155 lines
5.8 KiB
C++
155 lines
5.8 KiB
C++
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/lite/kernels/internal/reference/integer_ops/tanh.h"
|
|
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/common.h"
|
|
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/tanh.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
#include "tensorflow/lite/kernels/op_macros.h"
|
|
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
|
#include "tensorflow/lite/micro/micro_utils.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace micro {
|
|
namespace activations {
|
|
namespace {
|
|
constexpr int kInputTensor = 0;
|
|
constexpr int kOutputTensor = 0;
|
|
|
|
struct OpData {
|
|
int32_t input_zero_point;
|
|
int32_t input_range_radius;
|
|
int32_t input_multiplier;
|
|
int input_left_shift;
|
|
};
|
|
|
|
void* TanhInit(TfLiteContext* context, const char* buffer, size_t length) {
|
|
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
|
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
|
}
|
|
|
|
TfLiteStatus CalculateArithmeticOpData(TfLiteContext* context, TfLiteNode* node,
|
|
OpData* data) {
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
|
|
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
|
|
|
|
if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8) {
|
|
static constexpr int kInputIntegerBits = 4;
|
|
const double input_real_multiplier =
|
|
static_cast<double>(input->params.scale) *
|
|
static_cast<double>(1 << (31 - kInputIntegerBits));
|
|
|
|
const double q = std::frexp(input_real_multiplier, &data->input_left_shift);
|
|
data->input_multiplier = static_cast<int32_t>(TfLiteRound(q * (1ll << 31)));
|
|
|
|
data->input_range_radius =
|
|
CalculateInputRadius(kInputIntegerBits, data->input_left_shift, 31);
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus TanhPrepare(TfLiteContext* context, TfLiteNode* node) {
|
|
TFLITE_DCHECK(node->user_data != nullptr);
|
|
|
|
OpData* data = static_cast<OpData*>(node->user_data);
|
|
|
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
|
data->input_zero_point = input->params.zero_point;
|
|
return CalculateArithmeticOpData(context, node, data);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
TfLiteStatus TanhEval(TfLiteContext* context, TfLiteNode* node) {
|
|
const TfLiteEvalTensor* input =
|
|
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
|
TfLiteEvalTensor* output =
|
|
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
|
|
|
TFLITE_DCHECK(node->user_data != nullptr);
|
|
const OpData& data = *(static_cast<const OpData*>(node->user_data));
|
|
|
|
switch (input->type) {
|
|
case kTfLiteFloat32: {
|
|
reference_ops::Tanh(tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<float>(input),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<float>(output));
|
|
return kTfLiteOk;
|
|
} break;
|
|
case kTfLiteInt16: {
|
|
TanhParams params;
|
|
params.input_left_shift = data.input_left_shift;
|
|
reference_ops::Tanh(params, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<int16_t>(input),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<int16_t>(output));
|
|
return kTfLiteOk;
|
|
} break;
|
|
case kTfLiteUInt8: {
|
|
TanhParams params;
|
|
params.input_zero_point = data.input_zero_point;
|
|
params.input_range_radius = data.input_range_radius;
|
|
params.input_multiplier = data.input_multiplier;
|
|
params.input_left_shift = data.input_left_shift;
|
|
reference_ops::Tanh(params, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<uint8_t>(input),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<uint8_t>(output));
|
|
|
|
return kTfLiteOk;
|
|
} break;
|
|
case kTfLiteInt8: {
|
|
reference_integer_ops::Tanh(
|
|
data.input_zero_point, data.input_range_radius, data.input_multiplier,
|
|
data.input_left_shift, NumElements(input->dims),
|
|
tflite::micro::GetTensorData<int8_t>(input),
|
|
tflite::micro::GetTensorData<int8_t>(output));
|
|
return kTfLiteOk;
|
|
} break;
|
|
default:
|
|
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
|
|
TfLiteTypeGetName(input->type),
|
|
TfLiteTypeGetName(output->type));
|
|
return kTfLiteError;
|
|
}
|
|
}
|
|
|
|
} // namespace activations
|
|
|
|
TfLiteRegistration Register_TANH() {
|
|
return {/*init=*/activations::TanhInit,
|
|
/*free=*/nullptr,
|
|
/*prepare=*/activations::TanhPrepare,
|
|
/*invoke=*/activations::TanhEval,
|
|
/*profiling_string=*/nullptr,
|
|
/*builtin_code=*/0,
|
|
/*custom_name=*/nullptr,
|
|
/*version=*/0};
|
|
}
|
|
} // namespace micro
|
|
} // namespace ops
|
|
} // namespace tflite
|