tflite_micro_person_detection_init

This commit is contained in:
yangqingsheng
2020-12-08 17:16:20 +08:00
parent 55168d954d
commit 200c0ff460
310 changed files with 121982 additions and 208 deletions

View File

@@ -0,0 +1,454 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ADD_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ADD_H_
#include "fixedpoint/fixedpoint.h"
#include "tensorflow/lite/kernels/internal/common.h"
namespace tflite {
namespace reference_ops {
template <typename T>
inline void Add(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const T* input1_data,
const RuntimeShape& input2_shape, const T* input2_data,
const RuntimeShape& output_shape, T* output_data) {
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
output_data[i] = ActivationFunctionWithMinMax(
input1_data[i] + input2_data[i], params.quantized_activation_min,
params.quantized_activation_max);
}
}
inline void Add(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const float* input1_data,
const RuntimeShape& input2_shape, const float* input2_data,
const RuntimeShape& output_shape, float* output_data) {
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
for (int i = 0; i < flat_size; i++) {
auto x = input1_data[i] + input2_data[i];
output_data[i] = ActivationFunctionWithMinMax(
x, params.float_activation_min, params.float_activation_max);
}
}
// Element-wise add that can often be used for inner loop of broadcast add as
// well as the non-broadcast add.
// This function is used for 8-bit as well as for 16-bit, but the accumulator
// is 32-bit for both cases. The overflow does not happen due to the
// choice of the shift (20 or 15, accordingly - see add.cc for more comments).
template <typename T>
inline void AddElementwise(int size, const ArithmeticParams& params,
const T* input1_data, const T* input2_data,
T* output_data) {
TFLITE_DCHECK_GT(params.input1_offset, -std::numeric_limits<T>::max());
TFLITE_DCHECK_GT(params.input2_offset, -std::numeric_limits<T>::max());
TFLITE_DCHECK_LT(params.input1_offset, std::numeric_limits<T>::max());
TFLITE_DCHECK_LT(params.input2_offset, std::numeric_limits<T>::max());
for (int i = 0; i < size; ++i) {
const int32_t input1_val = params.input1_offset + input1_data[i];
const int32_t input2_val = params.input2_offset + input2_data[i];
const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
const int32_t scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input1_val, params.input1_multiplier, params.input1_shift);
const int32_t scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input2_val, params.input2_multiplier, params.input2_shift);
const int32_t raw_sum = scaled_input1_val + scaled_input2_val;
const int32_t raw_output =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
raw_sum, params.output_multiplier, params.output_shift) +
params.output_offset;
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, raw_output));
output_data[i] = static_cast<T>(clamped_output);
}
}
// Scalar-broadcast add that can be used for inner loop of more general
// broadcast add, so that, for example, scalar-broadcast with batch will still
// be fast.
inline void AddScalarBroadcast(int size, const ArithmeticParams& params,
uint8_t input1_data, const uint8_t* input2_data,
uint8_t* output_data) {
TFLITE_DCHECK_GT(params.input1_offset, -256);
TFLITE_DCHECK_GT(params.input2_offset, -256);
TFLITE_DCHECK_LT(params.input1_offset, 256);
TFLITE_DCHECK_LT(params.input2_offset, 256);
const int32_t input1_val = params.input1_offset + input1_data;
const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
const int32_t scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input1_val, params.input1_multiplier, params.input1_shift);
for (int i = 0; i < size; ++i) {
const int32_t input2_val = params.input2_offset + input2_data[i];
const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
const int32_t scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input2_val, params.input2_multiplier, params.input2_shift);
const int32_t raw_sum = scaled_input1_val + scaled_input2_val;
const int32_t raw_output =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
raw_sum, params.output_multiplier, params.output_shift) +
params.output_offset;
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, raw_output));
output_data[i] = static_cast<uint8_t>(clamped_output);
}
}
inline void Add(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const uint8_t* input1_data,
const RuntimeShape& input2_shape, const uint8_t* input2_data,
const RuntimeShape& output_shape, uint8_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
TFLITE_DCHECK_GT(params.input1_offset, -256);
TFLITE_DCHECK_GT(params.input2_offset, -256);
TFLITE_DCHECK_LT(params.input1_offset, 256);
TFLITE_DCHECK_LT(params.input2_offset, 256);
AddElementwise(flat_size, params, input1_data, input2_data, output_data);
}
inline void AddGeneralParamScale(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const int16_t* input1_data,
const RuntimeShape& input2_shape,
const int16_t* input2_data,
const RuntimeShape& output_shape,
int16_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
int max_value = std::numeric_limits<int16_t>::max();
TFLITE_DCHECK_GT(params.input1_offset, -max_value);
TFLITE_DCHECK_GT(params.input2_offset, -max_value);
TFLITE_DCHECK_LT(params.input1_offset, max_value);
TFLITE_DCHECK_LT(params.input2_offset, max_value);
AddElementwise(flat_size, params, input1_data, input2_data, output_data);
}
inline void Add(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const int16_t* input1_data,
const RuntimeShape& input2_shape, const int16_t* input2_data,
const RuntimeShape& output_shape, int16_t* output_data,
bool pot_scale = true) {
if (!pot_scale) {
AddGeneralParamScale(params, input1_shape, input1_data, input2_shape,
input2_data, output_shape, output_data);
return;
}
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
const int input1_shift = params.input1_shift;
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
const int16_t output_activation_min = params.quantized_activation_min;
const int16_t output_activation_max = params.quantized_activation_max;
TFLITE_DCHECK(input1_shift == 0 || params.input2_shift == 0);
TFLITE_DCHECK_LE(input1_shift, 0);
TFLITE_DCHECK_LE(params.input2_shift, 0);
const int16_t* not_shift_input =
input1_shift == 0 ? input1_data : input2_data;
const int16_t* shift_input = input1_shift == 0 ? input2_data : input1_data;
const int input_right_shift =
input1_shift == 0 ? -params.input2_shift : -input1_shift;
for (int i = 0; i < flat_size; i++) {
// F0 uses 0 integer bits, range [-1, 1].
using F0 = gemmlowp::FixedPoint<std::int16_t, 0>;
F0 input_ready_scaled = F0::FromRaw(not_shift_input[i]);
F0 scaled_input = F0::FromRaw(
gemmlowp::RoundingDivideByPOT(shift_input[i], input_right_shift));
F0 result = gemmlowp::SaturatingAdd(scaled_input, input_ready_scaled);
const int16_t raw_output = result.raw();
const int16_t clamped_output = std::min(
output_activation_max, std::max(output_activation_min, raw_output));
output_data[i] = clamped_output;
}
}
// TODO(jiawen): We can implement BroadcastAdd on buffers of arbitrary
// dimensionality if the runtime code does a single loop over one dimension
// that handles broadcasting as the base case. The code generator would then
// generate max(D1, D2) nested for loops.
// TODO(benoitjacob): BroadcastAdd is intentionally duplicated from
// reference_ops.h. Once an optimized version is implemented and NdArrayDesc<T>
// is no longer referenced in this file, move NdArrayDesc<T> from types.h to
// reference_ops.h.
inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const float* input1_data,
const RuntimeShape& input2_shape,
const float* input2_data,
const RuntimeShape& output_shape,
float* output_data) {
NdArrayDesc<4> desc1;
NdArrayDesc<4> desc2;
NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
&desc2);
const RuntimeShape extended_output_shape =
RuntimeShape::ExtendedShape(4, output_shape);
// In Tensorflow, the dimensions are canonically named (batch_number, row,
// col, channel), with extents (batches, height, width, depth), with the
// trailing dimension changing most rapidly (channels has the smallest stride,
// typically 1 element).
//
// In generated C code, we store arrays with the dimensions reversed. The
// first dimension has smallest stride.
//
// We name our variables by their Tensorflow convention, but generate C code
// nesting loops such that the innermost loop has the smallest stride for the
// best cache behavior.
for (int b = 0; b < extended_output_shape.Dims(0); ++b) {
for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
output_data[Offset(extended_output_shape, b, y, x, c)] =
ActivationFunctionWithMinMax(
input1_data[SubscriptToIndex(desc1, b, y, x, c)] +
input2_data[SubscriptToIndex(desc2, b, y, x, c)],
params.float_activation_min, params.float_activation_max);
}
}
}
}
}
inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const int32_t* input1_data,
const RuntimeShape& input2_shape,
const int32_t* input2_data,
const RuntimeShape& output_shape,
int32_t* output_data) {
NdArrayDesc<4> desc1;
NdArrayDesc<4> desc2;
NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
&desc2);
const RuntimeShape extended_output_shape =
RuntimeShape::ExtendedShape(4, output_shape);
// In Tensorflow, the dimensions are canonically named (batch_number, row,
// col, channel), with extents (batches, height, width, depth), with the
// trailing dimension changing most rapidly (channels has the smallest stride,
// typically 1 element).
//
// In generated C code, we store arrays with the dimensions reversed. The
// first dimension has smallest stride.
//
// We name our variables by their Tensorflow convention, but generate C code
// nesting loops such that the innermost loop has the smallest stride for the
// best cache behavior.
for (int b = 0; b < extended_output_shape.Dims(0); ++b) {
for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
output_data[Offset(extended_output_shape, b, y, x, c)] =
ActivationFunctionWithMinMax(
input1_data[SubscriptToIndex(desc1, b, y, x, c)] +
input2_data[SubscriptToIndex(desc2, b, y, x, c)],
params.quantized_activation_min,
params.quantized_activation_max);
}
}
}
}
}
// This function is used for 8-bit as well as for 16-bit, but the accumulator
// is 32-bit for both cases. The overflow does not happen due to the
// choice of the shift (20 or 15, accordingly - see add.cc for more comments).
template <typename T>
inline void BroadcastAdd4DSlow(
const ArithmeticParams& params, const RuntimeShape& input1_shape,
const T* input1_data, const RuntimeShape& input2_shape,
const T* input2_data, const RuntimeShape& output_shape, T* output_data) {
NdArrayDesc<4> desc1;
NdArrayDesc<4> desc2;
NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
&desc2);
const RuntimeShape extended_output_shape =
RuntimeShape::ExtendedShape(4, output_shape);
// In Tensorflow, the dimensions are canonically named (batch_number, row,
// col, channel), with extents (batches, height, width, depth), with the
// trailing dimension changing most rapidly (channels has the smallest stride,
// typically 1 element).
//
// In generated C code, we store arrays with the dimensions reversed. The
// first dimension has smallest stride.
//
// We name our variables by their Tensorflow convention, but generate C code
// nesting loops such that the innermost loop has the smallest stride for the
// best cache behavior.
for (int b = 0; b < extended_output_shape.Dims(0); ++b) {
for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
const int32_t input1_val =
params.input1_offset +
input1_data[SubscriptToIndex(desc1, b, y, x, c)];
const int32_t input2_val =
params.input2_offset +
input2_data[SubscriptToIndex(desc2, b, y, x, c)];
const int32_t shifted_input1_val =
input1_val * (1 << params.left_shift);
const int32_t shifted_input2_val =
input2_val * (1 << params.left_shift);
const int32_t scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input1_val, params.input1_multiplier,
params.input1_shift);
const int32_t scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input2_val, params.input2_multiplier,
params.input2_shift);
const int32_t raw_sum = scaled_input1_val + scaled_input2_val;
const int32_t raw_output =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
raw_sum, params.output_multiplier, params.output_shift) +
params.output_offset;
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, raw_output));
output_data[Offset(extended_output_shape, b, y, x, c)] =
static_cast<T>(clamped_output);
}
}
}
}
}
inline void BroadcastAddFivefold(const ArithmeticParams& unswitched_params,
const RuntimeShape& unswitched_input1_shape,
const uint8_t* unswitched_input1_data,
const RuntimeShape& unswitched_input2_shape,
const uint8_t* unswitched_input2_data,
const RuntimeShape& output_shape,
uint8_t* output_data) {
ArithmeticParams switched_params = unswitched_params;
switched_params.input1_offset = unswitched_params.input2_offset;
switched_params.input1_multiplier = unswitched_params.input2_multiplier;
switched_params.input1_shift = unswitched_params.input2_shift;
switched_params.input2_offset = unswitched_params.input1_offset;
switched_params.input2_multiplier = unswitched_params.input1_multiplier;
switched_params.input2_shift = unswitched_params.input1_shift;
const bool use_unswitched =
unswitched_params.broadcast_category ==
tflite::BroadcastableOpCategory::kFirstInputBroadcastsFast;
const ArithmeticParams& params =
use_unswitched ? unswitched_params : switched_params;
const uint8_t* input1_data =
use_unswitched ? unswitched_input1_data : unswitched_input2_data;
const uint8_t* input2_data =
use_unswitched ? unswitched_input2_data : unswitched_input1_data;
// Fivefold nested loops. The second input resets its position for each
// iteration of the second loop. The first input resets its position at the
// beginning of the fourth loop. The innermost loop is an elementwise add of
// sections of the arrays.
uint8_t* output_data_ptr = output_data;
const uint8_t* input1_data_ptr = input1_data;
const uint8_t* input2_data_reset = input2_data;
// In the fivefold pattern, y0, y2 and y4 are not broadcast, and so shared
// between input shapes. y3 for input 1 is always broadcast, and so the
// dimension there is 1, whereas optionally y1 might be broadcast for input 2.
// Put another way,
// input1.shape.FlatSize = y0 * y1 * y2 * y4,
// input2.shape.FlatSize = y0 * y2 * y3 * y4.
int y0 = params.broadcast_shape[0];
int y1 = params.broadcast_shape[1];
int y2 = params.broadcast_shape[2];
int y3 = params.broadcast_shape[3];
int y4 = params.broadcast_shape[4];
if (y4 > 1) {
// General fivefold pattern, with y4 > 1 so there is a non-broadcast inner
// dimension.
for (int i0 = 0; i0 < y0; ++i0) {
const uint8_t* input2_data_ptr;
for (int i1 = 0; i1 < y1; ++i1) {
input2_data_ptr = input2_data_reset;
for (int i2 = 0; i2 < y2; ++i2) {
for (int i3 = 0; i3 < y3; ++i3) {
AddElementwise(y4, params, input1_data_ptr, input2_data_ptr,
output_data_ptr);
input2_data_ptr += y4;
output_data_ptr += y4;
}
// We have broadcast y4 of input1 data y3 times, and now move on.
input1_data_ptr += y4;
}
}
// We have broadcast y2*y3*y4 of input2 data y1 times, and now move on.
input2_data_reset = input2_data_ptr;
}
} else {
// Special case of y4 == 1, in which the innermost loop is a single element
// and can be combined with the next (y3) as an inner broadcast.
//
// Note that this handles the case of pure scalar broadcast when
// y0 == y1 == y2 == 1. With low overhead it handles cases such as scalar
// broadcast with batch (as y2 > 1).
//
// NOTE The process is the same as the above general case except simplified
// for y4 == 1 and the loop over y3 is contained within the
// AddScalarBroadcast function.
for (int i0 = 0; i0 < y0; ++i0) {
const uint8_t* input2_data_ptr;
for (int i1 = 0; i1 < y1; ++i1) {
input2_data_ptr = input2_data_reset;
for (int i2 = 0; i2 < y2; ++i2) {
AddScalarBroadcast(y3, params, *input1_data_ptr, input2_data_ptr,
output_data_ptr);
input2_data_ptr += y3;
output_data_ptr += y3;
input1_data_ptr += 1;
}
}
input2_data_reset = input2_data_ptr;
}
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ADD_H_

View File

@@ -0,0 +1,68 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ARG_MIN_MAX_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ARG_MIN_MAX_H_
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
template <typename T1, typename T2, typename T3, typename Cmp>
void ArgMinMax(const RuntimeShape& input1_shape, const T1* input1_data,
const T3* input2_data, const RuntimeShape& output_shape,
T2* output_data, const Cmp& cmp) {
TFLITE_DCHECK_GT(input1_shape.DimensionsCount(), 0);
TFLITE_DCHECK_EQ(input1_shape.DimensionsCount() - 1,
output_shape.DimensionsCount());
int axis = input2_data[0];
if (axis < 0) {
axis += input1_shape.DimensionsCount();
}
const int axis_size = input1_shape.Dims(axis);
int outer_size = 1;
for (int i = 0; i < axis; ++i) {
TFLITE_DCHECK_EQ(input1_shape.Dims(i), output_shape.Dims(i));
outer_size *= input1_shape.Dims(i);
}
int inner_size = 1;
const int dims_count = input1_shape.DimensionsCount();
for (int i = axis + 1; i < dims_count; ++i) {
TFLITE_DCHECK_EQ(input1_shape.Dims(i), output_shape.Dims(i - 1));
inner_size *= input1_shape.Dims(i);
}
for (int outer = 0; outer < outer_size; ++outer) {
for (int inner = 0; inner < inner_size; ++inner) {
auto min_max_value = input1_data[outer * axis_size * inner_size + inner];
T2 min_max_index = 0;
for (int i = 1; i < axis_size; ++i) {
const auto& curr_value =
input1_data[(outer * axis_size + i) * inner_size + inner];
if (cmp(curr_value, min_max_value)) {
min_max_value = curr_value;
min_max_index = static_cast<T2>(i);
}
}
output_data[outer * inner_size + inner] = min_max_index;
}
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ARG_MIN_MAX_H_

View File

@@ -0,0 +1,84 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BINARY_FUNCTION_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BINARY_FUNCTION_H_
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/compatibility.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
// TODO(ycling): Refactoring. Remove BroadcastLogical and use the more
// generalized and efficient BroadcastBinaryFunction.
//
// Also appears to duplicate MinimumMaximum.
//
// R: Result type. T1: Input 1 type. T2: Input 2 type.
template <typename R, typename T1, typename T2>
inline void BroadcastBinaryFunction4DSlow(
const RuntimeShape& unextended_input1_shape, const T1* input1_data,
const RuntimeShape& unextended_input2_shape, const T2* input2_data,
const RuntimeShape& unextended_output_shape, R* output_data,
R (*func)(T1, T2)) {
TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), 4);
TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), 4);
TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4);
const RuntimeShape output_shape =
RuntimeShape::ExtendedShape(4, unextended_output_shape);
NdArrayDesc<4> desc1;
NdArrayDesc<4> desc2;
NdArrayDescsForElementwiseBroadcast(unextended_input1_shape,
unextended_input2_shape, &desc1, &desc2);
for (int b = 0; b < output_shape.Dims(0); ++b) {
for (int y = 0; y < output_shape.Dims(1); ++y) {
for (int x = 0; x < output_shape.Dims(2); ++x) {
for (int c = 0; c < output_shape.Dims(3); ++c) {
auto out_idx = Offset(output_shape, b, y, x, c);
auto in1_idx = SubscriptToIndex(desc1, b, y, x, c);
auto in2_idx = SubscriptToIndex(desc2, b, y, x, c);
auto in1_val = input1_data[in1_idx];
auto in2_val = input2_data[in2_idx];
output_data[out_idx] = func(in1_val, in2_val);
}
}
}
}
}
// R: Result type. T1: Input 1 type. T2: Input 2 type.
// TODO(renjieliu): Refactor other binary functions to use this one.
template <typename R, typename T1, typename T2>
inline void BinaryFunction(const RuntimeShape& input1_shape,
const T1* input1_data,
const RuntimeShape& input2_shape,
const T2* input2_data,
const RuntimeShape& output_shape, R* output_data,
R (*func)(T1, T2)) {
const int flat_size =
MatchingFlatSize(input1_shape, input2_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
output_data[i] = func(input1_data[i], input2_data[i]);
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_BINARY_FUNCTION_H_

View File

@@ -0,0 +1,37 @@
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CEIL_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CEIL_H_
#include <cmath>
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
inline void Ceil(const RuntimeShape& input_shape, const float* input_data,
const RuntimeShape& output_shape, float* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
output_data[i] = std::ceil(input_data[i]);
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CEIL_H_

