lib生成文档结束
This commit is contained in:
File diff suppressed because it is too large
Load Diff
@@ -1,22 +0,0 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_BENCHMARKS_KEYWORD_SCRAMBLED_MODEL_DATA_H_
|
||||
#define TENSORFLOW_LITE_MICRO_BENCHMARKS_KEYWORD_SCRAMBLED_MODEL_DATA_H_
|
||||
|
||||
extern const unsigned char g_keyword_scrambled_model_data[];
|
||||
extern const unsigned int g_keyword_scrambled_model_data_length;
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_BENCHMARKS_KEYWORD_SCRAMBLED_MODEL_DATA_H_
|
@@ -13,15 +13,29 @@ See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
// Reference implementation of the DebugLog() function that's required for a
|
||||
// platform to support the TensorFlow Lite for Microcontrollers library. This is
|
||||
// the only function that's absolutely required to be available on a target
|
||||
// device, since it's used for communicating test results back to the host so
|
||||
// that we can verify the implementation is working correctly.
|
||||
// It's designed to be as easy as possible to supply an implementation though.
|
||||
// On platforms that have a POSIX stack or C library, it can be written as a
|
||||
// single call to `fprintf(stderr, "%s", s)` to output a string to the error
|
||||
// stream of the console, but if there's no OS or C library available, there's
|
||||
// almost always an equivalent way to write out a string to some serial
|
||||
// interface that can be used instead. For example on Arm M-series MCUs, calling
|
||||
// the `bkpt #0xAB` assembler instruction will output the string in r1 to
|
||||
// whatever debug serial connection is available. If you're running mbed, you
|
||||
// can do the same by creating `Serial pc(USBTX, USBRX)` and then calling
|
||||
// `pc.printf("%s", s)`.
|
||||
// To add an equivalent function for your own platform, create your own
|
||||
// implementation file, and place it in a subfolder with named after the OS
|
||||
// you're targeting. For example, see the Cortex M bare metal version in
|
||||
// tensorflow/lite/micro/bluepill/debug_log.cc or the mbed one on
|
||||
// tensorflow/lite/micro/mbed/debug_log.cc.
|
||||
|
||||
#include "tensorflow/lite/micro/debug_log.h"
|
||||
#include "stdio.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
#include <cstdio>
|
||||
|
||||
void DebugLog(const char *s) { printf("%s", s); }
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
extern "C" void DebugLog(const char* s) { fprintf(stderr, "%s", s); }
|
||||
|
@@ -1,25 +0,0 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/detection_responder.h"
|
||||
|
||||
// This dummy implementation writes person and no person scores to the error
|
||||
// console. Real applications will want to take some custom action instead, and
|
||||
// should implement their own versions of this function.
|
||||
void RespondToDetection(tflite::ErrorReporter* error_reporter,
|
||||
int8_t person_score, int8_t no_person_score) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter, "person score:%d no person score %d",
|
||||
person_score, no_person_score);
|
||||
}
|
@@ -1,34 +0,0 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
// Provides an interface to take an action based on the output from the person
|
||||
// detection model.
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_DETECTION_RESPONDER_H_
|
||||
#define TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_DETECTION_RESPONDER_H_
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/micro/micro_error_reporter.h"
|
||||
|
||||
// Called every time the results of a person detection run are available. The
|
||||
// `person_score` has the numerical confidence that the captured image contains
|
||||
// a person, and `no_person_score` has the numerical confidence that the image
|
||||
// does not contain a person. Typically if person_score > no person score, the
|
||||
// image is considered to contain a person. This threshold may be adjusted for
|
||||
// particular applications.
