完成tflite_micro库目录结构,完成496TF移植部分文档
This commit is contained in:
900
components/ai/tflite_micro/Source/third_party/gemmlowp/fixedpoint/fixedpoint.h
vendored
Normal file
900
components/ai/tflite_micro/Source/third_party/gemmlowp/fixedpoint/fixedpoint.h
vendored
Normal file
@@ -0,0 +1,900 @@
|
||||
// Copyright 2015 The Gemmlowp Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// fixedpoint.h: fixed-point arithmetic, with basic operations and
|
||||
// a few math functions such as tanh.
|
||||
|
||||
#ifndef GEMMLOWP_INTERNAL_FIXEDPOINT_H_
|
||||
#define GEMMLOWP_INTERNAL_FIXEDPOINT_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
#include <limits>
|
||||
|
||||
#include "../internal/detect_platform.h"
|
||||
|
||||
namespace gemmlowp {
|
||||
|
||||
// Part 1: Low-level integer-arithmetic primitives.
|
||||
// The implementations here are generic implementations valid for
|
||||
// scalar types (e.g. std::int32_t). Architecture-specific SIMD types
|
||||
// (e.g. NEON int32x4_t) may be supported by providing
|
||||
// specializations for them in separate files.
|
||||
//
|
||||
// The purpose of these primitives is two-fold:
|
||||
// - They will be used to implement higher-level fixed-point
|
||||
// abstractions, namely the FixedPoint class and its arithmetic
|
||||
// operators.
|
||||
// - They will be directly used to implement some more involved
|
||||
// fixed-point computations, e.g. the fixed-point implementation
|
||||
// of math functions such as tanh.
|
||||
|
||||
// Some compile-time traits around raw types to handle SIMD aspects:
|
||||
// number of lanes, underlying scalar type.
|
||||
template <typename tIntegerType>
|
||||
struct FixedPointRawTypeTraits {};
|
||||
|
||||
template <>
|
||||
struct FixedPointRawTypeTraits<std::int32_t> {
|
||||
typedef std::int32_t ScalarRawType;
|
||||
static constexpr int kLanes = 1;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct FixedPointRawTypeTraits<std::int16_t> {
|
||||
typedef std::int16_t ScalarRawType;
|
||||
static constexpr int kLanes = 1;
|
||||
};
|
||||
|
||||
// Returns a SIMD value duplicating a scalar value across all lanes.
|
||||
template <typename tRawType>
|
||||
tRawType Dup(typename FixedPointRawTypeTraits<tRawType>::ScalarRawType x) {
|
||||
return x;
|
||||
}
|
||||
|
||||
// Plain bit-wise AND
|
||||
template <typename tIntegerType>
|
||||
tIntegerType BitAnd(tIntegerType a, tIntegerType b) {
|
||||
return a & b;
|
||||
}
|
||||
|
||||
// Plain bit-wise OR
|
||||
template <typename tIntegerType>
|
||||
tIntegerType BitOr(tIntegerType a, tIntegerType b) {
|
||||
return a | b;
|
||||
}
|
||||
|
||||
// Plain bit-wise XOR
|
||||
template <typename tIntegerType>
|
||||
tIntegerType BitXor(tIntegerType a, tIntegerType b) {
|
||||
return a ^ b;
|
||||
}
|
||||
|
||||
// Plain bit-wise NOT
|
||||
template <typename tIntegerType>
|
||||
tIntegerType BitNot(tIntegerType a) {
|
||||
return ~a;
|
||||
}
|
||||
|
||||
// Integer addition. Not saturating. Overflow is undefined behavior.
|
||||
template <typename tIntegerType>
|
||||
tIntegerType Add(tIntegerType a, tIntegerType b) {
|
||||
return a + b;
|
||||
}
|
||||
|
||||
// Integer subtraction. Not saturating. Overflow is undefined behavior.
|
||||
template <typename tIntegerType>
|
||||
tIntegerType Mul(tIntegerType a, tIntegerType b) {
|
||||
return a * b;
|
||||
}
|
||||
|
||||
template <typename tIntegerType>
|
||||
tIntegerType Sub(tIntegerType a, tIntegerType b) {
|
||||
return a - b;
|
||||
}
|
||||
|
||||
// Integer unary negative. Not saturating. Overflow is undefined behavior.
|
||||
template <typename tIntegerType>
|
||||
tIntegerType Neg(tIntegerType a) {
|
||||
return -a;
|
||||
}
|
||||
|
||||
// Integer arithmetic left-shift, equivalent to multiplying with a power of two.
|
||||
// Negative values are OK. In case of overflow, no Undefined
|
||||
// Behavior, but the results are implementation-defined (in practice,
|
||||
// they currently are saturated, but we make no commitment to that). The idea
|
||||
// is that the caller will want to implement the overflowing cases with
|
||||
// saturation with compare-and-mask, so we don't care about the results
|
||||
// in the overflow case, we just want to avoid undefined behavior.
|
||||
//
|
||||
// tIntegerType may be int32 or any narrower signed type.
|
||||
template <typename tIntegerType>
|
||||
tIntegerType ShiftLeft(tIntegerType a, int offset) {
|
||||
const std::int64_t wide_a = static_cast<std::int64_t>(a);
|
||||
const std::int64_t wide_shifted = wide_a * (1 << offset);
|
||||
const auto min = std::numeric_limits<tIntegerType>::min();
|
||||
const auto max = std::numeric_limits<tIntegerType>::max();
|
||||
return wide_shifted < min
|
||||
? min
|
||||
: wide_shifted > max ? max
|
||||
: static_cast<tIntegerType>(wide_shifted);
|
||||
}
|
||||
|
||||
// Integer arithmetic right-shift. Not rounding.
|
||||
// Relying on implementation-defined, but in-practice-consistent,
|
||||
// C++ compiler behavior.
|
||||
template <typename tIntegerType>
|
||||
tIntegerType ShiftRight(tIntegerType a, int offset) {
|
||||
return a >> offset;
|
||||
}
|
||||
|
||||
// Each bit of the result is set to the corresponding bit of either then_val or
|
||||
// else_val depending on whether the corresponding bit of if_mask is set.
|
||||
// Equivalent to the VBSL instruction in ARM NEON.
|
||||
template <typename tIntegerType>
|
||||
tIntegerType SelectUsingMask(tIntegerType if_mask, tIntegerType then_val,
|
||||
tIntegerType else_val) {
|
||||
return BitXor(BitAnd(if_mask, then_val), BitAnd(BitNot(if_mask), else_val));
|
||||
}
|
||||
|
||||
// For each input scalar, the corresponding bits of the result are set if the
|
||||
// input scalar is non-zero.
|
||||
template <typename tIntegerType>
|
||||
tIntegerType MaskIfNonZero(tIntegerType a) {
|
||||
static constexpr tIntegerType zero = 0;
|
||||
return a ? BitNot(zero) : zero;
|
||||
}
|
||||
|
||||
// For each input scalar, the corresponding bits of the result are set if the
|
||||
// input scalar is zero.
|
||||
template <typename tIntegerType>
|
||||
tIntegerType MaskIfZero(tIntegerType a) {
|
||||
return MaskIfNonZero<tIntegerType>(!a);
|
||||
}
|
||||
|
||||
// For each pair of input scalars, the corresponding bits of the result are
|
||||
// set if the input scalars are equal.
|
||||
template <typename tIntegerType>
|
||||
tIntegerType MaskIfEqual(tIntegerType a, tIntegerType b) {
|
||||
return MaskIfNonZero<tIntegerType>(a == b);
|
||||
}
|
||||
|
||||
// For each pair of input scalars, the corresponding bits of the result are
|
||||
// set if the input scalars are not equal.
|
||||
template <typename tIntegerType>
|
||||
tIntegerType MaskIfNotEqual(tIntegerType a, tIntegerType b) {
|
||||
return MaskIfNonZero<tIntegerType>(a != b);
|
||||
}
|
||||
|
||||
// For each pair of input scalars, the corresponding bits of the result are
|
||||
// set if the input scalars a, b satisfy a > b.
