NPU人体检测
This commit is contained in:
52
py_utils/pytorch_executor.py
Normal file
52
py_utils/pytorch_executor.py
Normal file
@@ -0,0 +1,52 @@
|
||||
import torch
|
||||
torch.backends.quantized.engine = 'qnnpack'
|
||||
|
||||
def multi_list_unfold(tl):
|
||||
def unfold(_inl, target):
|
||||
if not isinstance(_inl, list) and not isinstance(_inl, tuple):
|
||||
target.append(_inl)
|
||||
else:
|
||||
unfold(_inl)
|
||||
|
||||
def flatten_list(in_list):
|
||||
flatten = lambda x: [subitem for item in x for subitem in flatten(item)] if type(x) is list else [x]
|
||||
return flatten(in_list)
|
||||
|
||||
class Torch_model_container:
|
||||
def __init__(self, model_path, qnnpack=False) -> None:
|
||||
if qnnpack is True:
|
||||
torch.backends.quantized.engine = 'qnnpack'
|
||||
|
||||
#! Backends must be set before load model.
|
||||
self.pt_model = torch.jit.load(model_path)
|
||||
self.pt_model.eval()
|
||||
holdon = 1
|
||||
|
||||
def run(self, input_datas):
|
||||
assert isinstance(input_datas, list), "input_datas should be a list, like [np.ndarray, np.ndarray]"
|
||||
|
||||
input_datas_torch_type = []
|
||||
for _data in input_datas:
|
||||
input_datas_torch_type.append(torch.tensor(_data))
|
||||
|
||||
for i,val in enumerate(input_datas_torch_type):
|
||||
if val.dtype == torch.float64:
|
||||
input_datas_torch_type[i] = input_datas_torch_type[i].float()
|
||||
|
||||
result = self.pt_model(*input_datas_torch_type)
|
||||
|
||||
if isinstance(result, tuple):
|
||||
result = list(result)
|
||||
if not isinstance(result, list):
|
||||
result = [result]
|
||||
|
||||
result = flatten_list(result)
|
||||
|
||||
for i in range(len(result)):
|
||||
result[i] = torch.dequantize(result[i])
|
||||
|
||||
for i in range(len(result)):
|
||||
# TODO support quantized_output
|
||||
result[i] = result[i].cpu().detach().numpy()
|
||||
|
||||
return result
|
||||
Reference in New Issue
Block a user