

TencentOS-Tiny software package based on MDK development

2021/9/19

Southeast University

Tutor: WANG Lichao

Developer: CUI Linwei

Email: 1797878653@qq.com

https://github.com/OpenAtomFoundation/TencentOS-tiny

mailto:1797878653@qq.com
https://github.com/OpenAtomFoundation/TencentOS-tiny

Catalog
1、Introduction to ARM packs .. 3

1.1 Introduction to the software pack ... 3
1.2 Software pack development ... 3

1.2.1 The software pack development process... 3
1.2.2 Preparation of PDSC documents... 4
1.2.3 Generating packs ... 8

2、TencentOS-tiny pack .. 10
2.1 Software pack contents .. 10
2.2 Software pack installation .. 11

3、Pack testing .. 13
3.1 ARM kernel porting of the TencentOS tiny pack .. 13
3.2 STM32-independent bare-metal engineering port ... 15
3.3 Microcontroller bare-metal engineering port ... 18

4、Summary .. 24

5、Development reference .. 25

6、Appendix - Migration Configuration Reference .. 26
6.1 MDK version 5.14 ported to ARM core ... 26

6.1.1 Cortex-M0 core porting ... 26
6.1.2 Cortex-M0+ core porting .. 26
6.1.3 Cortex-M3 core porting .. 26
6.1.4 Cortex-M4 core porting ... 27
6.1.5 Cortex-M7 core porting .. 27

6.2 MDK version 5.14 ported to ARM core-based chips .. 28
6.2.1 Porting to the STM32F103C8 chip ... 28
6.2.2 Porting to the STM32F767IGTx chip .. 29

6.3 MDK5.30 and MDK5.35 porting (Cortex-M0+, 0, 3, 4, 7 cores and chips) 29
6.4 MDK5.30 and MDK5.35 porting (Cortex-M23, 33) ... 30

6.4.1 Cortex-M23 core porting .. 30
6.4.2 Cortex-M33 core port ... 31

1、Introduction to ARM packs
1.1 Introduction to the software pack

ARM packs provide support for microcontroller devices and development boards, including
Software Components such as drivers and middleware, and can include example projects and code
templates. The following types of packs are available.

(1) Device Family Pack (DFP): generated by a silicon supplier or tool vendor to provide support
for creating software applications for a specific target microcontroller.

(2) Board Support Pack: Published by the board supplier to provide software support for the
peripheral hardware installed on the board.

(3) CMSIS software pack: provided by ARM, including support for the CMSIS core, DSP and
RTOS.

(4) Middleware Pack: created by chip suppliers, tool suppliers or third parties; reduces
development time by providing software integration of common software components (e.g. software
stacks, special hardware libraries, etc.).

(5) In-house components: developed by the tool user for internal or external distribution. The
software components include the following.

(1) Source code, libraries, headers/configuration files and documentation.
(2) Complete example project demonstrating the use of software components that can be

downloaded and implemented on the evaluation hardware.
(3) Code templates to facilitate the use of software components.
A complete pack is a ZIP file containing all the required software libraries and files, as well as a

pack description file (PDSC file) containing all the information about the pack, the structure of which
is defined in CMSIS (http://www.keil.com/CMSIS/Pack).

1.2 Software pack development
1.2.1 The software pack development process

The process of developing a software pack is equivalent to the completion of a product,
hence the introduction of the concept of Product Lifecycle Management (PLM), which consists
of the following four phases: (1) concept generation, where the product is defined based on the
pack requirements and the first functional prototype is created; (2) design, where the prototype is
tested and the product is implemented according to the technical features and requirements, and
the product is verified through extensive testing of functionality and specifications; (3) release,
where the product is manufactured and brought to market; and (4) service, where the product is
maintained, including support for customers, and finally continuous optimisation to end the
product cycle.

The following are the main processes faced when creating a software pack.

Figure 1.1 Software pack development process

http://www.keil.com/CMSIS/Pack
http://www.keil.com/CMSIS/Pack
http://www.keil.com/CMSIS/Pack

First, the pack is generated according to the specific components, i.e. the software components
such as header files and library files are organised according to the requirements using PDSC files,
after which the corresponding version of the pack can be generated using the pack generation tool.
The final pack will be generated after testing.
1.2.2 Preparation of PDSC documents

PDSC files are based on Extensible Markup Language (XML), which allows the modules
contained in a pack to be organised in a specific format, and are described in detail according to
the structure of a PDSC file.