|
||||
template <typename tIntegerType>
|
||||
tIntegerType MaskIfGreaterThan(tIntegerType a, tIntegerType b) {
|
||||
return MaskIfNonZero<tIntegerType>(a > b);
|
||||
}
|
||||
|
||||
// For each pair of input scalars, the corresponding bits of the result are
|
||||
// set if the input scalars a, b satisfy a >= b.
|
||||
template <typename tIntegerType>
|
||||
tIntegerType MaskIfGreaterThanOrEqual(tIntegerType a, tIntegerType b) {
|
||||
return MaskIfNonZero<tIntegerType>(a >= b);
|
||||
}
|
||||
|
||||
// For each pair of input scalars, the corresponding bits of the result are
|
||||
// set if the input scalars a, b satisfy a < b.
|
||||
template <typename tIntegerType>
|
||||
tIntegerType MaskIfLessThan(tIntegerType a, tIntegerType b) {
|
||||
return MaskIfNonZero<tIntegerType>(a < b);
|
||||
}
|
||||
|
||||
// For each pair of input scalars, the corresponding bits of the result are
|
||||
// set if the input scalars a, b satisfy a <= b.
|
||||
template <typename tIntegerType>
|
||||
tIntegerType MaskIfLessThanOrEqual(tIntegerType a, tIntegerType b) {
|
||||
return MaskIfNonZero<tIntegerType>(a <= b);
|
||||
}
|
||||
|
||||
// Returns true if all of the input scalars are nonzero.
|
||||
// This function may currently assume that each of the input scalars has either
|
||||
// all or none of its bits set. Otherwise, its behavior is currently undefined.
|
||||
template <typename tIntegerType>
|
||||
bool All(tIntegerType a) {
|
||||
return a;
|
||||
}
|
||||
|
||||
// Returns true if any of the input scalars are nonzero.
|
||||
// This function may currently assume that each of the input scalars has either
|
||||
// all or none of its bits set. Otherwise, its behavior is currently undefined.
|
||||
template <typename tIntegerType>
|
||||
bool Any(tIntegerType a) {
|
||||
return a;
|
||||
}
|
||||
|
||||
// Returns (a+b)/2, rounded to the nearest integer.
|
||||
// Equivalent to VRHADD in the ARM NEON instruction set.
|
||||
template <typename IntegerType>
|
||||
IntegerType RoundingHalfSum(IntegerType a, IntegerType b) {
|
||||
static_assert(std::is_same<IntegerType, void>::value, "unimplemented");
|
||||
(void)b;
|
||||
return a;
|
||||
}
|
||||
|
||||
template <>
|
||||
inline std::int32_t RoundingHalfSum(std::int32_t a, std::int32_t b) {
|
||||
std::int64_t a64 = a;
|
||||
std::int64_t b64 = b;
|
||||
std::int64_t sum = a64 + b64;
|
||||
std::int64_t sign = sum >= 0 ? 1 : -1;
|
||||
return static_cast<std::int32_t>((sum + sign) / 2);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline std::int16_t RoundingHalfSum(std::int16_t a, std::int16_t b) {
|
||||
std::int32_t a32 = a;
|
||||
std::int32_t b32 = b;
|
||||
std::int32_t sum = a32 + b32;
|
||||
std::int32_t sign = sum >= 0 ? 1 : -1;
|
||||
return static_cast<std::int16_t>((sum + sign) / 2);
|
||||
}
|
||||
|
||||
template <typename IntegerType>
|
||||
IntegerType SaturatingAdd(IntegerType a, IntegerType b) {
|
||||
static_assert(std::is_same<IntegerType, void>::value, "unimplemented");
|
||||
(void)b;
|
||||
return a;
|
||||
}
|
||||
|
||||
// So far this is only needed for int16.
|
||||
template <>
|
||||
inline std::int16_t SaturatingAdd(std::int16_t a, std::int16_t b) {
|
||||
std::int32_t a32 = a;
|
||||
std::int32_t b32 = b;
|
||||
std::int32_t sum = a32 + b32;
|
||||
return static_cast<std::int16_t>(
|
||||
std::min(static_cast<std::int32_t>(32767),
|
||||
std::max(static_cast<std::int32_t>(-32768), sum)));
|
||||
}
|
||||
|
||||
// Returns a+b, saturating if the integers are 16bit or narrower,
|
||||
// otherwise just a plain addition.
|
||||
template <typename IntegerType, bool Is16Bit>
|
||||
struct AddSaturatingIf16BitImpl {
|
||||
static IntegerType Run(IntegerType a, IntegerType b) { return Add(a, b); }
|
||||
};
|
||||
template <typename IntegerType>
|
||||
struct AddSaturatingIf16BitImpl<IntegerType, true> {
|
||||
static IntegerType Run(IntegerType a, IntegerType b) {
|
||||
return SaturatingAdd(a, b);
|
||||
}
|
||||
};
|
||||
template <typename IntegerType>
|
||||
IntegerType AddSaturatingIf16Bit(IntegerType a, IntegerType b) {
|
||||
using ScalarType =
|
||||
typename FixedPointRawTypeTraits<IntegerType>::ScalarRawType;
|
||||
return AddSaturatingIf16BitImpl<IntegerType, sizeof(ScalarType) == 2>::Run(a,
|
||||
b);
|
||||
}
|
||||
|
||||
// Returns the integer that represents the product of two fixed-point
|
||||
// numbers, interpreting all integers as fixed-point values in the
|
||||
// interval [-1, 1), rounding to the nearest value, and saturating
|
||||
// -1 * -1 to the maximum value (since 1 is not in the half-open
|
||||
// interval [-1, 1)).
|
||||
//
|
||||
// [The explanation below specializes to std::int32_t for example purpose.]
|
||||
//
|
||||
// The mapping between IntegerType and the interval [-1, 1) is unique and
|
||||
// implied by IntegerType, which is assumed to be signed. For example,
|
||||
// for IntegerType==std::int32_t, the mapping is
|
||||
// real_value = integer_value / 2^31.
|
||||
// So in this case, and leaving aside rounding and saturating, this
|
||||
// function computes ((a / 2^31) * (b / 2^31)) * 2^31, which simplifies to
|
||||
// (a * b) / 2^31.
|
||||
//
|
||||
// The 'doubling' part in the name of this function comes from the fact that
|
||||
// this operation is very close to a "multiply-high" operation, keeping only
|
||||
// the top half bits, except that that would be effectively computing
|
||||
// (a * b) / 2^32,
|
||||
// so here we are computing 2x that, since
|
||||
// 1/2^31 = 2 * 1/2^32.
|
||||
// The idea is to use all of the available 32 bits in the destination int32
|
||||
// value.
|
||||
//
|
||||
// [End of the explanation specializing to int32.]
|
||||
//
|
||||
// This is equivalent to the VQRDMULH instruction in ARM NEON.
|
||||
template <typename IntegerType>
|
||||
IntegerType SaturatingRoundingDoublingHighMul(IntegerType a, IntegerType b) {
|
||||
static_assert(std::is_same<IntegerType, void>::value, "unimplemented");
|
||||
(void)b;
|
||||
return a;
|
||||
}
|
||||
|
||||
// This function implements the same computation as the ARMv7 NEON VQRDMULH
|
||||
// instruction.