View File

@@ -0,0 +1,334 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_COMPARISONS_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_COMPARISONS_H_
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/types.h"
#include "tensorflow/lite/string_util.h"
namespace tflite {
namespace reference_ops {
template <typename T>
inline bool EqualFn(T lhs, T rhs) {
return lhs == rhs;
}
template <typename T>
inline bool NotEqualFn(T lhs, T rhs) {
return lhs != rhs;
}
template <typename T>
inline bool GreaterFn(T lhs, T rhs) {
return lhs > rhs;
}
template <typename T>
inline bool GreaterEqualFn(T lhs, T rhs) {
return lhs >= rhs;
}
template <typename T>
inline bool LessFn(T lhs, T rhs) {
return lhs < rhs;
}
template <typename T>
inline bool LessEqualFn(T lhs, T rhs) {
return lhs <= rhs;
}
inline bool StringRefEqualFn(const StringRef& lhs, const StringRef& rhs) {
if (lhs.len != rhs.len) return false;
for (int i = 0; i < lhs.len; ++i) {
if (lhs.str[i] != rhs.str[i]) return false;
}
return true;
}
inline bool StringRefNotEqualFn(const StringRef& lhs, const StringRef& rhs) {
return !StringRefEqualFn(lhs, rhs);
}
template <typename T>
using ComparisonFn = bool (*)(T, T);
template <typename T, ComparisonFn<T> F>
inline void ComparisonImpl(
const ComparisonParams& op_params, const RuntimeShape& input1_shape,
const T* input1_data, const RuntimeShape& input2_shape,
const T* input2_data, const RuntimeShape& output_shape, bool* output_data) {
const int64_t flatsize =
MatchingFlatSize(input1_shape, input2_shape, output_shape);
for (int64_t i = 0; i < flatsize; ++i) {
output_data[i] = F(input1_data[i], input2_data[i]);
}
}
inline void ComparisonStringImpl(bool (*F)(const StringRef&, const StringRef&),
const RuntimeShape& input1_shape,
const TfLiteTensor* input1,
const RuntimeShape& input2_shape,
const TfLiteTensor* input2,
const RuntimeShape& output_shape,
bool* output_data) {
const int64_t flatsize =
MatchingFlatSize(input1_shape, input2_shape, output_shape);
for (int64_t i = 0; i < flatsize; ++i) {
const auto lhs = GetString(input1, i);
const auto rhs = GetString(input2, i);
output_data[i] = F(lhs, rhs);
}
}
template <ComparisonFn<float> F>
inline void Comparison(const ComparisonParams& op_params,
const RuntimeShape& input1_shape,
const float* input1_data,
const RuntimeShape& input2_shape,
const float* input2_data,
const RuntimeShape& output_shape, bool* output_data) {
ComparisonImpl<float, F>(op_params, input1_shape, input1_data, input2_shape,
input2_data, output_shape, output_data);
}
template <typename T, ComparisonFn<int32_t> F>
inline void ComparisonWithScaling(
const ComparisonParams& op_params, const RuntimeShape& input1_shape,
const T* input1_data, const RuntimeShape& input2_shape,
const T* input2_data, const RuntimeShape& output_shape, bool* output_data) {
int left_shift = op_params.left_shift;
int32_t input1_offset = op_params.input1_offset;
int32_t input1_multiplier = op_params.input1_multiplier;
int input1_shift = op_params.input1_shift;
int32_t input2_offset = op_params.input2_offset;
int32_t input2_multiplier = op_params.input2_multiplier;
int input2_shift = op_params.input2_shift;
const int64_t flatsize =
MatchingFlatSize(input1_shape, input2_shape, output_shape);
for (int64_t i = 0; i < flatsize; ++i) {
const int32_t input1_val = input1_offset + input1_data[i];
const int32_t input2_val = input2_offset + input2_data[i];
const int32_t shifted_input1_val = input1_val * (1 << left_shift);
const int32_t shifted_input2_val = input2_val * (1 << left_shift);
const int32_t scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input1_val, input1_multiplier, input1_shift);
const int32_t scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input2_val, input2_multiplier, input2_shift);
output_data[i] = F(scaled_input1_val, scaled_input2_val);
}
}
struct BroadcastComparison4DSlowCommon {
const RuntimeShape output_shape;
NdArrayDesc<4> desc1;
NdArrayDesc<4> desc2;
};
inline BroadcastComparison4DSlowCommon BroadcastComparison4DSlowPreprocess(
const RuntimeShape& unextended_input1_shape,
const RuntimeShape& unextended_input2_shape,
const RuntimeShape& unextended_output_shape) {
TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), 4);
TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), 4);
TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4);
NdArrayDesc<4> desc1;
NdArrayDesc<4> desc2;
NdArrayDescsForElementwiseBroadcast(unextended_input1_shape,
unextended_input2_shape, &desc1, &desc2);
return {RuntimeShape::ExtendedShape(4, unextended_output_shape), desc1,
desc2};
}
template <typename T, ComparisonFn<T> F>
inline void BroadcastComparison4DSlowImpl(
const ComparisonParams& op_params,
const RuntimeShape& unextended_input1_shape, const T* input1_data,
const RuntimeShape& unextended_input2_shape, const T* input2_data,
const RuntimeShape& unextended_output_shape, bool* output_data) {
const BroadcastComparison4DSlowCommon dims =
BroadcastComparison4DSlowPreprocess(unextended_input1_shape,
unextended_input2_shape,
unextended_output_shape);
for (int b = 0; b < dims.output_shape.Dims(0); ++b) {
for (int y = 0; y < dims.output_shape.Dims(1); ++y) {
for (int x = 0; x < dims.output_shape.Dims(2); ++x) {
for (int c = 0; c < dims.output_shape.Dims(3); ++c) {
output_data[Offset(dims.output_shape, b, y, x, c)] =
F(input1_data[SubscriptToIndex(dims.desc1, b, y, x, c)],
input2_data[SubscriptToIndex(dims.desc2, b, y, x, c)]);
}
}
}
}
}
inline void BroadcastComparison4DSlowStringImpl(
bool (*F)(const StringRef&, const StringRef&),
const RuntimeShape& unextended_input1_shape, const TfLiteTensor* input1,
const RuntimeShape& unextended_input2_shape, const TfLiteTensor* input2,
const RuntimeShape& unextended_output_shape, bool* output_data) {
const BroadcastComparison4DSlowCommon dims =
BroadcastComparison4DSlowPreprocess(unextended_input1_shape,
unextended_input2_shape,
unextended_output_shape);
for (int b = 0; b < dims.output_shape.Dims(0); ++b) {
for (int y = 0; y < dims.output_shape.Dims(1); ++y) {
for (int x = 0; x < dims.output_shape.Dims(2); ++x) {
for (int c = 0; c < dims.output_shape.Dims(3); ++c) {
const auto lhs =
GetString(input1, SubscriptToIndex(dims.desc1, b, y, x, c));
const auto rhs =
GetString(input2, SubscriptToIndex(dims.desc2, b, y, x, c));
output_data[Offset(dims.output_shape, b, y, x, c)] = F(lhs, rhs);
}
}
}
}
}
template <ComparisonFn<float> F>
inline void BroadcastComparison4DSlow(const ComparisonParams& op_params,
const RuntimeShape& input1_shape,
const float* input1_data,
const RuntimeShape& input2_shape,
const float* input2_data,
const RuntimeShape& output_shape,
bool* output_data) {
BroadcastComparison4DSlowImpl<float, F>(op_params, input1_shape, input1_data,
input2_shape, input2_data,
output_shape, output_data);
}
template <typename T, ComparisonFn<int32_t> F>
inline void BroadcastComparison4DSlowWithScaling(
const ComparisonParams& op_params,
const RuntimeShape& unextended_input1_shape, const T* input1_data,
const RuntimeShape& unextended_input2_shape, const T* input2_data,
const RuntimeShape& unextended_output_shape, bool* output_data) {
const BroadcastComparison4DSlowCommon dims =
BroadcastComparison4DSlowPreprocess(unextended_input1_shape,
unextended_input2_shape,
unextended_output_shape);
int left_shift = op_params.left_shift;
int32_t input1_offset = op_params.input1_offset;
int32_t input1_multiplier = op_params.input1_multiplier;
int input1_shift = op_params.input1_shift;
int32_t input2_offset = op_params.input2_offset;
int32_t input2_multiplier = op_params.input2_multiplier;
int input2_shift = op_params.input2_shift;
for (int b = 0; b < dims.output_shape.Dims(0); ++b) {
for (int y = 0; y < dims.output_shape.Dims(1); ++y) {
for (int x = 0; x < dims.output_shape.Dims(2); ++x) {
for (int c = 0; c < dims.output_shape.Dims(3); ++c) {
const int32_t input1_val =
input1_offset +
input1_data[SubscriptToIndex(dims.desc1, b, y, x, c)];
const int32_t input2_val =
input2_offset +
input2_data[SubscriptToIndex(dims.desc2, b, y, x, c)];
const int32_t shifted_input1_val = input1_val * (1 << left_shift);
const int32_t shifted_input2_val = input2_val * (1 << left_shift);
const int32_t scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input1_val, input1_multiplier, input1_shift);
const int32_t scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input2_val, input2_multiplier, input2_shift);
output_data[Offset(dims.output_shape, b, y, x, c)] =
F(scaled_input1_val, scaled_input2_val);
}
}
}
}
}
#define TFLITE_COMPARISON_OP(name) \
inline void name(const ComparisonParams& op_params, \
const RuntimeShape& input1_shape, const float* input1_data, \
const RuntimeShape& input2_shape, const float* input2_data, \
const RuntimeShape& output_shape, bool* output_data) { \
Comparison<name##Fn>(op_params, input1_shape, input1_data, input2_shape, \
input2_data, output_shape, output_data); \
} \
template <typename T> \
inline void name##NoScaling( \
const ComparisonParams& op_params, const RuntimeShape& input1_shape, \
const T* input1_data, const RuntimeShape& input2_shape, \
const T* input2_data, const RuntimeShape& output_shape, \
bool* output_data) { \
ComparisonImpl<T, name##Fn>(op_params, input1_shape, input1_data, \
input2_shape, input2_data, output_shape, \
output_data); \
} \
template <typename T> \
inline void name##WithScaling( \
const ComparisonParams& op_params, const RuntimeShape& input1_shape, \
const T* input1_data, const RuntimeShape& input2_shape, \
const T* input2_data, const RuntimeShape& output_shape, \
bool* output_data) { \
ComparisonWithScaling<T, name##Fn>(op_params, input1_shape, input1_data, \
input2_shape, input2_data, \
output_shape, output_data); \
} \
template <typename T> \
inline void Broadcast4DSlow##name##NoScaling( \
const ComparisonParams& op_params, const RuntimeShape& input1_shape, \
const T* input1_data, const RuntimeShape& input2_shape, \
const T* input2_data, const RuntimeShape& output_shape, \
bool* output_data) { \
BroadcastComparison4DSlowImpl<T, name##Fn>( \
op_params, input1_shape, input1_data, input2_shape, input2_data, \
output_shape, output_data); \
} \
inline void Broadcast4DSlow##name( \
const ComparisonParams& op_params, const RuntimeShape& input1_shape, \
const float* input1_data, const RuntimeShape& input2_shape, \
const float* input2_data, const RuntimeShape& output_shape, \
bool* output_data) { \
BroadcastComparison4DSlow<name##Fn>(op_params, input1_shape, input1_data, \
input2_shape, input2_data, \
output_shape, output_data); \
} \
template <typename T> \
inline void Broadcast4DSlow##name##WithScaling( \
const ComparisonParams& op_params, const RuntimeShape& input1_shape, \
const T* input1_data, const RuntimeShape& input2_shape, \
const T* input2_data, const RuntimeShape& output_shape, \
bool* output_data) { \
BroadcastComparison4DSlowWithScaling<T, name##Fn>( \
op_params, input1_shape, input1_data, input2_shape, input2_data, \
output_shape, output_data); \
}
TFLITE_COMPARISON_OP(Equal);
TFLITE_COMPARISON_OP(NotEqual);
TFLITE_COMPARISON_OP(Greater);
TFLITE_COMPARISON_OP(GreaterEqual);
TFLITE_COMPARISON_OP(Less);
TFLITE_COMPARISON_OP(LessEqual);
#undef TFLITE_COMPARISON_OP
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_COMPARISONS_H_

View File

@@ -0,0 +1,140 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONCATENATION_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONCATENATION_H_
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/compatibility.h"
#include "tensorflow/lite/kernels/internal/cppmath.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
template <typename Scalar>
inline void Concatenation(const ConcatenationParams& params,
const RuntimeShape* const* input_shapes,
const Scalar* const* input_data,
const RuntimeShape& output_shape,
Scalar* output_data) {
int axis = params.axis;
int inputs_count = params.inputs_count;
const int concat_dimensions = output_shape.DimensionsCount();
TFLITE_DCHECK_LT(axis, concat_dimensions);
int64_t concat_size = 0;
for (int i = 0; i < inputs_count; i++) {
TFLITE_DCHECK_EQ(input_shapes[i]->DimensionsCount(), concat_dimensions);
for (int j = 0; j < concat_dimensions; j++) {
if (j != axis) {
MatchingDim(*input_shapes[i], j, output_shape, j);
}
}
concat_size += input_shapes[i]->Dims(axis);
}
TFLITE_DCHECK_EQ(concat_size, output_shape.Dims(axis));
int64_t outer_size = 1;
for (int i = 0; i < axis; ++i) {
outer_size *= output_shape.Dims(i);
}
// For all input arrays,
// FlatSize() = outer_size * Dims(axis) * base_inner_size;
int64_t base_inner_size = 1;
for (int i = axis + 1; i < concat_dimensions; ++i) {
base_inner_size *= output_shape.Dims(i);
}
Scalar* output_ptr = output_data;
for (int k = 0; k < outer_size; k++) {
for (int i = 0; i < inputs_count; ++i) {
const int copy_size = input_shapes[i]->Dims(axis) * base_inner_size;
const Scalar* input_ptr = input_data[i] + k * copy_size;
memcpy(output_ptr, input_ptr, copy_size * sizeof(Scalar));
output_ptr += copy_size;
}
}
}
// TODO(prabhumk): This is the same as the optimized implementation.
// TODO(prabhumk): The quantized implementation of concatentation isn't fully
// quantized as it takes scale as a floating point value. This should be fixed
// when optimizng this routine further.
inline void ConcatenationWithScaling(const ConcatenationParams& params,
const RuntimeShape* const* input_shapes,
const uint8_t* const* input_data,
const RuntimeShape& output_shape,
uint8_t* output_data) {
int axis = params.axis;
const int32_t* input_zeropoint = params.input_zeropoint;
const float* input_scale = params.input_scale;
int inputs_count = params.inputs_count;
const int32_t output_zeropoint = params.output_zeropoint;
const float output_scale = params.output_scale;
const int concat_dimensions = output_shape.DimensionsCount();
TFLITE_DCHECK_LT(axis, concat_dimensions);
int64_t concat_size = 0;
for (int i = 0; i < inputs_count; i++) {
TFLITE_DCHECK_EQ(input_shapes[i]->DimensionsCount(), concat_dimensions);
for (int j = 0; j < concat_dimensions; j++) {
if (j != axis) {
MatchingDim(*input_shapes[i], j, output_shape, j);
}
}
concat_size += input_shapes[i]->Dims(axis);
}
TFLITE_DCHECK_EQ(concat_size, output_shape.Dims(axis));
int64_t outer_size = 1;
for (int i = 0; i < axis; ++i) {
outer_size *= output_shape.Dims(i);
}
// For all input arrays,
// FlatSize() = outer_size * Dims(axis) * base_inner_size;
int64_t base_inner_size = 1;
for (int i = axis + 1; i < concat_dimensions; ++i) {
base_inner_size *= output_shape.Dims(i);
}
const float inverse_output_scale = 1.f / output_scale;
uint8_t* output_ptr = output_data;
for (int k = 0; k < outer_size; k++) {
for (int i = 0; i < inputs_count; ++i) {
const int copy_size = input_shapes[i]->Dims(axis) * base_inner_size;
const uint8_t* input_ptr = input_data[i] + k * copy_size;
if (input_zeropoint[i] == output_zeropoint &&
input_scale[i] == output_scale) {
memcpy(output_ptr, input_ptr, copy_size);
} else {
const float scale = input_scale[i] * inverse_output_scale;
const float bias = -input_zeropoint[i] * scale;
for (int j = 0; j < copy_size; ++j) {
const int32_t value = static_cast<int32_t>(tflite::TfLiteRound(
input_ptr[j] * scale + bias)) +
output_zeropoint;
output_ptr[j] = static_cast<uint8_t>(
std::max<int32_t>(std::min<int32_t>(255, value), 0));
}
}
output_ptr += copy_size;
}
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONCATENATION_H_

View File

@@ -0,0 +1,262 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONV_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONV_H_
#include "tensorflow/lite/kernels/internal/types.h"
#include "tensorflow/lite/kernels/internal/common.h"
namespace tflite {
namespace reference_ops {
inline void Conv(const ConvParams& params, const RuntimeShape& input_shape,
const float* input_data, const RuntimeShape& filter_shape,
const float* filter_data, const RuntimeShape& bias_shape,
const float* bias_data, const RuntimeShape& output_shape,
float* output_data, const RuntimeShape& im2col_shape,
float* im2col_data) {
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int dilation_width_factor = params.dilation_width_factor;
const int dilation_height_factor = params.dilation_height_factor;
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
const float output_activation_min = params.float_activation_min;
const float output_activation_max = params.float_activation_max;
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
(void)im2col_data; // only used in optimized code.
(void)im2col_shape; // only used in optimized code.
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
if (bias_data) {
TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
}
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int filter_height = filter_shape.Dims(1);
const int filter_width = filter_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
const int in_x_origin = (out_x * stride_width) - pad_width;
const int in_y_origin = (out_y * stride_height) - pad_height;
float total = 0.f;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;
const int in_y =
in_y_origin + dilation_height_factor * filter_y;
// If the location is outside the bounds of the input image,
// use zero as a default value.
if ((in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height)) {
float input_value = input_data[Offset(
input_shape, batch, in_y, in_x, in_channel)];
float filter_value =
filter_data[Offset(filter_shape, out_channel, filter_y,
filter_x, in_channel)];
total += (input_value * filter_value);
}
}
}
}
float bias_value = 0.0f;
if (bias_data) {
bias_value = bias_data[out_channel];
}
output_data[Offset(output_shape, batch, out_y, out_x, out_channel)] =
ActivationFunctionWithMinMax(total + bias_value,
output_activation_min,
output_activation_max);
}
}
}
}
}
inline void Conv(const ConvParams& params, const RuntimeShape& input_shape,
const uint8_t* input_data, const RuntimeShape& filter_shape,
const uint8_t* filter_data, const RuntimeShape& bias_shape,
const int32_t* bias_data, const RuntimeShape& output_shape,
uint8_t* output_data, const RuntimeShape& im2col_shape,
uint8_t* im2col_data, void* cpu_backend_context) {
(void)cpu_backend_context; // only used in optimized code.
(void)im2col_data; // only used in optimized code.
(void)im2col_shape; // only used in optimized code.
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int dilation_width_factor = params.dilation_width_factor;
const int dilation_height_factor = params.dilation_height_factor;
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
const int32_t input_offset = params.input_offset;
const int32_t filter_offset = params.weights_offset;
const int32_t output_offset = params.output_offset;
const int32_t output_multiplier = params.output_multiplier;
const int output_shift = params.output_shift;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
if (bias_data) {
TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
}
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int filter_height = filter_shape.Dims(1);
const int filter_width = filter_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
const int in_x_origin = (out_x * stride_width) - pad_width;
const int in_y_origin = (out_y * stride_height) - pad_height;
int32_t acc = 0;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;
const int in_y =
in_y_origin + dilation_height_factor * filter_y;
// If the location is outside the bounds of the input image,
// use zero as a default value.
if ((in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height)) {
int32_t input_val = input_data[Offset(
input_shape, batch, in_y, in_x, in_channel)];
int32_t filter_val =
filter_data[Offset(filter_shape, out_channel, filter_y,
filter_x, in_channel)];
acc +=
(filter_val + filter_offset) * (input_val + input_offset);
}
}
}
}
if (bias_data) {
acc += bias_data[out_channel];
}
acc = MultiplyByQuantizedMultiplier(acc, output_multiplier,
output_shift);
acc += output_offset;
acc = std::max(acc, output_activation_min);
acc = std::min(acc, output_activation_max);
output_data[Offset(output_shape, batch, out_y, out_x, out_channel)] =
static_cast<uint8_t>(acc);
}
}
}
}
}
inline void HybridConvPerChannel(
const ConvParams& params, float* scaling_factors_ptr,
const RuntimeShape& input_shape, const int8_t* input_data,
const RuntimeShape& filter_shape, const int8_t* filter_data,
const RuntimeShape& bias_shape, const float* bias_data,
const RuntimeShape& output_shape, float* output_data,
const RuntimeShape& im2col_shape, int8_t* im2col_data,
const float* per_channel_scale, int32_t* input_offset) {
(void)im2col_data; // only used in optimized code.
(void)im2col_shape; // only used in optimized code.
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int dilation_width_factor = params.dilation_width_factor;
const int dilation_height_factor = params.dilation_height_factor;
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
const float output_activation_min = params.float_activation_min;
const float output_activation_max = params.float_activation_max;
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
if (bias_data) {
TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
}
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int filter_height = filter_shape.Dims(1);
const int filter_width = filter_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
const int in_x_origin = (out_x * stride_width) - pad_width;
const int in_y_origin = (out_y * stride_height) - pad_height;
int32_t acc = 0;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;
const int in_y =
in_y_origin + dilation_height_factor * filter_y;
// If the location is outside the bounds of the input image,
// use zero as a default value.
if ((in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height)) {
int32_t input_val = input_data[Offset(
input_shape, batch, in_y, in_x, in_channel)];
int32_t filter_val =
filter_data[Offset(filter_shape, out_channel, filter_y,
filter_x, in_channel)];
acc += filter_val * (input_val - input_offset[batch]);
}
}
}
}
float acc_float =
acc * per_channel_scale[out_channel] * scaling_factors_ptr[batch];
if (bias_data) {
acc_float += bias_data[out_channel];
}
output_data[Offset(output_shape, batch, out_y, out_x, out_channel)] =
ActivationFunctionWithMinMax(acc_float, output_activation_min,
output_activation_max);
}
}
}
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONV_H_

View File

@@ -0,0 +1,100 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTHWISECONV_FLOAT_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTHWISECONV_FLOAT_H_
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/compatibility.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
inline void DepthwiseConv(
const DepthwiseParams& params, const RuntimeShape& input_shape,
const float* input_data, const RuntimeShape& filter_shape,
const float* filter_data, const RuntimeShape& bias_shape,
const float* bias_data, const RuntimeShape& output_shape,
float* output_data) {
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int dilation_width_factor = params.dilation_width_factor;
const int dilation_height_factor = params.dilation_height_factor;
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
const int depth_multiplier = params.depth_multiplier;
const float output_activation_min = params.float_activation_min;
const float output_activation_max = params.float_activation_max;
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int output_depth = MatchingDim(filter_shape, 3, output_shape, 3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int input_depth = input_shape.Dims(3);
const int filter_height = filter_shape.Dims(1);
const int filter_width = filter_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
TFLITE_DCHECK_EQ(output_depth, input_depth * depth_multiplier);
TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
for (int b = 0; b < batches; ++b) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int ic = 0; ic < input_depth; ++ic) {
for (int m = 0; m < depth_multiplier; m++) {
const int oc = m + ic * depth_multiplier;
const int in_x_origin = (out_x * stride_width) - pad_width;
const int in_y_origin = (out_y * stride_height) - pad_height;
float total = 0.f;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;
const int in_y =
in_y_origin + dilation_height_factor * filter_y;
// If the location is outside the bounds of the input image,
// use zero as a default value.
if ((in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height)) {
float input_value =
input_data[Offset(input_shape, b, in_y, in_x, ic)];
float filter_value = filter_data[Offset(
filter_shape, 0, filter_y, filter_x, oc)];
total += (input_value * filter_value);
}
}
}
float bias_value = 0.0f;
if (bias_data) {
bias_value = bias_data[oc];
}
output_data[Offset(output_shape, b, out_y, out_x, oc)] =
ActivationFunctionWithMinMax(total + bias_value,
output_activation_min,
output_activation_max);
}
}
}
}
}
}
} // end namespace reference_ops
} // end namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTHWISECONV_FLOAT_H_

