167 lines
6.5 KiB
C++
167 lines
6.5 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/lite/kernels/internal/reference/prelu.h"
|
|
|
|
#include <cstdint>
|
|
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace micro {
|
|
namespace activations {
|
|
namespace {
|
|
|
|
TfLiteStatus CalculatePreluParams(const TfLiteTensor* input,
|
|
const TfLiteTensor* alpha,
|
|
TfLiteTensor* output, PreluParams* params) {
|
|
if (output->type == kTfLiteInt8 || output->type == kTfLiteUInt8 ||
|
|
output->type == kTfLiteInt16) {
|
|
double real_multiplier_1 = static_cast<double>(input->params.scale) /
|
|
static_cast<double>(output->params.scale);
|
|
double real_multiplier_2 = static_cast<double>(input->params.scale) *
|
|
static_cast<double>(alpha->params.scale) /
|
|
static_cast<double>(output->params.scale);
|
|
QuantizeMultiplier(real_multiplier_1, ¶ms->output_multiplier_1,
|
|
¶ms->output_shift_1);
|
|
QuantizeMultiplier(real_multiplier_2, ¶ms->output_multiplier_2,
|
|
¶ms->output_shift_2);
|
|
|
|
params->input_offset = -input->params.zero_point;
|
|
params->alpha_offset = -alpha->params.zero_point;
|
|
params->output_offset = output->params.zero_point;
|
|
}
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
inline void BroadcastPrelu4DSlowFloat(
|
|
const RuntimeShape& unextended_input1_shape, const float* input1_data,
|
|
const RuntimeShape& unextended_input2_shape, const float* input2_data,
|
|
const RuntimeShape& unextended_output_shape, float* output_data) {
|
|
TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), 4);
|
|
TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), 4);
|
|
TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4);
|
|
const RuntimeShape output_shape =
|
|
RuntimeShape::ExtendedShape(4, unextended_output_shape);
|
|
|
|
NdArrayDesc<4> desc1;
|
|
NdArrayDesc<4> desc2;
|
|
NdArrayDescsForElementwiseBroadcast(unextended_input1_shape,
|
|
unextended_input2_shape, &desc1, &desc2);
|
|
|
|
for (int b = 0; b < output_shape.Dims(0); ++b) {
|
|
for (int y = 0; y < output_shape.Dims(1); ++y) {
|
|
for (int x = 0; x < output_shape.Dims(2); ++x) {
|
|
for (int c = 0; c < output_shape.Dims(3); ++c) {
|
|
auto out_idx = Offset(output_shape, b, y, x, c);
|
|
auto in1_idx = SubscriptToIndex(desc1, b, y, x, c);
|
|
auto in2_idx = SubscriptToIndex(desc2, b, y, x, c);
|
|
auto in1_val = input1_data[in1_idx];
|
|
auto in2_val = input2_data[in2_idx];
|
|
output_data[out_idx] = in1_val >= 0.0f ? in1_val : in1_val * in2_val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void* PreluInit(TfLiteContext* context, const char* buffer, size_t length) {
|
|
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
|
return context->AllocatePersistentBuffer(context, sizeof(PreluParams));
|
|
}
|
|
|
|
TfLiteStatus PreluPrepare(TfLiteContext* context, TfLiteNode* node) {
|
|
TFLITE_DCHECK(node->user_data != nullptr);
|
|
PreluParams* params = static_cast<PreluParams*>(node->user_data);
|
|
|
|
const TfLiteTensor* input = GetInput(context, node, 0);
|
|
const TfLiteTensor* alpha = GetInput(context, node, 1);
|
|
TfLiteTensor* output = GetOutput(context, node, 0);
|
|
|
|
return CalculatePreluParams(input, alpha, output, params);
|
|
}
|
|
|
|
TfLiteStatus PreluEval(TfLiteContext* context, TfLiteNode* node) {
|
|
TFLITE_DCHECK(node->user_data != nullptr);
|
|
const PreluParams& params =
|
|
*(static_cast<const PreluParams*>(node->user_data));
|
|
|
|
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
|
|
const TfLiteEvalTensor* alpha = tflite::micro::GetEvalInput(context, node, 1);
|
|
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
|
|
|
|
switch (input->type) {
|
|
case kTfLiteFloat32: {
|
|
BroadcastPrelu4DSlowFloat(tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<float>(input),
|
|
tflite::micro::GetTensorShape(alpha),
|
|
tflite::micro::GetTensorData<float>(alpha),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<float>(output));
|
|
return kTfLiteOk;
|
|
} break;
|
|
case kTfLiteUInt8: {
|
|
reference_ops::BroadcastPrelu4DSlow(
|
|
params, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<uint8_t>(input),
|
|
tflite::micro::GetTensorShape(alpha),
|
|
tflite::micro::GetTensorData<uint8_t>(alpha),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<uint8_t>(output));
|
|
return kTfLiteOk;
|
|
} break;
|
|
case kTfLiteInt8: {
|
|
reference_ops::BroadcastPrelu4DSlow(
|
|
params, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<int8_t>(input),
|
|
tflite::micro::GetTensorShape(alpha),
|
|
tflite::micro::GetTensorData<int8_t>(alpha),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<int8_t>(output));
|
|
return kTfLiteOk;
|
|
} break;
|
|
default:
|
|
TF_LITE_KERNEL_LOG(
|
|
context, "Only float32 and uint8_t are supported currently, got %d.",
|
|
TfLiteTypeGetName(input->type));
|
|
return kTfLiteError;
|
|
}
|
|
}
|
|
|
|
} // namespace activations
|
|
|
|
TfLiteRegistration Register_PRELU() {
|
|
return {/*init=*/activations::PreluInit,
|
|
/*free=*/nullptr,
|
|
/*prepare=*/activations::PreluPrepare,
|
|
/*invoke=*/activations::PreluEval,
|
|
/*profiling_string=*/nullptr,
|
|
/*builtin_code=*/0,
|
|
/*custom_name=*/nullptr,
|
|
/*version=*/0};
|
|
}
|
|
|
|
} // namespace micro
|
|
} // namespace ops
|
|
} // namespace tflite
|