Files
TencentOS-tiny/board/RHF0M0E5_STM32WLE5xx/BSP/Middlewares/LoRaWAN/Mac/region/RegionAU915.c
2020-06-08 21:40:22 +08:00

1038 lines
32 KiB
C

/*!
* \file RegionAU915.c
*
* \brief Region implementation for AU915
*
* \copyright Revised BSD License, see section \ref LICENSE.
*
* \code
* ______ _
* / _____) _ | |
* ( (____ _____ ____ _| |_ _____ ____| |__
* \____ \| ___ | (_ _) ___ |/ ___) _ \
* _____) ) ____| | | || |_| ____( (___| | | |
* (______/|_____)_|_|_| \__)_____)\____)_| |_|
* (C)2013-2017 Semtech
*
* ___ _____ _ ___ _ _____ ___ ___ ___ ___
* / __|_ _/_\ / __| |/ / __/ _ \| _ \/ __| __|
* \__ \ | |/ _ \ (__| ' <| _| (_) | / (__| _|
* |___/ |_/_/ \_\___|_|\_\_| \___/|_|_\\___|___|
* embedded.connectivity.solutions===============
*
* \endcode
*
* \author Miguel Luis ( Semtech )
*
* \author Gregory Cristian ( Semtech )
*
* \author Daniel Jaeckle ( STACKFORCE )
*/
#include "utilities.h"
#include "RegionCommon.h"
#include "RegionAU915.h"
#include "lorawan_conf.h"
#include "mw_log_conf.h"
// Definitions
#define CHANNELS_MASK_SIZE 6
// A mask to select only valid 500KHz channels
#define CHANNELS_MASK_500KHZ_MASK 0x00FF
/*!
* Region specific context
*/
typedef struct sRegionAU915NvmCtx
{
/*!
* LoRaMAC channels
*/
ChannelParams_t Channels[ AU915_MAX_NB_CHANNELS ];
/*!
* LoRaMac bands
*/
Band_t Bands[ AU915_MAX_NB_BANDS ];
/*!
* LoRaMac channels mask
*/
uint16_t ChannelsMask[ CHANNELS_MASK_SIZE ];
/*!
* LoRaMac channels remaining
*/
uint16_t ChannelsMaskRemaining[CHANNELS_MASK_SIZE];
/*!
* LoRaMac channels default mask
*/
uint16_t ChannelsDefaultMask[ CHANNELS_MASK_SIZE ];
}RegionAU915NvmCtx_t;
/*
* Non-volatile module context.
*/
static RegionAU915NvmCtx_t NvmCtx;
// Static functions
static int8_t GetNextLowerTxDr( int8_t dr, int8_t minDr )
{
uint8_t nextLowerDr = 0;
if( dr == minDr )
{
nextLowerDr = minDr;
}
else if( dr == DR_8 )
{ // DR_7 is not allowed
nextLowerDr = DR_6;
}
else
{
nextLowerDr = dr - 1;
}
return nextLowerDr;
}
static uint32_t GetBandwidth( uint32_t drIndex )
{
switch( BandwidthsAU915[drIndex] )
{
default:
case 125000:
return 0;
case 250000:
return 1;
case 500000:
return 2;
}
}
static int8_t LimitTxPower( int8_t txPower, int8_t maxBandTxPower, int8_t datarate, uint16_t* channelsMask )
{
int8_t txPowerResult = txPower;
// Limit tx power to the band max
txPowerResult = MAX( txPower, maxBandTxPower );
return txPowerResult;
}
static bool VerifyRfFreq( uint32_t freq )
{
// Check radio driver support
if( Radio.CheckRfFrequency( freq ) == false )
{
return false;
}
// Rx frequencies
if( ( freq < AU915_FIRST_RX1_CHANNEL ) ||
( freq > AU915_LAST_RX1_CHANNEL ) ||
( ( ( freq - ( uint32_t ) AU915_FIRST_RX1_CHANNEL ) % ( uint32_t ) AU915_STEPWIDTH_RX1_CHANNEL ) != 0 ) )
{
return false;
}
// Tx frequencies for 125kHz
// Also includes the range for 500kHz channels
if( ( freq < 915200000 ) || ( freq > 927800000 ) )
{
return false;
}
return true;
}
static uint8_t CountNbOfEnabledChannels( uint8_t datarate, uint16_t* channelsMask, ChannelParams_t* channels, Band_t* bands, uint8_t* enabledChannels, uint8_t* delayTx )
{
uint8_t nbEnabledChannels = 0;
uint8_t delayTransmission = 0;
for( uint8_t i = 0, k = 0; i < AU915_MAX_NB_CHANNELS; i += 16, k++ )
{
for( uint8_t j = 0; j < 16; j++ )