View File

@@ -0,0 +1,297 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTHWISECONV_UINT8_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTHWISECONV_UINT8_H_
#include <algorithm>
#include "fixedpoint/fixedpoint.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/compatibility.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
// Used in tests and template parameters to control which version of depthwise
// convolution is called. Primarily for reference code, and specializations
// forced in tests.
enum class DepthwiseConvImplementation {
// Run all tests against kUseStandardEntry even if also testing another
// kernel, since we need to be sure that the main DepthwiseConv() function in
// optimized_ops.h dispatches to a correctly-executing kernel.
kNone = 0, // The "default" option: use the normal
// DepthwiseConv kernel (entry) function.
kUseGenericKernel, // Forced use of generic kernel.
kUseNeon3x3, // 3x3 kernel that uses NEON when available.
kUseNeon3x3DotProduct, // 3x3 kernel that uses dot-product enabled NEON
// when available.
kUseCModel3x3DotProduct, // 3x3 kernel, reference C model that is intended
// to match overall design NEON code.
kUseUnwound3x3DotProduct, // 3x3 kernel, reference C model with unwound loops
// and some arrays.
kUseIntrinsics3x3DotProduct, // 3x3 kernel using NEON intrinsics.
};
// Category of depthwise convolution output rounding.
enum class DepthwiseConvOutputRounding {
kNone = 0, // Invalid: specific method must be specified.
kAwayFromZero, // Original method: exact halves rounded away from zero.
kUpward, // Halves towards +infinity: adds 0.5 before truncate.
// This is where a future kNearestEven would be placed.
};
// Category of depthwise convolution depth multiplication.
enum class DepthwiseConvDepthMultiplication {
kNoMultiplication = 0, // Depth multiplier = 1.
kUnitInputDepth, // Input depth = 1, output depth = depth multiplier.
};
namespace reference_ops {
namespace depthwise_conv {
template <DepthwiseConvOutputRounding output_rounding>
inline int32_t DepthwiseConvRound(int32_t x, int32_t quantized_multiplier,
int shift) {
TFLITE_DCHECK_NE(output_rounding, DepthwiseConvOutputRounding::kNone);
return MultiplyByQuantizedMultiplier(x, quantized_multiplier, shift);
}
template <>
inline int32_t DepthwiseConvRound<DepthwiseConvOutputRounding::kAwayFromZero>(
int32_t x, int32_t quantized_multiplier, int shift) {
return MultiplyByQuantizedMultiplier(x, quantized_multiplier, shift);
}
template <>
inline int32_t DepthwiseConvRound<DepthwiseConvOutputRounding::kUpward>(
int32_t x, int32_t quantized_multiplier, int shift) {
using gemmlowp::SaturatingRoundingDoublingHighMul;
const int left_shift = shift > 0 ? shift : 0;
const int right_shift = shift > 0 ? 0 : -shift;
const int rounding_offset = right_shift > 0 ? 1 << (right_shift - 1) : 0;
return (SaturatingRoundingDoublingHighMul(x * (1 << left_shift),
quantized_multiplier) +
rounding_offset) >>
right_shift;
}
template <DepthwiseConvOutputRounding output_rounding>
struct DepthwiseConvBasicKernel {
static inline void Run(
const DepthwiseParams& params, const RuntimeShape& input_shape,
const uint8_t* input_data, const RuntimeShape& filter_shape,
const uint8_t* filter_data, const RuntimeShape& bias_shape,
const int32_t* bias_data, const RuntimeShape& output_shape,
uint8_t* output_data) {
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int dilation_width_factor = params.dilation_width_factor;
const int dilation_height_factor = params.dilation_height_factor;
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
const int depth_multiplier = params.depth_multiplier;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
const int32_t input_offset = params.input_offset;
const int32_t filter_offset = params.weights_offset;
const int32_t output_offset = params.output_offset;
const int32_t output_multiplier = params.output_multiplier;
const int output_shift = params.output_shift;
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int output_depth = MatchingDim(filter_shape, 3, output_shape, 3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int input_depth = input_shape.Dims(3);
const int filter_height = filter_shape.Dims(1);
const int filter_width = filter_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
TFLITE_DCHECK_EQ(output_depth, input_depth * depth_multiplier);
TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
for (int b = 0; b < batches; ++b) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int ic = 0; ic < input_depth; ++ic) {
for (int m = 0; m < depth_multiplier; m++) {
const int oc = m + ic * depth_multiplier;
const int in_x_origin = (out_x * stride_width) - pad_width;
const int in_y_origin = (out_y * stride_height) - pad_height;
int32_t acc = 0;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
const int in_x =
in_x_origin + dilation_width_factor * filter_x;
const int in_y =
in_y_origin + dilation_height_factor * filter_y;
// If the location is outside the bounds of the input image,
// use zero as a default value.
if ((in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height)) {
int32_t input_val =
input_data[Offset(input_shape, b, in_y, in_x, ic)];
int32_t filter_val = filter_data[Offset(
filter_shape, 0, filter_y, filter_x, oc)];
acc += (filter_val + filter_offset) *
(input_val + input_offset);
}
}
}
if (bias_data) {
acc += bias_data[oc];
}
acc = DepthwiseConvRound<output_rounding>(acc, output_multiplier,
output_shift);
acc += output_offset;
acc = std::max(acc, output_activation_min);
acc = std::min(acc, output_activation_max);
output_data[Offset(output_shape, b, out_y, out_x, oc)] =
static_cast<uint8_t>(acc);
}
}
}
}
}
}
// TODO(b/148596273): Reconcile reference versions, perhaps with common
// MultiplyByQuantizedMultiplier or DepthwiseConvRound function.
static inline void RunPerChannel(
const DepthwiseParams& params, const RuntimeShape& input_shape,
const int8_t* input_data, const RuntimeShape& filter_shape,
const int8_t* filter_data, const RuntimeShape& bias_shape,
const int32_t* bias_data, const RuntimeShape& output_shape,
int8_t* output_data) {
// Get parameters.
// TODO(b/141565753): Re-introduce ScopedProfilingLabel on Micro.
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int dilation_width_factor = params.dilation_width_factor;
const int dilation_height_factor = params.dilation_height_factor;
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
const int depth_multiplier = params.depth_multiplier;
const int32_t input_offset = params.input_offset;
const int32_t output_offset = params.output_offset;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
const int32_t* output_multiplier = params.output_multiplier_per_channel;
const int32_t* output_shift = params.output_shift_per_channel;
// Check dimensions of the tensors.
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int output_depth = MatchingDim(filter_shape, 3, output_shape, 3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int input_depth = input_shape.Dims(3);
const int filter_height = filter_shape.Dims(1);
const int filter_width = filter_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
TFLITE_DCHECK_EQ(output_depth, input_depth * depth_multiplier);
TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
for (int m = 0; m < depth_multiplier; ++m) {
const int output_channel = m + in_channel * depth_multiplier;
const int in_x_origin = (out_x * stride_width) - pad_width;
const int in_y_origin = (out_y * stride_height) - pad_height;
int32_t acc = 0;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
const int in_x =
in_x_origin + dilation_width_factor * filter_x;
const int in_y =
in_y_origin + dilation_height_factor * filter_y;
// Zero padding by omitting the areas outside the image.
const bool is_point_inside_image =
(in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height);
if (is_point_inside_image) {
int32_t input_val = input_data[Offset(
input_shape, batch, in_y, in_x, in_channel)];
int32_t filter_val = filter_data[Offset(
filter_shape, 0, filter_y, filter_x, output_channel)];
// Accumulate with 32 bits accumulator.
// In the nudging process during model quantization, we
// force real value of 0.0 be represented by a quantized
// value. This guarantees that the input_offset is a int8_t,
// even though it is represented using int32_t. int32_t +=
// int8_t
// * (int8_t - int8_t) so the highest value we can get from
// each accumulation is [-127, 127] * ([-128, 127] -
// [-128, 127]), which is [-32512, 32512]. log2(32512)
// = 14.98, which means we can accumulate at least 2^16
// multiplications without overflow. The accumulator is
// applied to a filter so the accumulation logic will hold
// as long as the filter size (filter_y * filter_x *
// in_channel) does not exceed 2^16, which is the case in
// all the models we have seen so far.
acc += filter_val * (input_val + input_offset);
}
}
}
if (bias_data) {
acc += bias_data[output_channel];
}
acc = DepthwiseConvRound<output_rounding>(
acc, output_multiplier[output_channel],
output_shift[output_channel]);
acc += output_offset;
acc = std::max(acc, output_activation_min);
acc = std::min(acc, output_activation_max);
output_data[Offset(output_shape, batch, out_y, out_x,
output_channel)] = static_cast<int8_t>(acc);
}
}
}
}
}
}
};
} // namespace depthwise_conv
inline void DepthwiseConv(
const DepthwiseParams& params, const RuntimeShape& input_shape,
const uint8_t* input_data, const RuntimeShape& filter_shape,
const uint8_t* filter_data, const RuntimeShape& bias_shape,
const int32_t* bias_data, const RuntimeShape& output_shape,
uint8_t* output_data) {
return depthwise_conv::DepthwiseConvBasicKernel<
DepthwiseConvOutputRounding::kAwayFromZero>::Run(params, input_shape,
input_data, filter_shape,
filter_data, bias_shape,
bias_data, output_shape,
output_data);
}
} // namespace reference_ops
} // end namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTHWISECONV_UINT8_H_

View File

@@ -0,0 +1,78 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEQUANTIZE_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEQUANTIZE_H_
#include <limits.h>
#include <vector>
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
// Dequantizes into a float without rounding.
template <typename InputT, typename OutputT>
inline void Dequantize(const tflite::DequantizationParams& op_params,
const RuntimeShape& input_shape,
const InputT* input_data,
const RuntimeShape& output_shape, OutputT* output_data) {
int32_t zero_point = op_params.zero_point;
const double scale = op_params.scale;
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; i++) {
const int32_t val = input_data[i];
const OutputT result = static_cast<OutputT>(scale * (val - zero_point));
output_data[i] = result;
}
}
// Dequantizes per-channel quantized tensor to float.
template <typename T>
inline void PerChannelDequantize(
const tflite::PerChannelDequantizationParams& op_params,
const RuntimeShape& input_shape, const T* input_data,
const RuntimeShape& output_shape, float* output_data) {
// Ensure flat size is same.
MatchingFlatSize(input_shape, output_shape);
const int32_t* zero_point = op_params.zero_point;
const float* scale = op_params.scale;
const int32_t quantized_dimension = op_params.quantized_dimension;
const int32_t num_dims = input_shape.DimensionsCount();
const int32_t* dims_data = input_shape.DimsData();
std::vector<int> current_dim(num_dims, 0);
do {
size_t offset =
ReducedOutputOffset(num_dims, reinterpret_cast<const int*>(dims_data),
current_dim.data(), 0, nullptr);
const int channel = current_dim[quantized_dimension];
const int32_t val = input_data[offset];
const float result =
static_cast<float>(scale[channel] * (val - zero_point[channel]));
output_data[offset] = result;
} while (NextIndex(num_dims, reinterpret_cast<const int*>(dims_data),
current_dim.data()));
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEQUANTIZE_H_

View File

@@ -0,0 +1,39 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FLOOR_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FLOOR_H_
#include <cmath>
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
inline void Floor(const RuntimeShape& input_shape, const float* input_data,
const RuntimeShape& output_shape, float* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; i++) {
int offset = i;
output_data[offset] = std::floor(input_data[offset]);
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FLOOR_H_

View File

@@ -0,0 +1,320 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FULLY_CONNECTED_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FULLY_CONNECTED_H_
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/cppmath.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
inline void FullyConnected(
const FullyConnectedParams& params, const RuntimeShape& input_shape,
const float* input_data, const RuntimeShape& weights_shape,
const float* weights_data, const RuntimeShape& bias_shape,
const float* bias_data, const RuntimeShape& output_shape,
float* output_data) {
const float output_activation_min = params.float_activation_min;
const float output_activation_max = params.float_activation_max;
// TODO(benoitjacob): This really should be:
// const int batches = ArraySize(output_dims, 1);
// but the current --variable_batch hack consists in overwriting the 3rd
// dimension with the runtime batch size, as we don't keep track for each
// array of which dimension is the batch dimension in it.
const int output_dims_count = output_shape.DimensionsCount();
const int weights_dims_count = weights_shape.DimensionsCount();
const int batches = FlatSizeSkipDim(output_shape, output_dims_count - 1);
const int output_depth = MatchingDim(weights_shape, weights_dims_count - 2,
output_shape, output_dims_count - 1);
const int accum_depth = weights_shape.Dims(weights_dims_count - 1);
for (int b = 0; b < batches; ++b) {
for (int out_c = 0; out_c < output_depth; ++out_c) {
float total = 0.f;
for (int d = 0; d < accum_depth; ++d) {
total += input_data[b * accum_depth + d] *
weights_data[out_c * accum_depth + d];
}
float bias_value = 0.0f;
if (bias_data) {
bias_value = bias_data[out_c];
}
output_data[out_c + output_depth * b] = ActivationFunctionWithMinMax(
total + bias_value, output_activation_min, output_activation_max);
}
}
}
inline void FullyConnected(
const FullyConnectedParams& params, const RuntimeShape& input_shape,
const uint8_t* input_data, const RuntimeShape& filter_shape,
const uint8_t* filter_data, const RuntimeShape& bias_shape,
const int32_t* bias_data, const RuntimeShape& output_shape,
uint8_t* output_data) {
const int32_t input_offset = params.input_offset;
const int32_t filter_offset = params.weights_offset;
const int32_t output_offset = params.output_offset;
const int32_t output_multiplier = params.output_multiplier;
const int output_shift = params.output_shift;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
TFLITE_DCHECK_GE(filter_shape.DimensionsCount(), 2);
TFLITE_DCHECK_GE(output_shape.DimensionsCount(), 1);
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
// TODO(benoitjacob): This really should be:
// const int batches = ArraySize(output_dims, 1);
// but the current --variable_batch hack consists in overwriting the 3rd
// dimension with the runtime batch size, as we don't keep track for each
// array of which dimension is the batch dimension in it.
const int output_dim_count = output_shape.DimensionsCount();
const int filter_dim_count = filter_shape.DimensionsCount();
const int batches = FlatSizeSkipDim(output_shape, output_dim_count - 1);
const int output_depth = MatchingDim(filter_shape, filter_dim_count - 2,
output_shape, output_dim_count - 1);
const int accum_depth = filter_shape.Dims(filter_dim_count - 1);
for (int b = 0; b < batches; ++b) {
for (int out_c = 0; out_c < output_depth; ++out_c) {
int32_t acc = 0;
for (int d = 0; d < accum_depth; ++d) {
int32_t input_val = input_data[b * accum_depth + d];
int32_t filter_val = filter_data[out_c * accum_depth + d];
acc += (filter_val + filter_offset) * (input_val + input_offset);
}
if (bias_data) {
acc += bias_data[out_c];
}
acc = MultiplyByQuantizedMultiplier(acc, output_multiplier, output_shift);
acc += output_offset;
acc = std::max(acc, output_activation_min);
acc = std::min(acc, output_activation_max);
output_data[out_c + output_depth * b] = static_cast<uint8_t>(acc);
}
}
}
inline void FullyConnected(
const FullyConnectedParams& params, const RuntimeShape& input_shape,
const uint8_t* input_data, const RuntimeShape& filter_shape,
const uint8_t* filter_data, const RuntimeShape& bias_shape,
const int32_t* bias_data, const RuntimeShape& output_shape,
int16_t* output_data) {
const int32_t input_offset = params.input_offset;
const int32_t filter_offset = params.weights_offset;
const int32_t output_offset = params.output_offset;
const int32_t output_multiplier = params.output_multiplier;
const int output_shift = params.output_shift;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
TFLITE_DCHECK_EQ(output_offset, 0);
// TODO(benoitjacob): This really should be:
// const int batches = ArraySize(output_dims, 1);
// but the current --variable_batch hack consists in overwriting the 3rd
// dimension with the runtime batch size, as we don't keep track for each
// array of which dimension is the batch dimension in it.
const int output_dim_count = output_shape.DimensionsCount();
const int filter_dim_count = filter_shape.DimensionsCount();
const int batches = FlatSizeSkipDim(output_shape, output_dim_count - 1);
const int output_depth = MatchingDim(filter_shape, filter_dim_count - 2,
output_shape, output_dim_count - 1);
const int accum_depth = filter_shape.Dims(filter_dim_count - 1);
for (int b = 0; b < batches; ++b) {
for (int out_c = 0; out_c < output_depth; ++out_c) {
// Internal accumulation.
// Initialize accumulator with the bias-value.
int32_t accum = bias_data[out_c];
// Accumulation loop.
for (int d = 0; d < accum_depth; ++d) {
int16_t input_val = input_data[b * accum_depth + d] + input_offset;
int16_t filter_val =
filter_data[out_c * accum_depth + d] + filter_offset;
accum += filter_val * input_val;
}
// Down-scale the final int32_t accumulator to the scale used by our
// (16-bit, typically 3 integer bits) fixed-point format. The quantized
// multiplier and shift here have been pre-computed offline
// (e.g. by toco).
accum =
MultiplyByQuantizedMultiplier(accum, output_multiplier, output_shift);
// Saturate, cast to int16_t, and store to output array.
accum = std::max(accum, output_activation_min - output_offset);
accum = std::min(accum, output_activation_max - output_offset);
accum += output_offset;
output_data[out_c + output_depth * b] = accum;
}
}
}
inline void ShuffledFullyConnected(
const FullyConnectedParams& params, const RuntimeShape& input_shape,
const uint8_t* input_data, const RuntimeShape& weights_shape,
const uint8_t* shuffled_weights_data, const RuntimeShape& bias_shape,
const int32_t* bias_data, const RuntimeShape& output_shape,
int16_t* output_data, uint8_t* shuffled_input_workspace_data) {
const int32_t output_multiplier = params.output_multiplier;
const int output_shift = params.output_shift;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
TFLITE_DCHECK_GE(input_shape.DimensionsCount(), 1);
TFLITE_DCHECK_GE(weights_shape.DimensionsCount(), 2);
TFLITE_DCHECK_GE(output_shape.DimensionsCount(), 1);
// TODO(benoitjacob): This really should be:
// const int batches = ArraySize(output_dims, 1);
// but the current --variable_batch hack consists in overwriting the 3rd
// dimension with the runtime batch size, as we don't keep track for each
// array of which dimension is the batch dimension in it.
const int output_dim_count = output_shape.DimensionsCount();
const int weights_dim_count = weights_shape.DimensionsCount();
const int batches = FlatSizeSkipDim(output_shape, output_dim_count - 1);
const int output_depth = MatchingDim(weights_shape, weights_dim_count - 2,
output_shape, output_dim_count - 1);
const int accum_depth = weights_shape.Dims(weights_dim_count - 1);
TFLITE_DCHECK((accum_depth % 16) == 0);
TFLITE_DCHECK((output_depth % 4) == 0);
// Shuffling and xoring of input activations into the workspace buffer
uint8_t* shuffled_input_workspace_ptr = shuffled_input_workspace_data;
if (batches == 1) {
for (int i = 0; i < accum_depth; i++) {
shuffled_input_workspace_data[i] = input_data[i] ^ 0x80;
}
} else if (batches == 4) {
for (int c = 0; c < accum_depth; c += 16) {
for (int b = 0; b < 4; b++) {
const uint8_t* src_data_ptr = input_data + b * accum_depth + c;
for (int j = 0; j < 16; j++) {
uint8_t src_val = *src_data_ptr++;
// Flip the sign bit, so that the kernel will only need to
// reinterpret these uint8_t values as int8_t, getting for free the
// subtraction of the zero_point value 128.
uint8_t dst_val = src_val ^ 0x80;
*shuffled_input_workspace_ptr++ = dst_val;
}
}
}
} else {
TFLITE_DCHECK(false);
return;
}
// Actual computation
if (batches == 1) {
int16_t* output_ptr = output_data;
// Shuffled weights have had their sign bit (0x80) pre-flipped (xor'd)
// so that just reinterpreting them as int8_t values is equivalent to
// subtracting 128 from them, thus implementing for free the subtraction of
// the zero_point value 128.
const int8_t* shuffled_weights_ptr =
reinterpret_cast<const int8_t*>(shuffled_weights_data);
// Likewise, we preshuffled and pre-xored the input data above.
const int8_t* shuffled_input_data =
reinterpret_cast<const int8_t*>(shuffled_input_workspace_data);
for (int c = 0; c < output_depth; c += 4) {
// Internal accumulation.
// Initialize accumulator with the bias-value.
int32_t accum[4] = {0};
// Accumulation loop.
for (int d = 0; d < accum_depth; d += 16) {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 16; j++) {
int8_t input_val = shuffled_input_data[d + j];
int8_t weights_val = *shuffled_weights_ptr++;
accum[i] += weights_val * input_val;
}
}
}
for (int i = 0; i < 4; i++) {
// Add bias value
int32_t acc = accum[i] + bias_data[c + i];
// Down-scale the final int32_t accumulator to the scale used by our
// (16-bit, typically 3 integer bits) fixed-point format. The quantized
// multiplier and shift here have been pre-computed offline
// (e.g. by toco).
acc =
MultiplyByQuantizedMultiplier(acc, output_multiplier, output_shift);
// Saturate, cast to int16_t, and store to output array.
acc = std::max(acc, output_activation_min);
acc = std::min(acc, output_activation_max);
output_ptr[c + i] = acc;
}
}
} else if (batches == 4) {
int16_t* output_ptr = output_data;
// Shuffled weights have had their sign bit (0x80) pre-flipped (xor'd)
// so that just reinterpreting them as int8_t values is equivalent to
// subtracting 128 from them, thus implementing for free the subtraction of
// the zero_point value 128.
const int8_t* shuffled_weights_ptr =
reinterpret_cast<const int8_t*>(shuffled_weights_data);
// Likewise, we preshuffled and pre-xored the input data above.
const int8_t* shuffled_input_data =
reinterpret_cast<const int8_t*>(shuffled_input_workspace_data);
for (int c = 0; c < output_depth; c += 4) {
const int8_t* shuffled_input_ptr = shuffled_input_data;
// Accumulation loop.
// Internal accumulation.
// Initialize accumulator with the bias-value.
int32_t accum[4][4];
for (int i = 0; i < 4; i++) {
for (int b = 0; b < 4; b++) {
accum[i][b] = 0;
}
}
for (int d = 0; d < accum_depth; d += 16) {
for (int i = 0; i < 4; i++) {
for (int b = 0; b < 4; b++) {
for (int j = 0; j < 16; j++) {
int8_t input_val = shuffled_input_ptr[16 * b + j];
int8_t weights_val = shuffled_weights_ptr[16 * i + j];
accum[i][b] += weights_val * input_val;
}
}
}
shuffled_input_ptr += 64;
shuffled_weights_ptr += 64;
}
for (int i = 0; i < 4; i++) {
for (int b = 0; b < 4; b++) {
// Add bias value
int32_t acc = accum[i][b] + bias_data[c + i];
// Down-scale the final int32_t accumulator to the scale used by our
// (16-bit, typically 3 integer bits) fixed-point format. The
// quantized multiplier and shift here have been pre-computed offline
// (e.g. by toco).
acc = MultiplyByQuantizedMultiplier(acc, output_multiplier,
output_shift);
// Saturate, cast to int16_t, and store to output array.
acc = std::max(acc, output_activation_min);
acc = std::min(acc, output_activation_max);
output_ptr[b * output_depth + c + i] = acc;
}
}
}
} else {
TFLITE_DCHECK(false);
return;
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_FULLY_CONNECTED_H_

View File

@@ -0,0 +1,166 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ACTIVATIONS_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ACTIVATIONS_H_
#include "ruy/profiler/instrumentation.h" // from @ruy
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
inline int16_t SaturatingLeftShift(int16_t value, int amount) {
int32_t result = static_cast<int32_t>(value) * (1 << amount);
result = std::min<int32_t>(result, std::numeric_limits<int16_t>::max());
result = std::max<int32_t>(result, std::numeric_limits<int16_t>::min());
return result;
}
// Similar to ARM instruction SQDMULH.
// Similar to gemmlowp::SaturatingRoundingDoublingHighMul except
// rounding to zero instead of to nearest (SQRDMULH).
inline std::int16_t SaturatingDoublingHighMul(std::int16_t a, std::int16_t b) {
bool overflow = a == b && a == std::numeric_limits<std::int16_t>::min();
std::int32_t a_32(a);
std::int32_t b_32(b);
std::int32_t ab_32 = a_32 * b_32;
std::int16_t ab_x2_high16 = static_cast<std::int16_t>((ab_32) / (1 << 15));
return overflow ? std::numeric_limits<std::int16_t>::max() : ab_x2_high16;
}
template <typename T>
inline void HardSwish(const RuntimeShape& input_shape, const T* input_data,
const RuntimeShape& output_shape, T* output_data) {
ruy::profiler::ScopeLabel label("ReferenceHardSwish/Float");
auto matching_size = MatchingFlatSize(input_shape, output_shape);
const T* in_end = input_data + matching_size;
for (; input_data < in_end; input_data++, output_data++) {
const float in = *input_data;
*output_data =
in * std::min(static_cast<T>(6), std::max(static_cast<T>(0), in + 3)) /
6;
}
}
template <typename T>
inline void HardSwish(const HardSwishParams& params,
const RuntimeShape& input_shape, const T* input_data,
const RuntimeShape& output_shape, T* output_data) {
ruy::profiler::ScopeLabel label("ReferenceHardSwish/Quantized");
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; i++) {
const int16_t input_value = input_data[i] - params.input_zero_point;
// Left-shift as much as we can without overflow/saturation to put
// significant bits in the high bits of our 16-bit fixedpoint values, so
// that fixed-point approximate computations below are as accurate as
// possible.
const int16_t input_value_on_hires_input_scale = input_value * (1 << 7);
// Compute the input value on essentially the output scale, just not
// right-shifted yet. This is the value that we'll use in the (x >= +3)
// case, and that in the general case we'll multiply against the "relu-ish"
// fixed-point multiplier in [0, 1].
const int16_t input_value_on_preshift_output_scale =
gemmlowp::SaturatingRoundingDoublingHighMul(
input_value_on_hires_input_scale,
params.output_multiplier_fixedpoint_int16);
// Now compute the "relu-ish multiplier". In the (-3 <= x <= +3) case, that
// is just an affine rescaling of x from [-3, 3] to [0, 1]. In the general
// case, it is just that plus saturation at the boundaries of [-3, 3].
// First, we rescale from [-3, 3] to [-1, 1], saturating.
// That is done by rescaling the input value with a fixed-point multiplier
// (reluish_multiplier_fixedpoint) and bit-shift such that we represent
// that input value on the scale where the real value 3.0f is represented
// by the quantized value 32768. (+32768 is actually not representable as
// int16_t, so this saturates at +32767, and that is seen empirically to be
// a negligible contribution to numerical error/bias).
//
// This code is careful to correctly implement any magnitude of multiplier,
// involving either a right shift or a left shift, with correct saturation
// behavior in the left-shift case. This forces this code to be more
// complicated, but is necessary for real applications: a partially
// trained quantized MobileNet v3-small model that motivated this code
// exhibits some large [min, max] range boundaries, of the order of
// magnitude of 10 or 100 depending on layers.
//
// The next few lines are basically just an ordinary
// MultiplyByQuantizedMultiplier, except that we are more careful here
// about the fine details of saturation when left-shifting, because here
// overflow in left-shift is a common case, not an anomaly as
// MultiplyByQuantizedMultiplier assumes.
int16_t reluish_value = input_value_on_hires_input_scale;
// Shift left, saturating, as much as we can while ensuring that this
// saturation will not contribute to the result. That is, left shift amount
// reduced by 1.
if (params.reluish_multiplier_exponent > 0) {
reluish_value = SaturatingLeftShift(
reluish_value, params.reluish_multiplier_exponent - 1);
}
// Apply the fixed-point multiplier, dividing the value by a divisor
// ranging in [1, 2].
reluish_value = gemmlowp::SaturatingRoundingDoublingHighMul(
reluish_value, params.reluish_multiplier_fixedpoint_int16);
// Apply the last bit of left-shift. Thus, in the left-shifting case, if
// any saturation affects the result, it is happening here --- any
// saturation having occurred above is overwritten here, not affecting the
// result.
if (params.reluish_multiplier_exponent > 0) {
reluish_value = SaturatingLeftShift(reluish_value, 1);
}
// Shift right, in the right-shifting case.
if (params.reluish_multiplier_exponent < 0) {
reluish_value = gemmlowp::RoundingDivideByPOT(
reluish_value, -params.reluish_multiplier_exponent);
}
// At this point we have rescaled the value into a 16bit fixedpoint
// reluish_value in [-1, 1].
// We now convert that to a 16bit fixedpoint value in [0, 1].
reluish_value = (reluish_value + (1 << 15)) >> 1;
// Use of SaturatingDoublingHighMul here is important to cancel the biases
// from the above SaturatingRoundingDoublingHighMul.
//
// On a partially trained MobileNet-v3-small,
//
// | bias on | ImageNet
// | quantized | Top-1
// Operation used here | values | accuracy (50k)
// --------------------------------------+------------+-----------
// SaturatingDoublingHighMul | -0.0024 | 58.920
// SaturatingRoundingDoublingHighMul | -0.0067 | 58.064
//
// In activations_test, this is covered by this testcase:
// QuantizedActivationsOpTest.HardSwishBias
//
const int16_t preshift_output_value = SaturatingDoublingHighMul(
reluish_value, input_value_on_preshift_output_scale);
// We were so far operating on the pre-shift output scale. Now we finally
// apply that output shift, arriving at the final output scale.
int16_t output_value = gemmlowp::RoundingDivideByPOT(
preshift_output_value, -params.output_multiplier_exponent);
output_value += params.output_zero_point;
output_value =
std::min<int16_t>(output_value, std::numeric_limits<T>::max());
output_value =
std::max<int16_t>(output_value, std::numeric_limits<T>::min());
output_data[i] = output_value;
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_CONV_H_

