Files
Supowang1989 ef82dbfc6d add modbus slave support
add modbus slave support
2020-02-24 21:40:06 +08:00

547 lines
20 KiB
C

/******************** (C) COPYRIGHT 2003 STMicroelectronics ********************
* File Name : can.c
* Author : MCD Application Team
* Date First Issued : 10/27/2003
* Description : This file contains all the functions prototypes for the
* CAN bus software library.
********************************************************************************
* History:
* 13/01/2006 : V3.1
* 24/05/2005 : V3.0
* 30/11/2004 : V2.0
* 14/07/2004 : V1.3
* 01/01/2004 : V1.2
*******************************************************************************
THE PRESENT SOFTWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH
CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT
OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE CONTENT
OF SUCH SOFTWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING INFORMATION
CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*******************************************************************************/
#include "can.h"
#include "xti.h"
#include "pcu.h"
// macro to format the timing register value from the timing parameters
#define CAN_TIMING(tseg1, tseg2, sjw, brp) (((tseg2-1) & 0x07) << 12) | (((tseg1-1) & 0x0F) << 8) | (((sjw-1) & 0x03) << 6) | ((brp-1) & 0x3F)
// array of pre-defined timing parameters for standard bitrates
u16 CanTimings[] = { /* value bitrate NTQ TSEG1 TSEG2 SJW BRP */
CAN_TIMING(11, 4, 4, 5), /* 0x3AC4 100 kbit/s 16 11 4 4 5 */
CAN_TIMING(11, 4, 4, 4), /* 0x3AC3 125 kbit/s 16 11 4 4 4 */
CAN_TIMING( 4, 3, 3, 4), /* 0x2383 250 kbit/s 8 4 3 3 4 */
CAN_TIMING(13, 2, 1, 1), /* 0x1C00 500 kbit/s 16 13 2 1 1 */
CAN_TIMING( 4, 3, 1, 1), /* 0x2300 1 Mbit/s 8 4 3 1 1 */
};
/*******************************************************************************
* Function Name : CAN_SetBitrate
* Description : Setup a standard CAN bitrate
* Input 1 : one of the CAN_BITRATE_xxx defines
* Output : None
* Return : None
* Note : CAN must be in initialization mode
*******************************************************************************/
void CAN_SetBitrate(u32 bitrate)
{
/* write the predefined timing value */
CAN->BTR = CanTimings[bitrate];
/* clear the Extended Baud Rate Prescaler */
CAN->BRPR = 0;
}
/*******************************************************************************
* Function Name : CAN_SetTiming
* Description : Setup the CAN timing with specific parameters
* Input 1 : Time Segment before the sample point position, from 2 to 16
* Input 2 : Time Segment after the sample point position, from 1 to 8
* Input 3 : Synchronisation Jump Width, from 1 to 4
* Input 4 : Baud Rate Prescaler, from 1 to 1024
* Output : None
* Return : None
* Note : CAN must be in initialization mode
*******************************************************************************/
void CAN_SetTiming(u32 tseg1, u32 tseg2, u32 sjw, u32 brp)
{
CAN->BTR = CAN_TIMING(tseg1, tseg2, sjw, brp);
CAN->BRPR = ((brp-1) >> 6) & 0x0F;
}