{
if( ( channelsMask[k] & ( 1 << j ) ) != 0 )
{
if( channels[i + j].Frequency == 0 )
{ // Check if the channel is enabled
continue;
}
if( RegionCommonValueInRange( datarate, channels[i + j].DrRange.Fields.Min,
channels[i + j].DrRange.Fields.Max ) == false )
{ // Check if the current channel selection supports the given datarate
continue;
}
if( bands[channels[i + j].Band].TimeOff > 0 )
{ // Check if the band is available for transmission
delayTransmission++;
continue;
}
enabledChannels[nbEnabledChannels++] = i + j;
}
}
}
*delayTx = delayTransmission;
return nbEnabledChannels;
}
PhyParam_t RegionAU915GetPhyParam( GetPhyParams_t* getPhy )
{
PhyParam_t phyParam = { 0 };
switch( getPhy->Attribute )
{
case PHY_MIN_RX_DR:
{
if( getPhy->DownlinkDwellTime == 0)
{
phyParam.Value = AU915_RX_MIN_DATARATE;
}
else
{
phyParam.Value = AU915_DWELL_LIMIT_DATARATE;
}
break;
}
case PHY_MIN_TX_DR:
{
if( getPhy->UplinkDwellTime == 0)
{
phyParam.Value = AU915_TX_MIN_DATARATE;
}
else
{
phyParam.Value = AU915_DWELL_LIMIT_DATARATE;
}
break;
}
case PHY_DEF_TX_DR:
{
phyParam.Value = AU915_DEFAULT_DATARATE;
break;
}
case PHY_NEXT_LOWER_TX_DR:
{
if( getPhy->UplinkDwellTime == 0)
{
phyParam.Value = GetNextLowerTxDr( getPhy->Datarate, AU915_TX_MIN_DATARATE );
}
else
{
phyParam.Value = GetNextLowerTxDr( getPhy->Datarate, AU915_DWELL_LIMIT_DATARATE );
}
break;
}
case PHY_MAX_TX_POWER:
{
phyParam.Value = AU915_MAX_TX_POWER;
break;
}
case PHY_DEF_TX_POWER:
{
phyParam.Value = AU915_DEFAULT_TX_POWER;
break;
}
case PHY_DEF_ADR_ACK_LIMIT:
{
phyParam.Value = AU915_ADR_ACK_LIMIT;
break;
}
case PHY_DEF_ADR_ACK_DELAY:
{
phyParam.Value = AU915_ADR_ACK_DELAY;
break;
}
case PHY_MAX_PAYLOAD:
{
if( getPhy->UplinkDwellTime == 0 )
{
phyParam.Value = MaxPayloadOfDatarateDwell0AU915[getPhy->Datarate];
}
else
{
phyParam.Value = MaxPayloadOfDatarateDwell1AU915[getPhy->Datarate];
}
break;
}
case PHY_MAX_PAYLOAD_REPEATER:
{
if( getPhy->UplinkDwellTime == 0)
{
phyParam.Value = MaxPayloadOfDatarateRepeaterDwell0AU915[getPhy->Datarate];
}
else
{
phyParam.Value = MaxPayloadOfDatarateRepeaterDwell1AU915[getPhy->Datarate];
}
break;
}
case PHY_DUTY_CYCLE:
{
phyParam.Value = AU915_DUTY_CYCLE_ENABLED;
break;
}
case PHY_MAX_RX_WINDOW:
{
phyParam.Value = AU915_MAX_RX_WINDOW;
break;
}
case PHY_RECEIVE_DELAY1:
{
phyParam.Value = AU915_RECEIVE_DELAY1;
break;
}
case PHY_RECEIVE_DELAY2:
{
phyParam.Value = AU915_RECEIVE_DELAY2;
break;
}
case PHY_JOIN_ACCEPT_DELAY1:
{
phyParam.Value = AU915_JOIN_ACCEPT_DELAY1;
break;
}
case PHY_JOIN_ACCEPT_DELAY2:
{
phyParam.Value = AU915_JOIN_ACCEPT_DELAY2;
break;
}
case PHY_MAX_FCNT_GAP:
{
phyParam.Value = AU915_MAX_FCNT_GAP;
break;
}
case PHY_ACK_TIMEOUT:
{
phyParam.Value = ( AU915_ACKTIMEOUT + randr( -AU915_ACK_TIMEOUT_RND, AU915_ACK_TIMEOUT_RND ) );
break;
}
case PHY_DEF_DR1_OFFSET:
{
phyParam.Value = AU915_DEFAULT_RX1_DR_OFFSET;
break;
}
case PHY_DEF_RX2_FREQUENCY:
{
phyParam.Value = AU915_RX_WND_2_FREQ;
break;
}
case PHY_DEF_RX2_DR:
{
phyParam.Value = AU915_RX_WND_2_DR;
break;
}
case PHY_CHANNELS_MASK:
{
phyParam.ChannelsMask = NvmCtx.ChannelsMask;
break;
}
case PHY_CHANNELS_DEFAULT_MASK:
{
phyParam.ChannelsMask = NvmCtx.ChannelsDefaultMask;
break;
}
case PHY_MAX_NB_CHANNELS:
{
