |= trace_mode;
}

View File

@@ -0,0 +1,341 @@
/*!
\file gd32f4xx_dci.c
\brief DCI driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#include "gd32f4xx_dci.h"
/*!
\brief DCI deinit
\param[in] none
\param[out] none
\retval none
*/
void dci_deinit(void)
{
rcu_periph_reset_enable(RCU_DCIRST);
rcu_periph_reset_disable(RCU_DCIRST);
}
/*!
\brief initialize DCI registers
\param[in] dci_struct: DCI parameter initialization stuct
members of the structure and the member values are shown as below:
capture_mode : DCI_CAPTURE_MODE_CONTINUOUS, DCI_CAPTURE_MODE_SNAPSHOT
colck_polarity : DCI_CK_POLARITY_FALLING, DCI_CK_POLARITY_RISING
hsync_polarity : DCI_HSYNC_POLARITY_LOW, DCI_HSYNC_POLARITY_HIGH
vsync_polarity : DCI_VSYNC_POLARITY_LOW, DCI_VSYNC_POLARITY_HIGH
frame_rate : DCI_FRAME_RATE_ALL, DCI_FRAME_RATE_1_2, DCI_FRAME_RATE_1_4
interface_format: DCI_INTERFACE_FORMAT_8BITS, DCI_INTERFACE_FORMAT_10BITS,
DCI_INTERFACE_FORMAT_12BITS, DCI_INTERFACE_FORMAT_14BITS
\param[out] none
\retval none
*/
void dci_init(dci_parameter_struct* dci_struct)
{
uint32_t reg =0U;
/* disable capture function and DCI */
DCI_CTL &= ~(DCI_CTL_CAP | DCI_CTL_DCIEN);
/* config DCI parameter */
reg |= dci_struct->capture_mode;
reg |= dci_struct->clock_polarity;
reg |= dci_struct->hsync_polarity;
reg |= dci_struct->vsync_polarity;
reg |= dci_struct->frame_rate;
reg |= dci_struct->interface_format;
DCI_CTL = reg;
}
/*!
\brief enable DCI function
\param[in] none
\param[out] none
\retval none
*/
void dci_enable(void)
{
DCI_CTL |= DCI_CTL_DCIEN;
}
/*!
\brief disable DCI function
\param[in] none
\param[out] none
\retval none
*/
void dci_disable(void)
{
DCI_CTL &= ~DCI_CTL_DCIEN;
}
/*!
\brief enable DCI capture
\param[in] none
\param[out] none
\retval none
*/
void dci_capture_enable(void)
{
DCI_CTL |= DCI_CTL_CAP;
}
/*!
\brief disable DCI capture
\param[in] none
\param[out] none
\retval none
*/
void dci_capture_disable(void)
{
DCI_CTL &= ~DCI_CTL_CAP;
}
/*!
\brief enable DCI jpeg mode
\param[in] none
\param[out] none
\retval none
*/
void dci_jpeg_enable(void)
{
DCI_CTL |= DCI_CTL_JM;
}
/*!
\brief disable DCI jpeg mode
\param[in] none
\param[out] none
\retval none
*/
void dci_jpeg_disable(void)
{
DCI_CTL &= ~DCI_CTL_JM;
}
/*!
\brief enable cropping window function
\param[in] none
\param[out] none
\retval none
*/
void dci_crop_window_enable(void)
{
DCI_CTL |= DCI_CTL_WDEN;
}
/*!
\brief disable cropping window function
\param[in] none
\param[out] none
\retval none
*/
void dci_crop_window_disable(void)
{
DCI_CTL &= ~DCI_CTL_WDEN;
}
/*!
\brief config DCI cropping window
\param[in] start_x: window horizontal start position
\param[in] start_y: window vertical start position
\param[in] size_height: window horizontal size
\param[in] size_width: window vertical size
\param[out] none
\retval none
*/
void dci_crop_window_config(uint16_t start_x, uint16_t start_y, uint16_t size_width, uint16_t size_height)
{
DCI_CWSPOS = ((uint32_t)start_x | ((uint32_t)start_y<<16));
DCI_CWSZ = ((uint32_t)size_width | ((uint32_t)size_height<<16));
}
/*!
\brief enable sync codes function
\param[in] none
\param[out] none
\retval none
*/
void dci_sync_codes_enable(void)
{
DCI_CTL |= DCI_CTL_ESM;
}
/*!
\brief disable sync codes function
\param[in] none
\param[out] none
\retval none
*/
void dci_sync_codes_disable(void)
{
DCI_CTL &= ~DCI_CTL_ESM;
}
/*!
\brief config sync codes
\param[in] frame_start: frame start code in embedded synchronous mode
\param[in] line_start: line start code in embedded synchronous mode
\param[in] line_end: line end code in embedded synchronous mode
\param[in] frame_end: frame end code in embedded synchronous mode
\param[out] none
\retval none
*/
void dci_sync_codes_config(uint8_t frame_start, uint8_t line_start, uint8_t line_end, uint8_t frame_end)
{
DCI_SC = ((uint32_t)frame_start | ((uint32_t)line_start<<8) | ((uint32_t)line_end<<16) | ((uint32_t)frame_end<<24));
}
/*!
\brief config sync codes unmask
\param[in] frame_start: frame start code unmask bits in embedded synchronous mode
\param[in] line_start: line start code unmask bits in embedded synchronous mode
\param[in] line_end: line end code unmask bits in embedded synchronous mode
\param[in] frame_end: frame end code unmask bits in embedded synchronous mode
\param[out] none
\retval none
*/
void dci_sync_codes_unmask_config(uint8_t frame_start, uint8_t line_start, uint8_t line_end, uint8_t frame_end)
{
DCI_SCUMSK = ((uint32_t)frame_start | ((uint32_t)line_start<<8) | ((uint32_t)line_end<<16) | ((uint32_t)frame_end<<24));
}
/*!
\brief read DCI data register
\param[in] none
\param[out] none
\retval data
*/
uint32_t dci_data_read(void)
{
return DCI_DATA;
}
/*!
\brief enable specified DCI interrupt
\param[in] interrupt:
\arg DCI_INT_EF: end of frame interrupt
\arg DCI_INT_OVR: FIFO overrun interrupt
\arg DCI_INT_ESE: embedded synchronous error interrupt
\arg DCI_INT_VS: vsync interrupt
\arg DCI_INT_EL: end of line interrupt
\param[out] none
\retval none
*/
void dci_interrupt_enable(uint32_t interrupt)
{
DCI_INTEN |= interrupt;
}
/*!
\brief disable specified DCI interrupt
\param[in] interrupt:
\arg DCI_INT_EF: end of frame interrupt
\arg DCI_INT_OVR: FIFO overrun interrupt
\arg DCI_INT_ESE: embedded synchronous error interrupt
\arg DCI_INT_VS: vsync interrupt
\arg DCI_INT_EL: end of line interrupt
\param[out] none
\retval none
*/
void dci_interrupt_disable(uint32_t interrupt)
{
DCI_INTEN &= ~interrupt;
}
/*!
\brief clear specified interrupt
\param[in] interrupt:
\arg DCI_INT_EF: end of frame interrupt
\arg DCI_INT_OVR: FIFO overrun interrupt
\arg DCI_INT_ESE: embedded synchronous error interrupt
\arg DCI_INT_VS: vsync interrupt
\arg DCI_INT_EL: end of line interrupt
\param[out] none
\retval none
*/
void dci_interrupt_clear(uint32_t interrupt)
{
DCI_INTC |= interrupt;
}
/*!
\brief get specified flag
\param[in] flag:
\arg DCI_FLAG_HS: HS line status
\arg DCI_FLAG_VS: VS line status
\arg DCI_FLAG_FV:FIFO valid
\arg DCI_FLAG_EFF: end of frame flag
\arg DCI_FLAG_OVRF: FIFO overrun flag
\arg DCI_FLAG_ESEF: embedded synchronous error flag
\arg DCI_FLAG_VSF: vsync flag
\arg DCI_FLAG_ELF: end of line flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus dci_flag_get(uint32_t flag)
{
uint32_t ret = 0U;
switch(flag){
/* get flag status from DCI_STAT0 register */
case DCI_FLAG_HS:
ret = (DCI_STAT0 & DCI_STAT0_HS);
break;
case DCI_FLAG_VS:
ret = (DCI_STAT0 & DCI_STAT0_VS);
break;
case DCI_FLAG_FV:
ret = (DCI_STAT0 & DCI_STAT0_FV);
break;
/* get flag status from DCI_STAT1 register */
case DCI_FLAG_EFF:
ret = (DCI_STAT1 & DCI_STAT1_EFF);
break;
case DCI_FLAG_OVRF:
ret = (DCI_STAT1 & DCI_STAT1_OVRF);
break;
case DCI_FLAG_ESEF:
ret = (DCI_STAT1 & DCI_STAT1_ESEF);
break;
case DCI_FLAG_VSF:
ret = (DCI_STAT1 & DCI_STAT1_VSF);
break;
case DCI_FLAG_ELF:
ret = (DCI_STAT1 & DCI_STAT1_ELF);
break;
default :
break;
}
if(RESET == ret){
return RESET;
}else{
return SET;
}
}
/*!
\brief get specified interrupt flag
\param[in] interrupt:
\arg DCI_INT_EF: end of frame interrupt
\arg DCI_INT_OVR: FIFO overrun interrupt
\arg DCI_INT_ESE: embedded synchronous error interrupt
\arg DCI_INT_VS: vsync interrupt
\arg DCI_INT_EL: end of line interrupt
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus dci_interrupt_flag_get(uint32_t interrupt)
{
if(RESET == (DCI_INTF & interrupt)){
return RESET;
}else{
return SET;
}
}

View File

@@ -0,0 +1,821 @@
/*!
\file gd32f4xx_dma.c
\brief DMA driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#include "gd32f4xx_dma.h"
/* DMA register bit offset */
#define CHXCTL_PERIEN_OFFSET ((uint32_t)25U)
/*!
\brief deinitialize DMA a channel registers
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel is deinitialized
\arg DMA_CHx(x=0..7)
\param[out] none
\retval none
*/
void dma_deinit(uint32_t dma_periph,dma_channel_enum channelx)
{
/* disable DMA a channel */
DMA_CHCTL(dma_periph,channelx) &= ~DMA_CHXCTL_CHEN;
/* reset DMA channel registers */
DMA_CHCTL(dma_periph,channelx) = DMA_CHCTL_RESET_VALUE;
DMA_CHCNT(dma_periph,channelx) = DMA_CHCNT_RESET_VALUE;
DMA_CHPADDR(dma_periph,channelx) = DMA_CHPADDR_RESET_VALUE;
DMA_CHM0ADDR(dma_periph,channelx) = DMA_CHMADDR_RESET_VALUE;
DMA_CHM1ADDR(dma_periph,channelx) = DMA_CHMADDR_RESET_VALUE;
DMA_CHFCTL(dma_periph,channelx) = DMA_CHFCTL_RESET_VALUE;
if(channelx < DMA_CH4){
DMA_INTC0(dma_periph) |= DMA_FLAG_ADD(DMA_CHINTF_RESET_VALUE,channelx);
}else{
channelx -= (dma_channel_enum)4;
DMA_INTC1(dma_periph) |= DMA_FLAG_ADD(DMA_CHINTF_RESET_VALUE,channelx);
}
}
/*!
\brief initialize DMA single data mode
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel is initialized
\arg DMA_CHx(x=0..7)
\param[in] init_struct: the data needed to initialize DMA single data mode
periph_addr: peripheral base address
periph_memory_width: DMA_PERIPH_WIDTH_8BIT,DMA_PERIPH_WIDTH_16BIT,DMA_PERIPH_WIDTH_32BIT
periph_inc: DMA_PERIPH_INCREASE_ENABLE,DMA_PERIPH_INCREASE_DISABLE,DMA_PERIPH_INCREASE_FIX
memory0_addr: memory base address
memory_inc: DMA_MEMORY_INCREASE_ENABLE,DMA_MEMORY_INCREASE_DISABLE
direction: DMA_PERIPH_TO_MEMORY,DMA_MEMORY_TO_PERIPH,DMA_MEMORY_TO_MEMORY
number: the number of remaining data to be transferred by the DMA
priority: DMA_PRIORITY_LOW,DMA_PRIORITY_MEDIUM,DMA_PRIORITY_HIGH,DMA_PRIORITY_ULTRA_HIGH
circular_mode: DMA_CIRCULAR_MODE_ENABLE,DMA_CIRCULAR_MODE_DISABLE
\param[out] none
\retval none
*/
void dma_single_data_mode_init(uint32_t dma_periph,dma_channel_enum channelx,dma_single_data_parameter_struct init_struct)
{
uint32_t ctl;
/* select single data mode */
DMA_CHFCTL(dma_periph,channelx) &= ~DMA_CHXFCTL_MDMEN;
/* configure peripheral base address */
DMA_CHPADDR(dma_periph,channelx) = init_struct.periph_addr;
/* configure memory base address */
DMA_CHM0ADDR(dma_periph,channelx) = init_struct.memory0_addr;
/* configure the number of remaining data to be transferred */
DMA_CHCNT(dma_periph,channelx) = init_struct.number;
/* configure peripheral and memory transfer width,channel priotity,transfer mode */
ctl = DMA_CHCTL(dma_periph,channelx);
ctl &= ~(DMA_CHXCTL_PWIDTH | DMA_CHXCTL_MWIDTH | DMA_CHXCTL_PRIO | DMA_CHXCTL_TM);
ctl |= (init_struct.periph_memory_width | (init_struct.periph_memory_width << 2) | init_struct.priority | init_struct.direction);
DMA_CHCTL(dma_periph,channelx) = ctl;
/* configure peripheral increasing mode */
if(DMA_PERIPH_INCREASE_ENABLE == init_struct.periph_inc){
DMA_CHCTL(dma_periph,channelx) |= DMA_CHXCTL_PNAGA;
}else if(DMA_PERIPH_INCREASE_DISABLE == init_struct.periph_inc){
DMA_CHCTL(dma_periph,channelx) &= ~DMA_CHXCTL_PNAGA;
}else{
DMA_CHCTL(dma_periph,channelx) |= DMA_CHXCTL_PAIF;
}
/* configure memory increasing mode */
if(DMA_MEMORY_INCREASE_ENABLE == init_struct.memory_inc){
DMA_CHCTL(dma_periph,channelx) |= DMA_CHXCTL_MNAGA;
}else{
DMA_CHCTL(dma_periph,channelx) &= ~DMA_CHXCTL_MNAGA;
}
/* configure DMA circular mode */
if(DMA_CIRCULAR_MODE_ENABLE == init_struct.circular_mode){
DMA_CHCTL(dma_periph,channelx) |= DMA_CHXCTL_CMEN;
}else{
DMA_CHCTL(dma_periph,channelx) &= ~DMA_CHXCTL_CMEN;
}
}
/*!
\brief initialize DMA multi data mode
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel is initialized
\arg DMA_CHx(x=0..7)
\param[in] dma_multi_data_parameter_struct: the data needed to initialize DMA multi data mode
periph_addr: peripheral base address
periph_width: DMA_PERIPH_WIDTH_8BIT,DMA_PERIPH_WIDTH_16BIT,DMA_PERIPH_WIDTH_32BIT
periph_inc: DMA_PERIPH_INCREASE_ENABLE,DMA_PERIPH_INCREASE_DISABLE,DMA_PERIPH_INCREASE_FIX
memory0_addr: memory0 base address
memory_width: DMA_MEMORY_WIDTH_8BIT,DMA_MEMORY_WIDTH_16BIT,DMA_MEMORY_WIDTH_32BIT
memory_inc: DMA_MEMORY_INCREASE_ENABLE,DMA_MEMORY_INCREASE_DISABLE
direction: DMA_PERIPH_TO_MEMORY,DMA_MEMORY_TO_PERIPH,DMA_MEMORY_TO_MEMORY
number: the number of remaining data to be transferred by the DMA
priority: DMA_PRIORITY_LOW,DMA_PRIORITY_MEDIUM,DMA_PRIORITY_HIGH,DMA_PRIORITY_ULTRA_HIGH
circular_mode: DMA_CIRCULAR_MODE_ENABLE,DMA_CIRCULAR_MODE_DISABLE
memory_burst_width: DMA_MEMORY_BURST_SINGLE,DMA_MEMORY_BURST_4_BEAT,DMA_MEMORY_BURST_8_BEAT,DMA_MEMORY_BURST_16_BEAT
periph_burst_width: DMA_PERIPH_BURST_SINGLE,DMA_PERIPH_BURST_4_BEAT,DMA_PERIPH_BURST_8_BEAT,DMA_PERIPH_BURST_16_BEAT
critical_value: DMA_FIFO_1_WORD,DMA_FIFO_2_WORD,DMA_FIFO_3_WORD,DMA_FIFO_4_WORD
\param[out] none
\retval none
*/
void dma_multi_data_mode_init(uint32_t dma_periph,dma_channel_enum channelx,dma_multi_data_parameter_struct init_struct)
{
uint32_t ctl;
/* select multi data mode and configure FIFO critical value */
DMA_CHFCTL(dma_periph,channelx) |= (DMA_CHXFCTL_MDMEN | init_struct.critical_value);
/* configure peripheral base address */
DMA_CHPADDR(dma_periph,channelx) = init_struct.periph_addr;
/* configure memory base address */
DMA_CHM0ADDR(dma_periph,channelx) = init_struct.memory0_addr;
/* configure the number of remaining data to be transferred */
DMA_CHCNT(dma_periph,channelx) = init_struct.number;
/* configure peripheral and memory transfer width,channel priotity,transfer mode,peripheral and memory burst transfer width */
ctl = DMA_CHCTL(dma_periph,channelx);
ctl &= ~(DMA_CHXCTL_PWIDTH | DMA_CHXCTL_MWIDTH | DMA_CHXCTL_PRIO | DMA_CHXCTL_TM | DMA_CHXCTL_PBURST | DMA_CHXCTL_MBURST);
ctl |= (init_struct.periph_width | (init_struct.memory_width ) | init_struct.priority | init_struct.direction | init_struct.memory_burst_width | init_struct.periph_burst_width);
DMA_CHCTL(dma_periph,channelx) = ctl;
/* configure peripheral increasing mode */
if(DMA_PERIPH_INCREASE_ENABLE == init_struct.periph_inc){
DMA_CHCTL(dma_periph,channelx) |= DMA_CHXCTL_PNAGA;
}else if(DMA_PERIPH_INCREASE_DISABLE == init_struct.periph_inc){
DMA_CHCTL(dma_periph,channelx) &= ~DMA_CHXCTL_PNAGA;
}else{
DMA_CHCTL(dma_periph,channelx) |= DMA_CHXCTL_PAIF;
}
/* configure memory increasing mode */
if(DMA_MEMORY_INCREASE_ENABLE == init_struct.memory_inc){
DMA_CHCTL(dma_periph,channelx) |= DMA_CHXCTL_MNAGA;
}else{
DMA_CHCTL(dma_periph,channelx) &= ~DMA_CHXCTL_MNAGA;
}
/* configure DMA circular mode */
if(DMA_CIRCULAR_MODE_ENABLE == init_struct.circular_mode){
DMA_CHCTL(dma_periph,channelx) |= DMA_CHXCTL_CMEN;
}else{
DMA_CHCTL(dma_periph,channelx) &= ~DMA_CHXCTL_CMEN;
}
}
/*!
\brief get DMA flag is set or not
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel to get flag
\arg DMA_CHx(x=0..7)
\param[in] flag: specify get which flag
\arg DMA_INTF_FEEIF: FIFO error and exception flag
\arg DMA_INTF_SDEIF: single data mode exception flag
\arg DMA_INTF_TAEIF: transfer access error flag
\arg DMA_INTF_HTFIF: half transfer finish flag
\arg DMA_INTF_FTFIF: full transger finish flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus dma_flag_get(uint32_t dma_periph,dma_channel_enum channelx,uint32_t flag)
{
if(channelx < DMA_CH4){
if(DMA_INTF0(dma_periph) & DMA_FLAG_ADD(flag,channelx)){
return SET;
}else{
return RESET;
}
}else{
channelx -= (dma_channel_enum)4;
if(DMA_INTF1(dma_periph) & DMA_FLAG_ADD(flag,channelx)){
return SET;
}else{
return RESET;
}
}
}
/*!
\brief clear DMA a channel flag
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel to get flag
\arg DMA_CHx(x=0..7)
\param[in] flag: specify get which flag
\arg DMA_INTF_FEEIF: FIFO error and exception flag
\arg DMA_INTF_SDEIF: single data mode exception flag
\arg DMA_INTF_TAEIF: transfer access error flag
\arg DMA_INTF_HTFIF: half transfer finish flag
\arg DMA_INTF_FTFIF: full transger finish flag
\param[out] none
\retval none
*/
void dma_flag_clear(uint32_t dma_periph,dma_channel_enum channelx,uint32_t flag)
{
if(channelx < DMA_CH4){
DMA_INTC0(dma_periph) |= DMA_FLAG_ADD(flag,channelx);
}else{
channelx -= (dma_channel_enum)4;
DMA_INTC1(dma_periph) |= DMA_FLAG_ADD(flag,channelx);
}
}
/*!
\brief get DMA interrupt flag is set or not
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel to get interrupt flag
\arg DMA_CHx(x=0..7)
\param[in] interrupt: specify get which flag
\arg DMA_INTF_FEEIF: FIFO error and exception flag
\arg DMA_INTF_SDEIF: single data mode exception flag
\arg DMA_INTF_TAEIF: transfer access error flag
\arg DMA_INTF_HTFIF: half transfer finish flag
\arg DMA_INTF_FTFIF: full transger finish flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus dma_interrupt_flag_get(uint32_t dma_periph,dma_channel_enum channelx,uint32_t interrupt)
{
uint32_t interrupt_enable = 0U,interrupt_flag = 0U;
dma_channel_enum channel_flag_offset = channelx;
if(channelx < DMA_CH4){
switch(interrupt){
case DMA_INTF_FEEIF:
interrupt_flag = DMA_INTF0(dma_periph) & DMA_FLAG_ADD(interrupt,channelx);
interrupt_enable = DMA_CHFCTL(dma_periph,channelx) & DMA_CHXFCTL_FEEIE;
break;
case DMA_INTF_SDEIF:
interrupt_flag = DMA_INTF0(dma_periph) & DMA_FLAG_ADD(interrupt,channelx);
interrupt_enable = DMA_CHCTL(dma_periph,channelx) & DMA_CHXCTL_SDEIE;
break;
case DMA_INTF_TAEIF:
interrupt_flag = DMA_INTF0(dma_periph) & DMA_FLAG_ADD(interrupt,channelx);
interrupt_enable = DMA_CHCTL(dma_periph,channelx) & DMA_CHXCTL_TAEIE;
break;
case DMA_INTF_HTFIF:
interrupt_flag = DMA_INTF0(dma_periph) & DMA_FLAG_ADD(interrupt,channelx);
interrupt_enable = DMA_CHCTL(dma_periph,channelx) & DMA_CHXCTL_HTFIE;
break;
case DMA_INTF_FTFIF:
interrupt_flag = (DMA_INTF0(dma_periph) & DMA_FLAG_ADD(interrupt,channelx));
interrupt_enable = (DMA_CHCTL(dma_periph,channelx) & DMA_CHXCTL_FTFIE);
break;
default:
break;
}
}else{
channel_flag_offset -= (dma_channel_enum)4;
switch(interrupt){
case DMA_INTF_FEEIF:
interrupt_flag = DMA_INTF1(dma_periph) & DMA_FLAG_ADD(interrupt,channel_flag_offset);
interrupt_enable = DMA_CHFCTL(dma_periph,channelx) & DMA_CHXFCTL_FEEIE;
break;
case DMA_INTF_SDEIF:
interrupt_flag = DMA_INTF1(dma_periph) & DMA_FLAG_ADD(interrupt,channel_flag_offset);
interrupt_enable = DMA_CHCTL(dma_periph,channelx) & DMA_CHXCTL_SDEIE;
break;
case DMA_INTF_TAEIF:
interrupt_flag = DMA_INTF1(dma_periph) & DMA_FLAG_ADD(interrupt,channel_flag_offset);
interrupt_enable = DMA_CHCTL(dma_periph,channelx) & DMA_CHXCTL_TAEIE;
break;
case DMA_INTF_HTFIF:
interrupt_flag = DMA_INTF1(dma_periph) & DMA_FLAG_ADD(interrupt,channel_flag_offset);
interrupt_enable = DMA_CHCTL(dma_periph,channelx) & DMA_CHXCTL_HTFIE;
break;
case DMA_INTF_FTFIF:
interrupt_flag = DMA_INTF1(dma_periph) & DMA_FLAG_ADD(interrupt,channel_flag_offset);
interrupt_enable = DMA_CHCTL(dma_periph,channelx) & DMA_CHXCTL_FTFIE;
break;
default:
break;
}
}
if(interrupt_flag && interrupt_enable){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear DMA a channel interrupt flag
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel to clear interrupt flag
\arg DMA_CHx(x=0..7)
\param[in] interrupt: specify get which flag
\arg DMA_INTC_FEEIFC: clear FIFO error and exception flag
\arg DMA_INTC_SDEIFC: clear single data mode exception flag
\arg DMA_INTC_TAEIFC: clear transfer access error flag
\arg DMA_INTC_HTFIFC: clear half transfer finish flag
\arg DMA_INTC_FTFIFC: clear full transger finish flag
\param[out] none
\retval none
*/
void dma_interrupt_flag_clear(uint32_t dma_periph,dma_channel_enum channelx,uint32_t interrupt)
{
if(channelx < DMA_CH4){
DMA_INTC0(dma_periph) |= DMA_FLAG_ADD(interrupt,channelx);
}else{
channelx -= (dma_channel_enum)4;
DMA_INTC1(dma_periph) |= DMA_FLAG_ADD(interrupt,channelx);
}
}
/*!
\brief enable DMA interrupt
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA_CHx(x=0..7)
\param[in] source: specify which interrupt to enbale
\arg DMA_CHXCTL_SDEIE: single data mode exception interrupt enable
\arg DMA_CHXCTL_TAEIE: tranfer access error interrupt enable
\arg DMA_CHXCTL_HTFIE: half transfer finish interrupt enable
\arg DMA_CHXCTL_FTFIE: full transfer finish interrupt enable
\arg DMA_CHXFCTL_FEEIE: FIFO exception interrupt enable
\param[out] none
\retval none
*/
void dma_interrupt_enable(uint32_t dma_periph,dma_channel_enum channelx,uint32_t source)
{
if(DMA_CHXFCTL_FEEIE != source){
DMA_CHCTL(dma_periph,channelx) |= source;
}else{
DMA_CHFCTL(dma_periph,channelx) |= source;
}
}
/*!
\brief disable DMA interrupt
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA_CHx(x=0..7)
\param[in] source: specify which interrupt to disbale
\arg DMA_CHXCTL_SDEIE: single data mode exception interrupt enable
\arg DMA_CHXCTL_TAEIE: tranfer access error interrupt enable
\arg DMA_CHXCTL_HTFIE: half transfer finish interrupt enable
\arg DMA_CHXCTL_FTFIE: full transfer finish interrupt enable
\arg DMA_CHXFCTL_FEEIE: FIFO exception interrupt enable
\param[out] none
\retval none
*/
void dma_interrupt_disable(uint32_t dma_periph,dma_channel_enum channelx,uint32_t source)
{
if(DMA_CHXFCTL_FEEIE != source){
DMA_CHCTL(dma_periph,channelx) &= ~source;
}else{
DMA_CHFCTL(dma_periph,channelx) &= ~source;
}
}
/*!
\brief set DMA peripheral base address
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel to set peripheral base address
\arg DMA_CHx(x=0..7)
\param[in] address: peripheral base address
\param[out] none
\retval none
*/
void dma_periph_address_config(uint32_t dma_periph,dma_channel_enum channelx,uint32_t address)
{
DMA_CHPADDR(dma_periph,channelx) = address;
}
/*!
\brief set DMA Memory0 base address
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel to set Memory base address
\arg DMA_CHx(x=0..7)
\param[in] memory_flag: DMA_MEMORY_x(x=0,1)
\param[in] address: Memory base address
\param[out] none
\retval none
*/
void dma_memory_address_config(uint32_t dma_periph,dma_channel_enum channelx,uint8_t memory_flag,uint32_t address)
{
if(memory_flag){
DMA_CHM1ADDR(dma_periph,channelx) = address;
}else{
DMA_CHM0ADDR(dma_periph,channelx) = address;
}
}
/*!
\brief set the number of remaining data to be transferred by the DMA
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel to set number
\arg DMA_CHx(x=0..7)
\param[in] number: the number of remaining data to be transferred by the DMA
\param[out] none
\retval none
*/
void dma_transfer_number_config(uint32_t dma_periph,dma_channel_enum channelx,uint32_t number)
{
DMA_CHCNT(dma_periph,channelx) = number;
}
/*!
\brief get the number of remaining data to be transferred by the DMA
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel to set number
\arg DMA_CHx(x=0..7)
\param[out] none
\retval uint32_t: the number of remaining data to be transferred by the DMA
*/
uint32_t dma_transfer_number_get(uint32_t dma_periph,dma_channel_enum channelx)
{
return (uint32_t)DMA_CHCNT(dma_periph,channelx);
}
/*!
\brief configure priority level of DMA channel
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA_CHx(x=0..7)
\param[in] priority: priority Level of this channel
\arg DMA_PRIORITY_LOW: low priority
\arg DMA_PRIORITY_MEDIUM: medium priority
\arg DMA_PRIORITY_HIGH: high priority
\arg DMA_PRIORITY_ULTRA_HIGH: ultra high priority
\param[out] none
\retval none
*/
void dma_priority_config(uint32_t dma_periph,dma_channel_enum channelx,uint32_t priority)
{
uint32_t ctl;
/* acquire DMA_CHxCTL register */
ctl = DMA_CHCTL(dma_periph,channelx);
/* assign regiser */
ctl &= ~DMA_CHXCTL_PRIO;
ctl |= priority;
DMA_CHCTL(dma_periph,channelx) = ctl;
}
/*!
\brief configure transfer burst beats of memory
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA_CHx(x=0..7)
\param[in] mbeat: transfer burst beats
\arg DMA_MEMORY_BURST_SINGLE: memory transfer single burst
\arg DMA_MEMORY_BURST_4_BEAT: memory transfer 4-beat burst
\arg DMA_MEMORY_BURST_8_BEAT: memory transfer 8-beat burst
\arg DMA_MEMORY_BURST_16_BEAT: memory transfer 16-beat burst
\param[out] none
\retval none
*/
void dma_memory_burst_beats_config (uint32_t dma_periph,dma_channel_enum channelx,uint32_t mbeat)
{
uint32_t ctl;
/* acquire DMA_CHxCTL register */
ctl = DMA_CHCTL(dma_periph,channelx);
/* assign regiser */
ctl &= ~DMA_CHXCTL_MBURST;
ctl |= mbeat;
DMA_CHCTL(dma_periph,channelx) = ctl;
}
/*!
\brief configure transfer burst beats of peripheral
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA_CHx(x=0..7)
\param[in] pbeat: transfer burst beats
\arg DMA_PERIPH_BURST_SINGLE: peripheral transfer single burst
\arg DMA_PERIPH_BURST_4_BEAT: peripheral transfer 4-beat burst
\arg DMA_PERIPH_BURST_8_BEAT: peripheral transfer 8-beat burst
\arg DMA_PERIPH_BURST_16_BEAT: peripheral transfer 16-beat burst
\param[out] none
\retval none
*/
void dma_periph_burst_beats_config (uint32_t dma_periph,dma_channel_enum channelx,uint32_t pbeat)
{
uint32_t ctl;
/* acquire DMA_CHxCTL register */
ctl = DMA_CHCTL(dma_periph,channelx);
/* assign regiser */
ctl &= ~DMA_CHXCTL_PBURST;
ctl |= pbeat;
DMA_CHCTL(dma_periph,channelx) = ctl;
}
/*!
\brief configure transfer data size of memory
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA_CHx(x=0..7)
\param[in] msize: transfer data size of memory
\arg DMA_MEMORY_WIDTH_8BIT: transfer data size of memory is 8-bit
\arg DMA_MEMORY_WIDTH_16BIT: transfer data size of memory is 16-bit
\arg DMA_MEMORY_WIDTH_32BIT: transfer data size of memory is 32-bit
\param[out] none
\retval none
*/
void dma_memory_width_config(uint32_t dma_periph,dma_channel_enum channelx,uint32_t msize)
{
uint32_t ctl;
/* acquire DMA_CHxCTL register */
ctl = DMA_CHCTL(dma_periph,channelx);
/* assign regiser */
ctl &= ~DMA_CHXCTL_MWIDTH;
ctl |= msize;
DMA_CHCTL(dma_periph,channelx) = ctl;
}
/*!
\brief configure transfer data size of peripheral
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA_CHx(x=0..7)
\param[in] msize: transfer data size of peripheral
\arg DMA_PERIPHERAL_WIDTH_8BIT: transfer data size of peripheral is 8-bit
\arg DMA_PERIPHERAL_WIDTH_16BIT: transfer data size of peripheral is 16-bit
\arg DMA_PERIPHERAL_WIDTH_32BIT: transfer data size of peripheral is 32-bit
\param[out] none
\retval none
*/
void dma_periph_width_config (uint32_t dma_periph,dma_channel_enum channelx,uint32_t psize)
{
uint32_t ctl;
/* acquire DMA_CHxCTL register */
ctl = DMA_CHCTL(dma_periph,channelx);
/* assign regiser */
ctl &= ~DMA_CHXCTL_PWIDTH;
ctl |= psize;
DMA_CHCTL(dma_periph,channelx) = ctl;
}
/*!
\brief configure memory address generation generation_algorithm
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA_CHx(x=0..7)
\param[in] generation_algorithm: the address generation algorithm
\arg DMA_MEMORY_INCREASE_ENABLE: next address of memory is increasing address mode
\arg DMA_MEMORY_INCREASE_DISABLE: next address of memory is fixed address mode
\param[out] none
\retval none
*/
void dma_memory_address_generation_config(uint32_t dma_periph,dma_channel_enum channelx,uint8_t generation_algorithm)
{
if(DMA_MEMORY_INCREASE_ENABLE == generation_algorithm){
DMA_CHCTL(dma_periph,channelx) |= DMA_CHXCTL_MNAGA;
}else{
DMA_CHCTL(dma_periph,channelx) &= ~DMA_CHXCTL_MNAGA;
}
}
/*!
\brief configure peripheral address generation generation_algorithm
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA_CHx(x=0..7)
\param[in] generation_algorithm: the address generation algorithm
\arg DMA_PERIPH_INCREASE_ENABLE: next address of peripheral is increasing address mode
\arg DMA_PERIPH_INCREASE_DISABLE: next address of peripheral is fixed address mode
\arg DMA_PERIPH_INCREASE_FIX: increasing steps of peripheral address is fixed
\param[out] none
\retval none
*/
void dma_peripheral_address_generation_config(uint32_t dma_periph,dma_channel_enum channelx,uint8_t generation_algorithm)
{
if(DMA_PERIPH_INCREASE_ENABLE == generation_algorithm){
DMA_CHCTL(dma_periph,channelx) |= DMA_CHXCTL_PNAGA;
}else if(DMA_PERIPH_INCREASE_DISABLE == generation_algorithm){
DMA_CHCTL(dma_periph,channelx) &= ~DMA_CHXCTL_PNAGA;
}else{
DMA_CHCTL(dma_periph,channelx) |= DMA_CHXCTL_PNAGA;
DMA_CHCTL(dma_periph,channelx) |= DMA_CHXCTL_PAIF;
}
}
/*!
\brief enable DMA circulation mode
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA_CHx(x=0..7)
\param[out] none
\retval none
*/
void dma_circulation_enable(uint32_t dma_periph,dma_channel_enum channelx)
{
DMA_CHCTL(dma_periph,channelx) |= DMA_CHXCTL_CMEN;
}
/*!
\brief disable DMA circulation mode
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA_CHx(x=0..7)
\param[out] none
\retval none
*/
void dma_circulation_disable(uint32_t dma_periph,dma_channel_enum channelx)
{
DMA_CHCTL(dma_periph,channelx) &= ~DMA_CHXCTL_CMEN;
}
/*!
\brief configure the direction of data transfer on the channel
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA_CHx(x=0..7)
\param[in] direction: specify the direction of data transfer
\arg DMA_PERIPH_TO_MEMORY: read from peripheral and write to memory
\arg DMA_MEMORY_TO_PERIPH: read from memory and write to peripheral
\arg DMA_MEMORY_TO_MEMORY: read from memory and write to memory
\param[out] none
\retval none
*/
void dma_transfer_direction_config(uint32_t dma_periph,dma_channel_enum channelx,uint8_t direction)
{
uint32_t ctl;
/* acquire DMA_CHxCTL register */
ctl = DMA_CHCTL(dma_periph,channelx);
/* assign regiser */
ctl &= ~DMA_CHXCTL_TM;
ctl |= direction;
DMA_CHCTL(dma_periph,channelx) = ctl;
}
/*!
\brief enable DMA channel
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA_CHx(x=0..7)
\param[out] none
\retval none
*/
void dma_channel_enable(uint32_t dma_periph,dma_channel_enum channelx)
{
DMA_CHCTL(dma_periph,channelx) |= DMA_CHXCTL_CHEN;
}
/*!
\brief disable DMA channel
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA_CHx(x=0..7)
\param[out] none
\retval none
*/
void dma_channel_disable(uint32_t dma_periph,dma_channel_enum channelx)
{
DMA_CHCTL(dma_periph,channelx) &= ~DMA_CHXCTL_CHEN;
}
/*!
\brief DMA channel peripheral select
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA_CHx(x=0..7)
\param[in] sub_periph: specify DMA channel peripheral
\arg DMA_SUBPERIx(x=0..7)
\param[out] none
\retval none
*/
void dma_channel_subperipheral_select(uint32_t dma_periph,dma_channel_enum channelx,dma_subperipheral_enum sub_periph)
{
uint32_t ctl;
/* acquire DMA_CHxCTL register */
ctl = DMA_CHCTL(dma_periph,channelx);
/* assign regiser */
ctl &= ~DMA_CHXCTL_PERIEN;
ctl |= ((uint32_t)sub_periph << CHXCTL_PERIEN_OFFSET);
DMA_CHCTL(dma_periph,channelx) = ctl;
}
/*!
\brief DMA switch buffer mode config
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA_CHx(x=0..7)
\param[in] memory1_addr: memory1 base address
\param[in] memory_select: DMA_MEMORY_0 or DMA_MEMORY_1
\param[out] none
\retval none
*/
void dma_switch_buffer_mode_config(uint32_t dma_periph,dma_channel_enum channelx,uint32_t memory1_addr,uint32_t memory_select)
{
/* configure memory1 base address */
DMA_CHM1ADDR(dma_periph,channelx) = memory1_addr;
if(DMA_MEMORY_0 == memory_select){
DMA_CHCTL(dma_periph,channelx) &= ~DMA_CHXCTL_MBS;
}else{
DMA_CHCTL(dma_periph,channelx) |= DMA_CHXCTL_MBS;
}
}
/*!
\brief DMA switch buffer mode enable
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA_CHx(x=0..7)
\param[in] newvalue: ENABLE or DISABLE
\param[out] none
\retval none
*/
void dma_switch_buffer_mode_enable(uint32_t dma_periph,dma_channel_enum channelx,ControlStatus newvalue)
{
if(ENABLE == newvalue){
/* switch buffer mode enable */
DMA_CHCTL(dma_periph,channelx) |= DMA_CHXCTL_SBMEN;
}else{
/* switch buffer mode disable */
DMA_CHCTL(dma_periph,channelx) &= ~DMA_CHXCTL_SBMEN;
}
}
/*!
\brief DMA using memory get
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA_CHx(x=0..7)
\param[out] none
\retval the using memory
*/
uint32_t dma_using_memory_get(uint32_t dma_periph,dma_channel_enum channelx)
{
if((DMA_CHCTL(dma_periph,channelx)) & DMA_CHXCTL_MBS){
return DMA_MEMORY_1;
}else{
return DMA_MEMORY_0;
}
}
/*!
\brief DMA flow controller configure
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA_CHx(x=0..7)
\param[in] controller: specify DMA flow controler
\arg DMA_FLOW_CONTROLLER_DMA: DMA is the flow controller
\arg DMA_FLOW_CONTROLLER_PERI: peripheral is the flow controller
\param[out] none
\retval none
*/
void dma_flow_controller_config(uint32_t dma_periph,dma_channel_enum channelx,uint32_t controller)
{
if(DMA_FLOW_CONTROLLER_DMA == controller){
DMA_CHCTL(dma_periph,channelx) &= ~DMA_CHXCTL_TFCS;
}else{
DMA_CHCTL(dma_periph,channelx) |= DMA_CHXCTL_TFCS;
}
}
/*!
\brief DMA FIFO status get
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA_CHx(x=0..7)
\param[out] none
\retval the using memory
*/
uint32_t dma_fifo_status_get(uint32_t dma_periph,dma_channel_enum channelx)
{
return (DMA_CHFCTL(dma_periph,channelx) & DMA_CHXFCTL_FCNT);
}

View File

@@ -0,0 +1,229 @@
/*!
\file gd32f4xx_exti.c
\brief EXTI driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#include "gd32f4xx_exti.h"
/*!
\brief deinitialize the EXTI
\param[in] none
\param[out] none
\retval none
*/
void exti_deinit(void)
{
/* reset the value of all the EXTI registers */
EXTI_INTEN = (uint32_t)0x00000000U;
EXTI_EVEN = (uint32_t)0x00000000U;
EXTI_RTEN = (uint32_t)0x00000000U;
EXTI_FTEN = (uint32_t)0x00000000U;
EXTI_SWIEV = (uint32_t)0x00000000U;
}
/*!
\brief initialize the EXTI
\param[in] linex: EXTI line number, refer to exti_line_enum
only one parameter can be selected which is shown as below:
\arg EXTI_x (x=0..22): EXTI line x
\param[in] mode: interrupt or event mode, refer to exti_mode_enum
only one parameter can be selected which is shown as below:
\arg EXTI_INTERRUPT: interrupt mode
\arg EXTI_EVENT: event mode
\param[in] trig_type: interrupt trigger type, refer to exti_trig_type_enum
only one parameter can be selected which is shown as below:
\arg EXTI_TRIG_RISING: rising edge trigger
\arg EXTI_TRIG_FALLING: falling trigger
\arg EXTI_TRIG_BOTH: rising and falling trigger
\param[out] none
\retval none
*/
void exti_init(exti_line_enum linex, \
exti_mode_enum mode, \
exti_trig_type_enum trig_type)
{
/* reset the EXTI line x */
EXTI_INTEN &= ~(uint32_t)linex;
EXTI_EVEN &= ~(uint32_t)linex;
EXTI_RTEN &= ~(uint32_t)linex;
EXTI_FTEN &= ~(uint32_t)linex;
/* set the EXTI mode and enable the interrupts or events from EXTI line x */
switch(mode){
case EXTI_INTERRUPT:
EXTI_INTEN |= (uint32_t)linex;
break;
case EXTI_EVENT:
EXTI_EVEN |= (uint32_t)linex;
break;
default:
break;
}
/* set the EXTI trigger type */
switch(trig_type){
case EXTI_TRIG_RISING:
EXTI_RTEN |= (uint32_t)linex;
EXTI_FTEN &= ~(uint32_t)linex;
break;
case EXTI_TRIG_FALLING:
EXTI_RTEN &= ~(uint32_t)linex;
EXTI_FTEN |= (uint32_t)linex;
break;
case EXTI_TRIG_BOTH:
EXTI_RTEN |= (uint32_t)linex;
EXTI_FTEN |= (uint32_t)linex;
break;
default:
break;
}
}
/*!
\brief enable the interrupts from EXTI line x
\param[in] linex: EXTI line number, refer to exti_line_enum
only one parameter can be selected which is shown as below:
\arg EXTI_x (x=0..22): EXTI line x
\param[out] none
\retval none
*/
void exti_interrupt_enable(exti_line_enum linex)
{
EXTI_INTEN |= (uint32_t)linex;
}
/*!
\brief enable the events from EXTI line x
\param[in] linex: EXTI line number, refer to exti_line_enum
only one parameter can be selected which is shown as below:
\arg EXTI_x (x=0..22): EXTI line x
\param[out] none
\retval none
*/
void exti_event_enable(exti_line_enum linex)
{
EXTI_EVEN |= (uint32_t)linex;
}
/*!
\brief disable the interrupt from EXTI line x
\param[in] linex: EXTI line number, refer to exti_line_enum
only one parameter can be selected which is shown as below:
\arg EXTI_x (x=0..22): EXTI line x
\param[out] none
\retval none
*/
void exti_interrupt_disable(exti_line_enum linex)
{
EXTI_INTEN &= ~(uint32_t)linex;
}
/*!
\brief disable the events from EXTI line x
\param[in] linex: EXTI line number, refer to exti_line_enum
only one parameter can be selected which is shown as below:
\arg EXTI_x (x=0..22): EXTI line x
\param[out] none
\retval none
*/
void exti_event_disable(exti_line_enum linex)
{
EXTI_EVEN &= ~(uint32_t)linex;
}
/*!
\brief get EXTI lines flag
\param[in] linex: EXTI line number, refer to exti_line_enum
only one parameter can be selected which is shown as below:
\arg EXTI_x (x=0..22): EXTI line x
\param[out] none
\retval FlagStatus: status of flag (RESET or SET)
*/
FlagStatus exti_flag_get(exti_line_enum linex)
{
if(RESET != (EXTI_PD & (uint32_t)linex)){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear EXTI lines pending flag
\param[in] linex: EXTI line number, refer to exti_line_enum
only one parameter can be selected which is shown as below:
\arg EXTI_x (x=0..22): EXTI line x
\param[out] none
\retval none
*/
void exti_flag_clear(exti_line_enum linex)
{
EXTI_PD = (uint32_t)linex;
}
/*!
\brief get EXTI lines flag when the interrupt flag is set
\param[in] linex: EXTI line number, refer to exti_line_enum
only one parameter can be selected which is shown as below:
\arg EXTI_x (x=0..22): EXTI line x
\param[out] none
\retval FlagStatus: status of flag (RESET or SET)
*/
FlagStatus exti_interrupt_flag_get(exti_line_enum linex)
{
uint32_t flag_left, flag_right;
flag_left = EXTI_PD & (uint32_t)linex;
flag_right = EXTI_INTEN & (uint32_t)linex;
if((RESET != flag_left) && (RESET != flag_right)){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear EXTI lines pending flag
\param[in] linex: EXTI line number, refer to exti_line_enum
only one parameter can be selected which is shown as below:
\arg EXTI_x (x=0..22): EXTI line x
\param[out] none
\retval none
*/
void exti_interrupt_flag_clear(exti_line_enum linex)
{
EXTI_PD = (uint32_t)linex;
}
/*!
\brief enable EXTI software interrupt event
\param[in] linex: EXTI line number, refer to exti_line_enum
only one parameter can be selected which is shown as below:
\arg EXTI_x (x=0..22): EXTI line x
\param[out] none
\retval none
*/
void exti_software_interrupt_enable(exti_line_enum linex)
{
EXTI_SWIEV |= (uint32_t)linex;
}
/*!
\brief disable EXTI software interrupt event
\param[in] linex: EXTI line number, refer to exti_line_enum
only one parameter can be selected which is shown as below:
\arg EXTI_x (x=0..22): EXTI line x
\param[out] none
\retval none
*/
void exti_software_interrupt_disable(exti_line_enum linex)
{
EXTI_SWIEV &= ~(uint32_t)linex;
}