/*******************************************************************************
* Function Name : CAN_SleepRequest
* Description : Request the CAN cell to enter sleep mode
* Input 1 : CAN_WAKEUP_ON_EXT or CAN_WAKEUP_ON_CAN
* Output : None
* Return : None
*******************************************************************************/
void CAN_SleepRequest(u32 WakeupMode)
{
/* Wakeup Line 6 is linked to CAN RX pin (port 1.11) */
/* Wakeup Line 2 is linked to external pin (port 2.8) */
u32 WakeupLine = (WakeupMode == CAN_WAKEUP_ON_CAN ? XTI_Line6 : XTI_Line2);
CAN_WaitEndOfTx();
XTI_Init();
/* Configure the Wakeup Line mode, select Falling edge (transition to dominant state) */
XTI_LineModeConfig(WakeupLine, XTI_FallingEdge);
/* Enable Wake-Up interrupt */
XTI_LineConfig(WakeupLine, ENABLE);
/* Enable Wake-Up mode with interrupt */
XTI_ModeConfig(XTI_WakeUpInterrupt, ENABLE);
XTI_PendingBitClear(XTI_InterruptLineValue());
/* Enter STOP mode (resume execution from here) */
PCU_LPMEnter(PCU_STOP);
}
/*******************************************************************************
* Function Name : CAN_GetFreeIF
* Description : Search the first free message interface, starting from 0
* Input : None
* Output : None
* Return : A free message interface number (0 or 1) if found, else 2
*******************************************************************************/
static u32 CAN_GetFreeIF(void)
{
if ((CAN->sMsgObj[0].CRR & CAN_CRR_BUSY) == 0)
return 0;
else if ((CAN->sMsgObj[1].CRR & CAN_CRR_BUSY) == 0)
return 1;
else return 2;
}
/*******************************************************************************
* Macro Name : xxx_ID_MSK, xxx_ID_ARB
* Description : Form the Mask and Arbitration registers value to filter a
* range of identifiers or a fixed identifier, for standard
* and extended IDs
*******************************************************************************/
#define RANGE_ID_MSK(range_start, range_end) (~((range_end) - (range_start)))
#define RANGE_ID_ARB(range_start, range_end) ((range_start) & (range_end))
#define FIXED_ID_MSK(id) RANGE_ID_MSK((id), (id))
#define FIXED_ID_ARB(id) RANGE_ID_ARB((id), (id))
#define STD_RANGE_ID_MSK(range_start, range_end) ((u16)((RANGE_ID_MSK((range_start), (range_end)) & 0x7FF) << 2))
#define STD_RANGE_ID_ARB(range_start, range_end) ((u16)(RANGE_ID_ARB((range_start), (range_end)) << 2))
#define STD_FIXED_ID_MSK(id) ((u16)((FIXED_ID_MSK(id) & 0x7FF) << 2))
#define STD_FIXED_ID_ARB(id) ((u16)(FIXED_ID_ARB(id) << 2))
#define EXT_RANGE_ID_MSK_L(range_start, range_end) ((u16)(RANGE_ID_MSK((range_start), (range_end)) >> 11))
#define EXT_RANGE_ID_MSK_H(range_start, range_end) ((u16)(STD_RANGE_ID_MSK((range_start), (range_end)) | ((RANGE_ID_MSK((range_start), (range_end)) >> 27) & 0x03)))
#define EXT_RANGE_ID_ARB_L(range_start, range_end) ((u16)(RANGE_ID_ARB((range_start), (range_end)) >> 11))
#define EXT_RANGE_ID_ARB_H(range_start, range_end) ((u16)(STD_RANGE_ID_ARB((range_start), (range_end)) | ((RANGE_ID_ARB((range_start), (range_end)) >> 27) & 0x03)))
#define EXT_FIXED_ID_MSK_L(id) ((u16)(FIXED_ID_MSK(id) >> 11))