The first two sentences are declared in XML format, which is defined in the PACK.xsd file
in the MDK, so there is no need to modify it; the <name> and <vendor> tags define the basic
contents of the pack and are also used for the file name of the PACK file, so this PDSC file should
be named Tencent. TencentOS-tiny.pdsc; the < description > tag describes the pack information
that will be displayed in the pack installer; the < url> tag can contain a URL with a link to
download the pack for the user's convenience; the < license > tag contains the protocol that the
user needs to follow to use the pack; the < support > tag contains a description of the pack. Figure
1.2 shows the pack interface for the following code.

<? xml version="1.0" encoding="utf-8"? >
<pack schemaVersion="1.0" xmlns:xs=http://www.w3.org/2001/XMLSchema-
instance xs:noNamespaceSchemaLocation="PACK.xsd">
<name> Tencent</name>
< description > Description of your pack</description
<vendor> TencentOS-tiny</vendor>
< url> https://github.com/OpenAtomFoundation/TencentOS-tiny</url
<license>LICENSE.txt</license>
< supportContact> ...</supportContact>

Figure 1.2 Pack corresponding to the program

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
https://github.com/OpenAtomFoundation/TencentOS-tiny%3c/url

Next are the modules of the PDSC file. The < releases> tag defines the version of the pack,
where the developer can mark when the version is updated, so that when the pack is generated,
the system will automatically generate the latest version of the pack.

<releases>
<release version="1.0.1">

Sep/3/2021, version name
</release>
<release version="1.0.0">

Sep/1/2021, version name
</release>

</releases>
The < taxonomy> tag is used to define the description for each component, as shown in

Figure 1.3, by identifying where the description is located with the following code for Cclass,
Cgroup and Csub, doc is used to specify the description file (which may or may not be added)
and then adding the name of the description.

<taxonomy>
<description Cclass="TencentOS tiny" Cgroup="xx" Csub="xx" doc =
"examples/index.html"> TencentOS tiny</description>

</taxonomy>

Figure 1.3 < taxonomy> tag
The < keywords > tag defines the keywords for the pack, which can be used to search for the

pack you need when downloading packs from the ARM website.
<keywords >

<keyword>Tencent</keyword>
</keywords >
The < requirements > tag defines the associated installation requirements for the pack, i.e.

when installing this pack, other packs need to be installed online (URL: MDK5 Software Packs
(keil.com)), for example the following definition requires us to install the CMSIS 5.7.0 pack for
ARM.
<requirements>

<packs>
<pack vendor="ARM" name="CMSIS" version="5.7.0"/>

</packs>
</requirements

https://www.keil.com/dd2/pack/#!%23eula-container
https://www.keil.com/dd2/pack/#!%23eula-container
https://www.keil.com/dd2/pack/#!%23eula-container

Next is the < conditions> tag, which is used when designing < components> to indicate the
dependencies of each component in the pack, i.e. the use of this component also requires the
selection of other components. Under this tag multiple conditions can be defined, each of which
can have multiple conditions defined, where < conditions id> is the condition name, < description>
is the condition information, and then the defined condition, where < accept> means that the
condition is optional. When multiple < accept>s exist, the user must satisfy at least one of them to
use the condition; < require> means that the condition is mandatory, otherwise the component
cannot be used. Within the conditions, there is some specific indicative syntax. If a condition
named Cortex_M0 is selected by the developer when designing the < component>, then the user
will need to comply with the condition when using the < component>: where <accept
Dvendor="ARM:82" Dname="ARMCM0"/> means that the user needs to select the ARM-Cortex
M0 core, <require condition="condition id"/> is a nested condition, which means that the user
also needs to meet the requirements corresponding to that condition, <require Cclass="
TencentOS tiny" Cgroup="kernel" Csub="core"/> indicates that the user also needs to select the
core component.