View File

@@ -0,0 +1,820 @@
/*!
\file gd32f4xx_fmc.c
\brief FMC driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#include "gd32f4xx_fmc.h"
/*!
\brief set the wait state counter value
\param[in] wscnt<6E><74>wait state counter value
\arg WS_WSCNT_0: FMC 0 wait
\arg WS_WSCNT_1: FMC 1 wait
\arg WS_WSCNT_2: FMC 2 wait
\arg WS_WSCNT_3: FMC 3 wait
\arg WS_WSCNT_4: FMC 4 wait
\arg WS_WSCNT_5: FMC 5 wait
\arg WS_WSCNT_6: FMC 6 wait
\arg WS_WSCNT_7: FMC 7 wait
\arg WS_WSCNT_8: FMC 8 wait
\arg WS_WSCNT_9: FMC 9 wait
\arg WS_WSCNT_10: FMC 10 wait
\arg WS_WSCNT_11: FMC 11 wait
\arg WS_WSCNT_12: FMC 12 wait
\arg WS_WSCNT_13: FMC 13 wait
\arg WS_WSCNT_14: FMC 14 wait
\arg WS_WSCNT_15: FMC 15 wait
\param[out] none
\retval none
*/
void fmc_wscnt_set(uint32_t wscnt)
{
uint32_t reg;
reg = FMC_WS;
/* set the wait state counter value */
reg &= ~FMC_WC_WSCNT;
FMC_WS = (reg | wscnt);
}
/*!
\brief unlock the main FMC operation
\param[in] none
\param[out] none
\retval none
*/
void fmc_unlock(void)
{
if((RESET != (FMC_CTL & FMC_CTL_LK))){
/* write the FMC key */
FMC_KEY = UNLOCK_KEY0;
FMC_KEY = UNLOCK_KEY1;
}
}
/*!
\brief lock the main FMC operation
\param[in] none
\param[out] none
\retval none
*/
void fmc_lock(void)
{
/* set the LK bit*/
FMC_CTL |= FMC_CTL_LK;
}
/*!
\brief erase sector
\param[in] fmc_sector: select the sector to erase
\arg CTL_SECTOR_NUMBER_0: sector 0
\arg CTL_SECTOR_NUMBER_1: sector 1
\arg CTL_SECTOR_NUMBER_2: sector 2
\arg CTL_SECTOR_NUMBER_3: sector 3
\arg CTL_SECTOR_NUMBER_4: sector 4
\arg CTL_SECTOR_NUMBER_5: sector 5
\arg CTL_SECTOR_NUMBER_6: sector 6
\arg CTL_SECTOR_NUMBER_7: sector 7
\arg CTL_SECTOR_NUMBER_8: sector 8
\arg CTL_SECTOR_NUMBER_9: sector 9
\arg CTL_SECTOR_NUMBER_10: sector 10
\arg CTL_SECTOR_NUMBER_11: sector 11
\arg CTL_SECTOR_NUMBER_12: sector 12
\arg CTL_SECTOR_NUMBER_13: sector 13
\arg CTL_SECTOR_NUMBER_14: sector 14
\arg CTL_SECTOR_NUMBER_15: sector 15
\arg CTL_SECTOR_NUMBER_16: sector 16
\arg CTL_SECTOR_NUMBER_17: sector 17
\arg CTL_SECTOR_NUMBER_18: sector 18
\arg CTL_SECTOR_NUMBER_19: sector 19
\arg CTL_SECTOR_NUMBER_20: sector 20
\arg CTL_SECTOR_NUMBER_21: sector 21
\arg CTL_SECTOR_NUMBER_22: sector 22
\arg CTL_SECTOR_NUMBER_23: sector 23
\arg CTL_SECTOR_NUMBER_24: sector 24
\arg CTL_SECTOR_NUMBER_25: sector 25
\arg CTL_SECTOR_NUMBER_26: sector 26
\arg CTL_SECTOR_NUMBER_27: sector 27
\arg CTL_SECTOR_NUMBER_28: sector 28
\arg CTL_SECTOR_NUMBER_29: sector 29
\arg CTL_SECTOR_NUMBER_30: sector 30
\param[out] none
\retval fmc_state_enum
*/
fmc_state_enum fmc_sector_erase(uint32_t fmc_sector)
{
fmc_state_enum fmc_state = FMC_READY;
/* wait for the FMC ready */
fmc_state = fmc_ready_wait();
if(FMC_READY == fmc_state){
/* start sector erase */
FMC_CTL &= ~FMC_CTL_SN;
FMC_CTL |= (FMC_CTL_SER | fmc_sector);
FMC_CTL |= FMC_CTL_START;
/* wait for the FMC ready */
fmc_state = fmc_ready_wait();
/* reset the SER bit */
FMC_CTL &= (~FMC_CTL_SER);
FMC_CTL &= ~FMC_CTL_SN;
}
/* return the FMC state */
return fmc_state;
}
/*!
\brief erase whole chip
\param[in] none
\param[out] none
\retval fmc_state_enum
*/
fmc_state_enum fmc_mass_erase(void)
{
fmc_state_enum fmc_state = FMC_READY;
/* wait for the FMC ready */
fmc_state = fmc_ready_wait();
if(FMC_READY == fmc_state){
/* start whole chip erase */
FMC_CTL |= (FMC_CTL_MER0 | FMC_CTL_MER1);
FMC_CTL |= FMC_CTL_START;
/* wait for the FMC ready */
fmc_state = fmc_ready_wait();
/* reset the MER bits */
FMC_CTL &= ~(FMC_CTL_MER0 | FMC_CTL_MER1);
}
/* return the fmc state */
return fmc_state;
}
/*!
\brief erase all FMC sectors in bank0
\param[in] none
\param[out] none
\retval fmc_state_enum
*/
fmc_state_enum fmc_bank0_erase(void)
{
fmc_state_enum fmc_state = FMC_READY;
/* wait for the FMC ready */
fmc_state = fmc_ready_wait();
if(FMC_READY == fmc_state){
/* start FMC bank0 erase */
FMC_CTL |= FMC_CTL_MER0;
FMC_CTL |= FMC_CTL_START;
/* wait for the FMC ready */
fmc_state = fmc_ready_wait();
/* reset the MER0 bit */
FMC_CTL &= (~FMC_CTL_MER0);
}
/* return the fmc state */
return fmc_state;
}
/*!
\brief erase all FMC sectors in bank1
\param[in] none
\param[out] none
\retval fmc_state_enum
*/
fmc_state_enum fmc_bank1_erase(void)
{
fmc_state_enum fmc_state = FMC_READY;
/* wait for the FMC ready */
fmc_state = fmc_ready_wait();
if(FMC_READY == fmc_state){
/* start FMC bank1 erase */
FMC_CTL |= FMC_CTL_MER1;
FMC_CTL |= FMC_CTL_START;
/* wait for the FMC ready */
fmc_state = fmc_ready_wait();
/* reset the MER1 bit */
FMC_CTL &= (~FMC_CTL_MER1);
}
/* return the fmc state */
return fmc_state;
}
/*!
\brief program a word at the corresponding address
\param[in] address: address to program
\param[in] data: word to program
\param[out] none
\retval fmc_state_enum
*/
fmc_state_enum fmc_word_program(uint32_t address, uint32_t data)
{
fmc_state_enum fmc_state = FMC_READY;
/* wait for the FMC ready */
fmc_state = fmc_ready_wait();
if(FMC_READY == fmc_state){
/* set the PG bit to start program */
FMC_CTL &= ~FMC_CTL_PSZ;
FMC_CTL |= CTL_PSZ_WORD;
FMC_CTL |= FMC_CTL_PG;
REG32(address) = data;
/* wait for the FMC ready */
fmc_state = fmc_ready_wait();
/* reset the PG bit */
FMC_CTL &= ~FMC_CTL_PG;
}
/* return the FMC state */
return fmc_state;
}
/*!
\brief program a half word at the corresponding address
\param[in] address: address to program
\param[in] data: halfword to program
\param[out] none
\retval fmc_state_enum
*/
fmc_state_enum fmc_halfword_program(uint32_t address, uint16_t data)
{
fmc_state_enum fmc_state = FMC_READY;
/* wait for the FMC ready */
fmc_state = fmc_ready_wait();
if(FMC_READY == fmc_state){
/* set the PG bit to start program */
FMC_CTL &= ~FMC_CTL_PSZ;
FMC_CTL |= CTL_PSZ_HALF_WORD;
FMC_CTL |= FMC_CTL_PG;
REG16(address) = data;
/* wait for the FMC ready */
fmc_state = fmc_ready_wait();
/* reset the PG bit */
FMC_CTL &= ~FMC_CTL_PG;
}
/* return the FMC state */
return fmc_state;
}
/*!
\brief program a byte at the corresponding address
\param[in] address: address to program
\param[in] data: byte to program
\param[out] none
\retval fmc_state_enum
*/
fmc_state_enum fmc_byte_program(uint32_t address, uint8_t data)
{
fmc_state_enum fmc_state = FMC_READY;
/* wait for the FMC ready */
fmc_state = fmc_ready_wait();
if(FMC_READY == fmc_state){
/* set the PG bit to start program */
FMC_CTL &= ~FMC_CTL_PSZ;
FMC_CTL |= CTL_PSZ_BYTE;
FMC_CTL |= FMC_CTL_PG;
REG8(address) = data;
/* wait for the FMC ready */
fmc_state = fmc_ready_wait();
/* reset the PG bit */
FMC_CTL &= ~FMC_CTL_PG;
}
/* return the FMC state */
return fmc_state;
}
/*!
\brief unlock the option byte operation
\param[in] none
\param[out] none
\retval none
*/
void ob_unlock(void)
{
if(RESET != (FMC_OBCTL0 & FMC_OBCTL0_OB_LK)){
/* write the FMC key */
FMC_OBKEY = OB_UNLOCK_KEY0;
FMC_OBKEY = OB_UNLOCK_KEY1;
}
}
/*!
\brief lock the option byte operation
\param[in] none
\param[out] none
\retval none
*/
void ob_lock(void)
{
/* reset the OB_LK bit */
FMC_OBCTL0 |= FMC_OBCTL0_OB_LK;
}
/*!
\brief send option byte change command
\param[in] none
\param[out] none
\retval none
*/
void ob_start(void)
{
/* set the OB_START bit in OBCTL0 register */
FMC_OBCTL0 |= FMC_OBCTL0_OB_START;
}
/*!
\brief enable write protection
\param[in] ob_wp: specify sector to be write protected
\arg OB_WPx(x=0..11): write protect specify sector
\arg OB_WP_ALL: write protect all sector
\param[out] none
\retval none
*/
void ob_write_protection0_enable(uint32_t ob_wp)
{
fmc_state_enum fmc_state = FMC_READY;
/* wait for the FMC ready */
fmc_state = fmc_ready_wait();
if(FMC_READY == fmc_state){
FMC_OBCTL0 &= (~((uint32_t)ob_wp << 16));
}
}
/*!
\brief disable write protection
\param[in] ob_wp: specify sector to be write protected
\arg OB_WPx(x=0..11): write protect specify sector
\arg OB_WP_ALL: write protect all sector
\param[out] none
\retval none
*/
void ob_write_protection0_disable(uint32_t ob_wp)
{
fmc_state_enum fmc_state = FMC_READY;
/* wait for the FMC ready */
fmc_state = fmc_ready_wait();
if(FMC_READY == fmc_state){
FMC_OBCTL0 |= ((uint32_t)ob_wp << 16);
}
}
/*!
\brief enable write protection
\param[in] ob_wp: specify sector to be write protected
\arg OB_WPx(x=12..30): write protect specify sector
\arg OB_WP_ALL: write protect all sector
\param[out] none
\retval none
*/
void ob_write_protection1_enable(uint32_t ob_wp)
{
fmc_state_enum fmc_state = FMC_READY;
/* wait for the FMC ready */
fmc_state = fmc_ready_wait();
if(FMC_READY == fmc_state){
FMC_OBCTL1 &= (~((uint32_t)ob_wp << 16));
}
}
/*!
\brief disable write protection
\param[in] ob_wp: specify sector to be write protected
\arg OB_WPx(x=12..30): write protect specify sector
\arg OB_WP_ALL: write protect all sector
\param[out] none
\retval none
*/
void ob_write_protection1_disable(uint32_t ob_wp)
{
fmc_state_enum fmc_state = FMC_READY;
/* wait for the FMC ready */
fmc_state = fmc_ready_wait();
if(FMC_READY == fmc_state){
FMC_OBCTL1 |= ((uint32_t)ob_wp << 16);
}
}
/*!
\brief configure the protection mode
\param[in] ob_drp: configure the protection mode of WPx bits
\arg OB_DRP_DISABLE: the WPx bits used as erase/program protection of each sector
\arg OB_DRP_ENABLE: the WPx bits used as erase/program protection and D-bus read protection of each sector
\param[out] none
\retval none
*/
void ob_drp_config(uint32_t ob_drp)
{
FMC_OBCTL0 &= ~FMC_OBCTL0_DRP;
FMC_OBCTL0 |= ob_drp;
}
/*!
\brief enable erase/program protection and D-bus read protection
\param[in] ob_drp: enable the WPx bits used as erase/program protection and D-bus read protection of each sector
\arg OB_DRPx(x=0..11): erase/program protection and D-bus read protection of specify sector
\arg OB_DRP_ALL: erase/program protection and D-bus read protection of all sector
\param[out] none
\retval none
*/
void ob_drp0_enable(uint32_t ob_drp)
{
fmc_state_enum fmc_state = FMC_READY;
/* wait for the FMC ready */
fmc_state = fmc_ready_wait();
if(FMC_READY == fmc_state){
FMC_OBCTL0 |= ((uint32_t)ob_drp << 16);
}
}
/*!
\brief disable erase/program protection and D-bus read protection
\param[in] ob_drp: disable the WPx bits used as erase/program protection and D-bus read protection of each sector
\arg OB_DRPx(x=0..11): erase/program protection and D-bus read protection of specify sector
\arg OB_DRP_ALL: erase/program protection and D-bus read protection of all sector
\param[out] none
\retval none
*/
void ob_drp0_disable(uint32_t ob_drp)
{
fmc_state_enum fmc_state = FMC_READY;
/* wait for the FMC ready */
fmc_state = fmc_ready_wait();
if(FMC_READY == fmc_state){
FMC_OBCTL0 &= (~((uint32_t)ob_drp << 16));
}
}
/*!
\brief enable erase/program protection and D-bus read protection
\param[in] ob_drp: enable the WPx bits used as erase/program protection and D-bus read protection of each sector
\arg OB_DRPx(x=12..30): erase/program protection and D-bus read protection of specify sector
\arg OB_DRP_ALL: erase/program protection and D-bus read protection of all sector
\param[out] none
\retval none
*/
void ob_drp1_enable(uint32_t ob_drp)
{
fmc_state_enum fmc_state = FMC_READY;
/* wait for the FMC ready */
fmc_state = fmc_ready_wait();
if(FMC_READY == fmc_state){
FMC_OBCTL1 |= ((uint32_t)ob_drp << 16);
}
}
/*!
\brief disable erase/program protection and D-bus read protection
\param[in] ob_drp: disable the WPx bits used as erase/program protection and D-bus read protection of each sector
\arg OB_DRPx(x=12..30): erase/program protection and D-bus read protection of specify sector
\arg OB_DRP_ALL: erase/program protection and D-bus read protection of all sector
\param[out] none
\retval none
*/
void ob_drp1_disable(uint32_t ob_drp)
{
fmc_state_enum fmc_state = FMC_READY;
/* wait for the FMC ready */
fmc_state = fmc_ready_wait();
if(FMC_READY == fmc_state){
FMC_OBCTL1 &= (~((uint32_t)ob_drp << 16));
}
}
/*!
\brief configure security protection level
\param[in] ob_spc: specify security protection level
\arg FMC_NSPC: no security protection
\arg FMC_LSPC: low security protection
\arg FMC_HSPC: high security protection
\param[out] none
\retval none
*/
void ob_security_protection_config(uint8_t ob_spc)
{
fmc_state_enum fmc_state = FMC_READY;
/* wait for the FMC ready */
fmc_state = fmc_ready_wait();
if(FMC_READY == fmc_state){
uint32_t reg;
reg = FMC_OBCTL0;
/* reset the OBCTL0_SPC, set according to ob_spc */
reg &= ~FMC_OBCTL0_SPC;
FMC_OBCTL0 |= ((uint32_t)ob_spc << 8);
}
}
/*!
\brief program the FMC user option byte
\param[in] ob_fwdgt: option byte watchdog value
\arg OB_FWDGT_SW: software free watchdog
\arg OB_FWDGT_HW: hardware free watchdog
\param[in] ob_deepsleep: option byte deepsleep reset value
\arg OB_DEEPSLEEP_NRST: no reset when entering deepsleep mode
\arg OB_DEEPSLEEP_RST: generate a reset instead of entering deepsleep mode
\param[in] ob_stdby:option byte standby reset value
\arg OB_STDBY_NRST: no reset when entering standby mode
\arg OB_STDBY_RST: generate a reset instead of entering standby mode
\param[out] none
\retval none
*/
void ob_user_write(uint32_t ob_fwdgt, uint32_t ob_deepsleep, uint32_t ob_stdby)
{
fmc_state_enum fmc_state = FMC_READY;
/* wait for the FMC ready */
fmc_state = fmc_ready_wait();
if(FMC_READY == fmc_state){
uint32_t reg;
reg = FMC_OBCTL0;
/* reset the OB_FWDGT, OB_DEEPSLEEP and OB_STDBY, set according to ob_fwdgt ,ob_deepsleep and ob_stdby */
reg &= ~(FMC_OBCTL0_NWDG_HW | FMC_OBCTL0_NRST_DPSLP | FMC_OBCTL0_NRST_STDBY);
FMC_OBCTL0 = (reg | ob_fwdgt | ob_deepsleep | ob_stdby);
}
}
/*!
\brief program the option byte BOR threshold value
\param[in] ob_bor_th: user option byte
\arg OB_BOR_TH_VALUE3: BOR threshold value 3
\arg OB_BOR_TH_VALUE2: BOR threshold value 2
\arg OB_BOR_TH_VALUE1: BOR threshold value 1
\arg OB_BOR_TH_OFF: no BOR function.
\param[out] none
\retval none
*/
void ob_user_bor_threshold(uint32_t ob_bor_th)
{
uint32_t reg;
reg = FMC_OBCTL0;
/* set the BOR level */
reg &= ~FMC_OBCTL0_BOR_TH;
FMC_OBCTL0 = (reg | ob_bor_th);
}
/*!
\brief configure the option byte boot bank value
\param[in] boot_mode: specifies the option byte boot bank value
\arg OB_BB_DISABLE: boot from bank0
\arg OB_BB_ENABLE: boot from bank1 or bank0 if bank1 is void
\param[out] none
\retval none
*/
void ob_boot_mode_config(uint32_t boot_mode)
{
uint32_t reg;
reg = FMC_OBCTL0;
/* set option byte boot bank value */
reg &= ~FMC_OBCTL0_BB;
FMC_OBCTL0 = (reg | boot_mode);
}
/*!
\brief get the FMC user option byte
\param[in] none
\param[out] none
\retval the FMC user option byte values: ob_fwdgt(Bit0), ob_deepsleep(Bit1), ob_stdby(Bit2).
*/
uint8_t ob_user_get(void)
{
return (uint8_t)((uint8_t)(FMC_OBCTL0 >> 5) & (uint8_t)0x07);
}
/*!
\brief get the FMC option byte write protection
\param[in] none
\param[out] none
\retval the FMC write protection option byte value
*/
uint16_t ob_write_protection0_get(void)
{
/* return the FMC write protection option byte value */
return (uint16_t)(((uint16_t)(FMC_OBCTL0 >> 16)) & (uint16_t)0x0FFF);
}
/*!
\brief get the FMC option byte write protection
\param[in] none
\param[out] none
\retval the FMC write protection option byte value
*/
uint16_t ob_write_protection1_get(void)
{
/* return the the FMC write protection option byte value */
return (uint16_t)(((uint16_t)(FMC_OBCTL1 >> 16)) & (uint16_t)0x0FFF);
}
/*!
\brief get the FMC D-bus read protection protection
\param[in] none
\param[out] none
\retval the FMC erase/program protection and D-bus read protection option bytes value
*/
uint16_t ob_drp0_get(void)
{
/* return the FMC erase/program protection and D-bus read protection option bytes value */
return (uint16_t)(((uint16_t)(FMC_OBCTL0 >> 16)) & (uint16_t)0x0FFF);
}
/*!
\brief get the FMC D-bus read protection protection
\param[in] none
\param[out] none
\retval the FMC erase/program protection and D-bus read protection option bytes value
*/
uint16_t ob_drp1_get(void)
{
/* return the FMC erase/program protection and D-bus read protection option bytes value */
return (uint16_t)(((uint16_t)(FMC_OBCTL1 >> 16)) & (uint16_t)0x0FFF);
}
/*!
\brief get the FMC option byte security protection
\param[in] none
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus ob_spc_get(void)
{
FlagStatus spc_state = RESET;
if (((uint8_t)(FMC_OBCTL0 >> 8)) != (uint8_t)FMC_NSPC){
spc_state = SET;
}else{
spc_state = RESET;
}
return spc_state;
}
/*!
\brief get the FMC option byte BOR threshold value
\param[in] none
\param[out] none
\retval the FMC BOR threshold value:OB_BOR_TH_OFF,OB_BOR_TH_VALUE1,OB_BOR_TH_VALUE2,OB_BOR_TH_VALUE3
*/
uint8_t ob_user_bor_threshold_get(void)
{
/* return the FMC BOR threshold value */
return (uint8_t)((uint8_t)FMC_OBCTL0 & (uint8_t)0x0C);
}
/*!
\brief enable FMC interrupt
\param[in] the FMC interrupt source
\arg FMC_INTEN_END: enable FMC end of program interrupt
\arg FMC_INTEN_ERR: enable FMC error interrupt
\param[out] none
\retval none
*/
void fmc_interrupt_enable(uint32_t fmc_int)
{
FMC_CTL |= fmc_int;
}
/*!
\brief disable FMC interrupt
\param[in] the FMC interrupt source
\arg FMC_INTEN_END: disable FMC end of program interrupt
\arg FMC_INTEN_ERR: disable FMC error interrupt
\param[out] none
\retval none
*/
void fmc_interrupt_disable(uint32_t fmc_int)
{
FMC_CTL &= ~(uint32_t)fmc_int;
}
/*!
\brief get flag set or reset
\param[in] fmc_flag: check FMC flag
\arg FMC_FLAG_BUSY: FMC busy flag
\arg FMC_FLAG_RDDERR: FMC read D-bus protection error flag bit
\arg FMC_FLAG_PGSERR: FMC program sequence error flag bit
\arg FMC_FLAG_PGMERR: FMC program size not match error flag bit
\arg FMC_FLAG_WPERR: FMC Erase/Program protection error flag bit
\arg FMC_FLAG_OPERR: FMC operation error flag bit
\arg FMC_FLAG_END: FMC end of operation flag bit
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus fmc_flag_get(uint32_t fmc_flag)
{
if(FMC_STAT & fmc_flag){
return SET;
}
/* return the state of corresponding FMC flag */
return RESET;
}
/*!
\brief clear the FMC pending flag
\param[in] FMC_flag: clear FMC flag
\arg FMC_FLAG_RDDERR: FMC read D-bus protection error flag bit
\arg FMC_FLAG_PGSERR: FMC program sequence error flag bit
\arg FMC_FLAG_PGMERR: FMC program size not match error flag bit
\arg FMC_FLAG_WPERR: FMC erase/program protection error flag bit
\arg FMC_FLAG_OPERR: FMC operation error flag bit
\arg FMC_FLAG_END: FMC end of operation flag bit
\param[out] none
\retval none
*/
void fmc_flag_clear(uint32_t fmc_flag)
{
/* clear the flags */
FMC_STAT = fmc_flag;
}
/*!
\brief get the FMC state
\param[in] none
\param[out] none
\retval fmc_state_enum
*/
fmc_state_enum fmc_state_get(void)
{
fmc_state_enum fmc_state = FMC_READY;
if((FMC_STAT & FMC_FLAG_BUSY) == FMC_FLAG_BUSY){
fmc_state = FMC_BUSY;
}else{
if((FMC_STAT & FMC_FLAG_WPERR) != (uint32_t)0x00){
fmc_state = FMC_WPERR;
}else{
if((FMC_STAT & FMC_FLAG_RDDERR) != (uint32_t)0x00){
fmc_state = FMC_RDDERR;
}else{
if((FMC_STAT & (uint32_t)0xEF) != (uint32_t)0x00){
fmc_state = FMC_PGERR;
}else{
if((FMC_STAT & FMC_FLAG_OPERR) != (uint32_t)0x00){
fmc_state = FMC_OPERR;
}else{
fmc_state = FMC_READY;
}
}
}
}
}
/* return the FMC state */
return fmc_state;
}
/*!
\brief check whether FMC is ready or not
\param[in] none
\param[out] none
\retval fmc_state_enum
*/
fmc_state_enum fmc_ready_wait(void )
{
fmc_state_enum fmc_state = FMC_BUSY;
/* wait for FMC ready */
do{
/* get FMC state */
fmc_state = fmc_state_get();
}while(FMC_BUSY == fmc_state);
/* return the FMC state */
return fmc_state;
}

View File

@@ -0,0 +1,120 @@
/*!
\file gd32f4xx_fwdgt.c
\brief FWDGT driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#include "gd32f4xx_fwdgt.h"
/* write value to FWDGT_CTL_CMD bit field */
#define CTL_CMD(regval) (BITS(0,15) & ((uint32_t)(regval) << 0))
/* write value to FWDGT_RLD_RLD bit field */
#define RLD_RLD(regval) (BITS(0,11) & ((uint32_t)(regval) << 0))
/*!
\brief disable write access to FWDGT_PSC and FWDGT_RLD
\param[in] none
\param[out] none
\retval none
*/
void fwdgt_write_disable(void)
{
FWDGT_CTL = FWDGT_WRITEACCESS_DISABLE;
}
/*!
\brief reload the counter of FWDGT
\param[in] none
\param[out] none
\retval none
*/
void fwdgt_counter_reload(void)
{
FWDGT_CTL = FWDGT_KEY_RELOAD;
}
/*!
\brief start the free watchdog timer counter
\param[in] none
\param[out] none
\retval none
*/
void fwdgt_enable(void)
{
FWDGT_CTL = FWDGT_KEY_ENABLE;
}
/*!
\brief configure counter reload value, and prescaler divider value
\param[in] reload_value: specify reload value(0x0000 - 0x0FFF)
\param[in] prescaler_div: FWDGT prescaler value
\arg FWDGT_PSC_DIV4: FWDGT prescaler set to 4
\arg FWDGT_PSC_DIV8: FWDGT prescaler set to 8
\arg FWDGT_PSC_DIV16: FWDGT prescaler set to 16
\arg FWDGT_PSC_DIV32: FWDGT prescaler set to 32
\arg FWDGT_PSC_DIV64: FWDGT prescaler set to 64
\arg FWDGT_PSC_DIV128: FWDGT prescaler set to 128
\arg FWDGT_PSC_DIV256: FWDGT prescaler set to 256
\param[out] none
\retval ErrStatus: ERROR or SUCCESS
*/
ErrStatus fwdgt_config(uint16_t reload_value, uint8_t prescaler_div)
{
uint32_t timeout = FWDGT_PSC_TIMEOUT;
uint32_t flag_status = RESET;
/* enable write access to FWDGT_PSC,and FWDGT_RLD */
FWDGT_CTL = FWDGT_WRITEACCESS_ENABLE;
/* wait until the PUD flag to be reset */
do{
flag_status = FWDGT_STAT & FWDGT_STAT_PUD;
}while((--timeout > 0U) && ((uint32_t)RESET != flag_status));
if ((uint32_t)RESET != flag_status){
return ERROR;
}
/* configure FWDGT */
FWDGT_PSC = (uint32_t)prescaler_div;
timeout = FWDGT_RLD_TIMEOUT;
/* wait until the RUD flag to be reset */
do{
flag_status = FWDGT_STAT & FWDGT_STAT_RUD;
}while((--timeout > 0U) && ((uint32_t)RESET != flag_status));
if ((uint32_t)RESET != flag_status){
return ERROR;
}
FWDGT_RLD = RLD_RLD(reload_value);
/* reload the counter */
FWDGT_CTL = FWDGT_KEY_RELOAD;
return SUCCESS;
}
/*!
\brief get flag state of FWDGT
\param[in] flag: flag to get
\arg FWDGT_STAT_PUD: a write operation to FWDGT_PSC register is on going
\arg FWDGT_STAT_RUD: a write operation to FWDGT_RLD register is on going
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus fwdgt_flag_get(uint16_t flag)
{
if(FWDGT_STAT & flag){
return SET;
}
return RESET;
}

View File

@@ -0,0 +1,357 @@
/*!
\file gd32f4xx_gpio.c
\brief GPIO driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#include "gd32f4xx_gpio.h"
/*!
\brief reset GPIO port
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G,H,I)
\param[out] none
\retval none
*/
void gpio_deinit(uint32_t gpio_periph)
{
switch(gpio_periph){
case GPIOA:
/* reset GPIOA */
rcu_periph_reset_enable(RCU_GPIOARST);
rcu_periph_reset_disable(RCU_GPIOARST);
break;
case GPIOB:
/* reset GPIOB */
rcu_periph_reset_enable(RCU_GPIOBRST);
rcu_periph_reset_disable(RCU_GPIOBRST);
break;
case GPIOC:
/* reset GPIOC */
rcu_periph_reset_enable(RCU_GPIOCRST);
rcu_periph_reset_disable(RCU_GPIOCRST);
break;
case GPIOD:
/* reset GPIOD */
rcu_periph_reset_enable(RCU_GPIODRST);
rcu_periph_reset_disable(RCU_GPIODRST);
break;
case GPIOE:
/* reset GPIOE */
rcu_periph_reset_enable(RCU_GPIOERST);
rcu_periph_reset_disable(RCU_GPIOERST);
break;
case GPIOF:
/* reset GPIOF */
rcu_periph_reset_enable(RCU_GPIOFRST);
rcu_periph_reset_disable(RCU_GPIOFRST);
break;
case GPIOG:
/* reset GPIOG */
rcu_periph_reset_enable(RCU_GPIOGRST);
rcu_periph_reset_disable(RCU_GPIOGRST);
break;
case GPIOH:
/* reset GPIOH */
rcu_periph_reset_enable(RCU_GPIOHRST);
rcu_periph_reset_disable(RCU_GPIOHRST);
break;
case GPIOI:
/* reset GPIOI */
rcu_periph_reset_enable(RCU_GPIOIRST);
rcu_periph_reset_disable(RCU_GPIOIRST);
break;
default:
break;
}
}
/*!
\brief set GPIO output mode
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G,H,I)
\param[in] mode: GPIO pin mode
\arg GPIO_MODE_INPUT: input mode
\arg GPIO_MODE_OUTPUT: output mode
\arg GPIO_MODE_AF: alternate function mode
\arg GPIO_MODE_ANALOG: analog mode
\param[in] pull_up_down: GPIO pin with pull-up or pull-down resistor
\arg GPIO_PUPD_NONE: without weak pull-up and pull-down resistors
\arg GPIO_PUPD_PULLUP: with weak pull-up resistor
\arg GPIO_PUPD_PULLDOWN:with weak pull-down resistor
\param[in] pin: GPIO_PIN_x(x=0..15), GPIO_PIN_ALL
\param[out] none
\retval none
*/
void gpio_mode_set(uint32_t gpio_periph,uint32_t mode,uint32_t pull_up_down,uint32_t pin)
{
uint16_t i;
uint32_t ctl, pupd;
ctl = GPIO_CTL(gpio_periph);
pupd = GPIO_PUD(gpio_periph);
for(i = 0U;i < 16U;i++){
if((1U << i) & pin){
/* clear the specified pin mode bits */
ctl &= ~GPIO_MODE_MASK(i);
/* set the specified pin mode bits */
ctl |= GPIO_MODE_SET(i, mode);
/* clear the specified pin pupd bits */
pupd &= ~GPIO_PUPD_MASK(i);
/* set the specified pin pupd bits */
pupd |= GPIO_PUPD_SET(i, pull_up_down);
}
}
GPIO_CTL(gpio_periph) = ctl;
GPIO_PUD(gpio_periph) = pupd;
}
/*!
\brief set GPIO output type and speed
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G,H,I)
\param[in] otype: GPIO pin output mode
\arg GPIO_OTYPE_PP: push pull mode
\arg GPIO_OTYPE_OD: open drain mode
\param[in] speed: GPIO pin output max speed
\arg GPIO_OSPEED_2MHZ: output max speed 2M
\arg GPIO_OSPEED_25MHZ: output max speed 25M
\arg GPIO_OSPEED_50MHZ: output max speed 50M
\arg GPIO_OSPEED_200MHZ: output max speed 200M
\param[in] pin: GPIO_PIN_x(x=0..15), GPIO_PIN_ALL
\param[out] none
\retval none
*/
void gpio_output_options_set(uint32_t gpio_periph,uint8_t otype,uint32_t speed,uint32_t pin)
{
uint16_t i;
uint32_t ospeedr;
if(0x1U == otype){
GPIO_OMODE(gpio_periph) |= (uint32_t)pin;
}else{
GPIO_OMODE(gpio_periph) &= (uint32_t)(~pin);
}
/* get the specified pin output speed bits value */
ospeedr = GPIO_OSPD(gpio_periph);
for(i = 0U;i < 16U;i++){
if((1U << i) & pin){
/* clear the specified pin output speed bits */
ospeedr &= ~GPIO_OSPEED_MASK(i);
/* set the specified pin output speed bits */
ospeedr |= GPIO_OSPEED_SET(i,speed);
}
}
GPIO_OSPD(gpio_periph) = ospeedr;
}
/*!
\brief set GPIO pin
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G,H,I)
\param[in] pin: GPIO_PIN_x(x=0..15), GPIO_PIN_ALL
\param[out] none
\retval none
*/
void gpio_bit_set(uint32_t gpio_periph,uint32_t pin)
{
GPIO_BOP(gpio_periph) = (uint32_t)pin;
}
/*!
\brief reset GPIO pin
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G,H,I)
\param[in] pin: GPIO_PIN_x(x=0..15), GPIO_PIN_ALL
\param[out] none
\retval none
*/
void gpio_bit_reset(uint32_t gpio_periph,uint32_t pin)
{
GPIO_BC(gpio_periph) = (uint32_t)pin;
}
/*!
\brief write data to the specified GPIO pin
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G,H,I)
\param[in] pin: GPIO_PIN_x(x=0..15), GPIO_PIN_ALL
\param[in] bit_value: SET or RESET
\arg RESET: clear the port pin
\arg SET: set the port pin
\param[out] none
\retval none
*/
void gpio_bit_write(uint32_t gpio_periph,uint32_t pin,bit_status bit_value)
{
if(RESET != bit_value){
GPIO_BOP(gpio_periph) = (uint32_t)pin;
}else{
GPIO_BC(gpio_periph) = (uint32_t)pin;
}
}
/*!
\brief write data to the specified GPIO port
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G,H,I)
\param[in] data: specify the value to be written to the port output data register
\param[out] none
\retval none
*/
void gpio_port_write(uint32_t gpio_periph,uint16_t data)
{
GPIO_OCTL(gpio_periph) = (uint32_t)data;
}
/*!
\brief get GPIO pin input status
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G,H,I)
\param[in] pin: GPIO_PIN_x(x=0..15), GPIO_PIN_ALL
\param[out] none
\retval input state of gpio pin: SET or RESET
*/
FlagStatus gpio_input_bit_get(uint32_t gpio_periph,uint32_t pin)
{
if((uint32_t)RESET != (GPIO_ISTAT(gpio_periph)&(pin))){
return SET;
}else{
return RESET;
}
}
/*!
\brief get GPIO port input status
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G,H,I)
\param[out] none
\retval input state of gpio all pins
*/
uint16_t gpio_input_port_get(uint32_t gpio_periph)
{
return (uint16_t)(GPIO_ISTAT(gpio_periph));
}
/*!
\brief get GPIO pin output status
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G,H,I)
\param[in] pin: GPIO_PIN_x(x=0..15), GPIO_PIN_ALL
\param[out] none
\retval output state of gpio pin: SET or RESET
*/
FlagStatus gpio_output_bit_get(uint32_t gpio_periph,uint32_t pin)
{
if((uint32_t)RESET !=(GPIO_OCTL(gpio_periph)&(pin))){
return SET;
}else{
return RESET;
}
}
/*!
\brief get GPIO port output status
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G,H,I)
\param[out] none
\retval output state of gpio all pins
*/
uint16_t gpio_output_port_get(uint32_t gpio_periph)
{
return ((uint16_t)GPIO_OCTL(gpio_periph));
}
/*!
\brief set GPIO alternate function
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G,H,I)
\param[in] alt_func_num: gpio pin af function
\arg GPIO_AF_0: SYSTEM
\arg GPIO_AF_1: TIMER0, TIMER1
\arg GPIO_AF_2: TIMER2, TIMER3, TIMER4
\arg GPIO_AF_3: TIMER7, TIMER8, TIMER9, TIMER10
\arg GPIO_AF_4: I2C0, I2C1, I2C2
\arg GPIO_AF_5: SPI0, SPI1, SPI2, SPI3, SPI4, SPI5
\arg GPIO_AF_6: SPI1, SPI2, SAI0
\arg GPIO_AF_7: USART0, USART1, USART2
\arg GPIO_AF_8: UART3, UART4, USART5, UART6, UART7
\arg GPIO_AF_9: CAN0, CAN1, TLI, TIMER11, TIMER12, TIMER13
\arg GPIO_AF_10: USB_FS, USB_HS
\arg GPIO_AF_11: ENET
\arg GPIO_AF_12: FMC, SDIO, USB_HS
\arg GPIO_AF_13: DCI
\arg GPIO_AF_14: TLI
\arg GPIO_AF_15: EVENTOUT
\param[in] pin: GPIO_PIN_x(x=0..15), GPIO_PIN_ALL
\param[out] none
\retval none
*/
void gpio_af_set(uint32_t gpio_periph,uint32_t alt_func_num,uint32_t pin)
{
uint16_t i;
uint32_t afrl, afrh;
afrl = GPIO_AFSEL0(gpio_periph);
afrh = GPIO_AFSEL1(gpio_periph);
for(i = 0U;i < 8U;i++){
if((1U << i) & pin){
/* clear the specified pin alternate function bits */
afrl &= ~GPIO_AFR_MASK(i);
afrl |= GPIO_AFR_SET(i,alt_func_num);
}
}
for(i = 8U;i < 16U;i++){
if((1U << i) & pin){
/* clear the specified pin alternate function bits */
afrh &= ~GPIO_AFR_MASK(i - 8U);
afrh |= GPIO_AFR_SET(i - 8U,alt_func_num);
}
}
GPIO_AFSEL0(gpio_periph) = afrl;
GPIO_AFSEL1(gpio_periph) = afrh;
}
/*!
\brief lock GPIO pin
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G,H,I)
\param[in] pin: GPIO_PIN_x(x=0..15), GPIO_PIN_ALL
\param[out] none
\retval none
*/
void gpio_pin_lock(uint32_t gpio_periph,uint32_t pin)
{
uint32_t lock = 0x00010000U;
lock |= pin;
/* lock key writing sequence: write 1->write 0->write 1->read 0->read 1 */
GPIO_LOCK(gpio_periph) = (uint32_t)lock;
GPIO_LOCK(gpio_periph) = (uint32_t)pin;
GPIO_LOCK(gpio_periph) = (uint32_t)lock;
lock = GPIO_LOCK(gpio_periph);
lock = GPIO_LOCK(gpio_periph);
}
/*!
\brief toggle GPIO pin status
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G,H,I)
\param[in] pin: GPIO_PIN_x(x=0..15), GPIO_PIN_ALL
\param[out] none
\retval none
*/
void gpio_bit_toggle(uint32_t gpio_periph,uint32_t pin)
{
GPIO_TG(gpio_periph) = (uint32_t)pin;
}
/*!
\brief toggle GPIO port status
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G,H,I)
\param[out] none
\retval none
*/
void gpio_port_toggle(uint32_t gpio_periph)
{
GPIO_TG(gpio_periph) = 0x0000FFFFU;
}

View File

@@ -0,0 +1,739 @@
/*!
\file gd32f4xx_i2c.c
\brief I2C driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#include "gd32f4xx_i2c.h"
#define I2CCLK_MAX 0x3fU /*!< i2cclk max value */
#define I2C_STATE_MASK 0x0000FFFFU /*!< i2c state mask */
/*!
\brief reset I2C
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[out] none
\retval none
*/
void i2c_deinit(uint32_t i2c_periph)
{
switch(i2c_periph){
case I2C0:
rcu_periph_reset_enable(RCU_I2C0RST);
rcu_periph_reset_disable(RCU_I2C0RST);
break;
case I2C1:
rcu_periph_reset_enable(RCU_I2C1RST);
rcu_periph_reset_disable(RCU_I2C1RST);
break;
case I2C2:
rcu_periph_reset_enable(RCU_I2C2RST);
rcu_periph_reset_disable(RCU_I2C2RST);
break;
default:
break;
}
}
/*!
\brief I2C clock configure
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] clkspeed: i2c clock speed
\param[in] dutycyc: duty cycle in fast mode
\arg I2C_DTCY_2: T_low/T_high=2
\arg I2C_DTCY_16_9: T_low/T_high=16/9
\param[out] none
\retval none
*/
void i2c_clock_config(uint32_t i2c_periph,uint32_t clkspeed,uint32_t dutycyc)
{
uint32_t pclk1,clkc,freq,risetime;
uint32_t temp;
pclk1 = rcu_clock_freq_get(CK_APB1);
/* I2C peripheral clock frequency */
freq = (uint32_t)(pclk1/1000000U);
if(freq >= I2CCLK_MAX){
freq = I2CCLK_MAX;
}
temp = I2C_CTL1(i2c_periph);
temp &= ~I2C_CTL1_I2CCLK;
temp |= freq;
I2C_CTL1(i2c_periph) = temp;
if(100000U >= clkspeed){
/* the maximum SCL rise time is 1000ns instandard mode */
risetime = (uint32_t)((pclk1/1000000U)+1U);
if(risetime >= I2CCLK_MAX){
I2C_RT(i2c_periph) = I2CCLK_MAX;
}else{
I2C_RT(i2c_periph) = risetime;
}
clkc = (uint32_t)(pclk1/(clkspeed*2U));
if(clkc < 0x04U){
/* the CLKC in standard mode minmum value is 4 */
clkc = 0x04U;
}
I2C_CKCFG(i2c_periph) |= (I2C_CKCFG_CLKC & clkc);
}else if(400000U >= clkspeed){
/* the maximum SCL rise time is 300ns in fast mode */
I2C_RT(i2c_periph) = (uint32_t)(((freq*(uint32_t)300U)/(uint32_t)1000U)+(uint32_t)1U);
if(I2C_DTCY_2 == dutycyc){
/* I2C_DutyCycle == 2 */
clkc = (uint32_t)(pclk1/(clkspeed*3U));
I2C_CKCFG(i2c_periph) &= ~I2C_CKCFG_DTCY;
}else{
/* I2C_DutyCycle == 16/9 */
clkc = (uint32_t)(pclk1/(clkspeed*25U));
I2C_CKCFG(i2c_periph) |= I2C_CKCFG_DTCY;
}
if(0U == (clkc & I2C_CKCFG_CLKC)){
/* the CLKC in fast mode minmum value is 1 */
clkc |= 0x0001;
}
I2C_CKCFG(i2c_periph) |= I2C_CKCFG_FAST;
I2C_CKCFG(i2c_periph) |= clkc;
}
}
/*!
\brief I2C address configure
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] i2cmod:
\arg I2C_I2CMODE_ENABLE: I2C mode
\arg I2C_SMBUSMODE_ENABLE: SMBus mode
\param[in] addformat: 7bits or 10bits
\arg I2C_ADDFORMAT_7BITS: 7bits
\arg I2C_ADDFORMAT_10BITS: 10bits
\param[in] addr: I2C address
\param[out] none
\retval none
*/
void i2c_mode_addr_config(uint32_t i2c_periph,uint32_t i2cmod,uint32_t addformat,uint32_t addr)
{
/* SMBus/I2C mode selected */
uint32_t ctl = 0U;
ctl = I2C_CTL0(i2c_periph);
ctl &= ~(I2C_CTL0_SMBEN);
ctl |= i2cmod;
I2C_CTL0(i2c_periph) = ctl;
/* configure address */
I2C_SADDR0(i2c_periph) = (addformat|addr);
}
/*!
\brief SMBus type selection
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] ack:
\arg I2C_SMBUS_DEVICE: device
\arg I2C_SMBUS_HOST: host
\param[out] none
\retval none
*/
void i2c_smbus_type_config(uint32_t i2c_periph,uint32_t type)
{
if(I2C_SMBUS_HOST == type){
I2C_CTL0(i2c_periph) |= I2C_CTL0_SMBSEL;
}else{
I2C_CTL0(i2c_periph) &= ~(I2C_CTL0_SMBSEL);
}
}
/*!
\brief whether or not to send an ACK
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] ack:
\arg I2C_ACK_ENABLE: ACK will be sent
\arg I2C_ACK_DISABLE: ACK will not be sent
\param[out] none
\retval none
*/
void i2c_ack_config(uint32_t i2c_periph,uint8_t ack)
{
if(I2C_ACK_ENABLE == ack){
I2C_CTL0(i2c_periph) |= I2C_CTL0_ACKEN;
}else{
I2C_CTL0(i2c_periph) &= ~(I2C_CTL0_ACKEN);
}
}
/*!
\brief I2C POAP position configure
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] pos:
\arg I2C_ACK_ENABLE: ACK will be sent
\arg I2C_ACK_DISABLE: ACK will not be sent
\param[out] none
\retval none
*/
void i2c_ackpos_config(uint32_t i2c_periph,uint8_t pos)
{
/* configure i2c POAP position */
if(I2C_ACKPOS_NEXT == pos){
I2C_CTL0(i2c_periph) |= I2C_CTL0_POAP;
}else{
I2C_CTL0(i2c_periph) &= ~(I2C_CTL0_POAP);
}
}
/*!
\brief master send slave address
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] addr: slave address
\param[in] trandirection: transmitter or receiver
\arg I2C_TRANSMITTER: transmitter
\arg I2C_RECEIVER: receiver
\param[out] none
\retval none
*/
void i2c_master_addressing(uint32_t i2c_periph,uint8_t addr,uint32_t trandirection)
{
if(I2C_TRANSMITTER==trandirection){
addr = (uint8_t)((uint32_t)addr & I2C_TRANSMITTER);
}else{
addr = (uint8_t)((uint32_t)addr|I2C_RECEIVER);
}
I2C_DATA(i2c_periph) = addr;
}
/*!
\brief dual-address mode switch
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] dualaddr:
\arg I2C_DUADEN_DISABLE: dual-address mode disabled
\arg I2C_DUADEN_ENABLE: dual-address mode enabled
\param[out] none
\retval none
*/
void i2c_dualaddr_enable(uint32_t i2c_periph,uint8_t dualaddr)
{
if(I2C_DUADEN_ENABLE == dualaddr){
I2C_SADDR1(i2c_periph) |= I2C_SADDR1_DUADEN;
}else{
I2C_SADDR1(i2c_periph) &= ~(I2C_SADDR1_DUADEN);
}
}
/*!
\brief enable i2c
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[out] none
\retval none
*/
void i2c_enable(uint32_t i2c_periph)
{
I2C_CTL0(i2c_periph) |= I2C_CTL0_I2CEN;
}
/*!
\brief disable i2c
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[out] none
\retval none
*/
void i2c_disable(uint32_t i2c_periph)
{
I2C_CTL0(i2c_periph) &= ~(I2C_CTL0_I2CEN);
}
/*!
\brief generate a START condition on I2C bus
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[out] none
\retval none
*/
void i2c_start_on_bus(uint32_t i2c_periph)
{
I2C_CTL0(i2c_periph) |= I2C_CTL0_START;
}
/*!
\brief generate a STOP condition on I2C bus
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[out] none
\retval none
*/
void i2c_stop_on_bus(uint32_t i2c_periph)
{
I2C_CTL0(i2c_periph) |= I2C_CTL0_STOP;
}
/*!
\brief i2c transmit data function
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] data: data of transmission
\param[out] none
\retval none
*/
void i2c_transmit_data(uint32_t i2c_periph,uint8_t data)
{
I2C_DATA(i2c_periph) = data;
}
/*!
\brief i2c receive data function
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[out] none
\retval data of received
*/
uint8_t i2c_receive_data(uint32_t i2c_periph)
{
return (uint8_t)I2C_DATA(i2c_periph);
}
/*!
\brief I2C DMA mode enable
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] dmastste:
\arg I2C_DMA_ON: DMA mode enabled
\arg I2C_DMA_OFF: DMA mode disabled
\param[out] none
\retval none
*/
void i2c_dma_enable(uint32_t i2c_periph,uint32_t dmastste)
{
/* configure i2c DMA function */
uint32_t ctl = 0U;
ctl = I2C_CTL1(i2c_periph);
ctl &= ~(I2C_CTL1_DMAON);
ctl |= dmastste;
I2C_CTL1(i2c_periph) = ctl;
}
/*!
\brief flag indicating DMA last transfer
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] dmastste:
\arg I2C_DMALST_ON: next DMA EOT is the last transfer
\arg I2C_DMALST_OFF: next DMA EOT is not the last transfer
\param[out] none
\retval none
*/
void i2c_dma_last_transfer_enable(uint32_t i2c_periph,uint32_t dmalast)
{
/* configure DMA last transfer */
uint32_t ctl = 0U;
ctl = I2C_CTL1(i2c_periph);
ctl &= ~(I2C_CTL1_DMALST);
ctl |= dmalast;
I2C_CTL1(i2c_periph) = ctl;
}
/*!
\brief whether to stretch SCL low when data is not ready in slave mode
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] stretchpara:
\arg I2C_SCLSTRETCH_ENABLE: SCL stretching is enabled
\arg I2C_SCLSTRETCH_DISABLE: SCL stretching is disabled
\param[out] none
\retval none
*/
void i2c_stretch_scl_low_config(uint32_t i2c_periph,uint32_t stretchpara)
{
/* configure I2C SCL strerching enable or disable */
uint32_t ctl = 0U;
ctl = I2C_CTL0(i2c_periph);
ctl &= ~(I2C_CTL0_DISSTRC);
ctl |= stretchpara;
I2C_CTL0(i2c_periph) = ctl;
}
/*!
\brief whether or not to response to a general Cal
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] gcallpara:
\arg I2C_GCEN_ENABLE: slave will response to a general call
\arg I2C_GCEN_DISABLE: slave will not response to a general call
\param[out] none
\retval none
*/
void i2c_slave_response_to_gcall_config(uint32_t i2c_periph, uint32_t gcallpara)
{
/* configure slave response to a general call enable or disable */
uint32_t ctl = 0U;
ctl = I2C_CTL0(i2c_periph);
ctl &= ~(I2C_CTL0_GCEN);
ctl |= gcallpara;
I2C_CTL0(i2c_periph) = ctl;
}
/*!
\brief software reset I2C
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] sreset:
\arg I2C_SRESET_SET: I2C is under reset
\arg I2C_SRESET_RESET: I2C is not under reset
\param[out] none
\retval none
*/
void i2c_software_reset_config(uint32_t i2c_periph, uint32_t sreset)
{
/* modify CTL0 and configure software reset I2C state */
uint32_t ctl = 0U;
ctl = I2C_CTL0(i2c_periph);
ctl &= ~(I2C_CTL0_SRESET);
ctl |= sreset;
I2C_CTL0(i2c_periph) = ctl;
}
/*!
\brief check i2c state
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] state:
\arg I2C_SBSEND: start condition send out
\arg I2C_ADDSEND: address is sent in master mode or received and matches in slave mode
\arg I2C_BTC: byte transmission finishes
\arg I2C_ADD10SEND: header of 10-bit address is sent in master mode
\arg I2C_STPDET: etop condition detected in slave mode
\arg I2C_RBNE: I2C_DATA is not Empty during receiving
\arg I2C_TBE: I2C_DATA is empty during transmitting
\arg I2C_BERR: a bus error occurs indication a unexpected start or stop condition on I2C bus
\arg I2C_LOSTARB: arbitration lost in master mode
\arg I2C_AERR: acknowledge error
\arg I2C_OUERR: over-run or under-run situation occurs in slave mode
\arg I2C_PECERR: PEC error when receiving data
\arg I2C_SMBTO: timeout signal in SMBus mode
\arg I2C_SMBALT: SMBus alert status
\arg I2C_MASTER: a flag indicating whether I2C block is in master or slave mode
\arg I2C_I2CBSY: busy flag
\arg I2C_TRS: whether the I2C is a transmitter or a receiver
\arg I2C_RXGC: general call address (00h) received
\arg I2C_DEFSMB: default address of SMBus device
\arg I2C_HSTSMB: SMBus host header detected in slave mode
\arg I2C_DUMODF: dual flag in slave mode indicating which address is matched in dual-address mode
\param[out] none
\retval state of i2c
*/
FlagStatus i2c_flag_get(uint32_t i2c_periph,uint32_t state )
{
uint32_t reg = 0U;
FlagStatus regstate = RESET;
/* get the state in which register */
reg = (BIT(31) & state);
if((BIT(31) == reg)){
if((I2C_STAT1(i2c_periph)&(state & I2C_STATE_MASK))){
regstate = SET;
}else{
regstate = RESET;
}
}else{
if((I2C_STAT0(i2c_periph)&(state & I2C_STATE_MASK))){
regstate = SET;
}else{
regstate = RESET;
}
}
/* return the state */
return regstate;
}
/*!
\brief clear i2c state
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] state: state type
\@arg I2C_STAT0_SMBALT: SMBus Alert status
\@arg I2C_STAT0_SMBTO: timeout signal in SMBus mode
\@arg I2C_STAT0_PECERR: PEC error when receiving data
\@arg I2C_STAT0_OUERR: over-run or under-run situation occurs in slave mode
\@arg I2C_STAT0_AERR: acknowledge error
\@arg I2C_STAT0_LOSTARB: arbitration lost in master mode
\@arg I2C_STAT0_BERR: a bus error
\@arg I2C_STAT0_ADDSEND: cleared by reading I2C_STAT0 and reading I2C_STAT1
\param[out] none
\retval none
*/
void i2c_flag_clear(uint32_t i2c_periph,uint32_t state)
{
if(I2C_STAT0_ADDSEND == state){
/* read I2C_STAT0 and then read I2C_STAT1 to clear ADDSEND */
I2C_STAT0(i2c_periph);
I2C_STAT1(i2c_periph);
}else{
I2C_STAT0(i2c_periph) &= ~(state);
}
}
/*!
\brief enable i2c interrupt
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] inttype: interrupt type
\arg I2C_CTL1_ERRIE: error interrupt enable
\arg I2C_CTL1_EVIE: event interrupt enable
\arg I2C_CTL1_BUFIE: buffer interrupt enable
\param[out] none
\retval none
*/
void i2c_interrupt_enable(uint32_t i2c_periph,uint32_t inttype)
{
I2C_CTL1(i2c_periph) |= (inttype);
}
/*!
\brief disable i2c interrupt
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] inttype: interrupt type
\arg I2C_CTL1_ERRIE: error interrupt enable
\arg I2C_CTL1_EVIE: event interrupt enable
\arg I2C_CTL1_BUFIE: buffer interrupt enable
\param[out] none
\retval none
*/
void i2c_interrupt_disable(uint32_t i2c_periph,uint32_t inttype)
{
I2C_CTL1(i2c_periph) &= ~(inttype);
}
/*!
\brief I2C PEC calculation on or off
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] pecpara:
\arg I2C_PEC_ENABLE: PEC calculation on
\arg I2C_PEC_DISABLE: PEC calculation off
\param[out] none
\retval none
*/
void i2c_pec_enable(uint32_t i2c_periph,uint32_t pecstate)
{
/* on/off PEC calculation */
uint32_t ctl = 0U;
ctl = I2C_CTL0(i2c_periph);
ctl &= ~(I2C_CTL0_PECEN);
ctl |= pecstate;
I2C_CTL0(i2c_periph) = ctl;
}
/*!
\brief I2C whether to transfer PEC value
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] pecpara:
\arg I2C_PECTRANS_ENABLE: transfer PEC
\arg I2C_PECTRANS_DISABLE: not transfer PEC
\param[out] none
\retval none
*/
void i2c_pec_transfer_enable(uint32_t i2c_periph,uint32_t pecpara)
{
/* whether to transfer PEC */
uint32_t ctl = 0U;
ctl = I2C_CTL0(i2c_periph);
ctl &= ~(I2C_CTL0_PECTRANS);
ctl |= pecpara;
I2C_CTL0(i2c_periph) = ctl;
}
/*!
\brief packet error checking value
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[out] none
\retval PEC value
*/
uint8_t i2c_pec_value(uint32_t i2c_periph)
{
return (uint8_t)((I2C_STAT1(i2c_periph) &I2C_STAT1_ECV)>>8);
}
/*!
\brief I2C issue alert through SMBA pin
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] smbuspara:
\arg I2C_SALTSEND_ENABLE: issue alert through SMBA pin
\arg I2C_SALTSEND_DISABLE: not issue alert through SMBA pin
\param[out] none
\retval none
*/
void i2c_smbus_alert_issue(uint32_t i2c_periph,uint32_t smbuspara)
{
/* issue alert through SMBA pin configure*/
uint32_t ctl = 0U;
ctl = I2C_CTL0(i2c_periph);
ctl &= ~(I2C_CTL0_SALT);
ctl |= smbuspara;
I2C_CTL0(i2c_periph) = ctl;
}
/*!
\brief I2C ARP protocol in SMBus switch enable or disable
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] smbuspara:
\arg I2C_ARP_ENABLE: ARP is enabled
\arg I2C_ARP_DISABLE: ARP is disabled
\param[out] none
\retval none
*/
void i2c_smbus_arp_enable(uint32_t i2c_periph,uint32_t arpstate)
{
/* enable or disable I2C ARP protocol*/
uint32_t ctl = 0U;
ctl = I2C_CTL0(i2c_periph);
ctl &= ~(I2C_CTL0_ARPEN);
ctl |= arpstate;
I2C_CTL0(i2c_periph) = ctl;
}
/*!
\brief analog noise filter disable
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[out] none
\retval none
*/
void i2c_analog_noise_filter_disable(uint32_t i2c_periph)
{
I2C_FCTL(i2c_periph) |= I2C_FCTL_AFD;
}
/*!
\brief analog noise filter enable
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[out] none
\retval none
*/
void i2c_analog_noise_filter_enable(uint32_t i2c_periph)
{
I2C_FCTL(i2c_periph) &= ~(I2C_FCTL_AFD);
}
/*!
\brief digital noise filter configuration
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] dfilterpara: refer to enum i2c_gcall_config_enum
\param[out] none
\retval none
*/
void i2c_digital_noise_filter_config(uint32_t i2c_periph,i2c_digital_filter_enum dfilterpara)
{
I2C_FCTL(i2c_periph) |= dfilterpara;
}
/*!
\brief enable SAM_V interface
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[out] none
\retval none
*/
void i2c_sam_enable(uint32_t i2c_periph)
{
I2C_SAMCS(i2c_periph) |= I2C_SAMCS_SAMEN;
}
/*!
\brief disable SAM_V interface
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[out] none
\retval none
*/
void i2c_sam_disable(uint32_t i2c_periph)
{
I2C_SAMCS(i2c_periph) &= ~(I2C_SAMCS_SAMEN);
}
/*!
\brief enable SAM_V interface timeout detect
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[out] none
\retval none
*/
void i2c_sam_timeout_enable(uint32_t i2c_periph)
{
I2C_SAMCS(i2c_periph) |= I2C_SAMCS_STOEN;
}
/*!
\brief disable SAM_V interface timeout detect
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[out] none
\retval none
*/
void i2c_sam_timeout_disable(uint32_t i2c_periph)
{
I2C_SAMCS(i2c_periph) &= ~(I2C_SAMCS_STOEN);
}
/*!
\brief enable the specified I2C SAM interrupt
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] inttype: interrupt type
\@arg I2C_SAMCS_TFFIE: txframe fall interrupt
\@arg I2C_SAMCS_TFRIE: txframe rise interrupt
\@arg I2C_SAMCS_RFFIE: rxframe fall interrupt
\@arg I2C_SAMCS_RFRIE: rxframe rise interrupt
\param[out] none
\retval none
*/
void i2c_sam_interrupt_enable(uint32_t i2c_periph,uint32_t inttype)
{
I2C_SAMCS(i2c_periph) |= (inttype);
}
/*!
\brief disable i2c interrupt
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] inttype: interrupt type
\@arg I2C_SAMCS_TFFIE: txframe fall interrupt
\@arg I2C_SAMCS_TFRIE: txframe rise interrupt
\@arg I2C_SAMCS_RFFIE: rxframe fall interrupt
\@arg I2C_SAMCS_RFRIE: rxframe rise interrupt
\param[out] none
\retval none
*/
void i2c_sam_interrupt_disable(uint32_t i2c_periph,uint32_t inttype)
{
I2C_SAMCS(i2c_periph) &= ~(inttype);
}
/*!
\brief check i2c SAM state
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] samstate: state type
\@arg I2C_SAMCS_TXF: level of txframe signal
\@arg I2C_SAMCS_RXF: level of rxframe signal
\@arg I2C_SAMCS_TFF: txframe fall flag
\@arg I2C_SAMCS_TFR: txframe rise flag
\@arg I2C_SAMCS_RFF: rxframe fall flag
\@arg I2C_SAMCS_RFR: rxframe rise flag
\param[out] none
\retval state of i2c SAM
*/
FlagStatus i2c_sam_flag_get(uint32_t i2c_periph,uint32_t samstate)
{
FlagStatus reg = RESET;
if(I2C_SAMCS(i2c_periph)&samstate){
reg =SET;
}else{
reg =RESET;
}
return reg;
}
/*!
\brief clear i2c SAM state
\param[in] i2c_periph: I2Cx(x=0,1,2)
\param[in] samstate: state type
\@arg I2C_SAMCS_TFF: txframe fall flag
\@arg I2C_SAMCS_TFR: txframe rise flag
\@arg I2C_SAMCS_RFF: rxframe fall flag
\@arg I2C_SAMCS_RFR: rxframe rise flag
\param[out] none
\retval none
*/
void i2c_sam_flag_clear(uint32_t i2c_periph,uint32_t samstate)
{
I2C_SAMCS(i2c_periph) &= ~(samstate);
}

