标定运行

This commit is contained in:
2025-12-12 09:49:13 +08:00
parent 9257824716
commit c51757f66b
103 changed files with 2485 additions and 1 deletions

259
run_calibrate_camera.py Normal file
View File

@@ -0,0 +1,259 @@
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~
Fisheye Camera calibration
~~~~~~~~~~~~~~~~~~~~~~~~~~
Usage:
python calibrate_camera.py \
-i 0 \
-grid 9x6 \
-out fisheye.yaml \
-framestep 20 \
--resolution 640x480
--fisheye
"""
import argparse
import os
import numpy as np
import cv2
from surround_view import CaptureThread, MultiBufferManager
import surround_view.utils as utils
# we will save the camera param file to this directory
TARGET_DIR = os.path.join(os.getcwd(), "yaml")
# default param file
DEFAULT_PARAM_FILE = os.path.join(TARGET_DIR, "camera_params.yaml")
def main():
parser = argparse.ArgumentParser()
# input video stream
parser.add_argument("-i", "--input", type=int, default=0,
help="input camera device")
# chessboard pattern size
parser.add_argument("-grid", "--grid", default="9x6",
help="size of the calibrate grid pattern")
parser.add_argument("-r", "--resolution", default="1920x1080",
help="resolution of the camera image")
parser.add_argument("-framestep", type=int, default=20,
help="use every nth frame in the video")
parser.add_argument("-o", "--output", default=DEFAULT_PARAM_FILE,
help="path to output yaml file")
parser.add_argument("-fisheye", "--fisheye", action="store_true",
help="set true if this is a fisheye camera")
parser.add_argument("-flip", "--flip", default=0, type=int,
help="flip method of the camera")
parser.add_argument("--no_gst", action="store_true",
help="set true if not use gstreamer for the camera capture")
args = parser.parse_args()
if not os.path.exists(TARGET_DIR):
os.mkdir(TARGET_DIR)
text1 = "press c to calibrate"
text2 = "press q to quit"
text3 = "device: {}".format(args.input)
font = cv2.FONT_HERSHEY_SIMPLEX
fontscale = 0.6
resolution_str = args.resolution.split("x")
W = int(resolution_str[0])
H = int(resolution_str[1])
grid_size = tuple(int(x) for x in args.grid.split("x"))
grid_points = np.zeros((1, np.prod(grid_size), 3), np.float32)
grid_points[0, :, :2] = np.indices(grid_size).T.reshape(-1, 2)
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane
device = args.input
cap_thread = CaptureThread(device_id=device,
# flip_method=args.flip,
resolution=(W, H),
)
buffer_manager = MultiBufferManager()
buffer_manager.bind_thread(cap_thread, buffer_size=8)
if cap_thread.connect_camera():
cap_thread.start()
else:
print("cannot open device")
return
quit = False
do_calib = False
i = -1
while True:
i += 1
img = buffer_manager.get_device(device).get().image
if i % args.framestep != 0:
continue
print("searching for chessboard corners in frame " + str(i) + "...")
# img_bgr = cv2.cvtColor(img, cv2.COLOR_YUV2BGR_YUYV)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
found, corners = cv2.findChessboardCorners(
gray,
grid_size,
cv2.CALIB_CB_ADAPTIVE_THRESH +
cv2.CALIB_CB_NORMALIZE_IMAGE +
cv2.CALIB_CB_FILTER_QUADS +
cv2.CALIB_CB_FAST_CHECK
)
if found:
term = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.01)
cv2.cornerSubPix(gray, corners, (5, 5), (-1, -1), term)
last_valid_bgr = img.copy()
print("✅检测到角点")
imgpoints.append(corners)
objpoints.append(grid_points)
cv2.drawChessboardCorners(img, grid_size, corners, found)