phyParam.Value = AU915_MAX_NB_CHANNELS;
break;
}
case PHY_CHANNELS:
{
phyParam.Channels = NvmCtx.Channels;
break;
}
case PHY_DEF_UPLINK_DWELL_TIME:
{
phyParam.Value = AU915_DEFAULT_UPLINK_DWELL_TIME;
break;
}
case PHY_DEF_DOWNLINK_DWELL_TIME:
{
phyParam.Value = AU915_DEFAULT_DOWNLINK_DWELL_TIME;
break;
}
case PHY_DEF_MAX_EIRP:
{
phyParam.fValue = AU915_DEFAULT_MAX_EIRP;
break;
}
case PHY_DEF_ANTENNA_GAIN:
{
phyParam.fValue = AU915_DEFAULT_ANTENNA_GAIN;
break;
}
case PHY_BEACON_FORMAT:
{
phyParam.BeaconFormat.BeaconSize = AU915_BEACON_SIZE;
phyParam.BeaconFormat.Rfu1Size = AU915_RFU1_SIZE;
phyParam.BeaconFormat.Rfu2Size = AU915_RFU2_SIZE;
break;
}
case PHY_BEACON_CHANNEL_DR:
{
phyParam.Value = AU915_BEACON_CHANNEL_DR;
break;
}
case PHY_BEACON_CHANNEL_STEPWIDTH:
{
phyParam.Value = AU915_BEACON_CHANNEL_STEPWIDTH;
break;
}
case PHY_BEACON_NB_CHANNELS:
{
phyParam.Value = AU915_BEACON_NB_CHANNELS;
break;
}
case PHY_PING_SLOT_CHANNEL_DR:
{
phyParam.Value = AU915_PING_SLOT_CHANNEL_DR;
break;
}
default:
{
break;
}
}
return phyParam;
}
void RegionAU915SetBandTxDone( SetBandTxDoneParams_t* txDone )
{
RegionCommonSetBandTxDone( txDone->Joined, &NvmCtx.Bands[NvmCtx.Channels[txDone->Channel].Band], txDone->LastTxDoneTime );
}
void RegionAU915InitDefaults( InitDefaultsParams_t* params )
{
Band_t bands[AU915_MAX_NB_BANDS] =
{
AU915_BAND0
};
switch( params->Type )
{
case INIT_TYPE_INIT:
{
// Initialize bands
memcpy1( ( uint8_t* )NvmCtx.Bands, ( uint8_t* )bands, sizeof( Band_t ) * AU915_MAX_NB_BANDS );
// Channels
// 125 kHz channels
for( uint8_t i = 0; i < AU915_MAX_NB_CHANNELS - 8; i++ )
{
NvmCtx.Channels[i].Frequency = 915200000 + i * 200000;
NvmCtx.Channels[i].DrRange.Value = ( DR_5 << 4 ) | DR_0;
NvmCtx.Channels[i].Band = 0;
}
// 500 kHz channels
for( uint8_t i = AU915_MAX_NB_CHANNELS - 8; i < AU915_MAX_NB_CHANNELS; i++ )
{
NvmCtx.Channels[i].Frequency = 915900000 + ( i - ( AU915_MAX_NB_CHANNELS - 8 ) ) * 1600000;
NvmCtx.Channels[i].DrRange.Value = ( DR_6 << 4 ) | DR_6;
NvmCtx.Channels[i].Band = 0;
}
// Initialize channels default mask
NvmCtx.ChannelsDefaultMask[0] = 0xFFFF;
NvmCtx.ChannelsDefaultMask[1] = 0xFFFF;
NvmCtx.ChannelsDefaultMask[2] = 0xFFFF;
NvmCtx.ChannelsDefaultMask[3] = 0xFFFF;
NvmCtx.ChannelsDefaultMask[4] = 0x00FF;
NvmCtx.ChannelsDefaultMask[5] = 0x0000;
// Copy channels default mask
RegionCommonChanMaskCopy( NvmCtx.ChannelsMask, NvmCtx.ChannelsDefaultMask, 6 );
// Copy into channels mask remaining
RegionCommonChanMaskCopy( NvmCtx.ChannelsMaskRemaining, NvmCtx.ChannelsMask, 6 );
break;
}
case INIT_TYPE_RESTORE_CTX:
{
if( params->NvmCtx != 0 )
{
memcpy1( (uint8_t*) &NvmCtx, (uint8_t*) params->NvmCtx, sizeof( NvmCtx ) );
}
break;
}
case INIT_TYPE_RESTORE_DEFAULT_CHANNELS:
{
// Copy channels default mask
RegionCommonChanMaskCopy( NvmCtx.ChannelsMask, NvmCtx.ChannelsDefaultMask, 6 );
for( uint8_t i = 0; i < 6; i++ )
{ // Copy-And the channels mask
NvmCtx.ChannelsMaskRemaining[i] &= NvmCtx.ChannelsMask[i];
}
break;
}
default:
{
break;
}
}
}
void* RegionAU915GetNvmCtx( GetNvmCtxParams_t* params )
{
params->nvmCtxSize = sizeof( RegionAU915NvmCtx_t );
return &NvmCtx;
}
bool RegionAU915Verify( VerifyParams_t* verify, PhyAttribute_t phyAttribute )
{
switch( phyAttribute )
{
case PHY_FREQUENCY:
{
return VerifyRfFreq( verify->Frequency );
}
case PHY_TX_DR:
case PHY_DEF_TX_DR:
{
if( verify->DatarateParams.UplinkDwellTime == 0 )
{
return RegionCommonValueInRange( verify->DatarateParams.Datarate, AU915_TX_MIN_DATARATE, AU915_TX_MAX_DATARATE );
}
else
{
return RegionCommonValueInRange( verify->DatarateParams.Datarate, AU915_DWELL_LIMIT_DATARATE, AU915_TX_MAX_DATARATE );
}
}
case PHY_RX_DR:
{
if( verify->DatarateParams.UplinkDwellTime == 0 )
{
return RegionCommonValueInRange( verify->DatarateParams.Datarate, AU915_RX_MIN_DATARATE, AU915_RX_MAX_DATARATE );
}
else
{
return RegionCommonValueInRange( verify->DatarateParams.Datarate, AU915_DWELL_LIMIT_DATARATE, AU915_RX_MAX_DATARATE );
}
}
case PHY_DEF_TX_POWER:
case PHY_TX_POWER:
{
// Remark: switched min and max!
return RegionCommonValueInRange( verify->TxPower, AU915_MAX_TX_POWER, AU915_MIN_TX_POWER );
}
case PHY_DUTY_CYCLE:
{
return AU915_DUTY_CYCLE_ENABLED;
}
default:
return false;
}
}
void RegionAU915ApplyCFList( ApplyCFListParams_t* applyCFList )
{
// Size of the optional CF list must be 16 byte
if( applyCFList->Size != 16 )
{
return;
}
// Last byte CFListType must be 0x01 to indicate the CFList contains a series of ChMask fields
if( applyCFList->Payload[15] != 0x01 )
{
return;
}
// ChMask0 - ChMask4 must be set (every ChMask has 16 bit)
for( uint8_t chMaskItr = 0, cntPayload = 0; chMaskItr <= 4; chMaskItr++, cntPayload+=2 )
{
NvmCtx.ChannelsMask[chMaskItr] = (uint16_t) (0x00FF & applyCFList->Payload[cntPayload]);
NvmCtx.ChannelsMask[chMaskItr] |= (uint16_t) (applyCFList->Payload[cntPayload+1] << 8);
if( chMaskItr == 4 )
{
NvmCtx.ChannelsMask[chMaskItr] = NvmCtx.ChannelsMask[chMaskItr] & CHANNELS_MASK_500KHZ_MASK;
}
// Set the channel mask to the remaining
NvmCtx.ChannelsMaskRemaining[chMaskItr] &= NvmCtx.ChannelsMask[chMaskItr];
}
}
bool RegionAU915ChanMaskSet( ChanMaskSetParams_t* chanMaskSet )
{
switch( chanMaskSet->ChannelsMaskType )
{
case CHANNELS_MASK:
{
RegionCommonChanMaskCopy( NvmCtx.ChannelsMask, chanMaskSet->ChannelsMaskIn, 6 );
NvmCtx.ChannelsDefaultMask[4] = NvmCtx.ChannelsDefaultMask[4] & CHANNELS_MASK_500KHZ_MASK;
NvmCtx.ChannelsDefaultMask[5] = 0x0000;
for( uint8_t i = 0; i < 6; i++ )
{ // Copy-And the channels mask
NvmCtx.ChannelsMaskRemaining[i] &= NvmCtx.ChannelsMask[i];
}
break;
}
case CHANNELS_DEFAULT_MASK:
{
RegionCommonChanMaskCopy( NvmCtx.ChannelsDefaultMask, chanMaskSet->ChannelsMaskIn, 6 );
break;
}
default:
return false;
}
return true;
}
void RegionAU915ComputeRxWindowParameters( int8_t datarate, uint8_t minRxSymbols, uint32_t rxError, RxConfigParams_t *rxConfigParams )
{
double tSymbol = 0.0;
// Get the datarate, perform a boundary check
rxConfigParams->Datarate = MIN( datarate, AU915_RX_MAX_DATARATE );
rxConfigParams->Bandwidth = GetBandwidth( rxConfigParams->Datarate );
tSymbol = RegionCommonComputeSymbolTimeLoRa( DataratesAU915[rxConfigParams->Datarate], BandwidthsAU915[rxConfigParams->Datarate] );
RegionCommonComputeRxWindowParameters( tSymbol, minRxSymbols, rxError, Radio.GetWakeupTime( ), &rxConfigParams->WindowTimeout, &rxConfigParams->WindowOffset );
}
bool RegionAU915RxConfig( RxConfigParams_t* rxConfig, int8_t* datarate )
{
int8_t dr = rxConfig->Datarate;
uint8_t maxPayload = 0;