View File

@@ -0,0 +1,145 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_ADD_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_ADD_H_
#include <limits>
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_integer_ops {
inline void CheckArithmeticParams(const ArithmeticParams& params) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
// Input offset is negative input zero point. Activation tensors are
// asymmetric quantized so they span the full int8 range.
TFLITE_DCHECK_GE(-params.input1_offset, std::numeric_limits<int8_t>::min());
TFLITE_DCHECK_GE(-params.input2_offset, std::numeric_limits<int8_t>::min());
TFLITE_DCHECK_LE(-params.input1_offset, std::numeric_limits<int8_t>::max());
TFLITE_DCHECK_LE(-params.input2_offset, std::numeric_limits<int8_t>::max());
}
// Element-wise add that can often be used for inner loop of broadcast add as
// well as the non-broadcast add.
inline void AddElementwise(int size, const ArithmeticParams& params,
const int8_t* input1_data, const int8_t* input2_data,
int8_t* output_data) {
CheckArithmeticParams(params);
for (int i = 0; i < size; ++i) {
const int32_t input1_val = params.input1_offset + input1_data[i];
const int32_t input2_val = params.input2_offset + input2_data[i];
const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
const int32_t scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input1_val, params.input1_multiplier, params.input1_shift);
const int32_t scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input2_val, params.input2_multiplier, params.input2_shift);
const int32_t raw_sum = scaled_input1_val + scaled_input2_val;
const int32_t raw_output =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
raw_sum, params.output_multiplier, params.output_shift) +
params.output_offset;
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, raw_output));
output_data[i] = static_cast<int8_t>(clamped_output);
}
}
inline void Add(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const int8_t* input1_data,
const RuntimeShape& input2_shape, const int8_t* input2_data,
const RuntimeShape& output_shape, int8_t* output_data) {
CheckArithmeticParams(params);
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
AddElementwise(flat_size, params, input1_data, input2_data, output_data);
}
inline void BroadcastAdd4DSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const int8_t* input1_data,
const RuntimeShape& input2_shape,
const int8_t* input2_data,
const RuntimeShape& output_shape,
int8_t* output_data) {
NdArrayDesc<4> desc1;
NdArrayDesc<4> desc2;
NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
&desc2);
const RuntimeShape extended_output_shape =
RuntimeShape::ExtendedShape(4, output_shape);
// In Tensorflow, the dimensions are canonically named (batch_number, row,
// col, channel), with extents (batches, height, width, depth), with the
// trailing dimension changing most rapidly (channels has the smallest stride,
// typically 1 element).
//
// In generated C code, we store arrays with the dimensions reversed. The
// first dimension has smallest stride.
//
// We name our variables by their Tensorflow convention, but generate C code
// nesting loops such that the innermost loop has the smallest stride for the
// best cache behavior.
for (int b = 0; b < extended_output_shape.Dims(0); ++b) {
for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
const int32_t input1_val =
params.input1_offset +
input1_data[SubscriptToIndex(desc1, b, y, x, c)];
const int32_t input2_val =
params.input2_offset +
input2_data[SubscriptToIndex(desc2, b, y, x, c)];
const int32_t shifted_input1_val =
input1_val * (1 << params.left_shift);
const int32_t shifted_input2_val =
input2_val * (1 << params.left_shift);
const int32_t scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input1_val, params.input1_multiplier,
params.input1_shift);
const int32_t scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input2_val, params.input2_multiplier,
params.input2_shift);
const int32_t raw_sum = scaled_input1_val + scaled_input2_val;
const int32_t raw_output =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
raw_sum, params.output_multiplier, params.output_shift) +
params.output_offset;
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, raw_output));
output_data[Offset(extended_output_shape, b, y, x, c)] =
static_cast<int8_t>(clamped_output);
}
}
}
}
}
} // namespace reference_integer_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_ADD_H_

View File

@@ -0,0 +1,217 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_CONV_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_CONV_H_
#include "tensorflow/lite/kernels/internal/common.h"
namespace tflite {
namespace reference_integer_ops {
// Fixed-point per-channel-quantization convolution reference kernel.
inline void ConvPerChannel(
const ConvParams& params, const int32_t* output_multiplier,
const int32_t* output_shift, const RuntimeShape& input_shape,
const int8_t* input_data, const RuntimeShape& filter_shape,
const int8_t* filter_data, const RuntimeShape& bias_shape,
const int32_t* bias_data, const RuntimeShape& output_shape,
int8_t* output_data) {
// Get parameters.
const int32_t input_offset = params.input_offset; // r = s(q - Z)
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int dilation_width_factor = params.dilation_width_factor;
const int dilation_height_factor = params.dilation_height_factor;
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
const int32_t output_offset = params.output_offset;
// Set min and max value of the output.
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
// Consistency check.
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
if (bias_data) {
TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
}
// Check dimensions of the tensors.
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int filter_height = filter_shape.Dims(1);
const int filter_width = filter_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
const int in_x_origin = (out_x * stride_width) - pad_width;
const int in_y_origin = (out_y * stride_height) - pad_height;
int32_t acc = 0;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;
const int in_y =
in_y_origin + dilation_height_factor * filter_y;
// Zero padding by omitting the areas outside the image.
const bool is_point_inside_image =
(in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height);
if (is_point_inside_image) {
int32_t input_val = input_data[Offset(
input_shape, batch, in_y, in_x, in_channel)];
int32_t filter_val =
filter_data[Offset(filter_shape, out_channel, filter_y,
filter_x, in_channel)];
// Accumulate with 32 bits accumulator.
// In the nudging process during model quantization, we force
// real value of 0.0 be represented by a quantized value. This
// guarantees that the input_offset is a int8_t, even though
// it is represented using int32_t. int32_t += int8_t *
// (int8_t - int8_t) so the highest value we can get from each
// accumulation is [-127, 127] * ([-128, 127] -
// [-128, 127]), which is [-32512, 32512]. log2(32512)
// = 14.98, which means we can accumulate at least 2^16
// multiplications without overflow. The accumulator is
// applied to a filter so the accumulation logic will hold as
// long as the filter size (filter_y * filter_x * in_channel)
// does not exceed 2^16, which is the case in all the models
// we have seen so far.
// TODO(jianlijianli): Add a check to make sure the
// accumulator depth is smaller than 2^16.
acc += filter_val * (input_val + input_offset);
}
}
}
}
if (bias_data) {
acc += bias_data[out_channel];
}
acc = MultiplyByQuantizedMultiplier(
acc, output_multiplier[out_channel], output_shift[out_channel]);
acc += output_offset;
acc = std::max(acc, output_activation_min);
acc = std::min(acc, output_activation_max);
output_data[Offset(output_shape, batch, out_y, out_x, out_channel)] =
static_cast<int8_t>(acc);
}
}
}
}
}
// Fixed-point per-channel-quantization convolution reference kernel.
// 16-bit data and 8-bit filter
inline void ConvPerChannel(
const ConvParams& params, const int32_t* output_multiplier,
const int32_t* output_shift, const RuntimeShape& input_shape,
const int16_t* input_data, const RuntimeShape& filter_shape,
const int8_t* filter_data, const RuntimeShape& bias_shape,
const std::int64_t* bias_data, const RuntimeShape& output_shape,
int16_t* output_data) {
// Get parameters.
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int dilation_width_factor = params.dilation_width_factor;
const int dilation_height_factor = params.dilation_height_factor;
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
// Set min and max value of the output.
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
// Consistency check.
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
if (bias_data) {
TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
}
// Check dimensions of the tensors.
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int filter_height = filter_shape.Dims(1);
const int filter_width = filter_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
const int in_x_origin = (out_x * stride_width) - pad_width;
const int in_y_origin = (out_y * stride_height) - pad_height;
std::int64_t acc = 0;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;
const int in_y =
in_y_origin + dilation_height_factor * filter_y;
// Zero padding by omitting the areas outside the image.
const bool is_point_inside_image =
(in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height);
if (is_point_inside_image) {
int32_t input_val = input_data[Offset(
input_shape, batch, in_y, in_x, in_channel)];
int32_t filter_val =
filter_data[Offset(filter_shape, out_channel, filter_y,
filter_x, in_channel)];
// Accumulate with 64 bits accumulator.
// int64_t += int8_t * int16_t so the highest value we can
// get from each accumulation is [-127, 127] * ([-32768,
// 32767] -
// [-32768, 32767]), which is [-8322945, 8322945].
// log2(8322945) = 22.99.
acc += filter_val * input_val;
}
}
}
}
if (bias_data) {
acc += bias_data[out_channel];
}
int32_t scaled_acc = MultiplyByQuantizedMultiplier(
acc, output_multiplier[out_channel], output_shift[out_channel]);
scaled_acc = std::max(scaled_acc, output_activation_min);
scaled_acc = std::min(scaled_acc, output_activation_max);
output_data[Offset(output_shape, batch, out_y, out_x, out_channel)] =
static_cast<int16_t>(scaled_acc);
}
}
}
}
}
} // namespace reference_integer_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_CONV_H_

View File

@@ -0,0 +1,289 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_DEPTHWISE_CONV_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_DEPTHWISE_CONV_H_
#include "tensorflow/lite/kernels/internal/common.h"
namespace tflite {
namespace reference_integer_ops {
inline void DepthwiseConvPerChannel(
const DepthwiseParams& params, const int32_t* output_multiplier,
const int32_t* output_shift, const RuntimeShape& input_shape,
const int8_t* input_data, const RuntimeShape& filter_shape,
const int8_t* filter_data, const RuntimeShape& bias_shape,
const int32_t* bias_data, const RuntimeShape& output_shape,
int8_t* output_data) {
// Get parameters.
// TODO(b/141565753): Re-introduce ScopedProfilingLabel on Micro.
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int dilation_width_factor = params.dilation_width_factor;
const int dilation_height_factor = params.dilation_height_factor;
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
const int depth_multiplier = params.depth_multiplier;
const int32_t input_offset = params.input_offset;
const int32_t output_offset = params.output_offset;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
// Check dimensions of the tensors.
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int output_depth = MatchingDim(filter_shape, 3, output_shape, 3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int input_depth = input_shape.Dims(3);
const int filter_height = filter_shape.Dims(1);
const int filter_width = filter_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
TFLITE_DCHECK_EQ(output_depth, input_depth * depth_multiplier);
TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
for (int m = 0; m < depth_multiplier; ++m) {
const int output_channel = m + in_channel * depth_multiplier;
const int in_x_origin = (out_x * stride_width) - pad_width;
const int in_y_origin = (out_y * stride_height) - pad_height;
int32_t acc = 0;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;
const int in_y =
in_y_origin + dilation_height_factor * filter_y;
// Zero padding by omitting the areas outside the image.
const bool is_point_inside_image =
(in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height);
if (is_point_inside_image) {
int32_t input_val = input_data[Offset(
input_shape, batch, in_y, in_x, in_channel)];
int32_t filter_val = filter_data[Offset(
filter_shape, 0, filter_y, filter_x, output_channel)];
// Accumulate with 32 bits accumulator.
// In the nudging process during model quantization, we force
// real value of 0.0 be represented by a quantized value. This
// guarantees that the input_offset is a int8_t, even though
// it is represented using int32_t. int32_t += int8_t *
// (int8_t - int8_t) so the highest value we can get from each
// accumulation is [-127, 127] * ([-128, 127] -
// [-128, 127]), which is [-32512, 32512]. log2(32512)
// = 14.98, which means we can accumulate at least 2^16
// multiplications without overflow. The accumulator is
// applied to a filter so the accumulation logic will hold as
// long as the filter size (filter_y * filter_x * in_channel)
// does not exceed 2^16, which is the case in all the models
// we have seen so far.
// TODO(jianlijianli): Add a check to make sure the
// accumulator depth is smaller than 2^16.
acc += filter_val * (input_val + input_offset);
}
}
}
if (bias_data) {
acc += bias_data[output_channel];
}
acc = MultiplyByQuantizedMultiplier(
acc, output_multiplier[output_channel],
output_shift[output_channel]);
acc += output_offset;
acc = std::max(acc, output_activation_min);
acc = std::min(acc, output_activation_max);
output_data[Offset(output_shape, batch, out_y, out_x,
output_channel)] = static_cast<int8_t>(acc);
}
}
}
}
}
}
inline void DepthwiseConvPerChannel(
const DepthwiseParams& params, const int32_t* output_multiplier,
const int32_t* output_shift, const RuntimeShape& input_shape,
const int16_t* input_data, const RuntimeShape& filter_shape,
const int8_t* filter_data, const RuntimeShape& bias_shape,
const std::int64_t* bias_data, const RuntimeShape& output_shape,
int16_t* output_data) {
// Get parameters.
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int dilation_width_factor = params.dilation_width_factor;
const int dilation_height_factor = params.dilation_height_factor;
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
const int depth_multiplier = params.depth_multiplier;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
// Check dimensions of the tensors.
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int output_depth = MatchingDim(filter_shape, 3, output_shape, 3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int input_depth = input_shape.Dims(3);
const int filter_height = filter_shape.Dims(1);
const int filter_width = filter_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
TFLITE_DCHECK_EQ(output_depth, input_depth * depth_multiplier);
TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth);
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
for (int m = 0; m < depth_multiplier; ++m) {
const int output_channel = m + in_channel * depth_multiplier;
const int in_x_origin = (out_x * stride_width) - pad_width;
const int in_y_origin = (out_y * stride_height) - pad_height;
std::int64_t acc = 0;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;
const int in_y =
in_y_origin + dilation_height_factor * filter_y;
// Zero padding by omitting the areas outside the image.
const bool is_point_inside_image =
(in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height);
if (is_point_inside_image) {
int32_t input_val = input_data[Offset(
input_shape, batch, in_y, in_x, in_channel)];
int32_t filter_val = filter_data[Offset(
filter_shape, 0, filter_y, filter_x, output_channel)];
// Accumulate with 64 bits accumulator.
// We assume maximum of 2^16 accumulations as with the 8-bit
// case so actually the value in the accumulator should not
// exceed 40 bits
acc += static_cast<int64_t>(filter_val) *
static_cast<int64_t>(input_val);
}
}
}
if (bias_data) {
acc += bias_data[output_channel];
}
int32_t scaled_acc = MultiplyByQuantizedMultiplier(
acc, output_multiplier[output_channel],
output_shift[output_channel]);
scaled_acc = std::max(scaled_acc, output_activation_min);
scaled_acc = std::min(scaled_acc, output_activation_max);
output_data[Offset(output_shape, batch, out_y, out_x,
output_channel)] =
static_cast<int16_t>(scaled_acc);
}
}
}
}
}
}
inline void DepthwiseConvHybridPerChannel(
const DepthwiseParams& params, float* scaling_factors_ptr,
const RuntimeShape& input_shape, const int8_t* input_data,
const RuntimeShape& filter_shape, const int8_t* filter_data,
const RuntimeShape& bias_shape, const float* bias_data,
const RuntimeShape& output_shape, float* output_data,
const float* per_channel_scale, int32_t* input_offset) {
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int dilation_width_factor = params.dilation_width_factor;
const int dilation_height_factor = params.dilation_height_factor;
const int pad_width = params.padding_values.width;
const int pad_height = params.padding_values.height;
const int depth_multiplier = params.depth_multiplier;
const float output_activation_min = params.float_activation_min;
const float output_activation_max = params.float_activation_max;
// Check dimensions of the tensors.
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int output_depth = MatchingDim(filter_shape, 3, output_shape, 3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int input_depth = input_shape.Dims(3);
const int filter_height = filter_shape.Dims(1);
const int filter_width = filter_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
const int bias_depth = bias_shape.FlatSize();
TFLITE_DCHECK_EQ(output_depth, input_depth * depth_multiplier);
TFLITE_DCHECK_EQ(bias_depth, output_depth);
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
for (int m = 0; m < depth_multiplier; ++m) {
const int output_channel = m + in_channel * depth_multiplier;
const int in_x_origin = (out_x * stride_width) - pad_width;
const int in_y_origin = (out_y * stride_height) - pad_height;
int32_t acc = 0;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
const int in_x = in_x_origin + dilation_width_factor * filter_x;
const int in_y =
in_y_origin + dilation_height_factor * filter_y;
// Zero padding by omitting the areas outside the image.
const bool is_point_inside_image =
(in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
(in_y < input_height);
if (is_point_inside_image) {
int32_t input_val = input_data[Offset(
input_shape, batch, in_y, in_x, in_channel)];
int32_t filter_val = filter_data[Offset(
filter_shape, 0, filter_y, filter_x, output_channel)];
acc += filter_val * (input_val - input_offset[batch]);
}
}
}
float acc_float = static_cast<float>(acc);
acc_float *=
per_channel_scale[output_channel] * scaling_factors_ptr[batch];
if (bias_data && output_channel < bias_depth) {
acc_float += bias_data[output_channel];
}
output_data[Offset(output_shape, batch, out_y, out_x,
output_channel)] =
ActivationFunctionWithMinMax(acc_float, output_activation_min,
output_activation_max);
}
}
}
}
}
}
} // namespace reference_integer_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_DEPTHWISE_CONV_H_

View File

@@ -0,0 +1,108 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_FULLY_CONNECTED_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_FULLY_CONNECTED_H_
#include "tensorflow/lite/kernels/internal/common.h"
namespace tflite {
namespace reference_integer_ops {
inline void FullyConnected(
const FullyConnectedParams& params, const RuntimeShape& input_shape,
const int8_t* input_data, const RuntimeShape& filter_shape,
const int8_t* filter_data, const RuntimeShape& bias_shape,
const int32_t* bias_data, const RuntimeShape& output_shape,
int8_t* output_data) {
const int32_t input_offset = params.input_offset;
const int32_t filter_offset = params.weights_offset;
const int32_t output_offset = params.output_offset;
const int32_t output_multiplier = params.output_multiplier;
const int output_shift = params.output_shift;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
TFLITE_DCHECK_GE(filter_shape.DimensionsCount(), 2);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 2);
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
const int filter_dim_count = filter_shape.DimensionsCount();
const int batches = output_shape.Dims(0);
const int output_depth = output_shape.Dims(1);
TFLITE_DCHECK_LE(output_depth, filter_shape.Dims(filter_dim_count - 2));
const int accum_depth = filter_shape.Dims(filter_dim_count - 1);
for (int b = 0; b < batches; ++b) {
for (int out_c = 0; out_c < output_depth; ++out_c) {
int32_t acc = 0;
for (int d = 0; d < accum_depth; ++d) {
int32_t input_val = input_data[b * accum_depth + d];
int32_t filter_val = filter_data[out_c * accum_depth + d];
acc += (filter_val + filter_offset) * (input_val + input_offset);
}
if (bias_data) {
acc += bias_data[out_c];
}
acc = MultiplyByQuantizedMultiplier(acc, output_multiplier, output_shift);
acc += output_offset;
acc = std::max(acc, output_activation_min);
acc = std::min(acc, output_activation_max);
output_data[out_c + output_depth * b] = static_cast<int8_t>(acc);
}
}
}
inline void FullyConnected(
const FullyConnectedParams& params, const RuntimeShape& input_shape,
const int16_t* input_data, const RuntimeShape& filter_shape,
const int8_t* filter_data, const RuntimeShape& bias_shape,
const int64_t* bias_data, const RuntimeShape& output_shape,
int16_t* output_data) {
const int32_t filter_offset = params.weights_offset;
const int32_t output_multiplier = params.output_multiplier;
const int output_shift = params.output_shift;
const int32_t output_activation_min = params.quantized_activation_min;
const int32_t output_activation_max = params.quantized_activation_max;
TFLITE_DCHECK_GE(filter_shape.DimensionsCount(), 2);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 2);
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
const int filter_dim_count = filter_shape.DimensionsCount();
const int batches = output_shape.Dims(0);
const int output_depth = output_shape.Dims(1);
TFLITE_DCHECK_LE(output_depth, filter_shape.Dims(filter_dim_count - 2));
const int accum_depth = filter_shape.Dims(filter_dim_count - 1);
for (int b = 0; b < batches; ++b) {
for (int out_c = 0; out_c < output_depth; ++out_c) {
int64_t acc = 0;
for (int d = 0; d < accum_depth; ++d) {
int32_t input_val = input_data[b * accum_depth + d];
int32_t filter_val = filter_data[out_c * accum_depth + d];
acc += (filter_val + filter_offset) * input_val;
}
if (bias_data) {
acc += bias_data[out_c];
}
int32_t acc_scaled =
MultiplyByQuantizedMultiplier(acc, output_multiplier, output_shift);
acc_scaled = std::max(acc_scaled, output_activation_min);
acc_scaled = std::min(acc_scaled, output_activation_max);
output_data[out_c + output_depth * b] = static_cast<int16_t>(acc_scaled);
}
}
}
} // namespace reference_integer_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_FULLY_CONNECTED_H_