<conditions>
<condition id="Cortex_M0">

<description> Cortex-M0</description>
<accept Dvendor="ARM:82" Dname="ARMCM0"/>
<require condition="condition id"/>

< require Tcompiler="ARMCC"/>
<require Cclass="TencentOS tiny" Cgroup="kernel" Csub="core"/>

</condition>
</conditions>
Then there is the < components> tag, which describes all the files contained in the pack.

When writing programs under this tag, the files need to be divided according to file categories. In
the following code, a <component> of Keil:: TencentOS tiny:: arch::arch is defined and <
description> is the information about the component, as shown in Figure 1.4.

Figure 1.4 <component> definition screen

<components>
<component Cvendor="Keil" Cclass="TencentOS tiny" Cgroup="arch" Csub="arch"
Cversion="1.0.1" condition=" condition id">

<description> description </description>
<files>

<file category="doc" name="Documentation/General/html/driver_I2C.html"/> -->

<file category="include" name="arch/arm/arm-v7m/common/include/"/>
<file category="header" name="arch/arm/arm-v7m/cortex-m0+/armcc/port.h"/>
<file category="header" name="arch/arm/arm-v7m/cortex-m0+/armcc/port_config.h"
attr="config" version="1.1.0"/>
<file category="source" name="arch/arm/arm-v7m/common/tos_cpu.c"/>

</files>
</components>
condition=" condition id" is the <condition> tag introduced above, so that the user also needs

to satisfy the dependencies required by the condition when using the component. In addition,
when defining a <component>, files need to be added according to the <files> ...</files> syntax
of the above procedure, where the file category is defined as shown in Table 1-1, where the path
to the file and the specific In the pack, the files we add are not editable by default. To make it
easier for the user to configure the files, we need to add the attribute attr="config" and update the
different versions of the files by version.

Table 1-1 File category definitions

category Meaning

doc Documents, which can be web pages or other links

include Contains all the headers under a certain path

header Contains specific header files under a certain path

source .c source file

In order to adapt the pack we design to different cores, i.e. none of the files that do not match
the user's ARM core when using the pack, we can add <files> as follows: (1) in the condition
condition, add a program like < require Dvendor="ARM:82" Dname=" ARMCM0"/>, which
indicates that the user is required to select the ARM Cortex-M0 core; (2) when adding the
<files>, we can keep the same name for the Cgroup and Csub of the same type of file for different
cores, and add the condition defined in (1), so that when the user selects the for different kernels,
only the files consistent with that kernel will appear.

Also, if multiple packs need to be defined in a PDSC file, the following code structure can be
used, where each < bundle> tag defines a pack.

<components>
<bundle Cbundle="MDK-ARM" Cclass="TencentOS tiny" Cversion="1.0.0">

<description> TencentOS tiny</description>
<doc>examples/index.html</doc>
< component

<! -- Component content -->
</component

</bundle>
<bundle Cbundle="MDK-ARM" Cclass="TencentOS tiny" Cversion="1.0.0">

<description> TencentOS tiny</description>
<doc>examples/index.html</doc>
< component

<! -- Component content -->
</component

</bundle>
</components>
In addition, PDSC files can also contain <devices>, <apis>, <boards> and <examples>,

which are provided by ARM or other device or board manufacturers, for the device, api library
files, board level and corresponding example files, as described in ARM CMSIS packs.

Finally, the PDSC file needs to be completed by adding </pack> at the end to indicate the
end of the file.

1.2.3 Generating packs
After the PDSC file has been written, in order to generate the final pack, three more files

need to be prepared as shown in Figure 1.5. PackChk.exe is used to verify that all the files
included in the pack exist, i.e. are complete; gen_pack.bat is a Windows batch file that requires us
to make changes to the path in the file and is used to generate the pack PACK. xsd is the schema,
which is used to develop the XML specification to validate the PDSC files we have written. In
addition, the 7-Zip File Manager software is needed to compress the files and create the
integrated packs.

Figure 1.5 Software configuration required to generate the pack

First open gen_pack.bat using Notepad or Notepad++ and make the following changes to the
following areas, as shown in Table 1-2.