View File

@@ -0,0 +1,409 @@
/*!
\file gd32f4xx_ipa.c
\brief IPA driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#include "gd32f4xx_ipa.h"
/*!
\brief deinitialize IPA registers
\param[in] none
\param[out] none
\retval none
*/
void ipa_deinit(void)
{
rcu_periph_reset_enable(RCU_IPARST);
rcu_periph_reset_disable(RCU_IPARST);
}
/*!
\brief IPA transfer enable
\param[in] none
\param[out] none
\retval none
*/
void ipa_transfer_enable(void)
{
IPA_CTL |= IPA_CTL_TEN;
}
/*!
\brief IPA transfer hang up enable
\param[in] none.
\param[out] none
\retval none
*/
void ipa_transfer_hangup_enable(void)
{
IPA_CTL |= IPA_CTL_THU;
}
/*!
\brief IPA transfer hang up disable
\param[in] none.
\param[out] none
\retval none
*/
void ipa_transfer_hangup_disable(void)
{
IPA_CTL &= ~(IPA_CTL_THU);
}
/*!
\brief IPA transfer stop enable
\param[in] none.
\param[out] none
\retval none
*/
void ipa_transfer_stop_enable(void)
{
IPA_CTL |= IPA_CTL_TST;
}
/*!
\brief IPA transfer stop disable
\param[in] none.
\param[out] none
\retval none
*/
void ipa_transfer_stop_disable(void)
{
IPA_CTL &= ~(IPA_CTL_TST);
}
/*!
\brief IPA foreground LUT loading enable
\param[in] none.
\param[out] none
\retval none
*/
void ipa_foreground_lut_loading_enable(void)
{
IPA_FPCTL |= IPA_FPCTL_FLLEN;
}
/*!
\brief IPA background LUT loading enable
\param[in] none.
\param[out] none
\retval none
*/
void ipa_background_lut_loading_enable(void)
{
IPA_BPCTL |= IPA_BPCTL_BLLEN;
}
/*!
\brief Pixel format convert mode
\param[in] pfcm:
\arg IPA_FGTODE: foreground memory to destination memory without pixel format convert
\arg IPA_FGTODE_PF_CONVERT: foreground memory to destination memory with pixel format convert
\arg IPA_FGBGTODE: blending foreground and background memory to destination memory
\arg IPA_FILL_UP_DE: fill up destination memory with specific color
\param[out] none
\retval none
*/
void ipa_pixel_format_convert_mod(uint32_t pfcm)
{
IPA_CTL |= pfcm;
}
/*!
\brief initialize foreground parameters
\param[in] foreground_struct: the data needed to initialize fore.
foreground_memaddr: foreground memory base address
foreground_lineoff: foreground line offset
foreground_prealpha: foreground pre-defined alpha value
foreground_alpha_algorithm: IPA_FG_ALPHA_MODE_0,IPA_FG_ALPHA_MODE_1,IPA_FG_ALPHA_MODE_2
foreground_pf: foreground pixel format
foreground_prered: foreground pre-defined red value
foreground_pregreen: foreground pre-defined green value
foreground_preblue: foreground pre-defined blue value
\param[out] none
\retval none
*/
void ipa_foreground_init(ipa_foreground_parameter_struct* foreground_struct)
{
/* foreground memory base address configuration */
IPA_FMADDR &= ~(IPA_FMADDR_FMADDR);
IPA_FMADDR = foreground_struct->foreground_memaddr;
/* foreground line offset configuration */
IPA_FLOFF &= ~(IPA_FLOFF_FLOFF);
IPA_FLOFF = foreground_struct->foreground_lineoff;
/* foreground pixel format pre-defined alpha, alpha calculation algorithm configuration */
IPA_FPCTL &= ~(IPA_FPCTL_FPDAV|IPA_FPCTL_FAVCA|IPA_FPCTL_FPF);
IPA_FPCTL |= (foreground_struct->foreground_prealpha<<24U);
IPA_FPCTL |= foreground_struct->foreground_alpha_algorithm;
IPA_FPCTL |= foreground_struct->foreground_pf;
/* foreground pre-defined red green blue configuration */
IPA_FPV &= ~(IPA_FPV_FPDRV|IPA_FPV_FPDGV|IPA_FPV_FPDBV);
IPA_FPV |= ((foreground_struct->foreground_prered<<16U)|(foreground_struct->foreground_pregreen<<8U)|(foreground_struct->foreground_preblue));
}
/*!
\brief initialize background parameters
\param[in] background_struct: the data needed to initialize fore.
background_memaddr: background memory base address
background_lineoff: background line offset
background_prealpha: background pre-defined alpha value
background_alpha_algorithm: IPA_BG_ALPHA_MODE_0,IPA_FG_ALPHA_MODE_1,IPA_FG_ALPHA_MODE_2
background_pf: background pixel format
background_prered: background pre-defined red value
background_pregreen: background pre-defined green value
background_preblue: background pre-defined blue value
\param[out] none
\retval none
*/
void ipa_background_init(ipa_background_parameter_struct* background_struct)
{
/* background memory base address configuration */
IPA_BMADDR &= ~(IPA_BMADDR_BMADDR);
IPA_BMADDR = background_struct->background_memaddr;
/* background line offset configuration */
IPA_BLOFF &= ~(IPA_BLOFF_BLOFF);
IPA_BLOFF =background_struct->background_lineoff;
/* background pixel format pre-defined alpha, alpha calculation algorithm configuration */
IPA_BPCTL &= ~(IPA_BPCTL_BPDAV|IPA_BPCTL_BAVCA|IPA_BPCTL_BPF);
IPA_BPCTL |= (background_struct->background_prealpha<<24U);
IPA_BPCTL |= background_struct->background_alpha_algorithm;
IPA_BPCTL |= background_struct->background_pf;
/* background pre-defined red green blue configuration */
IPA_BPV &= ~(IPA_BPV_BPDRV|IPA_BPV_BPDGV|IPA_BPV_BPDBV);
IPA_BPV |= ((background_struct->background_prered<<16U)|(background_struct->background_pregreen<<8U)|(background_struct->background_preblue));
}
/*!
\brief initialize destination parameters
\param[in] destination_struct: the data needed to initialize tli.
destination_pf: refer to ipa_dpf_enum
destination_lineoff: destination line offset
destination_prealpha: destination pre-defined alpha value
destination_prered: destination pre-defined red value
destination_pregreen: destination pre-defined green value
destination_preblue: destination pre-defined blue value
destination_memaddr: destination memory base address
image_width: width of the image to be processed
image_height: height of the image to be processed
\param[out] none
\retval none
*/
void ipa_destination_init(ipa_destination_parameter_struct* destination_struct)
{
uint32_t destination_pixelformat;
/* destination pixel format configuration */
IPA_DPCTL &= ~(IPA_DPCTL_DPF);
IPA_DPCTL = destination_struct->destination_pf;
destination_pixelformat = destination_struct->destination_pf;
/* destination pixel format ARGB8888 */
switch(destination_pixelformat){
case IPA_DPF_ARGB8888:
IPA_DPV &= ~(IPA_DPV_DPDBV_0|(IPA_DPV_DPDGV_0)|(IPA_DPV_DPDRV_0)|(IPA_DPV_DPDAV_0));
IPA_DPV = (destination_struct->destination_preblue|(destination_struct->destination_pregreen<<8U)
|(destination_struct->destination_prered<<16U)
|(destination_struct->destination_prealpha<<24U));
break;
/* destination pixel format RGB888 */
case IPA_DPF_RGB888:
IPA_DPV &= ~(IPA_DPV_DPDBV_1|(IPA_DPV_DPDGV_1)|(IPA_DPV_DPDRV_1));
IPA_DPV = (destination_struct->destination_preblue|(destination_struct->destination_pregreen<<8U)
|(destination_struct->destination_prered<<16U));
break;
/* destination pixel format RGB565 */
case IPA_DPF_RGB565:
IPA_DPV &= ~(IPA_DPV_DPDBV_2|(IPA_DPV_DPDGV_2)|(IPA_DPV_DPDRV_2));
IPA_DPV = (destination_struct->destination_preblue|(destination_struct->destination_pregreen<<5U)
|(destination_struct->destination_prered<<11U));
break;
/* destination pixel format ARGB1555 */
case IPA_DPF_ARGB1555:
IPA_DPV &= ~(IPA_DPV_DPDBV_3|(IPA_DPV_DPDGV_3)|(IPA_DPV_DPDRV_3)|(IPA_DPV_DPDAV_3));
IPA_DPV = (destination_struct->destination_preblue|(destination_struct->destination_pregreen<<5U)
|(destination_struct->destination_prered<<10U)
|(destination_struct->destination_prealpha<<15U));
break;
/* destination pixel format ARGB4444 */
case IPA_DPF_ARGB4444:
IPA_DPV &= ~(IPA_DPV_DPDBV_4|(IPA_DPV_DPDGV_4)|(IPA_DPV_DPDRV_4)|(IPA_DPV_DPDAV_4));
IPA_DPV = (destination_struct->destination_preblue|(destination_struct->destination_pregreen<<5U)
|(destination_struct->destination_prered<<10U)
|(destination_struct->destination_prealpha<<15U));
break;
default:
break;
}
/* destination memory base address configuration */
IPA_DMADDR &= ~(IPA_DMADDR_DMADDR);
IPA_DMADDR =destination_struct->destination_memaddr;
/* destination line offset configuration */
IPA_DLOFF &= ~(IPA_DLOFF_DLOFF);
IPA_DLOFF =destination_struct->destination_lineoff;
/* image size configuration */
IPA_IMS &= ~(IPA_IMS_HEIGHT|IPA_IMS_WIDTH);
IPA_IMS |= ((destination_struct->image_width<<16)|(destination_struct->image_height));
}
/*!
\brief initialize IPA foreground LUT parameters
\param[in] fg_lut_num: foreground LUT number of pixel.
\param[in] fg_lut_pf: foreground LUT pixel format,IPA_LUT_PF_ARGB8888,IPA_LUT_PF_RGB888.
\param[in] fg_lut_addr: foreground LUT memory base address.
\param[out] none
\retval none
*/
void ipa_foreground_lut_init(uint32_t fg_lut_num,uint8_t fg_lut_pf, uint32_t fg_lut_addr)
{
/* foreground LUT number of pixel configuration */
IPA_FPCTL |= (fg_lut_num<<8U);
/* foreground LUT pixel format configuration */
if(IPA_LUT_PF_RGB888 == fg_lut_pf){
IPA_FPCTL |= IPA_FPCTL_FLPF;
}else{
IPA_FPCTL &= ~(IPA_FPCTL_FLPF);
}
/* foreground LUT memory base address configuration */
IPA_FLMADDR &= ~(IPA_FLMADDR_FLMADDR);
IPA_FLMADDR = fg_lut_addr;
}
/*!
\brief initialize IPA background LUT parameters
\param[in] bg_lut_num: background LUT number of pixel.
\param[in] bg_lut_pf: background LUT pixel format, IPA_LUT_PF_ARGB8888,IPA_LUT_PF_RGB888.
\param[in] bg_lut_addr: background LUT memory base address.
\param[out] none
\retval none
*/
void ipa_background_lut_init(uint32_t bg_lut_num,uint8_t bg_lut_pf, uint32_t bg_lut_addr)
{
/* background LUT number of pixel configuration */
IPA_BPCTL|=(bg_lut_num<<8U);
/* background LUT pixel format configuration */
if(IPA_LUT_PF_RGB888 == bg_lut_pf){
IPA_BPCTL |= IPA_BPCTL_BLPF;
}else{
IPA_BPCTL &= ~(IPA_BPCTL_BLPF);
}
/* background LUT memory base address configuration */
IPA_BLMADDR &= ~(IPA_BLMADDR_BLMADDR);
IPA_BLMADDR = bg_lut_addr;
}
/*!
\brief configure line mark
\param[in] linenum: line number.
\param[out] none
\retval none
*/
void ipa_line_mark_config(uint32_t linenum)
{
IPA_LM &= ~(IPA_LM_LM);
IPA_LM = linenum;
}
/*!
\brief Inter-timer enable or disable
\param[in] timercfg: IPA_INTER_TIMER_ENABLE,IPA_INTER_TIMER_DISABLE
\param[out] none
\retval none
*/
void ipa_inter_timer_config(uint8_t timercfg)
{
if(IPA_INTER_TIMER_ENABLE == timercfg){
IPA_ITCTL |= IPA_ITCTL_ITEN;
}else{
IPA_ITCTL &= ~(IPA_ITCTL_ITEN);
}
}
/*!
\brief number of clock cycles interval set
\param[in] clk_num: the number of clock cycles.
\param[out] none
\retval none
*/
void ipa_interval_clock_num_config(uint32_t clk_num )
{
IPA_ITCTL &= ~(IPA_ITCTL_NCCI);
IPA_ITCTL |= (clk_num<<8U);
}
/*!
\brief IPA interrupt enable
\param[in] inttype: IPA interrupt bits.
\arg IPA_CTL_TAEIE: transfer access error interrupt
\arg IPA_CTL_FTFIE: full transfer finish interrupt
\arg IPA_CTL_TLMIE: transfer line mark interrupt
\arg IPA_CTL_LACIE: LUT access conflict interrupt
\arg IPA_CTL_LLFIE: LUT loading finish interrupt
\arg IPA_CTL_WCFIE: wrong configuration interrupt
\param[out] none
\retval none
*/
void ipa_interrupt_enable(uint32_t inttype)
{
IPA_CTL |= (inttype);
}
/*!
\brief IPA interrupt disable
\param[in] inttype: IPA interrupt bits.
\arg IPA_CTL_TAEIE: transfer access error interrupt
\arg IPA_CTL_FTFIE: full transfer finish interrupt
\arg IPA_CTL_TLMIE: transfer line mark interrupt
\arg IPA_CTL_LACIE: LUT access conflict interrupt
\arg IPA_CTL_LLFIE: LUT loading finish interrupt
\arg IPA_CTL_WCFIE: wrong configuration interrupt
\param[out] none
\retval none
*/
void ipa_interrupt_disable(uint32_t inttype)
{
IPA_CTL &= ~(inttype);
}
/*!
\brief get IPA interrupt flag
\param[in] intflag: tli interrupt flag bits.
\arg IPA_INTF_TAEIF: transfer access error interrupt flag
\arg IPA_INTF_FTFIF: full transfer finish interrupt flag
\arg IPA_INTF_TLMIF: transfer line mark interrupt flag
\arg IPA_INTF_LACIF: LUT access conflict interrupt flag
\arg IPA_INTF_LLFIF: LUT loading finish interrupt flag
\arg IPA_INTF_WCFIF: wrong configuration interrupt flag
\param[out] none
\retval none
*/
FlagStatus ipa_interrupt_flag_get(uint32_t intflag)
{
uint32_t state;
state = IPA_INTF;
if(state & intflag){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear IPA interrupt flag
\param[in] intflag: tli interrupt flag bits.
\arg IPA_INTC_TAEIFC: transfer access error interrupt flag
\arg IPA_INTC_FTFIFC: full transfer finish interrupt flag
\arg IPA_INTC_TLMIFC: transfer line mark interrupt flag
\arg IPA_INTC_LACIFC: LUT access conflict interrupt flag
\arg IPA_INTC_LLFIFC: LUT loading finish interrupt flag
\arg IPA_INTC_WCFIFC: wrong configuration interrupt flag
\param[out] none
\retval none
*/
void ipa_interrupt_flag_clear(uint32_t intflag)
{
IPA_INTC |= (intflag);
}

View File

@@ -0,0 +1,101 @@
/*!
\file gd32f4xx_iref.c
\brief IREF driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#include "gd32f4xx_iref.h"
/*!
\brief deinit IREF
\param[in] none
\param[out] none
\retval none
*/
void iref_deinit(void)
{
rcu_periph_reset_enable(RCU_IREFRST);
rcu_periph_reset_disable(RCU_IREFRST);
}
/*!
\brief enable IREF
\param[in] none
\param[out] none
\retval none
*/
void iref_enable(void)
{
IREF_CTL |= IREF_CTL_CREN;
}
/*!
\brief disable IREF
\param[in] none
\param[out] none
\retval none
*/
void iref_disable(void)
{
IREF_CTL &= ~IREF_CTL_CREN;
}
/*!
\brief set IREF mode
\param[in] step
\arg IREF_MODE_LOW_POWER: 1uA step
\arg IREF_MODE_HIGH_CURRENT: 8uA step
\param[out] none
\retval none
*/
void iref_mode_set(uint32_t step)
{
IREF_CTL &= ~IREF_CTL_SSEL;
IREF_CTL |= step;
}
/*!
\brief set IREF precision_trim_value
\param[in] precisiontrim
\arg IREF_CUR_PRECISION_TRIM_X(x=0..31): (-15+ x)%
\param[out] none
\retval none
*/
void iref_precision_trim_value_set(uint32_t precisiontrim)
{
IREF_CTL &= ~IREF_CTL_CPT;
IREF_CTL |= precisiontrim;
}
/*!
\brief set IREF sink mode
\param[in] sinkmode
\arg IREF_SOURCE_CURRENT : source current.
\arg IREF_SINK_CURRENT: sink current
\param[out] none
\retval none
*/
void iref_sink_set(uint32_t sinkmode)
{
IREF_CTL &= ~IREF_CTL_SCMOD;
IREF_CTL |= sinkmode;
}
/*!
\brief set IREF step data
\param[in] stepdata
\arg IREF_CUR_STEP_DATA_X:(x=0..63): step*x
\param[out] none
\retval none
*/
void iref_step_data_config(uint32_t stepdata)
{
IREF_CTL &= ~IREF_CTL_CSDT;
IREF_CTL |= stepdata;
}

View File

@@ -0,0 +1,146 @@
/*!
\file gd32f4xx_misc.c
\brief MISC driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#include "gd32f4xx_misc.h"
/*!
\brief set the priority group
\param[in] nvic_prigroup: the NVIC priority group
\arg NVIC_PRIGROUP_PRE0_SUB4:0 bits for pre-emption priority 4 bits for subpriority
\arg NVIC_PRIGROUP_PRE1_SUB3:1 bits for pre-emption priority 3 bits for subpriority
\arg NVIC_PRIGROUP_PRE2_SUB2:2 bits for pre-emption priority 2 bits for subpriority
\arg NVIC_PRIGROUP_PRE3_SUB1:3 bits for pre-emption priority 1 bits for subpriority
\arg NVIC_PRIGROUP_PRE4_SUB0:4 bits for pre-emption priority 0 bits for subpriority
\param[out] none
\retval none
*/
void nvic_priority_group_set(uint32_t nvic_prigroup)
{
/* set the priority group value */
SCB->AIRCR = NVIC_AIRCR_VECTKEY_MASK | nvic_prigroup;
}
/*!
\brief enable NVIC request
\param[in] nvic_irq: the NVIC interrupt request, detailed in IRQn_Type
\param[in] nvic_irq_pre_priority: the pre-emption priority needed to set
\param[in] nvic_irq_sub_priority: the subpriority needed to set
\param[out] none
\retval none
*/
void nvic_irq_enable(uint8_t nvic_irq, uint8_t nvic_irq_pre_priority,
uint8_t nvic_irq_sub_priority)
{
uint32_t temp_priority = 0x00U, temp_pre = 0x00U, temp_sub = 0x00U;
/* use the priority group value to get the temp_pre and the temp_sub */
if(((SCB->AIRCR) & (uint32_t)0x700U)==NVIC_PRIGROUP_PRE0_SUB4){
temp_pre=0U;
temp_sub=0x4U;
}else if(((SCB->AIRCR) & (uint32_t)0x700U)==NVIC_PRIGROUP_PRE1_SUB3){
temp_pre=1U;
temp_sub=0x3U;
}else if(((SCB->AIRCR) & (uint32_t)0x700U)==NVIC_PRIGROUP_PRE2_SUB2){
temp_pre=2U;
temp_sub=0x2U;
}else if(((SCB->AIRCR) & (uint32_t)0x700U)==NVIC_PRIGROUP_PRE3_SUB1){
temp_pre=3U;
temp_sub=0x1U;
}else if(((SCB->AIRCR) & (uint32_t)0x700U)==NVIC_PRIGROUP_PRE4_SUB0){
temp_pre=4U;
temp_sub=0x0U;
}else{
}
/* get the temp_priority to fill the NVIC->IP register */
temp_priority = (uint32_t)nvic_irq_pre_priority << (0x4U - temp_pre);
temp_priority |= nvic_irq_sub_priority &(0x0FU >> (0x4U - temp_sub));
temp_priority = temp_priority << 0x04U;
NVIC->IP[nvic_irq] = (uint8_t)temp_priority;
/* enable the selected IRQ */
NVIC->ISER[nvic_irq >> 0x05U] = (uint32_t)0x01U << (nvic_irq & (uint8_t)0x1FU);
}
/*!
\brief disable NVIC request
\param[in] nvic_irq: the NVIC interrupt request, detailed in IRQn_Type
\param[out] none
\retval none
*/
void nvic_irq_disable(uint8_t nvic_irq)
{
/* disable the selected IRQ.*/
NVIC->ICER[nvic_irq >> 0x05] = (uint32_t)0x01 << (nvic_irq & (uint8_t)0x1F);
}
/*!
\brief set the NVIC vector table base address
\param[in] nvic_vict_tab: the RAM or FLASH base address
\arg NVIC_VECTTAB_RAM: RAM base address
\are NVIC_VECTTAB_FLASH: Flash base address
\param[in] offset: Vector Table offset
\param[out] none
\retval none
*/
void nvic_vector_table_set(uint32_t nvic_vict_tab, uint32_t offset)
{
SCB->VTOR = nvic_vict_tab | (offset & NVIC_VECTTAB_OFFSET_MASK);
}
/*!
\brief set the state of the low power mode
\param[in] lowpower_mode: the low power mode state
\arg SCB_LPM_SLEEP_EXIT_ISR: if chose this para, the system always enter low power
mode by exiting from ISR
\arg SCB_LPM_DEEPSLEEP: if chose this para, the system will enter the DEEPSLEEP mode
\arg SCB_LPM_WAKE_BY_ALL_INT: if chose this para, the lowpower mode can be woke up
by all the enable and disable interrupts
\param[out] none
\retval none
*/
void system_lowpower_set(uint8_t lowpower_mode)
{
SCB->SCR |= (uint32_t)lowpower_mode;
}
/*!
\brief reset the state of the low power mode
\param[in] lowpower_mode: the low power mode state
\arg SCB_LPM_SLEEP_EXIT_ISR: if chose this para, the system will exit low power
mode by exiting from ISR
\arg SCB_LPM_DEEPSLEEP: if chose this para, the system will enter the SLEEP mode
\arg SCB_LPM_WAKE_BY_ALL_INT: if chose this para, the lowpower mode only can be
woke up by the enable interrupts
\param[out] none
\retval none
*/
void system_lowpower_reset(uint8_t lowpower_mode)
{
SCB->SCR &= (~(uint32_t)lowpower_mode);
}
/*!
\brief set the systick clock source
\param[in] systick_clksource: the systick clock source needed to choose
\arg SYSTICK_CLKSOURCE_HCLK: systick clock source is from HCLK
\arg SYSTICK_CLKSOURCE_HCLK_DIV8: systick clock source is from HCLK/8
\param[out] none
\retval none
*/
void systick_clksource_set(uint32_t systick_clksource)
{
if(SYSTICK_CLKSOURCE_HCLK == systick_clksource ){
/* set the systick clock source from HCLK */
SysTick->CTRL |= SYSTICK_CLKSOURCE_HCLK;
}else{
/* set the systick clock source from HCLK/8 */
SysTick->CTRL &= SYSTICK_CLKSOURCE_HCLK_DIV8;
}
}

View File

@@ -0,0 +1,349 @@
/*!
\file gd32f4xx_pmu.c
\brief PMU driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#include "gd32f4xx_pmu.h"
#include "core_cm4.h"
/*!
\brief reset PMU register
\param[in] none
\param[out] none
\retval none
*/
void pmu_deinit(void)
{
/* reset PMU */
rcu_periph_reset_enable(RCU_PMURST);
rcu_periph_reset_disable(RCU_PMURST);
}
/*!
\brief select low voltage detector threshold
\param[in] lvdt_n:
\arg PMU_LVDT_0: voltage threshold is 2.2V
\arg PMU_LVDT_1: voltage threshold is 2.3V
\arg PMU_LVDT_2: voltage threshold is 2.4V
\arg PMU_LVDT_3: voltage threshold is 2.5V
\arg PMU_LVDT_4: voltage threshold is 2.6V
\arg PMU_LVDT_5: voltage threshold is 2.7V
\arg PMU_LVDT_6: voltage threshold is 2.8V
\arg PMU_LVDT_7: voltage threshold is 2.9V
\param[out] none
\retval none
*/
void pmu_lvd_select(uint32_t lvdt_n)
{
/* disable LVD */
PMU_CTL &= ~PMU_CTL_LVDEN;
/* clear LVDT bits */
PMU_CTL &= ~PMU_CTL_LVDT;
/* set LVDT bits according to pmu_lvdt_n */
PMU_CTL |= lvdt_n;
/* enable LVD */
PMU_CTL |= PMU_CTL_LVDEN;
}
/*!
\brief select LDO output voltage
this bit set by software when the main PLL closed, before closing PLL, change the system clock to IRC16M or HXTAL
\param[in] ldo_output:
\arg PMU_LDOVS_LOW: low-driver mode enable in deep-sleep mode
\arg PMU_LDOVS_MID: low-driver mode disable in deep-sleep mode
\arg PMU_LDOVS_HIGH: low-driver mode disable in deep-sleep mode
\param[out] none
\retval none
*/
void pmu_ldo_output_select(uint32_t ldo_output)
{
PMU_CTL &= ~PMU_CTL_LDOVS;
PMU_CTL |= ldo_output;
}
/*!
\brief enable low-driver mode in deep-sleep mode
\param[in] lowdr_mode:
\arg PMU_LOWDRIVER_ENABLE: enable low-driver mode in deep-sleep mode
\arg PMU_LOWDRIVER_DISABLE: disable low-driver mode in deep-sleep mode
\param[out] none
\retval none
*/
void pmu_low_driver_mode_enable(uint32_t lowdr_mode)
{
PMU_CTL &= ~PMU_CTL_LDEN;
PMU_CTL |= lowdr_mode;
}
/*!
\brief switch high-driver mode
this bit set by software only when IRC16M or HXTAL used as system clock
\param[in] highdr_switch:
\arg PMU_HIGHDR_SWITCH_NONE: disable high-driver mode switch
\arg PMU_HIGHDR_SWITCH_EN: enable high-driver mode switch
\param[out] none
\retval none
*/
void pmu_highdriver_switch_select(uint32_t highdr_switch)
{
/* wait for HDRF flag set */
while(SET != pmu_flag_get(PMU_FLAG_HDRF)){
}
PMU_CTL &= ~PMU_CTL_HDS;
PMU_CTL |= highdr_switch;
}
/*!
\brief enable high-driver mode
this bit set by software only when IRC16M or HXTAL used as system clock
\param[in] none
\param[out] none
\retval none
*/
void pmu_highdriver_mode_enable(void)
{
PMU_CTL |= PMU_CTL_HDEN;
}
/*!
\brief disable high-driver mode
\param[in] none
\param[out] none
\retval none
*/
void pmu_highdriver_mode_disable(void)
{
PMU_CTL &= ~PMU_CTL_HDEN;
}
/*!
\brief disable PMU lvd
\param[in] none
\param[out] none
\retval none
*/
void pmu_lvd_disable(void)
{
/* disable LVD */
PMU_CTL &= ~PMU_CTL_LVDEN;
}
/*!
\brief low-driver mode when use low power LDO
\param[in] mode:
\arg PMU_NORMALDR_LOWPWR: normal driver when use low power LDO
\arg PMU_LOWDR_LOWPWR: low-driver mode enabled when LDEN is 11 and use low power LDO
\param[out] none
\retval none
*/
void pmu_lowdriver_lowpower_config(uint32_t mode)
{
PMU_CTL &= ~PMU_CTL_LDLP;
PMU_CTL |= mode;
}
/*!
\brief low-driver mode when use normal power LDO
\param[in] mode:
\arg PMU_NORMALDR_NORMALPWR: normal driver when use low power LDO
\arg PMU_LOWDR_NORMALPWR: low-driver mode enabled when LDEN is 11 and use low power LDO
\param[out] none
\retval none
*/
void pmu_lowdriver_normalpower_config(uint32_t mode)
{
PMU_CTL &= ~PMU_CTL_LDNP;
PMU_CTL |= mode;
}
/*!
\brief PMU work at sleep mode
\param[in] sleepmodecmd:
\arg WFI_CMD: use WFI command
\arg WFE_CMD: use WFE command
\param[out] none
\retval none
*/
void pmu_to_sleepmode(uint8_t sleepmodecmd)
{
/* clear sleepdeep bit of Cortex-M4 system control register */
SCB->SCR &= ~((uint32_t)SCB_SCR_SLEEPDEEP_Msk);
/* select WFI or WFE command to enter sleep mode */
if(WFI_CMD == sleepmodecmd){
__WFI();
}else{
__WFE();
}
}
/*!
\brief PMU work at deepsleep mode
\param[in] ldo
\arg PMU_LDO_NORMAL: LDO normal work when pmu enter deepsleep mode
\arg PMU_LDO_LOWPOWER: LDO work at low power mode when pmu enter deepsleep mode
\param[in] deepsleepmodecmd:
\arg WFI_CMD: use WFI command
\arg WFE_CMD: use WFE command
\param[out] none
\retval none
*/
void pmu_to_deepsleepmode(uint32_t ldo,uint8_t deepsleepmodecmd)
{
/* clear stbmod and ldolp bits */
PMU_CTL &= ~((uint32_t)(PMU_CTL_STBMOD | PMU_CTL_LDOLP));
/* set ldolp bit according to pmu_ldo */
PMU_CTL |= ldo;
/* set sleepdeep bit of Cortex-M4 system control register */
SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
/* select WFI or WFE command to enter deepsleep mode */
if(WFI_CMD == deepsleepmodecmd){
__WFI();
}else{
__SEV();
__WFE();
__WFE();
}
/* reset sleepdeep bit of Cortex-M4 system control register */
SCB->SCR &= ~((uint32_t)SCB_SCR_SLEEPDEEP_Msk);
}
/*!
\brief pmu work at standby mode
\param[in] standbymodecmd:
\arg WFI_CMD: use WFI command
\arg WFE_CMD: use WFE command
\param[out] none
\retval none
*/
void pmu_to_standbymode(uint8_t standbymodecmd)
{
/* set sleepdeep bit of Cortex-M4 system control register */
SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
/* set stbmod bit */
PMU_CTL |= PMU_CTL_STBMOD;
/* reset wakeup flag */
PMU_CTL |= PMU_CTL_WURST;
/* select WFI or WFE command to enter standby mode */
if(WFI_CMD == standbymodecmd){
__WFI();
}else{
__WFE();
}
}
/*!
\brief backup SRAM LDO on
\param[in] bkp_ldo:
\arg PMU_BLDOON_OFF: backup SRAM LDO closed
\arg PMU_BLDOON_ON: open the backup SRAM LDO
\param[out] none
\retval none
*/
void pmu_backup_ldo_config(uint32_t bkp_ldo)
{
PMU_CS &= ~PMU_CS_BLDOON;
PMU_CS |= bkp_ldo;
}
/*!
\brief reset flag bit
\param[in] flag_reset:
\arg PMU_FLAG_RESET_WAKEUP: reset wakeup flag
\arg PMU_FLAG_RESET_STANDBY: reset standby flag
\param[out] none
\retval none
*/
void pmu_flag_reset(uint32_t flag_reset)
{
switch(flag_reset){
case PMU_FLAG_RESET_WAKEUP:
/* reset wakeup flag */
PMU_CTL |= PMU_CTL_WURST;
break;
case PMU_FLAG_RESET_STANDBY:
/* reset standby flag */
PMU_CTL |= PMU_CTL_STBRST;
break;
default :
break;
}
}
/*!
\brief get flag state
\param[in] flag:
\arg PMU_FLAG_WAKEUP: wakeup flag
\arg PMU_FLAG_STANDBY: standby flag
\arg PMU_FLAG_LVD: lvd flag
\arg PMU_FLAG_BLDORF: backup SRAM LDO ready flag
\arg PMU_FLAG_LDOVSRF: LDO voltage select ready flag
\arg PMU_FLAG_HDRF: high-driver ready flag
\arg PMU_FLAG_HDSRF: high-driver switch ready flag
\arg PMU_FLAG_LDRF: low-driver mode ready flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus pmu_flag_get(uint32_t flag)
{
if(PMU_CS & flag){
return SET;
}else{
return RESET;
}
}
/*!
\brief enable backup domain write
\param[in] none
\param[out] none
\retval none
*/
void pmu_backup_write_enable(void)
{
PMU_CTL |= PMU_CTL_BKPWEN;
}
/*!
\brief disable backup domain write
\param[in] none
\param[out] none
\retval none
*/
void pmu_backup_write_disable(void)
{
PMU_CTL &= ~PMU_CTL_BKPWEN;
}
/*!
\brief enable wakeup pin
\param[in] none
\param[out] none
\retval none
*/
void pmu_wakeup_pin_enable(void)
{
PMU_CS |= PMU_CS_WUPEN;
}
/*!
\brief disable wakeup pin
\param[in] none
\param[out] none
\retval none
*/
void pmu_wakeup_pin_disable(void)
{
PMU_CS &= ~PMU_CS_WUPEN;
}

View File

@@ -0,0 +1,758 @@
/*!
\file gd32f4xx_sdio.c
\brief SDIO driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#include "gd32f4xx_sdio.h"
/*!
\brief deinitialize the SDIO
\param[in] none
\param[out] none
\retval none
*/
void sdio_deinit(void)
{
rcu_periph_reset_enable(RCU_SDIORST);
rcu_periph_reset_disable(RCU_SDIORST);
}
/*!
\brief configure the SDIO clock
\param[in] clock_edge: SDIO_CLK clock edge
\arg SDIO_SDIOCLKEDGE_RISING: select the rising edge of the SDIOCLK to generate SDIO_CLK
\arg SDIO_SDIOCLKEDGE_FALLING: select the falling edge of the SDIOCLK to generate SDIO_CLK
\param[in] clock_bypass: clock bypass
\arg SDIO_CLOCKBYPASS_ENABLE: clock bypass
\arg SDIO_CLOCKBYPASS_DISABLE: no bypass
\param[in] clock_powersave: SDIO_CLK clock dynamic switch on/off for power saving
\arg SDIO_CLOCKPWRSAVE_ENABLE: SDIO_CLK closed when bus is idle
\arg SDIO_CLOCKPWRSAVE_DISABLE: SDIO_CLK clock is always on
\param[in] clock_division: clock division, less than 512
\param[out] none
\retval none
*/
void sdio_clock_config(uint32_t clock_edge, uint32_t clock_bypass, uint32_t clock_powersave, uint16_t clock_division)
{
uint32_t clock_config = 0U;
clock_config = SDIO_CLKCTL;
/* reset the CLKEDGE, CLKBYP, CLKPWRSAV, DIV */
clock_config &= ~(SDIO_CLKCTL_CLKEDGE | SDIO_CLKCTL_CLKBYP | SDIO_CLKCTL_CLKPWRSAV | SDIO_CLKCTL_DIV8 | SDIO_CLKCTL_DIV);
/* if the clock division is greater or equal to 256, set the DIV[8] */
if(clock_division >= 256U){
clock_config |= SDIO_CLKCTL_DIV8;
clock_division -= 256U;
}
/* configure the SDIO_CLKCTL according to the parameters */
clock_config |= (clock_edge | clock_bypass | clock_powersave | clock_division);
SDIO_CLKCTL = clock_config;
}
/*!
\brief enable hardware clock control
\param[in] none
\param[out] none
\retval none
*/
void sdio_hardware_clock_enable(void)
{
SDIO_CLKCTL |= SDIO_CLKCTL_HWCLKEN;
}
/*!
\brief disable hardware clock control
\param[in] none
\param[out] none
\retval none
*/
void sdio_hardware_clock_disable(void)
{
SDIO_CLKCTL &= ~SDIO_CLKCTL_HWCLKEN;
}
/*!
\brief set different SDIO card bus mode
\param[in] bus_mode: SDIO card bus mode
\arg SDIO_BUSMODE_1BIT: 1-bit SDIO card bus mode
\arg SDIO_BUSMODE_4BIT: 4-bit SDIO card bus mode
\arg SDIO_BUSMODE_8BIT: 8-bit SDIO card bus mode
\param[out] none
\retval none
*/
void sdio_bus_mode_set(uint32_t bus_mode)
{
/* reset the SDIO card bus mode bits and set according to bus_mode */
SDIO_CLKCTL &= ~SDIO_CLKCTL_BUSMODE;
SDIO_CLKCTL |= bus_mode;
}
/*!
\brief set the SDIO power state
\param[in] power_state: SDIO power state
\arg SDIO_POWER_ON: SDIO power on
\arg SDIO_POWER_OFF: SDIO power off
\param[out] none
\retval none
*/
void sdio_power_state_set(uint32_t power_state)
{
SDIO_PWRCTL = power_state;
}
/*!
\brief get the SDIO power state
\param[in] none
\param[out] none
\retval SDIO power state
\arg SDIO_POWER_ON: SDIO power on
\arg SDIO_POWER_OFF: SDIO power off
*/
uint32_t sdio_power_state_get(void)
{
return SDIO_PWRCTL;
}
/*!
\brief enable SDIO_CLK clock output
\param[in] none
\param[out] none
\retval none
*/
void sdio_clock_enable(void)
{
SDIO_CLKCTL |= SDIO_CLKCTL_CLKEN;
}
/*!
\brief disable SDIO_CLK clock output
\param[in] none
\param[out] none
\retval none
*/
void sdio_clock_disable(void)
{
SDIO_CLKCTL &= ~SDIO_CLKCTL_CLKEN;
}
/*!
\brief configure the command and response
\param[in] cmd_index: command index, refer to the related specifications
\param[in] cmd_argument: command argument, refer to the related specifications
\param[in] response_type: response type
\arg SDIO_RESPONSETYPE_NO: no response
\arg SDIO_RESPONSETYPE_SHORT: short response
\arg SDIO_RESPONSETYPE_LONG: long response
\param[out] none
\retval none
*/
void sdio_command_response_config(uint32_t cmd_index, uint32_t cmd_argument, uint32_t response_type)
{
uint32_t cmd_config = 0U;
/* reset the command index, command argument and response type */
SDIO_CMDAGMT &= ~SDIO_CMDAGMT_CMDAGMT;
SDIO_CMDAGMT = cmd_argument;
cmd_config = SDIO_CMDCTL;
cmd_config &= ~(SDIO_CMDCTL_CMDIDX | SDIO_CMDCTL_CMDRESP);
/* configure SDIO_CMDCTL and SDIO_CMDAGMT according to the parameters */
cmd_config |= (cmd_index | response_type);
SDIO_CMDCTL = cmd_config;
}
/*!
\brief set the command state machine wait type
\param[in] wait_type: wait type
\arg SDIO_WAITTYPE_NO: not wait interrupt
\arg SDIO_WAITTYPE_INTERRUPT: wait interrupt
\arg SDIO_WAITTYPE_DATAEND: wait the end of data transfer
\param[out] none
\retval none
*/
void sdio_wait_type_set(uint32_t wait_type)
{
/* reset INTWAIT and WAITDEND */
SDIO_CMDCTL &= ~(SDIO_CMDCTL_INTWAIT | SDIO_CMDCTL_WAITDEND);
/* set the wait type according to wait_type */
SDIO_CMDCTL |= wait_type;
}
/*!
\brief enable the CSM(command state machine)
\param[in] none
\param[out] none
\retval none
*/
void sdio_csm_enable(void)
{
SDIO_CMDCTL |= SDIO_CMDCTL_CSMEN;
}
/*!
\brief disable the CSM(command state machine)
\param[in] none
\param[out] none
\retval none
*/
void sdio_csm_disable(void)
{
SDIO_CMDCTL &= ~SDIO_CMDCTL_CSMEN;
}
/*!
\brief get the last response command index
\param[in] none
\param[out] none
\retval last response command index
*/
uint8_t sdio_command_index_get(void)
{
return (uint8_t)SDIO_RSPCMDIDX;
}
/*!
\brief get the response for the last received command
\param[in] sdio_responsex: SDIO response
\arg SDIO_RESPONSE0: card response[31:0]/card response[127:96]
\arg SDIO_RESPONSE1: card response[95:64]
\arg SDIO_RESPONSE2: card response[63:32]
\arg SDIO_RESPONSE3: card response[31:1], plus bit 0
\param[out] none
\retval response for the last received command
*/
uint32_t sdio_response_get(uint32_t sdio_responsex)
{
uint32_t resp_content = 0U;
switch(sdio_responsex){
case SDIO_RESPONSE0:
resp_content = SDIO_RESP0;
break;
case SDIO_RESPONSE1:
resp_content = SDIO_RESP1;
break;
case SDIO_RESPONSE2:
resp_content = SDIO_RESP2;
break;
case SDIO_RESPONSE3:
resp_content = SDIO_RESP3;
break;
default:
break;
}
return resp_content;
}
/*!
\brief configure the data timeout, data length and data block size
\param[in] data_timeout: data timeout period in card bus clock periods
\param[in] data_length: number of data bytes to be transferred
\param[in] data_blocksize: size of data block for block transfer
\arg SDIO_DATABLOCKSIZE_1BYTE: block size = 1 byte
\arg SDIO_DATABLOCKSIZE_2BYTES: block size = 2 bytes
\arg SDIO_DATABLOCKSIZE_4BYTES: block size = 4 bytes
\arg SDIO_DATABLOCKSIZE_8BYTES: block size = 8 bytes
\arg SDIO_DATABLOCKSIZE_16BYTES: block size = 16 bytes
\arg SDIO_DATABLOCKSIZE_32BYTES: block size = 32 bytes
\arg SDIO_DATABLOCKSIZE_64BYTES: block size = 64 bytes
\arg SDIO_DATABLOCKSIZE_128BYTES: block size = 128 bytes
\arg SDIO_DATABLOCKSIZE_256BYTES: block size = 256 bytes
\arg SDIO_DATABLOCKSIZE_512BYTES: block size = 512 bytes
\arg SDIO_DATABLOCKSIZE_1024BYTES: block size = 1024 bytes
\arg SDIO_DATABLOCKSIZE_2048BYTES: block size = 2048 bytes
\arg SDIO_DATABLOCKSIZE_4096BYTES: block size = 4096 bytes
\arg SDIO_DATABLOCKSIZE_8192BYTES: block size = 8192 bytes
\arg SDIO_DATABLOCKSIZE_16384BYTES: block size = 16384 bytes
\param[out] none
\retval none
*/
void sdio_data_config(uint32_t data_timeout, uint32_t data_length, uint32_t data_blocksize)
{
/* reset data timeout, data length and data block size */
SDIO_DATATO &= ~SDIO_DATATO_DATATO;
SDIO_DATALEN &= ~SDIO_DATALEN_DATALEN;
SDIO_DATACTL &= ~SDIO_DATACTL_BLKSZ;
/* configure the related parameters of data */
SDIO_DATATO = data_timeout;
SDIO_DATALEN = data_length;
SDIO_DATACTL |= data_blocksize;
}
/*!
\brief configure the data transfer mode and direction
\param[in] transfer_mode: mode of data transfer
\arg SDIO_TRANSMODE_BLOCK: block transfer
\arg SDIO_TRANSMODE_STREAM: stream transfer or SDIO multibyte transfer
\param[in] transfer_direction: data transfer direction, read or write
\arg SDIO_TRANSDIRECTION_TOCARD: write data to card
\arg SDIO_TRANSDIRECTION_TOSDIO: read data from card
\param[out] none
\retval none
*/
void sdio_data_transfer_config(uint32_t transfer_mode, uint32_t transfer_direction)
{
uint32_t data_trans = 0U;
/* reset the data transfer mode, transfer direction and set according to the parameters */
data_trans = SDIO_DATACTL;
data_trans &= ~(SDIO_DATACTL_TRANSMOD | SDIO_DATACTL_DATADIR);
data_trans |= (transfer_mode | transfer_direction);
SDIO_DATACTL = data_trans;
}
/*!
\brief enable the DSM(data state machine) for data transfer
\param[in] none
\param[out] none
\retval none
*/
void sdio_dsm_enable(void)
{
SDIO_DATACTL |= SDIO_DATACTL_DATAEN;
}
/*!
\brief disable the DSM(data state machine)
\param[in] none
\param[out] none
\retval none
*/
void sdio_dsm_disable(void)
{
SDIO_DATACTL &= ~SDIO_DATACTL_DATAEN;
}
/*!
\brief write data(one word) to the transmit FIFO
\param[in] data: 32-bit data write to card
\param[out] none
\retval none
*/
void sdio_data_write(uint32_t data)
{
SDIO_FIFO = data;
}
/*!
\brief read data(one word) from the receive FIFO
\param[in] none
\param[out] none
\retval received data
*/
uint32_t sdio_data_read(void)
{
return SDIO_FIFO;
}
/*!
\brief get the number of remaining data bytes to be transferred to card
\param[in] none
\param[out] none
\retval number of remaining data bytes to be transferred
*/
uint32_t sdio_data_counter_get(void)
{
return SDIO_DATACNT;
}
/*!
\brief get the number of words remaining to be written or read from FIFO
\param[in] none
\param[out] none
\retval remaining number of words
*/
uint32_t sdio_fifo_counter_get(void)
{
return SDIO_FIFOCNT;
}
/*!
\brief enable the DMA request for SDIO
\param[in] none
\param[out] none
\retval none
*/
void sdio_dma_enable(void)
{
SDIO_DATACTL |= SDIO_DATACTL_DMAEN;
}
/*!
\brief disable the DMA request for SDIO
\param[in] none
\param[out] none
\retval none
*/
void sdio_dma_disable(void)
{
SDIO_DATACTL &= ~SDIO_DATACTL_DMAEN;
}
/*!
\brief get the flags state of SDIO
\param[in] flag: flags state of SDIO
\arg SDIO_FLAG_CCRCERR: command response received (CRC check failed) flag
\arg SDIO_FLAG_DTCRCERR: data block sent/received (CRC check failed) flag
\arg SDIO_FLAG_CMDTMOUT: command response timeout flag
\arg SDIO_FLAG_DTTMOUT: data timeout flag
\arg SDIO_FLAG_TXURE: transmit FIFO underrun error occurs flag
\arg SDIO_FLAG_RXORE: received FIFO overrun error occurs flag
\arg SDIO_FLAG_CMDRECV: command response received (CRC check passed) flag
\arg SDIO_FLAG_CMDSEND: command sent (no response required) flag
\arg SDIO_FLAG_DTEND: data end (data counter, SDIO_DATACNT, is zero) flag
\arg SDIO_FLAG_STBITE: start bit error in the bus flag
\arg SDIO_FLAG_DTBLKEND: data block sent/received (CRC check passed) flag
\arg SDIO_FLAG_CMDRUN: command transmission in progress flag
\arg SDIO_FLAG_TXRUN: data transmission in progress flag
\arg SDIO_FLAG_RXRUN: data reception in progress flag
\arg SDIO_FLAG_TFH: transmit FIFO is half empty flag: at least 8 words can be written into the FIFO
\arg SDIO_FLAG_RFH: receive FIFO is half full flag: at least 8 words can be read in the FIFO
\arg SDIO_FLAG_TFF: transmit FIFO is full flag
\arg SDIO_FLAG_RFF: receive FIFO is full flag
\arg SDIO_FLAG_TFE: transmit FIFO is empty flag
\arg SDIO_FLAG_RFE: receive FIFO is empty flag
\arg SDIO_FLAG_TXDTVAL: data is valid in transmit FIFO flag
\arg SDIO_FLAG_RXDTVAL: data is valid in receive FIFO flag
\arg SDIO_FLAG_SDIOINT: SD I/O interrupt received flag
\arg SDIO_FLAG_ATAEND: CE-ATA command completion signal received (only for CMD61) flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus sdio_flag_get(uint32_t flag)
{
FlagStatus temp_flag = RESET;
if(RESET != (SDIO_STAT & flag)){
temp_flag = SET;
}
return temp_flag;
}
/*!
\brief clear the pending flags of SDIO
\param[in] flag: flags state of SDIO
\arg SDIO_FLAG_CCRCERR: command response received (CRC check failed) flag
\arg SDIO_FLAG_DTCRCERR: data block sent/received (CRC check failed) flag
\arg SDIO_FLAG_CMDTMOUT: command response timeout flag
\arg SDIO_FLAG_DTTMOUT: data timeout flag
\arg SDIO_FLAG_TXURE: transmit FIFO underrun error occurs flag
\arg SDIO_FLAG_RXORE: received FIFO overrun error occurs flag
\arg SDIO_FLAG_CMDRECV: command response received (CRC check passed) flag
\arg SDIO_FLAG_CMDSEND: command sent (no response required) flag
\arg SDIO_FLAG_DTEND: data end (data counter, SDIO_DATACNT, is zero) flag
\arg SDIO_FLAG_STBITE: start bit error in the bus flag
\arg SDIO_FLAG_DTBLKEND: data block sent/received (CRC check passed) flag
\arg SDIO_FLAG_SDIOINT: SD I/O interrupt received flag
\arg SDIO_FLAG_ATAEND: CE-ATA command completion signal received (only for CMD61) flag
\param[out] none
\retval none
*/
void sdio_flag_clear(uint32_t flag)
{
SDIO_INTC = flag;
}
/*!
\brief enable the SDIO interrupt
\param[in] int_flag: interrupt flags state of SDIO
\arg SDIO_INT_CCRCERR: SDIO CCRCERR interrupt
\arg SDIO_INT_DTCRCERR: SDIO DTCRCERR interrupt
\arg SDIO_INT_CMDTMOUT: SDIO CMDTMOUT interrupt
\arg SDIO_INT_DTTMOUT: SDIO DTTMOUT interrupt
\arg SDIO_INT_TXURE: SDIO TXURE interrupt
\arg SDIO_INT_RXORE: SDIO RXORE interrupt
\arg SDIO_INT_CMDRECV: SDIO CMDRECV interrupt
\arg SDIO_INT_CMDSEND: SDIO CMDSEND interrupt
\arg SDIO_INT_DTEND: SDIO DTEND interrupt
\arg SDIO_INT_STBITE: SDIO STBITE interrupt
\arg SDIO_INT_DTBLKEND: SDIO DTBLKEND interrupt
\arg SDIO_INT_CMDRUN: SDIO CMDRUN interrupt
\arg SDIO_INT_TXRUN: SDIO TXRUN interrupt
\arg SDIO_INT_RXRUN: SDIO RXRUN interrupt
\arg SDIO_INT_TFH: SDIO TFH interrupt
\arg SDIO_INT_RFH: SDIO RFH interrupt
\arg SDIO_INT_TFF: SDIO TFF interrupt
\arg SDIO_INT_RFF: SDIO RFF interrupt
\arg SDIO_INT_TFE: SDIO TFE interrupt
\arg SDIO_INT_RFE: SDIO RFE interrupt
\arg SDIO_INT_TXDTVAL: SDIO TXDTVAL interrupt
\arg SDIO_INT_RXDTVAL: SDIO RXDTVAL interrupt
\arg SDIO_INT_SDIOINT: SDIO SDIOINT interrupt
\arg SDIO_INT_ATAEND: SDIO ATAEND interrupt
\param[out] none
\retval none
*/
void sdio_interrupt_enable(uint32_t int_flag)
{
SDIO_INTEN |= int_flag;
}
/*!
\brief disable the SDIO interrupt
\param[in] int_flag: interrupt flags state of SDIO
\arg SDIO_INT_CCRCERR: SDIO CCRCERR interrupt
\arg SDIO_INT_DTCRCERR: SDIO DTCRCERR interrupt
\arg SDIO_INT_CMDTMOUT: SDIO CMDTMOUT interrupt
\arg SDIO_INT_DTTMOUT: SDIO DTTMOUT interrupt
\arg SDIO_INT_TXURE: SDIO TXURE interrupt
\arg SDIO_INT_RXORE: SDIO RXORE interrupt
\arg SDIO_INT_CMDRECV: SDIO CMDRECV interrupt
\arg SDIO_INT_CMDSEND: SDIO CMDSEND interrupt
\arg SDIO_INT_DTEND: SDIO DTEND interrupt
\arg SDIO_INT_STBITE: SDIO STBITE interrupt
\arg SDIO_INT_DTBLKEND: SDIO DTBLKEND interrupt
\arg SDIO_INT_CMDRUN: SDIO CMDRUN interrupt
\arg SDIO_INT_TXRUN: SDIO TXRUN interrupt
\arg SDIO_INT_RXRUN: SDIO RXRUN interrupt
\arg SDIO_INT_TFH: SDIO TFH interrupt
\arg SDIO_INT_RFH: SDIO RFH interrupt
\arg SDIO_INT_TFF: SDIO TFF interrupt
\arg SDIO_INT_RFF: SDIO RFF interrupt
\arg SDIO_INT_TFE: SDIO TFE interrupt
\arg SDIO_INT_RFE: SDIO RFE interrupt
\arg SDIO_INT_TXDTVAL: SDIO TXDTVAL interrupt
\arg SDIO_INT_RXDTVAL: SDIO RXDTVAL interrupt
\arg SDIO_INT_SDIOINT: SDIO SDIOINT interrupt
\arg SDIO_INT_ATAEND: SDIO ATAEND interrupt
\param[out] none
\retval none
*/
void sdio_interrupt_disable(uint32_t int_flag)
{
SDIO_INTEN &= ~int_flag;
}
/*!
\brief get the interrupt flags state of SDIO
\param[in] int_flag: interrupt flags state of SDIO
\arg SDIO_INT_CCRCERR: SDIO CCRCERR interrupt
\arg SDIO_INT_DTCRCERR: SDIO DTCRCERR interrupt
\arg SDIO_INT_CMDTMOUT: SDIO CMDTMOUT interrupt
\arg SDIO_INT_DTTMOUT: SDIO DTTMOUT interrupt
\arg SDIO_INT_TXURE: SDIO TXURE interrupt
\arg SDIO_INT_RXORE: SDIO RXORE interrupt
\arg SDIO_INT_CMDRECV: SDIO CMDRECV interrupt
\arg SDIO_INT_CMDSEND: SDIO CMDSEND interrupt
\arg SDIO_INT_DTEND: SDIO DTEND interrupt
\arg SDIO_INT_STBITE: SDIO STBITE interrupt
\arg SDIO_INT_DTBLKEND: SDIO DTBLKEND interrupt
\arg SDIO_INT_CMDRUN: SDIO CMDRUN interrupt
\arg SDIO_INT_TXRUN: SDIO TXRUN interrupt
\arg SDIO_INT_RXRUN: SDIO RXRUN interrupt
\arg SDIO_INT_TFH: SDIO TFH interrupt
\arg SDIO_INT_RFH: SDIO RFH interrupt
\arg SDIO_INT_TFF: SDIO TFF interrupt
\arg SDIO_INT_RFF: SDIO RFF interrupt
\arg SDIO_INT_TFE: SDIO TFE interrupt
\arg SDIO_INT_RFE: SDIO RFE interrupt
\arg SDIO_INT_TXDTVAL: SDIO TXDTVAL interrupt
\arg SDIO_INT_RXDTVAL: SDIO RXDTVAL interrupt
\arg SDIO_INT_SDIOINT: SDIO SDIOINT interrupt
\arg SDIO_INT_ATAEND: SDIO ATAEND interrupt
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus sdio_interrupt_flag_get(uint32_t int_flag)
{
FlagStatus temp_flag = RESET;
if(RESET != (SDIO_STAT & int_flag)){
temp_flag = SET;
}
return temp_flag;
}
/*!
\brief clear the interrupt pending flags of SDIO
\param[in] int_flag: interrupt flags state of SDIO
\arg SDIO_INT_CCRCERR: command response received (CRC check failed) flag
\arg SDIO_INT_DTCRCERR: data block sent/received (CRC check failed) flag
\arg SDIO_INT_CMDTMOUT: command response timeout flag
\arg SDIO_INT_DTTMOUT: data timeout flag
\arg SDIO_INT_TXURE: transmit FIFO underrun error occurs flag
\arg SDIO_INT_RXORE: received FIFO overrun error occurs flag
\arg SDIO_INT_CMDRECV: command response received (CRC check passed) flag
\arg SDIO_INT_CMDSEND: command sent (no response required) flag
\arg SDIO_INT_DTEND: data end (data counter, SDIO_DATACNT, is zero) flag
\arg SDIO_INT_STBITE: start bit error in the bus flag
\arg SDIO_INT_DTBLKEND: data block sent/received (CRC check passed) flag
\arg SDIO_INT_SDIOINT: SD I/O interrupt received flag
\arg SDIO_INT_ATAEND: CE-ATA command completion signal received (only for CMD61) flag
\param[out] none
\retval none
*/
void sdio_interrupt_flag_clear(uint32_t int_flag)
{
SDIO_INTC = int_flag;
}
/*!
\brief enable the read wait mode(SD I/O only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_readwait_enable(void)
{
SDIO_DATACTL |= SDIO_DATACTL_RWEN;
}
/*!
\brief disable the read wait mode(SD I/O only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_readwait_disable(void)
{
SDIO_DATACTL &= ~SDIO_DATACTL_RWEN;
}
/*!
\brief enable the function that stop the read wait process(SD I/O only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_stop_readwait_enable(void)
{
SDIO_DATACTL |= SDIO_DATACTL_RWSTOP;
}
/*!
\brief disable the function that stop the read wait process(SD I/O only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_stop_readwait_disable(void)
{
SDIO_DATACTL &= ~SDIO_DATACTL_RWSTOP;
}
/*!
\brief set the read wait type(SD I/O only)
\param[in] readwait_type: SD I/O read wait type
\arg SDIO_READWAITTYPE_CLK: read wait control by stopping SDIO_CLK
\arg SDIO_READWAITTYPE_DAT2: read wait control using SDIO_DAT[2]
\param[out] none
\retval none
*/
void sdio_readwait_type_set(uint32_t readwait_type)
{
if(SDIO_READWAITTYPE_CLK == readwait_type){
SDIO_DATACTL |= SDIO_DATACTL_RWTYPE;
}else{
SDIO_DATACTL &= ~SDIO_DATACTL_RWTYPE;
}
}
/*!
\brief enable the SD I/O mode specific operation(SD I/O only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_operation_enable(void)
{
SDIO_DATACTL |= SDIO_DATACTL_IOEN;
}
/*!
\brief disable the SD I/O mode specific operation(SD I/O only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_operation_disable(void)
{
SDIO_DATACTL &= ~SDIO_DATACTL_IOEN;
}
/*!
\brief enable the SD I/O suspend operation(SD I/O only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_suspend_enable(void)
{
SDIO_CMDCTL |= SDIO_CMDCTL_SUSPEND;
}
/*!
\brief disable the SD I/O suspend operation(SD I/O only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_suspend_disable(void)
{
SDIO_CMDCTL &= ~SDIO_CMDCTL_SUSPEND;
}
/*!
\brief enable the CE-ATA command(CE-ATA only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_ceata_command_enable(void)
{
SDIO_CMDCTL |= SDIO_CMDCTL_ATAEN;
}
/*!
\brief disable the CE-ATA command(CE-ATA only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_ceata_command_disable(void)
{
SDIO_CMDCTL &= ~SDIO_CMDCTL_ATAEN;
}
/*!
\brief enable the CE-ATA interrupt(CE-ATA only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_ceata_interrupt_enable(void)
{
SDIO_CMDCTL &= ~SDIO_CMDCTL_NINTEN;
}
/*!
\brief disable the CE-ATA interrupt(CE-ATA only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_ceata_interrupt_disable(void)
{
SDIO_CMDCTL |= SDIO_CMDCTL_NINTEN;
}
/*!
\brief enable the CE-ATA command completion signal(CE-ATA only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_ceata_command_completion_enable(void)
{
SDIO_CMDCTL |= SDIO_CMDCTL_ENCMDC;
}
/*!
\brief disable the CE-ATA command completion signal(CE-ATA only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_ceata_command_completion_disable(void)
{
SDIO_CMDCTL &= ~SDIO_CMDCTL_ENCMDC;
}