View File

@@ -0,0 +1,65 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_L2NORMALIZATION_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_L2NORMALIZATION_H_
#include "tensorflow/lite/kernels/internal/common.h"
namespace tflite {
namespace reference_integer_ops {
inline void L2Normalization(int32_t input_zero_point, int32_t outer_size,
int32_t depth, const int8_t* input_data,
int8_t* output_data) {
static constexpr int8_t kMinInt8 = std::numeric_limits<int8_t>::min();
static constexpr int8_t kMaxInt8 = std::numeric_limits<int8_t>::max();
// The output scale must be in sync with Prepare().
// Output is in 1/128 scale so the actual output range is nudged from [-1, 1]
// to [-1, 127/128].
static constexpr int32_t kOutputScale = 7;
for (int outer_index = 0; outer_index < outer_size; ++outer_index) {
// int32_t = (int8_t - int8_t) ^ 2.
// ([-128, 127] - [-128, 127]) ^ 2 = [0, (2^8 - 1)^2] so the accumulator is
// safe from overflowing in at least 2^16 steps.
int32_t acc = 0;
for (int inner_index = 0; inner_index < depth; ++inner_index) {
int32_t input =
input_data[depth * outer_index + inner_index] - input_zero_point;
acc += input * input;
}
int32_t inv_l2norm_multiplier;
int inv_l2norm_shift;
GetInvSqrtQuantizedMultiplierExp(acc, kReverseShift, &inv_l2norm_multiplier,
&inv_l2norm_shift);
for (int inner_index = 0; inner_index < depth; ++inner_index) {
int32_t input =
input_data[depth * outer_index + inner_index] - input_zero_point;
// Rescale and downcast. Rescale is folded into the division.
int32_t output_in_q24 = MultiplyByQuantizedMultiplier(
input, inv_l2norm_multiplier, inv_l2norm_shift + kOutputScale);
output_in_q24 =
std::min(static_cast<int32_t>(kMaxInt8),
std::max(static_cast<int32_t>(kMinInt8), output_in_q24));
output_data[depth * outer_index + inner_index] =
static_cast<int8_t>(output_in_q24);
}
}
}
} // namespace reference_integer_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_L2NORMALIZATION_H_

View File

@@ -0,0 +1,99 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_LOGISTIC_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_LOGISTIC_H_
#include <limits>
#include "tensorflow/lite/kernels/internal/common.h"
namespace tflite {
namespace reference_integer_ops {
inline void Logistic(int32_t input_zero_point, int32_t input_range_radius,
int32_t input_multiplier, int32_t input_left_shift,
int32_t input_size, const int8_t* input_data,
int8_t* output_data) {
// Integer bits must be in sync with Prepare() function.
static constexpr int32_t kInputIntegerBits = 4;
static constexpr int32_t kOutputIntegerBits = 8;
static constexpr int8_t kMinInt8 = std::numeric_limits<int8_t>::min();
static constexpr int8_t kMaxInt8 = std::numeric_limits<int8_t>::max();
static constexpr int32_t kOutputZeroPoint = -128;
for (int i = 0; i < input_size; ++i) {
const int32_t input =
static_cast<int32_t>(input_data[i]) - input_zero_point;
if (input <= -input_range_radius) {
output_data[i] = kMinInt8;
} else if (input >= input_range_radius) {
output_data[i] = kMaxInt8;
} else {
const int32_t input_in_q4 = MultiplyByQuantizedMultiplier(
input, input_multiplier, input_left_shift);
using FixedPoint4 = gemmlowp::FixedPoint<int32_t, kInputIntegerBits>;
const int32_t output_in_q0 =
gemmlowp::logistic(FixedPoint4::FromRaw(input_in_q4)).raw();
// Rescale and downcast.
using gemmlowp::RoundingDivideByPOT;
int32_t output_in_q23 =
RoundingDivideByPOT(output_in_q0, 31 - kOutputIntegerBits);
output_in_q23 = std::min(std::max(output_in_q23 + kOutputZeroPoint,
static_cast<int32_t>(kMinInt8)),
static_cast<int32_t>(kMaxInt8));
output_data[i] = static_cast<int8_t>(output_in_q23);
}
}
}
inline void Logistic(int32_t input_multiplier, int32_t input_size,
const int16_t* ptr_input_data, int16_t* ptr_output_data) {
// We use the LUT for sigmoid and take into account, that
// tanh(x) = 2*sigmoid(2*x) - 1
int32_t input_data_mul = (input_multiplier > 0) ? input_multiplier : 1;
for (int i = 0; i < input_size; ++i, ptr_input_data++, ptr_output_data++) {
int32_t input_data = (*ptr_input_data) * input_data_mul;
// Scale by 3/4 to expand range [-8,8]->[-10.7,10.7] and
// we do interpolation on unsigned values.
uint32_t abs_input_data = 3 * abs(input_data);
// We divide by 2 power of 9, because
// we need to divide by 2 in power of 7 for
// the input conversion + 1/4 from the scale above.
uint8_t uh = abs_input_data >> 9;
uint32_t ua = sigmoid_table_uint16[uh];
uint32_t ub = sigmoid_table_uint16[uh + 1];
uint32_t ut = abs_input_data & 0x1ff;
// Interpolation is done using the fractional bit.
uint32_t result = (ua << 9) + ut * (ub - ua);
result = (input_data >= 0) ? (result + (1 << 9))
: ((1 << (16 + 9)) - result + (1 << 9) - 1);
// Back to 16-bit.
result >>= 10;
*ptr_output_data = result;
}
}
} // namespace reference_integer_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_LOGISTIC_H_

View File

@@ -0,0 +1,131 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_MUL_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_MUL_H_
#include "fixedpoint/fixedpoint.h"
#include "ruy/profiler/instrumentation.h" // from @ruy
#include "tensorflow/lite/kernels/internal/common.h"
namespace tflite {
namespace reference_integer_ops {
template <typename T>
inline void MulElementwise(int size, const ArithmeticParams& params,
const T* input1_data, const T* input2_data,
T* output_data) {
for (int i = 0; i < size; ++i) {
const int32_t input1_val = params.input1_offset + input1_data[i];
const int32_t input2_val = params.input2_offset + input2_data[i];
const int32_t unclamped_result =
params.output_offset +
MultiplyByQuantizedMultiplier(input1_val * input2_val,
params.output_multiplier,
params.output_shift);
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, unclamped_result));
output_data[i] = static_cast<T>(clamped_output);
}
}
template <typename T>
inline void Mul(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const T* input1_data,
const RuntimeShape& input2_shape, const T* input2_data,
const RuntimeShape& output_shape, T* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
ruy::profiler::ScopeLabel label("Mul/8bit");
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
MulElementwise(flat_size, params, input1_data, input2_data, output_data);
}
// Mul with 16 bit inputs and int8_t outputs.
inline void Mul(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const int16_t* input1_data,
const RuntimeShape& input2_shape, const int16_t* input2_data,
const RuntimeShape& output_shape, int8_t* output_data) {
ruy::profiler::ScopeLabel label("Mul/Int16Int8");
int32_t output_offset = params.output_offset;
int32_t output_activation_min = params.quantized_activation_min;
int32_t output_activation_max = params.quantized_activation_max;
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
for (int i = 0; i < flat_size; i++) {
// F0 uses 0 integer bits, range [-1, 1].
using F0 = gemmlowp::FixedPoint<std::int16_t, 0>;
F0 unclamped_result =
F0::FromRaw(input1_data[i]) * F0::FromRaw(input2_data[i]);
int16_t rescaled_result =
gemmlowp::RoundingDivideByPOT(unclamped_result.raw(), 8);
int16_t clamped_result = std::min<int16_t>(
output_activation_max - output_offset, rescaled_result);
clamped_result = std::max<int16_t>(output_activation_min - output_offset,
clamped_result);
output_data[i] = output_offset + clamped_result;
}
}
template <typename T>
inline void BroadcastMul4DSlow(
const ArithmeticParams& params, const RuntimeShape& input1_shape,
const T* input1_data, const RuntimeShape& input2_shape,
const T* input2_data, const RuntimeShape& output_shape, T* output_data) {
ruy::profiler::ScopeLabel label("BroadcastMul4DSlow");
NdArrayDesc<4> desc1;
NdArrayDesc<4> desc2;
// The input shapes are extended as part of NdArrayDesc initialization.
NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
&desc2);
const RuntimeShape extended_output_shape =
RuntimeShape::ExtendedShape(4, output_shape);
for (int b = 0; b < extended_output_shape.Dims(0); ++b) {
for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
const int32_t input1_val =
params.input1_offset +
input1_data[SubscriptToIndex(desc1, b, y, x, c)];
const int32_t input2_val =
params.input2_offset +
input2_data[SubscriptToIndex(desc2, b, y, x, c)];
const int32_t unclamped_result =
params.output_offset +
MultiplyByQuantizedMultiplier(input1_val * input2_val,
params.output_multiplier,
params.output_shift);
const int32_t clamped_output = std::min(
params.quantized_activation_max,
std::max(params.quantized_activation_min, unclamped_result));
output_data[Offset(extended_output_shape, b, y, x, c)] =
static_cast<T>(clamped_output);
}
}
}
}
}
} // namespace reference_integer_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_MUL_H_

View File

@@ -0,0 +1,258 @@
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_POOLING_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_POOLING_H_
#include <limits>
#include "tensorflow/lite/kernels/internal/common.h"
namespace tflite {
namespace reference_integer_ops {
inline void AveragePool(const PoolParams& params,
const RuntimeShape& input_shape,
const int8_t* input_data,
const RuntimeShape& output_shape, int8_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int depth = MatchingDim(input_shape, 3, output_shape, 3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
const int stride_height = params.stride_height;
const int stride_width = params.stride_width;
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int channel = 0; channel < depth; ++channel) {
const int in_x_origin =
(out_x * stride_width) - params.padding_values.width;
const int in_y_origin =
(out_y * stride_height) - params.padding_values.height;
// Compute the boundaries of the filter region clamped so as to
// ensure that the filter window fits in the input array.
const int filter_x_start = std::max(0, -in_x_origin);
const int filter_x_end =
std::min(params.filter_width, input_width - in_x_origin);
const int filter_y_start = std::max(0, -in_y_origin);
const int filter_y_end =
std::min(params.filter_height, input_height - in_y_origin);
int32_t acc = 0;
int filter_count = 0;
for (int filter_y = filter_y_start; filter_y < filter_y_end;
++filter_y) {
for (int filter_x = filter_x_start; filter_x < filter_x_end;
++filter_x) {
const int in_x = in_x_origin + filter_x;
const int in_y = in_y_origin + filter_y;
acc +=
input_data[Offset(input_shape, batch, in_y, in_x, channel)];
filter_count++;
}
}
// Round to the closest integer value.
acc = acc > 0 ? (acc + filter_count / 2) / filter_count
: (acc - filter_count / 2) / filter_count;
acc = std::max(acc, params.quantized_activation_min);
acc = std::min(acc, params.quantized_activation_max);
output_data[Offset(output_shape, batch, out_y, out_x, channel)] =
static_cast<int8_t>(acc);
}
}
}
}
}
inline void MaxPool(const PoolParams& params, const RuntimeShape& input_shape,
const int8_t* input_data, const RuntimeShape& output_shape,
int8_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
TFLITE_DCHECK_GE(params.quantized_activation_min,
std::numeric_limits<int8_t>::min());
TFLITE_DCHECK_LE(params.quantized_activation_max,
std::numeric_limits<int8_t>::max());
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int depth = MatchingDim(input_shape, 3, output_shape, 3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
const int stride_height = params.stride_height;
const int stride_width = params.stride_width;
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int channel = 0; channel < depth; ++channel) {
const int in_x_origin =
(out_x * stride_width) - params.padding_values.width;
const int in_y_origin =
(out_y * stride_height) - params.padding_values.height;
// Compute the boundaries of the filter region clamped so as to
// ensure that the filter window fits in the input array.
const int filter_x_start = std::max(0, -in_x_origin);
const int filter_x_end =
std::min(params.filter_width, input_width - in_x_origin);
const int filter_y_start = std::max(0, -in_y_origin);
const int filter_y_end =
std::min(params.filter_height, input_height - in_y_origin);
int8_t max = std::numeric_limits<int8_t>::lowest();
for (int filter_y = filter_y_start; filter_y < filter_y_end;
++filter_y) {
for (int filter_x = filter_x_start; filter_x < filter_x_end;
++filter_x) {
const int in_x = in_x_origin + filter_x;
const int in_y = in_y_origin + filter_y;
max = std::max(
max,
input_data[Offset(input_shape, batch, in_y, in_x, channel)]);
}
}
max = std::max<int8_t>(max, params.quantized_activation_min);
max = std::min<int8_t>(max, params.quantized_activation_max);
output_data[Offset(output_shape, batch, out_y, out_x, channel)] =
static_cast<int8_t>(max);
}
}
}
}
}
inline void AveragePool(const PoolParams& params,
const RuntimeShape& input_shape,
const int16_t* input_data,
const RuntimeShape& output_shape,
int16_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int depth = MatchingDim(input_shape, 3, output_shape, 3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
const int stride_height = params.stride_height;
const int stride_width = params.stride_width;
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int channel = 0; channel < depth; ++channel) {
const int in_x_origin =
(out_x * stride_width) - params.padding_values.width;
const int in_y_origin =
(out_y * stride_height) - params.padding_values.height;
// Compute the boundaries of the filter region clamped so as to
// ensure that the filter window fits in the input array.
const int filter_x_start = std::max(0, -in_x_origin);
const int filter_x_end =
std::min(params.filter_width, input_width - in_x_origin);
const int filter_y_start = std::max(0, -in_y_origin);
const int filter_y_end =
std::min(params.filter_height, input_height - in_y_origin);
int32_t acc = 0;
int filter_count = 0;
for (int filter_y = filter_y_start; filter_y < filter_y_end;
++filter_y) {
for (int filter_x = filter_x_start; filter_x < filter_x_end;
++filter_x) {
const int in_x = in_x_origin + filter_x;
const int in_y = in_y_origin + filter_y;
acc +=
input_data[Offset(input_shape, batch, in_y, in_x, channel)];
filter_count++;
}
}
// Round to the closest integer value.
acc = acc > 0 ? (acc + filter_count / 2) / filter_count
: (acc - filter_count / 2) / filter_count;
acc = std::max(acc, params.quantized_activation_min);
acc = std::min(acc, params.quantized_activation_max);
output_data[Offset(output_shape, batch, out_y, out_x, channel)] =
static_cast<int16_t>(acc);
}
}
}
}
}
inline void MaxPool(const PoolParams& params, const RuntimeShape& input_shape,
const int16_t* input_data, const RuntimeShape& output_shape,
int16_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
TFLITE_DCHECK_GE(params.quantized_activation_min,
std::numeric_limits<int16_t>::min());
TFLITE_DCHECK_LE(params.quantized_activation_max,
std::numeric_limits<int16_t>::max());
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int depth = MatchingDim(input_shape, 3, output_shape, 3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
const int stride_height = params.stride_height;
const int stride_width = params.stride_width;
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int channel = 0; channel < depth; ++channel) {
const int in_x_origin =
(out_x * stride_width) - params.padding_values.width;
const int in_y_origin =
(out_y * stride_height) - params.padding_values.height;
// Compute the boundaries of the filter region clamped so as to
// ensure that the filter window fits in the input array.
const int filter_x_start = std::max(0, -in_x_origin);
const int filter_x_end =
std::min(params.filter_width, input_width - in_x_origin);
const int filter_y_start = std::max(0, -in_y_origin);
const int filter_y_end =
std::min(params.filter_height, input_height - in_y_origin);
int16_t max = std::numeric_limits<int16_t>::lowest();
for (int filter_y = filter_y_start; filter_y < filter_y_end;
++filter_y) {
for (int filter_x = filter_x_start; filter_x < filter_x_end;
++filter_x) {
const int in_x = in_x_origin + filter_x;
const int in_y = in_y_origin + filter_y;
max = std::max(
max,
input_data[Offset(input_shape, batch, in_y, in_x, channel)]);
}
}
max = std::max<int16_t>(max, params.quantized_activation_min);
max = std::min<int16_t>(max, params.quantized_activation_max);
output_data[Offset(output_shape, batch, out_y, out_x, channel)] =
static_cast<int16_t>(max);
}
}
}
}
}
} // namespace reference_integer_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_POOLING_H_

View File

@@ -0,0 +1,106 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_TANH_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_TANH_H_
#include <limits>
#include "fixedpoint/fixedpoint.h"
#include "tensorflow/lite/kernels/internal/common.h"
namespace tflite {
namespace reference_integer_ops {
inline void Tanh(int32_t input_zero_point, int32_t input_range_radius,
int32_t input_multiplier, int32_t input_shift,
int32_t input_size, const int8_t* input_data,
int8_t* output_data) {
// Integer bits must be in sync with Prepare() function.
static constexpr int32_t kInputIntegerBits = 4;
static constexpr int32_t kOutputScale = 7;
static constexpr int32_t kMinInt8 = std::numeric_limits<int8_t>::min();
static constexpr int32_t kMaxInt8 = std::numeric_limits<int8_t>::max();
using F4 = gemmlowp::FixedPoint<int32_t, kInputIntegerBits>;
for (int i = 0; i < input_size; ++i) {
const int32_t input =
static_cast<int32_t>(input_data[i]) - input_zero_point;
if (input <= -input_range_radius) {
output_data[i] = kMinInt8;
} else if (input >= input_range_radius) {
output_data[i] = kMaxInt8;
} else {
const int32_t input_in_q4 =
MultiplyByQuantizedMultiplier(input, input_multiplier, input_shift);
const int32_t output_in_q0 =
gemmlowp::tanh(F4::FromRaw(input_in_q4)).raw();
// Rescale and downcast.
using gemmlowp::RoundingDivideByPOT;
int32_t output_in_q24 =
RoundingDivideByPOT(output_in_q0, 31 - kOutputScale);
output_in_q24 = std::min(std::max(output_in_q24, kMinInt8), kMaxInt8);
output_data[i] = static_cast<int8_t>(output_in_q24);
}
}
}
inline void Tanh(int32_t input_multiplier, int32_t input_left_shift,
int32_t input_size, const int16_t* ptr_input_data,
int16_t* ptr_output_data) {
// We use the LUT for sigmoid and take into account, that
// tanh(x) = 2*sigmoid(2*x) - 1
int32_t input_data_mul = (input_multiplier > 0) ? input_multiplier : 1;
for (int i = 0; i < input_size; ++i, ptr_input_data++, ptr_output_data++) {
int32_t input_data = (*ptr_input_data) * input_data_mul;
if (input_left_shift == 1) {
input_data <<= 1;
}
// Scale by 3/4 to expand range [-8,8]->[-10.7,10.7].
uint32_t abs_input_data = 3 * abs(input_data);
uint32_t uh = abs_input_data >> 8;
int32_t result;
if (uh >= 255) {
// Saturate to maximum.
result = 0xFFFF << 8;
} else {
uint32_t ua = sigmoid_table_uint16[uh];
uint32_t ub = sigmoid_table_uint16[uh + 1];
uint8_t ut = abs_input_data & 0xFF;
result = (ua << 8) + ut * (ub - ua);
}
result = (input_data >= 0)
? (result - (1 << (14 + 9)) + (1 << (9 - 2)))
: (-result + (1 << (14 + 9)) + (1 << (9 - 2)) - 1);
// Convert back to 16-bit.
result >>= (9 - 1);
*ptr_output_data = result;
}
}
} // namespace reference_integer_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_INTEGER_OPS_TANH_H_

View File

@@ -0,0 +1,90 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_L2NORMALIZATION_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_L2NORMALIZATION_H_
#include <algorithm>
#include <cmath>
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
inline void L2Normalization(const tflite::L2NormalizationParams& op_params,
const RuntimeShape& input_shape,
const float* input_data,
const RuntimeShape& output_shape,
float* output_data, float epsilon = 1e-6) {
const int trailing_dim = input_shape.DimensionsCount() - 1;
const int outer_size =
MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape);
const int depth =
MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim);
for (int i = 0; i < outer_size; ++i) {
float squared_l2_norm = 0;
for (int c = 0; c < depth; ++c) {
const float val = input_data[depth * i + c];
squared_l2_norm += val * val;
}
float l2_norm = std::sqrt(squared_l2_norm);
l2_norm = std::max(l2_norm, epsilon);
for (int c = 0; c < depth; ++c) {
output_data[depth * i + c] = input_data[depth * i + c] / l2_norm;
}
}
}
inline void L2Normalization(const tflite::L2NormalizationParams& op_params,
const RuntimeShape& input_shape,
const uint8_t* input_data,
const RuntimeShape& output_shape,
uint8_t* output_data) {
const int trailing_dim = input_shape.DimensionsCount() - 1;
const int depth =
MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim);
const int outer_size =
MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape);
const int32_t input_zero_point = op_params.input_zero_point;
for (int i = 0; i < outer_size; ++i) {
int32_t square_l2_norm = 0;
for (int c = 0; c < depth; c++) {
int32_t diff = input_data[depth * i + c] - input_zero_point;
square_l2_norm += diff * diff;
}
int32_t inv_l2norm_multiplier;
int inv_l2norm_shift;
GetInvSqrtQuantizedMultiplierExp(square_l2_norm, kReverseShift,
&inv_l2norm_multiplier, &inv_l2norm_shift);
for (int c = 0; c < depth; c++) {
int32_t diff = input_data[depth * i + c] - input_zero_point;
int32_t rescaled_diff = MultiplyByQuantizedMultiplierSmallerThanOneExp(
128 * diff, inv_l2norm_multiplier, inv_l2norm_shift);
int32_t unclamped_output_val = 128 + rescaled_diff;
int32_t output_val =
std::min(static_cast<int32_t>(255),
std::max(static_cast<int32_t>(0), unclamped_output_val));
output_data[depth * i + c] = static_cast<uint8_t>(output_val);
}
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_L2NORMALIZATION_H_

View File

@@ -0,0 +1,132 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_LOGISTIC_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_LOGISTIC_H_
#include <cmath>
#include "fixedpoint/fixedpoint.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/cppmath.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/types.h"
#include "tensorflow/lite/kernels/op_macros.h"
namespace tflite {
namespace reference_ops {
inline void Logistic(const RuntimeShape& input_shape, const float* input_data,
const RuntimeShape& output_shape, float* output_data) {
const float cutoff_upper = 16.619047164916992188f;
const float cutoff_lower = -9.f;
const int flat_size = MatchingFlatSize(input_shape, output_shape);
// Rational for using approximation in reference kernel.
// 0. This approximation gives enough precision for float.
// 1. This works around an issue on an embedded chipset where exp() does not
// return correctly as expected - exp(x) should return inf when overflown
// not 1.701417 IEEE 754 defines representation for inf.
// 2. This will speed up calculation and is matching the behavior in the
// optimized kernels. (check the definition of scalar_logistic_op<float>)
for (int i = 0; i < flat_size; i++) {
float val = input_data[i];
float result;
if (val > cutoff_upper) {
result = 1.0f;
} else if (val < cutoff_lower) {
result = std::exp(val);
} else {
result = 1.f / (1.f + std::exp(-val));
}
output_data[i] = result;
}
}
// Convenience version that allows, for example, generated-code calls to be
// uniform between data types.
inline void Logistic(const LogisticParams&, const RuntimeShape& input_shape,
const float* input_data, const RuntimeShape& output_shape,
float* output_data) {
// Drop params: not needed.
Logistic(input_shape, input_data, output_shape, output_data);
}
inline void Logistic(const LogisticParams& params,
const RuntimeShape& input_shape, const int16_t* input_data,
const RuntimeShape& output_shape, int16_t* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; i++) {
// F0 uses 0 integer bits, range [-1, 1].
// This is the return type of math functions such as tanh, logistic,
// whose range is in [-1, 1].
using F0 = gemmlowp::FixedPoint<std::int16_t, 0>;
// F3 uses 3 integer bits, range [-8, 8], the input range expected here.
using F3 = gemmlowp::FixedPoint<std::int16_t, 3>;
const F3 input = F3::FromRaw(input_data[i]);
F0 output = gemmlowp::logistic(input);
output_data[i] = output.raw();
}
}
// Quantized int8_t logistic activation. Cheats by dequantizing and
// requantizing around the floating point logistic method. This implementation
// is slow on platforms without a floating point unit.
// TODO(b/141211002): Delete this int8_t implementation once we can reuse the
// approach used in TFLite for int8_t Logistic.
inline void Logistic(const RuntimeShape& input_shape, const int8_t* input_data,
float input_scale, int input_zero_point,
const RuntimeShape& output_shape, int8_t* output_data,
float output_scale, int output_zero_point) {
const float cutoff_upper = 16.619047164916992188f;
const float cutoff_lower = -9.f;
const int flat_size = MatchingFlatSize(input_shape, output_shape);
// Rational for using approximation in reference kernel.
// 0. This approximation gives enough precision for float.
// 1. This works around an issue on an embedded chipset where exp() does not
// return correctly as expected - exp(x) should return inf when overflown
// not 1.701417 IEEE 754 defines representation for inf.
// 2. This will speed up calculation and is matching the behavior in the
// optimized kernels. (check the definition of scalar_logistic_op<float>)
for (int i = 0; i < flat_size; i++) {
// Dequantize.
float val =
static_cast<float>((input_data[i] - input_zero_point) * input_scale);
float result;
if (val > cutoff_upper) {
result = 1.0f;
} else if (val < cutoff_lower) {
result = std::exp(val);
} else {
result = 1.f / (1.f + std::exp(-val));
}
// Requantize
int8_t output =
static_cast<int8_t>(result / output_scale + output_zero_point);
output_data[i] = output;
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_LOGISTIC_H_