|
||||
template <>
|
||||
inline std::int32_t SaturatingRoundingDoublingHighMul(std::int32_t a,
|
||||
std::int32_t b) {
|
||||
bool overflow = a == b && a == std::numeric_limits<std::int32_t>::min();
|
||||
std::int64_t a_64(a);
|
||||
std::int64_t b_64(b);
|
||||
std::int64_t ab_64 = a_64 * b_64;
|
||||
std::int32_t nudge = ab_64 >= 0 ? (1 << 30) : (1 - (1 << 30));
|
||||
std::int32_t ab_x2_high32 =
|
||||
static_cast<std::int32_t>((ab_64 + nudge) / (1ll << 31));
|
||||
return overflow ? std::numeric_limits<std::int32_t>::max() : ab_x2_high32;
|
||||
}
|
||||
|
||||
template <>
|
||||
inline std::int16_t SaturatingRoundingDoublingHighMul(std::int16_t a,
|
||||
std::int16_t b) {
|
||||
bool overflow = a == b && a == std::numeric_limits<std::int16_t>::min();
|
||||
std::int32_t a_32(a);
|
||||
std::int32_t b_32(b);
|
||||
std::int32_t ab_32 = a_32 * b_32;
|
||||
std::int16_t nudge = ab_32 >= 0 ? (1 << 14) : (1 - (1 << 14));
|
||||
std::int16_t ab_x2_high16 =
|
||||
static_cast<std::int16_t>((ab_32 + nudge) / (1 << 15));
|
||||
return overflow ? std::numeric_limits<std::int16_t>::max() : ab_x2_high16;
|
||||
}
|
||||
|
||||
// Correctly-rounded-to-nearest division by a power-of-two.
|
||||
// Also known as a rounding arithmetic right shift.
|
||||
template <typename IntegerType>
|
||||
inline IntegerType RoundingDivideByPOT(IntegerType x, int exponent) {
|
||||
assert(exponent >= 0);
|
||||
assert(exponent <= 31);
|
||||
const IntegerType mask = Dup<IntegerType>((1ll << exponent) - 1);
|
||||
const IntegerType zero = Dup<IntegerType>(0);
|
||||
const IntegerType one = Dup<IntegerType>(1);
|
||||
const IntegerType remainder = BitAnd(x, mask);
|
||||
const IntegerType threshold =
|
||||
Add(ShiftRight(mask, 1), BitAnd(MaskIfLessThan(x, zero), one));
|
||||
return Add(ShiftRight(x, exponent),
|
||||
BitAnd(MaskIfGreaterThan(remainder, threshold), one));
|
||||
}
|
||||
|
||||
// Returns the product of a run-time integer value by a compile-time power
|
||||
// of two, with either a positive exponent (equivalent to an arithmetic
|
||||
// left shift, saturating) or a negative exponent (equivalent to an arithmetic
|
||||
// right shift, rounding to nearest).
|
||||
template <int Exponent, typename IntegerType,
|
||||
int ExponentSign = (Exponent > 0 ? 1 : Exponent < 0 ? -1 : 0)>
|
||||
struct ImplSaturatingRoundingMultiplyByPOT {};
|
||||
|
||||
template <int Exponent, typename IntegerType>
|
||||
struct ImplSaturatingRoundingMultiplyByPOT<Exponent, IntegerType, 0> {
|
||||
static IntegerType eval(IntegerType x) { return x; }
|
||||
};
|
||||
|
||||
template <int Exponent, typename IntegerType>
|
||||
struct ImplSaturatingRoundingMultiplyByPOT<Exponent, IntegerType, 1> {
|
||||
static IntegerType eval(IntegerType x) {
|
||||
using ScalarIntegerType =
|
||||
typename FixedPointRawTypeTraits<IntegerType>::ScalarRawType;
|
||||
const IntegerType min =
|
||||
Dup<IntegerType>(std::numeric_limits<ScalarIntegerType>::min());
|
||||
const IntegerType max =
|
||||
Dup<IntegerType>(std::numeric_limits<ScalarIntegerType>::max());
|
||||
const int ScalarIntegerTypeBits = 8 * sizeof(ScalarIntegerType);
|
||||
|
||||
const std::int32_t threshold =
|
||||
((1 << (ScalarIntegerTypeBits - 1 - Exponent)) - 1);
|
||||
const IntegerType positive_mask =
|
||||
MaskIfGreaterThan(x, Dup<IntegerType>(threshold));
|
||||
const IntegerType negative_mask =
|
||||
MaskIfLessThan(x, Dup<IntegerType>(-threshold));
|
||||
|
||||
IntegerType result = ShiftLeft(x, Exponent);
|
||||
result = SelectUsingMask(positive_mask, max, result);
|
||||
result = SelectUsingMask(negative_mask, min, result);
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
template <int Exponent, typename IntegerType>
|
||||
struct ImplSaturatingRoundingMultiplyByPOT<Exponent, IntegerType, -1> {
|
||||
static IntegerType eval(IntegerType x) {
|
||||
return RoundingDivideByPOT<IntegerType>(x, -Exponent);
|
||||
}
|
||||
};
|
||||
|
||||
template <int Exponent, typename IntegerType>
|
||||
IntegerType SaturatingRoundingMultiplyByPOT(IntegerType x) {
|
||||
return ImplSaturatingRoundingMultiplyByPOT<Exponent, IntegerType>::eval(x);
|
||||
}
|
||||
|
||||
// Part 2: the FixedPoint class.
|
||||
|
||||
// A FixedPoint object represents a fixed-point value stored in the underlying
|
||||
// integer type tRawType, if tRawType is a plain scalar integer type.
|
||||
// Alternatively, tRawType may be a SIMD type (e.g. NEON int32x4_t) in which
|
||||
// case a FixedPoint object represents a corresponding SIMD vector of fixed
|
||||
// point values.
|
||||
//
|
||||
// tIntegerBits describes the range of the fixed-point format: if
|
||||
// tIntegerBits == m then the range of representable values is the half-open
|
||||
// interval [-2^m; 2^m) where the open boundary on the right side means that
|
||||
// 2^m is not representable (how close the maximum representable value is to
|
||||
// it, depends on bit-depth of tRawType).
|
||||
//
|
||||
// In "Q format notation",
|
||||
// https://en.wikipedia.org/wiki/Q_(number_format)
|
||||
// we are describing the format
|
||||
// Qm.n
|
||||
// where
|
||||
// m = tIntegerBits
|
||||
// and
|
||||
// n = NumberOfBits(tRawType) - (m + 1)
|
||||
// Note that the (m + 1) in the above line is because we adopt the convention
|
||||
// that we count the integer bits exclusively of the sign bit; so (m + 1) is
|
||||
// the total number of integer bits inclusive of the sign bit.
|
||||
//
|
||||
// Accordingly, the number of integral representable values in our range
|
||||
// [-2^m ; 2^m)
|
||||
// is equal to 2^(m+1).