#define EXT_FIXED_ID_MSK_H(id) ((u16)(STD_FIXED_ID_MSK(id) | ((FIXED_ID_MSK(id) >> 27) & 0x03)))
#define EXT_FIXED_ID_ARB_L(id) ((u16)(FIXED_ID_ARB(id) >> 11))
#define EXT_FIXED_ID_ARB_H(id) ((u16)(STD_FIXED_ID_ARB(id) | ((FIXED_ID_ARB(id) >> 27) & 0x03)))
/*******************************************************************************
* Function Name : CAN_SetUnusedMsgObj
* Description : Configure the message object as unused
* Input 1 : message object number, from 0 to 31
* Output : None
* Return : None
*******************************************************************************/
void CAN_SetUnusedMsgObj(u32 msgobj)
{
u32 msg_if;
while ((msg_if = CAN_GetFreeIF()) == 2);
CAN->sMsgObj[msg_if].CMR = CAN_CMR_WRRD
| CAN_CMR_MASK
| CAN_CMR_ARB
| CAN_CMR_CONTROL
| CAN_CMR_DATAA
| CAN_CMR_DATAB;
CAN->sMsgObj[msg_if].M1R = 0;
CAN->sMsgObj[msg_if].M2R = 0;
CAN->sMsgObj[msg_if].A1R = 0;
CAN->sMsgObj[msg_if].A2R = 0;
CAN->sMsgObj[msg_if].MCR = 0;
CAN->sMsgObj[msg_if].DA1R = 0;
CAN->sMsgObj[msg_if].DA2R = 0;
CAN->sMsgObj[msg_if].DB1R = 0;
CAN->sMsgObj[msg_if].DB2R = 0;
CAN->sMsgObj[msg_if].CRR = 1 + msgobj;
}
/*******************************************************************************
* Function Name : CAN_SetTxMsgObj
* Description : Configure the message object as TX
* Input 1 : message object number, from 0 to 31
* Input 2 : CAN_STD_ID or CAN_EXT_ID
* Output : None
* Return : None
*******************************************************************************/
void CAN_SetTxMsgObj(u32 msgobj, u32 idType)
{
u32 msg_if;
while ((msg_if = CAN_GetFreeIF()) == 2);
CAN->sMsgObj[msg_if].CMR = CAN_CMR_WRRD
| CAN_CMR_MASK
| CAN_CMR_ARB
| CAN_CMR_CONTROL
| CAN_CMR_DATAA
| CAN_CMR_DATAB;
CAN->sMsgObj[msg_if].M1R = 0;
CAN->sMsgObj[msg_if].A1R = 0;
if (idType == CAN_STD_ID)
{
CAN->sMsgObj[msg_if].M2R = CAN_M2R_MDIR;
CAN->sMsgObj[msg_if].A2R = CAN_A2R_MSGVAL | CAN_A2R_DIR;
}
else
{
CAN->sMsgObj[msg_if].M2R = CAN_M2R_MDIR | CAN_M2R_MXTD;
CAN->sMsgObj[msg_if].A2R = CAN_A2R_MSGVAL | CAN_A2R_DIR | CAN_A2R_XTD;
}
CAN->sMsgObj[msg_if].MCR = CAN_MCR_TXIE | CAN_MCR_EOB;
CAN->sMsgObj[msg_if].DA1R = 0;
CAN->sMsgObj[msg_if].DA2R = 0;
CAN->sMsgObj[msg_if].DB1R = 0;
CAN->sMsgObj[msg_if].DB2R = 0;
CAN->sMsgObj[msg_if].CRR = 1 + msgobj;
}
/*******************************************************************************
* Function Name : CAN_SetRxMsgObj
* Description : Configure the message object as RX
* Input 1 : message object number, from 0 to 31
* Input 2 : CAN_STD_ID or CAN_EXT_ID
* Input 3 : low part of the identifier range used for acceptance filtering
* Input 4 : high part of the identifier range used for acceptance filtering
* Input 5 : TRUE for a single receive object or a FIFO receive object that
* is the last one of the FIFO
* FALSE for a FIFO receive object that is not the last one
* Output : None
* Return : None
*******************************************************************************/
void CAN_SetRxMsgObj(u32 msgobj, u32 idType, u32 idLow, u32 idHigh, bool singleOrFifoLast)
{