View File

@@ -0,0 +1,64 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_MAXIMUM_MINIMUM_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_MAXIMUM_MINIMUM_H_
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
template <typename T, typename Op, int N = 5>
void MaximumMinimumBroadcastSlow(const RuntimeShape& unextended_input1_shape,
const T* input1_data,
const RuntimeShape& unextended_input2_shape,
const T* input2_data,
const RuntimeShape& unextended_output_shape,
T* output_data, Op op) {
// Uses element-wise calculation if broadcast is not required.
if (unextended_input1_shape == unextended_input2_shape) {
const int flat_size =
MatchingElementsSize(unextended_input1_shape, unextended_input2_shape,
unextended_output_shape);
for (int i = 0; i < flat_size; ++i) {
output_data[i] = op(input1_data[i], input2_data[i]);
}
} else {
TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), N);
NdArrayDesc<N> desc1;
NdArrayDesc<N> desc2;
NdArrayDesc<N> output_desc;
NdArrayDescsForElementwiseBroadcast(
unextended_input1_shape, unextended_input2_shape, &desc1, &desc2);
CopyDimsToDesc(RuntimeShape::ExtendedShape(N, unextended_output_shape),
&output_desc);
auto maxmin_func = [&](int indexes[N]) {
output_data[SubscriptToIndex(output_desc, indexes)] =
op(input1_data[SubscriptToIndex(desc1, indexes)],
input2_data[SubscriptToIndex(desc2, indexes)]);
};
NDOpsHelper<N>(output_desc, maxmin_func);
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_MAXIMUM_MINIMUM_H_

View File

@@ -0,0 +1,166 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_MUL_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_MUL_H_
#include "tensorflow/lite/kernels/internal/common.h"
namespace tflite {
namespace reference_ops {
// Element-wise mul that can often be used for inner loop of broadcast Mul as
// well as the non-broadcast Mul.
inline void MulElementwise(int size, const ArithmeticParams& params,
const uint8_t* input1_data,
const uint8_t* input2_data, uint8_t* output_data) {
for (int i = 0; i < size; ++i) {
const int32_t input1_val = params.input1_offset + input1_data[i];
const int32_t input2_val = params.input2_offset + input2_data[i];
const int32_t unclamped_result =
params.output_offset +
MultiplyByQuantizedMultiplier(input1_val * input2_val,
params.output_multiplier,
params.output_shift);
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, unclamped_result));
output_data[i] = static_cast<uint8_t>(clamped_output);
}
}
template <typename T>
inline void Mul(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const T* input1_data,
const RuntimeShape& input2_shape, const T* input2_data,
const RuntimeShape& output_shape, T* output_data) {
T output_activation_min;
T output_activation_max;
GetActivationParams(params, &output_activation_min, &output_activation_max);
const int flat_size =
MatchingFlatSize(input1_shape, input2_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
output_data[i] = ActivationFunctionWithMinMax(
input1_data[i] * input2_data[i], output_activation_min,
output_activation_max);
}
}
inline void Mul(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const uint8_t* input1_data,
const RuntimeShape& input2_shape, const uint8_t* input2_data,
const RuntimeShape& output_shape, uint8_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
const int flat_size =
MatchingFlatSize(input1_shape, input2_shape, output_shape);
MulElementwise(flat_size, params, input1_data, input2_data, output_data);
}
inline void BroadcastMul4DSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const uint8_t* input1_data,
const RuntimeShape& input2_shape,
const uint8_t* input2_data,
const RuntimeShape& output_shape,
uint8_t* output_data) {
NdArrayDesc<4> desc1;
NdArrayDesc<4> desc2;
NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
&desc2);
const RuntimeShape extended_output_shape =
RuntimeShape::ExtendedShape(4, output_shape);
for (int b = 0; b < extended_output_shape.Dims(0); ++b) {
for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
const int32_t input1_val =
params.input1_offset +
input1_data[SubscriptToIndex(desc1, b, y, x, c)];
const int32_t input2_val =
params.input2_offset +
input2_data[SubscriptToIndex(desc2, b, y, x, c)];
const int32_t unclamped_result =
params.output_offset +
MultiplyByQuantizedMultiplier(input1_val * input2_val,
params.output_multiplier,
params.output_shift);
const int32_t clamped_output = std::min(
params.quantized_activation_max,
std::max(params.quantized_activation_min, unclamped_result));
output_data[Offset(extended_output_shape, b, y, x, c)] =
static_cast<uint8_t>(clamped_output);
}
}
}
}
}
template <typename T>
void BroadcastMul4DSlow(const ArithmeticParams& params,
const RuntimeShape& unextended_input1_shape,
const T* input1_data,
const RuntimeShape& unextended_input2_shape,
const T* input2_data,
const RuntimeShape& unextended_output_shape,
T* output_data) {
T output_activation_min;
T output_activation_max;
GetActivationParams(params, &output_activation_min, &output_activation_max);
TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), 4);
TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), 4);
TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4);
const RuntimeShape output_shape =
RuntimeShape::ExtendedShape(4, unextended_output_shape);
NdArrayDesc<4> desc1;
NdArrayDesc<4> desc2;
NdArrayDescsForElementwiseBroadcast(unextended_input1_shape,
unextended_input2_shape, &desc1, &desc2);
// In Tensorflow, the dimensions are canonically named (batch_number, row,
// col, channel), with extents (batches, height, width, depth), with the
// trailing dimension changing most rapidly (channels has the smallest stride,
// typically 1 element).
//
// In generated C code, we store arrays with the dimensions reversed. The
// first dimension has smallest stride.
//
// We name our variables by their Tensorflow convention, but generate C code
// nesting loops such that the innermost loop has the smallest stride for the
// best cache behavior.
for (int b = 0; b < output_shape.Dims(0); ++b) {
for (int y = 0; y < output_shape.Dims(1); ++y) {
for (int x = 0; x < output_shape.Dims(2); ++x) {
for (int c = 0; c < output_shape.Dims(3); ++c) {
output_data[Offset(output_shape, b, y, x, c)] =
ActivationFunctionWithMinMax(
input1_data[SubscriptToIndex(desc1, b, y, x, c)] *
input2_data[SubscriptToIndex(desc2, b, y, x, c)],
output_activation_min, output_activation_max);
}
}
}
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_MUL_H_

View File

@@ -0,0 +1,37 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_NEG_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_NEG_H_
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
template <typename T>
inline void Negate(const RuntimeShape& input_shape, const T* input_data,
const RuntimeShape& output_shape, T* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
output_data[i] = -input_data[i];
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_NEG_H_

View File

@@ -0,0 +1,162 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PAD_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PAD_H_
#include <vector>
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
// TFLite Pad supports activation tensors with up to 4 dimensions.
constexpr int PadKernelMaxDimensionCount() { return 4; }
// There are two versions of pad: Pad and PadV2. In PadV2 there is a second
// scalar input that provides the padding value. Therefore pad_value_ptr can be
// equivalent to a simple input1_data. For Pad, it should point to a zero
// value.
//
// Note that two typenames are required, so that T=P=int32_t is considered a
// specialization distinct from P=int32_t.
template <typename T, typename P>
inline void PadImpl(const tflite::PadParams& op_params,
const RuntimeShape& input_shape, const T* input_data,
const P* pad_value_ptr, const RuntimeShape& output_shape,
T* output_data) {
const RuntimeShape ext_input_shape =
RuntimeShape::ExtendedShape(PadKernelMaxDimensionCount(), input_shape);
const RuntimeShape ext_output_shape =
RuntimeShape::ExtendedShape(PadKernelMaxDimensionCount(), output_shape);
TFLITE_DCHECK_LE(op_params.left_padding_count, PadKernelMaxDimensionCount());
TFLITE_DCHECK_LE(op_params.right_padding_count, PadKernelMaxDimensionCount());
// Runtime calls are currently fixed at 4 dimensions. Copy inputs so we can
// pad them to 4 dims (yes, we are "padding the padding").
int left_padding_copy[PadKernelMaxDimensionCount()];
for (int i = 0; i < PadKernelMaxDimensionCount(); i++) {
left_padding_copy[i] = 0;
}
for (int i = 0; i < op_params.left_padding_count; ++i) {
left_padding_copy[i + PadKernelMaxDimensionCount() -
op_params.left_padding_count] = op_params.left_padding[i];
}
int right_padding_copy[PadKernelMaxDimensionCount()];
for (int i = 0; i < PadKernelMaxDimensionCount(); i++) {
right_padding_copy[i] = 0;
}
for (int i = 0; i < op_params.right_padding_count; ++i) {
right_padding_copy[i + PadKernelMaxDimensionCount() -
op_params.right_padding_count] =
op_params.right_padding[i];
}
const int output_batch = ext_output_shape.Dims(0);
const int output_height = ext_output_shape.Dims(1);
const int output_width = ext_output_shape.Dims(2);
const int output_depth = ext_output_shape.Dims(3);
const int left_b_padding = left_padding_copy[0];
const int left_h_padding = left_padding_copy[1];
const int left_w_padding = left_padding_copy[2];
const int left_d_padding = left_padding_copy[3];
const int right_b_padding = right_padding_copy[0];
const int right_h_padding = right_padding_copy[1];
const int right_w_padding = right_padding_copy[2];
const int right_d_padding = right_padding_copy[3];
const T pad_value = *pad_value_ptr;
const T* in_ptr = input_data;
T* out_ptr = output_data;
for (int out_b = 0; out_b < output_batch; ++out_b) {
for (int out_h = 0; out_h < output_height; ++out_h) {
for (int out_w = 0; out_w < output_width; ++out_w) {
for (int out_d = 0; out_d < output_depth; ++out_d) {
if (out_b < left_b_padding ||
out_b >= output_batch - right_b_padding ||
out_h < left_h_padding ||
out_h >= output_height - right_h_padding ||
out_w < left_w_padding ||
out_w >= output_width - right_w_padding ||
out_d < left_d_padding ||
out_d >= output_depth - right_d_padding) {
*out_ptr++ = pad_value;
} else {
*out_ptr++ = *in_ptr++;
}
}
}
}
}
}
template <typename T, typename P>
inline void Pad(const tflite::PadParams& op_params,
const RuntimeShape& input_shape, const T* input_data,
const P* pad_value_ptr, const RuntimeShape& output_shape,
T* output_data) {
PadImpl(op_params, input_shape, input_data, pad_value_ptr, output_shape,
output_data);
}
// The second (pad-value) input can be int32_t when, say, the first is uint8_t.
template <typename T>
inline void Pad(const tflite::PadParams& op_params,
const RuntimeShape& input_shape, const T* input_data,
const int32_t* pad_value_ptr, const RuntimeShape& output_shape,
T* output_data) {
const T converted_pad_value = static_cast<T>(*pad_value_ptr);
PadImpl(op_params, input_shape, input_data, &converted_pad_value,
output_shape, output_data);
}
// This version avoids conflicting template matching.
template <>
inline void Pad(const tflite::PadParams& op_params,
const RuntimeShape& input_shape, const int32_t* input_data,
const int32_t* pad_value_ptr, const RuntimeShape& output_shape,
int32_t* output_data) {
PadImpl(op_params, input_shape, input_data, pad_value_ptr, output_shape,
output_data);
}
template <typename T, typename P>
inline void PadImageStyle(const tflite::PadParams& op_params,
const RuntimeShape& input_shape, const T* input_data,
const P* pad_value_ptr,
const RuntimeShape& output_shape, T* output_data) {
Pad(op_params, input_shape, input_data, pad_value_ptr, output_shape,
output_data);
}
template <typename P>
inline void PadImageStyle(const tflite::PadParams& op_params,
const RuntimeShape& input_shape,
const float* input_data, const P* pad_value_ptr,
const RuntimeShape& output_shape,
float* output_data) {
Pad(op_params, input_shape, input_data, pad_value_ptr, output_shape,
output_data);
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PAD_H_

View File

@@ -0,0 +1,297 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_POOLING_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_POOLING_H_
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/cppmath.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
inline void AveragePool(const PoolParams& params,
const RuntimeShape& input_shape,
const float* input_data,
const RuntimeShape& output_shape, float* output_data) {
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int depth = MatchingDim(input_shape, 3, output_shape, 3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
const int stride_height = params.stride_height;
const int stride_width = params.stride_width;
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int channel = 0; channel < depth; ++channel) {
const int in_x_origin =
(out_x * stride_width) - params.padding_values.width;
const int in_y_origin =
(out_y * stride_height) - params.padding_values.height;
// Compute the boundaries of the filter region clamped so as to
// ensure that the filter window fits in the input array.
const int filter_x_start = std::max(0, -in_x_origin);
const int filter_x_end =
std::min(params.filter_width, input_width - in_x_origin);
const int filter_y_start = std::max(0, -in_y_origin);
const int filter_y_end =
std::min(params.filter_height, input_height - in_y_origin);
float total = 0.f;
float filter_count = 0;
for (int filter_y = filter_y_start; filter_y < filter_y_end;
++filter_y) {
for (int filter_x = filter_x_start; filter_x < filter_x_end;
++filter_x) {
const int in_x = in_x_origin + filter_x;
const int in_y = in_y_origin + filter_y;
total +=
input_data[Offset(input_shape, batch, in_y, in_x, channel)];
filter_count++;
}
}
const float average = total / filter_count;
output_data[Offset(output_shape, batch, out_y, out_x, channel)] =
ActivationFunctionWithMinMax(average, params.float_activation_min,
params.float_activation_max);
}
}
}
}
}
inline void AveragePool(const PoolParams& params,
const RuntimeShape& input_shape,
const uint8_t* input_data,
const RuntimeShape& output_shape,
uint8_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int depth = MatchingDim(input_shape, 3, output_shape, 3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
const int stride_height = params.stride_height;
const int stride_width = params.stride_width;
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int channel = 0; channel < depth; ++channel) {
const int in_x_origin =
(out_x * stride_width) - params.padding_values.width;
const int in_y_origin =
(out_y * stride_height) - params.padding_values.height;
// Compute the boundaries of the filter region clamped so as to
// ensure that the filter window fits in the input array.
const int filter_x_start = std::max(0, -in_x_origin);
const int filter_x_end =
std::min(params.filter_width, input_width - in_x_origin);
const int filter_y_start = std::max(0, -in_y_origin);
const int filter_y_end =
std::min(params.filter_height, input_height - in_y_origin);
int32_t acc = 0;
int filter_count = 0;
for (int filter_y = filter_y_start; filter_y < filter_y_end;
++filter_y) {
for (int filter_x = filter_x_start; filter_x < filter_x_end;
++filter_x) {
const int in_x = in_x_origin + filter_x;
const int in_y = in_y_origin + filter_y;
acc +=
input_data[Offset(input_shape, batch, in_y, in_x, channel)];
filter_count++;
}
}
acc = (acc + filter_count / 2) / filter_count;
acc = std::max(acc, params.quantized_activation_min);
acc = std::min(acc, params.quantized_activation_max);
output_data[Offset(output_shape, batch, out_y, out_x, channel)] =
static_cast<uint8_t>(acc);
}
}
}
}
}
inline void L2Pool(const PoolParams& params, const RuntimeShape& input_shape,
const float* input_data, const RuntimeShape& output_shape,
float* output_data) {
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int depth = MatchingDim(input_shape, 3, output_shape, 3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
const int stride_height = params.stride_height;
const int stride_width = params.stride_width;
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int channel = 0; channel < depth; ++channel) {
const int in_x_origin =
(out_x * stride_width) - params.padding_values.width;
const int in_y_origin =
(out_y * stride_height) - params.padding_values.height;
// Compute the boundaries of the filter region clamped so as to
// ensure that the filter window fits in the input array.
const int filter_x_start = std::max(0, -in_x_origin);
const int filter_x_end =
std::min(params.filter_width, input_width - in_x_origin);
const int filter_y_start = std::max(0, -in_y_origin);
const int filter_y_end =
std::min(params.filter_height, input_height - in_y_origin);
float sum_squares = 0.f;
int filter_count = 0;
for (int filter_y = filter_y_start; filter_y < filter_y_end;
++filter_y) {
for (int filter_x = filter_x_start; filter_x < filter_x_end;
++filter_x) {
const int in_x = in_x_origin + filter_x;
const int in_y = in_y_origin + filter_y;
const float val =
input_data[Offset(input_shape, batch, in_y, in_x, channel)];
sum_squares += val * val;
filter_count++;
}
}
const float l2pool_result = std::sqrt(sum_squares / filter_count);
output_data[Offset(output_shape, batch, out_y, out_x, channel)] =
ActivationFunctionWithMinMax(l2pool_result,
params.float_activation_min,
params.float_activation_max);
}
}
}
}
}
inline void MaxPool(const PoolParams& params, const RuntimeShape& input_shape,
const float* input_data, const RuntimeShape& output_shape,
float* output_data) {
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int depth = MatchingDim(input_shape, 3, output_shape, 3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
const int stride_height = params.stride_height;
const int stride_width = params.stride_width;
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int channel = 0; channel < depth; ++channel) {
const int in_x_origin =
(out_x * stride_width) - params.padding_values.width;
const int in_y_origin =
(out_y * stride_height) - params.padding_values.height;
// Compute the boundaries of the filter region clamped so as to
// ensure that the filter window fits in the input array.
const int filter_x_start = std::max(0, -in_x_origin);
const int filter_x_end =
std::min(params.filter_width, input_width - in_x_origin);
const int filter_y_start = std::max(0, -in_y_origin);
const int filter_y_end =
std::min(params.filter_height, input_height - in_y_origin);
float max = std::numeric_limits<float>::lowest();
for (int filter_y = filter_y_start; filter_y < filter_y_end;
++filter_y) {
for (int filter_x = filter_x_start; filter_x < filter_x_end;
++filter_x) {
const int in_x = in_x_origin + filter_x;
const int in_y = in_y_origin + filter_y;
max = std::max(
max,
input_data[Offset(input_shape, batch, in_y, in_x, channel)]);
}
}
output_data[Offset(output_shape, batch, out_y, out_x, channel)] =
ActivationFunctionWithMinMax(max, params.float_activation_min,
params.float_activation_max);
}
}
}
}
}
inline void MaxPool(const PoolParams& params, const RuntimeShape& input_shape,
const uint8_t* input_data, const RuntimeShape& output_shape,
uint8_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
TFLITE_DCHECK_GE(params.quantized_activation_min, 0);
TFLITE_DCHECK_LE(params.quantized_activation_max, 255);
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int depth = MatchingDim(input_shape, 3, output_shape, 3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
const int stride_height = params.stride_height;
const int stride_width = params.stride_width;
for (int batch = 0; batch < batches; ++batch) {
for (int out_y = 0; out_y < output_height; ++out_y) {
for (int out_x = 0; out_x < output_width; ++out_x) {
for (int channel = 0; channel < depth; ++channel) {
const int in_x_origin =
(out_x * stride_width) - params.padding_values.width;
const int in_y_origin =
(out_y * stride_height) - params.padding_values.height;
// Compute the boundaries of the filter region clamped so as to
// ensure that the filter window fits in the input array.
const int filter_x_start = std::max(0, -in_x_origin);
const int filter_x_end =
std::min(params.filter_width, input_width - in_x_origin);
const int filter_y_start = std::max(0, -in_y_origin);
const int filter_y_end =
std::min(params.filter_height, input_height - in_y_origin);
uint8_t max = 0;
for (int filter_y = filter_y_start; filter_y < filter_y_end;
++filter_y) {
for (int filter_x = filter_x_start; filter_x < filter_x_end;
++filter_x) {
const int in_x = in_x_origin + filter_x;
const int in_y = in_y_origin + filter_y;
max = std::max(
max,
input_data[Offset(input_shape, batch, in_y, in_x, channel)]);
}
}
max = std::max<uint8_t>(max, params.quantized_activation_min);
max = std::min<uint8_t>(max, params.quantized_activation_max);
output_data[Offset(output_shape, batch, out_y, out_x, channel)] =
static_cast<uint8_t>(max);
}
}
}
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_POOLING_H_

View File

@@ -0,0 +1,109 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PRELU_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PRELU_H_
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/compatibility.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
// Broadcast prelu to output_shape for quantized uint8_t/int8_t data.
template <typename T>
inline void BroadcastPrelu4DSlow(
const PreluParams& params, const RuntimeShape& input_shape,
const T* input_data, const RuntimeShape& alpha_shape, const T* alpha_data,
const RuntimeShape& output_shape, T* output_data) {
TFLITE_DCHECK_LE(input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_LE(alpha_shape.DimensionsCount(), 4);
TFLITE_DCHECK_LE(output_shape.DimensionsCount(), 4);
const RuntimeShape extended_output_shape =
RuntimeShape::ExtendedShape(4, output_shape);
NdArrayDesc<4> desc1;
NdArrayDesc<4> desc2;
NdArrayDescsForElementwiseBroadcast(input_shape, alpha_shape, &desc1, &desc2);
for (int b = 0; b < extended_output_shape.Dims(0); ++b) {
for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
int output_index = Offset(extended_output_shape, b, y, x, c);
int input_index = SubscriptToIndex(desc1, b, y, x, c);
const int32_t input_value =
params.input_offset + input_data[input_index];
int32_t output_value;
if (input_value >= 0) {
output_value = MultiplyByQuantizedMultiplier(
input_value, params.output_multiplier_1, params.output_shift_1);
} else {
auto alpha_index = SubscriptToIndex(desc2, b, y, x, c);
const int32_t alpha_value =
params.alpha_offset + alpha_data[alpha_index];
output_value = MultiplyByQuantizedMultiplier(
input_value * alpha_value, params.output_multiplier_2,
params.output_shift_2);
}
output_value += params.output_offset;
const int32_t quantized_min = std::numeric_limits<T>::min();
const int32_t quantized_max = std::numeric_limits<T>::max();
const int32_t clamped_output =
std::min(quantized_max, std::max(quantized_min, output_value));
output_data[output_index] = static_cast<T>(clamped_output);
}
}
}
}
}
template <typename T>
inline void Prelu(const PreluParams& params, const RuntimeShape& input_shape,
const T* input_data, const RuntimeShape& alpha_shape,
const T* alpha_data, const RuntimeShape& output_shape,
T* output_data) {
const int32_t quantized_min = std::numeric_limits<T>::min();
const int32_t quantized_max = std::numeric_limits<T>::max();
const int flat_size =
MatchingElementsSize(input_shape, alpha_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
const int32_t input_value = params.input_offset + input_data[i];
int32_t output_value;
if (input_value >= 0) {
output_value = MultiplyByQuantizedMultiplier(
input_value, params.output_multiplier_1, params.output_shift_1);
} else {
const int32_t alpha_value = params.alpha_offset + alpha_data[i];
output_value = MultiplyByQuantizedMultiplier(input_value * alpha_value,
params.output_multiplier_2,
params.output_shift_2);
}
output_value += params.output_offset;
const int32_t clamped_output =
std::min(quantized_max, std::max(quantized_min, output_value));
output_data[i] = static_cast<T>(clamped_output);
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PRELU_H_