|
||||
void RespondToDetection(tflite::ErrorReporter* error_reporter,
|
||||
int8_t person_score, int8_t no_person_score);
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_DETECTION_RESPONDER_H_
|
@@ -1,26 +0,0 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/image_provider.h"
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/model_settings.h"
|
||||
|
||||
TfLiteStatus GetImage(tflite::ErrorReporter* error_reporter, int image_width,
|
||||
int image_height, int channels, int8_t* image_data,
|
||||
uint8_t * hardware_input) {
|
||||
for (int i = 0; i < image_width * image_height * channels; ++i) {
|
||||
image_data[i] = hardware_input[i];
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
@@ -1,40 +0,0 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_IMAGE_PROVIDER_H_
|
||||
#define TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_IMAGE_PROVIDER_H_
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/micro/micro_error_reporter.h"
|
||||
|
||||
// This is an abstraction around an image source like a camera, and is
|
||||
// expected to return 8-bit sample data. The assumption is that this will be
|
||||
// called in a low duty-cycle fashion in a low-power application. In these
|
||||
// cases, the imaging sensor need not be run in a streaming mode, but rather can
|
||||
// be idled in a relatively low-power mode between calls to GetImage(). The
|
||||
// assumption is that the overhead and time of bringing the low-power sensor out
|
||||
// of this standby mode is commensurate with the expected duty cycle of the
|
||||
// application. The underlying sensor may actually be put into a streaming
|
||||
// configuration, but the image buffer provided to GetImage should not be
|
||||
// overwritten by the driver code until the next call to GetImage();
|
||||
//
|
||||
// The reference implementation can have no platform-specific dependencies, so
|
||||
// it just returns a static image. For real applications, you should
|
||||
// ensure there's a specialized implementation that accesses hardware APIs.
|
||||
TfLiteStatus GetImage(tflite::ErrorReporter* error_reporter, int image_width,
|
||||
int image_height, int channels, int8_t* image_data,
|
||||
uint8_t * hardware_input);
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_IMAGE_PROVIDER_H_
|
@@ -1,27 +0,0 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/main_functions.h"
|
||||
|
||||
// This is the default main used on systems that have the standard C entry
|
||||
// point. Other devices (for example FreeRTOS or ESP32) that have different
|
||||
// requirements for entry code (like an app_main function) should specialize
|
||||
// this main.cc file in a target-specific subfolder.
|
||||
int main(int argc, char* argv[]) {
|
||||
setup();
|
||||
while (true) {
|
||||
loop();
|
||||
}
|
||||
}
|
@@ -1,119 +0,0 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/main_functions.h"
|
||||
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/detection_responder.h"
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/image_provider.h"
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/model_settings.h"
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/person_detect_model_data.h"
|
||||
#include "tensorflow/lite/micro/micro_error_reporter.h"
|
||||
#include "tensorflow/lite/micro/micro_interpreter.h"
|
||||
#include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
#include "tensorflow/lite/version.h"
|
||||
|
||||
// Globals, used for compatibility with Arduino-style sketches.
|
||||
namespace {
|
||||
tflite::ErrorReporter* error_reporter = nullptr;
|
||||
const tflite::Model* model = nullptr;
|
||||
tflite::MicroInterpreter* interpreter = nullptr;
|
||||
TfLiteTensor* input = nullptr;
|
||||
|
||||
// In order to use optimized tensorflow lite kernels, a signed int8_t quantized
|
||||
// model is preferred over the legacy unsigned model format. This means that
|
||||
// throughout this project, input images must be converted from unisgned to
|
||||
// signed format. The easiest and quickest way to convert from unsigned to
|
||||
// signed 8-bit integers is to subtract 128 from the unsigned value to get a
|
||||
// signed value.
|
||||
|
||||
// An area of memory to use for input, output, and intermediate arrays.
|
||||
constexpr int kTensorArenaSize = 115 * 1024;
|
||||
static uint8_t tensor_arena[kTensorArenaSize];
|
||||
} // namespace
|
||||
|
||||
// The name of this function is important for Arduino compatibility.
|
||||
void person_detect_init() {
|
||||
// Set up logging. Google style is to avoid globals or statics because of
|
||||
// lifetime uncertainty, but since this has a trivial destructor it's okay.
|
||||
// NOLINTNEXTLINE(runtime-global-variables)
|
||||
static tflite::MicroErrorReporter micro_error_reporter;
|
||||
error_reporter = µ_error_reporter;
|
||||
|
||||
// Map the model into a usable data structure. This doesn't involve any
|
||||
// copying or parsing, it's a very lightweight operation.
|
||||
model = tflite::GetModel(g_person_detect_model_data);
|
||||
if (model->version() != TFLITE_SCHEMA_VERSION) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter,
|
||||
"Model provided is schema version %d not equal "
|
||||
"to supported version %d.",
|
||||
model->version(), TFLITE_SCHEMA_VERSION);
|
||||
return;
|
||||
}
|
||||
|
||||
// Pull in only the operation implementations we need.