View File

@@ -0,0 +1,821 @@
/*!
\file gd32f4xx_spi.c
\brief SPI driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.2, firmware for GD32F4xx
*/
#include "gd32f4xx_spi.h"
#include "gd32f4xx_rcu.h"
#define SPI_INIT_MASK ((uint32_t)0x00003040U)
#define I2S_INIT_MASK ((uint32_t)0x0000F047U)
#define I2S_FULL_DUPLEX_MASK ((uint32_t)0x0000F040U)
/*!
\brief reset SPI and I2S
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5),include I2S1_ADD and I2S2_ADD
\param[out] none
\retval none
*/
void spi_i2s_deinit(uint32_t spi_periph)
{
switch(spi_periph){
case SPI0:
/* reset SPI0 */
rcu_periph_reset_enable(RCU_SPI0RST);
rcu_periph_reset_disable(RCU_SPI0RST);
break;
case SPI1:
/* reset SPI1,I2S1 and I2S1_ADD */
rcu_periph_reset_enable(RCU_SPI1RST);
rcu_periph_reset_disable(RCU_SPI1RST);
break;
case SPI2:
/* reset SPI2,I2S2 and I2S2_ADD */
rcu_periph_reset_enable(RCU_SPI2RST);
rcu_periph_reset_disable(RCU_SPI2RST);
break;
case SPI3:
/* reset SPI3 */
rcu_periph_reset_enable(RCU_SPI3RST);
rcu_periph_reset_disable(RCU_SPI3RST);
break;
case SPI4:
/* reset SPI4 */
rcu_periph_reset_enable(RCU_SPI4RST);
rcu_periph_reset_disable(RCU_SPI4RST);
break;
case SPI5:
/* reset SPI5 */
rcu_periph_reset_enable(RCU_SPI5RST);
rcu_periph_reset_disable(RCU_SPI5RST);
break;
default :
break;
}
}
/*!
\brief initialize SPI parameter
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[in] spi_struct: SPI parameter initialization stuct members of the structure
and the member values are shown as below:
device_mode: SPI_MASTER, SPI_SLAVE.
trans_mode: SPI_TRANSMODE_FULLDUPLEX, SPI_TRANSMODE_RECEIVEONLY,
SPI_TRANSMODE_BDRECEIVE, SPI_TRANSMODE_BDTRANSMIT
frame_size: SPI_FRAMESIZE_16BIT, SPI_FRAMESIZE_8BIT
nss: SPI_NSS_SOFT, SPI_NSS_HARD
endian: SPI_ENDIAN_MSB, SPI_ENDIAN_LSB
clock_polarity_phase: SPI_CK_PL_LOW_PH_1EDGE, SPI_CK_PL_HIGH_PH_1EDGE
SPI_CK_PL_LOW_PH_2EDGE, SPI_CK_PL_HIGH_PH_2EDGE
prescale: SPI_PSC_n (n=2,4,8,16,32,64,128,256)
\param[out] none
\retval none
*/
void spi_init(uint32_t spi_periph, spi_parameter_struct* spi_struct)
{
uint32_t reg = 0U;
reg = SPI_CTL0(spi_periph);
reg &= SPI_INIT_MASK;
/* select SPI as master or slave */
reg |= spi_struct->device_mode;
/* select SPI transfer mode */
reg |= spi_struct->trans_mode;
/* select SPI frame size */
reg |= spi_struct->frame_size;
/* select SPI nss use hardware or software */
reg |= spi_struct->nss;
/* select SPI LSB or MSB */
reg |= spi_struct->endian;
/* select SPI polarity and phase */
reg |= spi_struct->clock_polarity_phase;
/* select SPI prescale to adjust transmit speed */
reg |= spi_struct->prescale;
/* write to SPI_CTL0 register */
SPI_CTL0(spi_periph) = (uint32_t)reg;
SPI_I2SCTL(spi_periph) &= (uint32_t)(~SPI_I2SCTL_I2SSEL);
}
/*!
\brief enable SPI
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval none
*/
void spi_enable(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_SPIEN;
}
/*!
\brief disable SPI
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval none
*/
void spi_disable(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_SPIEN);
}
/*!
\brief configure I2S prescale
\param[in] spi_periph: SPIx(x=1,2)
\param[in] i2s_audiosample: I2S audio sample rate
\arg I2S_AUDIOSAMPLE_8K: audio sample rate is 8KHz
\arg I2S_AUDIOSAMPLE_11K: audio sample rate is 11KHz
\arg I2S_AUDIOSAMPLE_16K: audio sample rate is 16KHz
\arg I2S_AUDIOSAMPLE_22K: audio sample rate is 22KHz
\arg I2S_AUDIOSAMPLE_32K: audio sample rate is 32KHz
\arg I2S_AUDIOSAMPLE_44K: audio sample rate is 44KHz
\arg I2S_AUDIOSAMPLE_48K: audio sample rate is 48KHz
\arg I2S_AUDIOSAMPLE_96K: audio sample rate is 96KHz
\arg I2S_AUDIOSAMPLE_192K: audio sample rate is 192KHz
\param[in] i2s_frameformat: I2S data length and channel length
\arg I2S_FRAMEFORMAT_DT16B_CH16B: I2S data length is 16 bit and channel length is 16 bit
\arg I2S_FRAMEFORMAT_DT16B_CH32B: I2S data length is 16 bit and channel length is 32 bit
\arg I2S_FRAMEFORMAT_DT24B_CH32B: I2S data length is 24 bit and channel length is 32 bit
\arg I2S_FRAMEFORMAT_DT32B_CH32B: I2S data length is 32 bit and channel length is 32 bit
\param[in] i2s_mckout: I2S master clock output
\arg I2S_MCKOUT_ENABLE: I2S master clock output enable
\arg I2S_MCKOUT_DISABLE: I2S master clock output disable
\param[out] none
\retval none
*/
void i2s_psc_config(uint32_t spi_periph, uint32_t i2s_audiosample, uint32_t i2s_frameformat, uint32_t i2s_mckout)
{
uint32_t i2sdiv = 2U, i2sof = 0U;
uint32_t clks = 0U;
uint32_t i2sclock = 0U;
#ifndef I2S_EXTERNAL_CLOCK_IN
uint32_t plli2sm = 0U, plli2sn = 0U, plli2sr = 0U;
#endif /* I2S_EXTERNAL_CLOCK_IN */
/* deinit SPI_I2SPSC register */
SPI_I2SPSC(spi_periph) = 0x0002U;
#ifdef I2S_EXTERNAL_CLOCK_IN
rcu_i2s_clock_config(RCU_I2SSRC_I2S_CKIN);
/* set the I2S clock to the external clock input value */
i2sclock = I2S_EXTERNAL_CLOCK_IN;
#else
/* turn on the oscillator HXTAL */
rcu_osci_on(RCU_HXTAL);
/* wait for oscillator stabilization flags is SET */
rcu_osci_stab_wait(RCU_HXTAL);
/* turn on the PLLI2S */
rcu_osci_on(RCU_PLLI2S_CK);
/* wait for PLLI2S flags is SET */
rcu_osci_stab_wait(RCU_PLLI2S_CK);
/* configure the I2S clock source selection */
rcu_i2s_clock_config(RCU_I2SSRC_PLLI2S);
/* get the RCU_PLL_PLLPSC value */
plli2sm = (uint32_t)(RCU_PLL & RCU_PLL_PLLPSC);
/* get the RCU_PLLI2S_PLLI2SN value */
plli2sn = (uint32_t)((RCU_PLLI2S & RCU_PLLI2S_PLLI2SN) >> 6);
/* get the RCU_PLLI2S_PLLI2SR value */
plli2sr = (uint32_t)((RCU_PLLI2S & RCU_PLLI2S_PLLI2SR) >> 28);
if((RCU_PLL & RCU_PLL_PLLSEL) == RCU_PLLSRC_HXTAL)
{
/* get the I2S source clock value */
i2sclock = (uint32_t)(((HXTAL_VALUE / plli2sm) * plli2sn) / plli2sr);
}
else
{ /* get the I2S source clock value */
i2sclock = (uint32_t)(((IRC16M_VALUE / plli2sm) * plli2sn) / plli2sr);
}
#endif /* I2S_EXTERNAL_CLOCK_IN */
/* config the prescaler depending on the mclk output state, the frame format and audio sample rate */
if(I2S_MCKOUT_ENABLE == i2s_mckout){
clks = (uint32_t)(((i2sclock / 256U) * 10U) / i2s_audiosample);
}else{
if(I2S_FRAMEFORMAT_DT16B_CH16B == i2s_frameformat){
clks = (uint32_t)(((i2sclock / 32U) *10U ) / i2s_audiosample);
}else{
clks = (uint32_t)(((i2sclock / 64U) *10U ) / i2s_audiosample);
}
}
/* remove the floating point */
clks = (clks + 5U) / 10U;
i2sof = (clks & 0x00000001U);
i2sdiv = ((clks - i2sof) / 2U);
i2sof = (i2sof << 8U);
/* set the default values */
if((i2sdiv< 2U) || (i2sdiv > 255U)){
i2sdiv = 2U;
i2sof = 0U;
}
/* configure SPI_I2SPSC */
SPI_I2SPSC(spi_periph) = (uint32_t)(i2sdiv | i2sof | i2s_mckout);
/* clear SPI_I2SCTL_DTLEN and SPI_I2SCTL_CHLEN bits */
SPI_I2SCTL(spi_periph) &= (uint32_t)(~(SPI_I2SCTL_DTLEN|SPI_I2SCTL_CHLEN));
/* configure data frame format */
SPI_I2SCTL(spi_periph) |= (uint32_t)i2s_frameformat;
}
/*!
\brief initialize I2S parameter
\param[in] spi_periph: SPIx(x=1,2)
\param[in] i2s_mode: I2S operation mode
\arg I2S_MODE_SLAVETX : I2S slave transmit mode
\arg I2S_MODE_SLAVERX : I2S slave receive mode
\arg I2S_MODE_MASTERTX : I2S master transmit mode
\arg I2S_MODE_MASTERRX : I2S master receive mode
\param[in] i2s_standard: I2S standard
\arg I2S_STD_PHILLIPS : I2S phillips standard
\arg I2S_STD_MSB : I2S MSB standard
\arg I2S_STD_LSB : I2S LSB standard
\arg I2S_STD_PCMSHORT : I2S PCM short standard
\arg I2S_STD_PCMLONG : I2S PCM long standard
\param[in] i2s_ckpl: I2S idle state clock polarity
\arg I2S_CKPL_LOW : I2S clock polarity low level
\arg I2S_CKPL_HIGH : I2S clock polarity high level
\param[out] none
\retval none
*/
void i2s_init(uint32_t spi_periph, uint32_t i2s_mode, uint32_t i2s_standard, uint32_t i2s_ckpl)
{
uint32_t reg= 0U;
reg = SPI_I2SCTL(spi_periph);
reg &= I2S_INIT_MASK;
/* enable I2S mode */
reg |= (uint32_t)SPI_I2SCTL_I2SSEL;
/* select I2S mode */
reg |= (uint32_t)i2s_mode;
/* select I2S standard */
reg |= (uint32_t)i2s_standard;
/* select I2S polarity */
reg |= (uint32_t)i2s_ckpl;
/* write to SPI_I2SCTL register */
SPI_I2SCTL(spi_periph) = (uint32_t)reg;
}
/*!
\brief enable I2S
\param[in] spi_periph: SPIx(x=1,2)
\param[out] none
\retval none
*/
void i2s_enable(uint32_t spi_periph)
{
SPI_I2SCTL(spi_periph) |= (uint32_t)SPI_I2SCTL_I2SEN;
}
/*!
\brief disable I2S
\param[in] spi_periph: SPIx(x=1,2)
\param[out] none
\retval none
*/
void i2s_disable(uint32_t spi_periph)
{
SPI_I2SCTL(spi_periph) &= (uint32_t)(~SPI_I2SCTL_I2SEN);
}
/*!
\brief enable SPI nss output
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval none
*/
void spi_nss_output_enable(uint32_t spi_periph)
{
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_NSSDRV;
}
/*!
\brief disable SPI nss output
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval none
*/
void spi_nss_output_disable(uint32_t spi_periph)
{
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_NSSDRV);
}
/*!
\brief SPI nss pin high level in software mode
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval none
*/
void spi_nss_internal_high(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_SWNSS;
}
/*!
\brief SPI nss pin low level in software mode
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval none
*/
void spi_nss_internal_low(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_SWNSS);
}
/*!
\brief enable SPI DMA send or receive
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[in] spi_dma: SPI DMA mode
\arg SPI_DMA_TRANSMIT: SPI transmit data use DMA
\arg SPI_DMA_RECEIVE: SPI receive data use DMA
\param[out] none
\retval none
*/
void spi_dma_enable(uint32_t spi_periph, uint8_t spi_dma)
{
if(SPI_DMA_TRANSMIT == spi_dma){
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_DMATEN;
}else{
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_DMAREN;
}
}
/*!
\brief diable SPI DMA send or receive
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[in] spi_dma: SPI DMA mode
\arg SPI_DMA_TRANSMIT: SPI transmit data use DMA
\arg SPI_DMA_RECEIVE: SPI receive data use DMA
\param[out] none
\retval none
*/
void spi_dma_disable(uint32_t spi_periph, uint8_t spi_dma)
{
if(SPI_DMA_TRANSMIT == spi_dma){
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_DMATEN);
}else{
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_DMAREN);
}
}
/*!
\brief configure SPI/I2S data frame format
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[in] frame_format: SPI frame size
\arg SPI_FRAMESIZE_16BIT: SPI frame size is 16 bits
\arg SPI_FRAMESIZE_8BIT: SPI frame size is 8 bits
\param[out] none
\retval none
*/
void spi_i2s_data_frame_format_config(uint32_t spi_periph, uint16_t frame_format)
{
/* clear SPI_CTL0_FF16 bit */
SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_FF16);
/* confige SPI_CTL0_FF16 bit */
SPI_CTL0(spi_periph) |= (uint32_t)frame_format;
}
/*!
\brief SPI transmit data
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[in] data: 16-bit data
\param[out] none
\retval none
*/
void spi_i2s_data_transmit(uint32_t spi_periph, uint16_t data)
{
SPI_DATA(spi_periph) = (uint32_t)data;
}
/*!
\brief SPI receive data
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval 16-bit data
*/
uint16_t spi_i2s_data_receive(uint32_t spi_periph)
{
return ((uint16_t)SPI_DATA(spi_periph));
}
/*!
\brief configure SPI bidirectional transfer direction
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[in] transfer_direction: SPI transfer direction
\arg SPI_BIDIRECTIONAL_TRANSMIT: SPI work in transmit-only mode
\arg SPI_BIDIRECTIONAL_RECEIVE: SPI work in receive-only mode
\retval none
*/
void spi_bidirectional_transfer_config(uint32_t spi_periph, uint32_t transfer_direction)
{
if(SPI_BIDIRECTIONAL_TRANSMIT == transfer_direction){
/* set the transmit only mode */
SPI_CTL0(spi_periph) |= (uint32_t)SPI_BIDIRECTIONAL_TRANSMIT;
}else{
/* set the receive only mode */
SPI_CTL0(spi_periph) &= SPI_BIDIRECTIONAL_RECEIVE;
}
}
/*!
\brief enable SPI and I2S interrupt
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[in] spi_i2s_int: SPI/I2S interrupt
\arg SPI_I2S_INT_TBE: transmit buffer empty interrupt
\arg SPI_I2S_INT_RBNE: receive buffer not empty interrupt
\arg SPI_I2S_INT_ERR: CRC error,configuration error,reception overrun error,
transmission underrun error and format error interrupt
\param[out] none
\retval none
*/
void spi_i2s_interrupt_enable(uint32_t spi_periph, uint8_t spi_i2s_int)
{
switch(spi_i2s_int){
/* SPI/I2S transmit buffer empty interrupt */
case SPI_I2S_INT_TBE:
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_TBEIE;
break;
/* SPI/I2S receive buffer not empty interrupt */
case SPI_I2S_INT_RBNE:
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_RBNEIE;
break;
/* SPI/I2S error */
case SPI_I2S_INT_ERR:
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_ERRIE;
break;
default:
break;
}
}
/*!
\brief disable SPI and I2S interrupt
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[in] spi_i2s_int: SPI/I2S interrupt
\arg SPI_I2S_INT_TBE: transmit buffer empty interrupt
\arg SPI_I2S_INT_RBNE: receive buffer not empty interrupt
\arg SPI_I2S_INT_ERR: CRC error,configuration error,reception overrun error,
transmission underrun error and format error interrupt
\param[out] none
\retval none
*/
void spi_i2s_interrupt_disable(uint32_t spi_periph, uint8_t spi_i2s_int)
{
switch(spi_i2s_int){
/* SPI/I2S transmit buffer empty interrupt */
case SPI_I2S_INT_TBE :
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_TBEIE);
break;
/* SPI/I2S receive buffer not empty interrupt */
case SPI_I2S_INT_RBNE :
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_RBNEIE);
break;
/* SPI/I2S error */
case SPI_I2S_INT_ERR :
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_ERRIE);
break;
default :
break;
}
}
/*!
\brief get SPI and I2S interrupt flag status
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[in] spi_i2s_int: SPI/I2S interrupt flag status
\arg SPI_I2S_INT_TBE: transmit buffer empty interrupt
\arg SPI_I2S_INT_RBNE: receive buffer not empty interrupt
\arg SPI_I2S_INT_RXORERR: overrun interrupt
\arg SPI_INT_CONFERR: config error interrupt
\arg SPI_INT_CRCERR: CRC error interrupt
\arg I2S_INT_TXURERR: underrun error interrupt
\arg SPI_I2S_INT_FERR: format error interrupt
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus spi_i2s_interrupt_flag_get(uint32_t spi_periph, uint8_t spi_i2s_int)
{
uint32_t reg1 = SPI_STAT(spi_periph);
uint32_t reg2 = SPI_CTL1(spi_periph);
switch(spi_i2s_int){
/* SPI/I2S transmit buffer empty interrupt */
case SPI_I2S_INT_TBE :
reg1 = reg1 & SPI_STAT_TBE;
reg2 = reg2 & SPI_CTL1_TBEIE;
break;
/* SPI/I2S receive buffer not empty interrupt */
case SPI_I2S_INT_RBNE :
reg1 = reg1 & SPI_STAT_RBNE;
reg2 = reg2 & SPI_CTL1_RBNEIE;
break;
/* SPI/I2S overrun interrupt */
case SPI_I2S_INT_RXORERR :
reg1 = reg1 & SPI_STAT_RXORERR;
reg2 = reg2 & SPI_CTL1_ERRIE;
break;
/* SPI config error interrupt */
case SPI_INT_CONFERR :
reg1 = reg1 & SPI_STAT_CONFERR;
reg2 = reg2 & SPI_CTL1_ERRIE;
break;
/* SPI CRC error interrupt */
case SPI_INT_CRCERR :
reg1 = reg1 & SPI_STAT_CRCERR;
reg2 = reg2 & SPI_CTL1_ERRIE;
break;
/* I2S underrun error interrupt */
case I2S_INT_TXURERR :
reg1 = reg1 & SPI_STAT_TXURERR;
reg2 = reg2 & SPI_CTL1_ERRIE;
break;
/* SPI/I2S format error interrupt */
case SPI_I2S_INT_FERR :
reg1 = reg1 & SPI_STAT_FERR;
reg2 = reg2 & SPI_CTL1_ERRIE;
break;
default :
break;
}
/*get SPI/I2S interrupt flag status */
if(reg1 && reg2){
return SET;
}else{
return RESET;
}
}
/*!
\brief get SPI and I2S flag status
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[in] spi_i2s_flag: SPI/I2S flag status
\arg SPI_FLAG_TBE: transmit buffer empty flag
\arg SPI_FLAG_RBNE: receive buffer not empty flag
\arg SPI_FLAG_TRANS: transmit on-going flag
\arg SPI_FLAG_RXORERR: receive overrun error flag
\arg SPI_FLAG_CONFERR: mode config error flag
\arg SPI_FLAG_CRCERR: CRC error flag
\arg SPI_FLAG_FERR: format error interrupt flag
\arg I2S_FLAG_TBE: transmit buffer empty flag
\arg I2S_FLAG_RBNE: receive buffer not empty flag
\arg I2S_FLAG_TRANS: transmit on-going flag
\arg I2S_FLAG_RXORERR: overrun error flag
\arg I2S_FLAG_TXURERR: underrun error flag
\arg I2S_FLAG_CH: channel side flag
\arg I2S_FLAG_FERR: format error interrupt flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus spi_i2s_flag_get(uint32_t spi_periph, uint32_t spi_i2s_flag)
{
if(SPI_STAT(spi_periph) & spi_i2s_flag){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear SPI CRC error flag status
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval none
*/
void spi_crc_error_clear(uint32_t spi_periph)
{
SPI_STAT(spi_periph) &= (uint32_t)(~SPI_FLAG_CRCERR);
}
/*!
\brief turn on CRC function
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval none
*/
void spi_crc_on(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCEN;
}
/*!
\brief turn off CRC function
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval none
*/
void spi_crc_off(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_CRCEN);
}
/*!
\brief set CRC polynomial
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[in] crc_poly: CRC polynomial value
\param[out] none
\retval none
*/
void spi_crc_polynomial_set(uint32_t spi_periph,uint16_t crc_poly)
{
/* enable SPI CRC */
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCEN;
/* set SPI CRC polynomial */
SPI_CRCPOLY(spi_periph) = (uint32_t)crc_poly;
}
/*!
\brief get SPI CRC polynomial
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval 16-bit CRC polynomial
*/
uint16_t spi_crc_polynomial_get(uint32_t spi_periph)
{
return ((uint16_t)SPI_CRCPOLY(spi_periph));
}
/*!
\brief SPI next data is CRC value
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval none
*/
void spi_crc_next(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCNT;
}
/*!
\brief get SPI CRC send value or receive value
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[in] spi_crc: SPI crc value
\arg SPI_CRC_TX: get transmit crc value
\arg SPI_CRC_RX: get receive crc value
\param[out] none
\retval 16-bit CRC value
*/
uint16_t spi_crc_get(uint32_t spi_periph,uint8_t spi_crc)
{
if(SPI_CRC_TX == spi_crc){
return ((uint16_t)(SPI_TCRC(spi_periph)));
}else{
return ((uint16_t)(SPI_RCRC(spi_periph)));
}
}
/*!
\brief enable SPI TI mode
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval none
*/
void spi_ti_mode_enable(uint32_t spi_periph)
{
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_TMOD;
}
/*!
\brief disable SPI TI mode
\param[in] spi_periph: SPIx(x=0,1,2,3,4,5)
\param[out] none
\retval none
*/
void spi_ti_mode_disable(uint32_t spi_periph)
{
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_TMOD);
}
/*!
\brief configure i2s full duplex mode
\param[in] i2s_add_periph: I2Sx_ADD(x=1,2)
\param[in] i2s_mode:
\arg I2S_MODE_SLAVETX : I2S slave transmit mode
\arg I2S_MODE_SLAVERX : I2S slave receive mode
\arg I2S_MODE_MASTERTX : I2S master transmit mode
\arg I2S_MODE_MASTERRX : I2S master receive mode
\param[in] i2s_standard:
\arg I2S_STD_PHILLIPS : I2S phillips standard
\arg I2S_STD_MSB : I2S MSB standard
\arg I2S_STD_LSB : I2S LSB standard
\arg I2S_STD_PCMSHORT : I2S PCM short standard
\arg I2S_STD_PCMLONG : I2S PCM long standard
\param[in] i2s_ckpl:
\arg I2S_CKPL_LOW : I2S clock polarity low level
\arg I2S_CKPL_HIGH : I2S clock polarity high level
\param[in] i2s_frameformat:
\arg I2S_FRAMEFORMAT_DT16B_CH16B: I2S data length is 16 bit and channel length is 16 bit
\arg I2S_FRAMEFORMAT_DT16B_CH32B: I2S data length is 16 bit and channel length is 32 bit
\arg I2S_FRAMEFORMAT_DT24B_CH32B: I2S data length is 24 bit and channel length is 32 bit
\arg I2S_FRAMEFORMAT_DT32B_CH32B: I2S data length is 32 bit and channel length is 32 bit
\param[out] none
\retval none
*/
void i2s_full_duplex_mode_config(uint32_t i2s_add_periph, uint32_t i2s_mode, uint32_t i2s_standard,
uint32_t i2s_ckpl, uint32_t i2s_frameformat)
{
uint32_t reg = 0U, tmp = 0U;
reg = I2S_ADD_I2SCTL(i2s_add_periph);
reg &= I2S_FULL_DUPLEX_MASK;
/* get the mode of the extra I2S module I2Sx_ADD */
if((I2S_MODE_MASTERTX == i2s_mode) || (I2S_MODE_SLAVETX == i2s_mode)){
tmp = I2S_MODE_SLAVERX;
}else{
tmp = I2S_MODE_SLAVETX;
}
/* enable I2S mode */
reg |= (uint32_t)SPI_I2SCTL_I2SSEL;
/* select I2S mode */
reg |= (uint32_t)tmp;
/* select I2S standard */
reg |= (uint32_t)i2s_standard;
/* select I2S polarity */
reg |= (uint32_t)i2s_ckpl;
/* configure data frame format */
reg |= (uint32_t)i2s_frameformat;
/* write to SPI_I2SCTL register */
I2S_ADD_I2SCTL(i2s_add_periph) = (uint32_t)reg;
}
/*!
\brief enable quad wire SPI
\param[in] spi_periph: SPIx(only x=5)
\param[out] none
\retval none
*/
void qspi_enable(uint32_t spi_periph)
{
SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_QMOD;
}
/*!
\brief disable quad wire SPI
\param[in] spi_periph: SPIx(only x=5)
\param[out] none
\retval none
*/
void qspi_disable(uint32_t spi_periph)
{
SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_QMOD);
}
/*!
\brief enable quad wire SPI write
\param[in] spi_periph: SPIx(only x=5)
\param[out] none
\retval none
*/
void qspi_write_enable(uint32_t spi_periph)
{
SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_QRD);
}
/*!
\brief enable quad wire SPI read
\param[in] spi_periph: SPIx(only x=5)
\param[out] none
\retval none
*/
void qspi_read_enable(uint32_t spi_periph)
{
SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_QRD;
}
/*!
\brief enable SPI_IO2 and SPI_IO3 pin output
\param[in] spi_periph: SPIx(only x=5)
\param[out] none
\retval none
*/
void qspi_io23_output_enable(uint32_t spi_periph)
{
SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_IO23_DRV;
}
/*!
\brief disable SPI_IO2 and SPI_IO3 pin output
\param[in] spi_periph: SPIx(only x=5)
\param[out] none
\retval none
*/
void qspi_io23_output_disable(uint32_t spi_periph)
{
SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_IO23_DRV);
}

View File

@@ -0,0 +1,172 @@
/*!
\file gd32f4xx_syscfg.c
\brief SYSCFG driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#include "gd32f4xx_syscfg.h"
/*!
\brief reset the SYSCFG registers
\param[in] none
\param[out] none
\retval none
*/
void syscfg_deinit(void)
{
rcu_periph_reset_enable(RCU_SYSCFGRST);
rcu_periph_reset_disable(RCU_SYSCFGRST);
}
/*!
\brief configure the boot mode
\param[in] syscfg_bootmode: selects the memory remapping
\arg SYSCFG_BOOTMODE_FLASH: main flash memory (0x08000000~0x083BFFFF) is mapped at address 0x00000000
\arg SYSCFG_BOOTMODE_BOOTLOADER: boot loader (0x1FFF0000 - 0x1FFF77FF) is mapped at address 0x00000000
\arg SYSCFG_BOOTMODE_EXMC_SRAM: SRAM/NOR 0 and 1 of EXMC (0x60000000~0x67FFFFFF) is mapped at address 0x00000000
\arg SYSCFG_BOOTMODE_SRAM: SRAM0 of on-chip SRAM (0x20000000~0x2001BFFF) is mapped at address 0x00000000
\arg SYSCFG_BOOTMODE_EXMC_SDRAM: SDRAM bank0 of EXMC (0xC0000000~0xC7FFFFFF) is mapped at address 0x00000000
\param[out] none
\retval none
*/
void syscfg_bootmode_config(uint8_t syscfg_bootmode)
{
/* reset the SYSCFG_CFG0_BOOT_MODE bit and set according to syscfg_bootmode */
SYSCFG_CFG0 &= ~SYSCFG_CFG0_BOOT_MODE;
SYSCFG_CFG0 |= (uint32_t)syscfg_bootmode;
}
/*!
\brief FMC memory mapping swap
\param[in] syscfg_fmc_swap: selects the interal flash bank swapping
\arg SYSCFG_FMC_SWP_BANK0: bank 0 is mapped at address 0x08000000 and bank 1 is mapped at address 0x08100000
\arg SYSCFG_FMC_SWP_BANK1: bank 1 is mapped at address 0x08000000 and bank 0 is mapped at address 0x08100000
\param[out] none
\retval none
*/
void syscfg_fmc_swap_config(uint32_t syscfg_fmc_swap)
{
uint32_t reg;
reg = SYSCFG_CFG0;
/* reset the FMC_SWP bit and set according to syscfg_fmc_swap */
reg &= ~SYSCFG_CFG0_FMC_SWP;
SYSCFG_CFG0 = (reg | syscfg_fmc_swap);
}
/*!
\brief EXMC memory mapping swap
\param[in] syscfg_exmc_swap: selects the memories in EXMC swapping
\arg SYSCFG_EXMC_SWP_ENABLE: SDRAM bank 0 and bank 1 are swapped with NAND bank 1 and PC card
\arg SYSCFG_EXMC_SWP_DISABLE: no memory mapping swap
\param[out] none
\retval none
*/
void syscfg_exmc_swap_config(uint32_t syscfg_exmc_swap)
{
uint32_t reg;
reg = SYSCFG_CFG0;
/* reset the SYSCFG_CFG0_EXMC_SWP bits and set according to syscfg_exmc_swap */
reg &= ~SYSCFG_CFG0_EXMC_SWP;
SYSCFG_CFG0 = (reg | syscfg_exmc_swap);
}
/*!
\brief configure the GPIO pin as EXTI Line
\param[in] exti_port: specify the GPIO port used in EXTI
\arg EXTI_SOURCE_GPIOx(x = A,B,C,D,E,F,G,H,I): EXTI GPIO port
\param[in] exti_pin: specify the EXTI line
\arg EXTI_SOURCE_PINx(x = 0..15): EXTI GPIO pin
\param[out] none
\retval none
*/
void syscfg_exti_line_config(uint8_t exti_port, uint8_t exti_pin)
{
uint32_t clear_exti_mask = ~((uint32_t)EXTI_SS_MASK << (EXTI_SS_MSTEP(exti_pin)));
uint32_t config_exti_mask = ((uint32_t)exti_port) << (EXTI_SS_MSTEP(exti_pin));
switch(exti_pin/EXTI_SS_JSTEP){
case EXTISS0:
/* clear EXTI source line(0..3) */
SYSCFG_EXTISS0 &= clear_exti_mask;
/* configure EXTI soure line(0..3) */
SYSCFG_EXTISS0 |= config_exti_mask;
break;
case EXTISS1:
/* clear EXTI soure line(4..7) */
SYSCFG_EXTISS1 &= clear_exti_mask;
/* configure EXTI soure line(4..7) */
SYSCFG_EXTISS1 |= config_exti_mask;
break;
case EXTISS2:
/* clear EXTI soure line(8..11) */
SYSCFG_EXTISS2 &= clear_exti_mask;
/* configure EXTI soure line(8..11) */
SYSCFG_EXTISS2 |= config_exti_mask;
break;
case EXTISS3:
/* clear EXTI soure line(12..15) */
SYSCFG_EXTISS3 &= clear_exti_mask;
/* configure EXTI soure line(12..15) */
SYSCFG_EXTISS3 |= config_exti_mask;
break;
default:
break;
}
}
/*!
\brief configure the PHY interface for the ethernet MAC
\param[in] syscfg_enet_phy_interface: specifies the media interface mode.
\arg SYSCFG_ENET_PHY_MII: MII mode is selected
\arg SYSCFG_ENET_PHY_RMII: RMII mode is selected
\param[out] none
\retval none
*/
void syscfg_enet_phy_interface_config(uint32_t syscfg_enet_phy_interface)
{
uint32_t reg;
reg = SYSCFG_CFG1;
/* reset the ENET_PHY_SEL bit and set according to syscfg_enet_phy_interface */
reg &= ~SYSCFG_CFG1_ENET_PHY_SEL;
SYSCFG_CFG1 = (reg | syscfg_enet_phy_interface);
}
/*!
\brief configure the I/O compensation cell
\param[in] syscfg_compensation: specifies the I/O compensation cell mode
\arg SYSCFG_COMPENSATION_ENABLE: I/O compensation cell is enabled
\arg SYSCFG_COMPENSATION_DISABLE: I/O compensation cell is disabled
\param[out] none
\retval none
*/
void syscfg_compensation_config(uint32_t syscfg_compensation)
{
uint32_t reg;
reg = SYSCFG_CPSCTL;
/* reset the SYSCFG_CPSCTL_CPS_EN bit and set according to syscfg_compensation */
reg &= ~SYSCFG_CPSCTL_CPS_EN;
SYSCFG_CPSCTL = (reg | syscfg_compensation);
}
/*!
\brief checks whether the I/O compensation cell ready flag is set or not
\param[in] none
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus syscfg_flag_get(void)
{
if(((uint32_t)RESET) != (SYSCFG_CPSCTL & SYSCFG_CPSCTL_CPS_RDY)){
return SET;
}else{
return RESET;
}
}

View File

@@ -0,0 +1,443 @@
/*!
\file gd32f4xx_tli.c
\brief TLI driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#include "gd32f4xx_tli.h"
/*!
\brief deinitialize TLI registers
\param[in] none
\param[out] none
\retval none
*/
void tli_deinit(void)
{
rcu_periph_reset_enable(RCU_TLIRST);
rcu_periph_reset_disable(RCU_TLIRST);
}
/*!
\brief initialize TLI display timing parameters
\param[in] tli_struct: the data needed to initialize tli.
synpsz_vpsz: size of the vertical synchronous pulse
synpsz_hpsz: size of the horizontal synchronous pulse
backpsz_vbpsz: size of the vertical back porch plus synchronous pulse
backpsz_hbpsz: size of the horizontal back porch plus synchronous pulse
activesz_vasz: size of the vertical active area width plus back porch and synchronous pulse
activesz_hasz: size of the horizontal active area width plus back porch and synchronous pulse
totalsz_vtsz: vertical total size of the display, including active area, back porch, synchronous
totalsz_htsz: vorizontal total size of the display, including active area, back porch, synchronous
backcolor_red: background value red
backcolor_green: background value green
backcolor_blue: background value blue
signalpolarity_hs: TLI_HSYN_ACTLIVE_LOW,TLI_HSYN_ACTLIVE_HIGHT
signalpolarity_vs: TLI_VSYN_ACTLIVE_LOW,TLI_VSYN_ACTLIVE_HIGHT
signalpolarity_de: TLI_DE_ACTLIVE_LOW,TLI_DE_ACTLIVE_HIGHT
signalpolarity_pixelck: TLI_PIXEL_CLOCK_TLI,TLI_PIXEL_CLOCK_INVERTEDTLI
\param[out] none
\retval none
*/
void tli_init(tli_parameter_struct *tli_struct)
{
/* synchronous pulse size configuration */
TLI_SPSZ &= ~(TLI_SPSZ_VPSZ|TLI_SPSZ_HPSZ);
TLI_SPSZ = (tli_struct->synpsz_vpsz|(tli_struct->synpsz_hpsz<<16U));
/* back-porch size configuration */
TLI_BPSZ &= ~(TLI_BPSZ_VBPSZ|TLI_BPSZ_HBPSZ);
TLI_BPSZ = (tli_struct->backpsz_vbpsz|(tli_struct->backpsz_hbpsz<<16U));
/* active size configuration */
TLI_ASZ &= ~(TLI_ASZ_VASZ|TLI_ASZ_HASZ);
TLI_ASZ = (tli_struct->activesz_vasz|(tli_struct->activesz_hasz<<16U));
/* total size configuration */
TLI_TSZ &= ~(TLI_TSZ_VTSZ|TLI_TSZ_HTSZ);
TLI_TSZ = (tli_struct->totalsz_vtsz|(tli_struct->totalsz_htsz<<16U));
/* background color configuration */
TLI_BGC &= ~(TLI_BGC_BVB|(TLI_BGC_BVG)|(TLI_BGC_BVR));
TLI_BGC = (tli_struct->backcolor_blue|(tli_struct->backcolor_green<<8U)|(tli_struct->backcolor_red<<16U));
TLI_CTL &= ~(TLI_CTL_HPPS|TLI_CTL_VPPS|TLI_CTL_DEPS|TLI_CTL_CLKPS);
TLI_CTL |= (tli_struct->signalpolarity_hs|tli_struct->signalpolarity_vs|\
tli_struct->signalpolarity_de|tli_struct->signalpolarity_pixelck);
}
/*!
\brief dither function configure
\param[in] ditherstat: TLI_DITHER_ENABLE,TLI_DITHER_DISABLE
\param[out] none
\retval none
*/
void tli_dither_config(uint8_t ditherstat)
{
if(TLI_DITHER_ENABLE == ditherstat){
TLI_CTL |= TLI_CTL_DFEN;
}else{
TLI_CTL &= ~(TLI_CTL_DFEN);
}
}
/*!
\brief TLI enable
\param[in] none.
\param[out] none
\retval none
*/
void tli_enable(void)
{
TLI_CTL |= TLI_CTL_TLIEN;
}
/*!
\brief TLI disable
\param[in] none.
\param[out] none
\retval none
*/
void tli_disable(void)
{
TLI_CTL &= ~(TLI_CTL_DFEN);
}
/*!
\brief TLI reload layer configure
\param[in] reloadmod: TLI_FRAME_BLANK_RELOAD_EN,TLI_REQUEST_RELOAD_EN
\param[out] none
\retval none
*/
void tli_reload_config(uint8_t reloadmod)
{
if(TLI_FRAME_BLANK_RELOAD_EN == reloadmod){
TLI_RL |= TLI_RL_FBR;
}else{
TLI_RL |= TLI_RL_RQR;
}
}
/*!
\brief TLI interrupt enable
\param[in] inttype: TLI interrupt bits.
\arg TLI_INTEN_LMIE: line mark interrupt
\arg TLI_INTEN_FEIE: FIFO error interrupt
\arg TLI_INTEN_TEIE: transaction error interrupt
\arg TLI_INTEN_LCRIE: layer configuration reloaded interrupt
\param[out] none
\retval none
*/
void tli_interrupt_enable(uint32_t inttype)
{
TLI_INTEN |= (inttype);
}
/*!
\brief TLI interrupt disable
\param[in] inttype: TLI interrupt bits.
\arg TLI_INTEN_LMIE: line mark interrupt
\arg TLI_INTEN_FEIE: FIFO error interrupt
\arg TLI_INTEN_TEIE: transaction error interrupt
\arg TLI_INTEN_LCRIE: layer configuration reloaded interrupt
\param[out] none
\retval none
*/
void tli_interrupt_disable(uint32_t inttype)
{
TLI_INTEN &= ~(inttype);
}
/*!
\brief get TLI interrupt flag
\param[in] intflag: TLI interrupt flag bits.
\arg TLI_INTF_LMF: line mark flag
\arg TLI_INTF_FEF: FIFO error flag
\arg TLI_INTF_TEF: transaction error flag
\arg TLI_INTF_LCRF: layer configuration reloaded flag
\param[out] none
\retval none
*/
FlagStatus tli_interrupt_flag_get(uint32_t intflag)
{
uint32_t state;
state = TLI_INTF;
if(state & intflag){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear TLI interrupt flag
\param[in] intflag: TLI interrupt flag bits.
\arg TLI_INTC_LMC: line mark flag
\arg TLI_INTC_FEC: FIFO error flag
\arg TLI_INTC_TEC: transaction error flag
\arg TLI_INTC_LCRC: layer configuration reloaded flag
\param[out] none
\retval none
*/
void tli_interrupt_flag_clear(uint32_t intflag)
{
TLI_INTC |= (intflag);
}
/*!
\brief set line mark value
\param[in] linenum: line number.
\param[out] none
\retval none
*/
void tli_line_mark_set(uint32_t linenum)
{
TLI_LM &= ~(TLI_LM_LM);
TLI_LM = linenum;
}
/*!
\brief get current displayed position
\param[in] none
\param[out] none
\retval none
*/
uint32_t tli_current_pos_get(void)
{
return TLI_CPPOS;
}
/*!
\brief get TLI state
\param[in] state: TLI state.
\arg TLI_STAT_VDE: current VDE state
\arg TLI_STAT_HDE: current HDE state
\arg TLI_STAT_VS: current vs state
\arg TLI_STAT_HS: current hs state
\param[out] none
\retval none
*/
FlagStatus tli_flag_get(uint32_t state)
{
uint32_t stat;
stat = TLI_STAT;
if(state & stat){
return SET;
}else{
return RESET;
}
}
/*!
\brief TLI layer enable
\param[in] layerx: LAYERx(x=0,1).
\param[out] none
\retval none
*/
void tli_layer_enable(uint32_t layerx)
{
TLI_LxCTL(layerx) |= TLI_LxCTL_LEN;
}
/*!
\brief TLI layer disable
\param[in] layerx: LAYERx(x=0,1).
\param[out] none
\retval none
*/
void tli_layer_disable(uint32_t layerx)
{
TLI_LxCTL(layerx) &= ~(TLI_LxCTL_LEN);
}
/*!
\brief TLI layer color keying enable
\param[in] layerx: LAYERx(x=0,1).
\param[out] none
\retval none
*/
void tli_color_key_enable(uint32_t layerx)
{
TLI_LxCTL(layerx) |= TLI_LxCTL_CKEYEN;
}
/*!
\brief TLI layer color keying disable
\param[in] layerx: LAYERx(x=0,1).
\param[out] none
\retval none
*/
void tli_color_key_disable(uint32_t layerx)
{
TLI_LxCTL(layerx) &= ~(TLI_LxCTL_CKEYEN);
}
/*!
\brief TLI layer LUT enable
\param[in] layerx: LAYERx(x=0,1).
\param[out] none
\retval none
*/
void tli_lut_enable(uint32_t layerx)
{
TLI_LxCTL(layerx) |= TLI_LxCTL_LUTEN;
}
/*!
\brief TLI layer LUT disable
\param[in] layerx: LAYERx(x=0,1).
\param[out] none
\retval none
*/
void tli_lut_disable(uint32_t layerx)
{
TLI_LxCTL(layerx) &= ~(TLI_LxCTL_LUTEN);
}
/*!
\brief TLI layer initialize
\param[in] layerx: LAYERx(x=0,1)
\param[in] layer_struct: TLI Layer parameter struct
layer_window_rightpos: window right position
layer_window_leftpos: window left position
layer_window_bottompos: window bottom position
layer_window_toppos: window top position
layer_ppf: LAYER_PPF_ARGB8888,LAYER_PPF_RGB888,LAYER_PPF_RGB565,
LAYER_PPF_ARG1555,LAYER_PPF_ARGB4444,LAYER_PPF_L8,
LAYER_PPF_AL44,LAYER_PPF_AL88
layer_sa: specified alpha
layer_default_alpha: the default color alpha
layer_default_red: the default color red
layer_default_green: the default color green
layer_default_blue: the default color blue
layer_acf1: LAYER_ACF1_SA,LAYER_ACF1_PASA
layer_acf2: LAYER_ACF2_SA,LAYER_ACF2_PASA
layer_frame_bufaddr: frame buffer base address
layer_frame_buf_stride_offset: frame buffer stride offset
layer_frame_line_length: frame line length
layer_frame_total_line_number: frame total line number
\param[out] none
\retval none
*/
void tli_layer_init(uint32_t layerx,tli_layer_parameter_struct *layer_struct)
{
/* configure layer window horizontal position */
TLI_LxHPOS(layerx) &= ~(TLI_LxHPOS_WLP|(TLI_LxHPOS_WRP));
TLI_LxHPOS(layerx) = (layer_struct->layer_window_leftpos | (layer_struct->layer_window_rightpos<<16U));
/* configure layer window vertical position */
TLI_LxVPOS(layerx) &= ~(TLI_LxVPOS_WTP|(TLI_LxVPOS_WBP));
TLI_LxVPOS(layerx) = (layer_struct->layer_window_toppos |(layer_struct->layer_window_bottompos<<16U));
/* configure layer packeted pixel format */
TLI_LxPPF(layerx) &= ~(TLI_LxPPF_PPF);
TLI_LxPPF(layerx) = layer_struct->layer_ppf;
/* configure layer specified alpha */
TLI_LxSA(layerx) &= ~(TLI_LxSA_SA);
TLI_LxSA(layerx) = layer_struct->layer_sa;
/* configure layer default color */
TLI_LxDC(layerx) &= ~(TLI_LxDC_DCB|(TLI_LxDC_DCG)|(TLI_LxDC_DCR)|(TLI_LxDC_DCA));
TLI_LxDC(layerx) = (layer_struct->layer_default_blue |(layer_struct->layer_default_green<<8U)
|(layer_struct->layer_default_red<<16U)
|(layer_struct->layer_default_alpha<<24U));
/* configure layer alpha calculation factors */
TLI_LxBLEND(layerx) &= ~(TLI_LxBLEND_ACF2|(TLI_LxBLEND_ACF1));
TLI_LxBLEND(layerx) = ((layer_struct->layer_acf2)|(layer_struct->layer_acf1));
/* configure layer frame buffer base address */
TLI_LxFBADDR(layerx) &= ~(TLI_LxFBADDR_FBADD);
TLI_LxFBADDR(layerx) = (layer_struct->layer_frame_bufaddr);
/* configure layer frame line length */
TLI_LxFLLEN(layerx) &= ~(TLI_LxFLLEN_FLL|(TLI_LxFLLEN_STDOFF));
TLI_LxFLLEN(layerx) = (layer_struct->layer_frame_line_length|(layer_struct->layer_frame_buf_stride_offset<<16U));
/* configure layer frame buffer base address */
TLI_LxFBADDR(layerx) &= ~(TLI_LxFBADDR_FBADD);
TLI_LxFBADDR(layerx) = (layer_struct->layer_frame_bufaddr);
/* configure layer frame total line number */
TLI_LxFTLN(layerx) &= ~(TLI_LxFTLN_FTLN);
TLI_LxFTLN(layerx) = (layer_struct->layer_frame_total_line_number);
}
/*!
\brief reconfigure window position
\param[in] layerx: LAYERx(x=0,1).
\param[in] offset_x: new horizontal offset .
\param[in] offset_y: new vertical offset.
\param[out] none
\retval none
*/
void tli_layer_window_offset_modify(uint32_t layerx,uint32_t offset_x,uint32_t offset_y)
{
/* configure window start position */
uint32_t layer_ppf,line_length,line_num,hstart,vstart;
TLI_LxHPOS(layerx) &= ~(TLI_LxHPOS_WLP|(TLI_LxHPOS_WRP));
TLI_LxVPOS(layerx) &= ~(TLI_LxVPOS_WTP|(TLI_LxVPOS_WBP));
hstart = offset_x+(((TLI_BPSZ & TLI_BPSZ_HBPSZ)>>16U)+1U);
vstart = offset_y+((TLI_BPSZ & TLI_BPSZ_VBPSZ)+1U);
line_num = (TLI_LxFTLN(layerx) & TLI_LxFTLN_FTLN);
layer_ppf = (TLI_LxPPF(layerx) & TLI_LxPPF_PPF);
/* the bytes of a line equal TLI_LxFLLEN_FLL bits value minus 3 */
switch(layer_ppf){
case LAYER_PPF_ARGB8888:
/* each pixel includes 4bytes,when pixel format is ARGB8888 */
line_length = (((TLI_LxFLLEN(layerx) & TLI_LxFLLEN_FLL)-3U)/4U);
break;
case LAYER_PPF_RGB888:
/* each pixel includes 3bytes,when pixel format is RGB888 */
line_length = (((TLI_LxFLLEN(layerx) & TLI_LxFLLEN_FLL)-3U)/3U);
break;
case LAYER_PPF_RGB565:
case LAYER_PPF_ARGB1555:
case LAYER_PPF_ARGB4444:
case LAYER_PPF_AL88:
/* each pixel includes 2bytes,when pixel format is RGB565,ARG1555,ARGB4444 or AL88 */
line_length = (((TLI_LxFLLEN(layerx) & TLI_LxFLLEN_FLL)-3U)/2U);
break;
case LAYER_PPF_L8:
case LAYER_PPF_AL44:
/* each pixel includes 1byte,when pixel format is L8 or AL44 */
line_length = (((TLI_LxFLLEN(layerx) & TLI_LxFLLEN_FLL)-3U));
break;
default:
break;
}
/* reconfigure window position */
TLI_LxHPOS(layerx) = (hstart|((hstart+line_length-1U)<<16U));
TLI_LxVPOS(layerx) = (vstart|((vstart+line_num-1U)<<16U));
}
/*!
\brief TLI layer lut initialize
\param[in] layerx: LAYERx(x=0,1)
\param[in] lut_struct: TLI layer LUT parameter struct
layer_table_addr: window right position
layer_lut_channel_red: window left position
layer_window_bottompos: window bottom position
layer_window_toppos: window top position
\param[out] none
\retval none
*/
void tli_lut_init(uint32_t layerx,tli_layer_lut_parameter_struct *lut_struct)
{
TLI_LxLUT(layerx) &= ~(TLI_LxLUT_TB|TLI_LxLUT_TG|TLI_LxLUT_TR|TLI_LxLUT_TADD);
TLI_LxLUT(layerx) = ((lut_struct->layer_lut_channel_blue)|(lut_struct->layer_lut_channel_green<<8)
|(lut_struct->layer_lut_channel_red<<16
|(lut_struct->layer_table_addr<<24)));
}
/*!
\brief TLI layer key initialize
\param[in] layerx: LAYERx(x=0,1).
\param[in] redkey: color key red.
\param[in] greenkey: color key green
\param[in] bluekey: color key blue.
\param[out] none
\retval none
*/
void tli_ckey_init(uint32_t layerx,uint32_t redkey,uint32_t greenkey,uint32_t bluekey)
{
TLI_LxCKEY(layerx) = ((bluekey)|(greenkey<<8U)|(redkey<<16U));
}

