Files
TencentOS-tiny/kernel/core/tos_char_fifo.c
daishengdong 5b51d50ade add ota algorithm for device
1. effective "Differential Upgrade" patch algorithm with high compression rate
2. effective recovery algorithm support recovery firmware in blocks which has low memory consumption and wear-leveling strategies, especially suitable for embeded devices with low RAM.
3. add sample ota bootloader project, see:
board\TencentOS_tiny_EVB_MX_Plus\KEIL\ota\ota_bootloader_recovery
4. add sample application project for download firmware through http, see:
board\TencentOS_tiny_EVB_MX_Plus\KEIL\ota\ota_application_download_through_http
5. add sample application project for download firmware through qcloud explorer console, see:
board\TencentOS_tiny_EVB_MX_Plus\KEIL\ota\ota_application_download_through_qcloud_iot_explorer
6. an OTA markdown document is pending
2020-06-02 15:03:42 +08:00

186 lines
4.9 KiB
C

/*----------------------------------------------------------------------------
* Tencent is pleased to support the open source community by making TencentOS
* available.
*
* Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved.
* If you have downloaded a copy of the TencentOS binary from Tencent, please
* note that the TencentOS binary is licensed under the BSD 3-Clause License.
*
* If you have downloaded a copy of the TencentOS source code from Tencent,
* please note that TencentOS source code is licensed under the BSD 3-Clause
* License, except for the third-party components listed below which are
* subject to different license terms. Your integration of TencentOS into your
* own projects may require compliance with the BSD 3-Clause License, as well
* as the other licenses applicable to the third-party components included
* within TencentOS.
*---------------------------------------------------------------------------*/
#include "tos_k.h"
__API__ k_err_t tos_chr_fifo_create(k_chr_fifo_t *chr_fifo, void *buffer, size_t size)
{
k_err_t err;
TOS_PTR_SANITY_CHECK(chr_fifo);
TOS_PTR_SANITY_CHECK(buffer);
err = tos_ring_q_create(&chr_fifo->ring_q, buffer, size, sizeof(uint8_t));
if (err != K_ERR_NONE) {
return err;
}
TOS_OBJ_INIT(chr_fifo, KNL_OBJ_TYPE_CHAR_FIFO);
knl_object_alloc_set_static(&chr_fifo->knl_obj);
return K_ERR_NONE;
}
__API__ k_err_t tos_chr_fifo_destroy(k_chr_fifo_t *chr_fifo)
{
k_err_t err;
TOS_PTR_SANITY_CHECK(chr_fifo);
TOS_OBJ_VERIFY(chr_fifo, KNL_OBJ_TYPE_CHAR_FIFO);
if (!knl_object_alloc_is_static(&chr_fifo->knl_obj)) {
return K_ERR_OBJ_INVALID_ALLOC_TYPE;
}
err = tos_ring_q_destroy(&chr_fifo->ring_q);
if (err != K_ERR_NONE) {
return err;
}
TOS_OBJ_DEINIT(chr_fifo);
knl_object_alloc_reset(&chr_fifo->knl_obj);
return K_ERR_NONE;
}