|
||||
// This relies on a complete list of all the ops needed by this graph.
|
||||
// An easier approach is to just use the AllOpsResolver, but this will
|
||||
// incur some penalty in code space for op implementations that are not
|
||||
// needed by this graph.
|
||||
//
|
||||
// tflite::AllOpsResolver resolver;
|
||||
// NOLINTNEXTLINE(runtime-global-variables)
|
||||
static tflite::MicroMutableOpResolver<5> micro_op_resolver;
|
||||
micro_op_resolver.AddAveragePool2D();
|
||||
micro_op_resolver.AddConv2D();
|
||||
micro_op_resolver.AddDepthwiseConv2D();
|
||||
micro_op_resolver.AddReshape();
|
||||
micro_op_resolver.AddSoftmax();
|
||||
|
||||
// Build an interpreter to run the model with.
|
||||
// NOLINTNEXTLINE(runtime-global-variables)
|
||||
static tflite::MicroInterpreter static_interpreter(
|
||||
model, micro_op_resolver, tensor_arena, kTensorArenaSize, error_reporter);
|
||||
interpreter = &static_interpreter;
|
||||
|
||||
// Allocate memory from the tensor_arena for the model's tensors.
|
||||
TfLiteStatus allocate_status = interpreter->AllocateTensors();
|
||||
if (allocate_status != kTfLiteOk) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter, "AllocateTensors() failed");
|
||||
return;
|
||||
}
|
||||
|
||||
// Get information about the memory area to use for the model's input.
|
||||
input = interpreter->input(0);
|
||||
}
|
||||
|
||||
// The name of this function is important for Arduino compatibility.
|
||||
int person_detect(uint8_t * hardware_input) {
|
||||
// Get image from provider.
|
||||
if (kTfLiteOk != GetImage(error_reporter, kNumCols, kNumRows, kNumChannels,
|
||||
input->data.int8, hardware_input)) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter, "Image capture failed.");
|
||||
}
|
||||
|
||||
// Run the model on this input and make sure it succeeds.
|
||||
if (kTfLiteOk != interpreter->Invoke()) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter, "Invoke failed.");
|
||||
}
|
||||
|
||||
TfLiteTensor* output = interpreter->output(0);
|
||||
|
||||
// Process the inference results.
|
||||
int8_t person_score = output->data.uint8[kPersonIndex];
|
||||
int8_t no_person_score = output->data.uint8[kNotAPersonIndex];
|
||||
RespondToDetection(error_reporter, person_score, no_person_score);
|
||||
if(person_score >= no_person_score + 50) return 1;
|
||||
else return 0;
|
||||
}
|
@@ -1,30 +0,0 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_MAIN_FUNCTIONS_H_
|
||||
#define TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_MAIN_FUNCTIONS_H_
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
|
||||
// Initializes all data needed for the example. The name is important, and needs
|
||||
// to be setup() for Arduino compatibility.
|
||||
extern "C" void person_detect_init();
|
||||
|
||||
// Runs one iteration of data gathering and inference. This should be called
|
||||
// repeatedly from the application code. The name needs to be loop() for Arduino
|
||||
// compatibility.
|
||||
extern "C" int person_detect(uint8_t * hardware_input);
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_MAIN_FUNCTIONS_H_
|
@@ -1,21 +0,0 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/model_settings.h"
|
||||
|
||||
const char* kCategoryLabels[kCategoryCount] = {
|
||||
"notperson",
|
||||
"person",
|
||||
};
|
@@ -1,35 +0,0 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_MODEL_SETTINGS_H_
|
||||
#define TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_MODEL_SETTINGS_H_
|
||||
|
||||
// Keeping these as constant expressions allow us to allocate fixed-sized arrays
|
||||
// on the stack for our working memory.
|
||||
|
||||
// All of these values are derived from the values used during model training,
|
||||
// if you change your model you'll need to update these constants.