SET ZIPPATH=C:\Program Files\7-Zip
SET RELEASE_PATH=..\Local_Release
SET PACK_VENDOR=Tencent
SET PACK_NAME=TencentOS-tiny
SET PACK_FOLDER_LIST=arch osal kernel examples
SET PACK_FILE_LIST=%PACK_VENDOR%.%PACK_NAME%.pdsc README.md LICENSE.txt

Table 1-2 gen_pack.bat modifications

Code Meaning

SET ZIPPATH Installation path for 7-Zip File Manager software

SET RELEASE_PATH The path to the generated pack, as a relative path

SET PACK_VENDOR The <vendor> tag in the PDSC file

SET PACK_NAME The <name> tag in the PDSC file

SET PACK_FOLDER_LIST Path to where the pack contains the files

SET PACK_FILE_LIST Path to README.md LICENSE.txt

Once you have modified gen_pack.bat, you can create the pack by first using cmd to open the
command line interface of your computer, executing the cd command to go to the path where
gen_pack.bat is located, then typing gen_pack.bat and clicking enter, as shown in Figure 1.6.

gen_pack.bat will compress the files in order, then read the The PDSC file will then be read,
checked for data integrity and file dependencies, and the pack will be generated.

Figure 1.6 Pack generation interface

At this point the generated packs can be seen under the Local_Release path.

Figure 1.7 Software pack

2、TencentOS-tiny pack
Tencent IoT operating system (TencentOS tiny) is a real-time operating system developed by

Tencent for the IoT field, featuring low power consumption, low resource consumption, modularity
and scalability. tiny provides the most streamlined RTOS kernel, which is scalable and configurable,
and can be flexibly ported to a variety of terminal MCUs. At the same time, TencentOS tiny provides
one-stop software solutions for IoT terminal manufacturers to facilitate the rapid access of various
IoT devices to Tencent Cloud. It can support a variety of industry applications such as smart city,
smart water meter, smart home, smart wear, and connected car.

Therefore, in order to effectively reduce developers' development time in porting TencentOS
tiny to ARM kernel microcontrollers, this paper completes the packaging of third-party TencentOS
Tiny pack and packs based on MDK, enabling the use of MDK pack to directly generate TencentOS
Tiny projects for different MCUs.

2.1 Software pack contents
In conjunction with the algorithmic architecture of TencentOS tiny, the pack designed in this

paper includes the elements shown in Table 2-1.
Table 2-1 Software pack contents

Contents Function

arch

Includes arch files for cores Cortex-M0+, Cortex-M0,
Cortex-M3, Cortex-M4, Cortex-M7, Cortex-M23,

Cortex-M33 under TencentOS-tiny\arch\arm

kernel Including the files in the core, hal path under
TencentOS-tiny\kernel and tos_config file

cmsis_os Files corresponding to TencentOS-tiny\osal\cmsis_os

example

helloworld_main
The main file for testing the pack

mcu_it.c
The interrupt functions need to be modified according

to this file when porting the pack

mcu_platform.h
The user can add the header file of the corresponding

microcontroller to this file
The software pack has the following features.
(1) The pack packs the TencentOS tiny software for the ARMCortex-M0+, Cortex-M0,

Cortex-M3, Cortex-M4, Cortex-M7, Cortex-M23 and Cortex-M33 cores, allowing users to
quickly integrate the TencentOS tiny corresponding kernel in a Keil project.

(2) The pack can automatically adapt to the kernel selected by the user and the arch file can
be displayed automatically according to the kernel, thus facilitating the user's use.

(3) When the user checks a component, the pack will automatically prompt that other
modules need to be checked and can be checked with one click using Resolve in the interface to
prevent omissions.

(4) Users can modify the tos_config file of the corresponding kernel on their own to tailor
the functions of TencentOS tiny.

2.2 Software pack installation
The next step is to introduce the installation of Tencent.TencentOS-tiny pack, first double-

click the pack in Figure 1.5, then enter the installation interface as shown in Figure 2.1(a), click I
agree to all the terms of the preceding License Agreement, then click next to install. The
installation completion screen is shown in Figure 2.1(b).

(a) (b)

Figure 2.1 Installation screen

At this point the pack has been installed into Keil 5, open the Keil 5 software and click on the
Pack Installer icon to install and remove the different pack versions.