int8_t phyDr = 0;
uint32_t frequency = rxConfig->Frequency;
const char *slotStrings[] = { "1", "2", "C", "Multi_C", "P", "Multi_P" };
if( Radio.GetStatus( ) != RF_IDLE )
{
return false;
}
if( rxConfig->RxSlot == RX_SLOT_WIN_1 )
{
// Apply window 1 frequency
frequency = AU915_FIRST_RX1_CHANNEL + ( rxConfig->Channel % 8 ) * AU915_STEPWIDTH_RX1_CHANNEL;
}
// Read the physical datarate from the datarates table
phyDr = DataratesAU915[dr];
Radio.SetChannel( frequency );
// Radio configuration
Radio.SetRxConfig( MODEM_LORA, rxConfig->Bandwidth, phyDr, 1, 0, 8, rxConfig->WindowTimeout, false, 0, false, 0, 0, true, rxConfig->RxContinuous );
if( rxConfig->RepeaterSupport == true )
{
maxPayload = MaxPayloadOfDatarateRepeaterDwell0AU915[dr];
}
else
{
maxPayload = MaxPayloadOfDatarateDwell0AU915[dr];
}
Radio.SetMaxPayloadLength( MODEM_LORA, maxPayload + LORA_MAC_FRMPAYLOAD_OVERHEAD );
MW_LOG( "RX on freq %d Hz at DR %d\n\r", frequency, dr );
if ( rxConfig->RxSlot < RX_SLOT_NONE )
{
MW_LOG( "RX_%s on freq %d Hz at DR %d\n\r", slotStrings[rxConfig->RxSlot], frequency, dr );
}
else
{
MW_LOG( "RX on freq %d Hz at DR %d\n\r", frequency, dr );
}
*datarate = (uint8_t) dr;
return true;
}
bool RegionAU915TxConfig( TxConfigParams_t* txConfig, int8_t* txPower, TimerTime_t* txTimeOnAir )
{
int8_t phyDr = DataratesAU915[txConfig->Datarate];
int8_t txPowerLimited = LimitTxPower( txConfig->TxPower, NvmCtx.Bands[NvmCtx.Channels[txConfig->Channel].Band].TxMaxPower, txConfig->Datarate, NvmCtx.ChannelsMask );
uint32_t bandwidth = GetBandwidth( txConfig->Datarate );
int8_t phyTxPower = 0;
// Calculate physical TX power
phyTxPower = RegionCommonComputeTxPower( txPowerLimited, txConfig->MaxEirp, txConfig->AntennaGain );
// Setup the radio frequency
Radio.SetChannel( NvmCtx.Channels[txConfig->Channel].Frequency );
Radio.SetTxConfig( MODEM_LORA, phyTxPower, 0, bandwidth, phyDr, 1, 8, false, true, 0, 0, false, 3000 );
MW_LOG( "TX on freq %d Hz at DR %d\n\r", NvmCtx.Channels[txConfig->Channel].Frequency, txConfig->Datarate );
// Setup maximum payload lenght of the radio driver
Radio.SetMaxPayloadLength( MODEM_LORA, txConfig->PktLen );
*txTimeOnAir = Radio.TimeOnAir( MODEM_LORA, txConfig->PktLen );
*txPower = txPowerLimited;
return true;
}
uint8_t RegionAU915LinkAdrReq( LinkAdrReqParams_t* linkAdrReq, int8_t* drOut, int8_t* txPowOut, uint8_t* nbRepOut, uint8_t* nbBytesParsed )
{
uint8_t status = 0x07;
RegionCommonLinkAdrParams_t linkAdrParams;
uint8_t nextIndex = 0;
uint8_t bytesProcessed = 0;
uint16_t channelsMask[6] = { 0, 0, 0, 0, 0, 0 };
GetPhyParams_t getPhy;
PhyParam_t phyParam;
RegionCommonLinkAdrReqVerifyParams_t linkAdrVerifyParams;
// Initialize local copy of channels mask
RegionCommonChanMaskCopy( channelsMask, NvmCtx.ChannelsMask, 6 );
while( bytesProcessed < linkAdrReq->PayloadSize )
{
nextIndex = RegionCommonParseLinkAdrReq( &( linkAdrReq->Payload[bytesProcessed] ), &linkAdrParams );
if( nextIndex == 0 )
break; // break loop, since no more request has been found
// Update bytes processed
bytesProcessed += nextIndex;
// Revert status, as we only check the last ADR request for the channel mask KO
status = 0x07;
if( linkAdrParams.ChMaskCtrl == 6 )
{
// Enable all 125 kHz channels
