/****************************************************************************//** * @file eadc.h * @version V0.10 * @brief M251 series EADC driver header file * * @note * @copyright (C) 2018 Nuvoton Technology Corp. All rights reserved. *****************************************************************************/ #ifndef __EADC_H__ #define __EADC_H__ /*---------------------------------------------------------------------------------------------------------*/ /* Include related headers */ /*---------------------------------------------------------------------------------------------------------*/ #include "M251.h" #ifdef __cplusplus extern "C" { #endif /** @addtogroup Standard_Driver Standard Driver @{ */ /** @addtogroup EADC_Driver EADC Driver @{ */ /** @addtogroup EADC_EXPORTED_CONSTANTS EADC Exported Constants @{ */ /*---------------------------------------------------------------------------------------------------------*/ /* EADC_SCTLn Constant Definitions */ /*---------------------------------------------------------------------------------------------------------*/ #define EADC_SCTL_CHSEL(x) ((x) << EADC_SCTL_CHSEL_Pos) /*!< A/D sample module channel selection */ #define EADC_SCTL_TRGDLYDIV(x) ((x) << EADC_SCTL_TRGDLYDIV_Pos) /*!< A/D sample module start of conversion trigger delay clock divider selection */ #define EADC_SCTL_TRGDLYCNT(x) ((x) << EADC_SCTL_TRGDLYCNT_Pos) /*!< A/D sample module start of conversion trigger delay time */ #define EADC_SOFTWARE_TRIGGER (0UL<CTL |= EADC_CTL_ADCRST_Msk) /** * @brief Enable PDMA transfer. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32ModuleNum Decides the sample module number, valid value are from 0 to 15. * @return None * @details When A/D conversion is completed, the converted data is loaded into EADC_DATn (n=0~15) register, * user can enable this bit to generate a PDMA data transfer request. */ #define EADC_ENABLE_PDMA(eadc, u32ModuleNum) (eadc)->PDMACTL |= (0x1 << u32ModuleNum) /** * @brief Disable PDMA transfer. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32ModuleNum Decides the sample module number, valid value are from 0 to 15. * @return None * @details This macro is used to disable PDMA transfer. */ #define EADC_DISABLE_PDMA(eadc, u32ModuleNum) (eadc)->PDMACTL &= ~(0x1 << u32ModuleNum) /** * @brief Set ADIFn at A/D start of conversion. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32ModuleNum Decides the sample module number, valid value are from 0 to 15. * @return None * @details The A/D converter generates ADIFn (EADC_STATUS2[n], n=0~3) at the start of conversion. */ #define EADC_ENABLE_INT_POSITION(eadc, u32ModuleNum) ((((eadc)->SCTL[(u32ModuleNum)])) |= EADC_SCTL_INTPOS_Msk) /** * @brief Set ADIFn at A/D end of conversion. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32ModuleNum Decides the sample module number, valid value are from 0 to 15. * @return None * @details The A/D converter generates ADIFn (EADC_STATUS2[n], n=0~3) at the end of conversion. */ #define EADC_DISABLE_INT_POSITION(eadc, u32ModuleNum) ((((eadc)->SCTL[(u32ModuleNum)])) &= (~EADC_SCTL_INTPOS_Msk)) /** * @brief Enable the interrupt. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32Mask Decides the combination of interrupt status bits. Each bit corresponds to a interrupt status. * This parameter decides which interrupts will be enabled. Bit 0 is ADCIEN0, bit 1 is ADCIEN1..., bit 3 is ADCIEN3. * @return None * @details The A/D converter generates a conversion end ADIFn (EADC_STATUS2[n], n=0~3) upon the end of specific sample module A/D conversion. * If ADCIENn bit (EADC_CTL[n+2]) is set then conversion end interrupt request ADINTn is generated (n=0~3). */ #define EADC_ENABLE_INT(eadc, u32Mask) ((eadc)->CTL |= ((u32Mask) << EADC_CTL_ADCIEN0_Pos)) /** * @brief Disable the interrupt. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32Mask Decides the combination of interrupt status bits. Each bit corresponds to a interrupt status. * This parameter decides which interrupts will be disabled. Bit 0 is ADCIEN0, bit 1 is ADCIEN1..., bit 3 is ADCIEN3. * @return None * @details Specific sample module A/D ADINT0 interrupt function disabled. */ #define EADC_DISABLE_INT(eadc, u32Mask) ((eadc)->CTL &= (~((u32Mask) << EADC_CTL_ADCIEN0_Pos))) /** * @brief Enable the sample module interrupt. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32IntSel Decides which interrupt source will be used, valid value are from 0 to 3. * @param[in] u32ModuleMask the combination of sample module interrupt status bits. Each bit corresponds to a sample module interrupt status. * This parameter decides which sample module interrupts will be enabled, valid range are between 1~0x7FFFF. * @return None * @details There are 4 EADC interrupts ADINT0~3, and each of these interrupts has its own interrupt vector address. */ #define EADC_ENABLE_SAMPLE_MODULE_INT(eadc, u32IntSel, u32ModuleMask) ((((eadc)->INTSRC[(u32IntSel)])) |= (u32ModuleMask)) /** * @brief Disable the sample module interrupt. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32IntSel Decides which interrupt source will be used, valid value are from 0 to 3. * @param[in] u32ModuleMask the combination of sample module interrupt status bits. Each bit corresponds to a sample module interrupt status. * This parameter decides which sample module interrupts will be disabled, valid range are between 1~0x7FFFF. * @return None * @details There are 4 EADC interrupts ADINT0~3, and each of these interrupts has its own interrupt vector address. */ #define EADC_DISABLE_SAMPLE_MODULE_INT(eadc, u32IntSel, u32ModuleMask) ((((eadc)->INTSRC[(u32IntSel)])) &= (~(u32ModuleMask))) /** * @brief Start the A/D conversion. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32ModuleMask The combination of sample module. Each bit corresponds to a sample module. * This parameter decides which sample module will be converted, valid range are between 1~0x7FFFF. * Bit 0 is sample module 0, bit 1 is sample module 1..., bit 18 is sample module 18. * @return None * @details After write EADC_SWTRG register to start EADC conversion, the EADC_PENDSTS register will show which sample module will conversion. */ #define EADC_START_CONV(eadc, u32ModuleMask) ((eadc)->SWTRG = (u32ModuleMask)) /** * @brief Cancel the conversion for sample module. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32ModuleMask The combination of sample module. Each bit corresponds to a sample module. * This parameter decides which sample module will stop the conversion, valid range are between 1~0x7FFFF. * Bit 0 is sample module 0, bit 1 is sample module 1..., bit 18 is sample module18. * @return None * @details If user want to disable the conversion of the sample module, user can write EADC_PENDSTS register to clear it. */ #define EADC_STOP_CONV(eadc, u32ModuleMask) ((eadc)->PENDSTS = (u32ModuleMask)) /** * @brief Get the conversion pending flag. * @param[in] eadc The pointer of the specified EADC module. * @return Return the conversion pending sample module. * @details This STPFn (EADC_PENDSTS[n], n=0~18) bit remains 1 during pending state, when the respective EADC conversion is end, * the STPFn (EADC_PENDSTS[n], n=0~18) bit is automatically cleared to 0. */ #define EADC_GET_PENDING_CONV(eadc) ((eadc)->PENDSTS) /** * @brief Get the conversion data of the user-specified sample module. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32ModuleNum Decides the sample module number, valid value are from 0 to 18. * @return Return the conversion data of the user-specified sample module. * @details This macro is used to read RESULT bit (EADC_DATn[15:0], n=0~18) field to get conversion data. */ #define EADC_GET_CONV_DATA(eadc, u32ModuleNum) ((((eadc)->DAT[(u32ModuleNum)])) & EADC_DAT_RESULT_Msk) /** * @brief Get the data overrun flag of the user-specified sample module. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32ModuleMask The combination of data overrun status bits. Each bit corresponds to a data overrun status, valid range are between 1~0x7FFFF. * @return Return the data overrun flag of the user-specified sample module. * @details This macro is used to read OV bit (EADC_STATUS0[31:16], EADC_STATUS1[18:16]) field to get data overrun status. */ #define EADC_GET_DATA_OVERRUN_FLAG(eadc, u32ModuleMask) ((((eadc)->STATUS0 >> EADC_STATUS0_OV_Pos) | ((eadc)->STATUS1 & EADC_STATUS1_OV_Msk)) & (u32ModuleMask)) /** * @brief Get the data valid flag of the user-specified sample module. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32ModuleMask The combination of data valid status bits. Each bit corresponds to a data valid status, valid range are between 1~0x7FFFF. * @return Return the data valid flag of the user-specified sample module. * @details This macro is used to read VALID bit (EADC_STATUS0[15:0], EADC_STATUS1[2:0]) field to get data overrun status. */ #define EADC_GET_DATA_VALID_FLAG(eadc, u32ModuleMask) ((((eadc)->STATUS0 & EADC_STATUS0_VALID_Msk) | (((eadc)->STATUS1 & EADC_STATUS1_VALID_Msk) << 16)) & (u32ModuleMask)) /** * @brief Get the user-specified interrupt flags. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32Mask The combination of interrupt status bits. Each bit corresponds to a interrupt status. * Bit 0 is ADIF0, bit 1 is ADIF1..., bit 3 is ADIF3. * Bit 4 is ADCMPF0, bit 5 is ADCMPF1..., bit 7 is ADCMPF3. * Or use combination of following pre-define mask: * - \ref EADC_STATUS2_ADIF0_Msk : ADIF0 mask * - \ref EADC_STATUS2_ADIF1_Msk : ADIF1 mask * - \ref EADC_STATUS2_ADIF2_Msk : ADIF2 mask * - \ref EADC_STATUS2_ADIF3_Msk : ADIF3 mask * - \ref EADC_STATUS2_ADCMPF0_Msk : ADCMPF0 mask * - \ref EADC_STATUS2_ADCMPF1_Msk : ADCMPF1 mask * - \ref EADC_STATUS2_ADCMPF2_Msk : ADCMPF2 mask * - \ref EADC_STATUS2_ADCMPF3_Msk : ADCMPF3 mask * @return Return the user-specified interrupt flags. * @details This macro is used to get the user-specified interrupt flags. */ #define EADC_GET_INT_FLAG(eadc, u32Mask) ((eadc)->STATUS2 & (u32Mask)) /** * @brief Get the user-specified sample module overrun flags. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32ModuleMask The combination of sample module overrun status bits. Each bit corresponds to a sample module overrun status, valid range are between 1~0x7FFFF. * @return Return the user-specified sample module overrun flags. * @details This macro is used to get the user-specified sample module overrun flags. */ #define EADC_GET_SAMPLE_MODULE_OV_FLAG(eadc, u32ModuleMask) ((eadc)->OVSTS & (u32ModuleMask)) /** * @brief Clear the selected interrupt status bits. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32Mask The combination of compare interrupt status bits. Each bit corresponds to a compare interrupt status. * Bit 0 is ADIF0, bit 1 is ADIF1..., bit 3 is ADIF3. * Bit 4 is ADCMPF0, bit 5 is ADCMPF1..., bit 7 is ADCMPF3. * Or use combination of following pre-define mask: * - \ref EADC_STATUS2_ADIF0_Msk : ADIF0 mask * - \ref EADC_STATUS2_ADIF1_Msk : ADIF1 mask * - \ref EADC_STATUS2_ADIF2_Msk : ADIF2 mask * - \ref EADC_STATUS2_ADIF3_Msk : ADIF3 mask * - \ref EADC_STATUS2_ADCMPF0_Msk : ADCMPF0 mask * - \ref EADC_STATUS2_ADCMPF1_Msk : ADCMPF1 mask * - \ref EADC_STATUS2_ADCMPF2_Msk : ADCMPF2 mask * - \ref EADC_STATUS2_ADCMPF3_Msk : ADCMPF3 mask * @return None * @details This macro is used to clear clear the selected interrupt status bits. */ #define EADC_CLR_INT_FLAG(eadc, u32Mask) ((eadc)->STATUS2 = (u32Mask)) /** * @brief Clear the selected sample module overrun status bits. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32ModuleMask The combination of sample module overrun status bits. Each bit corresponds to a sample module overrun status. * Bit 0 is SPOVF0, bit 1 is SPOVF1..., bit 18 is SPOVF18. * @return None * @details This macro is used to clear the selected sample module overrun status bits. */ #define EADC_CLR_SAMPLE_MODULE_OV_FLAG(eadc, u32ModuleMask) ((eadc)->OVSTS = (u32ModuleMask)) /** * @brief Check all sample module A/D result data register overrun flags. * @param[in] eadc The pointer of the specified EADC module. * @retval 0 None of sample module data register overrun flag is set to 1. * @retval 1 Any one of sample module data register overrun flag is set to 1. * @details The AOV bit (EADC_STATUS2[27]) will keep 1 when any one of sample module data register overrun flag OVn (EADC_DATn[16], n=0~18) is set to 1. */ #define EADC_IS_DATA_OV(eadc) (((eadc)->STATUS2 & EADC_STATUS2_AOV_Msk) >> EADC_STATUS2_AOV_Pos) /** * @brief Check all sample module A/D result data register valid flags. * @param[in] eadc The pointer of the specified EADC module. * @retval 0 None of sample module data register valid flag is set to 1. * @retval 1 Any one of sample module data register valid flag is set to 1. * @details The AVALID bit (EADC_STATUS2[26]) will keep 1 when any one of sample module data register valid flag VALIDn (EADC_DATn[17], n=0~18) is set to 1. */ #define EADC_IS_DATA_VALID(eadc) (((eadc)->STATUS2 & EADC_STATUS2_AVALID_Msk) >> EADC_STATUS2_AVALID_Pos) /** * @brief Check all A/D sample module start of conversion overrun flags. * @param[in] eadc The pointer of the specified EADC module. * @retval 0 None of sample module event overrun flag is set to 1. * @retval 1 Any one of sample module event overrun flag is set to 1. * @details The STOVF bit (EADC_STATUS2[25]) will keep 1 when any one of sample module event overrun flag SPOVFn (EADC_OVSTS[n], n=0~18) is set to 1. */ #define EADC_IS_SAMPLE_MODULE_OV(eadc) (((eadc)->STATUS2 & EADC_STATUS2_STOVF_Msk) >> EADC_STATUS2_STOVF_Pos) /** * @brief Check all A/D interrupt flag overrun bits. * @param[in] eadc The pointer of the specified EADC module. * @retval 0 None of ADINT interrupt flag is overwritten to 1. * @retval 1 Any one of ADINT interrupt flag is overwritten to 1. * @details The ADOVIF bit (EADC_STATUS2[24]) will keep 1 when any one of ADINT interrupt flag ADOVIFn (EADC_STATUS2[n+8], n=0~3) is overwritten to 1. */ #define EADC_IS_INT_FLAG_OV(eadc) (((eadc)->STATUS2 & EADC_STATUS2_ADOVIF_Msk) >> EADC_STATUS2_ADOVIF_Pos) /** * @brief Get the busy state of EADC. * @param[in] eadc The pointer of the specified EADC module. * @retval 0 Idle state. * @retval 1 Busy state. * @details This macro is used to read BUSY bit (EADC_STATUS2[23]) to get busy state. */ #define EADC_IS_BUSY(eadc) (((eadc)->STATUS2 & EADC_STATUS2_BUSY_Msk) >> EADC_STATUS2_BUSY_Pos) /** * @brief Configure the comparator 0 and enable it. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32ModuleNum specifies the compare sample module, valid values are from 0 to 18. * @param[in] u32Condition specifies the compare condition. Valid values are: * - \ref EADC_CMP_CMPCOND_LESS_THAN : The compare condition is "less than the compare value" * - \ref EADC_CMP_CMPCOND_GREATER_OR_EQUAL : The compare condition is "greater than or equal to the compare value" * @param[in] u16CMPData specifies the compare value, valid range are between 0~0xFFF. * @param[in] u32MatchCount specifies the match count setting, valid range are between 1~0xF. * @return None * @details For example, EADC_ENABLE_CMP0(EADC, 5, EADC_CMP_CMPCOND_GREATER_OR_EQUAL, 0x800, 10); * Means EADC will assert comparator 0 flag if sample module 5 conversion result is greater or * equal to 0x800 for 10 times continuously, and a compare interrupt request is generated. */ #define EADC_ENABLE_CMP0(eadc,\ u32ModuleNum,\ u32Condition,\ u16CMPData,\ u32MatchCount) ((eadc)->CMP[0] = (((u32ModuleNum) << EADC_CMP_CMPSPL_Pos) |\ (u32Condition) |\ ((u16CMPData) << EADC_CMP_CMPDAT_Pos) |\ (((u32MatchCount) - 1) << EADC_CMP_CMPMCNT_Pos) |\ EADC_CMP_ADCMPEN_Msk)) /** * @brief Configure the comparator 1 and enable it. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32ModuleNum specifies the compare sample module, valid value are from 0 to 18. * @param[in] u32Condition specifies the compare condition. Valid values are: * - \ref EADC_CMP_CMPCOND_LESS_THAN : The compare condition is "less than the compare value" * - \ref EADC_CMP_CMPCOND_GREATER_OR_EQUAL : The compare condition s "greater than or equal to the compare value" * @param[in] u16CMPData specifies the compare value, valid range are between 0~0xFFF. * @param[in] u32MatchCount specifies the match count setting, valid range are between 1~0xF. * @return None * @details For example, EADC_ENABLE_CMP1(EADC, 5, EADC_CMP_CMPCOND_GREATER_OR_EQUAL, 0x800, 10); * Means EADC will assert comparator 1 flag if sample module 5 conversion result is greater or * equal to 0x800 for 10 times continuously, and a compare interrupt request is generated. */ #define EADC_ENABLE_CMP1(eadc,\ u32ModuleNum,\ u32Condition,\ u16CMPData,\ u32MatchCount) ((eadc)->CMP[1] = (((u32ModuleNum) << EADC_CMP_CMPSPL_Pos) |\ (u32Condition) |\ ((u16CMPData) << EADC_CMP_CMPDAT_Pos) |\ (((u32MatchCount) - 1) << EADC_CMP_CMPMCNT_Pos) |\ EADC_CMP_ADCMPEN_Msk)) /** * @brief Configure the comparator 2 and enable it. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32ModuleNum specifies the compare sample module, valid value are from 0 to 18. * @param[in] u32Condition specifies the compare condition. Valid values are: * - \ref EADC_CMP_CMPCOND_LESS_THAN : The compare condition is "less than the compare value" * - \ref EADC_CMP_CMPCOND_GREATER_OR_EQUAL : The compare condition is "greater than or equal to the compare value" * @param[in] u16CMPData specifies the compare value, valid range are between 0~0xFFF. * @param[in] u32MatchCount specifies the match count setting, valid range are between 0~0xF. * @return None * @details For example, EADC_ENABLE_CMP2(EADC, 5, EADC_CMP_CMPCOND_GREATER_OR_EQUAL, 0x800, 10); * Means EADC will assert comparator 2 flag if sample module 5 conversion result is greater or * equal to 0x800 for 10 times continuously, and a compare interrupt request is generated. */ #define EADC_ENABLE_CMP2(eadc,\ u32ModuleNum,\ u32Condition,\ u16CMPData,\ u32MatchCount) ((eadc)->CMP[2] = (((u32ModuleNum) << EADC_CMP_CMPSPL_Pos) |\ (u32Condition) |\ ((u16CMPData) << EADC_CMP_CMPDAT_Pos) |\ (((u32MatchCount) - 1) << EADC_CMP_CMPMCNT_Pos) |\ EADC_CMP_ADCMPEN_Msk)) /** * @brief Configure the comparator 3 and enable it. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32ModuleNum specifies the compare sample module, valid value are from 0 to 18. * @param[in] u32Condition specifies the compare condition. Valid values are: * - \ref EADC_CMP_CMPCOND_LESS_THAN : The compare condition is "less than the compare value" * - \ref EADC_CMP_CMPCOND_GREATER_OR_EQUAL : The compare condition is "greater than or equal to the compare value" * @param[in] u16CMPData specifies the compare value, valid range are between 0~0xFFF. * @param[in] u32MatchCount specifies the match count setting, valid range are