|
||||
constexpr int kNumCols = 96;
|
||||
constexpr int kNumRows = 96;
|
||||
constexpr int kNumChannels = 1;
|
||||
|
||||
constexpr int kMaxImageSize = kNumCols * kNumRows * kNumChannels;
|
||||
|
||||
constexpr int kCategoryCount = 2;
|
||||
constexpr int kPersonIndex = 1;
|
||||
constexpr int kNotAPersonIndex = 0;
|
||||
extern const char* kCategoryLabels[kCategoryCount];
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_MODEL_SETTINGS_H_
|
@@ -1,27 +0,0 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
// This is a standard TensorFlow Lite model file that has been converted into a
|
||||
// C data array, so it can be easily compiled into a binary for devices that
|
||||
// don't have a file system. It was created using the command:
|
||||
// xxd -i person_detect.tflite > person_detect_model_data.cc
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_PERSON_DETECT_MODEL_DATA_H_
|
||||
#define TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_PERSON_DETECT_MODEL_DATA_H_
|
||||
|
||||
extern const unsigned char g_person_detect_model_data[];
|
||||
extern const int g_person_detect_model_data_len;
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_PERSON_DETECT_MODEL_DATA_H_
|
@@ -1,378 +0,0 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "mcu_init.h"
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/micro/all_ops_resolver.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_runner.h"
|
||||
#include "tensorflow/lite/micro/testing/micro_test.h"
|
||||
#include "tensorflow/lite/micro/testing/test_utils.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace testing {
|
||||
namespace {
|
||||
|
||||
void TestReluFloat(const int* input_dims_data, const float* input_data,
|
||||
const int* output_dims_data, const float* golden,
|
||||
float* output_data) {
|
||||
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
|
||||
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
|
||||
const int output_elements_count = ElementCount(*output_dims);
|
||||
|
||||
constexpr int inputs_size = 1;
|
||||
constexpr int outputs_size = 1;
|
||||
constexpr int tensors_size = inputs_size + outputs_size;
|
||||
TfLiteTensor tensors[tensors_size] = {
|
||||
CreateFloatTensor(input_data, input_dims),
|
||||
CreateFloatTensor(output_data, output_dims),
|
||||
};
|
||||
|
||||
int inputs_array_data[] = {1, 0};
|
||||
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
|
||||
int outputs_array_data[] = {1, 1};
|
||||
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
|
||||
|
||||
const TfLiteRegistration registration = ops::micro::Register_RELU();
|
||||
micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array,
|
||||
outputs_array,
|
||||
/*builtin_data=*/nullptr, micro_test::reporter);
|
||||
|
||||
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare());
|
||||
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke());
|
||||
|
||||
for (int i = 0; i < output_elements_count; ++i) {
|
||||
TF_LITE_MICRO_EXPECT_NEAR(golden[i], output_data[i], 1e-5f);
|
||||
}
|
||||
}
|
||||
|
||||
void TestRelu6Float(const int* input_dims_data, const float* input_data,
|
||||
const int* output_dims_data, const float* golden,
|
||||
float* output_data) {
|
||||
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
|
||||
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
|
||||
const int output_elements_count = ElementCount(*output_dims);
|
||||
|
||||
constexpr int inputs_size = 1;
|
||||
constexpr int outputs_size = 1;
|
||||
constexpr int tensors_size = inputs_size + outputs_size;
|
||||
TfLiteTensor tensors[tensors_size] = {
|
||||
CreateFloatTensor(input_data, input_dims),
|
||||
CreateFloatTensor(output_data, output_dims),
|
||||
};
|
||||
|
||||
int inputs_array_data[] = {1, 0};
|
||||
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
|
||||
int outputs_array_data[] = {1, 1};
|
||||
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
|
||||
|
||||
const TfLiteRegistration registration = ops::micro::Register_RELU6();
|
||||
micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array,
|
||||
outputs_array,
|
||||
/*builtin_data=*/nullptr, micro_test::reporter);