View File

@@ -0,0 +1,144 @@
/*!
\file gd32f4xx_trng.c
\brief TRNG driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#include "gd32f4xx_trng.h"
/*!
\brief deinitialize the TRNG
\param[in] none
\param[out] none
\retval none
*/
void trng_deinit(void)
{
rcu_periph_reset_enable(RCU_TRNGRST);
rcu_periph_reset_disable(RCU_TRNGRST);
}
/*!
\brief enable the TRNG interface
\param[in] none
\param[out] none
\retval none
*/
void trng_enable(void)
{
TRNG_CTL |= TRNG_CTL_TRNGEN;
}
/*!
\brief disable the TRNG interface
\param[in] none
\param[out] none
\retval none
*/
void trng_disable(void)
{
TRNG_CTL &= ~TRNG_CTL_TRNGEN;
}
/*!
\brief get the true random data
\param[in] none
\param[out] none
\retval the generated random data
*/
uint32_t trng_get_true_random_data(void)
{
return (TRNG_DATA);
}
/*!
\brief get the trng status flags
\param[in] flag: trng status flag, refer to trng_flag_enum
only one parameter can be selected which is shown as below:
\arg TRNG_FLAG_DRDY: Random Data ready status
\arg TRNG_FLAG_CECS: Clock error current status
\arg TRNG_FLAG_SECS: Seed error current status
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus trng_flag_get(trng_flag_enum flag)
{
if(RESET != (TRNG_STAT & flag)){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear the trng status flags
\param[in] flag: the special status flag
only one parameter can be selected which is shown as below:
\arg TRNG_FLAG_CECS: Clock error current status
\arg TRNG_FLAG_SECS: Seed error current status
\param[out] none
\retval none
*/
void trng_flag_clear(trng_flag_enum flag)
{
TRNG_STAT &= ~(uint32_t)flag;
}
/*!
\brief enable the TRNG interrupt
\param[in] none
\param[out] none
\retval none
*/
void trng_interrupt_enable(void)
{
TRNG_CTL |= TRNG_CTL_IE;
}
/*!
\brief disable the TRNG interrupt
\param[in] none
\param[out] none
\retval none
*/
void trng_interrupt_disable(void)
{
TRNG_CTL &= ~TRNG_CTL_IE;
}
/*!
\brief get the trng interrupt flags
\param[in] int_flag: trng interrupt flag, refer to trng_int_flag_enum
only one parameter can be selected which is shown as below:
\arg TRNG_INT_FLAG_CEIF: clock error interrupt flag
\arg TRNG_INT_FLAG_SEIF: Seed error interrupt flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus trng_interrupt_flag_get(trng_int_flag_enum int_flag)
{
if(RESET != (TRNG_STAT & int_flag)){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear the trng interrupt flags
\param[in] int_flag: trng interrupt flag, refer to trng_int_flag_enum
only one parameter can be selected which is shown as below:
\arg TRNG_INT_FLAG_CEIF: clock error interrupt flag
\arg TRNG_INT_FLAG_SEIF: Seed error interrupt flag
\param[out] none
\retval none
*/
void trng_interrupt_flag_clear(trng_int_flag_enum int_flag)
{
TRNG_STAT &= ~(uint32_t)int_flag;
}

View File

@@ -0,0 +1,954 @@
/*!
\file gd32f4xx_usart.c
\brief USART driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#include "gd32f4xx_usart.h"
/*!
\brief reset USART/UART
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval none
*/
void usart_deinit(uint32_t usart_periph)
{
switch(usart_periph){
case USART0:
rcu_periph_reset_enable(RCU_USART0RST);
rcu_periph_reset_disable(RCU_USART0RST);
break;
case USART1:
rcu_periph_reset_enable(RCU_USART1RST);
rcu_periph_reset_disable(RCU_USART1RST);
break;
case USART2:
rcu_periph_reset_enable(RCU_USART2RST);
rcu_periph_reset_disable(RCU_USART2RST);
break;
case USART5:
rcu_periph_reset_enable(RCU_USART5RST);
rcu_periph_reset_disable(RCU_USART5RST);
break;
case UART3:
rcu_periph_reset_enable(RCU_UART3RST);
rcu_periph_reset_disable(RCU_UART3RST);
break;
case UART4:
rcu_periph_reset_enable(RCU_UART4RST);
rcu_periph_reset_disable(RCU_UART4RST);
break;
case UART6:
rcu_periph_reset_enable(RCU_UART6RST);
rcu_periph_reset_disable(RCU_UART6RST);
break;
case UART7:
rcu_periph_reset_enable(RCU_UART7RST);
rcu_periph_reset_disable(RCU_UART7RST);
break;
default:
break;
}
}
/*!
\brief configure USART baud rate value
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] baudval: baud rate value
\param[out] none
\retval none
*/
void usart_baudrate_set(uint32_t usart_periph, uint32_t baudval)
{
uint32_t uclk=0U, intdiv=0U, fradiv=0U, udiv=0U;
switch(usart_periph){
/* get clock frequency */
case USART0:
uclk=rcu_clock_freq_get(CK_APB2);
break;
case USART5:
uclk=rcu_clock_freq_get(CK_APB2);
break;
case USART1:
uclk=rcu_clock_freq_get(CK_APB1);
break;
case USART2:
uclk=rcu_clock_freq_get(CK_APB1);
break;
case UART3:
uclk=rcu_clock_freq_get(CK_APB1);
break;
case UART4:
uclk=rcu_clock_freq_get(CK_APB1);
break;
case UART6:
uclk=rcu_clock_freq_get(CK_APB1);
break;
case UART7:
uclk=rcu_clock_freq_get(CK_APB1);
break;
default:
break;
}
if(USART_CTL0(usart_periph) & USART_CTL0_OVSMOD){
/* when oversampling by 8, configure the value of USART_BAUD */
udiv = ((2U*uclk) + baudval/2U)/baudval;
intdiv = udiv & 0xfff0U;
fradiv = udiv & 0x7U;
USART_BAUD(usart_periph) |= ((USART_BAUD_FRADIV | USART_BAUD_INTDIV) & (intdiv | fradiv));
}else{
/* when oversampling by 16, configure the value of USART_BAUD */
udiv = (uclk+baudval/2U)/baudval;
intdiv = udiv & 0xfff0U;
fradiv = udiv & 0xfU;
USART_BAUD(usart_periph) |= ((USART_BAUD_FRADIV | USART_BAUD_INTDIV) & (intdiv | fradiv));
}
}
/*!
\brief configure USART parity function
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] paritycfg: configure USART parity
\arg USART_PM_NONE: no parity
\arg USART_PM_EVEN: even parity
\arg USART_PM_ODD: odd parity
\param[out] none
\retval none
*/
void usart_parity_config(uint32_t usart_periph, uint32_t paritycfg)
{
/* clear USART_CTL0 PM,PCEN Bits */
USART_CTL0(usart_periph) &= ~(USART_CTL0_PM | USART_CTL0_PCEN);
/* configure USART parity mode */
USART_CTL0(usart_periph) |= paritycfg ;
}
/*!
\brief configure USART word length
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] wlen: USART word length configure
\arg USART_WL_8BIT: 8 bits
\arg USART_WL_9BIT: 9 bits
\param[out] none
\retval none
*/
void usart_word_length_set(uint32_t usart_periph, uint32_t wlen)
{
/* clear USART_CTL0 WL bit */
USART_CTL0(usart_periph) &= ~USART_CTL0_WL;
/* configure USART word length */
USART_CTL0(usart_periph) |= wlen;
}
/*!
\brief configure USART stop bit length
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] stblen: USART stop bit configure
\arg USART_STB_1BIT: 1 bit
\arg USART_STB_0_5BIT: 0.5 bit(not available for UARTx(x=3,4,6,7))
\arg USART_STB_2BIT: 2 bits
\arg USART_STB_1_5BIT: 1.5 bits(not available for UARTx(x=3,4,6,7))
\param[out] none
\retval none
*/
void usart_stop_bit_set(uint32_t usart_periph, uint32_t stblen)
{
/* clear USART_CTL1 STB bits */
USART_CTL1(usart_periph) &= ~USART_CTL1_STB;
/* configure USART stop bits */
USART_CTL1(usart_periph) |= stblen;
}
/*!
\brief enable USART
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval none
*/
void usart_enable(uint32_t usart_periph)
{
USART_CTL0(usart_periph) |= USART_CTL0_UEN;
}
/*!
\brief disable USART
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval none
*/
void usart_disable(uint32_t usart_periph)
{
USART_CTL0(usart_periph) &= ~(USART_CTL0_UEN);
}
/*!
\brief configure USART transmitter
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] rtconfig: enable or disable USART transmitter
\arg USART_TRANSMIT_ENABLE: enable USART transmission
\arg USART_TRANSMIT_DISABLE: enable USART transmission
\param[out] none
\retval none
*/
void usart_transmit_config(uint32_t usart_periph, uint32_t txconfig)
{
uint32_t ctl = 0U;
ctl = USART_CTL0(usart_periph);
ctl &= ~USART_CTL0_TEN;
ctl |= txconfig;
/* configure transfer mode */
USART_CTL0(usart_periph) = ctl;
}
/*!
\brief configure USART receiver
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] rtconfig: enable or disable USART receiver
\arg USART_RECEIVE_ENABLE: enable USART reception
\arg USART_RECEIVE_DISABLE: disable USART reception
\param[out] none
\retval none
*/
void usart_receive_config(uint32_t usart_periph, uint32_t rxconfig)
{
uint32_t ctl = 0U;
ctl = USART_CTL0(usart_periph);
ctl &= ~USART_CTL0_REN;
ctl |= rxconfig;
/* configure transfer mode */
USART_CTL0(usart_periph) = ctl;
}
/*!
\brief data is transmitted/received with the LSB/MSB first
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[in] msbf: LSB/MSB
\arg USART_MSBF_LSB: LSB first
\arg USART_MSBF_MSB: MSB first
\param[out] none
\retval none
*/
void usart_data_first_config(uint32_t usart_periph, uint32_t msbf)
{
USART_CTL3(usart_periph) &= ~(USART_CTL3_MSBF);
USART_CTL3(usart_periph) |= msbf;
}
/*!
\brief configure USART inversion
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[in] invertpara: refer to enum USART_INVERT_CONFIG
\arg USART_DINV_ENABLE: data bit level inversion
\arg USART_DINV_DISABLE: data bit level not inversion
\arg USART_TXPIN_ENABLE: TX pin level inversion
\arg USART_TXPIN_DISABLE: TX pin level not inversion
\arg USART_RXPIN_ENABLE: RX pin level inversion
\arg USART_RXPIN_DISABLE: RX pin level not inversion
\param[out] none
\retval none
*/
void usart_invert_config(uint32_t usart_periph, usart_invert_enum invertpara)
{
/* inverted or not the specified siginal */
switch(invertpara){
case USART_DINV_ENABLE:
USART_CTL3(usart_periph) |= USART_CTL3_DINV;
break;
case USART_TXPIN_ENABLE:
USART_CTL3(usart_periph) |= USART_CTL3_TINV;
break;
case USART_RXPIN_ENABLE:
USART_CTL3(usart_periph) |= USART_CTL3_RINV;
break;
case USART_DINV_DISABLE:
USART_CTL3(usart_periph) &= ~(USART_CTL3_DINV);
break;
case USART_TXPIN_DISABLE:
USART_CTL3(usart_periph) &= ~(USART_CTL3_TINV);
break;
case USART_RXPIN_DISABLE:
USART_CTL3(usart_periph) &= ~(USART_CTL3_RINV);
break;
default:
break;
}
}
/*!
\brief configure the USART oversample mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] oversamp: oversample value
\arg USART_OVSMOD_8: 8 bits
\arg USART_OVSMOD_16: 16 bits
\param[out] none
\retval none
*/
void usart_oversample_config(uint32_t usart_periph, uint32_t oversamp)
{
/* clear OVSMOD bit */
USART_CTL0(usart_periph) &= ~(USART_CTL0_OVSMOD);
USART_CTL0(usart_periph) |= oversamp;
}
/*!
\brief configure sample bit method
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] obsm: sample bit
\arg USART_OSB_1bit: 1 bit
\arg USART_OSB_3bit: 3 bits
\param[out] none
\retval none
*/
void usart_sample_bit_config(uint32_t usart_periph, uint32_t obsm)
{
USART_CTL2(usart_periph) &= ~(USART_CTL2_OSB);
USART_CTL2(usart_periph) |= obsm;
}
/*!
\brief enable receiver timeout of USART
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[out] none
\retval none
*/
void usart_receiver_timeout_enable(uint32_t usart_periph)
{
USART_CTL3(usart_periph) |= USART_CTL3_RTEN;
}
/*!
\brief disable receiver timeout of USART
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[out] none
\retval none
*/
void usart_receiver_timeout_disable(uint32_t usart_periph)
{
USART_CTL3(usart_periph) &= ~(USART_CTL3_RTEN);
}
/*!
\brief set the receiver timeout threshold of USART
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[in] rtimeout: 0-0x00FFFFFF
\param[out] none
\retval none
*/
void usart_receiver_timeout_threshold_config(uint32_t usart_periph, uint32_t rtimeout)
{
USART_RT(usart_periph) &= ~(USART_RT_RT);
USART_RT(usart_periph) |= rtimeout;
}
/*!
\brief USART transmit data function
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] data: data of transmission
\param[out] none
\retval none
*/
void usart_data_transmit(uint32_t usart_periph, uint32_t data)
{
USART_DATA(usart_periph) = ((uint16_t)USART_DATA_DATA & data);
}
/*!
\brief USART receive data function
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval data of received
*/
uint16_t usart_data_receive(uint32_t usart_periph)
{
return (uint16_t)(GET_BITS(USART_DATA(usart_periph), 0U, 8U));
}
/*!
\brief configure the address of the USART in wake up by address match mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] addr: address of USART/UART
\param[out] none
\retval none
*/
void usart_address_config(uint32_t usart_periph, uint8_t addr)
{
USART_CTL1(usart_periph) &= ~(USART_CTL1_ADDR);
USART_CTL1(usart_periph) |= (USART_CTL1_ADDR & addr);
}
/*!
\brief receiver in mute mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval none
*/
void usart_mute_mode_enable(uint32_t usart_periph)
{
USART_CTL0(usart_periph) |= USART_CTL0_RWU;
}
/*!
\brief receiver in active mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval none
*/
void usart_mute_mode_disable(uint32_t usart_periph)
{
USART_CTL0(usart_periph) &= ~(USART_CTL0_RWU);
}
/*!
\brief configure wakeup method in mute mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] wmehtod: two method be used to enter or exit the mute mode
\arg USART_WM_IDLE: idle line
\arg USART_WM_ADDR: address mask
\param[out] none
\retval none
*/
void usart_mute_mode_wakeup_config(uint32_t usart_periph, uint32_t wmehtod)
{
USART_CTL0(usart_periph) &= ~(USART_CTL0_WM);
USART_CTL0(usart_periph) |= wmehtod;
}
/*!
\brief enable LIN mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval none
*/
void usart_lin_mode_enable(uint32_t usart_periph)
{
USART_CTL1(usart_periph) |= USART_CTL1_LMEN;
}
/*!
\brief disable LIN mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval none
*/
void usart_lin_mode_disable(uint32_t usart_periph)
{
USART_CTL1(usart_periph) &= ~(USART_CTL1_LMEN);
}
/*!
\brief configure lin break frame length
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] lblen: lin break frame length
\arg USART_LBLEN_10B: 10 bits
\arg USART_LBLEN_11B: 11 bits
\param[out] none
\retval none
*/
void usart_lin_break_dection_length_config(uint32_t usart_periph, uint32_t lblen)
{
USART_CTL1(usart_periph) &= ~(USART_CTL1_LBLEN);
USART_CTL1(usart_periph) |= (USART_CTL1_LBLEN & lblen);
}
/*!
\brief send break frame
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval none
*/
void usart_send_break(uint32_t usart_periph)
{
USART_CTL0(usart_periph) |= USART_CTL0_SBKCMD;
}
/*!
\brief enable half duplex mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval none
*/
void usart_halfduplex_enable(uint32_t usart_periph)
{
USART_CTL2(usart_periph) |= USART_CTL2_HDEN;
}
/*!
\brief disable half duplex mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval none
*/
void usart_halfduplex_disable(uint32_t usart_periph)
{
USART_CTL2(usart_periph) &= ~(USART_CTL2_HDEN);
}
/*!
\brief enable CK pin in synchronous mode
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[out] none
\retval none
*/
void usart_synchronous_clock_enable(uint32_t usart_periph)
{
USART_CTL1(usart_periph) |= USART_CTL1_CKEN;
}
/*!
\brief disable CK pin in synchronous mode
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[out] none
\retval none
*/
void usart_synchronous_clock_disable(uint32_t usart_periph)
{
USART_CTL1(usart_periph) &= ~(USART_CTL1_CKEN);
}
/*!
\brief configure USART synchronous mode parameters
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[in] clen: CK length
\arg USART_CLEN_NONE: there are 7 CK pulses for an 8 bit frame and 8 CK pulses for a 9 bit frame
\arg USART_CLEN_EN: there are 8 CK pulses for an 8 bit frame and 9 CK pulses for a 9 bit frame
\param[in] cph: clock phase
\arg USART_CPH_1CK: first clock transition is the first data capture edge
\arg USART_CPH_2CK: second clock transition is the first data capture edge
\param[in] cpl: clock polarity
\arg USART_CPL_LOW: steady low value on CK pin
\arg USART_CPL_HIGH: steady high value on CK pin
\param[out] none
\retval none
*/
void usart_synchronous_clock_config(uint32_t usart_periph, uint32_t clen, uint32_t cph, uint32_t cpl)
{
uint32_t ctl = 0U;
/* read USART_CTL1 register */
ctl = USART_CTL1(usart_periph);
/* set CK length, CK phase, CK polarity */
ctl |= (USART_CTL1_CLEN & clen) | (USART_CTL1_CPH & cph) | (USART_CTL1_CPL & cpl);
USART_CTL1(usart_periph) |= ctl;
}
/*!
\brief configure guard time value in smartcard mode
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[in] gaut: guard time value
\param[out] none
\retval none
*/
void usart_guard_time_config(uint32_t usart_periph,uint32_t gaut)
{
USART_GP(usart_periph) &= ~(USART_GP_GUAT);
USART_GP(usart_periph) |= (USART_GP_GUAT & ((gaut)<<8));
}
/*!
\brief enable smartcard mode
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[out] none
\retval none
*/
void usart_smartcard_mode_enable(uint32_t usart_periph)
{
USART_CTL2(usart_periph) |= USART_CTL2_SCEN;
}
/*!
\brief disable smartcard mode
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[out] none
\retval none
*/
void usart_smartcard_mode_disable(uint32_t usart_periph)
{
USART_CTL2(usart_periph) &= ~(USART_CTL2_SCEN);
}
/*!
\brief enable NACK in smartcard mode
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[out] none
\retval none
*/
void usart_smartcard_mode_nack_enable(uint32_t usart_periph)
{
USART_CTL2(usart_periph) |= USART_CTL2_NKEN;
}
/*!
\brief disable NACK in smartcard mode
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[out] none
\retval none
*/
void usart_smartcard_mode_nack_disable(uint32_t usart_periph)
{
USART_CTL2(usart_periph) &= ~(USART_CTL2_NKEN);
}
/*!
\brief configure smartcard auto-retry number
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[in] scrtnum: smartcard auto-retry number
\param[out] none
\retval none
*/
void usart_smartcard_autoretry_config(uint32_t usart_periph, uint32_t scrtnum)
{
USART_CTL3(usart_periph) &= ~(USART_CTL3_SCRTNUM);
USART_CTL3(usart_periph) |= (USART_CTL3_SCRTNUM & ((scrtnum)<<1));
}
/*!
\brief configure block length in Smartcard T=1 reception
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[in] bl: block length
\param[out] none
\retval none
*/
void usart_block_length_config(uint32_t usart_periph, uint32_t bl)
{
USART_RT(usart_periph) &= ~(USART_RT_BL);
USART_RT(usart_periph) |= (USART_RT_BL & ((bl)<<24));
}
/*!
\brief enable IrDA mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval none
*/
void usart_irda_mode_enable(uint32_t usart_periph)
{
USART_CTL2(usart_periph) |= USART_CTL2_IREN;
}
/*!
\brief disable IrDA mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[out] none
\retval none
*/
void usart_irda_mode_disable(uint32_t usart_periph)
{
USART_CTL2(usart_periph) &= ~(USART_CTL2_IREN);
}
/*!
\brief configure the peripheral clock prescaler in USART IrDA low-power mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] psc: 0-0x00FFFFFF
\param[out] none
\retval none
*/
void usart_prescaler_config(uint32_t usart_periph, uint32_t psc)
{
USART_GP(usart_periph) &= ~(USART_GP_PSC);
USART_GP(usart_periph) |= psc;
}
/*!
\brief configure IrDA low-power
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] irlp: IrDA low-power or normal
\arg USART_IRLP_LOW: low-power
\arg USART_IRLP_NORMAL: normal
\param[out] none
\retval none
*/
void usart_irda_lowpower_config(uint32_t usart_periph, uint32_t irlp)
{
USART_CTL2(usart_periph) &= ~(USART_CTL2_IRLP);
USART_CTL2(usart_periph) |= (USART_CTL2_IRLP & irlp);
}
/*!
\brief configure hardware flow control RTS
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[in] hardwareflow: enable or disable RTS
\arg USART_RTS_ENABLE: enable RTS
\arg USART_RTS_DISABLE: disable RTS
\param[out] none
\retval none
*/
void usart_hardware_flow_rts_config(uint32_t usart_periph, uint32_t rtsconfig)
{
uint32_t ctl = 0U;
ctl = USART_CTL2(usart_periph);
ctl &= ~USART_CTL2_RTSEN;
ctl |= rtsconfig;
/* configure RTS */
USART_CTL2(usart_periph) = ctl;
}
/*!
\brief configure hardware flow control CTS
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[in] hardwareflow: enable or disable CTS
\arg USART_CTS_ENABLE: enable CTS
\arg USART_CTS_DISABLE: disable CTS
\param[out] none
\retval none
*/
void usart_hardware_flow_cts_config(uint32_t usart_periph, uint32_t ctsconfig)
{
uint32_t ctl = 0U;
ctl = USART_CTL2(usart_periph);
ctl &= ~USART_CTL2_CTSEN;
ctl |= ctsconfig;
/* configure CTS */
USART_CTL2(usart_periph) = ctl;
}
/*!
\brief configure break frame coherence mode
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[in] bcm:
\arg USART_BCM_NONE: no parity error is detected
\arg USART_BCM_EN: parity error is detected
\param[out] none
\retval none
*/
void usart_break_frame_coherence_config(uint32_t usart_periph, uint32_t bcm)
{
USART_CHC(usart_periph) &= ~(USART_CHC_BCM);
USART_CHC(usart_periph) |= (USART_CHC_BCM & bcm);
}
/*!
\brief configure parity check coherence mode
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] pcm:
\arg USART_PCM_NONE: not check parity
\arg USART_PCM_EN: check the parity
\param[out] none
\retval none
*/
void usart_parity_check_coherence_config(uint32_t usart_periph, uint32_t pcm)
{
USART_CHC(usart_periph) &= ~(USART_CHC_PCM);
USART_CHC(usart_periph) |= (USART_CHC_PCM & pcm);
}
/*!
\brief configure hardware flow control coherence mode
\param[in] usart_periph: USARTx(x=0,1,2,5)
\param[in] hcm:
\arg USART_HCM_NONE: nRTS signal equals to the rxne status register
\arg USART_HCM_EN: nRTS signal is set when the last data bit has been sampled
\param[out] none
\retval none
*/
void usart_hardware_flow_coherence_config(uint32_t usart_periph, uint32_t hcm)
{
USART_CHC(usart_periph) &= ~(USART_CHC_HCM);
USART_CHC(usart_periph) |= (USART_CHC_HCM & hcm);
}
/*!
\brief configure USART DMA reception
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] dmacmd: enable or disable DMA for reception
\arg USART_DENR_ENABLE: DMA enable for reception
\arg USART_DENR_DISABLE: DMA disable for reception
\param[out] none
\retval none
*/
void usart_dma_receive_config(uint32_t usart_periph, uint32_t dmacmd)
{
uint32_t ctl = 0U;
ctl = USART_CTL2(usart_periph);
ctl &= ~USART_CTL2_DENR;
ctl |= dmacmd;
/* configure DMA reception */
USART_CTL2(usart_periph) = ctl;
}
/*!
\brief configure USART DMA transmission
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] dmacmd: enable or disable DMA for transmission
\arg USART_DENT_ENABLE: DMA enable for transmission
\arg USART_DENT_DISABLE: DMA disable for transmission
\param[out] none
\retval none
*/
void usart_dma_transmit_config(uint32_t usart_periph, uint32_t dmacmd)
{
uint32_t ctl = 0U;
ctl = USART_CTL2(usart_periph);
ctl &= ~USART_CTL2_DENT;
ctl |= dmacmd;
/* configure DMA transmission */
USART_CTL2(usart_periph) = ctl;
}
/*!
\brief get flag in STAT0/STAT1/CHC register
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] flag: USART flags, refer to usart_flag_enum
\arg USART_FLAG_CTSF: CTS change flag
\arg USART_FLAG_LBDF: LIN break detected flag
\arg USART_FLAG_TBE: transmit data buffer empty
\arg USART_FLAG_TC: transmission complete
\arg USART_FLAG_RBNE: read data buffer not empty
\arg USART_FLAG_IDLEF: IDLE frame detected flag
\arg USART_FLAG_ORERR: overrun error
\arg USART_FLAG_NERR: noise error flag
\arg USART_FLAG_FERR: frame error flag
\arg USART_FLAG_PERR: parity error flag
\arg USART_FLAG_BSY: busy flag
\arg USART_FLAG_EBF: end of block flag
\arg USART_FLAG_RTF: receiver timeout flag
\arg USART_FLAG_EPERR: early parity error flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus usart_flag_get(uint32_t usart_periph, usart_flag_enum flag)
{
if(RESET != (USART_REG_VAL(usart_periph, flag) & BIT(USART_BIT_POS(flag)))){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear flag in STAT0/STAT1/CHC register
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] flag: USART flags, refer to usart_flag_enum
\arg USART_FLAG_CTSF: CTS change flag
\arg USART_FLAG_LBDF: LIN break detected flag
\arg USART_FLAG_TC: transmission complete
\arg USART_FLAG_RBNE: read data buffer not empty
\arg USART_FLAG_EBF: end of block flag
\arg USART_FLAG_RTF: receiver timeout flag
\arg USART_FLAG_EPERR: early parity error flag
\param[out] none
\retval none
*/
void usart_flag_clear(uint32_t usart_periph, usart_flag_enum flag)
{
USART_REG_VAL(usart_periph, flag) &= ~BIT(USART_BIT_POS(flag));
}
/*!
\brief enable USART interrupt
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] int_flag
\arg USART_INTEN_PERRIE: parity error interrupt
\arg USART_INTEN_TBEIE: transmitter buffer empty interrupt
\arg USART_INTEN_TCIE: transmission complete interrupt
\arg USART_INTEN_RBNEIE: read data buffer not empty interrupt and overrun error interrupt
\arg USART_INTEN_IDLEIE: IDLE line detected interrupt
\arg USART_INTEN_LBDIE: LIN break detected interrupt
\arg USART_INTEN_ERRIE: error interrupt
\arg USART_INTEN_CTSIE: CTS interrupt
\arg USART_INTEN_RTIE: interrupt enable bit of receive timeout event
\arg USART_INTEN_EBIE: interrupt enable bit of end of block event
\param[out] none
\retval none
*/
void usart_interrupt_enable(uint32_t usart_periph, uint32_t int_flag)
{
uint32_t usart_reg = 0U;
usart_reg = int_flag & (~(uint32_t)USART_INTEN_MASK);
int_flag &= USART_INTEN_MASK;
/* flags in USART_CTL0 */
if(USART_INTS_CTL0 == usart_reg){
USART_CTL0(usart_periph) |= int_flag;
/* flags in USART_CTL1 */
}else if(USART_INTS_CTL1 == usart_reg){
USART_CTL1(usart_periph) |= int_flag;
/* flags in USART_CTL2 */
}else if(USART_INTS_CTL2 == usart_reg){
USART_CTL2(usart_periph) |= int_flag;
/* flags in USART_CTL3 */
}else if(USART_INTS_CTL3 == usart_reg){
USART_CTL3(usart_periph) |= int_flag;
}else{
/* illegal parameters */
}
}
/*!
\brief disable USART interrupt
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] int_flag
\arg USART_INTEN_PERRIE: parity error interrupt
\arg USART_INTEN_TBEIE: transmitter buffer empty interrupt
\arg USART_INTEN_TCIE: transmission complete interrupt
\arg USART_INTEN_RBNEIE: read data buffer not empty interrupt and overrun error interrupt
\arg USART_INTEN_IDLEIE: IDLE line detected interrupt
\arg USART_INTEN_LBDIE: LIN break detected interrupt
\arg USART_INTEN_ERRIE: error interrupt
\arg USART_INTEN_CTSIE: CTS interrupt
\arg USART_INTEN_RTIE: interrupt enable bit of receive timeout event
\arg USART_INTEN_EBIE: interrupt enable bit of end of block event
\param[out] none
\retval none
*/
void usart_interrupt_disable(uint32_t usart_periph, uint32_t int_flag)
{
uint32_t usart_reg = 0U;
usart_reg = int_flag & (~(uint32_t)USART_INTEN_MASK);
int_flag &= USART_INTEN_MASK;
/* flags in USART_CTL0 */
if(USART_INTS_CTL0 == usart_reg){
USART_CTL0(usart_periph) &= ~(int_flag);
/* flags in USART_CTL1 */
}else if(USART_INTS_CTL1 == usart_reg){
USART_CTL1(usart_periph) &= ~(int_flag);
/* flags in USART_CTL2 */
}else if(USART_INTS_CTL2 == usart_reg){
USART_CTL2(usart_periph) &= ~(int_flag);
/* flags in USART_CTL3 */
}else if(USART_INTS_CTL3 == usart_reg){
USART_CTL3(usart_periph) &= ~(int_flag);
}else{
/* illegal parameters */
}
}
/*!
\brief get USART interrupt enable flag
\param[in] usart_periph: USARTx(x=0,1,2,5)/UARTx(x=3,4,6,7)
\param[in] int_flag
\arg USART_INT_PERRIE: parity error interrupt
\arg USART_INT_TBEIE: transmitter buffer empty interrupt
\arg USART_INT_TCIE: transmission complete interrupt
\arg USART_INT_RBNEIE: read data buffer not empty interrupt and overrun error interrupt
\arg USART_INT_IDLEIE: IDLE line detected interrupt
\arg USART_INT_LBDIE: LIN break detected interrupt
\arg USART_INT_CTSIE: CTS interrupt
\arg USART_INT_ERRIE: error interrupt
\arg USART_INT_EBIE: interrupt enable bit of end of block event
\arg USART_INT_RTIE: interrupt enable bit of receive timeout event
\param[out] none
\retval FlagStatus
*/
FlagStatus usart_interrupt_flag_get(uint32_t usart_periph, uint32_t int_flag)
{
if(RESET != (USART_REG_VAL(usart_periph, int_flag) & BIT(USART_BIT_POS(int_flag)))){
return SET;
}else{
return RESET;
}
}

View File

@@ -0,0 +1,122 @@
/*!
\file gd32f4xx_wwdgt.c
\brief WWDGT driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#include "gd32f4xx_wwdgt.h"
/* write value to WWDGT_CTL_CNT bit field */
#define CTL_CNT(regval) (BITS(0,6) & ((uint32_t)(regval) << 0))
/* write value to WWDGT_CFG_WIN bit field */
#define CFG_WIN(regval) (BITS(0,6) & ((uint32_t)(regval) << 0))
/*!
\brief reset the window watchdog timer configuration
\param[in] none
\param[out] none
\retval none
*/
void wwdgt_deinit(void)
{
rcu_periph_reset_enable(RCU_WWDGTRST);
rcu_periph_reset_disable(RCU_WWDGTRST);
}
/*!
\brief configure the window watchdog timer counter value
\param[in] counter_value: 0x00 - 0x7F
\param[out] none
\retval none
*/
void wwdgt_counter_update(uint16_t counter_value)
{
uint32_t reg = 0U;
reg = (WWDGT_CTL & (~WWDGT_CTL_CNT));
reg |= CTL_CNT(counter_value);
WWDGT_CTL = reg;
}
/*!
\brief start the window watchdog timer counter
\param[in] none
\param[out] none
\retval none
*/
void wwdgt_enable(void)
{
WWDGT_CTL |= WWDGT_CTL_WDGTEN;
}
/*!
\brief configure counter value, window value, and prescaler divider value
\param[in] counter: 0x00 - 0x7F
\param[in] window: 0x00 - 0x7F
\param[in] prescaler: wwdgt prescaler value
\arg WWDGT_CFG_PSC_DIV1: the time base of window watchdog counter = (PCLK1/4096)/1
\arg WWDGT_CFG_PSC_DIV2: the time base of window watchdog counter = (PCLK1/4096)/2
\arg WWDGT_CFG_PSC_DIV4: the time base of window watchdog counter = (PCLK1/4096)/4
\arg WWDGT_CFG_PSC_DIV8: the time base of window watchdog counter = (PCLK1/4096)/8
\param[out] none
\retval none
*/
void wwdgt_config(uint16_t counter, uint16_t window, uint32_t prescaler)
{
uint32_t reg_cfg = 0U, reg_ctl = 0U;
/* clear WIN and PSC bits, clear CNT bit */
reg_cfg = (WWDGT_CFG &(~(WWDGT_CFG_WIN|WWDGT_CFG_PSC)));
reg_ctl = (WWDGT_CTL &(~WWDGT_CTL_CNT));
/* configure WIN and PSC bits, configure CNT bit */
reg_cfg |= CFG_WIN(window);
reg_cfg |= prescaler;
reg_ctl |= CTL_CNT(counter);
WWDGT_CTL = reg_ctl;
WWDGT_CFG = reg_cfg;
}
/*!
\brief enable early wakeup interrupt of WWDGT
\param[in] none
\param[out] none
\retval none
*/
void wwdgt_interrupt_enable(void)
{
WWDGT_CFG |= WWDGT_CFG_EWIE;
}
/*!
\brief check early wakeup interrupt state of WWDGT
\param[in] none
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus wwdgt_flag_get(void)
{
if(WWDGT_STAT & WWDGT_STAT_EWIF){
return SET;
}
return RESET;
}
/*!
\brief clear early wakeup interrupt state of WWDGT
\param[in] none
\param[out] none
\retval none
*/
void wwdgt_flag_clear(void)
{
WWDGT_STAT &= (~WWDGT_STAT_EWIF);
}

View File

@@ -0,0 +1,287 @@
/*!
\file usb_core.h
\brief USB core driver header file
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#ifndef USB_CORE_H
#define USB_CORE_H
#include "usb_conf.h"
#include "usb_regs.h"
#include "usb_defines.h"
#define USB_MAX_EP0_SIZE 64U /* endpoint 0 max packet size */
#define RX_MAX_DATA_LENGTH 512U /* host rx buffer max data length */
#define HC_MAX_PACKET_COUNT 140U /* host channel max packet count */
#ifdef USE_USBFS
#define USB_MAX_DEV_EPCOUNT USBFS_MAX_DEV_EPCOUNT
#define USB_MAX_FIFOS (USBFS_MAX_HOST_CHANNELCOUNT * 2U - 1U)
#elif defined(USE_USBHS)
#define USB_MAX_DEV_EPCOUNT USBHS_MAX_DEV_EPCOUNT
#define USB_MAX_FIFOS (USBHS_MAX_HOST_CHANNELCOUNT * 2U - 1U)
#endif /* USE_USBFS */
/* USB core status */
typedef enum
{
USB_OK = 0, /* USB core OK status */
USB_FAIL /* USB core fail status */
}usb_status_enum;
/* USB host channel status */
typedef enum
{
HC_IDLE = 0, /* USB host channel idle status */
HC_XF, /* USB host channel transfer status */
HC_HALTED, /* USB host channel halted status */
HC_NAK, /* USB host channel nak status */
HC_NYET, /* USB host channel nyet status */
HC_STALL, /* USB host channel stall status */
HC_TRACERR, /* USB host channel tracerr status */
HC_BBERR, /* USB host channel bberr status */
HC_DTGERR, /* USB host channel dtgerr status */
}hc_status_enum;
/* USB URB(USB request block) state */
typedef enum
{
URB_IDLE = 0, /* USB URB idle status */
URB_DONE, /* USB URB done status */
URB_NOTREADY, /* USB URB notready status */
URB_ERROR, /* USB URB error status */
URB_STALL, /* USB URB stall status */
URB_PING /* USB URB ping status */
}urb_state_enum;
/* USB core configuration */
typedef struct
{
uint8_t core_id; /* USB core id */
uint8_t core_speed; /* USB core speed */
uint8_t phy_interface; /* USB PHY interface */
uint8_t host_channel_num; /* USB host channel number */
uint8_t dev_endp_num; /* USB device endpoint number */
uint8_t dma_enable; /* USBHS can use DMA */
uint8_t sof_output; /* USB SOF output */
uint8_t low_power; /* USB low power */
uint16_t max_packet_size; /* USB max packet size */
uint16_t max_fifo_size; /* USB fifo size */
}usb_core_cfgs_struct;
typedef enum
{
USBD_OK = 0, /* USB device ok status */
USBD_BUSY, /* USB device busy status */
USBD_FAIL, /* USB device fail stauts */
}usbd_status_enum;
/* USB control transfer state */
typedef enum
{
USB_CTRL_IDLE = 0, /* USB control transfer idle state */
USB_CTRL_SETUP, /* USB control transfer setup state */
USB_CTRL_DATA_IN, /* USB control transfer data in state */
USB_CTRL_DATA_OUT, /* USB control transfer data out state */
USB_CTRL_STATUS_IN, /* USB control transfer status in state*/
USB_CTRL_STATUS_OUT, /* USB control transfer status out state */
USB_CTRL_STALL /* USB control transfer stall state */
}usbd_control_state_enum;
/* USB transfer direction */
typedef enum
{
USB_RX = 0, /* receive direction type value */
USB_TX /* transmit direction type value */
}usb_dir_enum;
/* USB endpoint in device mode */
typedef struct
{
uint8_t endp_type; /* USB endpoint type */
uint8_t endp_frame; /* USB endpoint frame */
uint32_t endp_mps; /* USB endpoint max packet size */
/* Transaction level variables */
uint8_t *xfer_buff; /* USB transfer buffer */
uint32_t xfer_len; /* USB transfer length */
uint32_t xfer_count; /* USB transfer count */
uint32_t dma_addr; /* USBHS can use DMA */
}usb_ep_struct;
/* USB device standard request */
typedef struct
{
uint8_t bmRequestType; /* USB device request type */
uint8_t bRequest; /* USB device request */
uint16_t wValue; /* USB device request value */
uint16_t wIndex; /* USB device request index */
uint16_t wLength; /* USB device request length */
}usb_device_req_struct;
/* USB core device driver */
typedef struct
{
uint8_t config_num; /* USB configuration number */
uint8_t status; /* USB status */
uint8_t ctl_status; /* USB control status */
uint8_t prev_status; /* USB previous status */
uint8_t connection_status; /* USB connection status */
uint32_t remote_wakeup; /* USB remote wakeup */
/* transfer level variables */
uint32_t remain_len; /* USB remain length */
uint32_t sum_len; /* USB sum length */
uint32_t ctl_len; /* USB control length */
uint8_t setup_packet[8 * 3]; /* USB setup packet */
usb_ep_struct in_ep[USB_MAX_DEV_EPCOUNT]; /* USB IN endpoint */
usb_ep_struct out_ep[USB_MAX_DEV_EPCOUNT]; /* USB OUT endpoint */
uint8_t *dev_desc; /* device descriptor */
uint8_t *config_desc; /* configuration descriptor */
uint8_t* *strings; /* configuration strings */
/* device class handler */
uint8_t (*class_init) (void *pudev, uint8_t config_index); /* device class initialize */
uint8_t (*class_deinit) (void *pudev, uint8_t config_index); /* device class deinitialize */
uint8_t (*class_req_handler) (void *pudev, usb_device_req_struct *req); /* device request handler */
uint8_t (*class_data_handler) (void *pudev, usb_dir_enum rx_tx, uint8_t ep_num); /* device data handler */
}dcd_dev_struct;
/* USB core host mode channel */
typedef struct
{
uint8_t dev_addr; /* device address */
uint8_t dev_speed; /* device speed */
uint8_t DPID; /* endpoint transfer data pid */
uint8_t endp_id; /* endpoint number */
uint8_t endp_in; /* endpoint in */
uint8_t endp_type; /* endpoint type */
uint16_t endp_mps; /* endpoint max pactet size */
uint16_t info; /* channel information */
uint8_t do_ping; /* USBHS ping */
uint8_t *xfer_buff; /* transfer buffer */
uint32_t xfer_len; /* transfer length */
uint32_t xfer_count; /* trasnfer count */
uint32_t err_count; /* USB transfer error count */
uint32_t dma_addr; /* USBHS can use DMA */
hc_status_enum status; /* channel status */
urb_state_enum urb_state; /* URB state */
uint8_t data_tg_in; /* data in toggle */
uint8_t data_tg_out; /* data out toggle */
}usb_hostchannel_struct;
/* USB core host driver */
typedef struct
{
uint8_t rx_buffer[RX_MAX_DATA_LENGTH]; /* rx buffer */
uint8_t connect_status; /* device connect status */
usb_hostchannel_struct host_channel[USB_MAX_FIFOS]; /* host channel */
void (*vbus_drive) (void *pudev, uint8_t state); /* the vbus driver function */
}hcd_dev_struct;
#ifdef USE_OTG_MODE
/* USB core OTG-mode driver */
typedef struct
{
uint8_t OTG_State; /* OTG state */
uint8_t OTG_PrevState; /* OTG previous state */
uint8_t OTG_Mode; /* OTG mode */
}otg_dev_struct;
#endif /* USE_OTG_MODE */
/* USB core driver */
typedef struct
{
usb_core_cfgs_struct cfg;
#ifdef USE_DEVICE_MODE
dcd_dev_struct dev;
#endif /* USE_DEVICE_MODE */
#ifdef USE_HOST_MODE
hcd_dev_struct host;
#endif /* USE_HOST_MODE */
#ifdef USE_OTG_MODE
otg_dev_struct otg;
#endif /* USE_OTG_MODE */
void (*udelay) (const uint32_t usec);
void (*mdelay) (const uint32_t msec);
}usb_core_handle_struct;
/* function declarations */
/* global APIs */
/* initializes the USB controller registers and prepares the core device mode or host mode operation */
usb_status_enum usb_core_init (usb_core_handle_struct *pudev);
/* initialize core parameters */
usb_status_enum usb_core_select (usb_core_handle_struct *pudev, usb_core_id_enum core_id);
/* read a packet from the Rx FIFO associated with the endpoint */
void* usb_fifo_read (uint8_t *dest, uint16_t len);
/* write a packet into the Tx FIFO associated with the endpoint */
usb_status_enum usb_fifo_write (uint8_t *src, uint8_t chep_num, uint16_t len);
/* flush a Tx FIFO or all Tx FIFOs */
usb_status_enum usb_txfifo_flush (usb_core_handle_struct *pudev, uint8_t fifo_num);
/* flush the entire Rx FIFO */
usb_status_enum usb_rxfifo_flush (usb_core_handle_struct *pudev);
/* set operation mode (host or device) */
usb_status_enum usb_mode_set (usb_core_handle_struct *pudev, uint8_t mode);
/* host APIs */
#ifdef USE_HOST_MODE
/* initializes USB core for host mode */
usb_status_enum usb_hostcore_init (usb_core_handle_struct *pudev);
/* enables the host mode interrupts */
usb_status_enum usb_hostint_enable (usb_core_handle_struct *pudev);
/* initialize host channel */
usb_status_enum usb_hostchannel_init (usb_core_handle_struct *pudev, uint8_t hc_num);
/* halt channel */
usb_status_enum usb_hostchannel_halt (usb_core_handle_struct *pudev, uint8_t hc_num);
/* prepare host channel for transferring packets */
usb_status_enum usb_hostchannel_startxfer (usb_core_handle_struct *pudev, uint8_t hc_num);
/* issue a ping token */
usb_status_enum usb_hostchannel_ping (usb_core_handle_struct *pudev, uint8_t hc_num);
/* reset host port */
uint32_t usb_port_reset (usb_core_handle_struct *pudev);
/* control the VBUS to power */
void usb_vbus_drive (usb_core_handle_struct *pudev, uint8_t state);
/* stop the USB host and clean up fifos */
void usb_host_stop (usb_core_handle_struct *pudev);
#endif /* USE_HOST_MODE */
/* device APIs */
#ifdef USE_DEVICE_MODE
/* initialize USB core registers for device mode */
usb_status_enum usb_devcore_init (usb_core_handle_struct *pudev);
/* configures endpoint 0 to receive SETUP packets */
void usb_ep0_startout (usb_core_handle_struct *pudev);
/* active remote wakeup signalling */
void usb_remotewakeup_active (usb_core_handle_struct *pudev);
/* active USB core clock */
void usb_clock_ungate (usb_core_handle_struct *pudev);
/* stop the device and clean up fifos */
void usb_device_stop (usb_core_handle_struct *pudev);
#endif /* USE_DEVICE_MODE */
#endif /* USB_CORE_H */

View File

@@ -0,0 +1,100 @@
/*!
\file usb_defines.h
\brief USB core defines
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef USB_DEFINES_H
#define USB_DEFINES_H
#include "usb_conf.h"
#ifndef NULL
#define NULL (void *)0 /*!< USB null marco value*/
#endif /* NULL */
#define USB_CORE_SPEED_HIGH 0U /* USB core speed is high-speed */
#define USB_CORE_SPEED_FULL 1U /* USB core speed is full-speed */
#define USBFS_MAX_PACKET_SIZE 64U /* USBFS max packet size */
#define USBFS_MAX_HOST_CHANNELCOUNT 8U /* USBFS host channel count */
#define USBFS_MAX_DEV_EPCOUNT 4U /* USBFS device endpoint count */
#define USBFS_MAX_FIFO_WORDLEN 320U /* USBFS max fifo size in words */
#define USBHS_MAX_PACKET_SIZE 512U /* USBHS max packet size */
#define USBHS_MAX_HOST_CHANNELCOUNT 12U /* USBHS host channel count */
#define USBHS_MAX_DEV_EPCOUNT 6U /* USBHS device endpoint count */
#define USBHS_MAX_FIFO_WORDLEN 1280U /* USBHS max fifo size in words */
#define USB_CORE_ULPI_PHY 1U /* USB core use external ULPI PHY */
#define USB_CORE_EMBEDDED_PHY 2U /* USB core use embedded PHY */
#define DSTAT_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0U /* USB enumerate speed use high-speed PHY clock in 30MHz or 60MHz */
#define DSTAT_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1U /* USB enumerate speed use full-speed PHY clock in 30MHz or 60MHz */
#define DSTAT_ENUMSPD_LS_PHY_6MHZ 2U /* USB enumerate speed use low-speed PHY clock in 6MHz */
#define DSTAT_ENUMSPD_FS_PHY_48MHZ 3U /* USB enumerate speed use full-speed PHY clock in 48MHz */
#define GRSTATR_RPCKST_IN 2U /* IN data packet received */
#define GRSTATR_RPCKST_IN_XFER_COMP 3U /* IN transfer completed (generates an interrupt if poped) */
#define GRSTATR_RPCKST_DATA_TOGGLE_ERR 5U /* Data toggle error (generates an interrupt if poped) */
#define GRSTATR_RPCKST_CH_HALTED 7U /* Channel halted (generates an interrupt if poped) */
#define DEVICE_MODE 0U /* USB core in device mode */
#define HOST_MODE 1U /* USB core in host mode */
#define OTG_MODE 2U /* USB core in OTG mode */
#define USB_EPTYPE_CTRL 0U /* USB control endpoint type */
#define USB_EPTYPE_ISOC 1U /* USB synchronous endpoint type */
#define USB_EPTYPE_BULK 2U /* USB bulk endpoint type */
#define USB_EPTYPE_INTR 3U /* USB interrupt endpoint type */
#define USB_EPTYPE_MASK 3U /* USB endpoint type mask */
#define RXSTAT_GOUT_NAK 1U /* global OUT NAK (triggers an interrupt) */
#define RXSTAT_DATA_UPDT 2U /* OUT data packet received */
#define RXSTAT_XFER_COMP 3U /* OUT transfer completed (triggers an interrupt) */
#define RXSTAT_SETUP_COMP 4U /* SETUP transaction completed (triggers an interrupt) */
#define RXSTAT_SETUP_UPDT 6U /* SETUP data packet received */
#define DPID_DATA0 0U /* device endpoint data PID is DATA0 */
#define DPID_DATA1 2U /* device endpoint data PID is DATA1 */
#define DPID_DATA2 1U /* device endpoint data PID is DATA2 */
#define DPID_MDATA 3U /* device endpoint data PID is MDATA */
#define HC_PID_DATA0 0U /* host channel data PID is DATA0 */
#define HC_PID_DATA2 1U /* host channel data PID is DATA2 */
#define HC_PID_DATA1 2U /* host channel data PID is DATA1 */
#define HC_PID_SETUP 3U /* host channel data PID is SETUP */
#define HPRT_PRTSPD_HIGH_SPEED 0U /* host port speed use high speed */
#define HPRT_PRTSPD_FULL_SPEED 1U /* host port speed use full speed */
#define HPRT_PRTSPD_LOW_SPEED 2U /* host port speed use low speed */
#define HCTLR_30_60_MHZ 0U /* USB PHY(ULPI) clock is 60MHz */
#define HCTLR_48_MHZ 1U /* USB PHY(embedded full-speed) clock is 48MHz */
#define HCTLR_6_MHZ 2U /* USB PHY(embedded low-speed) clock is 6MHz */
#define HCCHAR_CTRL 0U /* control channel type */
#define HCCHAR_ISOC 1U /* synchronous channel type */
#define HCCHAR_BULK 2U /* bulk channel type */
#define HCCHAR_INTR 3U /* interrupt channel type */
typedef enum
{
USB_HS_CORE_ID = 0,
USB_FS_CORE_ID = 1
}usb_core_id_enum;
typedef enum
{
USB_SPEED_UNKNOWN = 0,
USB_SPEED_LOW,
USB_SPEED_FULL,
USB_SPEED_HIGH
}usb_speed_enum;
#endif /* USB_DEFINES_H */