|
||||
template <typename tRawType, int tIntegerBits>
|
||||
class FixedPoint {
|
||||
public:
|
||||
typedef tRawType RawType;
|
||||
|
||||
typedef FixedPointRawTypeTraits<RawType> RawTypeTraits;
|
||||
typedef typename RawTypeTraits::ScalarRawType ScalarRawType;
|
||||
|
||||
static constexpr int kTotalBits = 8 * sizeof(ScalarRawType);
|
||||
static constexpr int kIntegerBits = tIntegerBits;
|
||||
static constexpr int kFractionalBits = kTotalBits - 1 - kIntegerBits;
|
||||
static_assert(kIntegerBits >= 0 && kIntegerBits < kTotalBits,
|
||||
"bad IntegerBits");
|
||||
|
||||
typedef FixedPoint<ScalarRawType, kIntegerBits> ScalarFixedPointType;
|
||||
|
||||
static const ScalarRawType ScalarRawMin() {
|
||||
return std::numeric_limits<ScalarRawType>::min();
|
||||
}
|
||||
|
||||
static const ScalarRawType ScalarRawMax() {
|
||||
return std::numeric_limits<ScalarRawType>::max();
|
||||
}
|
||||
|
||||
static const ScalarRawType RawMin() {
|
||||
return VectorFromScalar(ScalarRawMin());
|
||||
}
|
||||
|
||||
static const ScalarRawType RawMax() {
|
||||
return VectorFromScalar(ScalarRawMax());
|
||||
}
|
||||
|
||||
static FixedPoint FromRaw(RawType x) {
|
||||
FixedPoint retval;
|
||||
retval.raw() = x;
|
||||
return retval;
|
||||
}
|
||||
|
||||
static FixedPoint FromScalarRaw(ScalarRawType x) {
|
||||
FixedPoint retval;
|
||||
retval.raw() = Dup<RawType>(x);
|
||||
return retval;
|
||||
}
|
||||
|
||||
static FixedPoint FromScalarFixedPoint(ScalarFixedPointType x) {
|
||||
return FromScalarRaw(x.raw());
|
||||
}
|
||||
|
||||
template <int Exponent>
|
||||
static FixedPoint ConstantPOT() {
|
||||
static constexpr int kOffset = kFractionalBits + Exponent;
|
||||
static_assert(
|
||||
kOffset < 31,
|
||||
"Constant not exactly representable in this fixed-point format");
|
||||
return FromScalarRaw(ScalarRawType(1) << kOffset);
|
||||
}
|
||||
|
||||
static FixedPoint Zero() { return FromScalarRaw(0); }
|
||||
|
||||
static FixedPoint One() {
|
||||
return FromScalarRaw(
|
||||
kIntegerBits == 0
|
||||
? ScalarRawMax()
|
||||
: (ScalarRawType(1) << (kIntegerBits == 0 ? 0 : kFractionalBits)));
|
||||
}
|
||||
|
||||
static FixedPoint FromDouble(double x) {
|
||||
const double min_bound = static_cast<double>(ScalarRawMin());
|
||||
const double max_bound = static_cast<double>(ScalarRawMax());
|
||||
return FromScalarRaw(static_cast<ScalarRawType>(std::min(
|
||||
std::max(round(x * static_cast<double>(1ll << kFractionalBits)),
|
||||
min_bound),
|
||||
max_bound)));
|
||||
}
|
||||
|
||||
RawType raw() const { return i_; }
|
||||
RawType& raw() { return i_; }
|
||||
|
||||
private:
|
||||
RawType i_;
|
||||
};
|
||||
|
||||
// Part 3: implementation of arithmetic operators for the
|
||||
// FixedPoint class, and a few related functions.
|
||||
|
||||
// A FixedPoint multiplication is just a
|
||||
// SaturatingRoundingDoublingHighMul operation on the underlying
|
||||
// raw integer values. The IntegerBits simply add up, as is obvious
|
||||
// from the fact that the range is [-2^IntegerBits, 2^IntegerBits).
|
||||
template <typename tRawType, int tIntegerBits_a, int tIntegerBits_b>
|
||||
FixedPoint<tRawType, tIntegerBits_a + tIntegerBits_b> operator*(
|
||||
FixedPoint<tRawType, tIntegerBits_a> a,
|
||||
FixedPoint<tRawType, tIntegerBits_b> b) {
|
||||
FixedPoint<tRawType, tIntegerBits_a + tIntegerBits_b> c;
|
||||
c.raw() = SaturatingRoundingDoublingHighMul(a.raw(), b.raw());
|
||||
return c;
|
||||
}
|
||||
|
||||
// Tweaking IntegerBits gives exact multiplication by a power of two.
|
||||
template <int tExponent, typename tRawType, int tIntegerBits>
|
||||
FixedPoint<tRawType, tExponent + tIntegerBits> ExactMulByPot(
|
||||
FixedPoint<tRawType, tIntegerBits> a) {
|
||||
FixedPoint<tRawType, tExponent + tIntegerBits> c;
|
||||
c.raw() = a.raw();
|
||||
return c;
|
||||
}
|
||||
|
||||
// If we want to leave IntegerBits fixed, then multiplication
|
||||
// by a power of two has to be saturating/rounding, not exact anymore.
|
||||
template <int tExponent, typename tRawType, int tIntegerBits>
|
||||
FixedPoint<tRawType, tIntegerBits> SaturatingRoundingMultiplyByPOT(
|
||||
FixedPoint<tRawType, tIntegerBits> a) {
|
||||
return FixedPoint<tRawType, tIntegerBits>::FromRaw(
|
||||
SaturatingRoundingMultiplyByPOT<tExponent>(a.raw()));
|
||||
}
|
||||
|
||||
// Generic arithmetic operators.
|
||||
|
||||
#define MAKE_FIXEDPOINT_UNARY_FUNC(FuncName, ImplFuncName) \
|
||||
template <typename tRawType, int tIntegerBits> \
|
||||
FixedPoint<tRawType, tIntegerBits> FuncName( \
|
||||
FixedPoint<tRawType, tIntegerBits> a) { \
|
||||
return FixedPoint<tRawType, tIntegerBits>::FromRaw(ImplFuncName(a.raw())); \
|
||||
}
|
||||
|
||||
#define MAKE_FIXEDPOINT_BINARY_FUNC(FuncName, ImplFuncName) \
|
||||
template <typename tRawType, int tIntegerBits> \
|
||||
FixedPoint<tRawType, tIntegerBits> FuncName( \
|
||||
FixedPoint<tRawType, tIntegerBits> a, \
|
||||
FixedPoint<tRawType, tIntegerBits> b) { \
|
||||
return FixedPoint<tRawType, tIntegerBits>::FromRaw( \
|
||||
ImplFuncName(a.raw(), b.raw())); \
|
||||
}
|
||||
|
||||
MAKE_FIXEDPOINT_UNARY_FUNC(operator-, Neg)
|
||||
MAKE_FIXEDPOINT_UNARY_FUNC(operator~, BitNot)
|
||||
MAKE_FIXEDPOINT_BINARY_FUNC(operator+, Add)
|
||||
MAKE_FIXEDPOINT_BINARY_FUNC(operator-, Sub)
|
||||
MAKE_FIXEDPOINT_BINARY_FUNC(operator&, BitAnd)
|
||||
MAKE_FIXEDPOINT_BINARY_FUNC(operator^, BitXor)
|
||||
MAKE_FIXEDPOINT_BINARY_FUNC(operator|, BitOr)
|
||||
MAKE_FIXEDPOINT_BINARY_FUNC(RoundingHalfSum, RoundingHalfSum)
|
||||
|
||||
#undef MAKE_FIXEDPOINT_UNARY_FUNC
|
||||
#undef MAKE_FIXEDPOINT_BINARY_FUNC
|
||||
|
||||
#define MAKE_FIXEDPOINT_UNARY_FUNC_RETURNING_RAW(FuncName) \
|
||||
template <typename tRawType, int tIntegerBits> \
|
||||
tRawType FuncName(FixedPoint<tRawType, tIntegerBits> a) { \
|
||||
return FuncName(a.raw()); \
|
||||
}
|
||||
|
||||
#define MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(FuncName) \
|
||||
template <typename tRawType, int tIntegerBits> \
|
||||
tRawType FuncName(FixedPoint<tRawType, tIntegerBits> a, \
|
||||
FixedPoint<tRawType, tIntegerBits> b) { \
|
||||
return FuncName(a.raw(), b.raw()); \
|
||||
}
|
||||
|
||||
MAKE_FIXEDPOINT_UNARY_FUNC_RETURNING_RAW(MaskIfZero)
|
||||
MAKE_FIXEDPOINT_UNARY_FUNC_RETURNING_RAW(MaskIfNonZero)
|
||||
MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfEqual)
|
||||
MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfNotEqual)
|
||||
MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfGreaterThan)
|
||||
MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfGreaterThanOrEqual)
|
||||
MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfLessThan)
|
||||
MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfLessThanOrEqual)
|
||||
|
||||
#undef MAKE_FIXEDPOINT_UNARY_FUNC_RETURNING_RAW
|
||||
#undef MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW
|
||||
|
||||
template <typename tRawType, int tIntegerBits>
|
||||
FixedPoint<tRawType, tIntegerBits> SelectUsingMask(
|
||||
tRawType if_mask, FixedPoint<tRawType, tIntegerBits> then_val,
|
||||
FixedPoint<tRawType, tIntegerBits> else_val) {
|
||||
return FixedPoint<tRawType, tIntegerBits>::FromRaw(
|
||||
SelectUsingMask(if_mask, then_val.raw(), else_val.raw()));
|
||||
}
|
||||
|
||||
template <typename tRawType, int tIntegerBits>
|
||||
bool operator==(FixedPoint<tRawType, tIntegerBits> a,
|
||||
FixedPoint<tRawType, tIntegerBits> b) {
|
||||
return All(MaskIfEqual(a.raw(), b.raw()));
|
||||
}
|
||||
|
||||
template <typename tRawType, int tIntegerBits>
|
||||
bool operator!=(FixedPoint<tRawType, tIntegerBits> a,
|
||||
FixedPoint<tRawType, tIntegerBits> b) {
|
||||
return !(a == b);
|
||||
}
|
||||
|
||||
template <typename tRawType, int tIntegerBits>
|
||||
FixedPoint<tRawType, tIntegerBits> SaturatingAdd(
|
||||
FixedPoint<tRawType, tIntegerBits> a,
|
||||
FixedPoint<tRawType, tIntegerBits> b) {
|
||||
return FixedPoint<tRawType, tIntegerBits>::FromRaw(
|
||||
SaturatingAdd(a.raw(), b.raw()));
|
||||
}
|
||||
|
||||
template <typename tRawType, int tIntegerBits>
|
||||
FixedPoint<tRawType, tIntegerBits> AddSaturatingIf16Bit(
|
||||
FixedPoint<tRawType, tIntegerBits> a,
|
||||
FixedPoint<tRawType, tIntegerBits> b) {
|
||||
return FixedPoint<tRawType, tIntegerBits>::FromRaw(
|
||||
AddSaturatingIf16Bit(a.raw(), b.raw()));
|
||||
}
|
||||
|
||||
// Conversion to floating-point.