u32 msg_if;
while ((msg_if = CAN_GetFreeIF()) == 2);
CAN->sMsgObj[msg_if].CMR = CAN_CMR_WRRD
| CAN_CMR_MASK
| CAN_CMR_ARB
| CAN_CMR_CONTROL
| CAN_CMR_DATAA
| CAN_CMR_DATAB;
if (idType == CAN_STD_ID)
{
CAN->sMsgObj[msg_if].M1R = 0;
CAN->sMsgObj[msg_if].M2R = STD_RANGE_ID_MSK(idLow, idHigh);
CAN->sMsgObj[msg_if].A1R = 0;
CAN->sMsgObj[msg_if].A2R = CAN_A2R_MSGVAL | STD_RANGE_ID_ARB(idLow, idHigh);
}
else
{
CAN->sMsgObj[msg_if].M1R = EXT_RANGE_ID_MSK_L(idLow, idHigh);
CAN->sMsgObj[msg_if].M2R = CAN_M2R_MXTD | EXT_RANGE_ID_MSK_H(idLow, idHigh);
CAN->sMsgObj[msg_if].A1R = EXT_RANGE_ID_ARB_L(idLow, idHigh);
CAN->sMsgObj[msg_if].A2R = CAN_A2R_MSGVAL | CAN_A2R_XTD | EXT_RANGE_ID_ARB_H(idLow, idHigh);
}
CAN->sMsgObj[msg_if].MCR = CAN_MCR_RXIE | CAN_MCR_UMASK | (singleOrFifoLast ? CAN_MCR_EOB : 0);
CAN->sMsgObj[msg_if].DA1R = 0;
CAN->sMsgObj[msg_if].DA2R = 0;
CAN->sMsgObj[msg_if].DB1R = 0;
CAN->sMsgObj[msg_if].DB2R = 0;
CAN->sMsgObj[msg_if].CRR = 1 + msgobj;
}
/*******************************************************************************
* Function Name : CAN_InvalidateAllMsgObj
* Description : Configure all the message objects as unused
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void CAN_InvalidateAllMsgObj(void)
{
u32 i;
for (i = 0; i < 32; i++)
CAN_SetUnusedMsgObj(i);
}
/*******************************************************************************
* Function Name : CAN_Init
* Description : Initialize the CAN cell and set the bitrate
* Input 1 : any binary value formed from the CAN_CTL_xxx defines
* Input 2 : one of the CAN_BITRATE_xxx defines
* Output : None
* Return : None
*******************************************************************************/
void CAN_Init(u8 mask, u32 bitrate)
{
CAN_EnterInitMode(CAN_CR_CCE | mask);
CAN_SetBitrate(bitrate);
CAN_LeaveInitMode();
CAN_LeaveTestMode();
}
/*******************************************************************************
* Function Name : CAN_ReleaseMessage
* Description : Release the message object
* Input 1 : message object number, from 0 to 31
* Output : None
* Return : None
*******************************************************************************/
void CAN_ReleaseMessage(u32 msgobj)
{
u32 i;
while ((i = CAN_GetFreeIF()) == 2);
CAN->sMsgObj[i].CMR = CAN_CMR_CLRINTPND | CAN_CMR_TXRQST;
CAN->sMsgObj[i].CRR = 1 + msgobj;
}
/*******************************************************************************
* Function Name : CAN_SendMessage
* Description : Start transmission of a message
* Input 1 : message object number, from 0 to 31
* Input 2 : pointer to the message structure containing data to transmit
* Output : None
* Return : 1 if transmission was OK, else 0
*******************************************************************************/
u32 CAN_SendMessage(u32 msgobj, canmsg* pCanMsg)
{
while (CAN->sMsgObj[0].CRR & CAN_CRR_BUSY);
/* if (CAN->sMsgObj[0].COMR & CAN_CRQ_BUSY) */
/* return 0; // message interface 0 not free */
CAN->SR &= ~CAN_SR_TXOK;
/* read the Arbitration and Message Control */
CAN->sMsgObj[0].CMR = CAN_CMR_ARB | CAN_CMR_CONTROL;