View File

@@ -0,0 +1,138 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PROCESS_BROADCAST_SHAPES_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PROCESS_BROADCAST_SHAPES_H_
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
// Consolidates dimensions in broadcast inputs, checks for five-fold pattern.
//
// For example, if sequence of dimensions of one input is
// ..., 1, 3, 1, 7, 9, 5,... and the other is ..., 2, 3, 1, 7, 1, 1, ...
// we can consolidate these as
// ..., 1, 3*7, 9*5, ... and 2, 3*7, 1.
//
// The category is updated in the less-frequent case of shapes that are
// not suited to a fivefold-loop broadcast.
//
// Falls back to generic pattern when it does not know how to process properly.
//
// Returns true iff there is some sort of broadcast, which includes five-fold
// patterns and falling back to generic broadcast.
inline bool ProcessBroadcastShapes(const RuntimeShape& shape0,
const RuntimeShape& shape1,
tflite::ArithmeticParams* params) {
const int dims_count =
std::max(shape0.DimensionsCount(), shape1.DimensionsCount());
params->broadcast_category = BroadcastableOpCategory::kGenericBroadcast;
RuntimeShape scalar_shape(dims_count, 1);
auto extended_shape0 = RuntimeShape::ExtendedShape(dims_count, shape0);
auto extended_shape1 = RuntimeShape::ExtendedShape(dims_count, shape1);
// Check for "exact" match, implicitly accepting any scalar shapes.
if (extended_shape0 == extended_shape1) {
params->broadcast_category = BroadcastableOpCategory::kNonBroadcast;
return false;
}
for (int i = dims_count - 1; i >= 0; --i) {
if (extended_shape0.Dims(i) == extended_shape1.Dims(i)) {
continue;
} else if (extended_shape0.Dims(i) == 1) {
params->broadcast_category =
BroadcastableOpCategory::kFirstInputBroadcastsFast;
break;
} else if (extended_shape1.Dims(i) == 1) {
params->broadcast_category =
BroadcastableOpCategory::kSecondInputBroadcastsFast;
break;
} else {
// This case is erroneous: there is a dimension that does not match and
// is not a broadcast from one shape to the other.
params->broadcast_category = BroadcastableOpCategory::kGenericBroadcast;
return true;
}
}
if (params->broadcast_category !=
BroadcastableOpCategory::kFirstInputBroadcastsFast &&
params->broadcast_category !=
BroadcastableOpCategory::kSecondInputBroadcastsFast) {
// This is unreachable because at least one else clause in the above loop
// must be reached.
TFLITE_DCHECK(false);
params->broadcast_category = BroadcastableOpCategory::kNonBroadcast;
return false;
}
// From this point it is assumed contractually that corresponding dimensions
// in shape0 and shape1 are either (a) equal or (b) one or other equals 1.
const bool swap_inputs = params->broadcast_category ==
BroadcastableOpCategory::kSecondInputBroadcastsFast;
const RuntimeShape* shape_a =
swap_inputs ? &extended_shape1 : &extended_shape0;
const RuntimeShape* shape_b =
swap_inputs ? &extended_shape0 : &extended_shape1;
int i = dims_count - 1;
params->broadcast_shape[0] = 1;
params->broadcast_shape[1] = 1;
params->broadcast_shape[2] = 1;
params->broadcast_shape[3] = 1;
params->broadcast_shape[4] = 1;
// y_0 is greedy: include dims if both or neither equal 1: in other words,
// test for equality rather than (shape_a->Dims(i) != 1).
while (i >= 0 && shape_a->Dims(i) == shape_b->Dims(i)) {
params->broadcast_shape[4] *= shape_b->Dims(i);
--i;
}
// Here either input_a or input_b has dim of 1 (if i >= 0). If it is input_b
// that has the unit dimension, the next two loops are not entered.
while (i >= 0 && shape_a->Dims(i) == 1) {
params->broadcast_shape[3] *= shape_b->Dims(i);
--i;
}
while (i >= 0 && shape_a->Dims(i) == shape_b->Dims(i)) {
params->broadcast_shape[2] *= shape_a->Dims(i);
--i;
}
// Here either input_a or input_b has dim of 1 (if i >= 0).
while (i >= 0 && shape_b->Dims(i) == 1) {
params->broadcast_shape[1] *= shape_a->Dims(i);
--i;
}
while (i >= 0 && shape_a->Dims(i) == shape_b->Dims(i)) {
params->broadcast_shape[0] *= shape_b->Dims(i);
--i;
}
// Rarer case is when the broadcast dimensions cannot be handled by a fivefold
// loop.
if (i >= 0) {
params->broadcast_category = BroadcastableOpCategory::kGenericBroadcast;
}
return true;
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_PROCESS_BROADCAST_SHAPES_H_

View File

@@ -0,0 +1,55 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_QUANTIZE_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_QUANTIZE_H_
#include <algorithm>
#include <limits>
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/compatibility.h"
#include "tensorflow/lite/kernels/internal/cppmath.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
template <typename InputT, typename OutputT>
inline void AffineQuantize(const tflite::QuantizationParams& op_params,
const RuntimeShape& input_shape,
const InputT* input_data,
const RuntimeShape& output_shape,
OutputT* output_data) {
const int32_t zero_point = op_params.zero_point;
const double scale = op_params.scale;
const int flat_size = MatchingFlatSize(input_shape, output_shape);
static constexpr int32_t min_val = std::numeric_limits<OutputT>::min();
static constexpr int32_t max_val = std::numeric_limits<OutputT>::max();
for (int i = 0; i < flat_size; i++) {
const InputT val = input_data[i];
int32_t unclamped =
static_cast<int32_t>(TfLiteRound(val / static_cast<float>(scale))) +
zero_point;
int32_t clamped = std::min(std::max(unclamped, min_val), max_val);
output_data[i] = clamped;
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_QUANTIZE_H_

View File

@@ -0,0 +1,405 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_REDUCE_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_REDUCE_H_
#include "ruy/profiler/instrumentation.h" // from @ruy
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/cppmath.h"
#include "tensorflow/lite/kernels/internal/max.h"
#include "tensorflow/lite/kernels/internal/min.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
// A generic reduce method that can be used for reduce_sum, reduce_mean, etc.
// This method iterates through input data and reduce elements along the
// dimensions given in axis.
template <typename In, typename Out>
inline bool Reduce(const In* input_data, const int* input_dims,
const int* output_dims, const int input_num_dims,
const int output_num_dims, const int* axis,
const int num_axis, int* input_iter,
Out reducer(const Out current, const In in),
Out* output_data) {
// Reset input iterator.
for (int idx = 0; idx < input_num_dims; ++idx) {
input_iter[idx] = 0;
}
// Iterate through input_data.
do {
size_t input_offset =
ReducedOutputOffset(input_num_dims, input_dims, input_iter, 0, nullptr);
size_t output_offset = ReducedOutputOffset(input_num_dims, input_dims,
input_iter, num_axis, axis);
output_data[output_offset] =
reducer(output_data[output_offset], input_data[input_offset]);
} while (NextIndex(input_num_dims, input_dims, input_iter));
return true;
}
// This method parses the input 'axis' to remove duplicates and handle negative
// values, and returns a valid 'out_axis'
inline bool ResolveAxis(const int num_dims, const int* axis,
const int64_t num_axis, int* out_axis,
int* out_num_axis) {
*out_num_axis = 0; // Just in case.
// Short-circuit axis resolution for scalars; the axis will go unused.
if (num_dims == 0) {
return true;
}
// o(n^2) is fine since out_num_axis should be really small, mostly <= 4
for (int64_t idx = 0; idx < num_axis; ++idx) {
// Handle negative index. A positive index 'p_idx' can be represented as a
// negative index 'n_idx' as: n_idx = p_idx-num_dims
// eg: For num_dims=3, [0, 1, 2] is the same as [-3, -2, -1] */
int current = axis[idx] < 0 ? (axis[idx] + num_dims) : axis[idx];
TFLITE_DCHECK(current >= 0 && current < num_dims);
bool is_dup = false;
for (int j = 0; j < *out_num_axis; ++j) {
if (out_axis[j] == current) {
is_dup = true;
break;
}
}
if (!is_dup) {
out_axis[*out_num_axis] = current;
*out_num_axis += 1;
}
}
return true;
}
// This method expects that output_data has been initialized.
template <typename In, typename Out>
inline bool ReduceSumImpl(const In* input_data, const int* input_dims,
const int* output_dims, const int input_num_dims,
const int output_num_dims, const int* axis,
const int num_axis, int* input_iter,
Out* output_data) {
auto reducer = [](const Out current, const In in) -> Out {
const Out actual_in = static_cast<Out>(in);
return current + actual_in;
};
return Reduce<In, Out>(input_data, input_dims, output_dims, input_num_dims,
output_num_dims, axis, num_axis, input_iter, reducer,
output_data);
}
template <typename T>
inline bool InitTensorDataForReduce(const int* dims, const int num_dims,
const T init_value, T* data) {
size_t num_elements = 1;
for (int idx = 0; idx < num_dims; ++idx) {
size_t current = static_cast<size_t>(dims[idx]);
// Overflow prevention.
if (num_elements > std::numeric_limits<size_t>::max() / current) {
return false;
}
num_elements *= current;
}
for (size_t idx = 0; idx < num_elements; ++idx) {
data[idx] = init_value;
}
return true;
}
// Computes the generic value (i.e., sum/max/min/prod) of elements across
// dimensions given in axis. It needs to pass in init_value and reducer.
template <typename T>
inline bool ReduceGeneric(const T* input_data, const int* input_dims,
const int input_num_dims, T* output_data,
const int* output_dims, const int output_num_dims,
const int* axis, const int64_t num_axis_dimensions,
bool keep_dims, int* temp_index, int* resolved_axis,
T init_value,
T reducer(const T current, const T in)) {
// Reset output data.
if (!InitTensorDataForReduce(output_dims, output_num_dims, init_value,
output_data)) {
return false;
}
// Resolve axis.
int num_resolved_axis = 0;
if (!ResolveAxis(input_num_dims, axis, num_axis_dimensions, resolved_axis,
&num_resolved_axis)) {
return false;
}
return Reduce<T, T>(input_data, input_dims, output_dims, input_num_dims,
output_num_dims, resolved_axis, num_resolved_axis,
temp_index, reducer, output_data);
}
// Computes the mean of elements across dimensions given in axis.
// It does so in two stages, first calculates the sum of elements along the axis
// then divides it by the number of element in axis.
template <typename T, typename U>
inline bool Mean(const T* input_data, const int* input_dims,
const int input_num_dims, T* output_data,
const int* output_dims, const int output_num_dims,
const int* axis, const int num_axis_dimensions, bool keep_dims,
int* temp_index, int* resolved_axis, U* temp_sum) {
ruy::profiler::ScopeLabel label("Mean");
// Reset output data.
size_t num_outputs = 1;
for (int idx = 0; idx < output_num_dims; ++idx) {
size_t current = static_cast<size_t>(output_dims[idx]);
// Overflow prevention.
if (num_outputs > std::numeric_limits<size_t>::max() / current) {
return false;
}
num_outputs *= current;
}
for (size_t idx = 0; idx < num_outputs; ++idx) {
output_data[idx] = T();
temp_sum[idx] = U();
}
// Resolve axis.
int num_resolved_axis = 0;
if (!ResolveAxis(input_num_dims, axis, num_axis_dimensions, resolved_axis,
&num_resolved_axis)) {
return false;
}
if (!ReduceSumImpl<T, U>(input_data, input_dims, output_dims, input_num_dims,
output_num_dims, resolved_axis, num_resolved_axis,
temp_index, temp_sum)) {
return false;
}
// Calculate mean by dividing output_data by num of aggregated element.
U num_elements_in_axis = 1;
for (int idx = 0; idx < num_resolved_axis; ++idx) {
size_t current = static_cast<size_t>(input_dims[resolved_axis[idx]]);
// Overflow prevention.
if (current > (std::numeric_limits<U>::max() / num_elements_in_axis)) {
return false;
}
num_elements_in_axis *= current;
}
if (num_elements_in_axis > 0) {
for (size_t idx = 0; idx < num_outputs; ++idx) {
output_data[idx] =
static_cast<T>(temp_sum[idx] / static_cast<U>(num_elements_in_axis));
}
}
return true;
}
template <typename T>
inline void Mean(const tflite::MeanParams& op_params,
const RuntimeShape& unextended_input_shape,
const T* input_data,
const RuntimeShape& unextended_output_shape, T* output_data) {
ruy::profiler::ScopeLabel label("Mean4D");
// Current implementation only supports dimension equals 4 and simultaneous
// reduction over width and height.
TFLITE_CHECK_EQ(unextended_input_shape.DimensionsCount(), 4);
TFLITE_CHECK_LE(unextended_output_shape.DimensionsCount(), 4);
const RuntimeShape input_shape =
RuntimeShape::ExtendedShape(4, unextended_input_shape);
const RuntimeShape output_shape =
RuntimeShape::ExtendedShape(4, unextended_output_shape);
const int output_batch = output_shape.Dims(0);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
const int output_depth = output_shape.Dims(3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
TFLITE_CHECK_EQ(op_params.axis_count, 2);
TFLITE_CHECK((op_params.axis[0] == 1 && op_params.axis[1] == 2) ||
(op_params.axis[0] == 2 && op_params.axis[1] == 1));
TFLITE_CHECK_EQ(output_height, 1);
TFLITE_CHECK_EQ(output_width, 1);
for (int out_b = 0; out_b < output_batch; ++out_b) {
for (int out_d = 0; out_d < output_depth; ++out_d) {
float value = 0;
for (int in_h = 0; in_h < input_height; ++in_h) {
for (int in_w = 0; in_w < input_width; ++in_w) {
value += input_data[Offset(input_shape, out_b, in_h, in_w, out_d)];
}
}
output_data[Offset(output_shape, out_b, 0, 0, out_d)] =
value / (input_width * input_height);
}
}
}
inline void Mean(const tflite::MeanParams& op_params,
const RuntimeShape& unextended_input_shape,
const uint8_t* input_data, int32_t input_zero_point,
float input_scale, const RuntimeShape& unextended_output_shape,
uint8_t* output_data, int32_t output_zero_point,
float output_scale) {
ruy::profiler::ScopeLabel label("Mean4D/Uint8");
// Current implementation only supports dimension equals 4 and simultaneous
// reduction over width and height.
TFLITE_CHECK_EQ(unextended_input_shape.DimensionsCount(), 4);
TFLITE_CHECK_LE(unextended_output_shape.DimensionsCount(), 4);
const RuntimeShape input_shape =
RuntimeShape::ExtendedShape(4, unextended_input_shape);
const RuntimeShape output_shape =
RuntimeShape::ExtendedShape(4, unextended_output_shape);
const int output_batch = output_shape.Dims(0);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
const int output_depth = output_shape.Dims(3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const float num_elements_in_axis = input_width * input_height;
TFLITE_CHECK_EQ(op_params.axis_count, 2);
TFLITE_CHECK((op_params.axis[0] == 1 && op_params.axis[1] == 2) ||
(op_params.axis[0] == 2 && op_params.axis[1] == 1));
TFLITE_CHECK_EQ(output_height, 1);
TFLITE_CHECK_EQ(output_width, 1);
constexpr int32_t kMinValue = std::numeric_limits<uint8_t>::min();
constexpr int32_t kMaxValue = std::numeric_limits<uint8_t>::max();
int32_t bias =
output_zero_point -
static_cast<int32_t>(input_zero_point * input_scale / output_scale);
double real_scale =
static_cast<double>(input_scale / (num_elements_in_axis * output_scale));
int32_t multiplier;
int shift;
QuantizeMultiplier(real_scale, &multiplier, &shift);
for (int out_b = 0; out_b < output_batch; ++out_b) {
for (int out_d = 0; out_d < output_depth; ++out_d) {
int32_t acc = 0;
for (int in_h = 0; in_h < input_height; ++in_h) {
for (int in_w = 0; in_w < input_width; ++in_w) {
acc += input_data[Offset(input_shape, out_b, in_h, in_w, out_d)];
}
}
acc = MultiplyByQuantizedMultiplier(acc, multiplier, shift);
acc += bias;
acc = std::min(std::max(acc, kMinValue), kMaxValue);
output_data[Offset(output_shape, out_b, 0, 0, out_d)] =
static_cast<uint8_t>(acc);
}
}
}
// Computes the mean of elements across dimensions given in axis.
// It does so in two stages, first calculates the sum of elements along the axis
// then divides it by the number of element in axis for quantized values.
template <typename T, typename U>
inline bool QuantizedMeanOrSum(const T* input_data, int32_t input_zero_point,
float input_scale, const int* input_dims,
const int input_num_dims, T* output_data,
int32_t output_zero_point, float output_scale,
const int* output_dims,
const int output_num_dims, const int* axis,
const int num_axis_dimensions, bool keep_dims,
int* temp_index, int* resolved_axis, U* temp_sum,
bool compute_sum) {
const bool uint8_case = std::is_same<T, uint8_t>::value;
const bool int16_case = std::is_same<T, int16_t>::value;
if (uint8_case) {
ruy::profiler::ScopeLabel label(compute_sum ? "Sum/Uint8" : "Mean/Uint8");
} else if (int16_case) {
ruy::profiler::ScopeLabel label(compute_sum ? "Sum/Int16" : "Mean/Int16");
} else {
ruy::profiler::ScopeLabel label(compute_sum ? "Sum/Int8" : "Mean/Int8");
}
// Reset output data.
size_t num_outputs = 1;
for (int idx = 0; idx < output_num_dims; ++idx) {
size_t current = static_cast<size_t>(output_dims[idx]);
// Overflow prevention.
if (num_outputs > std::numeric_limits<size_t>::max() / current) {
return false;
}
num_outputs *= current;
}
for (size_t idx = 0; idx < num_outputs; ++idx) {
output_data[idx] = T();
temp_sum[idx] = U();
}
// Resolve axis.
int num_resolved_axis = 0;
if (!ResolveAxis(input_num_dims, axis, num_axis_dimensions, resolved_axis,
&num_resolved_axis)) {
return false;
}
if (!ReduceSumImpl<T, U>(input_data, input_dims, output_dims, input_num_dims,
output_num_dims, resolved_axis, num_resolved_axis,
temp_index, temp_sum)) {
return false;
}
// Calculate mean by dividing output_data by num of aggregated element.
U num_elements_in_axis = 1;
for (int idx = 0; idx < num_resolved_axis; ++idx) {
size_t current = static_cast<size_t>(input_dims[resolved_axis[idx]]);
// Overflow prevention.
if (current > (std::numeric_limits<U>::max() / num_elements_in_axis)) {
return false;
}
num_elements_in_axis *= current;
}
if (num_elements_in_axis > 0) {
const float scale = input_scale / output_scale;
if (compute_sum) {
// TODO(b/116341117): Eliminate float and do this completely in 8bit.
const float bias =
-input_zero_point * scale * num_elements_in_axis + 0.5f;
for (size_t idx = 0; idx < num_outputs; ++idx) {
const U value =
static_cast<U>(TfLiteRound(temp_sum[idx] * scale + bias)) +
output_zero_point;
output_data[idx] = static_cast<T>(value);
}
} else {
const float bias = -input_zero_point * scale + 0.5f;
for (size_t idx = 0; idx < num_outputs; ++idx) {
float float_mean = static_cast<float>(temp_sum[idx]) /
static_cast<float>(num_elements_in_axis);
float result = TfLiteMin(
TfLiteRound(float_mean * scale + bias) + output_zero_point,
static_cast<float>(std::numeric_limits<T>::max()));
result = TfLiteMax(result,
static_cast<float>(std::numeric_limits<T>::min()));
output_data[idx] = static_cast<T>(result);
}
}
}
return true;
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_REDUCE_H_

View File

@@ -0,0 +1,67 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_REQUANTIZE_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_REQUANTIZE_H_
#include "ruy/profiler/instrumentation.h" // from @ruy
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
template <typename input_type, typename output_type>
inline void Requantize(const input_type* input_data, int32_t size,
int32_t effective_scale_multiplier,
int32_t effective_scale_shift, int32_t input_zeropoint,
int32_t output_zeropoint, output_type* output_data) {
ruy::profiler::ScopeLabel label("Requantize");
const bool same_scale =
(effective_scale_multiplier == 1 << 30 && effective_scale_shift == 1);
if (same_scale) {
const bool mixed_type_int8_uint8 =
std::is_same<input_type, int8_t>::value &&
std::is_same<output_type, uint8_t>::value;
const bool mixed_type_uint8_int8 =
std::is_same<input_type, uint8_t>::value &&
std::is_same<output_type, int8_t>::value;
const int32_t zero_point_diff = input_zeropoint - output_zeropoint;
// Fast path to do requantization for the case when just a shift of 128 is
// needed.
if ((mixed_type_int8_uint8 && zero_point_diff == -128) ||
(mixed_type_uint8_int8 && zero_point_diff == 128)) {
for (int i = 0; i < size; ++i) {
output_data[i] = input_data[i] ^ 0x80;
}
}
}
static constexpr int32_t kMinOutput = std::numeric_limits<output_type>::min();
static constexpr int32_t kMaxOutput = std::numeric_limits<output_type>::max();
for (int i = 0; i < size; ++i) {
const int32_t input = input_data[i] - input_zeropoint;
const int32_t output =
MultiplyByQuantizedMultiplier(input, effective_scale_multiplier,
effective_scale_shift) +
output_zeropoint;
const int32_t clamped_output =
std::max(std::min(output, kMaxOutput), kMinOutput);
output_data[i] = static_cast<output_type>(clamped_output);
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_REQUANTIZE_H_

View File

@@ -0,0 +1,101 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_RESIZE_NEAREST_NEIGHBOR_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_RESIZE_NEAREST_NEIGHBOR_H_
#include <cmath>
#include "tensorflow/lite/kernels/internal/cppmath.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
inline int32_t GetNearestNeighbor(const int input_value,
const int32_t input_size,
const int32_t output_size,
const bool align_corners,
const bool half_pixel_centers) {
const float scale =
(align_corners && output_size > 1)
? (input_size - 1) / static_cast<float>(output_size - 1)
: input_size / static_cast<float>(output_size);
const float offset = half_pixel_centers ? 0.5f : 0.0f;
int32_t output_value = std::min(
align_corners
? static_cast<int32_t>(TfLiteRound((input_value + offset) * scale))
: static_cast<int32_t>(std::floor((input_value + offset) * scale)),
input_size - 1);
if (half_pixel_centers) {
output_value = std::max(static_cast<int32_t>(0), output_value);
}
return output_value;
}
template <typename T>
inline void ResizeNearestNeighbor(
const tflite::ResizeNearestNeighborParams& op_params,
const RuntimeShape& unextended_input_shape, const T* input_data,
const RuntimeShape& output_size_shape, const int32_t* output_size_data,
const RuntimeShape& unextended_output_shape, T* output_data) {
TFLITE_DCHECK_LE(unextended_input_shape.DimensionsCount(), 4);
TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4);
const RuntimeShape input_shape =
RuntimeShape::ExtendedShape(4, unextended_input_shape);
const RuntimeShape output_shape =
RuntimeShape::ExtendedShape(4, unextended_output_shape);
int32_t batches = MatchingDim(input_shape, 0, output_shape, 0);
int32_t input_height = input_shape.Dims(1);
int32_t input_width = input_shape.Dims(2);
int32_t depth = MatchingDim(input_shape, 3, output_shape, 3);
// The Tensorflow version of this op allows resize on the width and height
// axis only.
TFLITE_DCHECK_EQ(output_size_shape.FlatSize(), 2);
int32_t output_height = output_size_data[0];
int32_t output_width = output_size_data[1];
const int col_offset = input_shape.Dims(3);
const int row_offset = input_shape.Dims(2) * col_offset;
const int batch_offset = input_shape.Dims(1) * row_offset;
const T* input_ptr = input_data;
T* output_ptr = output_data;
for (int b = 0; b < batches; ++b) {
for (int y = 0; y < output_height; ++y) {
int32_t in_y = GetNearestNeighbor(y, input_height, output_height,
op_params.align_corners,
op_params.half_pixel_centers);
const T* y_input_ptr = input_ptr + in_y * row_offset;
for (int x = 0; x < output_width; ++x) {
int32_t in_x = GetNearestNeighbor(x, input_width, output_width,
op_params.align_corners,
op_params.half_pixel_centers);
const T* x_input_ptr = y_input_ptr + in_x * col_offset;
memcpy(output_ptr, x_input_ptr, depth * sizeof(T));
output_ptr += depth;
}
}
input_ptr += batch_offset;
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_RESIZE_NEAREST_NEIGHBOR_H_