# cv2.putText(img, text1, (20, 70), font, fontscale, (255, 200, 0), 2)
# cv2.putText(img, text2, (20, 110), font, fontscale, (255, 200, 0), 2)
# cv2.putText(img, text3, (20, 30), font, fontscale, (255, 200, 0), 2)
# cv2.putText(img, f"shape: {img.shape[1]}x{img.shape[0]} | succecc farme: {len(objpoints)}",
# (20, 150), font, fontscale, (255, 200, 0), 2)
max_display_width = 1920
max_display_height = 1080
scale = min(max_display_width / img.shape[1], max_display_height / img.shape[0])
if scale < 1:
img = cv2.resize(img, (int(img.shape[1] * scale), int(img.shape[0] * scale)))
cv2.imshow("corners", img)
last_valid_bgr = img.copy()
key = cv2.waitKey(1) & 0xFF
if key == ord("c"):
print("\nPerforming calibration...\n")
N_OK = len(objpoints)
if N_OK < 12:
print("Less than 12 corners (%d) detected, calibration failed" %(N_OK))
continue
else:
do_calib = True
break
elif key == ord("q"):
quit = True
break
if quit:
cap_thread.stop()
cap_thread.disconnect_camera()
cv2.destroyAllWindows()
if do_calib:
N_OK = len(objpoints)
K = np.zeros((3, 3))
D = np.zeros((4, 1))
rvecs = [np.zeros((1, 1, 3), dtype=np.float64) for _ in range(N_OK)]
tvecs = [np.zeros((1, 1, 3), dtype=np.float64) for _ in range(N_OK)]
calibration_flags = (cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC +
cv2.fisheye.CALIB_CHECK_COND +
cv2.fisheye.CALIB_FIX_SKEW)
if args.fisheye:
ret, mtx, dist, rvecs, tvecs = cv2.fisheye.calibrate(
objpoints,
imgpoints,
(W, H),
K,
D,
rvecs,
tvecs,
calibration_flags,
(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6)
)
else:
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(
objpoints,
imgpoints,
(W, H),
None,
None)
if ret:
fs = cv2.FileStorage(args.output, cv2.FILE_STORAGE_WRITE)
fs.write("resolution", np.int32([W, H]))
fs.write("camera_matrix", K)
fs.write("dist_coeffs", D)
fs.release()
print(f"✔标定成功!")
print(f" 保存至: {args.output}")
print(f" 使用的有效帧数: {N_OK}")
# 显示标定结果
print("\n=== 标定结果 ===")
print("相机内参矩阵 (K):")
print(np.round(K, 4))
print("\n畸变系数 (D):")
print(np.round(D.T, 6))
# test_img = buffer_manager.get_device(device).get().image
# test_img = cv2.cvtColor(test_img, cv2.COLOR_BGR2GRAY)
if last_valid_bgr is not None:
cv2.imshow("1 vs 2", last_valid_bgr)
map1, map2 = cv2.fisheye.initUndistortRectifyMap(
K, D, np.eye(3), K, (W, H), cv2.CV_16SC2)
undistorted = cv2.remap(last_valid_bgr, map1, map2,
interpolation=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT)
# # 拼接对比图并显示
# comparison = np.hstack((last_valid_bgr, last_valid_bgr))
# # 缩放对比图适配屏幕
# scale = min(1920 / comparison.shape[1], 1080 / comparison.shape[0])
# if scale < 1:
# comparison = cv2.resize(comparison,
# (int(comparison.shape[1] * scale),
# int(comparison.shape[0] * scale)))
# cv2.imshow("标定结果: 原始图像 vs 校正后图像", comparison)
# cv2.waitKey(50000) # 显示5秒
# cv2.destroyAllWindows()
# 确保是 uint8
last_valid_bgr = np.clip(last_valid_bgr, 0, 255).astype(np.uint8)
undistorted = np.clip(undistorted, 0, 255).astype(np.uint8)
# 拼接两个原图测试
comparison = np.hstack((last_valid_bgr, undistorted))
# 缩放(如果需要)
scale = min(1920 / comparison.shape[1], 1080 / comparison.shape[0])
if scale < 1:
comparison = cv2.resize(comparison, (int(comparison.shape[1] * scale), int(comparison.shape[0] * scale)))
# 再次确保显示前是 uint8
comparison = comparison.astype(np.uint8)
cv2.imshow("Test Comparison", comparison)
cv2.waitKey(0)
cv2.waitKey(0)
if __name__ == "__main__":
main()