between 1~0xF. * @return None * @details For example, EADC_ENABLE_CMP3(EADC, 5, EADC_CMP_CMPCOND_GREATER_OR_EQUAL, 0x800, 10); * Means EADC will assert comparator 3 flag if sample module 5 conversion result is greater or * equal to 0x800 for 10 times continuously, and a compare interrupt request is generated. */ #define EADC_ENABLE_CMP3(eadc,\ u32ModuleNum,\ u32Condition,\ u16CMPData,\ u32MatchCount) ((eadc)->CMP[3] = (((u32ModuleNum) << EADC_CMP_CMPSPL_Pos) |\ (u32Condition) |\ ((u16CMPData) << EADC_CMP_CMPDAT_Pos) |\ (((u32MatchCount) - 1) << EADC_CMP_CMPMCNT_Pos) |\ EADC_CMP_ADCMPEN_Msk)) /** * @brief Enable the compare window mode. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32CMP Specifies the compare register, valid values are 0 and 2. * @return None * @details ADCMPF0 (EADC_STATUS2[4]) will be set when both EADC_CMP0 and EADC_CMP1 compared condition matched. * ADCMPF2 (EADC_STATUS2[6]) will be set when both EADC_CMP2 and EADC_CMP3 compared condition matched. */ #define EADC_ENABLE_CMP_WINDOW_MODE(eadc, u32CMP) ((((eadc)->CMP[(u32CMP)])) |= EADC_CMP_CMPWEN_Msk) /** * @brief Disable the compare window mode. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32CMP Specifies the compare register, valid values are 0 and 2. * @return None * @details ADCMPF0 (EADC_STATUS2[4]) will be set when EADC_CMP0 compared condition matched. * ADCMPF2 (EADC_STATUS2[6]) will be set when EADC_CMP2 compared condition matched. */ #define EADC_DISABLE_CMP_WINDOW_MODE(eadc, u32CMP) ((((eadc)->CMP[(u32CMP)])) &= (~EADC_CMP_CMPWEN_Msk)) /** * @brief Enable the compare interrupt. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32CMP Specifies the compare register, valid values are from 0 to 3. * @return None * @details If the compare function is enabled and the compare condition matches the setting of CMPCOND (EADC_CMPn[2], n=0~3) * and CMPMCNT (EADC_CMPn[11:8], n=0~3), ADCMPFn (EADC_STATUS2[n+4], n=0~3) will be asserted, in the meanwhile, * if ADCMPIE (EADC_CMPn[1], n=0~3) is set to 1, a compare interrupt request is generated. */ #define EADC_ENABLE_CMP_INT(eadc, u32CMP) ((((eadc)->CMP[(u32CMP)])) |= EADC_CMP_ADCMPIE_Msk) /** * @brief Disable the compare interrupt. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32CMP Specifies the compare register, valid value are from 0 to 3. * @return None * @details This macro is used to disable the compare interrupt. */ #define EADC_DISABLE_CMP_INT(eadc, u32CMP) ((((eadc)->CMP[(u32CMP)])) &= (~EADC_CMP_ADCMPIE_Msk)) /** * @brief Disable comparator 0. * @param[in] eadc The pointer of the specified EADC module. * @return None * @details This macro is used to disable comparator 0. */ #define EADC_DISABLE_CMP0(eadc) ((eadc)->CMP[0] &= (~EADC_CMP_ADCMPEN_Msk)) /** * @brief Disable comparator 1. * @param[in] eadc The pointer of the specified EADC module. * @return None * @details This macro is used to disable comparator 1. */ #define EADC_DISABLE_CMP1(eadc) ((eadc)->CMP[1] &= (~EADC_CMP_ADCMPEN_Msk)) /** * @brief Disable comparator 2. * @param[in] eadc The pointer of the specified EADC module. * @return None * @details This macro is used to disable comparator 2. */ #define EADC_DISABLE_CMP2(eadc) ((eadc)->CMP[2] &= (~EADC_CMP_ADCMPEN_Msk)) /** * @brief Disable comparator 3. * @param[in] eadc The pointer of the specified EADC module. * @return None * @details This macro is used to disable comparator 3. */ #define EADC_DISABLE_CMP3(eadc) ((eadc)->CMP[3] &= (~EADC_CMP_ADCMPEN_Msk)) /** * @brief Enable conversion result left alignment. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32ModuleNum Decides the sample module number, valid value are from 0 to 15. * @return None * @details The 12-bit conversion result will be left aligned and stored in EADC_DATn[15:4] (n=0~15). */ #define EADC_ENABLE_LEFT_ALIGN(eadc, u32ModuleNum) ((((eadc)->MCTL1[(u32ModuleNum)])) |= EADC_MCTL1_ALIGN_Msk) /** * @brief Disable conversion result left alignment. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32ModuleNum Decides the sample module number, valid value are from 0 to 15. * @return None * @details The 12-bit conversion result will be right aligned and stored in EADC_DATn[11:0] (n=0~15). */ #define EADC_DISABLE_LEFT_ALIGN(eadc, u32ModuleNum) ((((eadc)->MCTL1[(u32ModuleNum)])) &= (~EADC_MCTL1_ALIGN_Msk)) /** * @brief Enable average mode. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32ModuleNum Decides the sample module number, valid value are from 0 to 15. * @return None * @details Conversion results in data register will be averaged. * @note This average mode needs to work with accumulated mode that configured by ACU (EADC_MnCTL1[7:4], n=0~15) bit field. */ #define EADC_ENABLE_AVG(eadc, u32ModuleNum) ((((eadc)->MCTL1[(u32ModuleNum)])) |= EADC_MCTL1_AVG_Msk) /** * @brief Disable average mode. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32ModuleNum Decides the sample module number, valid value are from 0 to 15. * @return None * @details Conversion results in data register will not be averaged. */ #define EADC_DISABLE_AVG(eadc, u32ModuleNum) ((((eadc)->MCTL1[(u32ModuleNum)])) &= (~EADC_MCTL1_AVG_Msk)) /** * @brief Configure the Accumulation feature and enable it. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32ModuleNum specifies the compare sample module, valid value are from 0 to 15. * @param[in] u16ACUNum specifies the number of accumulation, valid values are * - \ref EADC_MCTL1_ACU_1 : 1 conversion result will be accumulated. * - \ref EADC_MCTL1_ACU_2 : 2 conversion result will be accumulated. * - \ref EADC_MCTL1_ACU_4 : 4 conversion result will be accumulated. * - \ref EADC_MCTL1_ACU_8 : 8 conversion result will be accumulated. * - \ref EADC_MCTL1_ACU_16 : 16 conversion result will be accumulated. * - \ref EADC_MCTL1_ACU_32 : 32 conversion result will be accumulated. The result is right shift 1 bit to fit within the available 16-bit register size. * - \ref EADC_MCTL1_ACU_64 : 64 conversion result will be accumulated. The result is right shift 2 bits to fit within the available 16-bit register size. * - \ref EADC_MCTL1_ACU_128 : 128 conversion result will be accumulated. The result is right shift 3 bits to fit within the available 16-bit register size. * - \ref EADC_MCTL1_ACU_256 : 256 conversion result will be accumulated. The result is right shift 4 bits to fit within the available 16-bit register size. * @return None * @details When accumulating more than 16 samples, the result will be too large to match the * 16-bit RESULT register size (EADC_DATn[15:0]. To avoid overflow, the result is * right shifted automatically to fit within the available 16-bit register size. * The number of automatic right shifts is specified in parameter list above. * */ #define EADC_ENABLE_ACU(eadc,\ u32ModuleNum,\ u16ACUNum) ((((eadc)->MCTL1[(u32ModuleNum)])) = (((((eadc)->MCTL1[(u32ModuleNum)])) & (~EADC_MCTL1_ACU_Msk)) |\ (u16ACUNum))) /** * @brief Disable the Accumulation feature. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32ModuleNum specifies the compare sample module, valid value are from 0 to 15. * @return None */ #define EADC_DISABLE_ACU(eadc, u32ModuleNum) ((((eadc)->MCTL1[(u32ModuleNum)])) &= (~EADC_MCTL1_ACU_Msk)) /** * @brief Configure the Auto Power On/Off mode and enable it. * @param[in] eadc The pointer of the specified EADC module. * @param[in] u32PowerOffThreshold specifies the auto power off threshold time. Valid values are: * - \ref EADC_PWRCTL_AUTOPDTHT_1 : Auto Power Off Threshold Time 1 EADC clock * - \ref EADC_PWRCTL_AUTOPDTHT_2 : Auto Power Off Threshold Time 2 EADC clocks * - \ref EADC_PWRCTL_AUTOPDTHT_3 : Auto Power Off Threshold Time 3 EADC clocks * - \ref EADC_PWRCTL_AUTOPDTHT_4 : Auto Power Off Threshold Time 4 EADC clocks * - \ref EADC_PWRCTL_AUTOPDTHT_5 : Auto Power Off Threshold Time 5 EADC clocks * - \ref EADC_PWRCTL_AUTOPDTHT_6 : Auto Power Off Threshold Time 6 EADC clocks * - \ref EADC_PWRCTL_AUTOPDTHT_7 : Auto Power Off Threshold Time 7 EADC clocks * - \ref EADC_PWRCTL_AUTOPDTHT_8 : Auto Power Off Threshold Time 8 EADC clocks * - \ref EADC_PWRCTL_AUTOPDTHT_16 : Auto Power Off Threshold Time 16 EADC clocks * - \ref EADC_PWRCTL_AUTOPDTHT_32 : Auto Power Off Threshold Time 32 EADC clocks * - \ref EADC_PWRCTL_AUTOPDTHT_64 : Auto Power Off Threshold Time 64 EADC clocks * - \ref EADC_PWRCTL_AUTOPDTHT_128 : Auto Power Off Threshold Time 128 EADC clocks * - \ref EADC_PWRCTL_AUTOPDTHT_256 : Auto Power Off Threshold Time 256 EADC clocks * @param[in] u32PowerOnTime specifies the auto power on start-up time, valid range are between 0~0xFFF. * @return None * @details If the interval of time in idle state is longer than u32PowerOffThreshold, EADC will * auto power off A/D converter analog circuit to reduce power consumption. * EADC will automatically wakes-up when a conversion is started by software or hardware trigger. * A start-up time is automatically inserted between the trigger event and the sampling time of the EADC. * The start-up time = ((1/EADC_CLK) * u32PowerOnTime) and must be longer than 10us. * @note The ADCEN bit (EADC_CTL[0]) will be set to 0 when EADC power off and set to 1 when EADC be wake-up. */ #define EADC_ENABLE_AUTOFF(eadc,\ u32PowerOffThreshold,\ u32PowerOnTime) ((eadc)->PWRCTL = ((u32PowerOffThreshold) |\ ((u32PowerOnTime) << EADC_PWRCTL_STUPT_Pos) |\ EADC_PWRCTL_AUTOFF_Msk)) /** * @brief Disable the Auto Power On/Off mode. * @param[in] eadc The pointer of the specified EADC module. * @return None */ #define EADC_DISABLE_AUTOFF(eadc) ((eadc)->PWRCTL &= (~EADC_PWRCTL_AUTOFF_Msk)) /** * @brief Configure the Offset Cancellation feature and enable it. * @param[in] eadc The pointer of the specified EADC module. * @param[in] i16OffsetCancel specifies the signed value of offset cancellation, valid values are -16 to 15. * @return None * @details When i16OffsetCancel is set to 0, the offset cancellation trim bits have no effect to A/D result. */ #define EADC_ENABLE_OFFSETCANCEL(eadc,\ i16OffsetCancel) {(eadc)->CTL |= EADC_CTL_CALEN_Msk;\ (eadc)->OFFSETCAL = (i16OffsetCancel & EADC_OFFSETCAL_OFFSETCANCEL_Msk);} /** * @brief Disable the Offset Cancellation feature. * @param[in] eadc The pointer of the specified EADC module. * @return None */ #define EADC_DISABLE_OFFSETCANCEL(eadc) {(eadc)->OFFSETCAL = 0;\ (eadc)->CTL &= (~EADC_CTL_CALEN_Msk);} /*---------------------------------------------------------------------------------------------------------*/ /* Define EADC functions prototype */ /*---------------------------------------------------------------------------------------------------------*/ void EADC_Open(EADC_T *eadc, uint32_t u32InputMode); void EADC_Close(EADC_T *eadc); void EADC_ConfigSampleModule(EADC_T *eadc, uint32_t u32ModuleNum, uint32_t u32TriggerSource, uint32_t u32Channel); void EADC_SetTriggerDelayTime(EADC_T *eadc, uint32_t u32ModuleNum, uint32_t u32TriggerDelayTime, uint32_t u32DelayClockDivider); void EADC_SetExtendSampleTime(EADC_T *eadc, uint32_t u32ModuleNum, uint32_t u32ExtendSampleTime); /*@}*/ /* end of group EADC_EXPORTED_FUNCTIONS */ /*@}*/ /* end of group EADC_Driver */ /*@}*/ /* end of group Standard_Driver */ #ifdef __cplusplus } #endif #endif /* __EADC_H__ */ /*** (C) COPYRIGHT 2018 Nuvoton Technology Corp. ***/