|
||||
template <typename tRawType, int tIntegerBits>
|
||||
double ToDouble(FixedPoint<tRawType, tIntegerBits> x) {
|
||||
static_assert(FixedPointRawTypeTraits<tRawType>::kLanes == 1,
|
||||
"not applicable to SIMD types");
|
||||
typedef FixedPoint<tRawType, tIntegerBits> F;
|
||||
return x.raw() / static_cast<double>(1ll << F::kFractionalBits);
|
||||
}
|
||||
|
||||
// Rescale changes the number of IntegerBits and updates the underlying
|
||||
// raw integer value accordingly.
|
||||
template <int tIntegerBitsDst, typename tRawType, int tIntegerBitsSrc>
|
||||
FixedPoint<tRawType, tIntegerBitsDst> Rescale(
|
||||
FixedPoint<tRawType, tIntegerBitsSrc> x) {
|
||||
static constexpr int kExponent = tIntegerBitsSrc - tIntegerBitsDst;
|
||||
FixedPoint<tRawType, tIntegerBitsDst> result;
|
||||
result.raw() = SaturatingRoundingMultiplyByPOT<kExponent>(x.raw());
|
||||
return result;
|
||||
}
|
||||
|
||||
// CheckedFixedPointConstant allows to specify fixed-point constants
|
||||
// initialized as real numbers, in a way that does not compile floating-point
|
||||
// arithmetic in production code, yet still checks agreement with the
|
||||
// floating-point expressions when asserts are enabled.
|
||||
//
|
||||
// The raw integer value provided is always a int32, encoding a 32-bit
|
||||
// fixed-point value, regardless of the actual Scalar type. This allows
|
||||
// writing generic code that applies just as well to the 32-bit and 16-bit
|
||||
// cases. In the 16-bit case, the raw integer value is internally
|
||||
// rounding-shifted by 16 bits to the right.
|
||||
template <typename FixedPointType>
|
||||
inline typename FixedPointType::ScalarRawType RescaleConstantInitializer(
|
||||
std::int32_t int32_value) {
|
||||
typedef typename FixedPointType::ScalarRawType ScalarRawType;
|
||||
static constexpr int ScalarTypeBits = 8 * sizeof(ScalarRawType);
|
||||
return static_cast<ScalarRawType>(
|
||||
RoundingDivideByPOT<std::int32_t>(int32_value, 32 - ScalarTypeBits));
|
||||
}
|
||||
#ifdef GEMMLOWP_ENABLE_FIXEDPOINT_CONSTANTS_CHECKS
|
||||
template <typename FixedPointType>
|
||||
FixedPointType CheckedFixedPointConstant(std::int32_t raw_value,
|
||||
double double_value) {
|
||||
const FixedPointType result = FixedPointType::FromScalarRaw(raw_value);
|
||||
assert(result == FixedPointType::FromDouble(double_value));
|
||||
return result;
|
||||
}
|
||||
#define GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(FixedPointType, \
|
||||
ScalarRawInt32Value, DoubleValue) \
|
||||
(gemmlowp::CheckedFixedPointConstant<FixedPointType>( \
|
||||
gemmlowp::RescaleConstantInitializer<FixedPointType>( \
|
||||
ScalarRawInt32Value), \
|
||||
DoubleValue))
|
||||
|
||||
#else
|
||||
#define GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(FixedPointType, \
|
||||
ScalarRawInt32Value, DoubleValue) \
|
||||
(FixedPointType::FromScalarRaw( \
|
||||
gemmlowp::RescaleConstantInitializer<FixedPointType>( \
|
||||
ScalarRawInt32Value)))
|
||||
#endif
|
||||
|
||||
// Implementation of exponential function.
|
||||
|
||||
// Returns exp(x) for x in [-1/4, 0).
|
||||
template <typename tRawType>
|
||||
FixedPoint<tRawType, 0> exp_on_interval_between_negative_one_quarter_and_0_excl(
|
||||
FixedPoint<tRawType, 0> a) {
|
||||
typedef FixedPoint<tRawType, 0> F;
|
||||
const F constant_term =
|
||||
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F, 1895147668, std::exp(-1.0 / 8.0));
|
||||
const F constant_1_over_3 =
|
||||
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F, 715827883, 1.0 / 3.0);
|
||||
// We're evaluating a Taylor expansion around -1/8, so we do the change of
|
||||
// variable: x = a + 1/8.
|
||||
// In fixed-point with 0 integer bits, 1/8 is represented by 1 << 28.
|
||||
F x = a + F::template ConstantPOT<-3>();
|
||||
F x2 = x * x;
|
||||
F x3 = x2 * x;
|
||||
F x4 = x2 * x2;
|
||||
F x4_over_4 = SaturatingRoundingMultiplyByPOT<-2>(x4);
|
||||
F x4_over_24_plus_x3_over_6_plus_x2_over_2 =
|
||||
SaturatingRoundingMultiplyByPOT<-1>(
|
||||
((x4_over_4 + x3) * constant_1_over_3) + x2);
|
||||
return AddSaturatingIf16Bit(
|
||||
constant_term,
|
||||
constant_term * (x + x4_over_24_plus_x3_over_6_plus_x2_over_2));
|
||||
}
|
||||
|
||||
// Returns exp(x) for x < 0.