View File

@@ -0,0 +1,639 @@
/*!
\file usb_regs.h
\brief USB FS&HS cell registers definition and handle macros
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#ifndef USB_REGS_H
#define USB_REGS_H
#include "usb_conf.h"
#define USBFS USBFS_BASE /*!< base address of USBFS registers */
#define USBHS USBHS_BASE /*!< base address of USBHS registers */
#ifdef USE_USBFS
#define USBX USBFS /*!< USB full speed mode */
#endif /* USE_USBFS */
#ifdef USE_USBHS
#define USBX USBHS /*!< USB high speed mode */
#endif /* USE_USBHS */
/* registers location definitions */
#define LOCATE_DIEPTFLEN(x) (0x104U + 4U * ((x) - 1U)) /*!< locate device IN endpoint-x transfer length registers */
#define LOCATE_HCHCTL(x) (0x500U + 0x20U * (x)) /*!< locate host channel-x control registers */
#define LOCATE_HCHSTCTL(x) (0x504U + 0x20U * (x)) /*!< locate host channel-x split transaction control registers */
#define LOCATE_HCHINTF(x) (0x508U + 0x20U * (x)) /*!< locate host channel-x interrupt flag registers */
#define LOCATE_HCHINTEN(x) (0x50CU + 0x20U * (x)) /*!< locate host channel-x interrupt enable registers */
#define LOCATE_HCHLEN(x) (0x510U + 0x20U * (x)) /*!< locate host channel-x transfer length registers */
#define LOCATE_HCHDMAADDR(x) (0x514U + 0x20U * (x)) /*!< locate host channel-x DMA address registers */
#define LOCATE_DIEPCTL(x) (0x900U + 0x20U * (x)) /*!< locate device IN endpoint-x control registers */
#define LOCATE_DOEPCTL(x) (0xB00U + 0x20U * (x)) /*!< locate device OUT endpoint-x control registers */
#define LOCATE_DIEPINTF(x) (0x908U + 0x20U * (x)) /*!< locate device IN endpoint-x interrupt flag registers */
#define LOCATE_DOEPINTF(x) (0xB08U + 0x20U * (x)) /*!< locate device OUT endpoint-x interrupt flag registers */
#define LOCATE_DIEPLEN(x) (0x910U + 0x20U * (x)) /*!< locate device IN endpoint-x transfer length registers */
#define LOCATE_DOEPLEN(x) (0xB10U + 0x20U * (x)) /*!< locate device OUT endpoint-x transfer length registers */
#define LOCATE_DIEPxDMAADDR(x) (0x914U + 0x20U * (x)) /*!< locate device IN endpoint-x DMA address registers */
#define LOCATE_DOEPxDMAADDR(x) (0xB14U + 0x20U * (x)) /*!< locate device OUT endpoint-x DMA address registers */
#define LOCATE_DIEPxTFSTAT(x) (0x918U + 0x20U * (x)) /*!< locate Device IN endpoint-x transmit FIFO status register */
#define LOCATE_FIFO(x) (((x) + 1U) << 12U) /*!< locate FIFO-x memory */
/* registers definitions */
#define USB_GOTGCS REG32(((USBX) + 0x0000U)) /*!< global OTG control and status register */
#define USB_GOTGINTF REG32(((USBX) + 0x0004U)) /*!< global OTG interrupt flag register */
#define USB_GAHBCS REG32(((USBX) + 0x0008U)) /*!< global AHB control and status register */
#define USB_GUSBCS REG32(((USBX) + 0x000CU)) /*!< global USB control and status register */
#define USB_GRSTCTL REG32(((USBX) + 0x0010U)) /*!< global reset control register */
#define USB_GINTF REG32(((USBX) + 0x0014U)) /*!< global interrupt flag register */
#define USB_GINTEN REG32(((USBX) + 0x0018U)) /*!< global interrupt enable register */
#define USB_GRSTATR REG32(((USBX) + 0x001CU)) /*!< global receive status read register */
#define USB_GRSTATP REG32(((USBX) + 0x0020U)) /*!< global receive status read and pop register */
#define USB_GRFLEN REG32(((USBX) + 0x0024U)) /*!< global receive FIFO length register */
#define USB_HNPTFLEN REG32(((USBX) + 0x0028U)) /*!< host non-periodic transmit FIFO length register */
#define USB_DIEP0TFLEN REG32(((USBX) + 0x0028U)) /*!< device IN endpoint 0 transmit FIFO length register */
#define USB_HNPTFQSTAT REG32(((USBX) + 0x002CU)) /*!< host non-periodic transmint FIFO/queue status register */
#define USB_GCCFG REG32(((USBX) + 0x0038U)) /*!< global core configuration register */
#define USB_CID REG32(((USBX) + 0x003CU)) /*!< core id register */
#define USB_HPTFLEN REG32(((USBX) + 0x0100U)) /*!< host periodic transmit FIFO length register */
#define USB_DIEPxTFLEN(x) REG32(((USBX) + LOCATE_DIEPTFLEN(x))) /*!< device IN endpoint transmit FIFO length register */
#define USB_HCTL REG32(((USBX) + 0x0400U)) /*!< host control register */
#define USB_HFT REG32(((USBX) + 0x0404U)) /*!< host frame interval register */
#define USB_HFINFR REG32(((USBX) + 0x0408U)) /*!< host frame information remaining register */
#define USB_HPTFQSTAT REG32(((USBX) + 0x0410U)) /*!< host periodic transmit FIFO/queue status register */
#define USB_HACHINT REG32(((USBX) + 0x0414U)) /*!< host all channels interrupt register */
#define USB_HACHINTEN REG32(((USBX) + 0x0418U)) /*!< host all channels interrupt enable register */
#define USB_HPCS REG32(((USBX) + 0x0440U)) /*!< host port control and status register */
#define USB_HCHxCTL(x) REG32(((USBX) + LOCATE_HCHCTL(x))) /*!< host channel-x control register */
#define USB_HCHxSTCTL(x) REG32(((USBX) + LOCATE_HCHSTCTL(x))) /*!< host channel-x split transaction control register */
#define USB_HCHxINTF(x) REG32(((USBX) + LOCATE_HCHINTF(x))) /*!< host channel-x interrupt flag register */
#define USB_HCHxINTEN(x) REG32(((USBX) + LOCATE_HCHINTEN(x))) /*!< host channel-x interrupt enable register */
#define USB_HCHxLEN(x) REG32(((USBX) + LOCATE_HCHLEN(x))) /*!< host channel-x tranfer length register */
#define USB_HCHxDMAADDR(x) REG32(((USBX) + LOCATE_HCHDMAADDR(x))) /*!< host channel-x DMA address register */
#define USB_DCFG REG32(((USBX) + 0x0800U)) /*!< device configuration register */
#define USB_DCTL REG32(((USBX) + 0x0804U)) /*!< device control register */
#define USB_DSTAT REG32(((USBX) + 0x0808U)) /*!< device status register */
#define USB_DIEPINTEN REG32(((USBX) + 0x0810U)) /*!< device IN endpoint common interrupt enable register */
#define USB_DOEPINTEN REG32(((USBX) + 0x0814U)) /*!< device OUT endpoint common interrupt enable register */
#define USB_DAEPINT REG32(((USBX) + 0x0818U)) /*!< device all endpoints interrupt register */
#define USB_DAEPINTEN REG32(((USBX) + 0x081CU)) /*!< device all endpoints interrupt enable register */
#define USB_DVBUSDT REG32(((USBX) + 0x0828U)) /*!< device vbus discharge time register */
#define USB_DVBUSPT REG32(((USBX) + 0x082CU)) /*!< device vbus pulsing time register */
#define USB_DIEPFEINTEN REG32(((USBX) + 0x0834U)) /*!< device IN endpoint FIFO empty interrupt enable register */
#define USB_DEP1INT REG32(((USBX) + 0x0838U)) /*!< device endpoint 1 interrupt register */
#define USB_DEP1INTEN REG32(((USBX) + 0x083CU)) /*!< device endpoint 1 interrupt enable register */
#define USB_DIEP1INTEN REG32(((USBX) + 0x0844U)) /*!< device IN endpoint 1 interrupt enable register */
#define USB_DOEP1INTEN REG32(((USBX) + 0x0884U)) /*!< device OUT endpoint 1 interrupt enable register */
#define USB_DIEP0CTL REG32(((USBX) + 0x0900U)) /*!< device IN endpoint 0 control register */
#define USB_DIEP0LEN REG32(((USBX) + 0x0910U)) /*!< device IN endpoint 0 transfer length register */
#define USB_DOEP0CTL REG32(((USBX) + 0x0B00U)) /*!< device OUT endpoint 0 control register */
#define USB_DOEP0LEN REG32(((USBX) + 0x0B10U)) /*!< device OUT endpoint 0 transfer length register */
#define USB_DIEPxCTL(x) REG32(((USBX) + LOCATE_DIEPCTL(x))) /*!< device IN endpoint-x control register */
#define USB_DOEPxCTL(x) REG32(((USBX) + LOCATE_DOEPCTL(x))) /*!< device OUT endpoint-x control register */
#define USB_DIEPxINTF(x) REG32(((USBX) + LOCATE_DIEPINTF(x))) /*!< device IN endpoint-x interrupt flag register */
#define USB_DOEPxINTF(x) REG32(((USBX) + LOCATE_DOEPINTF(x))) /*!< device OUT endpoint-x interrupt flag register */
#define USB_DIEPxLEN(x) REG32(((USBX) + LOCATE_DIEPLEN(x))) /*!< device IN endpoint-x transfer length register */
#define USB_DOEPxLEN(x) REG32(((USBX) + LOCATE_DOEPLEN(x))) /*!< device OUT endpoint-x transfer length register */
#define USB_DIEPxDMAADDR(x) REG32(((USBX) + LOCATE_DIEPxDMAADDR(x)))/*!< device IN endpoint-x DMA address register */
#define USB_DOEPxDMAADDR(x) REG32(((USBX) + LOCATE_DOEPxDMAADDR(x)))/*!< device OUT endpoint-x DMA address register */
#define USB_DIEPxTFSTAT(x) REG32(((USBX) + LOCATE_DIEPxTFSTAT(x))) /*!< device IN endpoint-x transmit FIFO status register */
#define USB_PWRCLKCTL REG32(((USBX) + 0x0E00U)) /*!< power and clock register */
#define USB_FIFO(x) (&REG32(((USBX) + LOCATE_FIFO(x)))) /*!< FIFO memory */
/* global OTG control and status register bits definitions */
#define GOTGCS_BSV BIT(19) /*!< B-Session Valid */
#define GOTGCS_ASV BIT(18) /*!< A-session valid */
#define GOTGCS_DI BIT(17) /*!< debounce interval */
#define GOTGCS_CIDPS BIT(16) /*!< id pin status */
#define GOTGCS_DHNPEN BIT(11) /*!< device HNP enable */
#define GOTGCS_HHNPEN BIT(10) /*!< host HNP enable */
#define GOTGCS_HNPREQ BIT(9) /*!< HNP request */
#define GOTGCS_HNPS BIT(8) /*!< HNP successes */
#define GOTGCS_SRPREQ BIT(1) /*!< SRP request */
#define GOTGCS_SRPS BIT(0) /*!< SRP successes */
/* global OTG interrupt flag register bits definitions */
#define GOTGINTF_DF BIT(19) /*!< debounce finish */
#define GOTGINTF_ADTO BIT(18) /*!< A-device timeout */
#define GOTGINTF_HNPDET BIT(17) /*!< host negotiation request detected */
#define GOTGINTF_HNPEND BIT(9) /*!< HNP end */
#define GOTGINTF_SRPEND BIT(8) /*!< SRP end */
#define GOTGINTF_SESEND BIT(2) /*!< session end */
/* global AHB control and status register bits definitions */
#define GAHBCS_PTXFTH BIT(8) /*!< periodic Tx FIFO threshold */
#define GAHBCS_TXFTH BIT(7) /*!< tx FIFO threshold */
#define GAHBCS_DMAEN BIT(5) /*!< DMA function Enable */
#define GAHBCS_BURST BITS(1, 4) /*!< the AHB burst type used by DMA */
#define GAHBCS_GINTEN BIT(0) /*!< global interrupt enable */
/* global USB control and status register bits definitions */
#define GUSBCS_FDM BIT(30) /*!< force device mode */
#define GUSBCS_FHM BIT(29) /*!< force host mode */
#define GUSBCS_ULPIEOI BIT(21) /*!< ULPI external over-current indicator */
#define GUSBCS_ULPIEVD BIT(20) /*!< ULPI external VBUS driver */
#define GUSBCS_UTT BITS(10, 13) /*!< USB turnaround time */
#define GUSBCS_HNPCEN BIT(9) /*!< HNP capability enable */
#define GUSBCS_SRPCEN BIT(8) /*!< SRP capability enable */
#define GUSBCS_EMBPHY BIT(6) /*!< embedded PHY selected */
#define GUSBCS_TOC BITS(0, 2) /*!< timeout calibration */
/* global reset control register bits definitions */
#define GRSTCTL_DMAIDL BIT(31) /*!< DMA idle state */
#define GRSTCTL_DMABSY BIT(30) /*!< DMA busy */
#define GRSTCTL_TXFNUM BITS(6, 10) /*!< tx FIFO number */
#define GRSTCTL_TXFF BIT(5) /*!< tx FIFO flush */
#define GRSTCTL_RXFF BIT(4) /*!< rx FIFO flush */
#define GRSTCTL_HFCRST BIT(2) /*!< host frame counter reset */
#define GRSTCTL_HCSRST BIT(1) /*!< HCLK soft reset */
#define GRSTCTL_CSRST BIT(0) /*!< core soft reset */
/* global interrupt flag register bits definitions */
#define GINTF_WKUPIF BIT(31) /*!< wakeup interrupt flag */
#define GINTF_SESIF BIT(30) /*!< session interrupt flag */
#define GINTF_DISCIF BIT(29) /*!< disconnect interrupt flag */
#define GINTF_IDPSC BIT(28) /*!< id pin status change */
#define GINTF_PTXFEIF BIT(26) /*!< periodic tx FIFO empty interrupt flag */
#define GINTF_HCIF BIT(25) /*!< host channels interrupt flag */
#define GINTF_HPIF BIT(24) /*!< host port interrupt flag */
#define GINTF_PXNCIF BIT(21) /*!< periodic transfer not complete interrupt flag */
#define GINTF_ISOONCIF BIT(21) /*!< isochronous OUT transfer not complete interrupt flag */
#define GINTF_ISOINCIF BIT(20) /*!< isochronous IN transfer not complete interrupt flag */
#define GINTF_OEPIF BIT(19) /*!< OUT endpoint interrupt flag */
#define GINTF_IEPIF BIT(18) /*!< IN endpoint interrupt flag */
#define GINTF_EOPFIF BIT(15) /*!< end of periodic frame interrupt flag */
#define GINTF_ISOOPDIF BIT(14) /*!< isochronous OUT packet dropped interrupt flag */
#define GINTF_ENUMFIF BIT(13) /*!< enumeration finished */
#define GINTF_RST BIT(12) /*!< USB reset */
#define GINTF_SP BIT(11) /*!< USB suspend */
#define GINTF_ESP BIT(10) /*!< early suspend */
#define GINTF_GONAK BIT(7) /*!< global OUT NAK effective */
#define GINTF_GNPINAK BIT(6) /*!< global IN non-periodic NAK effective */
#define GINTF_NPTXFEIF BIT(5) /*!< non-periodic tx FIFO empty interrupt flag */
#define GINTF_RXFNEIF BIT(4) /*!< rx FIFO non-empty interrupt flag */
#define GINTF_SOF BIT(3) /*!< start of frame */
#define GINTF_OTGIF BIT(2) /*!< OTG interrupt flag */
#define GINTF_MFIF BIT(1) /*!< mode fault interrupt flag */
#define GINTF_COPM BIT(0) /*!< current operation mode */
/* global interrupt enable register bits definitions */
#define GINTEN_WKUPIE BIT(31) /*!< wakeup interrupt enable */
#define GINTEN_SESIE BIT(30) /*!< session interrupt enable */
#define GINTEN_DISCIE BIT(29) /*!< disconnect interrupt enable */
#define GINTEN_IDPSCIE BIT(28) /*!< id pin status change interrupt enable */
#define GINTEN_PTXFEIE BIT(26) /*!< periodic tx FIFO empty interrupt enable */
#define GINTEN_HCIE BIT(25) /*!< host channels interrupt enable */
#define GINTEN_HPIE BIT(24) /*!< host port interrupt enable */
#define GINTEN_IPXIE BIT(21) /*!< periodic transfer not complete interrupt enable */
#define GINTEN_ISOONCIE BIT(21) /*!< isochronous OUT transfer not complete interrupt enable */
#define GINTEN_ISOINCIE BIT(20) /*!< isochronous IN transfer not complete interrupt enable */
#define GINTEN_OEPIE BIT(19) /*!< OUT endpoints interrupt enable */
#define GINTEN_IEPIE BIT(18) /*!< IN endpoints interrupt enable */
#define GINTEN_EOPFIE BIT(15) /*!< end of periodic frame interrupt enable */
#define GINTEN_ISOOPDIE BIT(14) /*!< isochronous OUT packet dropped interrupt enable */
#define GINTEN_ENUMFIE BIT(13) /*!< enumeration finish enable */
#define GINTEN_RSTIE BIT(12) /*!< USB reset interrupt enable */
#define GINTEN_SPIE BIT(11) /*!< USB suspend interrupt enable */
#define GINTEN_ESPIE BIT(10) /*!< early suspend interrupt enable */
#define GINTEN_GONAKIE BIT(7) /*!< global OUT NAK effective interrupt enable */
#define GINTEN_GNPINAKIE BIT(6) /*!< global non-periodic IN NAK effective interrupt enable */
#define GINTEN_NPTXFEIE BIT(5) /*!< non-periodic Tx FIFO empty interrupt enable */
#define GINTEN_RXFNEIE BIT(4) /*!< receive FIFO non-empty interrupt enable */
#define GINTEN_SOFIE BIT(3) /*!< start of frame interrupt enable */
#define GINTEN_OTGIE BIT(2) /*!< OTG interrupt enable */
#define GINTEN_MFIE BIT(1) /*!< mode fault interrupt enable */
/* global receive status read and pop register bits definitions */
#define GRSTATRP_RPCKST BITS(17, 20) /*!< received packet status */
#define GRSTATRP_DPID BITS(15, 16) /*!< data PID */
#define GRSTATRP_BCOUNT BITS(4, 14) /*!< byte count */
#define GRSTATRP_CNUM BITS(0, 3) /*!< channel number */
#define GRSTATRP_EPNUM BITS(0, 3) /*!< endpoint number */
/* global receive FIFO length register bits definitions */
#define GRFLEN_RXFD BITS(0, 15) /*!< rx FIFO depth */
/* host non-periodic transmit FIFO length register bits definitions */
#define HNPTFLEN_HNPTXFD BITS(16, 31) /*!< non-periodic Tx FIFO depth */
#define HNPTFLEN_HNPTXRSAR BITS(0, 15) /*!< non-periodic Tx RAM start address */
/* IN endpoint 0 transmit FIFO length register bits definitions */
#define DIEP0TFLEN_IEP0TXFD BITS(16, 31) /*!< IN Endpoint 0 Tx FIFO depth */
#define DIEP0TFLEN_IEP0TXRSAR BITS(0, 15) /*!< IN Endpoint 0 TX RAM start address */
/* host non-periodic transmit FIFO/queue status register bits definitions */
#define HNPTFQSTAT_NPTXRQTOP BITS(24, 30) /*!< top entry of the non-periodic Tx request queue */
#define HNPTFQSTAT_NPTXRQS BITS(16, 23) /*!< non-periodic Tx request queue space */
#define HNPTFQSTAT_NPTXFS BITS(0, 15) /*!< non-periodic Tx FIFO space */
#define HNPTFQSTAT_CNUM BITS(27, 30) /*!< channel number*/
#define HNPTFQSTAT_EPNUM BITS(27, 30) /*!< endpoint number */
#define HNPTFQSTAT_TYPE BITS(25, 26) /*!< token type */
#define HNPTFQSTAT_TMF BIT(24) /*!< terminate flag */
/* global core configuration register bits definitions */
#define GCCFG_VBUSIG BIT(21) /*!< vbus ignored */
#define GCCFG_SOFOEN BIT(20) /*!< SOF output enable */
#define GCCFG_VBUSBCEN BIT(19) /*!< the VBUS B-device comparer enable */
#define GCCFG_VBUSACEN BIT(18) /*!< the VBUS A-device comparer enable */
#define GCCFG_PWRON BIT(16) /*!< power on */
/* core ID register bits definitions */
#define CID_CID BITS(0, 31) /*!< core ID */
/* host periodic transmit FIFO length register bits definitions */
#define HPTFLEN_HPTXFD BITS(16, 31) /*!< host periodic Tx FIFO depth */
#define HPTFLEN_HPTXFSAR BITS(0, 15) /*!< host periodic Tx RAM start address */
/* device IN endpoint transmit FIFO length register bits definitions */
#define DIEPTFLEN_IEPTXFD BITS(16, 31) /*!< IN endpoint Tx FIFO x depth */
#define DIEPTFLEN_IEPTXRSAR BITS(0, 15) /*!< IN endpoint FIFOx Tx x RAM start address */
/* host control register bits definitions */
#define HCTL_SPDFSLS BIT(2) /*!< speed limited to FS and LS */
#define HCTL_CLKSEL BITS(0, 1) /*!< clock select for USB clock */
/* host frame interval register bits definitions */
#define HFT_FRI BITS(0, 15) /*!< frame interval */
/* host frame information remaining register bits definitions */
#define HFINFR_FRT BITS(16, 31) /*!< frame remaining time */
#define HFINFR_FRNUM BITS(0, 15) /*!< frame number */
/* host periodic transmit FIFO/queue status register bits definitions */
#define HPTFQSTAT_PTXREQT BITS(24, 31) /*!< top entry of the periodic Tx request queue */
#define HPTFQSTAT_PTXREQS BITS(16, 23) /*!< periodic Tx request queue space */
#define HPTFQSTAT_PTXFS BITS(0, 15) /*!< periodic Tx FIFO space */
#define HPTFQSTAT_OEFRM BIT(31) /*!< odd/eveb frame */
#define HPTFQSTAT_CNUM BITS(27, 30) /*!< channel number */
#define HPTFQSTAT_EPNUM BITS(27, 30) /*!< endpoint number */
#define HPTFQSTAT_TYPE BITS(25, 26) /*!< token type */
#define HPTFQSTAT_TMF BIT(24) /*!< terminate flag */
/* host all channels interrupt register bits definitions */
#define HACHINT_HACHINT BITS(0, 11) /*!< host all channel interrupts */
/* host all channels interrupt enable register bits definitions */
#define HACHINTEN_CINTEN BITS(0, 11) /*!< channel interrupt enable */
/* host port control and status register bits definitions */
#define HPCS_PS BITS(17, 18) /*!< port speed */
#define HPCS_PP BIT(12) /*!< port power */
#define HPCS_PLST BITS(10, 11) /*!< port line status */
#define HPCS_PRST BIT(8) /*!< port reset */
#define HPCS_PSP BIT(7) /*!< port suspend */
#define HPCS_PREM BIT(6) /*!< port resume */
#define HPCS_PEDC BIT(3) /*!< port enable/disable change */
#define HPCS_PE BIT(2) /*!< port enable */
#define HPCS_PCD BIT(1) /*!< port connect detected */
#define HPCS_PCST BIT(0) /*!< port connect status */
/* host channel-x control register bits definitions */
#define HCHCTL_CEN BIT(31) /*!< channel enable */
#define HCHCTL_CDIS BIT(30) /*!< channel disable */
#define HCHCTL_ODDFRM BIT(29) /*!< odd frame */
#define HCHCTL_DAR BITS(22, 28) /*!< device address */
#define HCHCTL_MPC BITS(20, 21) /*!< multiple packet count */
#define HCHCTL_EPTYPE BITS(18, 19) /*!< endpoint type */
#define HCHCTL_LSD BIT(17) /*!< low-speed device */
#define HCHCTL_EPDIR BIT(15) /*!< endpoint direction */
#define HCHCTL_EPNUM BITS(11, 14) /*!< endpoint number */
#define HCHCTL_MPL BITS(0, 10) /*!< maximum packet length */
/* host channel-x split transaction register bits definitions */
#define HCHSTCTL_SPLEN BIT(31) /*!< enable high-speed split transaction */
#define HCHSTCTL_CSPLT BIT(16) /*!< complete-split enable */
#define HCHSTCTL_ISOPCE BITS(14, 15) /*!< isochronous OUT payload continuation encoding */
#define HCHSTCTL_HADDR BITS(7, 13) /*!< HUB address */
#define HCHSTCTL_PADDR BITS(0, 6) /*!< port address */
/* host channel-x interrupt flag register bits definitions */
#define HCHINTF_DTER BIT(10) /*!< data toggle error */
#define HCHINTF_REQOVR BIT(9) /*!< request queue overrun */
#define HCHINTF_BBER BIT(8) /*!< babble error */
#define HCHINTF_USBER BIT(7) /*!< USB bus Error */
#define HCHINTF_NYET BIT(6) /*!< NYET */
#define HCHINTF_ACK BIT(5) /*!< ACK */
#define HCHINTF_NAK BIT(4) /*!< NAK */
#define HCHINTF_STALL BIT(3) /*!< STALL */
#define HCHINTF_DMAER BIT(2) /*!< DMA error */
#define HCHINTF_CH BIT(1) /*!< channel halted */
#define HCHINTF_TF BIT(0) /*!< transfer finished */
/* host channel-x interrupt enable register bits definitions */
#define HCHINTEN_DTERIE BIT(10) /*!< data toggle error interrupt enable */
#define HCHINTEN_REQOVRIE BIT(9) /*!< request queue overrun interrupt enable */
#define HCHINTEN_BBERIE BIT(8) /*!< babble error interrupt enable */
#define HCHINTEN_USBERIE BIT(7) /*!< USB bus error interrupt enable */
#define HCHINTEN_NYETIE BIT(6) /*!< NYET interrupt enable */
#define HCHINTEN_ACKIE BIT(5) /*!< ACK interrupt enable */
#define HCHINTEN_NAKIE BIT(4) /*!< NAK interrupt enable */
#define HCHINTEN_STALLIE BIT(3) /*!< STALL interrupt enable */
#define HCHINTEN_DMAERIE BIT(2) /*!< DMA error interrupt enable */
#define HCHINTEN_CHIE BIT(1) /*!< channel halted interrupt enable */
#define HCHINTEN_TFIE BIT(0) /*!< transfer finished interrupt enable */
/* host channel-x transfer length register bits definitions */
#define HCHLEN_PING BIT(31) /*!< PING token request */
#define HCHLEN_DPID BITS(29, 30) /*!< data PID */
#define HCHLEN_PCNT BITS(19, 28) /*!< packet count */
#define HCHLEN_TLEN BITS(0, 18) /*!< transfer length */
/* host channel-x DMA address register bits definitions */
#define HCHDMAADDR_DMAADDR BITS(0, 31) /*!< DMA address */
/* device control and status registers */
/* device configuration registers bits definitions */
#define DCFG_EOPFT BITS(11, 12) /*!< end of periodic frame time */
#define DCFG_DAR BITS(4, 10) /*!< device address */
#define DCFG_NZLSOH BIT(2) /*!< non-zero-length status OUT handshake */
#define DCFG_DS BITS(0, 1) /*!< device speed */
/* device control registers bits definitions */
#define DCTL_POIF BIT(11) /*!< power-on initialization finished */
#define DCTL_CGONAK BIT(10) /*!< clear global OUT NAK */
#define DCTL_SGONAK BIT(9) /*!< set global OUT NAK */
#define DCTL_CGINAK BIT(8) /*!< clear global IN NAK */
#define DCTL_SGINAK BIT(7) /*!< set global IN NAK */
#define DCTL_GONS BIT(3) /*!< global OUT NAK status */
#define DCTL_GINS BIT(2) /*!< global IN NAK status */
#define DCTL_SD BIT(1) /*!< soft disconnect */
#define DCTL_RWKUP BIT(0) /*!< remote wakeup */
/* device status registers bits definitions */
#define DSTAT_FNRSOF BITS(8, 21) /*!< the frame number of the received SOF. */
#define DSTAT_ES BITS(1, 2) /*!< enumerated speed */
#define DSTAT_SPST BIT(0) /*!< suspend status */
/* device IN endpoint common interrupt enable registers bits definitions */
#define DIEPINTEN_NAKEN BIT(13) /*!< NAK handshake sent by USBHS interrupt enable bit */
#define DIEPINTEN_TXFEEN BIT(7) /*!< transmit FIFO empty interrupt enable bit */
#define DIEPINTEN_IEPNEEN BIT(6) /*!< IN endpoint NAK effective interrupt enable bit */
#define DIEPINTEN_EPTXFUDEN BIT(4) /*!< endpoint Tx FIFO underrun interrupt enable bit */
#define DIEPINTEN_CITOEN BIT(3) /*!< control In Timeout interrupt enable bit */
#define DIEPINTEN_EPDISEN BIT(1) /*!< endpoint disabled interrupt enable bit */
#define DIEPINTEN_TFEN BIT(0) /*!< transfer finished interrupt enable bit */
/* device OUT endpoint common interrupt enable registers bits definitions */
#define DOEPINTEN_NYETEN BIT(14) /*!< NYET handshake is sent interrupt enable bit */
#define DOEPINTEN_BTBSTPEN BIT(6) /*!< back-to-back SETUP packets interrupt enable bit */
#define DOEPINTEN_EPRXFOVREN BIT(4) /*!< endpoint Rx FIFO overrun interrupt enable bit */
#define DOEPINTEN_STPFEN BIT(3) /*!< SETUP phase finished interrupt enable bit */
#define DOEPINTEN_EPDISEN BIT(1) /*!< endpoint disabled interrupt enable bit */
#define DOEPINTEN_TFEN BIT(0) /*!< transfer finished interrupt enable bit */
/* device all endpoints interrupt registers bits definitions */
#define DAEPINT_OEPITB BITS(16, 21) /*!< device all OUT endpoint interrupt bits */
#define DAEPINT_IEPITB BITS(0, 5) /*!< device all IN endpoint interrupt bits */
/* device all endpoints interrupt enable registers bits definitions */
#define DAEPINTEN_OEPIE BITS(16, 21) /*!< OUT endpoint interrupt enable */
#define DAEPINTEN_IEPIE BITS(0, 3) /*!< IN endpoint interrupt enable */
/* device Vbus discharge time registers bits definitions */
#define DVBUSDT_DVBUSDT BITS(0, 15) /*!< device VBUS discharge time */
/* device Vbus pulsing time registers bits definitions */
#define DVBUSPT_DVBUSPT BITS(0, 11) /*!< device VBUS pulsing time */
/* device IN endpoint FIFO empty interrupt enable register bits definitions */
#define DIEPFEINTEN_IEPTXFEIE BITS(0, 5) /*!< IN endpoint Tx FIFO empty interrupt enable bits */
/* device endpoint 1 interrupt register bits definitions */
#define DEP1INT_OEP1INT BIT(17) /*!< OUT Endpoint 1 interrupt */
#define DEP1INT_IEP1INT BIT(1) /*!< IN Endpoint 1 interrupt */
/* device endpoint 1 interrupt register enable bits definitions */
#define DEP1INTEN_OEP1INTEN BIT(17) /*!< OUT Endpoint 1 interrupt enable */
#define DEP1INTEN_IEP1INTEN BIT(1) /*!< IN Endpoint 1 interrupt enable */
/* device IN endpoint 1 interrupt enable register bits definitions */
#define DIEP1INTEN_NAKEN BIT(13) /*!< NAK handshake sent by USBHS interrupt enable bit */
#define DIEP1INTEN_IEPNEEN BIT(6) /*!< IN endpoint NAK effective interrupt enable bit */
#define DIEP1INTEN_EPTXFUDEN BIT(4) /*!< endpoint Tx FIFO underrun interrupt enable bit */
#define DIEP1INTEN_CITOEN BIT(3) /*!< control In Timeout interrupt enable bit */
#define DIEP1INTEN_EPDISEN BIT(1) /*!< endpoint disabled interrupt enable bit */
#define DIEP1INTEN_TFEN BIT(0) /*!< transfer finished interrupt enable bit */
/* device OUT endpoint 1 interrupt enable register bits definitions */
#define DOEP1INTEN_NYETEN BIT(14) /*!< NYET handshake is sent interrupt enable bit */
#define DOEP1INTEN_BTBSTPEN BIT(6) /*!< back-to-back SETUP packets interrupt enable bit */
#define DOEP1INTEN_EPRXOVREN BIT(4) /*!< endpoint Rx FIFO over run interrupt enable bit */
#define DOEP1INTEN_STPFEN BIT(3) /*!< SETUP phase finished interrupt enable bit */
#define DOEP1INTEN_EPDISEN BIT(1) /*!< endpoint disabled interrupt enable bit */
#define DOEP1INTEN_TFEN BIT(0) /*!< back-to-back SETUP packets interrupt enable bit */
/* device endpoint 0 control register bits definitions */
#define DEP0CTL_EPEN BIT(31) /*!< endpoint enable */
#define DEP0CTL_EPD BIT(30) /*!< endpoint disable */
#define DEP0CTL_SNAK BIT(27) /*!< set NAK */
#define DEP0CTL_CNAK BIT(26) /*!< clear NAK */
#define DIEP0CTL_TXFNUM BITS(22, 25) /*!< tx FIFO number */
#define DEP0CTL_STALL BIT(21) /*!< STALL handshake */
#define DOEP0CTL_SNOOP BIT(20) /*!< snoop mode */
#define DEP0CTL_EPTYPE BITS(18, 19) /*!< endpoint type */
#define DEP0CTL_NAKS BIT(17) /*!< NAK status */
#define DEP0CTL_EPACT BIT(15) /*!< endpoint active */
#define DEP0CTL_MPL BITS(0, 1) /*!< maximum packet length */
/* device endpoint x control register bits definitions */
#define DEPCTL_EPEN BIT(31) /*!< endpoint enable */
#define DEPCTL_EPD BIT(30) /*!< endpoint disable */
#define DEPCTL_SODDFRM BIT(29) /*!< set odd frame */
#define DEPCTL_SD1PID BIT(29) /*!< set DATA1 PID */
#define DEPCTL_SEVNFRM BIT(28) /*!< set even frame */
#define DEPCTL_SD0PID BIT(28) /*!< set DATA0 PID */
#define DEPCTL_SNAK BIT(27) /*!< set NAK */
#define DEPCTL_CNAK BIT(26) /*!< clear NAK */
#define DIEPCTL_TXFNUM BITS(22, 25) /*!< tx FIFO number */
#define DEPCTL_STALL BIT(21) /*!< STALL handshake */
#define DOEPCTL_SNOOP BIT(20) /*!< snoop mode */
#define DEPCTL_EPTYPE BITS(18, 19) /*!< endpoint type */
#define DEPCTL_NAKS BIT(17) /*!< NAK status */
#define DEPCTL_EOFRM BIT(16) /*!< even/odd frame */
#define DEPCTL_DPID BIT(16) /*!< endpoint data PID */
#define DEPCTL_EPACT BIT(15) /*!< endpoint active */
#define DEPCTL_MPL BITS(0, 10) /*!< maximum packet length */
/* device IN endpoint-x interrupt flag register bits definitions */
#define DIEPINTF_NAK BIT(13) /*!< NAK handshake sent by USBHS */
#define DIEPINTF_TXFE BIT(7) /*!< transmit FIFO empty */
#define DIEPINTF_IEPNE BIT(6) /*!< IN endpoint NAK effective */
#define DIEPINTF_EPTXFUD BIT(4) /*!< endpoint Tx FIFO underrun */
#define DIEPINTF_CITO BIT(3) /*!< control In Timeout interrupt */
#define DIEPINTF_EPDIS BIT(1) /*!< endpoint disabled */
#define DIEPINTF_TF BIT(0) /*!< transfer finished */
/* device OUT endpoint-x interrupt flag register bits definitions */
#define DOEPINTF_NYET BIT(14) /*!< NYET handshake is sent */
#define DOEPINTF_BTBSTP BIT(6) /*!< back-to-back SETUP packets */
#define DOEPINTF_EPRXFOVR BIT(4) /*!< endpoint Rx FIFO overrun */
#define DOEPINTF_STPF BIT(3) /*!< SETUP phase finished */
#define DOEPINTF_EPDIS BIT(1) /*!< endpoint disabled */
#define DOEPINTF_TF BIT(0) /*!< transfer finished */
/* device IN endpoint 0 transfer length register bits definitions */
#define DIEP0LEN_PCNT BITS(19, 20) /*!< packet count */
#define DIEP0LEN_TLEN BITS(0, 6) /*!< transfer length */
/* device OUT endpoint 0 transfer length register bits definitions */
#define DOEP0LEN_STPCNT BITS(29, 30) /*!< SETUP packet count */
#define DOEP0LEN_PCNT BIT(19) /*!< packet count */
#define DOEP0LEN_TLEN BITS(0, 6) /*!< transfer length */
/* device OUT endpoint-x transfer length register bits definitions */
#define DOEPLEN_RXDPID BITS(29, 30) /*!< received data PID */
#define DOEPLEN_STPCNT BITS(29, 30) /*!< SETUP packet count */
#define DIEPLEN_MCNT BITS(29, 30) /*!< multi count */
#define DEPLEN_PCNT BITS(19, 28) /*!< packet count */
#define DEPLEN_TLEN BITS(0, 18) /*!< transfer length */
/* device IN endpoint-x DMA address register bits definitions */
#define DIEPDMAADDR_DMAADDR BITS(0, 31) /*!< DMA address */
/* device OUT endpoint-x DMA address register bits definitions */
#define DOEPDMAADDR_DMAADDR BITS(0, 31) /*!< DMA address */
/* device IN endpoint-x transmit FIFO status register bits definitions */
#define DIEPTFSTAT_IEPTFS BITS(0, 15) /*!< IN endpoint<6E><74>s Tx FIFO space remaining */
/* USB power and clock registers bits definition */
#define PWRCLKCTL_SHCLK BIT(1) /*!< stop HCLK */
#define PWRCLKCTL_SUCLK BIT(0) /*!< stop the USB clock */
/* register options defines */
#define DCFG_DEVSPEED(regval) (DCFG_DS & ((regval) << 0U)) /*!< device speed configuration */
#define USB_SPEED_EXP_HIGH DCFG_DEVSPEED(0U) /*!< device external PHY high speed */
#define USB_SPEED_EXP_FULL DCFG_DEVSPEED(1U) /*!< device external PHY full speed */
#define USB_SPEED_INP_FULL DCFG_DEVSPEED(3U) /*!< device internal PHY full speed */
#define GAHBCS_TFEL(regval) (GAHBCS_TXFTH & ((regval) << 7U)) /*!< device speed configuration */
#define TXFIFO_EMPTY_HALF GAHBCS_TFEL(0U) /*!< Tx FIFO half empty */
#define TXFIFO_EMPTY GAHBCS_TFEL(1U) /*!< Tx FIFO completely empty */
#define GAHBCS_DMAINCR(regval) (GAHBCS_BURST & ((regval) << 1U)) /*!< AHB burst type used by DMA*/
#define DMA_INCR0 GAHBCS_DMAINCR(0U) /*!< single burst type used by DMA*/
#define DMA_INCR1 GAHBCS_DMAINCR(1U) /*!< 4-beat incrementing burst type used by DMA*/
#define DMA_INCR4 GAHBCS_DMAINCR(3U) /*!< 8-beat incrementing burst type used by DMA*/
#define DMA_INCR8 GAHBCS_DMAINCR(5U) /*!< 16-beat incrementing burst type used by DMA*/
#define DMA_INCR16 GAHBCS_DMAINCR(7U) /*!< 32-beat incrementing burst type used by DMA*/
#define DCFG_PFRI(regval) (DCFG_EOPFT & ((regval) << 11U)) /*!< end of periodic frame time configuration */
#define FRAME_INTERVAL_80 DCFG_PFRI(0U) /*!< 80% of the frame time */
#define FRAME_INTERVAL_85 DCFG_PFRI(1U) /*!< 85% of the frame time */
#define FRAME_INTERVAL_90 DCFG_PFRI(2U) /*!< 90% of the frame time */
#define FRAME_INTERVAL_95 DCFG_PFRI(3U) /*!< 95% of the frame time */
#define DEP0_MPL(regval) (DEP0CTL_MPL & ((regval) << 0U)) /*!< maximum packet length configuration */
#define EP0MPL_64 DEP0_MPL(0U) /*!< maximum packet length 64 bytes */
#define EP0MPL_32 DEP0_MPL(1U) /*!< maximum packet length 32 bytes */
#define EP0MPL_16 DEP0_MPL(2U) /*!< maximum packet length 16 bytes */
#define EP0MPL_8 DEP0_MPL(3U) /*!< maximum packet length 8 bytes */
/* endpoints address */
/* first bit is direction(0 for Rx and 1 for Tx) */
#define EP0_OUT ((uint8_t)0x00U) /*!< endpoint out 0 */
#define EP0_IN ((uint8_t)0x80U) /*!< endpoint in 0 */
#define EP1_OUT ((uint8_t)0x01U) /*!< endpoint out 1 */
#define EP1_IN ((uint8_t)0x81U) /*!< endpoint in 1 */
#define EP2_OUT ((uint8_t)0x02U) /*!< endpoint out 2 */
#define EP2_IN ((uint8_t)0x82U) /*!< endpoint in 2 */
#define EP3_OUT ((uint8_t)0x03U) /*!< endpoint out 3 */
#define EP3_IN ((uint8_t)0x83U) /*!< endpoint in 3 */
/* enable global interrupt */
#define USB_GLOBAL_INT_ENABLE() (USB_GAHBCS |= GAHBCS_GINTEN)
/* disable global interrupt */
#define USB_GLOBAL_INT_DISABLE() (USB_GAHBCS &= ~GAHBCS_GINTEN)
/* get current operation mode */
#define USB_CURRENT_MODE_GET() (USB_GINTF & GINTF_COPM)
/* read global interrupt flag */
#define USB_CORE_INTR_READ(x) \
do { \
uint32_t global_intf = USB_GINTF; \
(x) = global_intf & USB_GINTEN; \
} while(0)
/* read global interrupt flag */
#define USB_DAOEP_INTR_READ(x) \
do { \
uint32_t dev_all_ep_inten = USB_DAEPINTEN; \
uint32_t dev_all_ep_int = USB_DAEPINT; \
uint32_t out_ep_intb = DAEPINT_OEPITB; \
(x) = (dev_all_ep_inten & dev_all_ep_int & out_ep_intb) >> 16; \
} while(0)
/* read out endpoint-x interrupt flag */
#define USB_DOEP_INTR_READ(x, EpID) \
do { \
uint32_t out_epintf = USB_DOEPxINTF(EpID); \
(x) = out_epintf & USB_DOEPINTEN; \
} while(0)
/* read all in endpoint interrupt flag */
#define USB_DAIEP_INTR_READ(x) \
do { \
uint32_t dev_all_ep_inten = USB_DAEPINTEN; \
uint32_t dev_all_ep_int = USB_DAEPINT; \
uint32_t in_ep_intb = DAEPINT_IEPITB; \
(x) = dev_all_ep_inten & dev_all_ep_int & in_ep_intb; \
} while(0)
/* read in endpoint-x interrupt flag */
#define USB_DIEP_INTR_READ(x, EpID) \
do { \
uint32_t dev_ep_intf = USB_DIEPxINTF(EpID); \
uint32_t dev_ep_fifoempty_intf = (((USB_DIEPFEINTEN >> (EpID)) & 0x1U) << 7U); \
uint32_t dev_inep_inten = USB_DIEPINTEN; \
(x) = dev_ep_intf & (dev_ep_fifoempty_intf | dev_inep_inten); \
} while(0)
/* generate remote wakup signal */
#define USB_REMOTE_WAKEUP_SET() (USB_DCTL |= DCTL_RWKUP)
/* no remote wakup signal generate */
#define USB_REMOTE_WAKEUP_RESET() (USB_DCTL &= ~DCTL_RWKUP)
/* generate soft disconnect */
#define USB_SOFT_DISCONNECT_ENABLE() (USB_DCTL |= DCTL_SD)
/* no soft disconnect generate */
#define USB_SOFT_DISCONNECT_DISABLE() (USB_DCTL &= ~DCTL_SD)
/* set device address */
#define USB_SET_DEVADDR(DevAddr) (USB_DCFG |= (DevAddr) << 4U)
/* check whether frame is even */
#define USB_EVEN_FRAME() (!(USB_HFINFR & 0x01U))
/* read port status */
#define USB_PORT_READ() (USB_HPCS & (~HPCS_PE) & (~HPCS_PCD) & (~HPCS_PEDC))
/* usb clock initialize */
#define USB_FSLSCLOCK_INIT(ClockFreq) (USB_HCTL &= ~HCTL_CLKSEL | (ClockFreq))
/* get usb current speed */
#define USB_CURRENT_SPEED_GET() ((USB_HPCS & HPCS_PS) >> 17)
/* get usb current frame */
#define USB_CURRENT_FRAME_GET() (USB_HFINFR & 0xFFFFU)
#endif /* USB_REGS_H */

View File

@@ -0,0 +1,188 @@
/*!
\file usb_std.h
\brief USB 2.0 standard defines
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef USB_STD_H
#define USB_STD_H
#include "usb_conf.h"
#define USB_DEV_QUALIFIER_DESC_LEN 0x0AU /*!< USB device qualifier descriptor length */
#define USB_DEV_DESC_LEN 0x12U /*!< USB device descriptor length */
#define USB_CFG_DESC_LEN 0x09U /*!< USB device configuration descriptor length */
#define USB_IF_DESC_LEN 0x09U /*!< USB device interface descriptor length */
#define USB_EP_DESC_LEN 0x07U /*!< USB device endpoint descriptor length */
#define USB_OTG_DESC_LEN 0x03U /*!< USB device OTG descriptor length */
/* bit 7 of bmRequestType: data phase transfer direction */
#define USB_DIR_MASK 0x80U /*!< USB transfer direction mask */
#define USB_DIR_OUT 0x00U /*!< USB transfer OUT direction */
#define USB_DIR_IN 0x80U /*!< USB transfer IN direction */
/* bit 6..5 of bmRequestType: request type */
#define USB_STANDARD_REQ 0x00U /*!< USB standard request */
#define USB_CLASS_REQ 0x20U /*!< USB class request */
#define USB_VENDOR_REQ 0x40U /*!< USB vebdor request */
#define USB_REQ_MASK 0x60U /*!< USB request mask */
/* bit 4..0 of bmRequestType: recipient type */
#define USB_REQTYPE_DEVICE 0x00U /*!< USB device request type */
#define USB_REQTYPE_INTERFACE 0x01U /*!< USB interface request type*/
#define USB_REQTYPE_ENDPOINT 0x02U /*!< USB endpoint request type*/
#define USB_REQTYPE_MASK 0x03U /*!< USB request type mask*/
/* bRequest value */
#define USBREQ_GET_STATUS 0x00U /*!< USB get status request*/
#define USBREQ_CLEAR_FEATURE 0x01U /*!< USB clear feature request*/
#define USBREQ_SET_FEATURE 0x03U /*!< USB set feature request*/
#define USBREQ_SET_ADDRESS 0x05U /*!< USB set address request*/
#define USBREQ_GET_DESCRIPTOR 0x06U /*!< USB get descriptor request*/
#define USBREQ_SET_DESCRIPTOR 0x07U /*!< USB set descriptor request*/
#define USBREQ_GET_CONFIGURATION 0x08U /*!< USB get configuration request*/
#define USBREQ_SET_CONFIGURATION 0x09U /*!< USB set configuration request*/
#define USBREQ_GET_INTERFACE 0x0AU /*!< USB get interface request*/
#define USBREQ_SET_INTERFACE 0x0BU /*!< USB set interface request*/
#define USBREQ_SYNCH_FRAME 0x0CU /*!< USB synchronize frame request*/
/* descriptor types of usb specifications */
#define USB_DESCTYPE_DEVICE 0x01U /*!< USB device descriptor type*/
#define USB_DESCTYPE_CONFIGURATION 0x02U /*!< USB configuration descriptor type*/
#define USB_DESCTYPE_STRING 0x03U /*!< USB string descriptor type*/
#define USB_DESCTYPE_INTERFACE 0x04U /*!< USB interface descriptor type*/
#define USB_DESCTYPE_ENDPOINT 0x05U /*!< USB endpoint descriptor type*/
#define USB_DESCTYPE_DEVICE_QUALIFIER 0x06U /*!< USB device qualtfier descriptor type*/
#define USB_DESCTYPE_OTHER_SPEED_CONFIGURATION 0x07U /*!< USB other speed configuration descriptor type*/
#define USB_DESCTYPE_INTERFACE_POWER 0x08U /*!< USB interface power descriptor type*/
#define USB_DESCTYPE_HID 0x21U /*!< USB HID descriptor type*/
#define USB_DESCTYPE_HID_REPORT 0x22U /*!< USB HID report descriptor type*/
#define USB_DEVDESC_SIZE 18U /*!< USB device descriptor size*/
#define USB_CFGDESC_SIZE 9U /*!< USB configure descriptor size*/
#define USB_INTDESC_SIZE 9U /*!< USB interface descriptor size*/
#define USB_EPDESC_SIZE 7U /*!< USB endpoint descriptor size*/
/* descriptor type and descriptor index */
/* use the following values when USB host need to get descriptor */
#define USB_DEVDESC ((USB_DESCTYPE_DEVICE << 8U) & 0xFF00U) /*!< USB device operation marco */
#define USB_CFGDESC ((USB_DESCTYPE_CONFIGURATION << 8U) & 0xFF00U) /*!< USB configuration operation marco */
#define USB_STRDESC ((USB_DESCTYPE_STRING << 8U) & 0xFF00U) /*!< USB string operation marco */
#define USB_INTDESC ((USB_DESCTYPE_INTERFACE << 8U) & 0xFF00U) /*!< USB interface operation marco */
#define USB_EPDESC ((USB_DESCTYPE_INTERFACE << 8U) & 0xFF00U) /*!< USB endpoint operation marco */
#define USB_DEVQUADESC ((USB_DESCTYPE_DEVICE_QUALIFIER << 8U) & 0xFF00U) /*!< USB device qualifier operation marco */
#define USB_OSPCFGDESC ((USB_DESCTYPE_OTHER_SPEED_CONFIGURATION << 8U) & 0xFF00U) /*!< USB other speed configuration operation marco */
#define USB_INTPWRDESC ((USB_DESCTYPE_INTERFACE_POWER << 8U) & 0xFF00U) /*!< USB interface power operation marco */
#define USB_HIDREPDESC ((USB_DESCTYPE_HID_REPORT << 8U) & 0xFF00U) /*!< USB HID report operation marco */
#define USB_HIDDESC ((USB_DESCTYPE_HID << 8U) & 0xFF00U) /*!< USB HID operation marco */
#define SWAPBYTE(addr) (((uint16_t)(*((uint8_t *)(addr)))) + \
(uint16_t)(((uint16_t)(*(((uint8_t *)(addr)) + 1U))) << 8U))
/* supported classes */
#define USB_MSC_CLASS 0x08U /*!< USB MSC class*/
#define USB_HID_CLASS 0x03U /*!< USB HID class*/
/* interface descriptor field values for hid boot protocol */
#define HID_BOOT_CODE 0x01U /*!< USB HID boot code*/
#define HID_KEYBRD_BOOT_CODE 0x01U /*!< USB HID keyboard boot code*/
#define HID_MOUSE_BOOT_CODE 0x02U /*!< USB HID mouse boot code*/
/* as per usb specs 9.2.6.4 :standard request with data request timeout: 5sec
standard request with no data stage timeout : 50ms */
#define DATA_STAGE_TIMEOUT 5000U /*!< USB data stage timeout*/
#define NODATA_STAGE_TIMEOUT 50U /*!< USB no data stage timeout*/
#define USBH_CFG_DESC_SET_SIZE (USB_CFGDESC_SIZE + USB_INTDESC_SIZE \
+ (USBH_MAX_EP_NUM * USB_EPDESC_SIZE)) /*!< USB host set configuration descriptor size */
#pragma pack(1)
typedef union
{
uint8_t data[8];
struct _setup_packet_struct
{
uint8_t bmRequestType; /*!< type of request */
uint8_t bRequest; /*!< request of setup packet */
uint16_t wValue; /*!< value of setup packet */
uint16_t wIndex; /*!< index of setup packet */
uint16_t wLength; /*!< length of setup packet */
} b;
}usb_setup_union;
typedef struct
{
uint8_t bLength; /*!< size of the descriptor */
uint8_t bDescriptorType; /*!< type of the descriptor */
} usb_descriptor_header_struct;
typedef struct
{
usb_descriptor_header_struct Header; /*!< descriptor header, including type and size */
uint16_t bcdUSB; /*!< BCD of the supported USB specification */
uint8_t bDeviceClass; /*!< USB device class */
uint8_t bDeviceSubClass; /*!< USB device subclass */
uint8_t bDeviceProtocol; /*!< USB device protocol */
uint8_t bMaxPacketSize0; /*!< size of the control (address 0) endpoint's bank in bytes */
uint16_t idVendor; /*!< vendor ID for the USB product */
uint16_t idProduct; /*!< unique product ID for the USB product */
uint16_t bcdDevice; /*!< product release (version) number */
uint8_t iManufacturer; /*!< string index for the manufacturer's name */
uint8_t iProduct; /*!< string index for the product name/details */
uint8_t iSerialNumber; /*!< string index for the product's globally unique hexadecimal serial number */
uint8_t bNumberConfigurations; /*!< total number of configurations supported by the device */
} usb_descriptor_device_struct;
typedef struct
{
usb_descriptor_header_struct Header; /*!< descriptor header, including type and size */
uint16_t wTotalLength; /*!< size of the configuration descriptor header,and all sub descriptors inside the configuration */
uint8_t bNumInterfaces; /*!< total number of interfaces in the configuration */
uint8_t bConfigurationValue; /*!< configuration index of the current configuration */
uint8_t iConfiguration; /*!< index of a string descriptor describing the configuration */
uint8_t bmAttributes; /*!< configuration attributes */
uint8_t bMaxPower; /*!< maximum power consumption of the device while in the current configuration */
} usb_descriptor_configuration_struct;
typedef struct
{
usb_descriptor_header_struct Header; /*!< descriptor header, including type and size */
uint8_t bInterfaceNumber; /*!< index of the interface in the current configuration */
uint8_t bAlternateSetting; /*!< alternate setting for the interface number */
uint8_t bNumEndpoints; /*!< total number of endpoints in the interface */
uint8_t bInterfaceClass; /*!< interface class ID */
uint8_t bInterfaceSubClass; /*!< interface subclass ID */
uint8_t bInterfaceProtocol; /*!< interface protocol ID */
uint8_t iInterface; /*!< index of the string descriptor describing the interface */
} usb_descriptor_interface_struct;
typedef struct
{
usb_descriptor_header_struct Header; /*!< descriptor header, including type and size. */
uint8_t bEndpointAddress; /*!< logical address of the endpoint */
uint8_t bmAttributes; /*!< endpoint attributes */
uint16_t wMaxPacketSize; /*!< size of the endpoint bank, in bytes */
uint8_t bInterval; /*!< polling interval in milliseconds for the endpoint if it is an INTERRUPT or ISOCHRONOUS type */
} usb_descriptor_endpoint_struct;
typedef struct
{
usb_descriptor_header_struct Header; /*!< descriptor header, including type and size. */
uint16_t wLANGID; /*!< LANGID code */
}usb_descriptor_language_id_struct;
#pragma pack()
#endif /* USB_STD_H */

View File

@@ -0,0 +1,54 @@
/*!
\file usbd_core.h
\brief USB device-mode core driver header file
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#ifndef USBD_CORE_H
#define USBD_CORE_H
#include "usbd_conf.h"
#include "usb_core.h"
#include "usbd_std.h"
/* device status */
#define USB_STATUS_DEFAULT 1U /* default status */
#define USB_STATUS_ADDRESSED 2U /* addressed status */
#define USB_STATUS_CONFIGURED 3U /* configured status */
#define USB_STATUS_SUSPENDED 4U /* suspended status */
/* function declarations */
/* initailizes the USB device-mode handler stack */
void usbd_init (usb_core_handle_struct *pudev, usb_core_id_enum core_id);
/* endpoint initialization */
void usbd_ep_init (usb_core_handle_struct *pudev, const usb_descriptor_endpoint_struct *pep_desc);
/* endpoint deinitialize */
void usbd_ep_deinit (usb_core_handle_struct *pudev, uint8_t ep_addr);
/* endpoint prepare to receive data */
void usbd_ep_rx (usb_core_handle_struct *pudev, uint8_t ep_addr, uint8_t *pbuf, uint16_t buf_len);
/* endpoint prepare to transmit data */
void usbd_ep_tx (usb_core_handle_struct *pudev, uint8_t ep_addr, uint8_t *pbuf, uint32_t buf_len);
/* transmit data on the control channel */
usbd_status_enum usbd_ctltx (usb_core_handle_struct *pudev, uint8_t *pbuf, uint16_t len);
/* receive data on the control channel */
usbd_status_enum usbd_ctlrx (usb_core_handle_struct *pudev, uint8_t *pbuf, uint16_t len);
/* transmit status on the control channel */
usbd_status_enum usbd_ctlstatus_tx (usb_core_handle_struct *pudev);
/* receive status on the control channel */
usbd_status_enum usbd_ctlstatus_rx (usb_core_handle_struct *pudev);
/* set an endpoint to STALL status */
void usbd_ep_stall (usb_core_handle_struct *pudev, uint8_t ep_addr);
/* clear endpoint stalled status */
void usbd_ep_clear_stall (usb_core_handle_struct *pudev, uint8_t ep_addr);
/* flushes the FIFOs */
void usbd_ep_fifo_flush (usb_core_handle_struct *pudev, uint8_t ep_addr);
/* get the received data length */
uint16_t usbd_rxcount_get (usb_core_handle_struct *pudev, uint8_t ep_num);
#endif /* USBD_CORE_H */