Figure 2.2 Pack Installer interface

Next you can install the components in the Tencent. TencentOS-tiny pack. Click on the
Manage Run-Time Environment icon and tick the files that need to be ported from the pack, as
shown in Figure 2.3. If there are dependencies you can click Resolve to install them with one click.

Figure 2.3 Manage Run-Time Environment interface

3、Pack testing
3.1 ARM kernel porting of the TencentOS tiny pack

First download and install the ARM CMSIS-5.7.0 pack from MDK5 Software Packs
(keil.com) in order to test this pack under different kernels.

Figure 3.1 ARM CMSIS-5.7.0 pack

After installing the pack, the pack was ported and compiled using the ARM Cortex-M3
kernel as an example. Firstly, a new project was created using the Keil5-5.30 software and
ARMCM3 was selected as shown in Figure 3.2, then the corresponding TencentOS-tiny
components and Cortex-M3 kernel files were checked according to Figure 3.3, and it can be seen
that arch and tos_config have both been automatically adapted according to the kernel.

Figure 3.2 Checking the kernel

https://www.keil.com/dd2/pack/#!%23eula-container
https://www.keil.com/dd2/pack/#!%23eula-container

Figure 3.3 Checking components

Next click on Options for target, check Use MicroLIB and the default compile version 5,
then select C99 mode.

Figure 3.4 Options for target

Then add the #include "ARMCM3.h" and #include "core_cm3.h" header files to
mcu_platform.h.

Figure 3.5 Adding the corresponding kernel header file

Finally click on the Build icon to test, as shown in Figure 3.6.

Figure 3.6 Compilation test

Similarly, to test this pack under the ARM Cortex-M4 core, simply modify the header files in
mcu_platform. h to #include "ARMCM4.h" and #include "core_cm4.h" in the above steps, or
modify the header files correspondingly for other cores.

3.2 STM32-independent bare-metal engineering port
Next the specific microcontroller chip is selected and the pack is tested, following the

following steps.
Download the software support pack for the STM32F1 from the website MDK5 Software

Packs (keil.com), as shown in Figure 3.7, and install it.

https://www.keil.com/dd2/pack/#!%23eula-container
https://www.keil.com/dd2/pack/#!%23eula-container

Figure 3.7 STM32 software support pack

Create a new project, select the chip as STM32F103C8 as shown in Figure 3.8, then click ok
and select the components of the TencentOS-tiny pack and the STM32 boot file as shown in
Figure 3.9.

Figure 3.8 Selecting the STM32F103C8 chip

Figure 3.9 Selecting components

Then tick compile version 5 as shown in Figure 3.10(a), and select C99mode.

(a)

(b)

Figure 3.10 Software settings

Then add the following header file to mcu_platform. h, as shown in Figure 3.11.
#include "stm32f10x.h"
#include "core_cm3.h"
#include "system_stm32f10x.h"

Figure 3.11 Modifying mcu_platform.h

Finally, click Build to compile and if no errors are reported, the port is successful.

Figure 3.12 Compilation interface

3.3 Microcontroller bare-metal engineering port
Finally, the microcontroller development board is tested and the TencentOS-tiny package is

introduced using the Positive Point Atomic Explorer STM32F407ZGT6 as an example.
(1) The following diagram shows the contents of the package ticker.

Figure 3.13 Pack components ticked

The interface after porting the pack in the Positive Point Atomic Explorer STM32F407ZGT6
bare-metal project template is shown in Figure 3.14.

Figure 3.14 Migration interface

(2) Then follow mcu_it.c to modify the PendSV_Handler() function and SysTick_Handler()
function in stm32f4xx_it.c as shown below, comment out the PendSV_Handler() function in
stm32f4xx_it.c, and modify the SysTick_ Handler() function.