channelsMask[0] = 0xFFFF;
channelsMask[1] = 0xFFFF;
channelsMask[2] = 0xFFFF;
channelsMask[3] = 0xFFFF;
// Apply chMask to channels 64 to 71
channelsMask[4] = linkAdrParams.ChMask & CHANNELS_MASK_500KHZ_MASK;
}
else if( linkAdrParams.ChMaskCtrl == 7 )
{
// Disable all 125 kHz channels
channelsMask[0] = 0x0000;
channelsMask[1] = 0x0000;
channelsMask[2] = 0x0000;
channelsMask[3] = 0x0000;
// Apply chMask to channels 64 to 71
channelsMask[4] = linkAdrParams.ChMask & CHANNELS_MASK_500KHZ_MASK;
}
else if( linkAdrParams.ChMaskCtrl == 5 )
{
// Start value for comparision
uint8_t bitMask = 1;
// cntChannelMask for channelsMask[0] until channelsMask[3]
uint8_t cntChannelMask = 0;
// i will be 1, 2, 3, ..., 7
for( uint8_t i = 0; i <= 7; i++ )
{
// 8 MSBs of ChMask are RFU
// Checking if the ChMask is set, then true
if( ( ( linkAdrParams.ChMask & 0x00FF ) & ( bitMask << i ) ) != 0 )
{
if( ( i % 2 ) == 0 )
{
// Enable a bank of 8 125kHz channels, 8 LSBs
channelsMask[cntChannelMask] |= 0x00FF;
// Enable the corresponding 500kHz channel
channelsMask[4] |= ( bitMask << i );
}
else
{
// Enable a bank of 8 125kHz channels, 8 MSBs
channelsMask[cntChannelMask] |= 0xFF00;
// Enable the corresponding 500kHz channel
channelsMask[4] |= ( bitMask << i );
// cntChannelMask increment for uneven i
cntChannelMask++;
}
}
// ChMask is not set
else
{
if( ( i % 2 ) == 0 )
{
// Disable a bank of 8 125kHz channels, 8 LSBs
channelsMask[cntChannelMask] &= 0xFF00;
// Disable the corresponding 500kHz channel
channelsMask[4] &= ~( bitMask << i );
}
else
{
// Enable a bank of 8 125kHz channels, 8 MSBs
channelsMask[cntChannelMask] &= 0x00FF;
// Disable the corresponding 500kHz channel
channelsMask[4] &= ~( bitMask << i );
// cntChannelMask increment for uneven i
cntChannelMask++;
}
}
}
}
else
{
channelsMask[linkAdrParams.ChMaskCtrl] = linkAdrParams.ChMask;
}
}
// FCC 15.247 paragraph F mandates to hop on at least 2 125 kHz channels
if( ( linkAdrParams.Datarate < DR_6 ) && ( RegionCommonCountChannels( channelsMask, 0, 4 ) < 2 ) )
{
status &= 0xFE; // Channel mask KO
}
// Get the minimum possible datarate
getPhy.Attribute = PHY_MIN_TX_DR;
getPhy.UplinkDwellTime = linkAdrReq->UplinkDwellTime;
phyParam = RegionAU915GetPhyParam( &getPhy );
linkAdrVerifyParams.Status = status;
linkAdrVerifyParams.AdrEnabled = linkAdrReq->AdrEnabled;
linkAdrVerifyParams.Datarate = linkAdrParams.Datarate;
linkAdrVerifyParams.TxPower = linkAdrParams.TxPower;
linkAdrVerifyParams.NbRep = linkAdrParams.NbRep;
linkAdrVerifyParams.CurrentDatarate = linkAdrReq->CurrentDatarate;
linkAdrVerifyParams.CurrentTxPower = linkAdrReq->CurrentTxPower;
linkAdrVerifyParams.CurrentNbRep = linkAdrReq->CurrentNbRep;
linkAdrVerifyParams.NbChannels = AU915_MAX_NB_CHANNELS;
linkAdrVerifyParams.ChannelsMask = channelsMask;
linkAdrVerifyParams.MinDatarate = ( int8_t )phyParam.Value;
linkAdrVerifyParams.MaxDatarate = AU915_TX_MAX_DATARATE;
linkAdrVerifyParams.Channels = NvmCtx.Channels;
linkAdrVerifyParams.MinTxPower = AU915_MIN_TX_POWER;
linkAdrVerifyParams.MaxTxPower = AU915_MAX_TX_POWER;
linkAdrVerifyParams.Version = linkAdrReq->Version;
// Verify the parameters and update, if necessary
status = RegionCommonLinkAdrReqVerifyParams( &linkAdrVerifyParams, &linkAdrParams.Datarate, &linkAdrParams.TxPower, &linkAdrParams.NbRep );