|
||||
|
||||
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare());
|
||||
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke());
|
||||
|
||||
for (int i = 0; i < output_elements_count; ++i) {
|
||||
TF_LITE_MICRO_EXPECT_NEAR(golden[i], output_data[i], 1e-5f);
|
||||
}
|
||||
}
|
||||
|
||||
void TestReluUint8(const int* input_dims_data, const float* input_data,
|
||||
uint8_t* input_data_quantized, const float input_scale,
|
||||
const int input_zero_point, const float* golden,
|
||||
uint8_t* golden_quantized, const int* output_dims_data,
|
||||
const float output_scale, const int output_zero_point,
|
||||
uint8_t* output_data) {
|
||||
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
|
||||
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
|
||||
const int output_elements_count = ElementCount(*output_dims);
|
||||
|
||||
constexpr int inputs_size = 1;
|
||||
constexpr int outputs_size = 1;
|
||||
constexpr int tensors_size = inputs_size + outputs_size;
|
||||
TfLiteTensor tensors[tensors_size] = {
|
||||
CreateQuantizedTensor(input_data, input_data_quantized, input_dims,
|
||||
input_scale, input_zero_point),
|
||||
CreateQuantizedTensor(output_data, output_dims, output_scale,
|
||||
output_zero_point),
|
||||
};
|
||||
|
||||
int inputs_array_data[] = {1, 0};
|
||||
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
|
||||
int outputs_array_data[] = {1, 1};
|
||||
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
|
||||
|
||||
const TfLiteRegistration registration = ops::micro::Register_RELU();
|
||||
micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array,
|
||||
outputs_array,
|
||||
/*builtin_data=*/nullptr, micro_test::reporter);
|
||||
|
||||
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare());
|
||||
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke());
|
||||
|
||||
AsymmetricQuantize(golden, golden_quantized, output_elements_count,
|
||||
output_scale, output_zero_point);
|
||||
|
||||
for (int i = 0; i < output_elements_count; ++i) {
|
||||
TF_LITE_MICRO_EXPECT_EQ(golden_quantized[i], output_data[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void TestRelu6Uint8(const int* input_dims_data, const float* input_data,
|
||||
uint8_t* input_data_quantized, const float input_scale,
|
||||
const int input_zero_point, const float* golden,
|
||||
uint8_t* golden_quantized, const int* output_dims_data,
|
||||
const float output_scale, const int output_zero_point,
|
||||
uint8_t* output_data) {
|
||||
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
|
||||
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
|
||||
const int output_elements_count = ElementCount(*output_dims);
|
||||
|
||||
constexpr int inputs_size = 1;
|
||||
constexpr int outputs_size = 1;
|
||||
constexpr int tensors_size = inputs_size + outputs_size;
|
||||
TfLiteTensor tensors[tensors_size] = {
|
||||
CreateQuantizedTensor(input_data, input_data_quantized, input_dims,
|
||||
input_scale, input_zero_point),
|
||||
CreateQuantizedTensor(output_data, output_dims, output_scale,
|
||||
output_zero_point),
|
||||
};
|
||||
|
||||
int inputs_array_data[] = {1, 0};
|
||||
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
|
||||
int outputs_array_data[] = {1, 1};
|
||||
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
|
||||
|
||||
const TfLiteRegistration registration = ops::micro::Register_RELU6();
|
||||
micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array,
|
||||
outputs_array,
|
||||
/*builtin_data=*/nullptr, micro_test::reporter);
|
||||
|
||||
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare());
|
||||
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke());
|
||||
|
||||
AsymmetricQuantize(golden, golden_quantized, output_elements_count,
|
||||
output_scale, output_zero_point);
|
||||
|
||||
for (int i = 0; i < output_elements_count; ++i) {
|
||||
TF_LITE_MICRO_EXPECT_EQ(golden_quantized[i], output_data[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void TestReluInt8(const int* input_dims_data, const float* input_data,
|
||||
int8_t* input_data_quantized, const float input_scale,