__API__ k_err_t tos_chr_fifo_create_dyn(k_chr_fifo_t *chr_fifo, size_t fifo_size)
{
k_err_t err;
TOS_PTR_SANITY_CHECK(chr_fifo);
err = tos_ring_q_create_dyn(&chr_fifo->ring_q, fifo_size, sizeof(uint8_t));
if (err != K_ERR_NONE) {
return err;
}
TOS_OBJ_INIT(chr_fifo, KNL_OBJ_TYPE_CHAR_FIFO);
knl_object_alloc_set_dynamic(&chr_fifo->knl_obj);
return K_ERR_NONE;
}
__API__ k_err_t tos_chr_fifo_destroy_dyn(k_chr_fifo_t *chr_fifo)
{
k_err_t err;
TOS_PTR_SANITY_CHECK(chr_fifo);
TOS_OBJ_VERIFY(chr_fifo, KNL_OBJ_TYPE_CHAR_FIFO);
if (!knl_object_alloc_is_dynamic(&chr_fifo->knl_obj)) {
return K_ERR_OBJ_INVALID_ALLOC_TYPE;
}
err = tos_ring_q_destroy_dyn(&chr_fifo->ring_q);
if (err != K_ERR_NONE) {
return err;
}
TOS_OBJ_DEINIT(chr_fifo);
knl_object_alloc_reset(&chr_fifo->knl_obj);
return K_ERR_NONE;
}
__API__ k_err_t tos_chr_fifo_push(k_chr_fifo_t *chr_fifo, uint8_t data)
{
TOS_PTR_SANITY_CHECK(chr_fifo);
TOS_OBJ_VERIFY(chr_fifo, KNL_OBJ_TYPE_CHAR_FIFO);
return tos_ring_q_enqueue(&chr_fifo->ring_q, &data, sizeof(uint8_t));
}
__API__ int tos_chr_fifo_push_stream(k_chr_fifo_t *chr_fifo, uint8_t *stream, size_t size)
{
TOS_CPU_CPSR_ALLOC();
k_err_t err;
int i = 0;
TOS_PTR_SANITY_CHECK_RC(chr_fifo, 0);
TOS_OBJ_VERIFY_RC(chr_fifo, KNL_OBJ_TYPE_CHAR_FIFO, 0);
TOS_CPU_INT_DISABLE();
while (i < size) {
err = tos_ring_q_enqueue(&chr_fifo->ring_q, &stream[i], sizeof(uint8_t));
if (err != K_ERR_NONE) {
TOS_CPU_INT_ENABLE();
return i;
}
++i;
}
TOS_CPU_INT_ENABLE();
return i;
}
__API__ k_err_t tos_chr_fifo_pop(k_chr_fifo_t *chr_fifo, uint8_t *out)
{
TOS_PTR_SANITY_CHECK(chr_fifo);
TOS_OBJ_VERIFY(chr_fifo, KNL_OBJ_TYPE_CHAR_FIFO);
return tos_ring_q_dequeue(&chr_fifo->ring_q, (void *)out, K_NULL);
}
__API__ int tos_chr_fifo_pop_stream(k_chr_fifo_t *chr_fifo, uint8_t *buffer, size_t size)
{
TOS_CPU_CPSR_ALLOC();
int i = 0;
uint8_t data;
TOS_PTR_SANITY_CHECK_RC(chr_fifo, 0);
TOS_OBJ_VERIFY_RC(chr_fifo, KNL_OBJ_TYPE_CHAR_FIFO, 0);
TOS_CPU_INT_DISABLE();
while (i < size) {
if (tos_ring_q_dequeue(&chr_fifo->ring_q, &data, K_NULL) != K_ERR_NONE) {
TOS_CPU_INT_ENABLE();
return i;
}
buffer[i++] = data;
}
TOS_CPU_INT_ENABLE();
return i;
}
__API__ k_err_t tos_chr_fifo_flush(k_chr_fifo_t *chr_fifo)
{
TOS_PTR_SANITY_CHECK(chr_fifo);
TOS_OBJ_VERIFY(chr_fifo, KNL_OBJ_TYPE_CHAR_FIFO);
return tos_ring_q_flush(&chr_fifo->ring_q);
}
__API__ int tos_chr_fifo_is_empty(k_chr_fifo_t *chr_fifo)
{
TOS_PTR_SANITY_CHECK_RC(chr_fifo, K_FALSE);
TOS_OBJ_VERIFY_RC(chr_fifo, KNL_OBJ_TYPE_CHAR_FIFO, K_FALSE);
return tos_ring_q_is_empty(&chr_fifo->ring_q);
}
__API__ int tos_chr_fifo_is_full(k_chr_fifo_t *chr_fifo)
{
TOS_PTR_SANITY_CHECK_RC(chr_fifo, K_FALSE);
TOS_OBJ_VERIFY_RC(chr_fifo, KNL_OBJ_TYPE_CHAR_FIFO, K_FALSE);
return tos_ring_q_is_full(&chr_fifo->ring_q);
}