// Update channelsMask if everything is correct
if( status == 0x07 )
{
// Copy Mask
RegionCommonChanMaskCopy( NvmCtx.ChannelsMask, channelsMask, 6 );
NvmCtx.ChannelsMaskRemaining[0] &= NvmCtx.ChannelsMask[0];
NvmCtx.ChannelsMaskRemaining[1] &= NvmCtx.ChannelsMask[1];
NvmCtx.ChannelsMaskRemaining[2] &= NvmCtx.ChannelsMask[2];
NvmCtx.ChannelsMaskRemaining[3] &= NvmCtx.ChannelsMask[3];
NvmCtx.ChannelsMaskRemaining[4] = NvmCtx.ChannelsMask[4];
NvmCtx.ChannelsMaskRemaining[5] = NvmCtx.ChannelsMask[5];
}
// Update status variables
*drOut = linkAdrParams.Datarate;
*txPowOut = linkAdrParams.TxPower;
*nbRepOut = linkAdrParams.NbRep;
*nbBytesParsed = bytesProcessed;
return status;
}
uint8_t RegionAU915RxParamSetupReq( RxParamSetupReqParams_t* rxParamSetupReq )
{
uint8_t status = 0x07;
// Verify radio frequency
if( VerifyRfFreq( rxParamSetupReq->Frequency ) == false )
{
status &= 0xFE; // Channel frequency KO
}
// Verify datarate
if( RegionCommonValueInRange( rxParamSetupReq->Datarate, AU915_RX_MIN_DATARATE, AU915_RX_MAX_DATARATE ) == false )
{
status &= 0xFD; // Datarate KO
}
if( ( rxParamSetupReq->Datarate == DR_7 ) ||
( rxParamSetupReq->Datarate > DR_13 ) )
{
status &= 0xFD; // Datarate KO
}
// Verify datarate offset
if( RegionCommonValueInRange( rxParamSetupReq->DrOffset, AU915_MIN_RX1_DR_OFFSET, AU915_MAX_RX1_DR_OFFSET ) == false )
{
status &= 0xFB; // Rx1DrOffset range KO
}
return status;
}
uint8_t RegionAU915NewChannelReq( NewChannelReqParams_t* newChannelReq )
{
// Datarate and frequency KO
return 0;
}
int8_t RegionAU915TxParamSetupReq( TxParamSetupReqParams_t* txParamSetupReq )
{
// Accept the request
return 0;
}
uint8_t RegionAU915DlChannelReq( DlChannelReqParams_t* dlChannelReq )
{
return 0;
}
int8_t RegionAU915AlternateDr( int8_t currentDr, AlternateDrType_t type )
{
static int8_t trialsCount = 0;
// Re-enable 500 kHz default channels
NvmCtx.ChannelsMask[4] = CHANNELS_MASK_500KHZ_MASK;
if( ( trialsCount & 0x01 ) == 0x01 )
{
currentDr = DR_6;
}
else
{
currentDr = DR_2;
}
trialsCount++;
return currentDr;
}
void RegionAU915CalcBackOff( CalcBackOffParams_t* calcBackOff )
{
RegionCommonCalcBackOffParams_t calcBackOffParams;
calcBackOffParams.Channels = NvmCtx.Channels;
calcBackOffParams.Bands = NvmCtx.Bands;
calcBackOffParams.LastTxIsJoinRequest = calcBackOff->LastTxIsJoinRequest;
calcBackOffParams.Joined = calcBackOff->Joined;
calcBackOffParams.DutyCycleEnabled = calcBackOff->DutyCycleEnabled;
calcBackOffParams.Channel = calcBackOff->Channel;
calcBackOffParams.ElapsedTime = calcBackOff->ElapsedTime;
calcBackOffParams.TxTimeOnAir = calcBackOff->TxTimeOnAir;
RegionCommonCalcBackOff( &calcBackOffParams );
}
LoRaMacStatus_t RegionAU915NextChannel( NextChanParams_t* nextChanParams, uint8_t* channel, TimerTime_t* time, TimerTime_t* aggregatedTimeOff )
{
uint8_t nbEnabledChannels = 0;
uint8_t delayTx = 0;
uint8_t enabledChannels[AU915_MAX_NB_CHANNELS] = { 0 };
TimerTime_t nextTxDelay = 0;
// Count 125kHz channels
if( RegionCommonCountChannels( NvmCtx.ChannelsMaskRemaining, 0, 4 ) == 0 )
{ // Reactivate default channels
RegionCommonChanMaskCopy( NvmCtx.ChannelsMaskRemaining, NvmCtx.ChannelsMask, 4 );
}
// Check other channels