|
||||
template <typename tRawType, int tIntegerBits>
|
||||
FixedPoint<tRawType, 0> exp_on_negative_values(
|
||||
FixedPoint<tRawType, tIntegerBits> a) {
|
||||
typedef FixedPoint<tRawType, tIntegerBits> InputF;
|
||||
typedef FixedPoint<tRawType, 0> ResultF;
|
||||
static constexpr int kFractionalBits = InputF::kFractionalBits;
|
||||
static constexpr int kIntegerBits = InputF::kIntegerBits;
|
||||
const InputF kOneQuarter = InputF::template ConstantPOT<-2>();
|
||||
InputF mask = kOneQuarter - InputF::FromScalarRaw(1);
|
||||
InputF a_mod_quarter_minus_one_quarter = (a & mask) - kOneQuarter;
|
||||
ResultF result = exp_on_interval_between_negative_one_quarter_and_0_excl(
|
||||
Rescale<0>(a_mod_quarter_minus_one_quarter));
|
||||
tRawType remainder = (a_mod_quarter_minus_one_quarter - a).raw();
|
||||
|
||||
#define GEMMLOWP_EXP_BARREL_SHIFTER(Exponent, FixedPointMultiplier) \
|
||||
if (kIntegerBits > Exponent) { \
|
||||
const ResultF kMultiplier = GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT( \
|
||||
ResultF, FixedPointMultiplier, std::exp(-std::pow(2.0, Exponent))); \
|
||||
static constexpr int kShiftAmount = \
|
||||
kIntegerBits > Exponent ? kFractionalBits + Exponent : 0; \
|
||||
result = SelectUsingMask( \
|
||||
MaskIfNonZero(BitAnd(remainder, Dup<tRawType>(1 << kShiftAmount))), \
|
||||
result * kMultiplier, result); \
|
||||
}
|
||||
|
||||
GEMMLOWP_EXP_BARREL_SHIFTER(-2, 1672461947);
|
||||
GEMMLOWP_EXP_BARREL_SHIFTER(-1, 1302514674);
|
||||
GEMMLOWP_EXP_BARREL_SHIFTER(+0, 790015084);
|
||||
GEMMLOWP_EXP_BARREL_SHIFTER(+1, 290630308);
|
||||
GEMMLOWP_EXP_BARREL_SHIFTER(+2, 39332535);
|
||||
GEMMLOWP_EXP_BARREL_SHIFTER(+3, 720401);
|
||||
GEMMLOWP_EXP_BARREL_SHIFTER(+4, 242);
|
||||
|
||||
#undef GEMMLOWP_EXP_BARREL_SHIFTER
|
||||
|
||||
static constexpr int clampB = kIntegerBits > 5 ? 36 - kIntegerBits : 0;
|
||||
if (kIntegerBits > 5) {
|
||||
const InputF clamp =
|
||||
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(InputF, -(1 << clampB), -32.0);
|
||||
result = SelectUsingMask(MaskIfLessThan(a, clamp), ResultF::Zero(), result);
|
||||
}
|
||||
|
||||
result = SelectUsingMask(MaskIfZero(a), ResultF::One(), result);
|
||||
return result;
|
||||
}
|
||||
|
||||
// Implementation of tanh: (1 - exp(-2x)) / (1 + exp(-2x)).
|
||||
|
||||
// Returns (1 - x) / (1 + x) for x in (0, 1).
|
||||
template <typename tRawType>
|
||||
FixedPoint<tRawType, 0> one_minus_x_over_one_plus_x_for_x_in_0_1(
|
||||
FixedPoint<tRawType, 0> a) {
|
||||
typedef FixedPoint<tRawType, 0> F0;
|
||||
typedef FixedPoint<tRawType, 2> F2;
|
||||
F0 half_denominator = RoundingHalfSum(a, F0::One());
|
||||
// Newton-Raphson division
|
||||
// https://en.wikipedia.org/wiki/Division_algorithm#Newton.E2.80.93Raphson_division
|
||||
// Refer to that page for the logic behind the 48/17 and 32/17 constants.
|
||||
const F2 constant_48_over_17 =
|
||||
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F2, 1515870810, 48.0 / 17.0);
|
||||
const F2 constant_neg_32_over_17 =
|
||||
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F2, -1010580540, -32.0 / 17.0);
|
||||
F2 x = constant_48_over_17 + half_denominator * constant_neg_32_over_17;
|
||||
for (int i = 0; i < 3; i++) {
|
||||
F2 half_denominator_times_x = half_denominator * x;
|
||||
F2 one_minus_half_denominator_times_x =
|
||||
F2::One() - half_denominator_times_x;
|
||||
x = x + Rescale<2>(x * one_minus_half_denominator_times_x);
|
||||
}
|
||||
return Rescale<0>(x - F2::One());
|
||||
}
|
||||
|
||||
// Returns -tanh(x) for x < 0.
|
||||
template <typename tRawType, int tIntegerBits>
|
||||
FixedPoint<tRawType, 0> neg_tanh_on_negative_values(
|
||||
FixedPoint<tRawType, tIntegerBits> a) {
|
||||
return one_minus_x_over_one_plus_x_for_x_in_0_1(
|
||||
exp_on_negative_values(ExactMulByPot<1>(a)));
|
||||
}
|
||||
|
||||
// Returns tanh(x) for any x.
|
||||
template <typename tRawType, int tIntegerBits>
|
||||
FixedPoint<tRawType, 0> tanh(FixedPoint<tRawType, tIntegerBits> a) {
|
||||
typedef FixedPoint<tRawType, tIntegerBits> InputF;
|
||||
typedef FixedPoint<tRawType, 0> ResultF;
|
||||
tRawType mask_if_negative = MaskIfLessThan(a, InputF::Zero());
|
||||
tRawType mask_if_zero = MaskIfZero(a);
|
||||
InputF n = SelectUsingMask(mask_if_negative, a, -a);
|
||||
ResultF t = neg_tanh_on_negative_values(n);
|
||||
return SelectUsingMask(mask_if_zero, ResultF::Zero(),
|
||||
SelectUsingMask(mask_if_negative, -t, t));
|
||||
}
|
||||
|
||||
// Implementation of logistic function.
|
||||
|
||||
// Returns 1 / (1 + x) for x in (0, 1).
|
||||
template <typename tRawType>
|
||||
FixedPoint<tRawType, 0> one_over_one_plus_x_for_x_in_0_1(
|
||||
FixedPoint<tRawType, 0> a) {
|
||||
typedef FixedPoint<tRawType, 0> F0;
|
||||
typedef FixedPoint<tRawType, 2> F2;
|
||||
F0 half_denominator = RoundingHalfSum(a, F0::One());
|
||||
// Newton-Raphson division
|
||||
// https://en.wikipedia.org/wiki/Division_algorithm#Newton.E2.80.93Raphson_division
|
||||
// Refer to that page for the logic behind the 48/17 and 32/17 constants.
|
||||
const F2 constant_48_over_17 =
|
||||
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F2, 1515870810, 48.0 / 17.0);
|
||||
const F2 constant_neg_32_over_17 =
|
||||
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F2, -1010580540, -32.0 / 17.0);
|
||||
F2 x = constant_48_over_17 + half_denominator * constant_neg_32_over_17;
|
||||
for (int i = 0; i < 3; i++) {
|
||||
F2 half_denominator_times_x = half_denominator * x;
|
||||
F2 one_minus_half_denominator_times_x =
|
||||
F2::One() - half_denominator_times_x;
|
||||
x = x + Rescale<2>(x * one_minus_half_denominator_times_x);
|
||||
}
|
||||
return Rescale<0>(ExactMulByPot<-1>(x));
|
||||
}
|
||||
|
||||
// Returns logistic(x) = 1 / (1 + exp(-x)) for x > 0.
|
||||
template <typename tRawType, int tIntegerBits>
|
||||
FixedPoint<tRawType, 0> logistic_on_positive_values(
|
||||
FixedPoint<tRawType, tIntegerBits> a) {
|
||||
return one_over_one_plus_x_for_x_in_0_1(exp_on_negative_values(-a));
|
||||
}
|
||||
|
||||
// Returns logistic(x) = 1 / (1 + exp(-x)) for any x.