|
||||
const int input_zero_point, const float* golden,
|
||||
int8_t* golden_quantized, const int* output_dims_data,
|
||||
const float output_scale, const int output_zero_point,
|
||||
int8_t* output_data) {
|
||||
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
|
||||
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
|
||||
const int output_elements_count = ElementCount(*output_dims);
|
||||
constexpr int inputs_size = 1;
|
||||
constexpr int outputs_size = 1;
|
||||
constexpr int tensors_size = inputs_size + outputs_size;
|
||||
TfLiteTensor tensors[tensors_size] = {
|
||||
CreateQuantizedTensor(input_data, input_data_quantized, input_dims,
|
||||
input_scale, input_zero_point),
|
||||
CreateQuantizedTensor(output_data, output_dims, output_scale,
|
||||
output_zero_point),
|
||||
};
|
||||
|
||||
int inputs_array_data[] = {1, 0};
|
||||
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
|
||||
int outputs_array_data[] = {1, 1};
|
||||
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
|
||||
|
||||
const TfLiteRegistration registration = ops::micro::Register_RELU();
|
||||
micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array,
|
||||
outputs_array,
|
||||
/*builtin_data=*/nullptr, micro_test::reporter);
|
||||
|
||||
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare());
|
||||
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke());
|
||||
|
||||
AsymmetricQuantize(golden, golden_quantized, output_elements_count,
|
||||
output_scale, output_zero_point);
|
||||
|
||||
for (int i = 0; i < output_elements_count; ++i) {
|
||||
TF_LITE_MICRO_EXPECT_EQ(golden_quantized[i], output_data[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void TestRelu6Int8(const int* input_dims_data, const float* input_data,
|
||||
int8_t* input_data_quantized, const float input_scale,
|
||||
const int input_zero_point, const float* golden,
|
||||
int8_t* golden_quantized, const int* output_dims_data,
|
||||
const float output_scale, const int output_zero_point,
|
||||
int8_t* output_data) {
|
||||
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
|
||||
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
|
||||
const int output_elements_count = ElementCount(*output_dims);
|
||||
constexpr int inputs_size = 1;
|
||||
constexpr int outputs_size = 1;
|
||||
constexpr int tensors_size = inputs_size + outputs_size;
|
||||
TfLiteTensor tensors[tensors_size] = {
|
||||
CreateQuantizedTensor(input_data, input_data_quantized, input_dims,
|
||||
input_scale, input_zero_point),
|
||||
CreateQuantizedTensor(output_data, output_dims, output_scale,
|
||||
output_zero_point),
|
||||
};
|
||||
|
||||
int inputs_array_data[] = {1, 0};
|
||||
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
|
||||
int outputs_array_data[] = {1, 1};
|
||||
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
|
||||
|
||||
const TfLiteRegistration registration = ops::micro::Register_RELU6();
|
||||
micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array,
|
||||
outputs_array,
|
||||
/*builtin_data=*/nullptr, micro_test::reporter);
|
||||
|
||||
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare());
|
||||
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke());
|
||||
|
||||
AsymmetricQuantize(golden, golden_quantized, output_elements_count,
|
||||
output_scale, output_zero_point);
|
||||
|
||||
for (int i = 0; i < output_elements_count; ++i) {
|
||||
TF_LITE_MICRO_EXPECT_EQ(golden_quantized[i], output_data[i]);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace testing
|
||||
} // namespace tflite
|
||||
|
||||
TF_LITE_MICRO_TESTS_BEGIN
|
||||
|
||||
TF_LITE_MICRO_TEST(SimpleReluTestFloat) {
|
||||
const int output_elements_count = 10;
|
||||
const int input_shape[] = {2, 1, 5};
|
||||
const float input_data[] = {
|
||||
1.0, 2.0, 3.0, 4.0, 5.0, -1.0, -2.0, -3.0, -4.0, -5.0,
|
||||
};
|
||||
const float golden[] = {1.0, 2.0, 3.0, 4.0, 5.0, 0, 0, 0, 0, 0};
|
||||
const int output_shape[] = {2, 1, 5};
|
||||
float output_data[output_elements_count];
|
||||
tflite::testing::TestReluFloat(input_shape, input_data, output_shape, golden,
|
||||