Figure 3.15 Function modification

(3) Modify mcu_platform.h by adding #include "stm32f4xx.h"

Figure 3.16 Modifying mcu_platform.h

(4) Next, use the following main program.
#include "stm32f4xx.h"
#include "usart.h"
#include "tos_k.h"
k_task_t task1;
k_task_t task2;
k_stack_t task_stack1[1024];
k_stack_t task_stack2[1024];
void test_task1(void *Parameter)
{
 while(1)
 {
 printf("task1 running\r\n");
 tos_task_delay(200);
 }
}
void test_task2(void *Parameter)
{
 k_err_t err;
 printf("task2 running\r\n");
 tos_task_delay(2000);
 // suspend task1
 printf("suspend task1\r\n");
 err = tos_task_suspend(&task1);
 if(err != K_ERR_NONE)
 printf("suspend task1 fail! code : %d \r\n",err);
 tos_task_delay(2000);
 // resume task1
 printf("resume task1\r\n");
 err = tos_task_resume(&task1);
 if(err != K_ERR_NONE)
 printf("resume task1 fail! code : %d \r\n",err);
 tos_task_delay(2000);
 // destroy task1
 printf("destroy task1\r\n");
 err = tos_task_destroy(&task1);
 if(err != K_ERR_NONE)
 printf("destroy task1 fail! code : %d \r\n",err);
 // task2 running
 while(1)
 {
 printf("task2 running\r\n");
 tos_task_delay(1000);
 }
}
/**
 * @brief main function
 * @param none
 * @retval none
 */
int main(void)
{
 k_err_t err;
 /* Initialize USART configuration mode to 115200 8-N-1, interrupt function receive*/
 uart_init(115200);
 printf("Welcome to TencentOS tiny\r\n");
 tos_knl_init(); // TOS Tiny kernel initialize
 tos_robin_default_timeslice_config((k_timeslice_t)500u);
 printf("create task1\r\n");

 err = tos_task_create(&task1, "task1", test_task1, NULL, 3, task_stack1, 1024, 20);
 if(err != K_ERR_NONE)
 printf("TencentOS Create task1 fail! code : %d \r\n",err);
 printf("create task2\r\n");
 err = tos_task_create(&task2, "task2", test_task2, NULL, 4, task_stack2, 1024, 20);
 if(err != K_ERR_NONE)
 printf("TencentOS Create task2 fail! code : %d \r\n",err);
 tos_knl_start(); // Start TOS Tiny
}

(5) Then click compile and use ST LINK-V2 to download the program to the microcontroller as
shown in Figure 3.17. Then connect the serial port of the microcontroller to the computer and use
XCOM serial communication assistant to view the result as shown in Figure 3.18.

Figure 3.17 Compilation interface

Figure 3.18 Test interface

In addition, if you encounter the error in Figure 3.19(a) during compilation, you need to change
#define TOS_CFG_OBJECT_VERIFY_EN 1u to TOS_CFG_OBJECT_VERIFY_EN 0u in Figure
3.19(b)

(a)

(b)

Figure 3.19 Error reporting modification

4、Summary

In this paper, we firstly studied the development process of completing third-party pack
packaging based on MDK and wrote the steps of pack creation, and then combined with
TencentOS Tiny IoT operating system to pack the files under ARM kernel architecture in it, so as
to design the pack based on TencentOS Tiny.

This pack enables developers to quickly port the TencentOS Tiny operating system to the
user's ARM kernel microcontroller, greatly saving development porting time, while the pack
features automatic kernel adaptation and dependency hints to improve porting efficiency.

5、Development reference

1. Tencent IoT OS website https://github.com/OpenAtomFoundation/TencentOS-
tiny
2. MDK5 Software Packs MDK5 Software Packs (keil.com)
3. Production of software pack training videos https://www.bilibili.com/video/BV1AK411p7d9
4. Production pack blog https://blog.csdn.net/qq_40259429/article/details/119320319
5. Make a simple pack https://www.cnblogs.com/libra13179/p/6273415.html
6. CMSIS-Driver pack ARM-software/CMSIS-Driver: Repository of microcontroller peripheral
drivers implementing the CMSIS-Driver API specification (github.com)

https://github.com/OpenAtomFoundation/TencentOS-tiny
https://github.com/OpenAtomFoundation/TencentOS-tiny
https://www.keil.com/dd2/pack/#!%23eula-container
https://www.bilibili.com/video/BV1AK411p7d9
https://blog.csdn.net/qq_40259429/article/details/119320319
https://www.cnblogs.com/libra13179/p/6273415.html
https://github.com/ARM-software/CMSIS-Driver
https://github.com/ARM-software/CMSIS-Driver

6、Appendix - Migration Configuration Reference
6.1 MDK version 5.14 ported to ARM core
6.1.1 Cortex-M0 core porting
（1）Manage Run-Time Environment is ticked as follows.

