Files
LJ360/surround_view/utils.py
2025-12-23 09:18:32 +08:00

138 lines
3.9 KiB
Python

import cv2
import numpy as np
def gstreamer_pipeline(cam_id=0,
capture_width=1920,
capture_height=1080,
framerate=30,
format="YUYV",
):
print("11111111233333333333545656646464646")
"""
Use libgstreamer to open csi-cameras.
"""
return (
f"v4l2src device=/dev/video{cam_id} ! "
f"video/x-raw,format={format},width={capture_width},height={capture_height},framerate={framerate}/1 ! "
"videoconvert ! "
"video/x-raw,format=YUYV ! " # 转为 OpenCV 能直接用的 BGR 格式
"appsink"
)
def convert_binary_to_bool(mask):
"""
Convert a binary image (only one channel and pixels are 0 or 255) to
a bool one (all pixels are 0 or 1).
"""
return (mask.astype(np.float) / 255.0).astype(int)
def adjust_luminance(gray, factor):
"""
Adjust the luminance of a grayscale image by a factor.
"""
return np.minimum((gray * factor), 255).astype(np.uint8)
def get_mean_statistisc(gray, mask):
"""
Get the total values of a gray image in a region defined by a mask matrix.
The mask matrix must have values either 0 or 1.
"""
return np.sum(gray * mask)
def mean_luminance_ratio(grayA, grayB, mask):
return get_mean_statistisc(grayA, mask) / get_mean_statistisc(grayB, mask)
def get_mask(img):
"""
Convert an image to a mask array.
"""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, mask = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY)
return mask
def get_overlap_region_mask(imA, imB):
"""
Given two images of the save size, get their overlapping region and
convert this region to a mask array.
"""
overlap = cv2.bitwise_and(imA, imB)
mask = get_mask(overlap)
mask = cv2.dilate(mask, np.ones((2, 2), np.uint8), iterations=2)
return mask
def get_outmost_polygon_boundary(img):
"""
Given a mask image with the mask describes the overlapping region of
two images, get the outmost contour of this region.
"""
mask = get_mask(img)
mask = cv2.dilate(mask, np.ones((2, 2), np.uint8), iterations=2)
cnts, hierarchy = cv2.findContours(
mask,
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)[-2:]
# get the contour with largest aera
C = sorted(cnts, key=lambda x: cv2.contourArea(x), reverse=True)[0]
# polygon approximation
polygon = cv2.approxPolyDP(C, 0.009 * cv2.arcLength(C, True), True)
return polygon
def get_weight_mask_matrix(imA, imB, dist_threshold=5):
"""
Get the weight matrix G that combines two images imA, imB smoothly.
"""
overlapMask = get_overlap_region_mask(imA, imB)
overlapMaskInv = cv2.bitwise_not(overlapMask)
indices = np.where(overlapMask == 255)
imA_diff = cv2.bitwise_and(imA, imA, mask=overlapMaskInv)
imB_diff = cv2.bitwise_and(imB, imB, mask=overlapMaskInv)
G = get_mask(imA).astype(np.float32) / 255.0
polyA = get_outmost_polygon_boundary(imA_diff)
polyB = get_outmost_polygon_boundary(imB_diff)
for y, x in zip(*indices):
# opencv requires a tuple of ints
xy_tuple = tuple([int(x), int(y)])
distToB = cv2.pointPolygonTest(polyB, xy_tuple, True)
if distToB < dist_threshold:
distToA = cv2.pointPolygonTest(polyA, xy_tuple, True)
distToB *= distToB
distToA *= distToA
G[y, x] = distToB / (distToA + distToB)
return G, overlapMask
def make_white_balance(image):
"""
Adjust white balance of an image base on the means of its channels.
"""
B, G, R = cv2.split(image)
m1 = np.mean(B)
m2 = np.mean(G)
m3 = np.mean(R)
K = (m1 + m2 + m3) / 3
c1 = K / m1
c2 = K / m2
c3 = K / m3
B = adjust_luminance(B, c1)
G = adjust_luminance(G, c2)
R = adjust_luminance(R, c3)
return cv2.merge((B, G, R))