|
||||
template <typename tRawType, int tIntegerBits>
|
||||
FixedPoint<tRawType, 0> logistic(FixedPoint<tRawType, tIntegerBits> a) {
|
||||
typedef FixedPoint<tRawType, tIntegerBits> InputF;
|
||||
typedef FixedPoint<tRawType, 0> ResultF;
|
||||
tRawType mask_if_positive = MaskIfGreaterThan(a, InputF::Zero());
|
||||
tRawType mask_if_zero = MaskIfZero(a);
|
||||
InputF abs_input = SelectUsingMask(mask_if_positive, a, -a);
|
||||
ResultF result_if_positive = logistic_on_positive_values(abs_input);
|
||||
ResultF result_if_negative = ResultF::One() - result_if_positive;
|
||||
const ResultF one_half =
|
||||
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(ResultF, 1 << 30, 0.5);
|
||||
return SelectUsingMask(mask_if_zero, one_half,
|
||||
SelectUsingMask(mask_if_positive, result_if_positive,
|
||||
result_if_negative));
|
||||
}
|
||||
|
||||
} // end namespace gemmlowp
|
||||
|
||||
#ifdef GEMMLOWP_NEON
|
||||
#include "./fixedpoint_neon.h"
|
||||
#elif defined(GEMMLOWP_AVX2)
|
||||
#include "./fixedpoint_avx.h"
|
||||
#elif defined(GEMMLOWP_SSE4)
|
||||
#include "./fixedpoint_sse.h"
|
||||
#elif defined(GEMMLOWP_MSA)
|
||||
#include "./fixedpoint_msa.h"
|
||||
#endif
|
||||
|
||||
#endif // GEMMLOWP_INTERNAL_FIXEDPOINT_H_
|
384
components/ai/tflite_micro/Source/third_party/gemmlowp/fixedpoint/fixedpoint_sse.h
vendored
Normal file
384
components/ai/tflite_micro/Source/third_party/gemmlowp/fixedpoint/fixedpoint_sse.h
vendored
Normal file
@@ -0,0 +1,384 @@
|
||||
// Copyright 2015 Google Inc. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// fixedpoint_SSE.h: optimized SSE specializations of the templates
|
||||
// in fixedpoint.h.
|
||||
|
||||
#ifndef GEMMLOWP_INTERNAL_FIXEDPOINT_SSE_H_
|
||||
#define GEMMLOWP_INTERNAL_FIXEDPOINT_SSE_H_
|
||||
|
||||
#include <smmintrin.h>
|
||||
#include "fixedpoint.h"
|
||||
|
||||
namespace gemmlowp {
|
||||
|
||||
// SSE intrinsics are not finely typed: there is a single __m128i vector
|
||||
// type that does not distinguish between "int32x4" and "int16x8" use
|
||||
// cases, unlike the NEON equivalents. Because we had initially focused
|
||||
// on int32x4, we did not pay attention and specialized these fixedpoint
|
||||
// templates directly for __m128i hardcoding the int32x4 semantics,
|
||||
// not leaving room for int16x8 semantics. Amending that by adding a separate
|
||||
// data type, int16x8_m128i, that wraps __m128i while being a separate
|
||||
// type.
|
||||
struct int16x8_m128i {
|
||||
int16x8_m128i() {}
|
||||
explicit int16x8_m128i(__m128i w) : v(w) {}
|
||||
~int16x8_m128i() {}
|
||||
|
||||
__m128i v;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct FixedPointRawTypeTraits<__m128i> {
|
||||
typedef std::int32_t ScalarRawType;
|
||||
static constexpr int kLanes = 4;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct FixedPointRawTypeTraits<int16x8_m128i> {
|
||||
typedef std::int16_t ScalarRawType;
|
||||
static constexpr int kLanes = 8;
|
||||
};
|
||||
|
||||
template <>
|
||||
inline __m128i BitAnd(__m128i a, __m128i b) {
|
||||
return _mm_and_si128(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline int16x8_m128i BitAnd(int16x8_m128i a, int16x8_m128i b) {
|
||||
return int16x8_m128i(_mm_and_si128(a.v, b.v));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline __m128i BitOr(__m128i a, __m128i b) {
|
||||
return _mm_or_si128(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline int16x8_m128i BitOr(int16x8_m128i a, int16x8_m128i b) {
|
||||
return int16x8_m128i(_mm_or_si128(a.v, b.v));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline __m128i BitXor(__m128i a, __m128i b) {
|
||||
return _mm_xor_si128(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline int16x8_m128i BitXor(int16x8_m128i a, int16x8_m128i b) {
|
||||
return int16x8_m128i(_mm_xor_si128(a.v, b.v));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline __m128i BitNot(__m128i a) {
|
||||
return _mm_andnot_si128(a, _mm_set1_epi32(-1));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline int16x8_m128i BitNot(int16x8_m128i a) {
|
||||
return int16x8_m128i(_mm_andnot_si128(a.v, _mm_set1_epi16(-1)));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline __m128i Add(__m128i a, __m128i b) {
|
||||
return _mm_add_epi32(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline int16x8_m128i Add(int16x8_m128i a, int16x8_m128i b) {
|
||||
return int16x8_m128i(_mm_add_epi16(a.v, b.v));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline __m128i Mul(__m128i a, __m128i b) {
|
||||
return _mm_mullo_epi32(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline int16x8_m128i Mul(int16x8_m128i a, int16x8_m128i b) {
|
||||
return int16x8_m128i(_mm_mullo_epi16(a.v, b.v));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline __m128i Sub(__m128i a, __m128i b) {
|
||||
return _mm_sub_epi32(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline int16x8_m128i Sub(int16x8_m128i a, int16x8_m128i b) {
|
||||
return int16x8_m128i(_mm_sub_epi16(a.v, b.v));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline __m128i Neg(__m128i a) {
|
||||
return _mm_sign_epi32(a, _mm_set1_epi32(-1));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline int16x8_m128i Neg(int16x8_m128i a) {
|
||||
return int16x8_m128i(_mm_sign_epi16(a.v, _mm_set1_epi16(-1)));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline __m128i ShiftLeft(__m128i a, int offset) {
|
||||
return _mm_slli_epi32(a, offset);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline int16x8_m128i ShiftLeft(int16x8_m128i a, int offset) {
|
||||
return int16x8_m128i(_mm_slli_epi16(a.v, offset));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline __m128i ShiftRight(__m128i a, int offset) {
|
||||
return _mm_srai_epi32(a, offset);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline int16x8_m128i ShiftRight(int16x8_m128i a, int offset) {
|
||||
return int16x8_m128i(_mm_srai_epi16(a.v, offset));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline __m128i SelectUsingMask(__m128i if_mask, __m128i then_val,
|
||||
__m128i else_val) {
|
||||
// borrowed from Intel's arm_neon_sse.h header.
|
||||
return _mm_or_si128(_mm_and_si128(if_mask, then_val),
|
||||
_mm_andnot_si128(if_mask, else_val));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline int16x8_m128i SelectUsingMask(int16x8_m128i if_mask,
|
||||
int16x8_m128i then_val,
|
||||
int16x8_m128i else_val) {
|
||||
// borrowed from Intel's arm_neon_sse.h header.
|
||||
return int16x8_m128i(SelectUsingMask(if_mask.v, then_val.v, else_val.v));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline __m128i MaskIfEqual(__m128i a, __m128i b) {
|
||||
return _mm_cmpeq_epi32(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline int16x8_m128i MaskIfEqual(int16x8_m128i a, int16x8_m128i b) {
|
||||
return int16x8_m128i(_mm_cmpeq_epi16(a.v, b.v));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline __m128i MaskIfNotEqual(__m128i a, __m128i b) {
|
||||
return BitNot(MaskIfEqual(a, b));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline int16x8_m128i MaskIfNotEqual(int16x8_m128i a, int16x8_m128i b) {
|
||||
return BitNot(MaskIfEqual(a, b));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline __m128i MaskIfZero(__m128i a) {
|
||||
return MaskIfEqual(a, _mm_set1_epi32(0));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline int16x8_m128i MaskIfZero(int16x8_m128i a) {
|
||||
return MaskIfEqual(a, int16x8_m128i(_mm_set1_epi16(0)));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline __m128i MaskIfNonZero(__m128i a) {
|
||||
return MaskIfNotEqual(a, _mm_set1_epi32(0));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline int16x8_m128i MaskIfNonZero(int16x8_m128i a) {
|
||||
return MaskIfNotEqual(a, int16x8_m128i(_mm_set1_epi16(0)));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline __m128i MaskIfGreaterThan(__m128i a, __m128i b) {
|
||||
return _mm_cmpgt_epi32(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline int16x8_m128i MaskIfGreaterThan(int16x8_m128i a, int16x8_m128i b) {
|
||||
return int16x8_m128i(_mm_cmpgt_epi16(a.v, b.v));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline __m128i MaskIfLessThan(__m128i a, __m128i b) {
|
||||
return _mm_cmplt_epi32(a, b);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline int16x8_m128i MaskIfLessThan(int16x8_m128i a, int16x8_m128i b) {
|
||||
return int16x8_m128i(_mm_cmplt_epi16(a.v, b.v));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline __m128i MaskIfGreaterThanOrEqual(__m128i a, __m128i b) {
|
||||
return BitNot(MaskIfLessThan(a, b));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline int16x8_m128i MaskIfGreaterThanOrEqual(int16x8_m128i a,
|
||||
int16x8_m128i b) {
|
||||
return BitNot(MaskIfLessThan(a, b));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline __m128i MaskIfLessThanOrEqual(__m128i a, __m128i b) {
|
||||
return BitNot(MaskIfGreaterThan(a, b));
|
||||
}
|
||||
|
||||
template <>
|
||||
inline int16x8_m128i MaskIfLessThanOrEqual(int16x8_m128i a, int16x8_m128i b) {
|
||||
return BitNot(MaskIfGreaterThan(a, b));
|
||||
}
|
||||
|
||||
/* Assumptions:
|
||||
- All and Any are used on masks.