View File

@@ -0,0 +1,38 @@
/*!
\file usbd_int.h
\brief USB device-mode interrupt handler header file
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef USBD_INT_H
#define USBD_INT_H
#include "usbd_core.h"
typedef struct
{
uint8_t (*SOF) (usb_core_handle_struct *pudev);
}usbd_int_cb_struct;
extern usbd_int_cb_struct *usbd_int_fops;
/* function declarations */
/* USB device-mode interrupts global service routine handler */
uint32_t usbd_isr (usb_core_handle_struct *pudev);
#ifdef USBHS_DEDICATED_EP1_ENABLED
/* USB dedicated OUT endpoint 1 interrupt service routine handler */
uint32_t USBD_EP1OUT_ISR_Handler (usb_core_handle_struct *pudev);
/* USB dedicated IN endpoint 1 interrupt service routine handler */
uint32_t USBD_EP1IN_ISR_Handler (usb_core_handle_struct *pudev);
#endif /* USBHS_DEDICATED_EP1_ENABLED */
#endif /* USBD_INT_H */

View File

@@ -0,0 +1,70 @@
/*!
\file usbd_std.h
\brief USB 2.0 standard driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-06-30, V1.0.0, firmware for GD32F4xx
*/
#ifndef USBD_STD_H
#define USBD_STD_H
#include "usb_std.h"
#include "usbd_core.h"
#include "usbd_conf.h"
#include <wchar.h>
#define USBD_LANGID_STR_IDX 0x00U /*!< USB language ID string index*/
#define USBD_MFC_STR_IDX 0x01U /*!< USB manufacturer string index*/
#define USBD_PRODUCT_STR_IDX 0x02U /*!< USB product string index*/
#define USBD_SERIAL_STR_IDX 0x03U /*!< USB serial string index*/
#define USBD_CONFIG_STR_IDX 0x04U /*!< USB configuration string index*/
#define USBD_INTERFACE_STR_IDX 0x05U /*!< USB interface string index*/
#define USB_STATUS_REMOTE_WAKEUP 0x02U /*!< USB remote wakeup status*/
#define USB_STATUS_SELF_POWERED 0x01U /*!< USB self power status*/
#define USB_FEATURE_ENDP_HALT 0x00U /*!< USB halt endpoint feature*/
#define USB_FEATURE_REMOTE_WAKEUP 0x01U /*!< USB remote wakeup feature*/
#define USB_FEATURE_TEST_MODE 0x02U /*!< USB test mode feature*/
#define ENG_LANGID 0x0409U /*!< USB english language id*/
#define CHN_LANGID 0x0804U /*!< USB chinese language id*/
#define USB_DEVICE_DESC_SIZE 0x12U /*!< USB device descriptor size*/
#define LOWBYTE(x) ((uint8_t)((x) & 0x00FFU)) /*!< USB lowbyte operation marco*/
#define HIGHBYTE(x) ((uint8_t)(((x) & 0xFF00U) >> 8U)) /*!< USB highbyte operation marco*/
#define USB_MIN(a, b) (((a) < (b)) ? (a) : (b)) /*!< USB minimum operation marco*/
#define WIDE_STRING(string) _WIDE_STRING(string)
#define _WIDE_STRING(string) L##string
#define USBD_STRING_DESC(string) \
(uint8_t *)&(struct { \
uint8_t _len; \
uint8_t _type; \
wchar_t _data[sizeof(string)]; \
}) { \
sizeof(WIDE_STRING(string)) + 2U - 2U, \
USB_DESCTYPE_STRING, \
WIDE_STRING(string) \
}
#define IS_NOT_EP0(ep_addr) (((ep_addr) != 0x00U) && ((ep_addr) != 0x80U))
/* function declarations */
/* USB device setup transaction*/
usbd_status_enum usbd_setup_transaction (usb_core_handle_struct *pudev);
/* USB device out transaction*/
usbd_status_enum usbd_out_transaction (usb_core_handle_struct *pudev, uint8_t endp_num);
/* USB device in transaction*/
usbd_status_enum usbd_in_transaction (usb_core_handle_struct *pudev, uint8_t endp_num);
/* USB device enum error handle*/
void usbd_enum_error (usb_core_handle_struct *pudev, usb_device_req_struct *req);
#endif /* USBD_STD_H */

View File

@@ -0,0 +1,283 @@
/*!
\file usbh_core.h
\brief header file for usbh_core.c
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#ifndef USBH_CORE_H
#define USBH_CORE_H
#include "usbh_conf.h"
#include "usb_std.h"
#include "usb_core.h"
#define MSC_CLASS 0x08 /*!< the MSC class define */
#define HID_CLASS 0x03 /*!< the HID class define */
#define MSC_PROTOCOL 0x50 /*!< the MSC protocal define */
#define CBI_PROTOCOL 0x01 /*!< the CBI protocal define */
#define USBH_DEVICE_ADDRESS_DEFAULT 0U /*!< the default device address define */
#define USBH_DEVICE_ADDRESS 1U /*!< the device address define */
#define USBH_MAX_ERROR_COUNT 2U /*!< the max error count define */
#define HOST_USER_SELECT_CONFIGURATION 1U /*!< the user select configuration define */
#define HOST_USER_CLASS_ACTIVE 2U /*!< the user class active define */
#define HOST_USER_CLASS_SELECTED 3U /*!< the user class selected define */
#define HOST_USER_CONNECTION 4U /*!< the user connecttion define */
#define HOST_USER_DISCONNECTION 5U /*!< the user disconnection define */
#define HOST_USER_UNRECOVERED_ERROR 6U /*!< the user unrecovered error define */
#define MAX_USBH_STATE_STACK_DEEP 4 /*!< the max state stack deep define */
#define MAX_USBH_STATE_TABLE_NUM 10U /*!< the max state table number */
#define HOST_FSM_ID 0U /*!< the host state table id */
#define ENUM_FSM_ID 1U /*!< the enum state table id */
#define CMD_FSM_ID 2U /*!< the cmd state table id */
#define CTRL_FSM_ID 3U /*!< the ctrl state table id */
#define CLASS_REQ_FSM_ID 4U /*!< the class req state table id */
#define CLASS_FSM_ID 5U /*!< the class state table id */
#define UP_STATE 100U /*!< up state define */
#define GO_TO_UP_STATE_EVENT 100U /*!< go to up state event define */
#define HOST_HANDLE_TABLE_SIZE 9U /*!< the host handle table size define */
/* the enum of host state */
typedef enum
{
HOST_IDLE = 0, /* the host idle state definition */
HOST_DEV_ATTACHED, /* the host device attached state definition */
HOST_DEV_DETACHED, /* the host device detached state definition */
HOST_DETECT_DEV_SPEED, /* the host detect device speed state definition */
HOST_ENUMERATION, /* the host enumeration state definition */
HOST_CLASS_REQUEST, /* the host class request state definition */
HOST_CLASS, /* the host class state definition */
HOST_USER_INPUT, /* the host user input state definition */
HOST_SUSPENDED, /* the host suspended state definition */
HOST_ERROR /* the host error state definition */
}host_state_enum;
/* the enum of host event */
typedef enum
{
HOST_EVENT_ATTACHED = 0, /* the host attached event */
HOST_EVENT_ENUM, /* the host enum event */
HOST_EVENT_USER_INPUT, /* the host user input event */
HOST_EVENT_CLASS_REQ, /* the host class request event */
HOST_EVENT_CLASS, /* the host class event */
HOST_EVENT_ERROR, /* the host error event */
HOST_EVENT_DEV_DETACHED, /* the host device detached event */
HOST_EVENT_IDLE /* the host idle event */
}host_event_enum;
/* the enum of enum state */
typedef enum
{
ENUM_IDLE = 0, /* the enum idle state definition */
ENUM_SET_ADDR, /* the enum set address state definition */
ENUM_GET_FULL_DEV_DESC, /* the enum get full device descripter state definition */
ENUM_GET_CFG_DESC, /* the enum get configuration descripter state definition */
ENUM_GET_FULL_CFG_DESC, /* the enum get full configuration descripter state definition */
ENUM_GET_MFC_STRING_DESC, /* the enum get MFC string descripter state definition */
ENUM_GET_PRODUCT_STRING_DESC, /* the enum get product string descripter state definition */
ENUM_GET_SERIALNUM_STRING_DESC, /* the enum get serialnum string descripter state definition */
ENUM_SET_CONFIGURATION, /* the enum set congiguration state definition */
ENUM_DEV_CONFIGURED /* the enum device configuration state definition */
}enum_state_enum;
/* the enum of ctrl state */
typedef enum
{
CTRL_IDLE = 0, /* the ctrl idle state definition */
CTRL_SETUP, /* the ctrl setup state definition */
CTRL_DATA, /* the ctrl data state definition */
CTRL_STATUS, /* the ctrl status state definition */
CTRL_ERROR, /* the ctrl error state definition */
CTRL_STALLED, /* the ctrl stalled state definition */
CTRL_COMPLETE /* the ctrl complete state definition */
}ctrl_state_enum;
/* the enum of host status */
typedef enum
{
USBH_OK = 0, /* the usbh ok status definition */
USBH_BUSY, /* the usbh busy status definition */
USBH_FAIL, /* the usbh fail status definition */
USBH_NOT_SUPPORTED, /* the usbh not supported status definition */
USBH_UNRECOVERED_ERROR, /* the usbh unrecovered error status definition */
USBH_SPEED_UNKNOWN_ERROR, /* the usbh speed unknown error status definition */
USBH_APPLY_DEINIT /* the usbh apply deinit status definition */
}usbh_status_enum;
/* the state of user action */
typedef enum
{
USBH_USER_NO_RESP = 0, /* the user no response */
USBH_USER_RESP_OK = 1, /* the user response ok */
}usbh_user_status_enum;
/* control transfer information */
typedef struct
{
uint8_t hc_in_num; /* the host in channel number */
uint8_t hc_out_num; /* the host out channel number */
uint8_t ep0_size; /* the endpoint 0 max packet size */
uint8_t error_count; /* the error count */
uint16_t length; /* the length */
uint16_t timer; /* the timer */
uint8_t *buff; /* the buffer */
usb_setup_union setup; /* the setup packet */
}usbh_ctrl_struct;
/* device property */
typedef struct
{
uint8_t address; /* the device address */
uint8_t speed; /* the device speed */
usb_descriptor_device_struct dev_desc; /* the device descripter */
usb_descriptor_configuration_struct cfg_desc; /* the configuration descripter */
usb_descriptor_interface_struct itf_desc[USBH_MAX_INTERFACES_NUM]; /* the interface descripter */
usb_descriptor_endpoint_struct ep_desc[USBH_MAX_INTERFACES_NUM][USBH_MAX_EP_NUM]; /* the endpoint descripter */
}usbh_device_struct;
/* user callbacks */
typedef struct
{
void (*init) (void); /* the user callback init function */
void (*deinit) (void); /* the user callback deinit function */
void (*device_connected) (void); /* the user callback device connected function */
void (*device_reset) (void); /* the user callback device reset function */
void (*device_disconnected) (void); /* the user callback device disconnected function */
void (*over_current_detected) (void); /* the user callback over current detected function */
void (*device_speed_detected) (uint8_t device_speed); /* the user callback device speed detected function */
void (*device_desc_available) (void *devDesc); /* the user callback device descrpiter available function */
void (*device_address_set) (void); /* the user callback set device address function */
void (*configuration_desc_available)(usb_descriptor_configuration_struct *cfg_desc,
usb_descriptor_interface_struct *itf_desc,
usb_descriptor_endpoint_struct *ep_desc);
/* the configuration descripter available function */
void (*manufacturer_string) (void *mfc_string); /* the user callback manufacturer string function */
void (*product_string) (void *prod_string); /* the user callback product string function */
void (*serial_num_string) (void *serial_string); /* the user callback serial number string function */
void (*enumeration_finish) (void); /* the user callback enumeration finish function */
usbh_user_status_enum (*user_input) (void); /* the user callback user input function */
int (*user_application) (usb_core_handle_struct *pudev, uint8_t id);
/* the user callback user appliction function */
void (*device_not_supported) (void); /* the user callback device not supported function */
void (*unrecovered_error) (void); /* the user callback unrecovered error function */
}usbh_user_callback_struct;
/* the backup state struct */
typedef struct
{
host_state_enum host_backup_state; /* the host backup state */
enum_state_enum enum_backup_state; /* the enum backup state */
ctrl_state_enum ctrl_backup_state; /* the ctrl backup state */
uint8_t class_req_backup_state;/* the class request backup state */
uint8_t class_backup_state; /* the class backup state */
} backup_state_struct;
/* host information */
typedef struct
{
backup_state_struct usbh_backup_state; /* the usbh backup state variable */
usbh_ctrl_struct control; /* the control struct variable */
usbh_device_struct device; /* the device struct variable */
usbh_user_callback_struct *usr_cb; /* the user callback function */
usbh_status_enum (*class_init) (usb_core_handle_struct *pudev, void *phost); /* the class init function */
void (*class_deinit) (usb_core_handle_struct *pudev, void *phost); /* the class deinit function */
}usbh_host_struct;
/* the action function definition */
typedef usbh_status_enum (*ACT_FUN) (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void* pustate);
/* the state table struct */
typedef struct
{
uint8_t cur_state; /* the current state */
uint8_t cur_event; /* the current event */
uint8_t next_state; /* the next state */
ACT_FUN event_action_fun; /* the event action function entry */
} state_table_struct;
/* the state stack struct */
typedef struct
{
uint8_t state; /* the state in state stack */
state_table_struct* table; /* the table in state stack */
uint8_t table_size; /* the table size in state stack */
} usbh_state_stack_struct;
/* the state regist table struct */
typedef struct
{
uint8_t id; /* the id of the state table */
state_table_struct* table; /* the table entry to regist */
uint8_t table_size; /* the table size to regist */
} usbh_state_regist_table_struct;
/* the state handle struct */
typedef struct
{
uint8_t usbh_current_state; /* current state */
uint8_t usbh_current_state_table_size; /* current state table size */
state_table_struct* usbh_current_state_table; /* current state table */
usbh_state_stack_struct stack[MAX_USBH_STATE_STACK_DEEP]; /* the stack of state table */
int8_t usbh_current_state_stack_top; /* the current state top */
usbh_state_regist_table_struct usbh_regist_state_table[MAX_USBH_STATE_TABLE_NUM]; /* the array of regist state table */
uint8_t usbh_regist_state_table_num; /* the number of regist state table */
} usbh_state_handle_struct;
/* function declarations */
/* the host core driver function */
usbh_status_enum host_state_polling_fun (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void *pustate);
/* initialize the host portion of the driver */
uint32_t hcd_init (usb_core_handle_struct *pudev, usb_core_id_enum core_id);
/* check if the device is connected */
uint32_t hcd_is_device_connected (usb_core_handle_struct *pudev);
/* this function returns the last URBstate */
urb_state_enum hcd_urb_state_get (usb_core_handle_struct *pudev, uint8_t channel_num);
/* this function returns the last URBstate */
uint32_t hcd_xfer_count_get (usb_core_handle_struct *pudev, uint8_t channel_num);
/* de-initialize host */
usbh_status_enum usbh_deinit (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct* pustate);
/* the state core driver function */
/* state core driver init */
void scd_init (usbh_state_handle_struct* pustate);
/* state core driver table regist */
void scd_table_regist (usbh_state_handle_struct* pustate,
state_table_struct* pstate_table,
uint8_t table_id,
uint8_t current_table_size);
/* state core driver begin */
void scd_begin (usbh_state_handle_struct* pustate, uint8_t table_id);
/* state core driver move state */
void scd_state_move (usbh_state_handle_struct* pustate, uint8_t state);
/* state core driver event handle */
usbh_status_enum scd_event_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct* pustate,
uint8_t event,
uint8_t state);
/* state core driver table push */
void scd_table_push (usbh_state_handle_struct* pustate);
/* state core driver table pop */
void scd_table_pop (usbh_state_handle_struct* pustate);
/* the function is only used to state move */
usbh_status_enum only_state_move (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void *pustate);
/* the function to the up state */
usbh_status_enum goto_up_state_fun (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void *pustate);
#endif /* USBH_CORE_H */

View File

@@ -0,0 +1,45 @@
/*!
\file usbh_ctrl.h
\brief header file for usbh_ctrl.c
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef USBH_CTRL_H
#define USBH_CTRL_H
#include "usbh_core.h"
#include "usbh_usr.h"
#define CTRL_HANDLE_TABLE_SIZE 13U /*!< the ctrl handle table size define */
extern state_table_struct ctrl_handle_table[CTRL_HANDLE_TABLE_SIZE];
extern uint8_t ctrl_polling_handle_flag;
/* the enum of CTRL event */
typedef enum
{
CTRL_EVENT_IDLE = 0, /* the ctrl idle event */
CTRL_EVENT_SETUP, /* the ctrl setup event */
CTRL_EVENT_DATA, /* the ctrl data event */
CTRL_EVENT_STATUS, /* the ctrl status event */
CTRL_EVENT_COMPLETE, /* the ctrl complete event */
CTRL_EVENT_ERROR, /* the ctrl error event */
CTRL_EVENT_STALLED, /* the ctrl stalled event */
}ctrl_event_enum;
/* function declarations */
/* the polling function of control transfer state handle */
usbh_status_enum ctrl_state_polling_fun (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void *pustate);
/* send datas from the host channel */
usbh_status_enum usbh_xfer (usb_core_handle_struct *pudev, uint8_t *buf, uint8_t hc_num, uint16_t len);
/* send the setup packet to the device */
usbh_status_enum usbh_ctltx_setup (usb_core_handle_struct *pudev, uint8_t *buf, uint8_t hc_num);
/* this function prepare a hc and start a transfer */
uint32_t hcd_submit_request (usb_core_handle_struct *pudev, uint8_t channel_num);
#endif /* USBH_CTRL_H */

View File

@@ -0,0 +1,46 @@
/*!
\file usbh_hcs.h
\brief header file for usbh_hcs.c
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef USBH_HCS_H
#define USBH_HCS_H
#include "usbh_core.h"
#define HC_MAX 8U
#define HC_OK 0x0000U
#define HC_USED 0x8000U
#define HC_ERROR 0xFFFFU
#define HC_USED_MASK 0x7FFFU
/* function declarations */
/* allocate a new channel for the pipe */
uint8_t usbh_channel_alloc (usb_core_handle_struct *pudev, uint8_t ep_addr);
/* free all usb host channel */
uint8_t usbh_allchannel_dealloc (usb_core_handle_struct *pudev);
/* free the usb host channel */
uint8_t usbh_channel_free (usb_core_handle_struct *pudev, uint8_t index);
/* open a channel */
uint8_t usbh_channel_open (usb_core_handle_struct *pudev,
uint8_t channel_num,
uint8_t dev_addr,
uint8_t dev_speed,
uint8_t ep_type,
uint16_t ep_mps);
/* modify a channel */
uint8_t usbh_channel_modify (usb_core_handle_struct *pudev,
uint8_t channel_num,
uint8_t dev_addr,
uint8_t dev_speed,
uint8_t ep_type,
uint16_t ep_mps);
#endif /* USBH_HCS_H */

View File

@@ -0,0 +1,30 @@
/*!
\file usbh_int.h
\brief USB host mode interrupt handler header file
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#ifndef USBH_INT_H
#define USBH_INT_H
#include "usb_core.h"
typedef struct
{
uint8_t (*sof) (usb_core_handle_struct *pudev);
uint8_t (*device_connected) (usb_core_handle_struct *pudev);
uint8_t (*device_disconnected) (usb_core_handle_struct *pudev);
}usbh_hcd_int_cb_struct;
extern usbh_hcd_int_cb_struct *usbh_hcd_int_fops;
/* function declarations */
/* handle global host interrupt */
uint32_t usbh_isr (usb_core_handle_struct *pudev);
#endif /* USBH_INT_H */

View File

@@ -0,0 +1,74 @@
/*!
\file usbh_std.h
\brief header file for usbh_std.c
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#ifndef USBH_STD_H
#define USBH_STD_H
#include "usbh_core.h"
#include "usbh_usr.h"
/* standard feature selector for clear feature command */
#define FEATURE_SELECTOR_ENDPOINT 0x00U
#define FEATURE_SELECTOR_DEVICE 0x01U
#define USBH_SETUP_PACKET_SIZE 8U /* setup packet size */
#define ENUM_HANDLE_TABLE_SIZE 10U /* enumerate handle table size */
extern uint8_t usbh_cfg_desc[512];
extern uint8_t enum_polling_handle_flag;
extern state_table_struct enum_handle_table[ENUM_HANDLE_TABLE_SIZE];
typedef enum
{
ENUN_EVENT_IDLE = 0, /* the enum idle event */
ENUM_EVENT_SET_ADDR, /* the enum set address event */
ENUN_EVENT_GET_FULL_DEV_DESC, /* the enum get full device descripter event */
ENUN_EVENT_GET_CFG_DESC, /* the enum get congiguration descripter event */
ENUN_EVENT_GET_FULL_CFG_DESC, /* the enum get full configuration descripter event */
ENUN_EVENT_GET_MFC_STRING_DESC, /* the enum get MFC string descripter event */
ENUN_EVENT_GET_PRODUCT_STRING_DESC, /* the enum get product string event */
ENUN_EVENT_GET_SERIALNUM_STRING_DESC, /* the enum get serialnum string event */
ENUN_EVENT_SET_CONFIGURATION, /* the enum set configuration event */
ENUN_EVENT_DEV_CONFIGURED /* the enum device configured event */
}enum_event_enum;
/* function declarations */
/* the polling function of enumeration state */
usbh_status_enum enum_state_polling_fun (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void *pustate);
/* get descriptor in usb host enumeration stage */
void usbh_enum_desc_get (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
uint8_t *buf,
uint8_t req_type,
uint16_t value_idx,
uint16_t len);
/* set address in usb host enumeration stage */
void usbh_enum_addr_set (usb_core_handle_struct *pudev, usbh_host_struct *puhost, uint8_t device_address);
/* set configuration in usb host enumeration stage */
void usbh_enum_cfg_set (usb_core_handle_struct *pudev, usbh_host_struct *puhost, uint16_t cfg_idx);
/* parse the device descriptor */
void usbh_device_desc_parse (usb_descriptor_device_struct *dev_desc, uint8_t *buf, uint16_t len);
/* parse the configuration descriptor */
void usbh_cfg_desc_parse (usb_descriptor_configuration_struct *cfg_desc,
usb_descriptor_interface_struct *itf_desc,
usb_descriptor_endpoint_struct ep_desc[][USBH_MAX_EP_NUM],
uint8_t *buf,
uint16_t len);
/* parse the interface descriptor */
void usbh_interface_desc_parse (usb_descriptor_interface_struct *itf_desc, uint8_t *buf);
/* parse the endpoint descriptor */
void usbh_endpoint_desc_parse (usb_descriptor_endpoint_struct *ep_desc, uint8_t *buf);
/* parse the string descriptor */
void usbh_string_desc_parse (uint8_t *psrc, uint8_t *pdest, uint16_t len);
/* get the next descriptor header */
usb_descriptor_header_struct *usbh_next_desc_get (uint8_t *pbuf, uint16_t *ptr);
#endif /* USBH_STD_H */

View File

@@ -0,0 +1,507 @@
/*!
\file usbd_core.c
\brief USB device-mode core driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#include "usbd_core.h"
#include "usbd_std.h"
/*!
\brief initailizes the USB device-mode handler stack
\param[in] pudev: pointer to usb device instance
\param[in] core_id: USB core ID
\param[out] none
\retval none
*/
void usbd_init (usb_core_handle_struct *pudev, usb_core_id_enum core_id)
{
/* select USB core */
usb_core_select (pudev, core_id);
pudev->dev.status = USB_STATUS_DEFAULT;
/* disable USB global interrupt */
USB_GLOBAL_INT_DISABLE();
/* init the core (common init.) */
usb_core_init(pudev);
/* force device mode*/
usb_mode_set(pudev, DEVICE_MODE);
/* set device disconnect */
USB_SOFT_DISCONNECT_ENABLE();
if ((void *)0 != pudev->mdelay) {
pudev->mdelay(3U);
}
/* init device */
usb_devcore_init(pudev);
/* set device Connect */
USB_SOFT_DISCONNECT_DISABLE();
if ((void *)0 != pudev->mdelay) {
pudev->mdelay(3U);
}
/* enable USB global interrupt */
USB_GLOBAL_INT_ENABLE();
}
/*!
\brief endpoint initialization
\param[in] pudev: pointer to usb device instance
\param[in] ep_desc: pointer to usb endpoint descriptor
\param[out] none
\retval none
*/
void usbd_ep_init (usb_core_handle_struct *pudev, const usb_descriptor_endpoint_struct *ep_desc)
{
usb_ep_struct *ep;
usb_dir_enum ep_dir;
uint32_t devepinten = 0U;
uint32_t devepctl = 0U;
uint8_t ep_num = ep_desc->bEndpointAddress & 0x7FU;
uint8_t ep_type = ep_desc->bmAttributes & USB_EPTYPE_MASK;
uint16_t ep_mps = ep_desc->wMaxPacketSize;
if (ep_desc->bEndpointAddress >> 7) {
ep = &pudev->dev.in_ep[ep_num];
devepinten |= 1U << ep_num;
devepctl = USB_DIEPxCTL((uint16_t)ep_num);
ep_dir = USB_TX;
} else {
ep = &pudev->dev.out_ep[ep_num];
devepinten |= (1U << ep_num) << 16;
devepctl = USB_DOEPxCTL((uint16_t)ep_num);
ep_dir = USB_RX;
}
/* if the endpoint is not active, need change the endpoint control register */
if (!(devepctl & DEPCTL_EPACT)) {
devepctl &= ~DEPCTL_MPL;
devepctl |= ep_mps;
devepctl &= ~DEPCTL_EPTYPE;
devepctl |= (uint32_t)ep_type << 18;
if (USB_TX == ep_dir) {
devepctl &= ~DIEPCTL_TXFNUM;
devepctl |= (uint32_t)ep_num << 22;
}
devepctl |= DEPCTL_SD0PID;
devepctl |= DEPCTL_EPACT;
}
if (USB_TX == ep_dir) {
USB_DIEPxCTL((uint16_t)ep_num) = devepctl;
} else if (USB_RX == ep_dir) {
USB_DOEPxCTL((uint16_t)ep_num) = devepctl;
} else {
/* no operation */
}
ep->endp_mps = ep_mps;
ep->endp_type = ep_type;
/* enable the interrupts for this endpoint */
#ifdef USBHS_DEDICATED_EP1_ENABLED
if ((1 == ep_num) && (USB_HS_CORE_ID == pudev->cfg.core_id)) {
USB_DEP1INTEN |= devepinten;
} else
#endif /* USBHS_DEDICATED_EP1_ENABLED */
{
USB_DAEPINTEN |= devepinten;
}
}
/*!
\brief endpoint deinitialize
\param[in] pudev: pointer to usb device instance
\param[in] ep_addr: endpoint address
\param[out] none
\retval none
*/
void usbd_ep_deinit (usb_core_handle_struct *pudev, uint8_t ep_addr)
{
uint32_t devepinten = 0U;
uint8_t ep_num = ep_addr & 0x7FU;
if (ep_addr >> 7) {
devepinten |= 1U << ep_num;
USB_DIEPxCTL((uint16_t)ep_num) &= ~DEPCTL_EPACT;
} else {
devepinten |= (1U << ep_num) << 16U;
USB_DOEPxCTL((uint16_t)ep_num) &= ~DEPCTL_EPACT;
}
/* disable the interrupts for this endpoint */
#ifdef USBHS_DEDICATED_EP1_ENABLED
if ((1U == ep_num) && (USB_HS_CORE_ID == pudev->cfg.core_id)) {
USB_DEP1INTEN &= ~devepinten;
} else
#endif /* USBHS_DEDICATED_EP1_ENABLED */
{
USB_DAEPINTEN &= ~devepinten;
}
}
/*!
\brief endpoint prepare to receive data
\param[in] pudev: pointer to usb device instance
\param[in] ep_addr: endpoint address
\param[in] pbuf: pointer to buffer
\param[in] buf_len: buffer length
\param[out] none
\retval none
*/
void usbd_ep_rx (usb_core_handle_struct *pudev, uint8_t ep_addr, uint8_t *pbuf, uint16_t buf_len)
{
usb_ep_struct *ep;
uint8_t ep_num = ep_addr & 0x7FU;
uint32_t devepctl = 0U, devepxlen = 0U;
ep = &pudev->dev.out_ep[ep_num];
/* setup and start the Xfer */
ep->xfer_buff = pbuf;
ep->xfer_len = buf_len;
ep->xfer_count = 0U;
if (1U == pudev->cfg.dma_enable) {
ep->dma_addr = (uint32_t)pbuf;
}
devepctl = USB_DOEPxCTL((uint16_t)ep_num);
devepxlen = USB_DOEPxLEN((uint16_t)ep_num);
devepxlen &= ~DEPLEN_TLEN;
devepxlen &= ~DEPLEN_PCNT;
/* zero length packet */
if (0U == ep->xfer_len) {
/* set the transfer length to max packet size */
devepxlen |= ep->endp_mps;
/* set the transfer packet count to 1 */
devepxlen |= 1U << 19U;
} else {
if (0U == ep_num) {
/* set the transfer length to max packet size */
devepxlen |= ep->endp_mps;
/* set the transfer packet count to 1 */
devepxlen |= 1U << 19U;
} else {
/* configure the transfer size and packet count as follows:
* pktcnt = N
* xfersize = N * maxpacket
*/
devepxlen |= ((ep->xfer_len + ep->endp_mps - 1U) / ep->endp_mps) << 19U;
devepxlen |= ((devepxlen & DEPLEN_PCNT) >> 19U) * ep->endp_mps;
}
}
USB_DOEPxLEN((uint16_t)ep_num) = devepxlen;
if (1U == pudev->cfg.dma_enable) {
USB_DOEPxDMAADDR((uint16_t)ep_num) = ep->dma_addr;
}
if (USB_EPTYPE_ISOC == ep->endp_type) {
if (ep->endp_frame) {
devepctl |= DEPCTL_SODDFRM;
} else {
devepctl |= DEPCTL_SEVNFRM;
}
}
/* enable the endpoint and clear the NAK */
devepctl |= DEPCTL_EPEN | DEPCTL_CNAK;
USB_DOEPxCTL((uint16_t)ep_num) = devepctl;
}
/*!
\brief endpoint prepare to transmit data
\param[in] pudev: pointer to usb device instance
\param[in] ep_addr: endpoint address
\param[in] pbuf: pointer to buffer
\param[in] len: buffer length
\param[out] none
\retval none
*/
void usbd_ep_tx (usb_core_handle_struct *pudev, uint8_t ep_addr, uint8_t *pbuf, uint32_t buf_len)
{
usb_ep_struct *ep;
uint8_t ep_num = ep_addr & 0x7FU;
__IO uint32_t devepctl = 0U;
__IO uint32_t deveplen = 0U;
ep = &pudev->dev.in_ep[ep_num];
/* setup and start the transfer */
ep->xfer_buff = pbuf;
ep->xfer_len = buf_len;
ep->xfer_count = 0U;
if (1U == pudev->cfg.dma_enable) {
ep->dma_addr = (uint32_t)pbuf;
}
devepctl = USB_DIEPxCTL((uint16_t)ep_num);
deveplen = USB_DIEPxLEN((uint16_t)ep_num);
/* clear transfer length to 0 */
deveplen &= ~DEPLEN_TLEN;
/* clear transfer packet to 0 */
deveplen &= ~DEPLEN_PCNT;
/* zero length packet */
if (0U == ep->xfer_len) {
/* set transfer packet count to 1 */
deveplen |= 1U << 19U;
} else {
if (0U == ep_num) {
if (ep->xfer_len > ep->endp_mps) {
ep->xfer_len = ep->endp_mps;
}
deveplen |= 1U << 19U;
} else {
deveplen |= ((ep->xfer_len - 1U + ep->endp_mps) / ep->endp_mps) << 19U;
}
/* configure the transfer size and packet count as follows:
* xfersize = N * maxpacket + short_packet
* pktcnt = N + (short_packet exist ? 1 : 0)
*/
deveplen |= ep->xfer_len;
if (USB_EPTYPE_ISOC == ep->endp_type) {
deveplen |= DIEPLEN_MCNT & (1U << 29U);
}
}
USB_DIEPxLEN((uint16_t)ep_num) = deveplen;
if (USB_EPTYPE_ISOC == ep->endp_type) {
if (0U == (((USB_DSTAT & DSTAT_FNRSOF) >> 8U) & 0x1U)) {
devepctl |= DEPCTL_SODDFRM;
} else {
devepctl |= DEPCTL_SEVNFRM;
}
}
if (1U == pudev->cfg.dma_enable) {
USB_DIEPxDMAADDR((uint16_t)ep_num) = ep->dma_addr;
}
/* enable the endpoint and clear the NAK */
devepctl |= DEPCTL_EPEN | DEPCTL_CNAK;
USB_DIEPxCTL((uint16_t)ep_num) = devepctl;
if (0U == pudev->cfg.dma_enable) {
if (USB_EPTYPE_ISOC != ep->endp_type) {
/* enable the Tx FIFO empty interrupt for this endpoint */
if (ep->xfer_len > 0U) {
USB_DIEPFEINTEN |= 1U << ep_num;
}
} else {
usb_fifo_write(ep->xfer_buff, ep_num, (uint16_t)ep->xfer_len);
}
}
}
/*!
\brief transmit data on the control channel
\param[in] pudev: pointer to usb device instance
\param[in] pbuf: pointer to buffer
\param[in] len: buffer length
\param[out] none
\retval usb device operation status
*/
usbd_status_enum usbd_ctltx (usb_core_handle_struct *pudev, uint8_t *pbuf, uint16_t len)
{
usbd_status_enum ret = USBD_OK;
pudev->dev.sum_len = len;
pudev->dev.remain_len = len;
pudev->dev.ctl_status = USB_CTRL_DATA_IN;
usbd_ep_tx (pudev, 0U, pbuf, (uint32_t)len);
return ret;
}
/*!
\brief receive data on the control channel
\param[in] pudev: pointer to usb device instance
\param[in] pbuf: pointer to buffer
\param[in] len: buffer length
\param[out] none
\retval usb device operation status
*/
usbd_status_enum usbd_ctlrx (usb_core_handle_struct *pudev, uint8_t *pbuf, uint16_t len)
{
pudev->dev.sum_len = len;
pudev->dev.remain_len = len;
pudev->dev.ctl_status = USB_CTRL_DATA_OUT;
usbd_ep_rx (pudev, 0U, pbuf, len);
return USBD_OK;
}
/*!
\brief transmit status on the control channel
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval usb device operation status
*/
usbd_status_enum usbd_ctlstatus_tx (usb_core_handle_struct *pudev)
{
pudev->dev.ctl_status = USB_CTRL_STATUS_IN;
usbd_ep_tx (pudev, 0U, NULL, 0U);
usb_ep0_startout(pudev);
return USBD_OK;
}
/*!
\brief receive status on the control channel
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval usb device operation status
*/
usbd_status_enum usbd_ctlstatus_rx (usb_core_handle_struct *pudev)
{
pudev->dev.ctl_status = USB_CTRL_STATUS_OUT;
usbd_ep_rx (pudev, 0U, NULL, 0U);
usb_ep0_startout(pudev);
return USBD_OK;
}
/*!
\brief set an endpoint to STALL status
\param[in] pudev: pointer to usb device instance
\param[in] ep_addr: endpoint address
\param[out] none
\retval none
*/
void usbd_ep_stall (usb_core_handle_struct *pudev, uint8_t ep_addr)
{
uint8_t ep_num = ep_addr & 0x7FU;
__IO uint32_t devepctl = 0U;
if (ep_addr >> 7U) {
devepctl = USB_DIEPxCTL((uint16_t)ep_num);
/* set the endpoint disable bit */
if (devepctl & DEPCTL_EPEN) {
devepctl |= DEPCTL_EPD;
}
/* set the endpoint stall bit */
devepctl |= DEPCTL_STALL;
USB_DIEPxCTL((uint16_t)ep_num) = devepctl;
} else {
/* set the endpoint stall bit */
USB_DOEPxCTL((uint16_t)ep_num) |= DEPCTL_STALL;
}
}
/*!
\brief clear endpoint stalled status
\param[in] pudev: pointer to usb device instance
\param[in] ep_addr: endpoint address
\param[out] none
\retval none
*/
void usbd_ep_clear_stall (usb_core_handle_struct *pudev, uint8_t ep_addr)
{
usb_ep_struct *ep;
uint8_t ep_num = ep_addr & 0x7FU;
__IO uint32_t devepctl = 0U;
if(ep_addr >> 7){
ep = &pudev->dev.in_ep[ep_num];
devepctl = USB_DIEPxCTL((uint16_t)ep_num);
/* clear the IN endpoint stall bits */
devepctl &= ~DEPCTL_STALL;
if ((USB_EPTYPE_INTR == ep->endp_type) || (USB_EPTYPE_BULK == ep->endp_type)) {
devepctl |= DEPCTL_SEVNFRM;
}
USB_DIEPxCTL((uint16_t)ep_num) = devepctl;
} else {
ep = &pudev->dev.out_ep[ep_num];
devepctl = USB_DOEPxCTL((uint16_t)ep_num);
/* clear the OUT endpoint stall bits */
devepctl &= ~DEPCTL_STALL;
if ((USB_EPTYPE_INTR == ep->endp_type) || (USB_EPTYPE_BULK == ep->endp_type)) {
devepctl |= DEPCTL_SEVNFRM;
}
USB_DOEPxCTL((uint16_t)ep_num) = devepctl;
}
}
/*!
\brief flushes the FIFOs
\param[in] pudev: pointer to usb device instance
\param[in] ep_addr: endpoint address
\param[out] none
\retval none
*/
void usbd_ep_fifo_flush (usb_core_handle_struct *pudev, uint8_t ep_addr)
{
if (ep_addr >> 7) {
usb_txfifo_flush(pudev, ep_addr & 0x7FU);
} else {
usb_rxfifo_flush(pudev);
}
}
/*!
\brief get the received data length
\param[in] pudev: pointer to usb device instance
\param[in] ep_id: endpoint identifier which is in (0..3)
\param[out] none
\retval received data length
*/
uint16_t usbd_rxcount_get (usb_core_handle_struct *pudev, uint8_t ep_num)
{
return (uint16_t)pudev->dev.out_ep[ep_num].xfer_count;
}

View File

@@ -0,0 +1,769 @@
/*!
\file usbd_int.c
\brief USB device mode interrupt routines
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#include "usbd_int.h"
#include "usbd_std.h"
/* interrupt handlers */
static uint32_t usbd_intf_outep (usb_core_handle_struct *pudev);
static uint32_t usbd_intf_inep (usb_core_handle_struct *pudev);
static uint32_t usbd_intf_earlysuspend (usb_core_handle_struct *pudev);
static uint32_t usbd_intf_suspend (usb_core_handle_struct *pudev);
static uint32_t usbd_intf_resume (usb_core_handle_struct *pudev);
static uint32_t usbd_intf_sof (usb_core_handle_struct *pudev);
static uint32_t usbd_intf_rxfifo (usb_core_handle_struct *pudev);
static uint32_t usbd_intf_reset (usb_core_handle_struct *pudev);
static uint32_t usbd_intf_enumfinish (usb_core_handle_struct *pudev);
static uint32_t usbd_intf_isoinincomplete (usb_core_handle_struct *pudev);
static uint32_t usbd_intf_isooutincomplete (usb_core_handle_struct *pudev);
static uint32_t usbd_emptytxfifo_write (usb_core_handle_struct *pudev, uint8_t ep_num);
#ifdef VBUS_SENSING_ENABLED
static uint32_t usbd_intf_otg (usb_core_handle_struct *pudev);
static uint32_t usbd_intf_sessionrequest (usb_core_handle_struct *pudev);
#endif
static usb_speed_enum USB_SPEED[4] = {
[DSTAT_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ] = USB_SPEED_HIGH,
[DSTAT_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ] = USB_SPEED_FULL,
[DSTAT_ENUMSPD_FS_PHY_48MHZ] = USB_SPEED_FULL,
[DSTAT_ENUMSPD_LS_PHY_6MHZ] = USB_SPEED_LOW
};
static const uint8_t EP0_MAXLEN[4] = {
[DSTAT_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ] = EP0MPL_64,
[DSTAT_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ] = EP0MPL_64,
[DSTAT_ENUMSPD_FS_PHY_48MHZ] = EP0MPL_64,
[DSTAT_ENUMSPD_LS_PHY_6MHZ] = EP0MPL_8
};
#ifdef USBHS_DEDICATED_EP1_ENABLED
/*!
\brief USB dedicated OUT endpoint 1 interrupt service routine handler
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
uint32_t USBD_EP1OUT_ISR_Handler (usb_core_handle_struct *pudev)
{
uint32_t out_endp_int = 0;
uint32_t out_endp_size = 0;
out_endp_int = USB_DOEPxINTF(1);
out_endp_int &= USB_DOEP1INTEN;
/* transfer complete */
if (out_endp_int & DOEPINTF_TF) {
/* clear the interrupt bit */
USB_DOEPxINTF(1) = DOEPINTF_TF;
if (1U == pudev->cfg.dma_enable) {
out_endp_size = USB_DOEPxLEN(1);
/* handle more than one single MPS size packet */
pudev->dev.out_ep[1].xfer_count = pudev->dev.out_ep[1].endp_mps - \
(out_endp_size & DEPLEN_TLEN);
}
/* inform upper layer: data ready */
/* receive complete */
usbd_out_transaction(pudev, 1);
}
/* endpoint disable interrupt */
if (out_endp_int & DOEPINTF_EPDIS) {
/* clear the interrupt bit */
USB_DOEPxINTF(1) = DOEPINTF_EPDIS;
}
return 1;
}
/*!
\brief USB dedicated IN endpoint 1 interrupt service routine handler
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
uint32_t USBD_EP1IN_ISR_Handler (usb_core_handle_struct *pudev)
{
uint32_t fifoemptymask = 0, mask = 0;
uint32_t in_endp_int = 0;
mask = USB_DIEP1INTEN;
mask |= ((USB_DIEPFEINTEN >> 1) & 0x01) << 7;
in_endp_int = USB_DIEPxINTF(1) & mask;
if (in_endp_int & DIEPINTF_TF) {
fifoemptymask = 0x01 << 1;
USB_DIEPFEINTEN &= ~fifoemptymask;
USB_DIEPxINTF(1) = DIEPINTF_TF;
/* transmit complete */
usbd_in_transaction(pudev , 1);
}
if (in_endp_int & DIEPINTF_EPDIS) {
USB_DIEPxINTF(1) = DIEPINTF_EPDIS;
}
if (in_endp_int & DIEPINTF_CITO) {
USB_DIEPxINTF(1) = DIEPINTF_CITO;
}
if (in_endp_int & DIEPINTF_EPTXFUD) {
USB_DIEPxINTF(1) = DIEPINTF_EPTXFUD;
}
if (in_endp_int & DIEPINTF_IEPNE) {
USB_DIEPxINTF(1) = DIEPINTF_IEPNE;
}
if (in_endp_int & DIEPINTF_TXFE) {
usbd_emptytxfifo_write(pudev, 1);
}
return 1;
}
#endif
/*!
\brief USB device-mode interrupts global service routine handler
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
uint32_t usbd_isr (usb_core_handle_struct *pudev)
{
uint32_t retval = 0U;
uint32_t int_status = 0U, gintf = USB_GINTF, ginten = USB_GINTEN;
/* ensure the core is in device mode */
if (DEVICE_MODE == USB_CURRENT_MODE_GET()) {
int_status = gintf & ginten;
/* there are no interrupts, avoid spurious interrupt */
if (!int_status) {
return 0U;
}
/* OUT endpoints interrupts */
if (int_status & GINTF_OEPIF) {
retval |= usbd_intf_outep(pudev);
}
/* IN endpoints interrupts */
if (int_status & GINTF_IEPIF) {
retval |= usbd_intf_inep(pudev);
}
/* mode mismatch interrupt */
if (int_status & GINTF_MFIF) {
/* clear interrupt */
USB_GINTF = GINTF_MFIF;
}
/* early suspend interrupt */
if (int_status & GINTF_ESP) {
retval |= usbd_intf_earlysuspend(pudev);
}
/* suspend interrupt */
if (int_status & GINTF_SP) {
retval |= usbd_intf_suspend(pudev);
}
/* wakeup interrupt */
if (int_status & GINTF_WKUPIF) {
retval |= usbd_intf_resume(pudev);
}
/* start of frame interrupt */
if (int_status & GINTF_SOF) {
retval |= usbd_intf_sof(pudev);
}
/* reveive fifo not empty interrupt */
if (int_status & GINTF_RXFNEIF) {
retval |= usbd_intf_rxfifo(pudev);
}
/* USB reset interrupt */
if (int_status & GINTF_RST) {
retval |= usbd_intf_reset(pudev);
}
/* enumeration has been finished interrupt */
if (int_status & GINTF_ENUMFIF) {
retval |= usbd_intf_enumfinish(pudev);
}
/* incomplete synchronization in transfer interrupt*/
if (int_status & GINTF_ISOINCIF) {
retval |= usbd_intf_isoinincomplete(pudev);
}
/* incomplete synchronization out transfer interrupt*/
if (int_status & GINTF_ISOONCIF) {
retval |= usbd_intf_isooutincomplete(pudev);
}
#ifdef VBUS_SENSING_ENABLED
/* session request interrupt */
if (int_status & GINTF_SESIF) {
retval |= usbd_intf_sessionrequest(pudev);
}
/* OTG mode interrupt */
if (int_status & GINTF_OTGIF) {
retval |= usbd_intf_otg(pudev);
}
#endif /* VBUS_SENSING_ENABLED */
}
return retval;
}
/*!
\brief indicates that an OUT endpoint has a pending interrupt
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
static uint32_t usbd_intf_outep (usb_core_handle_struct *pudev)
{
uint8_t endp_num = 0U;
uint32_t endp_intr = 0U;
__IO uint32_t out_endp_intr = 0U;
/* read in the device interrupt bits */
USB_DAOEP_INTR_READ(endp_intr);
while (endp_intr) {
if (endp_intr & 0x1U) {
USB_DOEP_INTR_READ(out_endp_intr, (uint16_t)endp_num);
/* transfer complete interrupt */
if (out_endp_intr & DOEPINTF_TF) {
USB_DOEPxINTF((uint16_t)endp_num) = DOEPINTF_TF;
if (1U == pudev->cfg.dma_enable) {
uint32_t xfer_size = USB_DOEPxLEN((uint16_t)endp_num) & DEPLEN_TLEN;
pudev->dev.out_ep[endp_num].xfer_count = pudev->dev.out_ep[endp_num].endp_mps - \
xfer_size;
}
/* data receive is completed */
usbd_out_transaction(pudev, endp_num);
if (1U == pudev->cfg.dma_enable) {
if ((0U == endp_num) && (USB_CTRL_STATUS_OUT == pudev->dev.ctl_status)) {
/* prepare to receive more setup packets */
usb_ep0_startout(pudev);
}
}
}
/* endpoint disable interrupt */
if (out_endp_intr & DOEPINTF_EPDIS) {
USB_DOEPxINTF((uint16_t)endp_num) = DOEPINTF_EPDIS;
}
/* setup phase finished interrupt (just for control endpoints) */
if (out_endp_intr & DOEPINTF_STPF) {
/* setup phase is completed */
usbd_setup_transaction(pudev);
USB_DOEPxINTF((uint16_t)endp_num) = DOEPINTF_STPF;
}
/* back to back setup packets received */
if (out_endp_intr & DOEPINTF_BTBSTP) {
USB_DOEPxINTF((uint16_t)endp_num) = DOEPINTF_BTBSTP;
}
}
endp_num ++;
endp_intr >>= 1;
}
return 1U;
}
/*!
\brief indicates that an IN endpoint has a pending interrupt
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
static uint32_t usbd_intf_inep(usb_core_handle_struct *pudev)
{
uint8_t endp_num = 0U;
uint32_t endp_intr = 0U;
__IO uint32_t in_endp_intr = 0U;
/* get all in endpoints which have interrupts */
USB_DAIEP_INTR_READ(endp_intr);
while (endp_intr) {
if (endp_intr & 0x1U) {
USB_DIEP_INTR_READ(in_endp_intr, (uint16_t)endp_num);
if (in_endp_intr & DIEPINTF_TF) {
/* disable the fifo empty interrupt for the endpoint */
USB_DIEPFEINTEN &= ~(0x1U << endp_num);
USB_DIEPxINTF((uint16_t)endp_num) = DIEPINTF_TF;
/* data transmittion is completed */
usbd_in_transaction(pudev, endp_num);
if (1U == pudev->cfg.dma_enable) {
if ((0U == endp_num) && (USB_CTRL_STATUS_IN == pudev->dev.ctl_status)) {
/* prepare to receive more setup packets */
usb_ep0_startout(pudev);
}
}
}
if (in_endp_intr & DIEPINTF_CITO) {
USB_DIEPxINTF((uint16_t)endp_num) = DIEPINTF_CITO;
}
if (in_endp_intr & DIEPINTF_IEPNE) {
USB_DIEPxINTF((uint16_t)endp_num) = DIEPINTF_IEPNE;
}
if (in_endp_intr & DIEPINTF_EPDIS) {
USB_DIEPxINTF((uint16_t)endp_num) = DIEPINTF_EPDIS;
}
if (in_endp_intr & DIEPINTF_TXFE) {
usbd_emptytxfifo_write(pudev, endp_num);
USB_DIEPxINTF((uint16_t)endp_num) = DIEPINTF_TXFE;
}
}
endp_num ++;
endp_intr >>= 1;
}
return 1U;
}
/*!
\brief indicates that early SUSPEND state has been detected on the USB
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
static uint32_t usbd_intf_earlysuspend (usb_core_handle_struct *pudev)
{
USB_GINTEN &= ~GINTEN_ESPIE;
USB_GINTF = GINTF_ESP;
return 1U;
}
/*!
\brief indicates that SUSPEND state has been detected on the USB
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
static uint32_t usbd_intf_suspend(usb_core_handle_struct *pudev)
{
__IO uint8_t low_power = pudev->cfg.low_power;
__IO uint8_t suspend = (uint8_t)(USB_DSTAT & DSTAT_SPST);
__IO uint8_t is_configured = (pudev->dev.status == USB_STATUS_CONFIGURED)? 1U : 0U;
pudev->dev.prev_status = pudev->dev.status;
pudev->dev.status = USB_STATUS_SUSPENDED;
if (low_power && suspend && is_configured) {
/* switch-off the otg clocks */
USB_PWRCLKCTL |= PWRCLKCTL_SUCLK | PWRCLKCTL_SHCLK;
/* enter DEEP_SLEEP mode with LDO in low power mode */
pmu_to_deepsleepmode(PMU_LDO_LOWPOWER, WFI_CMD);
}
/* clear interrupt */
USB_GINTF = GINTF_SP;
return 1U;
}
/*!
\brief indicates that the USB controller has detected a resume or remote Wake-up sequence
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
static uint32_t usbd_intf_resume (usb_core_handle_struct *pudev)
{
pudev->dev.status = pudev->dev.prev_status;
pudev->dev.status = USB_STATUS_CONFIGURED;
/* clear interrupt */
USB_GINTF = GINTF_WKUPIF;
return 1U;
}
/*!
\brief handle the SOF interrupts
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
static uint32_t usbd_intf_sof(usb_core_handle_struct *pudev)
{
if (NULL != usbd_int_fops) {
usbd_int_fops->SOF(pudev);
}
USB_GINTF = GINTF_SOF;
return 1U;
}
/*!
\brief handle the Rx status queue level interrupt
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
static uint32_t usbd_intf_rxfifo (usb_core_handle_struct *pudev)
{
usb_ep_struct *ep;
uint8_t data_pid = 0U, endp_num = 0U;
uint32_t bcount = 0U;
/* get the status from the top of the fifo (must be read to a variable) */
__IO uint32_t rx_status = USB_GRSTATP;
/* disable the rx fifo non-empty interrupt */
USB_GINTEN &= ~GINTEN_RXFNEIE;
endp_num = (uint8_t)(rx_status & GRSTATRP_EPNUM);
bcount = (rx_status & GRSTATRP_BCOUNT) >> 4U;
data_pid = (uint8_t)((rx_status & GRSTATRP_DPID) >> 15U);
/* ensure no-DMA mode can work */
if ((1 == endp_num) && (0 == (USB_DOEPxLEN(endp_num) & DEPLEN_PCNT))) {
uint32_t devepctl = USB_DOEPxCTL(endp_num);
devepctl |= DEPCTL_SNAK;
devepctl &= ~DEPCTL_EPEN;
devepctl &= ~DEPCTL_EPD;
USB_DOEPxCTL(endp_num) = devepctl;
}
ep = &pudev->dev.out_ep[endp_num];
switch ((rx_status & GRSTATRP_RPCKST) >> 17U) {
case RXSTAT_GOUT_NAK:
if(0U != bcount) {
return 0U;
}
break;
case RXSTAT_DATA_UPDT:
if (bcount > 0U) {
usb_fifo_read(ep->xfer_buff, (uint16_t)bcount);
ep->xfer_buff += bcount;
ep->xfer_count += bcount;
}
break;
case RXSTAT_XFER_COMP:
if (0U != bcount) {
return 0U;
}
break;
case RXSTAT_SETUP_COMP:
if(0U != bcount) {
return 0U;
}
break;
case RXSTAT_SETUP_UPDT:
if ((0U == endp_num) && (8U == bcount) && (DPID_DATA0 == data_pid)) {
/* copy the setup packet received in fifo into the setup buffer in ram */
usb_fifo_read(pudev->dev.setup_packet, 8U);
ep->xfer_count += bcount;
}
break;
default:
break;
}
/* enable the Rx fifo non-empty interrupt */
USB_GINTEN |= GINTEN_RXFNEIE;
return 1U;
}
/*!
\brief handle USB reset interrupt
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval status
*/
static uint32_t usbd_intf_reset(usb_core_handle_struct *pudev)
{
uint8_t i = 0U;
usb_ep_struct *ep;
/* clear the remote wakeup signaling */
USB_DCTL &= ~DCTL_RWKUP;
/* flush the tx fifo */
usb_txfifo_flush(pudev, 0U);
for (i = 0U; i < pudev->cfg.dev_endp_num; i++) {
USB_DIEPxINTF((uint16_t)i) = 0xFFU;
USB_DOEPxINTF((uint16_t)i) = 0xFFU;
}
/* clear all pending device endpoint interrupts */
USB_DAEPINT = 0xFFFFFFFF;
/* enable endpoint 0 interrupts */
USB_DAEPINTEN &= ~DAEPINTEN_OEPIE;
USB_DAEPINTEN &= ~DAEPINTEN_IEPIE;
USB_DAEPINTEN = (1U << 16) | 1U;
/* enable out endpoint interrupts */
USB_DOEPINTEN = DOEPINTEN_STPFEN | DOEPINTEN_TFEN | DOEPINTEN_EPDISEN;
#ifdef USBHS_DEDICATED_EP1_ENABLED
USB_DOEP1INTEN = DOEPINTEN_STPFEN | DOEPINTEN_TFEN | DOEPINTEN_EPDISEN;
#endif
/* enable in endpoint interrupts */
USB_DIEPINTEN = DIEPINTEN_TFEN | DIEPINTEN_CITOEN | DIEPINTEN_EPDISEN;
#ifdef USBHS_DEDICATED_EP1_ENABLED
USB_DIEP1INTEN = DIEPINTEN_TFEN | DIEPINTEN_CITOEN | DIEPINTEN_EPDISEN;
#endif
/* reset device address */
USB_DCFG &= ~DCFG_DAR;
USB_DCFG |= 0U << 4U;
/* configure endpoint 0 to receive setup packets */
usb_ep0_startout(pudev);
/* clear usb reset interrupt */
USB_GINTF = GINTF_RST;
/* open EP0 IN */
ep = &pudev->dev.in_ep[0];
USB_DIEPxCTL(0U) &= ~DEP0CTL_MPL;
USB_DIEPxCTL(0U) &= ~DEPCTL_EPTYPE;
USB_DIEPxCTL(0U) &= ~DIEPCTL_TXFNUM;
if (!(USB_DIEPxCTL(0U) & DEP0CTL_EPACT)) {
USB_DIEPxCTL(0U) |= USB_MAX_EP0_SIZE;
USB_DIEPxCTL(0U) |= (USB_EPTYPE_CTRL << 18U);
USB_DIEPxCTL(0U) |= DEP0CTL_EPACT;
}
ep->endp_mps = USB_MAX_EP0_SIZE;
ep->endp_type = USB_EPTYPE_CTRL;
/* open EP0 OUT */
ep = &pudev->dev.out_ep[0];
USB_DOEPxCTL(0U) &= ~DEP0CTL_MPL;
USB_DOEPxCTL(0U) &= ~DEPCTL_EPTYPE;
if (!(USB_DOEPxCTL(0U) & DEP0CTL_EPACT)) {
USB_DOEPxCTL(0U) |= USB_MAX_EP0_SIZE;
USB_DOEPxCTL(0U) |= (USB_EPTYPE_CTRL << 18U);
USB_DOEPxCTL(0U) |= DEP0CTL_EPACT;
}
ep->endp_mps = USB_MAX_EP0_SIZE;
ep->endp_type = USB_EPTYPE_CTRL;
pudev->dev.status = USB_STATUS_DEFAULT;
return 1U;
}
/*!
\brief handle enumeration finish interrupt
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval status
*/
static uint32_t usbd_intf_enumfinish(usb_core_handle_struct *pudev)
{
uint8_t enum_speed = (uint8_t)((USB_DSTAT & DSTAT_ES) >> 1U);
/* set the max packet size of devie in endpoint based on the enumeration speed */
USB_DIEPxCTL(0U) |= EP0_MAXLEN[enum_speed];
/* clear global IN NAK */
USB_DCTL &= ~DCTL_CGINAK;
USB_DCTL |= DCTL_CGINAK;
/* set USB turn-around time based on device speed and PHY interface */
if (USB_SPEED_HIGH == USB_SPEED[enum_speed]) {
pudev->cfg.core_speed = USB_CORE_SPEED_HIGH;
pudev->cfg.max_packet_size = USBHS_MAX_PACKET_SIZE;
USB_GUSBCS &= ~GUSBCS_UTT;
USB_GUSBCS |= 0x09U << 10;
} else {
pudev->cfg.core_speed = USB_CORE_SPEED_FULL;
pudev->cfg.max_packet_size = USBFS_MAX_PACKET_SIZE;
USB_GUSBCS &= ~GUSBCS_UTT;
USB_GUSBCS |= 0x05U << 10;
}
/* clear interrupt */
USB_GINTF = GINTF_ENUMFIF;
return 1U;
}
/*!
\brief handle the ISO IN incomplete interrupt
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval status
*/
static uint32_t usbd_intf_isoinincomplete(usb_core_handle_struct *pudev)
{
// USBD_DCD_INT_fops->IsoINIncomplete (pudev);
/* clear interrupt */
USB_GINTF = GINTF_ISOINCIF;
return 1U;
}
/*!
\brief handle the ISO OUT incomplete interrupt
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval status
*/
static uint32_t usbd_intf_isooutincomplete(usb_core_handle_struct *pudev)
{
// USBD_DCD_INT_fops->IsoOUTIncomplete (pudev);
/* clear interrupt */
USB_GINTF = GINTF_ISOONCIF;
return 1U;
}
/*!
\brief check FIFO for the next packet to be loaded
\param[in] pudev: pointer to usb device instance
\param[in] ep_id: endpoint identifier which is in (0..3)
\param[out] none
\retval status
*/
static uint32_t usbd_emptytxfifo_write(usb_core_handle_struct *pudev, uint8_t ep_num)
{
uint32_t len = 0U, word_len = 0U;
usb_ep_struct *ep;
ep = &pudev->dev.in_ep[ep_num];
len = ep->xfer_len - ep->xfer_count;
if (len > ep->endp_mps) {
len = ep->endp_mps;
}
word_len = (len + 3U) / 4U;
while (((USB_DIEPxTFSTAT((uint16_t)ep_num) & DIEPTFSTAT_IEPTFS) > word_len) &&
(ep->xfer_count < ep->xfer_len)) {
/* write the FIFO */
len = ep->xfer_len - ep->xfer_count;
if (len > ep->endp_mps) {
len = ep->endp_mps;
}
word_len = (len + 3U) / 4U;
usb_fifo_write (ep->xfer_buff, ep_num, (uint16_t)len);
ep->xfer_buff += len;
ep->xfer_count += len;
if (ep->xfer_count >= ep->xfer_len) {
USB_DIEPFEINTEN &= ~(0x1U << ep_num);
}
}
return 1U;
}
#ifdef VBUS_SENSING_ENABLED
/*!
\brief indicates that the USB_OTG controller has detected a connection
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval status
*/
static uint32_t usbd_intf_sessionrequest(usb_core_handle_struct *pudev)
{
pudev->dev.connection_status = 1U;
/* clear the interrupt bit */
USB_GINTF = GINTF_SESIF;
return 1;
}
/*!
\brief indicates that the USB_OTG controller has detected an OTG event
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval status
*/
static uint32_t usbd_intf_otg(usb_core_handle_struct *pudev)
{
if (USB_GOTGINTF & GOTGINTF_SESEND) {
pudev->dev.class_deinit(pudev, 0);
pudev->dev.connection_status = 0;
}
/* clear OTG interrupt */
USB_GOTGINTF |= GOTGINTF_SESEND;
return 1;
}
#endif /* VBUS_SENSING_ENABLED */