CAN->sMsgObj[0].CRR = 1 + msgobj;
while (CAN->sMsgObj[0].CRR & CAN_CRR_BUSY);
/* update the contents needed for transmission */
CAN->sMsgObj[0].CMR = CAN_CMR_WRRD
| CAN_CMR_ARB
| CAN_CMR_CONTROL
| CAN_CMR_DATAA
| CAN_CMR_DATAB;
if ((CAN->sMsgObj[0].A2R & CAN_A2R_XTD) == 0)
{
/* standard ID */
CAN->sMsgObj[0].A1R = 0;
CAN->sMsgObj[0].A2R = (CAN->sMsgObj[0].A2R & 0xE000) | STD_FIXED_ID_ARB(pCanMsg->Id);
}
else
{
// extended ID
CAN->sMsgObj[0].A1R = EXT_FIXED_ID_ARB_L(pCanMsg->Id);
CAN->sMsgObj[0].A2R = (CAN->sMsgObj[0].A2R & 0xE000) | EXT_FIXED_ID_ARB_H(pCanMsg->Id);
}
CAN->sMsgObj[0].MCR = (CAN->sMsgObj[0].MCR & 0xFEF0) | CAN_MCR_NEWDAT | CAN_MCR_TXRQST | pCanMsg->Dlc;
CAN->sMsgObj[0].DA1R = ((u16)pCanMsg->Data[1]<<8) | pCanMsg->Data[0];
CAN->sMsgObj[0].DA2R = ((u16)pCanMsg->Data[3]<<8) | pCanMsg->Data[2];
CAN->sMsgObj[0].DB1R = ((u16)pCanMsg->Data[5]<<8) | pCanMsg->Data[4];
CAN->sMsgObj[0].DB2R = ((u16)pCanMsg->Data[7]<<8) | pCanMsg->Data[6];
CAN->sMsgObj[0].CRR = 1 + msgobj;
return 1;
}
/*******************************************************************************
* Function Name : CAN_ReceiveMessage
* Description : Get the message, if received
* Input 1 : message object number, from 0 to 31
* Input 2 : if TRUE, the message object is released when getting the data
* if FALSE, the message object is not released
* Input 3 : pointer to the message structure where received data is stored
* Output : None
* Return : 1 if reception was OK, else 0 (no message pending)
*******************************************************************************/
u32 CAN_ReceiveMessage(u32 msgobj, bool release, canmsg* pCanMsg)
{
if (!CAN_IsMessageWaiting(msgobj))
return 0;
CAN->SR &= ~CAN_SR_RXOK;
/* read the message contents */
CAN->sMsgObj[1].CMR = CAN_CMR_MASK
| CAN_CMR_ARB
| CAN_CMR_CONTROL
| CAN_CMR_CLRINTPND
| (release ? CAN_CMR_TXRQST : 0)
| CAN_CMR_DATAA
| CAN_CMR_DATAB;
CAN->sMsgObj[1].CRR = 1 + msgobj;
while (CAN->sMsgObj[1].CRR & CAN_CRR_BUSY);
if ((CAN->sMsgObj[1].A2R & CAN_A2R_XTD) == 0)
{
/* standard ID */
pCanMsg->IdType = CAN_STD_ID;
pCanMsg->Id = (CAN->sMsgObj[1].A2R >> 2) & 0x07FF;
}
else
{
/* extended ID */
pCanMsg->IdType = CAN_EXT_ID;
pCanMsg->Id = ((CAN->sMsgObj[1].A2R >> 2) & 0x07FF) | ((u32)CAN->sMsgObj[1].A1R << 11) | (((u32)CAN->sMsgObj[1].A2R & 0x0003) << 27);
}
pCanMsg->Dlc = CAN->sMsgObj[1].MCR & 0x0F;
pCanMsg->Data[0] = (u8) CAN->sMsgObj[1].DA1R;
pCanMsg->Data[1] = (u8)(CAN->sMsgObj[1].DA1R >> 8);
pCanMsg->Data[2] = (u8) CAN->sMsgObj[1].DA2R;
pCanMsg->Data[3] = (u8)(CAN->sMsgObj[1].DA2R >> 8);
pCanMsg->Data[4] = (u8) CAN->sMsgObj[1].DB1R;
pCanMsg->Data[5] = (u8)(CAN->sMsgObj[1].DB1R >> 8);
pCanMsg->Data[6] = (u8) CAN->sMsgObj[1].DB2R;
pCanMsg->Data[7] = (u8)(CAN->sMsgObj[1].DB2R >> 8);
return 1;
}
/*******************************************************************************
* Function Name : CAN_WaitEndOfTx
* Description : Wait until current transmission is finished
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void CAN_WaitEndOfTx(void)
{