|
||||
- masks are all_ones for true lanes, all_zeroes otherwise.
|
||||
Hence, All means all 128bits set, and Any means any bit set.
|
||||
*/
|
||||
|
||||
template <>
|
||||
inline bool All(__m128i a) {
|
||||
return _mm_testc_si128(a, a);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline bool All(int16x8_m128i a) {
|
||||
return _mm_testc_si128(a.v, a.v);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline bool Any(__m128i a) {
|
||||
return !_mm_testz_si128(a, a);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline bool Any(int16x8_m128i a) {
|
||||
return !_mm_testz_si128(a.v, a.v);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline __m128i RoundingHalfSum(__m128i a, __m128i b) {
|
||||
/* __m128i round_bit_mask, a_over_2, b_over_2, round_bit, sum; */
|
||||
/* We divide the inputs before the add to avoid the overflow and costly test
|
||||
*/
|
||||
/* of checking if an overflow occured on signed add */
|
||||
/* round_bit_mask = _mm_set1_epi32(1); */
|
||||
/* a_over_2 = _mm_srai_epi32(a, 1); */
|
||||
/* b_over_2 = _mm_srai_epi32(b, 1); */
|
||||
/* sum = Add(a_over_2, b_over_2); */
|
||||
/* round_bit = _mm_sign_epi32(BitAnd(BitOr(a,b), round_bit_mask), sum); */
|
||||
/* return Add(sum, round_bit); */
|
||||
|
||||
/* Other possibility detecting overflow and xor the sign if an overflow
|
||||
* happened*/
|
||||
__m128i one, sign_bit_mask, sum, rounded_half_sum, overflow, result;
|
||||
one = _mm_set1_epi32(1);
|
||||
sign_bit_mask = _mm_set1_epi32(0x80000000);
|
||||
sum = Add(a, b);
|
||||
rounded_half_sum = _mm_srai_epi32(Add(sum, one), 1);
|
||||
overflow =
|
||||
BitAnd(BitAnd(BitXor(a, rounded_half_sum), BitXor(b, rounded_half_sum)),
|
||||
sign_bit_mask);
|
||||
result = BitXor(rounded_half_sum, overflow);
|
||||
return result;
|
||||
}
|
||||
|
||||
template <>
|
||||
inline int16x8_m128i RoundingHalfSum(int16x8_m128i a, int16x8_m128i b) {
|
||||
// Idea: go to unsigned to use _mm_avg_epu16,
|
||||
// borrowed from Intel's arm_neon_sse.h header.
|
||||
__m128i constant_neg_32768 = _mm_set1_epi16(-32768);
|
||||
__m128i a_unsigned = _mm_sub_epi16(a.v, constant_neg_32768);
|
||||
__m128i b_unsigned = _mm_sub_epi16(b.v, constant_neg_32768);
|
||||
__m128i avg_unsigned = _mm_avg_epu16(a_unsigned, b_unsigned);
|
||||
__m128i avg = _mm_add_epi16(avg_unsigned, constant_neg_32768);
|
||||
return int16x8_m128i(avg);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline __m128i SaturatingRoundingDoublingHighMul(__m128i a, __m128i b) {
|
||||
__m128i min, saturation_mask, a0_a2, a1_a3, b0_b2, b1_b3;
|
||||
__m128i a0b0_a2b2, a1b1_a3b3, a0b0_a2b2_rounded, a1b1_a3b3_rounded;
|
||||
__m128i a0b0_a2b2_rounded_2x, a1b1_a3b3_rounded_2x, result;
|
||||
__m128i nudge;
|
||||
|
||||
// saturation only happen if a == b == INT_MIN
|
||||
min = _mm_set1_epi32(std::numeric_limits<std::int32_t>::min());
|
||||
saturation_mask = BitAnd(MaskIfEqual(a, b), MaskIfEqual(a, min));
|
||||
|
||||
// a = a0 | a1 | a2 | a3
|
||||
// b = b0 | b1 | b2 | b3
|
||||
a0_a2 = a;
|
||||
a1_a3 = _mm_srli_si128(a, 4);
|
||||
b0_b2 = b;
|
||||
b1_b3 = _mm_srli_si128(b, 4);
|
||||
|
||||
a0b0_a2b2 = _mm_mul_epi32(a0_a2, b0_b2);
|
||||
a1b1_a3b3 = _mm_mul_epi32(a1_a3, b1_b3);
|
||||
|
||||
// do the rounding and take into account that it will be doubled
|
||||
nudge = _mm_set1_epi64x(1 << 30);
|
||||
a0b0_a2b2_rounded = _mm_add_epi64(a0b0_a2b2, nudge);
|
||||
a1b1_a3b3_rounded = _mm_add_epi64(a1b1_a3b3, nudge);
|
||||
|
||||
// do the doubling
|
||||
a0b0_a2b2_rounded_2x = _mm_slli_epi64(a0b0_a2b2_rounded, 1);
|
||||
a1b1_a3b3_rounded_2x = _mm_slli_epi64(a1b1_a3b3_rounded, 1);
|
||||
|
||||
// get the high part of the products
|
||||
result = _mm_blend_epi16(_mm_srli_si128(a0b0_a2b2_rounded_2x, 4),
|
||||
a1b1_a3b3_rounded_2x, 0xcc);
|
||||
|
||||
// saturate those which overflowed
|
||||
return SelectUsingMask(saturation_mask, min, result);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline int16x8_m128i SaturatingRoundingDoublingHighMul(int16x8_m128i a,
|
||||
int16x8_m128i b) {
|
||||
// Idea: use _mm_mulhrs_epi16 then saturate with a bit-operation,
|
||||
// borrowed from Intel's arm_neon_sse.h header.
|
||||
__m128i result_unsaturated = _mm_mulhrs_epi16(a.v, b.v);
|
||||
__m128i saturation_mask =
|
||||
_mm_cmpeq_epi16(result_unsaturated, _mm_set1_epi16(0x8000));
|
||||
__m128i result = _mm_xor_si128(result_unsaturated, saturation_mask);
|
||||
return int16x8_m128i(result);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline __m128i Dup<__m128i>(std::int32_t x) {
|
||||
return _mm_set1_epi32(x);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline int16x8_m128i Dup<int16x8_m128i>(std::int16_t x) {
|
||||
return int16x8_m128i(_mm_set1_epi16(x));
|
||||
}
|
||||
|
||||
// So far this is only needed for int16.
|
||||
template <>
|
||||
inline int16x8_m128i SaturatingAdd(int16x8_m128i a, int16x8_m128i b) {
|
||||
return int16x8_m128i(_mm_adds_epi16(a.v, b.v));
|
||||
}
|
||||
|
||||
} // end namespace gemmlowp
|
||||
|
||||
#endif // GEMMLOWP_INTERNAL_FIXEDPOINT_SSE_H_
|
Reference in New Issue
Block a user