（2）In mcu_platform.h, add：

#include "ARMCM0.h"
#include "core_cm0.h"

6.1.2 Cortex-M0+ core porting
（1）Manage Run-Time Environment is ticked as follows.

（2）In mcu_platform.h, add.

#include "ARMCM0plus.h"
#include "core_cm0plus.h"

6.1.3 Cortex-M3 core porting
（1）Manage Run-Time Environment is ticked as follows.

（2）In mcu_platform.h, add.

#include "ARMCM3.h"
#include "core_cm3.h"

6.1.4 Cortex-M4 core porting
（1）Manage Run-Time Environment is ticked as follows.

（2）In mcu_platform.h, add.
#include "ARMCM4.h"
#include "core_cm4.h"

6.1.5 Cortex-M7 core porting
（1）Manage Run-Time Environment tick the following.

（2）Modified to C99 in MDK

（3）In mcu_platform.h, add.

#include "ARMCM7.h"
#include "core_cm7.h"

6.2 MDK version 5.14 ported to ARM core-based chips
6.2.1 Porting to the STM32F103C8 chip
（1）Manage Run-Time Environment tick the following.

（2）In mcu_platform.h, add.

#include "stm32f10x.h"
#include "core_cm3.h"
#include "system_stm32f10x.h"

6.2.2 Porting to the STM32F767IGTx chip
（1）Manage Run-Time Environment tick the following.

（2）Modified to C99 in MDK

（3）In mcu_platform.h, add.

#include "stm32f7xx.h"
 #include "core_cm7.h"
#include "system_stm32f7xx.h"

6.3 MDK5.30 and MDK5.35 porting (Cortex-M0+, 0, 3, 4, 7 cores and chips)
When porting TencentOS-tiny Pack to Keil in MDK5.30 and MDK5.35, for Cortex-M0+, 0,

3, 4 and 7 kernels and chips, the steps for ticking components and adding header files are the
same as before, but you need to modify the compiler version as follows and then just execute the
compilation.

6.4 MDK5.30 and MDK5.35 porting (Cortex-M23, 33)
6.4.1 Cortex-M23 core porting
（1）Manage Run-Time Environment is ticked as follows.

（2）In mcu_platform.h, add.

#include "ARMCM23.h"
#include "core_cm23.h"

（3）Amend to not view error reports.

6.4.2 Cortex-M33 core port
（1）Selecting a chip with FPU

（2）Manage Run-Time Environment is ticked as follows.

（3）In mcu_platform.h, add.

#include "ARMCM33_DSP_FP.h"
 #include "core_cm33.h"

（4）Amend to not view error reports.

	1、Introduction to ARM packs
	1.1 Introduction to the software pack
	1.2 Software pack development
	1.2.1 The software pack development process
	1.2.2 Preparation of PDSC documents
	1.2.3 Generating packs

	2、TencentOS-tiny pack
	2.1 Software pack contents
	2.2 Software pack installation

	3、Pack testing
	3.1 ARM kernel porting of the TencentOS tiny pack
	3.2 STM32-independent bare-metal engineering port
	3.3 Microcontroller bare-metal engineering port

	4、Summary
	5、Development reference
	6、Appendix - Migration Configuration Reference
	6.1 MDK version 5.14 ported to ARM core
	6.1.1 Cortex-M0 core porting
	6.1.2 Cortex-M0+ core porting
	6.1.3 Cortex-M3 core porting
	6.1.4 Cortex-M4 core porting
	6.1.5 Cortex-M7 core porting

	6.2 MDK version 5.14 ported to ARM core-based chips
	6.2.1 Porting to the STM32F103C8 chip
	6.2.2 Porting to the STM32F767IGTx chip

	6.3 MDK5.30 and MDK5.35 porting (Cortex-M0+, 0, 3, 4, 7 cores and chips)
	6.4 MDK5.30 and MDK5.35 porting (Cortex-M23, 33)
	6.4.1 Cortex-M23 core porting
	6.4.2 Cortex-M33 core port