output_data);
|
||||
}
|
||||
|
||||
TF_LITE_MICRO_TEST(SimpleRelu6TestFloat) {
|
||||
const int output_elements_count = 10;
|
||||
float output_data[output_elements_count];
|
||||
const int input_shape[] = {2, 1, 5};
|
||||
const float input_data[] = {4.0, 5.0, 6.0, 7.0, 8.0,
|
||||
-4.0, -5.0, -6.0, -7.0, -8.0};
|
||||
const int output_shape[] = {2, 1, 5};
|
||||
const float golden[] = {
|
||||
4.0, 5.0, 6.0, 6.0, 6.0, 0.0, 0.0, 0.0, 0.0, 0.0,
|
||||
};
|
||||
|
||||
tflite::testing::TestRelu6Float(input_shape, input_data, output_shape, golden,
|
||||
output_data);
|
||||
}
|
||||
|
||||
TF_LITE_MICRO_TEST(SimpleReluTestUint8) {
|
||||
const int elements_count = 10;
|
||||
|
||||
const int input_shape[] = {2, 1, 5};
|
||||
const float input_data[] = {1, 2, 3, 4, 5, -1, -2, -3, -4, -5};
|
||||
uint8_t input_quantized[elements_count];
|
||||
const int output_shape[] = {2, 1, 5};
|
||||
const float golden[] = {1, 2, 3, 4, 5, 0, 0, 0, 0, 0};
|
||||
uint8_t golden_quantized[elements_count];
|
||||
uint8_t output_data[elements_count];
|
||||
|
||||
const float input_scale = 0.5f;
|
||||
const int input_zero_point = 127;
|
||||
const float output_scale = 0.5f;
|
||||
const int output_zero_point = 127;
|
||||
|
||||
tflite::testing::TestReluUint8(input_shape, input_data, input_quantized,
|
||||
input_scale, input_zero_point, golden,
|
||||
golden_quantized, output_shape, output_scale,
|
||||
output_zero_point, output_data);
|
||||
}
|
||||
|
||||
TF_LITE_MICRO_TEST(SimpleRelu6TestUint8) {
|
||||
const int elements_count = 10;
|
||||
|
||||
const int input_shape[] = {2, 1, 5};
|
||||
const float input_data[] = {4, 5, 6, 7, 8, -1, -2, -3, -4, -5};
|
||||
uint8_t input_quantized[elements_count];
|
||||
const int output_shape[] = {2, 1, 5};
|
||||
const float golden[] = {4, 5, 6, 6, 6, 0, 0, 0, 0, 0};
|
||||
uint8_t golden_quantized[elements_count];
|
||||
uint8_t output_data[elements_count];
|
||||
|
||||
const float input_scale = 0.5f;
|
||||
const int input_zero_point = 127;
|
||||
const float output_scale = 0.5f;
|
||||
const int output_zero_point = 127;
|
||||
|
||||
tflite::testing::TestRelu6Uint8(input_shape, input_data, input_quantized,
|
||||
input_scale, input_zero_point, golden,
|
||||
golden_quantized, output_shape, output_scale,
|
||||
output_zero_point, output_data);
|
||||
}
|
||||
|
||||
TF_LITE_MICRO_TEST(SimpleReluTestInt8) {
|
||||
const int elements_count = 10;
|
||||
|
||||
const int input_shape[] = {2, 1, 5};
|
||||
const float input_data[] = {1, 2, 3, 4, 5, -1, -2, -3, -4, -5};
|
||||
int8_t input_quantized[elements_count];
|
||||
const int output_shape[] = {2, 1, 5};
|
||||
const float golden[] = {1, 2, 3, 4, 5, 0, 0, 0, 0, 0};
|
||||
int8_t golden_quantized[elements_count];
|
||||
int8_t output_data[elements_count];
|
||||
|
||||
const float input_scale = 0.5f;
|
||||
const int input_zero_point = 0;
|
||||
const float output_scale = 0.5f;
|
||||
const int output_zero_point = 0;
|
||||
|
||||
tflite::testing::TestReluInt8(input_shape, input_data, input_quantized,
|
||||
input_scale, input_zero_point, golden,
|
||||
golden_quantized, output_shape, output_scale,
|
||||
output_zero_point, output_data);
|
||||
}
|
||||
|
||||
TF_LITE_MICRO_TEST(SimpleRelu6TestInt8) {
|
||||
const int elements_count = 10;
|
||||
|
||||
const int input_shape[] = {2, 1, 5};
|
||||
const float input_data[] = {4, 5, 6, 7, 8, -1, -2, -3, -4, -5};
|
||||
int8_t input_quantized[elements_count];
|
||||
const int output_shape[] = {2, 1, 5};
|
||||
const float golden[] = {4, 5, 6, 6, 6, 0, 0, 0, 0, 0};
|
||||
int8_t golden_quantized[elements_count];
|
||||
int8_t output_data[elements_count];
|
||||
|
||||
const float input_scale = 0.5f;
|
||||
const int input_zero_point = 127;
|
||||
const float output_scale = 0.5f;
|
||||
const int output_zero_point = 127;
|
||||
|
||||
tflite::testing::TestRelu6Int8(input_shape, input_data, input_quantized,
|
||||
input_scale, input_zero_point, golden,
|
||||
golden_quantized, output_shape, output_scale,
|
||||
output_zero_point, output_data);
|
||||
}
|
||||
|
||||
TF_LITE_MICRO_TESTS_END
|
@@ -14,11 +14,11 @@ limitations under the License.