if( nextChanParams->Datarate >= DR_6 )
{
if( ( NvmCtx.ChannelsMaskRemaining[4] & CHANNELS_MASK_500KHZ_MASK ) == 0 )
{
NvmCtx.ChannelsMaskRemaining[4] = NvmCtx.ChannelsMask[4];
}
}
TimerTime_t elapsed = TimerGetElapsedTime( nextChanParams->LastAggrTx );
if( ( nextChanParams->LastAggrTx == 0 ) || ( nextChanParams->AggrTimeOff <= elapsed ) )
{
// Reset Aggregated time off
*aggregatedTimeOff = 0;
// Update bands Time OFF
nextTxDelay = RegionCommonUpdateBandTimeOff( nextChanParams->Joined, nextChanParams->DutyCycleEnabled, NvmCtx.Bands, AU915_MAX_NB_BANDS );
// Search how many channels are enabled
nbEnabledChannels = CountNbOfEnabledChannels( nextChanParams->Datarate,
NvmCtx.ChannelsMaskRemaining, NvmCtx.Channels,
NvmCtx.Bands, enabledChannels, &delayTx );
}
else
{
delayTx++;
nextTxDelay = nextChanParams->AggrTimeOff - elapsed;
}
if( nbEnabledChannels > 0 )
{
// We found a valid channel
*channel = enabledChannels[randr( 0, nbEnabledChannels - 1 )];
// Disable the channel in the mask
RegionCommonChanDisable( NvmCtx.ChannelsMaskRemaining, *channel, AU915_MAX_NB_CHANNELS - 8 );
*time = 0;
return LORAMAC_STATUS_OK;
}
else
{
if( delayTx > 0 )
{
// Delay transmission due to AggregatedTimeOff or to a band time off
*time = nextTxDelay;
return LORAMAC_STATUS_DUTYCYCLE_RESTRICTED;
}
// Datarate not supported by any channel
*time = 0;
return LORAMAC_STATUS_NO_CHANNEL_FOUND;
}
}
LoRaMacStatus_t RegionAU915ChannelAdd( ChannelAddParams_t* channelAdd )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
bool RegionAU915ChannelsRemove( ChannelRemoveParams_t* channelRemove )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
void RegionAU915SetContinuousWave( ContinuousWaveParams_t* continuousWave )
{
int8_t txPowerLimited = LimitTxPower( continuousWave->TxPower, NvmCtx.Bands[NvmCtx.Channels[continuousWave->Channel].Band].TxMaxPower, continuousWave->Datarate, NvmCtx.ChannelsMask );
int8_t phyTxPower = 0;
uint32_t frequency = NvmCtx.Channels[continuousWave->Channel].Frequency;
// Calculate physical TX power
phyTxPower = RegionCommonComputeTxPower( txPowerLimited, continuousWave->MaxEirp, continuousWave->AntennaGain );
Radio.SetTxContinuousWave( frequency, phyTxPower, continuousWave->Timeout );
}
uint8_t RegionAU915ApplyDrOffset( uint8_t downlinkDwellTime, int8_t dr, int8_t drOffset )
{
int8_t datarate = DatarateOffsetsAU915[dr][drOffset];
if( datarate < 0 )
{
if( downlinkDwellTime == 0 )
{
datarate = AU915_TX_MIN_DATARATE;
}
else
{
datarate = AU915_DWELL_LIMIT_DATARATE;
}
}
return datarate;
}
void RegionAU915RxBeaconSetup( RxBeaconSetup_t* rxBeaconSetup, uint8_t* outDr )
{
RegionCommonRxBeaconSetupParams_t regionCommonRxBeaconSetup;
regionCommonRxBeaconSetup.Datarates = DataratesAU915;
regionCommonRxBeaconSetup.Frequency = rxBeaconSetup->Frequency;
regionCommonRxBeaconSetup.BeaconSize = AU915_BEACON_SIZE;
regionCommonRxBeaconSetup.BeaconDatarate = AU915_BEACON_CHANNEL_DR;
regionCommonRxBeaconSetup.BeaconChannelBW = AU915_BEACON_CHANNEL_BW;
regionCommonRxBeaconSetup.RxTime = rxBeaconSetup->RxTime;
regionCommonRxBeaconSetup.SymbolTimeout = rxBeaconSetup->SymbolTimeout;
RegionCommonRxBeaconSetup( &regionCommonRxBeaconSetup );
// Store downlink datarate
*outDr = AU915_BEACON_CHANNEL_DR;
}