while ((CAN->SR & CAN_SR_TXOK) == 0);
CAN->SR &= ~CAN_SR_TXOK;
}
/*******************************************************************************
* Function Name : CAN_BasicSendMessage
* Description : Start transmission of a message in BASIC mode
* Input 1 : pointer to the message structure containing data to transmit
* Output : None
* Return : 1 if transmission was OK, else 0
* Note : CAN must be in BASIC mode
*******************************************************************************/
u32 CAN_BasicSendMessage(canmsg* pCanMsg)
{
/* clear NewDat bit in IF2 to detect next reception */
CAN->sMsgObj[1].MCR &= ~CAN_MCR_NEWDAT;
CAN->SR &= ~CAN_SR_TXOK;
CAN->sMsgObj[0].CMR = CAN_CMR_WRRD
| CAN_CMR_ARB
| CAN_CMR_CONTROL
| CAN_CMR_DATAA
| CAN_CMR_DATAB;
if (pCanMsg->IdType == CAN_STD_ID)
{
/* standard ID */
CAN->sMsgObj[0].A1R = 0;
CAN->sMsgObj[0].A2R = (CAN->sMsgObj[0].A2R & 0xE000) | STD_FIXED_ID_ARB(pCanMsg->Id);
}
else
{
/* extended ID */
CAN->sMsgObj[0].A1R = EXT_FIXED_ID_ARB_L(pCanMsg->Id);
CAN->sMsgObj[0].A2R = (CAN->sMsgObj[0].A2R & 0xE000) | EXT_FIXED_ID_ARB_H(pCanMsg->Id);
}
CAN->sMsgObj[0].MCR = (CAN->sMsgObj[0].MCR & 0xFCF0) | pCanMsg->Dlc;
CAN->sMsgObj[0].DA1R = ((u16)pCanMsg->Data[1]<<8) | pCanMsg->Data[0];
CAN->sMsgObj[0].DA2R = ((u16)pCanMsg->Data[3]<<8) | pCanMsg->Data[2];
CAN->sMsgObj[0].DB1R = ((u16)pCanMsg->Data[5]<<8) | pCanMsg->Data[4];
CAN->sMsgObj[0].DB2R = ((u16)pCanMsg->Data[7]<<8) | pCanMsg->Data[6];
/* request transmission */
CAN->sMsgObj[0].CRR = CAN_CRR_BUSY | (1 + 0);
return 1;
}
/*******************************************************************************
* Function Name : CAN_BasicReceiveMessage
* Description : Get the message in BASIC mode, if received
* Input 1 : pointer to the message structure where received data is stored
* Output : None
* Return : 1 if reception was OK, else 0 (no message pending)
* Note : CAN must be in BASIC mode
*******************************************************************************/
u32 CAN_BasicReceiveMessage(canmsg* pCanMsg)
{
if ((CAN->sMsgObj[1].MCR & CAN_MCR_NEWDAT) == 0)
return 0;
CAN->SR &= ~CAN_SR_RXOK;
CAN->sMsgObj[1].CMR = CAN_CMR_ARB
| CAN_CMR_CONTROL
| CAN_CMR_DATAA
| CAN_CMR_DATAB;
if ((CAN->sMsgObj[1].A2R & CAN_A2R_XTD) == 0)
{
/* standard ID */
pCanMsg->IdType = CAN_STD_ID;
pCanMsg->Id = (CAN->sMsgObj[1].A2R >> 2) & 0x07FF;
}
else
{
/* extended ID */
pCanMsg->IdType = CAN_EXT_ID;
pCanMsg->Id = ((CAN->sMsgObj[1].A2R >> 2) & 0x07FF) | ((u32)CAN->sMsgObj[1].A1R << 11) | (((u32)CAN->sMsgObj[1].A2R & 0x0003) << 27);
}
pCanMsg->Dlc = CAN->sMsgObj[1].MCR & 0x0F;
pCanMsg->Data[0] = (u8) CAN->sMsgObj[1].DA1R;
pCanMsg->Data[1] = (u8)(CAN->sMsgObj[1].DA1R >> 8);
pCanMsg->Data[2] = (u8) CAN->sMsgObj[1].DA2R;
pCanMsg->Data[3] = (u8)(CAN->sMsgObj[1].DA2R >> 8);
pCanMsg->Data[4] = (u8) CAN->sMsgObj[1].DB1R;
pCanMsg->Data[5] = (u8)(CAN->sMsgObj[1].DB1R >> 8);
pCanMsg->Data[6] = (u8) CAN->sMsgObj[1].DB2R;
pCanMsg->Data[7] = (u8)(CAN->sMsgObj[1].DB2R >> 8);
return 1;
}
/******************* (C) COPYRIGHT 2003 STMicroelectronics *****END OF FILE****/