from rknnlite.api import RKNNLite as RKNN class RKNN_model_container(): def __init__(self, model_path, target=None, device_id=None) -> None: rknn = RKNN() rknn.load_rknn(model_path) ret = rknn.init_runtime() self.rknn = rknn def run(self, inputs): if self.rknn is None: print("ERROR: rknn has been released") return [] if isinstance(inputs, list) or isinstance(inputs, tuple): pass else: inputs = [inputs] result = self.rknn.inference(inputs=inputs) return result def release(self): self.rknn.release() self.rknn = None