|
||||
==============================================================================*/
|
||||
#include "tensorflow/lite/kernels/internal/reference/comparisons.h"
|
||||
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
|
@@ -159,7 +159,8 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
int num_dimensions = NumDimensions(input);
|
||||
|
||||
if (num_dimensions > 4) {
|
||||
TF_LITE_KERNEL_LOG(context,
|
||||
TF_LITE_KERNEL_LOG(
|
||||
context,
|
||||
"Op Concatenation does not currently support num dimensions >4 "
|
||||
"Tensor has %d dimensions.",
|
||||
num_dimensions);
|
||||
@@ -209,7 +210,8 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
break;
|
||||
}
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Op Concatenation does not currently support Type '%s'.",
|
||||
TF_LITE_KERNEL_LOG(
|
||||
context, "Op Concatenation does not currently support Type '%s'.",
|
||||
TfLiteTypeGetName(output_type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
@@ -238,7 +240,8 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
break;
|
||||
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(context, "Op Concatenation does not currently support Type '%s'.",
|
||||
TF_LITE_KERNEL_LOG(
|
||||
context, "Op Concatenation does not currently support Type '%s'.",
|
||||
TfLiteTypeGetName(output_type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
@@ -15,7 +15,7 @@ limitations under the License.
|
||||
#ifndef TENSORFLOW_LITE_MICRO_MICRO_MUTABLE_OP_RESOLVER_H_
|
||||
#define TENSORFLOW_LITE_MICRO_MICRO_MUTABLE_OP_RESOLVER_H_
|
||||
|
||||
#include <stdio.h>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
|
@@ -22,7 +22,7 @@ limitations under the License.
|
||||
#include <cinttypes>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <stdio.h>
|
||||
#include <cstdio>
|
||||
#include <vector>
|
||||
|
||||
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
||||
|
@@ -74,26 +74,23 @@ extern tflite::ErrorReporter* reporter;
|
||||
tflite::ErrorReporter* reporter; \
|
||||
} \
|
||||
\
|
||||
int main(void) { \
|
||||
int main(int argc, char** argv) { \
|
||||
micro_test::tests_passed = 0; \
|
||||
micro_test::tests_failed = 0; \
|
||||
tflite::MicroErrorReporter error_reporter; \
|
||||
micro_test::reporter = &error_reporter; \
|
||||
HAL_Init(); \
|
||||
SystemClock_Config(); \
|
||||
board_init(); \
|
||||
printf("Init Successful");
|
||||
|
||||
micro_test::reporter = &error_reporter;
|
||||
|
||||
#define TF_LITE_MICRO_TESTS_END \
|
||||
micro_test::reporter->Report( \
|
||||
"%d/%d tests passed", micro_test::tests_passed, \
|
||||
(micro_test::tests_failed + micro_test::tests_passed)); \
|
||||
if (micro_test::tests_failed == 0) { \
|
||||
micro_test::reporter->Report("~~~ALL TESTS PASSED~~~\n"); \
|
||||
return kTfLiteOk; \
|
||||
} else { \
|
||||
micro_test::reporter->Report("~~~SOME TESTS FAILED~~~\n"); \
|
||||
return kTfLiteError; \
|
||||
} \
|
||||
while(1); \
|
||||
}
|
||||
|
||||
// TODO(petewarden): I'm going to hell for what I'm doing to this poor for loop.
|
||||
|
@@ -33,12 +33,12 @@
|
||||
#include "cmsis/CMSIS/NN/Include/arm_nnsupportfunctions.h"
|
||||
|
||||
// Work around for https://github.com/ARMmbed/mbed-os/issues/12568
|
||||
#define __patched_SXTB16_RORn(op1, rotate) \
|
||||
({ \
|
||||
uint32_t result; \
|
||||
__ASM ("sxtb16 %0, %1, ROR %2" : "=r" (result) : "r" (op1), "i" (rotate) ); \
|
||||
result; \
|
||||
})
|
||||
__STATIC_FORCEINLINE uint32_t __patched_SXTB16_RORn(uint32_t op1, uint32_t rotate) {
|
||||
uint32_t result;
|
||||
__ASM ("sxtb16 %0, %1, ROR %2" : "=r" (result) : "r" (op1), "i" (rotate) );
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @ingroup groupSupport
|
||||
*/
|
||||
|
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user