View File

@@ -0,0 +1,699 @@
/*!
\file usbd_std.c
\brief USB 2.0 standard handler driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.1, firmware for GD32F4xx
*/
#include "usbd_std.h"
#include "usb_core.h"
static usbd_status_enum usbd_standard_request (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static usbd_status_enum usbd_device_class_request (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static usbd_status_enum usbd_vendor_request (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_setup_request_parse(usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_getdescriptor (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_setaddress (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_setconfig (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_getconfig (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_getstatus (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_setfeature (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_clrfeature (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_reserved (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_setdescriptor (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_getinterface (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_setinterface (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_synchframe (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static uint8_t* usbd_device_descriptor_get (usb_core_handle_struct *pudev, uint8_t index, uint16_t *pLen);
static uint8_t* usbd_configuration_descriptor_get (usb_core_handle_struct *pudev, uint8_t index, uint16_t *pLen);
static uint8_t* usbd_string_descriptor_get (usb_core_handle_struct *pudev, uint8_t index, uint16_t *pLen);
static void (*StandardDeviceRequest[])(usb_core_handle_struct *pudev, usb_device_req_struct *req) =
{
usbd_getstatus,
usbd_clrfeature,
usbd_reserved,
usbd_setfeature,
usbd_reserved,
usbd_setaddress,
usbd_getdescriptor,
usbd_setdescriptor,
usbd_getconfig,
usbd_setconfig,
usbd_getinterface,
usbd_setinterface,
usbd_synchframe,
};
/* get standard descriptor handler */
static uint8_t* (*standard_descriptor_get[])(usb_core_handle_struct *pudev, uint8_t index, uint16_t *pLen) =
{
usbd_device_descriptor_get,
usbd_configuration_descriptor_get,
usbd_string_descriptor_get
};
/*!
\brief USB setup stage processing
\param[in] pudev: pointer to USB device instance
\param[out] none
\retval USB device operation status
*/
usbd_status_enum usbd_setup_transaction(usb_core_handle_struct *pudev)
{
usb_device_req_struct req;
usbd_setup_request_parse(pudev, &req);
switch (req.bmRequestType & USB_REQ_MASK) {
/* standard device request */
case USB_STANDARD_REQ:
usbd_standard_request(pudev, &req);
break;
/* device class request */
case USB_CLASS_REQ:
usbd_device_class_request(pudev, &req);
break;
/* vendor defined request */
case USB_VENDOR_REQ:
usbd_vendor_request(pudev, &req);
break;
default:
usbd_ep_stall(pudev, req.bmRequestType & 0x80U);
break;
}
return USBD_OK;
}
/*!
\brief data out stage processing
\param[in] pudev: pointer to USB device instance
\param[in] ep_id: endpoint identifier(0..7)
\param[out] none
\retval USB device operation status
*/
usbd_status_enum usbd_out_transaction (usb_core_handle_struct *pudev, uint8_t endp_num)
{
usb_ep_struct *ep;
if (0U == endp_num) {
ep = &pudev->dev.out_ep[0];
if (USB_CTRL_DATA_OUT == pudev->dev.ctl_status) {
if (pudev->dev.remain_len > ep->endp_mps) {
pudev->dev.remain_len -= ep->endp_mps;
if (1U == pudev->cfg.dma_enable) {
/* update buffer location */
ep->xfer_buff += ep->endp_mps;
}
usbd_ep_rx (pudev,
0U,
ep->xfer_buff,
(uint16_t)USB_MIN(pudev->dev.remain_len, ep->endp_mps));
} else {
if (USB_STATUS_CONFIGURED == pudev->dev.status) {
pudev->dev.class_data_handler(pudev, USB_RX, 0U);
}
usbd_ctlstatus_tx(pudev);
}
}
} else if (USB_STATUS_CONFIGURED == pudev->dev.status) {
pudev->dev.class_data_handler(pudev, USB_RX, endp_num);
} else {
/* no operation */
}
return USBD_OK;
}
/*!
\brief data in stage processing
\param[in] pudev: pointer to USB device instance
\param[in] ep_id: endpoint identifier(0..7)
\param[out] none
\retval USB device operation status
*/
usbd_status_enum usbd_in_transaction (usb_core_handle_struct *pudev, uint8_t endp_num)
{
usb_ep_struct *ep;
if (0U == endp_num) {
ep = &pudev->dev.in_ep[0];
if (USB_CTRL_DATA_IN == pudev->dev.ctl_status) {
if (pudev->dev.remain_len > ep->endp_mps) {
pudev->dev.remain_len -= ep->endp_mps;
if (1U == pudev->cfg.dma_enable) {
/* update buffer location */
ep->xfer_buff += ep->endp_mps;
}
usbd_ep_tx (pudev, 0U, ep->xfer_buff, pudev->dev.remain_len);
} else {
/* last packet is MPS multiple, so send ZLP packet */
if ((pudev->dev.sum_len % ep->endp_mps == 0U) &&
(pudev->dev.sum_len >= ep->endp_mps) &&
(pudev->dev.sum_len < pudev->dev.ctl_len)) {
usbd_ep_tx (pudev, 0U, NULL, 0U);
pudev->dev.ctl_len = 0U;
} else {
if (USB_STATUS_CONFIGURED == pudev->dev.status) {
pudev->dev.class_data_handler(pudev, USB_TX, 0U);
}
usbd_ctlstatus_rx(pudev);
}
}
}
} else if (USB_STATUS_CONFIGURED == pudev->dev.status) {
pudev->dev.class_data_handler(pudev, USB_TX, endp_num);
} else {
/* no operation */
}
return USBD_OK;
}
/*!
\brief handle USB standard device request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval USB device operation status
*/
static usbd_status_enum usbd_standard_request (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
/* call device request handle function */
(*StandardDeviceRequest[req->bRequest])(pudev, req);
return USBD_OK;
}
/*!
\brief handle USB device class request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device class request
\param[out] none
\retval USB device operation status
*/
static usbd_status_enum usbd_device_class_request (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
usbd_status_enum ret = USBD_OK;
switch (pudev->dev.status) {
case USB_STATUS_CONFIGURED:
if (LOWBYTE(req->wIndex) <= USBD_ITF_MAX_NUM) {
ret = (usbd_status_enum)(pudev->dev.class_req_handler(pudev, req));
if ((0U == req->wLength) && (USBD_OK == ret)) {
/* no data stage */
usbd_ctlstatus_tx(pudev);
}
} else {
usbd_enum_error(pudev, req);
}
break;
default:
usbd_enum_error(pudev, req);
break;
}
return ret;
}
/*!
\brief handle USB vendor request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB vendor request
\param[out] none
\retval USB device operation status
*/
static usbd_status_enum usbd_vendor_request (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
/* added by user... */
return USBD_OK;
}
/*!
\brief no operation, just for reserved
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_reserved (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
/* no operation... */
}
/*!
\brief get the device descriptor
\brief[in] index: no use
\param[in] none
\param[out] pLen: data length pointer
\retval descriptor buffer pointer
*/
static uint8_t* usbd_device_descriptor_get (usb_core_handle_struct *pudev, uint8_t index, uint16_t *pLen)
{
*pLen = pudev->dev.dev_desc[0];
return pudev->dev.dev_desc;
}
/*!
\brief get the configuration descriptor
\brief[in] index: no use
\param[in] none
\param[out] pLen: data length pointer
\retval descriptor buffer pointer
*/
static uint8_t* usbd_configuration_descriptor_get (usb_core_handle_struct *pudev, uint8_t index, uint16_t *pLen)
{
*pLen = pudev->dev.config_desc[2];
return pudev->dev.config_desc;
}
/*!
\brief get string descriptor
\param[in] index: string descriptor index
\param[in] pLen: pointer to string length
\param[out] none
\retval none
*/
static uint8_t* usbd_string_descriptor_get (usb_core_handle_struct *pudev, uint8_t index, uint16_t *pLen)
{
uint8_t *desc = pudev->dev.strings[index];
*pLen = desc[0];
return desc;
}
/*!
\brief handle Get_Status request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_getstatus (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
}
/*!
\brief handle USB Clear_Feature request
\param[in] pudev: pointer to USB device instance
\param[in] req: USB device request
\param[out] none
\retval none
*/
static void usbd_clrfeature (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
uint8_t ep_addr = 0U;
switch (req->bmRequestType & USB_REQTYPE_MASK) {
case USB_REQTYPE_DEVICE:
switch (pudev->dev.status) {
case USB_STATUS_ADDRESSED:
case USB_STATUS_CONFIGURED:
if (USB_FEATURE_REMOTE_WAKEUP == req->wValue) {
pudev->dev.remote_wakeup = 0U;
pudev->dev.class_req_handler(pudev, req);
usbd_ctlstatus_tx(pudev);
}
break;
default:
usbd_enum_error(pudev, req);
break;
}
break;
case USB_REQTYPE_INTERFACE:
switch (pudev->dev.status) {
case USB_STATUS_ADDRESSED:
usbd_enum_error(pudev, req);
break;
case USB_STATUS_CONFIGURED:
if (LOWBYTE(req->wIndex) <= USBD_ITF_MAX_NUM) {
/* no operation */
} else {
usbd_enum_error(pudev, req);
}
break;
default:
break;
}
break;
case USB_REQTYPE_ENDPOINT:
ep_addr = LOWBYTE(req->wIndex);
switch (pudev->dev.status) {
case USB_STATUS_ADDRESSED:
if (IS_NOT_EP0(ep_addr)) {
usbd_ep_stall(pudev, ep_addr);
}
break;
case USB_STATUS_CONFIGURED:
if (USB_FEATURE_ENDP_HALT == req->wValue) {
if (IS_NOT_EP0(ep_addr)) {
usbd_ep_clear_stall(pudev, ep_addr);
pudev->dev.class_req_handler(pudev, req);
}
}
usbd_ctlstatus_tx(pudev);
break;
default:
break;
}
break;
default:
usbd_enum_error(pudev, req);
break;
}
}
/*!
\brief handle USB Set_Feature request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_setfeature (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
uint8_t ep_addr = 0U;
__IO uint32_t DctlrStatus;
switch (req->bmRequestType & USB_REQ_MASK) {
case USB_REQTYPE_DEVICE:
switch (pudev->dev.status) {
case USB_STATUS_ADDRESSED:
case USB_STATUS_CONFIGURED:
if (USB_FEATURE_REMOTE_WAKEUP == req->wValue) {
pudev->dev.remote_wakeup = 1U;
pudev->dev.class_req_handler(pudev, req);
usbd_ctlstatus_tx(pudev);
} else if ((req->wValue == USB_FEATURE_TEST_MODE) &&
(0U == (req->wIndex & 0xFFU))) {
DctlrStatus = USB_DCTL;
usbd_ctlstatus_tx(pudev);
} else {
/* no operation */
}
break;
default:
break;
}
break;
case USB_REQTYPE_INTERFACE:
switch (pudev->dev.status) {
case USB_STATUS_ADDRESSED:
usbd_enum_error(pudev, req);
break;
case USB_STATUS_CONFIGURED:
if (LOWBYTE(req->wIndex) <= USBD_ITF_MAX_NUM) {
/* no operation */
} else {
usbd_enum_error(pudev, req);
}
break;
default:
break;
}
break;
case USB_REQTYPE_ENDPOINT:
switch (pudev->dev.status) {
case USB_STATUS_ADDRESSED:
if (IS_NOT_EP0(ep_addr)) {
usbd_ep_stall(pudev, ep_addr);
}
break;
case USB_STATUS_CONFIGURED:
if (USB_FEATURE_ENDP_HALT == req->wValue) {
if (IS_NOT_EP0(ep_addr)) {
usbd_ep_stall(pudev, ep_addr);
}
}
pudev->dev.class_req_handler(pudev, req);
usbd_ctlstatus_tx(pudev);
break;
default:
break;
}
break;
default:
usbd_enum_error(pudev, req);
break;
}
}
/*!
\brief handle USB Set_Address request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_setaddress (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
uint8_t DevAddr;
if ((0U == req->wIndex) && (0U == req->wLength)) {
DevAddr = (uint8_t)(req->wValue) & 0x7FU;
if (USB_STATUS_CONFIGURED == pudev->dev.status) {
usbd_enum_error(pudev, req);
} else {
USB_SET_DEVADDR((uint32_t)DevAddr);
usbd_ctlstatus_tx(pudev);
if (0U != DevAddr) {
pudev->dev.status = USB_STATUS_ADDRESSED;
} else {
pudev->dev.status = USB_STATUS_DEFAULT;
}
}
} else {
usbd_enum_error(pudev, req);
}
}
/*!
\brief handle USB Get_Descriptor request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_getdescriptor (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
if (USB_REQTYPE_DEVICE == (req->bmRequestType & USB_REQTYPE_MASK)) {
uint8_t desc_index = (uint8_t)(req->wValue >> 8U);
if (desc_index <= 0x03U) {
uint16_t len;
uint8_t *pbuf;
/* call corresponding descriptor get function */
pbuf = standard_descriptor_get[desc_index - 1U](pudev, (uint8_t)(req->wValue) & 0xFFU, &len);
if ((0U != len) && (0U != req->wLength)) {
len = USB_MIN(len, req->wLength);
if ((1U == desc_index) && (64U == req->wLength)) {
len = 8U;
}
usbd_ctltx(pudev, pbuf, len);
}
} else {
usbd_enum_error(pudev, req);
}
} else if (USB_REQTYPE_INTERFACE == (req->bmRequestType & USB_REQTYPE_MASK)) {
pudev->dev.class_req_handler(pudev, req);
} else {
/* no operation */
}
}
/*!
\brief handle USB Set_Descriptor request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_setdescriptor (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
/* no handle... */
}
/*!
\brief handle USB Get_Configuration request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_getconfig (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
uint32_t USBD_default_config = 0U;
if (1U != req->wLength) {
usbd_enum_error(pudev, req);
} else {
switch (pudev->dev.status) {
case USB_STATUS_ADDRESSED:
usbd_ctltx(pudev, (uint8_t *)&USBD_default_config, 1U);
break;
case USB_STATUS_CONFIGURED:
usbd_ctltx(pudev, &pudev->dev.config_num, 1U);
break;
default:
usbd_enum_error(pudev, req);
break;
}
}
}
/*!
\brief handle USB Set_Configuration request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_setconfig (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
static uint8_t cfgidx;
cfgidx = (uint8_t)(req->wValue);
if (cfgidx > USBD_CFG_MAX_NUM) {
usbd_enum_error(pudev, req);
} else {
switch (pudev->dev.status) {
case USB_STATUS_ADDRESSED:
if (cfgidx) {
pudev->dev.config_num = cfgidx;
pudev->dev.status = USB_STATUS_CONFIGURED;
pudev->dev.class_init(pudev, cfgidx);
}
usbd_ctlstatus_tx(pudev);
break;
case USB_STATUS_CONFIGURED:
if (0U == cfgidx) {
pudev->dev.status = USB_STATUS_ADDRESSED;
pudev->dev.config_num = cfgidx;
pudev->dev.class_deinit(pudev, cfgidx);
} else if (cfgidx != pudev->dev.config_num) {
/* clear old configuration */
pudev->dev.class_deinit(pudev, pudev->dev.config_num);
/* set new configuration */
pudev->dev.config_num = cfgidx;
pudev->dev.class_init(pudev, cfgidx);
} else {
/* no operation */
}
usbd_ctlstatus_tx(pudev);
break;
default:
usbd_enum_error(pudev, req);
break;
}
}
}
/*!
\brief handle USB Get_Interface request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_getinterface (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
pudev->dev.class_req_handler(pudev, req);
}
/*!
\brief handle USB Set_Interface request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_setinterface (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
pudev->dev.class_req_handler(pudev, req);
}
/*!
\brief handle USB SynchFrame request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_synchframe (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
/* no handle... */
}
/*!
\brief decode setup data packet
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_setup_request_parse(usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
uint8_t *psetup = pudev->dev.setup_packet;
req->bmRequestType = *psetup;
req->bRequest = *(uint8_t *)(psetup + 1U);
req->wValue = SWAPBYTE (psetup + 2U);
req->wIndex = SWAPBYTE (psetup + 4U);
req->wLength = SWAPBYTE (psetup + 6U);
pudev->dev.ctl_len = req->wLength;
}
/*!
\brief handle USB low level error event
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
void usbd_enum_error(usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
usbd_ep_stall(pudev, 0x80U);
usbd_ep_stall(pudev, 0x00U);
usb_ep0_startout(pudev);
}

View File

@@ -0,0 +1,710 @@
/*!
\file usbh_core.c
\brief this file implements the functions for the core state machine process
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#include "usbh_hcs.h"
#include "usbh_core.h"
#include "usbh_int.h"
#include "stdio.h"
#include "usbh_std.h"
#include "usbh_ctrl.h"
#include "usb_core.h"
extern class_polling_fun_cb_struct class_polling_cb;
uint8_t usbh_sof (usb_core_handle_struct *pudev);
uint8_t usbh_connected (usb_core_handle_struct *pudev);
uint8_t usbh_disconnected (usb_core_handle_struct *pudev);
usbh_hcd_int_cb_struct usbh_hcd_int_cb =
{
usbh_sof,
usbh_connected,
usbh_disconnected,
};
usbh_hcd_int_cb_struct *usbh_hcd_int_fops = &usbh_hcd_int_cb;
extern usbh_state_handle_struct usbh_state_core;
static void host_idle_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void host_dev_attached_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void host_dev_detached_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void host_detect_dev_speed_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void host_enum_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void host_class_request_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void host_class_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void host_user_input_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void host_suspended_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void host_error_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static usbh_status_enum class_req_state_polling_fun (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void *pustate);
static usbh_status_enum class_state_polling_fun (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void *pustate);
/* the host state handle function array */
void (*host_state_handle[]) (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate) =
{
host_idle_handle,
host_dev_attached_handle,
host_dev_detached_handle,
host_detect_dev_speed_handle,
host_enum_handle,
host_class_request_handle,
host_class_handle,
host_user_input_handle,
host_suspended_handle,
host_error_handle,
};
/* the host state handle table */
state_table_struct host_handle_table[HOST_HANDLE_TABLE_SIZE] =
{
/* the current state the current event the next state the event function */
{HOST_IDLE, HOST_EVENT_ATTACHED, HOST_DEV_ATTACHED, only_state_move },
{HOST_DEV_ATTACHED, HOST_EVENT_ENUM, HOST_ENUMERATION, only_state_move },
{HOST_ENUMERATION, HOST_EVENT_USER_INPUT, HOST_USER_INPUT, only_state_move },
{HOST_USER_INPUT, HOST_EVENT_CLASS_REQ, HOST_CLASS_REQUEST, only_state_move },
{HOST_CLASS_REQUEST, HOST_EVENT_CLASS, HOST_CLASS, only_state_move },
{HOST_CLASS, HOST_EVENT_ERROR, HOST_ERROR, only_state_move },
{HOST_ERROR, HOST_EVENT_IDLE, HOST_IDLE, only_state_move },
{HOST_DEV_DETACHED, HOST_EVENT_IDLE, HOST_IDLE, only_state_move },
{HOST_CLASS_REQUEST, HOST_EVENT_ERROR, HOST_ERROR, only_state_move },
};
/*!
\brief the polling function of HOST state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
usbh_status_enum host_state_polling_fun (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
void *pustate)
{
usbh_state_handle_struct *p_state = (usbh_state_handle_struct *)pustate;
scd_begin(p_state, HOST_FSM_ID);
if (-1 == p_state->usbh_current_state_stack_top) {
uint8_t cur_state = p_state->usbh_current_state;
if ((0U == hcd_is_device_connected(pudev)) && (HOST_IDLE != cur_state)) {
if (HOST_DEV_DETACHED != cur_state) {
p_state->usbh_current_state = HOST_DEV_DETACHED;
cur_state = HOST_DEV_DETACHED;
}
}
host_state_handle[cur_state](pudev, puhost, p_state);
} else {
uint8_t stack0_state = p_state->stack[0].state;
if ((0U == hcd_is_device_connected(pudev)) && (HOST_IDLE != stack0_state)) {
if (HOST_DEV_DETACHED != stack0_state) {
p_state->stack[0].state = HOST_DEV_DETACHED;
stack0_state = HOST_DEV_DETACHED;
p_state->usbh_current_state = HOST_DEV_DETACHED;
}
}
host_state_handle[stack0_state](pudev, puhost, p_state);
}
return USBH_OK;
}
/*!
\brief the handle function of HOST_IDLE state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void host_idle_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
if (hcd_is_device_connected(pudev)) {
scd_event_handle(pudev, puhost, pustate, HOST_EVENT_ATTACHED, pustate->usbh_current_state);
if ((void *)0 != pudev->mdelay) {
pudev->mdelay(100U);
}
}
}
/*!
\brief the handle function of HOST_DEV_ATTACHED state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void host_dev_attached_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
puhost->usr_cb->device_connected();
puhost->control.hc_out_num = usbh_channel_alloc(pudev, 0x00U);
puhost->control.hc_in_num = usbh_channel_alloc(pudev, 0x80U);
/* reset usb device */
if (0U == usb_port_reset(pudev)) {
puhost->usr_cb->device_reset();
/* wait for USB USBH_ISR_PrtEnDisableChange()
* host is now ready to start the enumeration
*/
puhost->device.speed = (uint8_t)USB_CURRENT_SPEED_GET();
puhost->usr_cb->device_speed_detected(puhost->device.speed);
/* open IN control pipes */
usbh_channel_open (pudev,
puhost->control.hc_in_num,
puhost->device.address,
puhost->device.speed,
USB_EPTYPE_CTRL,
(uint16_t)puhost->control.ep0_size);
/* open OUT control pipes */
usbh_channel_open (pudev,
puhost->control.hc_out_num,
puhost->device.address,
puhost->device.speed,
USB_EPTYPE_CTRL,
(uint16_t)puhost->control.ep0_size);
scd_event_handle(pudev, puhost, pustate, HOST_EVENT_ENUM, pustate->usbh_current_state);
}
}
/*!
\brief the handle function of HOST_ENUMERATION state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void host_enum_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
if (USBH_OK == enum_state_polling_fun(pudev, puhost, pustate)) {
puhost->usr_cb->enumeration_finish();
scd_event_handle(pudev,
puhost,
pustate,
HOST_EVENT_USER_INPUT,
pustate->usbh_current_state);
}
}
/*!
\brief the handle function of HOST_USER_INPUT state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void host_user_input_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
if (USBH_USER_RESP_OK == puhost->usr_cb->user_input()) {
if (USBH_OK == (puhost->class_init(pudev, puhost))) {
scd_event_handle(pudev,
puhost,
pustate,
HOST_EVENT_CLASS_REQ,
pustate->usbh_current_state);
}
}
}
/*!
\brief the handle function of HOST_CLASS_REQUEST state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void host_class_request_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
if (USBH_OK == class_req_state_polling_fun(pudev, puhost, pustate)) {
scd_event_handle(pudev, puhost, pustate, HOST_EVENT_CLASS, pustate->usbh_current_state);
}
}
/*!
\brief the handle function of HOST_CLASS state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void host_class_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
class_state_polling_fun(pudev, puhost, pustate);
}
/*!
\brief the handle function of HOST_SUSPENDED state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void host_suspended_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
/* no operation */
}
/*!
\brief the handle function of HOST_ERROR state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void host_error_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
/* re-initilaize host for new enumeration */
usbh_deinit (pudev, puhost,&usbh_state_core);
puhost->usr_cb->deinit();
puhost->class_deinit(pudev, &puhost->device);
scd_event_handle(pudev, puhost, pustate, HOST_EVENT_IDLE, pustate->usbh_current_state);
}
/*!
\brief the handle function of HOST_DEV_DETACHED state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void host_dev_detached_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
/* manage user disconnect operations*/
puhost->usr_cb->device_disconnected();
/* re-initilaize host for new enumeration */
usbh_deinit(pudev, puhost,&usbh_state_core);
puhost->usr_cb->deinit();
puhost->class_deinit(pudev, &puhost->device);
usbh_allchannel_dealloc(pudev);
scd_event_handle(pudev, puhost, pustate, HOST_EVENT_IDLE, pustate->usbh_current_state);
}
/*!
\brief the handle function of HOST_DETECT_DEV_SPEED state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void host_detect_dev_speed_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
/* no operation */
}
/*!
\brief usb connect callback function from the interrupt.
\param[in] pudev: pointer to usb device
\param[out] none
\retval operation status
*/
uint8_t usbh_connected (usb_core_handle_struct *pudev)
{
pudev->host.connect_status = 1U;
return 0U;
}
/*!
\brief usb disconnect callback function from the interrupt.
\param[in] pudev: pointer to usb device
\param[out] none
\retval operation status
*/
uint8_t usbh_disconnected (usb_core_handle_struct *pudev)
{
pudev->host.connect_status = 0U;
return 0U;
}
/*!
\brief usb sof callback function from the interrupt.
\param[in] pudev: pointer to usb device
\param[out] none
\retval operation status
*/
uint8_t usbh_sof (usb_core_handle_struct *pudev)
{
/* this callback could be used to implement a scheduler process */
return 0U;
}
/*!
\brief initialize the host portion of the driver.
\param[in] pudev: pointer to usb device
\param[in] core_id: usb otg core identifier(high-speed or full-speed)
\param[out] none
\retval operation status
*/
uint32_t hcd_init(usb_core_handle_struct *pudev, usb_core_id_enum core_id)
{
pudev->host.connect_status = 0U;
pudev->host.host_channel[0].endp_mps = 8U;
usb_core_select(pudev, core_id);
#ifndef DUAL_ROLE_MODE_ENABLED
USB_GLOBAL_INT_DISABLE();
usb_core_init(pudev);
/* force host mode*/
usb_mode_set(pudev, HOST_MODE);
usb_hostcore_init(pudev);
USB_GLOBAL_INT_ENABLE();
#endif
return 0U;
}
/*!
\brief check if the device is connected.
\param[in] pudev: pointer to usb device
\param[out] none
\retval device connection status. 1 -> connected and 0 -> disconnected
*/
uint32_t hcd_is_device_connected(usb_core_handle_struct *pudev)
{
return (uint32_t)(pudev->host.connect_status);
}
/*!
\brief this function returns the last URBstate
\param[in] pudev: pointer to usb device
\param[in] channel_num: host channel number which is in (0..7)
\param[out] none
\retval urb_state_enum
*/
urb_state_enum hcd_urb_state_get (usb_core_handle_struct *pudev, uint8_t channel_num)
{
return pudev->host.host_channel[channel_num].urb_state;
}
/*!
\brief this function returns the last URBstate
\param[in] pudev: pointer to usb device
\param[in] channel_num: host channel number which is in (0..7)
\param[out] none
\retval No. of data bytes transferred
*/
uint32_t hcd_xfer_count_get (usb_core_handle_struct *pudev, uint8_t channel_num)
{
return pudev->host.host_channel[channel_num].xfer_count;
}
/*!
\brief de-initialize host
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[out] none
\retval host status
*/
usbh_status_enum usbh_deinit(usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct* pustate)
{
/* software init */
puhost->control.ep0_size = USB_MAX_EP0_SIZE;
puhost->device.address = USBH_DEVICE_ADDRESS_DEFAULT;
puhost->device.speed = HPRT_PRTSPD_FULL_SPEED;
usbh_channel_free(pudev, puhost->control.hc_in_num);
usbh_channel_free(pudev, puhost->control.hc_out_num);
scd_init(pustate);
scd_table_regist(pustate, host_handle_table, HOST_FSM_ID, HOST_HANDLE_TABLE_SIZE);
scd_table_regist(pustate, enum_handle_table, ENUM_FSM_ID, ENUM_HANDLE_TABLE_SIZE);
scd_table_regist(pustate, ctrl_handle_table, CTRL_FSM_ID, CTRL_HANDLE_TABLE_SIZE);
scd_begin(pustate,HOST_FSM_ID);
scd_state_move(pustate, HOST_IDLE);
return USBH_OK;
}
/*!
\brief state core driver init
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
void scd_init(usbh_state_handle_struct* pustate)
{
/* init the state core */
pustate->usbh_current_state = 0U;
pustate->usbh_current_state_table = NULL;
pustate->usbh_current_state_table_size = 0U;
pustate->usbh_current_state_stack_top = -1;
pustate->stack->state = 0U;
pustate->stack->table_size = 0U;
pustate->stack->table = NULL;
pustate->usbh_regist_state_table_num = 0U;
pustate->usbh_regist_state_table->table = NULL;
pustate->usbh_regist_state_table->table_size = 0U;
pustate->usbh_regist_state_table->id = 0U;
/* init the control and the enumeration polling handle flag */
ctrl_polling_handle_flag = 0U;
enum_polling_handle_flag = 0U;
}
/*!
\brief state core driver table regist
\param[in] pustate: pointer to usb state driver
\param[in] pstate_table: pointer to the table to regist
\param[in] table_id: the id of the table to regist
\param[in] current_table_size: the size of the current table to regist
\param[out] none
\retval none
*/
void scd_table_regist (usbh_state_handle_struct* pustate,
state_table_struct* pstate_table,
uint8_t table_id,
uint8_t current_table_size)
{
usbh_state_regist_table_struct *cur_state_reg_table;
cur_state_reg_table = &pustate->usbh_regist_state_table[pustate->usbh_regist_state_table_num];
cur_state_reg_table->id = table_id;
cur_state_reg_table->table = pstate_table;
cur_state_reg_table->table_size = current_table_size;
pustate->usbh_regist_state_table_num++;
}
/*!
\brief state core driver begin
\param[in] pustate: pointer to usb state driver
\param[in] table_id: the id of the table to begin
\param[out] none
\retval none
*/
void scd_begin(usbh_state_handle_struct* pustate, uint8_t table_id)
{
uint8_t i = 0, table_num = pustate->usbh_regist_state_table_num;
usbh_state_regist_table_struct *cur_state_reg_table;
for (i = 0; i < table_num; i++) {
cur_state_reg_table = &pustate->usbh_regist_state_table[i];
if (table_id == cur_state_reg_table->id) {
pustate->usbh_current_state_table = cur_state_reg_table->table;
pustate->usbh_current_state_table_size = cur_state_reg_table->table_size;
break;
}
}
}
/*!
\brief state core driver move state
\param[in] pustate: pointer to usb state driver
\param[in] state: the state to move
\param[out] none
\retval none
*/
void scd_state_move(usbh_state_handle_struct* pustate, uint8_t state)
{
pustate->usbh_current_state = state;
}
/*!
\brief state core driver event handle
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[in] event: the current event
\param[in] state: the current state
\param[out] none
\retval host status
*/
usbh_status_enum scd_event_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct* pustate,
uint8_t event,
uint8_t state)
{
uint8_t i = 0;
ACT_FUN event_act_fun = NULL;
state_table_struct *backup_state_t = pustate->usbh_current_state_table;
state_table_struct *executive_state_table = pustate->usbh_current_state_table;
/* look up the table to find the action function */
for (i = 0; i < pustate->usbh_current_state_table_size; i++) {
if (state == executive_state_table->cur_state) {
if (event == executive_state_table->cur_event) {
state = executive_state_table->next_state;
event_act_fun = executive_state_table->event_action_fun;
break;
} else {
executive_state_table++;
}
} else {
executive_state_table++;
}
}
pustate->usbh_current_state_table = backup_state_t;
/* if the action function is not NULL, execute the action function */
if (event_act_fun) {
if (event_act_fun == &only_state_move) {
pustate->usbh_current_state = state;
} else {
return event_act_fun(pudev, puhost, pustate);
}
}
return USBH_BUSY;
}
/*!
\brief state core driver table push
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
void scd_table_push(usbh_state_handle_struct* pustate)
{
usbh_state_stack_struct *top_state_element;
if (pustate->usbh_current_state_stack_top < MAX_USBH_STATE_STACK_DEEP) {
pustate->usbh_current_state_stack_top++;
top_state_element = &pustate->stack[pustate->usbh_current_state_stack_top];
/* put the current state table into the state stack */
top_state_element->state = pustate->usbh_current_state;
top_state_element->table = pustate->usbh_current_state_table;
top_state_element->table_size = pustate->usbh_current_state_table_size;
}
}
/*!
\brief state core driver table pop
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
void scd_table_pop (usbh_state_handle_struct* pustate)
{
usbh_state_stack_struct *top_state_element;
top_state_element = &pustate->stack[pustate->usbh_current_state_stack_top];
if (pustate->usbh_current_state_stack_top > -1) {
/* get the current state table from the state stack */
pustate->usbh_current_state = top_state_element->state;
pustate->usbh_current_state_table = top_state_element->table;
pustate->usbh_current_state_table_size = top_state_element->table_size;
pustate->usbh_current_state_stack_top--;
}
}
/*!
\brief the polling function of class req state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval host status
*/
static usbh_status_enum class_req_state_polling_fun (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void *pustate)
{
return class_polling_cb.class_req_polling(pudev, puhost, pustate);
}
/*!
\brief the polling function of class state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval host status
*/
static usbh_status_enum class_state_polling_fun (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void *pustate)
{
return class_polling_cb.class_polling(pudev, puhost, pustate);
}
/*!
\brief the function is only used to state move
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
usbh_status_enum only_state_move (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void *pustate)
{
return USBH_OK;
}
/*!
\brief the function to the up state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
usbh_status_enum goto_up_state_fun (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void *pustate)
{
scd_table_pop((usbh_state_handle_struct *)pustate);
return USBH_OK;
}

View File

@@ -0,0 +1,623 @@
/*!
\file usbh_ctrl.c
\brief this file implements the functions for the control transmit process
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#include "usbh_core.h"
#include "usbh_std.h"
#include "usbh_ctrl.h"
uint8_t ctrl_polling_handle_flag = 0U;
uint8_t ctrl_setup_wait_flag = 0U;
uint8_t ctrl_data_wait_flag = 0U;
uint8_t ctrl_status_wait_flag = 0U;
static uint16_t timeout = 0U;
static void ctrl_idle_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void ctrl_setup_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void ctrl_data_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void ctrl_status_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void ctrl_error_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void ctrl_stalled_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void ctrl_complete_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
/* the ctrl state handle function array */
void (*ctrl_state_handle[]) (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate) =
{
ctrl_idle_handle,
ctrl_setup_handle,
ctrl_data_handle,
ctrl_status_handle,
ctrl_error_handle,
ctrl_stalled_handle,
ctrl_complete_handle,
};
/* the ctrl state handle table */
state_table_struct ctrl_handle_table[CTRL_HANDLE_TABLE_SIZE] =
{
/* the current state the current event the next state the event function */
{CTRL_IDLE, CTRL_EVENT_SETUP, CTRL_SETUP, only_state_move },
{CTRL_SETUP, CTRL_EVENT_DATA, CTRL_DATA, only_state_move },
{CTRL_SETUP, CTRL_EVENT_STATUS, CTRL_STATUS, only_state_move },
{CTRL_SETUP, CTRL_EVENT_ERROR, CTRL_ERROR, only_state_move },
{CTRL_DATA, CTRL_EVENT_STATUS, CTRL_STATUS, only_state_move },
{CTRL_DATA, CTRL_EVENT_ERROR, CTRL_ERROR, only_state_move },
{CTRL_DATA, CTRL_EVENT_STALLED, CTRL_STALLED, only_state_move },
{CTRL_STATUS, CTRL_EVENT_COMPLETE, CTRL_COMPLETE, only_state_move },
{CTRL_STATUS, CTRL_EVENT_ERROR, CTRL_ERROR, only_state_move },
{CTRL_STATUS, CTRL_EVENT_STALLED, CTRL_STALLED, only_state_move },
{CTRL_ERROR, GO_TO_UP_STATE_EVENT, UP_STATE, goto_up_state_fun },
{CTRL_STALLED, GO_TO_UP_STATE_EVENT, UP_STATE, goto_up_state_fun },
{CTRL_COMPLETE, GO_TO_UP_STATE_EVENT, UP_STATE, goto_up_state_fun },
};
/*!
\brief the polling function of CTRL state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
usbh_status_enum ctrl_state_polling_fun (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
void *pustate)
{
usbh_status_enum exe_state = USBH_BUSY;
usbh_state_handle_struct *p_state;
p_state = (usbh_state_handle_struct *)pustate;
/* if first enter this function, begin the ctrl state */
if (0U == ctrl_polling_handle_flag) {
ctrl_polling_handle_flag = 1U;
scd_table_push(p_state);
scd_state_move(p_state, CTRL_IDLE);
}
/* base on the current state to handle the ctrl state */
scd_begin(p_state, CTRL_FSM_ID);
ctrl_state_handle[p_state->usbh_current_state](pudev, puhost, p_state);
/* determine the control transfer whether to complete */
switch (puhost->usbh_backup_state.ctrl_backup_state) {
case CTRL_COMPLETE:
ctrl_polling_handle_flag = 0U;
puhost->usbh_backup_state.ctrl_backup_state = CTRL_IDLE;
exe_state = USBH_OK;
break;
case CTRL_STALLED:
ctrl_polling_handle_flag = 0U;
puhost->usbh_backup_state.ctrl_backup_state = CTRL_IDLE;
exe_state = USBH_NOT_SUPPORTED;
break;
case CTRL_ERROR:
ctrl_polling_handle_flag = 0U;
puhost->usbh_backup_state.ctrl_backup_state = CTRL_IDLE;
exe_state = USBH_FAIL;
break;
default:
exe_state = USBH_BUSY;
break;
}
return exe_state;
}
/*!
\brief the handle function of CTRL_IDLE state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void ctrl_idle_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
puhost->usbh_backup_state.ctrl_backup_state = CTRL_IDLE;
scd_event_handle(pudev, puhost, pustate, CTRL_EVENT_SETUP, pustate->usbh_current_state);
}
/*!
\brief the handle function of CTRL_SETUP state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void ctrl_setup_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
urb_state_enum urb_status = URB_IDLE;
puhost->usbh_backup_state.ctrl_backup_state = CTRL_SETUP;
if (0U == ctrl_setup_wait_flag) {
ctrl_setup_wait_flag = 1U;
/* send a setup packet */
usbh_ctltx_setup (pudev,
puhost->control.setup.data,
puhost->control.hc_out_num);
} else {
urb_status = hcd_urb_state_get(pudev, puhost->control.hc_out_num);
/* case setup packet sent successfully */
if (URB_DONE == urb_status) {
/* check if there is a data stage */
if (0U != puhost->control.setup.b.wLength) {
ctrl_setup_wait_flag = 0U;
timeout = DATA_STAGE_TIMEOUT;
scd_event_handle(pudev, puhost, pustate, CTRL_EVENT_DATA, pustate->usbh_current_state);
/* no data stage */
} else {
timeout = NODATA_STAGE_TIMEOUT;
ctrl_setup_wait_flag = 0U;
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_STATUS,
pustate->usbh_current_state);
}
/* set the delay timer to enable timeout for data stage completion */
puhost->control.timer = (uint16_t)USB_CURRENT_FRAME_GET();
} else if (URB_ERROR == urb_status) {
ctrl_setup_wait_flag = 0U;
scd_event_handle(pudev, puhost, pustate, CTRL_EVENT_ERROR, pustate->usbh_current_state);
} else {
/* no operation */
}
}
}
/*!
\brief the handle function of CTRL_DATA state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void ctrl_data_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
uint8_t direction;
urb_state_enum urb_status = URB_IDLE;
puhost->usbh_backup_state.ctrl_backup_state = CTRL_DATA;
direction = (puhost->control.setup.b.bmRequestType & USB_DIR_MASK);
if (USB_DIR_IN == direction) {
if (0U == ctrl_data_wait_flag) {
ctrl_data_wait_flag = 1U;
/* issue an IN token */
usbh_xfer(pudev,
puhost->control.buff,
puhost->control.hc_in_num,
puhost->control.length);
} else {
urb_status = hcd_urb_state_get(pudev, puhost->control.hc_in_num);
/* check is data packet transfered successfully */
switch (urb_status) {
case URB_DONE:
ctrl_data_wait_flag = 0U;
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_STATUS,
pustate->usbh_current_state);
break;
case URB_STALL:
ctrl_data_wait_flag = 0U;
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_STALLED,
pustate->usbh_current_state);
break;
case URB_ERROR:
ctrl_data_wait_flag = 0U;
/* device error */
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_ERROR,
pustate->usbh_current_state);
break;
default:
if (((uint16_t)USB_CURRENT_FRAME_GET() - puhost->control.timer) > timeout) {
ctrl_data_wait_flag = 0U;
/* timeout for IN transfer */
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_ERROR,
pustate->usbh_current_state);
}
break;
}
}
} else {
if (0U == ctrl_data_wait_flag) {
ctrl_data_wait_flag = 1U;
/* start DATA out transfer (only one DATA packet)*/
pudev->host.host_channel[puhost->control.hc_out_num].data_tg_out = 1U;
usbh_xfer(pudev,
puhost->control.buff,
puhost->control.hc_out_num,
puhost->control.length);
} else {
urb_status = hcd_urb_state_get(pudev, puhost->control.hc_out_num);
switch (urb_status) {
case URB_DONE:
ctrl_data_wait_flag = 0U;
/* if the setup pkt is sent successful, then change the state */
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_STATUS,
pustate->usbh_current_state);
break;
case URB_STALL:
ctrl_data_wait_flag = 0U;
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_STALLED,
pustate->usbh_current_state);
break;
case URB_NOTREADY:
/* nack received from device */
ctrl_data_wait_flag = 0U;
break;
case URB_ERROR:
ctrl_data_wait_flag = 0U;
/* device error */
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_ERROR,
pustate->usbh_current_state);
break;
default:
break;
}
}
}
}
/*!
\brief the handle function of CTRL_STATUS state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void ctrl_status_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
uint8_t direction;
urb_state_enum urb_status = URB_IDLE;
puhost->usbh_backup_state.ctrl_backup_state = CTRL_STATUS;
/* get the transfer direction in the data state, but the transfer direction in the status state is opposite */
direction = (puhost->control.setup.b.bmRequestType & USB_DIR_MASK);
if (USB_DIR_OUT == direction) {
/* handle status in */
if (0U == ctrl_status_wait_flag) {
ctrl_status_wait_flag = 1U;
usbh_xfer (pudev, 0U, puhost->control.hc_in_num, 0U);
} else {
urb_status = hcd_urb_state_get(pudev, puhost->control.hc_in_num);
switch (urb_status) {
case URB_DONE:
ctrl_status_wait_flag = 0U;
/* handle URB_DONE status */
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_COMPLETE,
pustate->usbh_current_state);
break;
case URB_ERROR:
ctrl_status_wait_flag = 0U;
/* handle URB_STALL status*/
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_ERROR,
pustate->usbh_current_state);
break;
case URB_STALL:
ctrl_status_wait_flag = 0U;
/* handle URB_STALL status */
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_STALLED,
pustate->usbh_current_state);
break;
default:
if (((uint16_t)USB_CURRENT_FRAME_GET() - puhost->control.timer) > timeout) {
ctrl_status_wait_flag = 0U;
/* handle timeout */
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_ERROR,
pustate->usbh_current_state);
}
break;
}
}
} else {
/* handle status out */
if (0U == ctrl_status_wait_flag) {
ctrl_status_wait_flag = 1U;
pudev->host.host_channel[puhost->control.hc_out_num].data_tg_out ^= 1U;
usbh_xfer (pudev, 0U, puhost->control.hc_out_num, 0U);
/* ensure USBHS host can work */
{
uint32_t hostchctl = USB_HCHxCTL(puhost->control.hc_out_num);
USB_HCHxLEN(puhost->control.hc_out_num) |= 1;
hostchctl &= ~HCHCTL_CDIS;
hostchctl |= HCHCTL_CEN;
USB_HCHxCTL(puhost->control.hc_out_num) = hostchctl;
}
} else {
urb_status = hcd_urb_state_get(pudev, puhost->control.hc_out_num);
switch (urb_status) {
case URB_DONE:
ctrl_status_wait_flag = 0U;
/* handle URB_DONE status */
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_COMPLETE,
pustate->usbh_current_state);
break;
case URB_NOTREADY:
/* handle URB_NOTREADY status */
ctrl_status_wait_flag = 0U;
break;
case URB_ERROR:
ctrl_status_wait_flag = 0U;
/* handle URB_ERROR status */
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_ERROR,
pustate->usbh_current_state);
break;
default:
break;
}
}
}
}
/*!
\brief the handle function of CTRL_ERROR state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void ctrl_error_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
puhost->usbh_backup_state.ctrl_backup_state = CTRL_ERROR;
if (++puhost->control.error_count <= USBH_MAX_ERROR_COUNT) {
/* do the transmission again, starting from SETUP Packet */
scd_event_handle(pudev, puhost, pustate, CTRL_EVENT_SETUP, pustate->usbh_current_state);
} else {
scd_event_handle(pudev, puhost, pustate, GO_TO_UP_STATE_EVENT, pustate->usbh_current_state);
}
}
/*!
\brief the handle function of CTRL_STALLED state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void ctrl_stalled_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
puhost->usbh_backup_state.ctrl_backup_state = CTRL_STALLED;
scd_event_handle(pudev, puhost, pustate, GO_TO_UP_STATE_EVENT, pustate->usbh_current_state);
}
/*!
\brief the handle function of CTRL_COMPLETE state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void ctrl_complete_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
puhost->usbh_backup_state.ctrl_backup_state = CTRL_COMPLETE;
scd_event_handle(pudev, puhost, pustate, GO_TO_UP_STATE_EVENT, pustate->usbh_current_state);
}
/*!
\brief send datas from the host channel
\param[in] pudev: pointer to usb device
\param[in] buf: data buffer address to send datas
\param[in] hc_num: the number of the host channel
\param[in] len: length of the send data
\param[out] none
\retval host operation status
*/
usbh_status_enum usbh_xfer (usb_core_handle_struct *pudev,
uint8_t *buf,
uint8_t hc_num,
uint16_t len)
{
usb_hostchannel_struct *puhc = &pudev->host.host_channel[hc_num];
puhc->xfer_buff = buf;
puhc->xfer_len = len;
switch (puhc->endp_type) {
case USB_EPTYPE_CTRL:
if (0U == puhc->endp_in) {
if (0U == len) {
/* for status out stage, length = 0, status out pid = 1 */
puhc->data_tg_out = 1U;
}
/* set the data toggle bit as per the flag */
if (0U == puhc->data_tg_out) {
/* put the pid 0 */
puhc->DPID = HC_PID_DATA0;
} else {
/* put the pid 1 */
puhc->DPID = HC_PID_DATA1;
}
} else {
puhc->DPID = HC_PID_DATA1;
}
break;
case USB_EPTYPE_ISOC:
puhc->DPID = HC_PID_DATA0;
break;
case USB_EPTYPE_BULK:
if (0U == puhc->endp_in) {
/* set the data toggle bit as per the flag */
if (0U == puhc->data_tg_out) {
/* put the pid 0 */
puhc->DPID = HC_PID_DATA0;
} else {
/* put the pid 1 */
puhc->DPID = HC_PID_DATA1;
}
} else {
if (0U == puhc->data_tg_in) {
puhc->DPID = HC_PID_DATA0;
} else {
puhc->DPID = HC_PID_DATA1;
}
}
break;
case USB_EPTYPE_INTR:
if (0U == puhc->endp_in) {
if (0U == puhc->data_tg_out) {
puhc->DPID = HC_PID_DATA0;
} else {
puhc->DPID = HC_PID_DATA1;
}
/* toggle data pid */
puhc->data_tg_out ^= 1U;
} else {
if (0U == puhc->data_tg_in) {
puhc->DPID = HC_PID_DATA0;
} else {
puhc->DPID = HC_PID_DATA1;
}
/* toggle data pid */
puhc->data_tg_in ^= 1U;
}
break;
default:
break;
}
hcd_submit_request (pudev, hc_num);
return USBH_OK;
}
/*!
\brief send the setup packet to the device
\param[in] pudev: pointer to usb device
\param[in] buf: buffer pointer from which the data will be send to device
\param[in] hc_num: host channel number
\param[out] none
\retval host operation status
*/
usbh_status_enum usbh_ctltx_setup (usb_core_handle_struct *pudev, uint8_t *buf, uint8_t hc_num)
{
usb_hostchannel_struct *puhc = &pudev->host.host_channel[hc_num];
puhc->DPID = HC_PID_SETUP;
puhc->xfer_buff = buf;
puhc->xfer_len = USBH_SETUP_PACKET_SIZE;
return (usbh_status_enum)hcd_submit_request (pudev, hc_num);
}
/*!
\brief this function prepare a hc and start a transfer
\param[in] pudev: pointer to usb device
\param[in] channel_num: host channel number which is in (0..7)
\param[out] none
\retval host operation status
*/
uint32_t hcd_submit_request (usb_core_handle_struct *pudev, uint8_t channel_num)
{
usb_hostchannel_struct *puhc = &pudev->host.host_channel[channel_num];
puhc->urb_state = URB_IDLE;
puhc->xfer_count = 0U;
return (uint32_t)usb_hostchannel_startxfer(pudev, channel_num);
}

Some files were not shown because too many files have changed in this diff Show More