View File

@@ -0,0 +1,51 @@
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ROUND_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ROUND_H_
#include <cmath>
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
inline float RoundToNearest(float value) {
auto floor_val = std::floor(value);
auto diff = value - floor_val;
if ((diff < 0.5f) ||
((diff == 0.5f) && (static_cast<int>(floor_val) % 2 == 0))) {
return floor_val;
} else {
return floor_val = floor_val + 1.0f;
}
}
inline void Round(const RuntimeShape& input_shape, const float* input_data,
const RuntimeShape& output_shape, float* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
// Note that this implementation matches that of tensorFlow tf.round
// and corresponds to the bankers rounding method.
// cfenv (for fesetround) is not yet supported universally on Android, so
// using a work around.
output_data[i] = RoundToNearest(input_data[i]);
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_ROUND_H_

View File

@@ -0,0 +1,228 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SOFTMAX_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SOFTMAX_H_
#include <limits>
#include <vector>
#include "fixedpoint/fixedpoint.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/cppmath.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/types.h"
#include "tensorflow/lite/kernels/op_macros.h"
namespace tflite {
namespace reference_ops {
inline void Softmax(const SoftmaxParams& params,
const RuntimeShape& input_shape, const float* input_data,
const RuntimeShape& output_shape, float* output_data) {
const int trailing_dim = input_shape.DimensionsCount() - 1;
const int outer_size =
MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape);
const int depth =
MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim);
for (int i = 0; i < outer_size; ++i) {
// Find max element value which we'll use to ensure numerical stability
// taking advantage of the following equality:
// exp(x[i])/sum(exp(x[i])) == exp(x[i]+C)/sum(exp(x[i]+C))
float max = std::numeric_limits<float>::lowest();
for (int c = 0; c < depth; ++c) {
max = std::max(max, input_data[i * depth + c]);
}
// Compute sum.
float sum = 0.f;
for (int c = 0; c < depth; ++c) {
sum += std::exp((input_data[i * depth + c] - max) *
static_cast<float>(params.beta));
}
// Compute result.
for (int c = 0; c < depth; ++c) {
output_data[i * depth + c] = std::exp((input_data[i * depth + c] - max) *
static_cast<float>(params.beta)) /
sum;
}
}
}
// Quantized softmax with int8_t/uint8_t input and int8_t/uint8_t/int16_t
// output.
template <typename InputT, typename OutputT>
inline void Softmax(const SoftmaxParams& params,
const RuntimeShape& input_shape, const InputT* input_data,
const RuntimeShape& output_shape, OutputT* output_data) {
const int32_t input_beta_multiplier = params.input_multiplier;
const int32_t input_beta_left_shift = params.input_left_shift;
const int diff_min = params.diff_min;
// The representation chosen for the input to the exp() function is Q5.26.
// We need to leave extra space since values that we skip might be as large as
// -32 before multiplying by input_beta_multiplier, and therefore as large as
// -16 afterwards. Note that exp(-8) is definitely not insignificant to
// accumulation, but exp(-16) definitely is.
static const int kScaledDiffIntegerBits = 5;
static const int kAccumulationIntegerBits = 12;
using FixedPointScaledDiff =
gemmlowp::FixedPoint<int32_t, kScaledDiffIntegerBits>;
using FixedPointAccum =
gemmlowp::FixedPoint<int32_t, kAccumulationIntegerBits>;
using FixedPoint0 = gemmlowp::FixedPoint<int32_t, 0>;
const int trailing_dim = input_shape.DimensionsCount() - 1;
const int outer_size =
MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape);
const int depth =
MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim);
for (int i = 0; i < outer_size; ++i) {
InputT max_in_row = std::numeric_limits<InputT>::min();
for (int c = 0; c < depth; ++c) {
max_in_row = std::max(max_in_row, input_data[i * depth + c]);
}
FixedPointAccum sum_of_exps = FixedPointAccum::Zero();
for (int c = 0; c < depth; ++c) {
int32_t input_diff =
static_cast<int32_t>(input_data[i * depth + c]) - max_in_row;
if (input_diff >= diff_min) {
const int32_t input_diff_rescaled =
MultiplyByQuantizedMultiplierGreaterThanOne(
input_diff, input_beta_multiplier, input_beta_left_shift);
const FixedPointScaledDiff scaled_diff_f8 =
FixedPointScaledDiff::FromRaw(input_diff_rescaled);
sum_of_exps = sum_of_exps + gemmlowp::Rescale<kAccumulationIntegerBits>(
exp_on_negative_values(scaled_diff_f8));
}
}
int num_bits_over_unit;
FixedPoint0 shifted_scale = FixedPoint0::FromRaw(GetReciprocal(
sum_of_exps.raw(), kAccumulationIntegerBits, &num_bits_over_unit));
for (int c = 0; c < depth; ++c) {
int32_t input_diff =
static_cast<int32_t>(input_data[i * depth + c]) - max_in_row;
if (input_diff >= diff_min) {
const int32_t input_diff_rescaled =
MultiplyByQuantizedMultiplierGreaterThanOne(
input_diff, input_beta_multiplier, input_beta_left_shift);
const FixedPointScaledDiff scaled_diff_f8 =
FixedPointScaledDiff::FromRaw(input_diff_rescaled);
FixedPoint0 exp_in_0 = exp_on_negative_values(scaled_diff_f8);
int32_t unsat_output = gemmlowp::RoundingDivideByPOT(
(shifted_scale * exp_in_0).raw(),
num_bits_over_unit + 31 - (sizeof(OutputT) * 8));
const int32_t shifted_output =
unsat_output +
static_cast<int32_t>(std::numeric_limits<OutputT>::min());
output_data[i * depth + c] = static_cast<OutputT>(std::max(
std::min(shifted_output,
static_cast<int32_t>(std::numeric_limits<OutputT>::max())),
static_cast<int32_t>(std::numeric_limits<OutputT>::min())));
} else {
output_data[i * depth + c] = std::numeric_limits<OutputT>::min();
}
}
}
}
// Quantized softmax with int16_t input and int16_t output.
inline void SoftmaxInt16(const SoftmaxParams& params,
const RuntimeShape& input_shape,
const int16_t* input_data,
const RuntimeShape& output_shape,
int16_t* output_data) {
const int trailing_dim = input_shape.DimensionsCount() - 1;
const int outer_size =
MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape);
const int depth =
MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim);
for (int i = 0; i < outer_size; ++i) {
// Find the largest element
int16_t max_in_row = std::numeric_limits<int16_t>::min();
for (int c = 0; c < depth; ++c) {
max_in_row = std::max(max_in_row, input_data[i * depth + c]);
}
// Compute exp(input - max_input)
std::vector<int16_t> exp_result_Q015(depth);
for (int c = 0; c < depth; ++c) {
int32_t input_diff = input_data[i * depth + c] - max_in_row;
// scale the input_diff such that [-65535, 0] correspond to [-10.0, 0.0]
int32_t scaled_diff = MultiplyByQuantizedMultiplier(
input_diff, params.input_multiplier, params.input_left_shift);
// recenter to [-32768, 32767]
int32_t sym_scaled_diff = scaled_diff + 32767;
int16_t sat_sym_scaled_diff =
std::min(std::max(sym_scaled_diff, static_cast<int32_t>(-32768)),
static_cast<int32_t>(32767));
// apply the exp() LUT activation function
exp_result_Q015[c] =
generic_int16_table_lookup(sat_sym_scaled_diff, params.exp_lut);
}
// sum_of_exps is a Q16.15 fixed point format.
int32_t sum_of_exps = 0;
for (int c = 0; c < depth; ++c) {
// Q16.15 + Q0.15
sum_of_exps += exp_result_Q015[c];
}
// Compute the reciprocal 1/sum_of_exps
uint8_t headroom_plus_one =
CountLeadingZeros(static_cast<uint32_t>(sum_of_exps));
int32_t shifted_sum =
((static_cast<int64_t>(sum_of_exps) << (headroom_plus_one - 1)) +
(1 << 13)) >>
14;
// since the LUT computes 1/(1 + x) we need to first compute x = (sum - 1).
// also, the LUT expects a symmetrical input, so we must also recenter x
// from [0, 65535] to [-32768, 32767].
int32_t sym_shifted_sum = shifted_sum + (-((1 << 15) + (1 << 16)));
int16_t sat_sym_shifted_sum = static_cast<int16_t>(
std::min(std::max(sym_shifted_sum, static_cast<int32_t>(-32768)),
static_cast<int32_t>(32767)));
// apply 1/(1 + x) LUT activation function
int16_t reciprocal_scale_Q015 = generic_int16_table_lookup(
sat_sym_shifted_sum, params.one_over_one_plus_x_lut);
// Rescale the exp_result with reciprocal
// range of output is [0, 32767] correspond to [0.0, 1.0]
for (int c = 0; c < depth; ++c) {
uint8_t right_shift = 31 - headroom_plus_one;
int64_t round = 1 << (right_shift - 1);
int32_t result = (static_cast<int64_t>(exp_result_Q015[c]) *
static_cast<int64_t>(reciprocal_scale_Q015) +
round) >>
right_shift;
output_data[i * depth + c] = static_cast<int16_t>(
std::min(std::max(result, static_cast<int32_t>(0)),
static_cast<int32_t>(32767)));
}
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SOFTMAX_H_

View File

@@ -0,0 +1,94 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_STRIDED_SLICE_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_STRIDED_SLICE_H_
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/compatibility.h"
#include "tensorflow/lite/kernels/internal/strided_slice_logic.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
template <typename T>
inline void StridedSlice(const tflite::StridedSliceParams& op_params,
const RuntimeShape& unextended_input_shape,
const T* input_data,
const RuntimeShape& unextended_output_shape,
T* output_data) {
using strided_slice::LoopCondition;
using strided_slice::StartForAxis;
using strided_slice::StopForAxis;
// Note that the output_shape is not used herein.
tflite::StridedSliceParams params_copy = op_params;
TFLITE_DCHECK_LE(unextended_input_shape.DimensionsCount(), 5);
TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 5);
const RuntimeShape input_shape =
RuntimeShape::ExtendedShape(5, unextended_input_shape);
const RuntimeShape output_shape =
RuntimeShape::ExtendedShape(5, unextended_output_shape);
// Reverse and pad to 5 dimensions because that is what the runtime code
// requires (ie. all shapes must be 5D and are given backwards).
strided_slice::StridedSlicePadIndices(&params_copy, 5);
const int start_0 = StartForAxis(params_copy, input_shape, 0);
const int stop_0 = StopForAxis(params_copy, input_shape, 0, start_0);
const int start_1 = StartForAxis(params_copy, input_shape, 1);
const int stop_1 = StopForAxis(params_copy, input_shape, 1, start_1);
const int start_2 = StartForAxis(params_copy, input_shape, 2);
const int stop_2 = StopForAxis(params_copy, input_shape, 2, start_2);
const int start_3 = StartForAxis(params_copy, input_shape, 3);
const int stop_3 = StopForAxis(params_copy, input_shape, 3, start_3);
const int start_4 = StartForAxis(params_copy, input_shape, 4);
const int stop_4 = StopForAxis(params_copy, input_shape, 4, start_4);
T* out_ptr = output_data;
for (int offset_0 = start_0 * input_shape.Dims(1),
end_0 = stop_0 * input_shape.Dims(1),
step_0 = params_copy.strides[0] * input_shape.Dims(1);
!LoopCondition(offset_0, end_0, params_copy.strides[0]);
offset_0 += step_0) {
for (int offset_1 = (offset_0 + start_1) * input_shape.Dims(2),
end_1 = (offset_0 + stop_1) * input_shape.Dims(2),
step_1 = params_copy.strides[1] * input_shape.Dims(2);
!LoopCondition(offset_1, end_1, params_copy.strides[1]);
offset_1 += step_1) {
for (int offset_2 = (offset_1 + start_2) * input_shape.Dims(3),
end_2 = (offset_1 + stop_2) * input_shape.Dims(3),
step_2 = params_copy.strides[2] * input_shape.Dims(3);
!LoopCondition(offset_2, end_2, params_copy.strides[2]);
offset_2 += step_2) {
for (int offset_3 = (offset_2 + start_3) * input_shape.Dims(4),
end_3 = (offset_2 + stop_3) * input_shape.Dims(4),
step_3 = params_copy.strides[3] * input_shape.Dims(4);
!LoopCondition(offset_3, end_3, params_copy.strides[3]);
offset_3 += step_3) {
for (int offset_4 = offset_3 + start_4, end_4 = offset_3 + stop_4;
!LoopCondition(offset_4, end_4, params_copy.strides[4]);
offset_4 += params_copy.strides[4]) {
*out_ptr++ = input_data[offset_4];
}
}
}
}
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_STRIDED_SLICE_H_

View File

@@ -0,0 +1,516 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SUB_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SUB_H_
#include <stdint.h>
#include <algorithm>
#include <limits>
#include "ruy/profiler/instrumentation.h" // from @ruy
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/compatibility.h"
#include "tensorflow/lite/kernels/internal/types.h"
namespace tflite {
namespace reference_ops {
inline void SubNonBroadcast(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const float* input1_data,
const RuntimeShape& input2_shape,
const float* input2_data,
const RuntimeShape& output_shape,
float* output_data) {
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
output_data[i] = ActivationFunctionWithMinMax(
input1_data[i] - input2_data[i], params.float_activation_min,
params.float_activation_max);
}
}
inline void SubNonBroadcast(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const int32_t* input1_data,
const RuntimeShape& input2_shape,
const int32_t* input2_data,
const RuntimeShape& output_shape,
int32_t* output_data) {
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
for (int i = 0; i < flat_size; ++i) {
output_data[i] = ActivationFunctionWithMinMax(
input1_data[i] - input2_data[i], params.quantized_activation_min,
params.quantized_activation_max);
}
}
// TODO(b/151345304): We can implement BroadcastSub on buffers of arbitrary
// dimensionality if the runtime code does a single loop over one dimension
// that handles broadcasting as the base case. The code generator would then
// generate max(D1, D2) nested for loops.
// TODO(b/151345101): BroadcastSub is intentionally duplicated from
// reference_ops.h. Once an optimized version is implemented and NdArrayDesc<T>
// is no longer referenced in this file, move NdArrayDesc<T> from types.h to
// reference_ops.h.
template <int N = 5>
inline void BroadcastSubSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const float* input1_data,
const RuntimeShape& input2_shape,
const float* input2_data,
const RuntimeShape& output_shape,
float* output_data) {
ruy::profiler::ScopeLabel label("BroadcastSubSlow/float");
TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(output_shape.DimensionsCount(), N);
NdArrayDesc<N> desc1;
NdArrayDesc<N> desc2;
NdArrayDesc<N> output_desc;
NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
&desc2);
CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc);
// In Tensorflow, the dimensions are canonically named (batch_number, row,
// col, channel), with extents (batches, height, width, depth), with the
// trailing dimension changing most rapidly (channels has the smallest stride,
// typically 1 element).
//
// In generated C code, we store arrays with the dimensions reversed. The
// first dimension has smallest stride.
//
// We name our variables by their Tensorflow convention, but generate C code
// nesting loops such that the innermost loop has the smallest stride for the
// best cache behavior.
auto sub_func = [&](int indexes[N]) {
output_data[SubscriptToIndex(output_desc, indexes)] =
ActivationFunctionWithMinMax(
input1_data[SubscriptToIndex(desc1, indexes)] -
input2_data[SubscriptToIndex(desc2, indexes)],
params.float_activation_min, params.float_activation_max);
};
NDOpsHelper<N>(output_desc, sub_func);
}
template <int N = 5>
inline void BroadcastSubSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const uint8_t* input1_data,
const RuntimeShape& input2_shape,
const uint8_t* input2_data,
const RuntimeShape& output_shape,
uint8_t* output_data) {
ruy::profiler::ScopeLabel label("BroadcastSubSlow/uint8_t");
TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(output_shape.DimensionsCount(), N);
NdArrayDesc<N> desc1;
NdArrayDesc<N> desc2;
NdArrayDesc<N> output_desc;
NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
&desc2);
CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc);
// In Tensorflow, the dimensions are canonically named (batch_number, row,
// col, channel), with extents (batches, height, width, depth), with the
// trailing dimension changing most rapidly (channels has the smallest stride,
// typically 1 element).
//
// In generated C code, we store arrays with the dimensions reversed. The
// first dimension has smallest stride.
//
// We name our variables by their Tensorflow convention, but generate C code
// nesting loops such that the innermost loop has the smallest stride for the
// best cache behavior.
auto sub_func = [&](int indexes[N]) {
const int32_t input1_val =
params.input1_offset + input1_data[SubscriptToIndex(desc1, indexes)];
const int32_t input2_val =
params.input2_offset + input2_data[SubscriptToIndex(desc2, indexes)];
const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
const int32_t scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input1_val, params.input1_multiplier, params.input1_shift);
const int32_t scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input2_val, params.input2_multiplier, params.input2_shift);
const int32_t raw_sub = scaled_input1_val - scaled_input2_val;
const int32_t raw_output =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
raw_sub, params.output_multiplier, params.output_shift) +
params.output_offset;
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, raw_output));
output_data[SubscriptToIndex(output_desc, indexes)] =
static_cast<uint8_t>(clamped_output);
};
NDOpsHelper<N>(output_desc, sub_func);
}
template <int N = 5>
inline void BroadcastSubSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const int32_t* input1_data,
const RuntimeShape& input2_shape,
const int32_t* input2_data,
const RuntimeShape& output_shape,
int32_t* output_data) {
ruy::profiler::ScopeLabel label("BroadcastSubSlow/int32_t");
TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(output_shape.DimensionsCount(), N);
NdArrayDesc<N> desc1;
NdArrayDesc<N> desc2;
NdArrayDesc<N> output_desc;
NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
&desc2);
CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc);
// In Tensorflow, the dimensions are canonically named (batch_number, row,
// col, channel), with extents (batches, height, width, depth), with the
// trailing dimension changing most rapidly (channels has the smallest stride,
// typically 1 element).
//
// In generated C code, we store arrays with the dimensions reversed. The
// first dimension has smallest stride.
//
// We name our variables by their Tensorflow convention, but generate C code
// nesting loops such that the innermost loop has the smallest stride for the
// best cache behavior.
auto sub_func = [&](int indexes[N]) {
output_data[SubscriptToIndex(output_desc, indexes)] =
ActivationFunctionWithMinMax(
input1_data[SubscriptToIndex(desc1, indexes)] -
input2_data[SubscriptToIndex(desc2, indexes)],
params.quantized_activation_min, params.quantized_activation_max);
};
NDOpsHelper<N>(output_desc, sub_func);
}
template <int N = 5>
inline void BroadcastSubSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const int8_t* input1_data,
const RuntimeShape& input2_shape,
const int8_t* input2_data,
const RuntimeShape& output_shape,
int8_t* output_data) {
ruy::profiler::ScopeLabel label("BroadcastSubSlow/int8_t");
NdArrayDesc<N> desc1;
NdArrayDesc<N> desc2;
NdArrayDesc<N> output_desc;
NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
&desc2);
CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc);
// In Tensorflow, the dimensions are canonically named (batch_number, row,
// col, channel), with extents (batches, height, width, depth), with the
// trailing dimension changing most rapidly (channels has the smallest stride,
// typically 1 element).
//
// In generated C code, we store arrays with the dimensions reversed. The
// first dimension has smallest stride.
//
// We name our variables by their Tensorflow convention, but generate C code
// nesting loops such that the innermost loop has the smallest stride for the
// best cache behavior.
auto sub_func = [&](int indexes[N]) {
const int32_t input1_val =
params.input1_offset + input1_data[SubscriptToIndex(desc1, indexes)];
const int32_t input2_val =
params.input2_offset + input2_data[SubscriptToIndex(desc2, indexes)];
const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
const int32_t scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input1_val, params.input1_multiplier, params.input1_shift);
const int32_t scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input2_val, params.input2_multiplier, params.input2_shift);
const int32_t raw_sub = scaled_input1_val - scaled_input2_val;
const int32_t raw_output =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
raw_sub, params.output_multiplier, params.output_shift) +
params.output_offset;
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, raw_output));
output_data[SubscriptToIndex(output_desc, indexes)] =
static_cast<int8_t>(clamped_output);
};
NDOpsHelper<N>(output_desc, sub_func);
}
template <int N = 5>
void BroadcastSubSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape,
const int64_t* input1_data,
const RuntimeShape& input2_shape,
const int64_t* input2_data,
const RuntimeShape& output_shape, int64_t* output_data) {
ruy::profiler::ScopeLabel label("BroadcastSubSlow/int64_t");
TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(output_shape.DimensionsCount(), N);
NdArrayDesc<N> desc1;
NdArrayDesc<N> desc2;
NdArrayDesc<N> output_desc;
NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
&desc2);
CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc);
// In Tensorflow, the dimensions are canonically named (batch_number, row,
// col, channel), with extents (batches, height, width, depth), with the
// trailing dimension changing most rapidly (channels has the smallest stride,
// typically 1 element).
//
// In generated C code, we store arrays with the dimensions reversed. The
// first dimension has smallest stride.
//
// We name our variables by their Tensorflow convention, but generate C code
// nesting loops such that the innermost loop has the smallest stride for the
// best cache behavior.
auto sub_func = [&](int indexes[N]) {
output_data[SubscriptToIndex(output_desc, indexes)] =
ActivationFunctionWithMinMax(
input1_data[SubscriptToIndex(desc1, indexes)] -
input2_data[SubscriptToIndex(desc2, indexes)],
params.int64_activation_min, params.int64_activation_max);
};
NDOpsHelper<N>(output_desc, sub_func);
}
template <typename T, int N = 5>
void BroadcastSubSlow(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const T* input1_data,
const RuntimeShape& input2_shape, const T* input2_data,
const RuntimeShape& output_shape, T* output_data) {
ruy::profiler::ScopeLabel label("BroadcastSubSlow/templated");
TFLITE_DCHECK_LE(input1_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(input2_shape.DimensionsCount(), N);
TFLITE_DCHECK_LE(output_shape.DimensionsCount(), N);
NdArrayDesc<N> desc1;
NdArrayDesc<N> desc2;
NdArrayDesc<N> output_desc;
NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
&desc2);
CopyDimsToDesc(RuntimeShape::ExtendedShape(N, output_shape), &output_desc);
// In Tensorflow, the dimensions are canonically named (batch_number, row,
// col, channel), with extents (batches, height, width, depth), with the
// trailing dimension changing most rapidly (channels has the smallest stride,
// typically 1 element).
//
// In generated C code, we store arrays with the dimensions reversed. The
// first dimension has smallest stride.
//
// We name our variables by their Tensorflow convention, but generate C code
// nesting loops such that the innermost loop has the smallest stride for the
// best cache behavior.
auto sub_func = [&](int indexes[N]) {
output_data[SubscriptToIndex(output_desc, indexes)] =
ActivationFunctionWithMinMax(
input1_data[SubscriptToIndex(desc1, indexes)] -
input2_data[SubscriptToIndex(desc2, indexes)],
params.quantized_activation_min, params.quantized_activation_max);
};
NDOpsHelper<N>(output_desc, sub_func);
}
// Element-wise Sub that can often be used for inner loop of broadcast sub as
// well as the non-broadcast sub.
inline void SubElementwise(int size, const ArithmeticParams& params,
const uint8_t* input1_data,
const uint8_t* input2_data, uint8_t* output_data) {
TFLITE_DCHECK_GT(params.input1_offset, -256);
TFLITE_DCHECK_GT(params.input2_offset, -256);
TFLITE_DCHECK_LT(params.input1_offset, 256);
TFLITE_DCHECK_LT(params.input2_offset, 256);
for (int i = 0; i < size; ++i) {
const int32_t input1_val = params.input1_offset + input1_data[i];
const int32_t input2_val = params.input2_offset + input2_data[i];
const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
const int32_t scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input1_val, params.input1_multiplier, params.input1_shift);
const int32_t scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input2_val, params.input2_multiplier, params.input2_shift);
const int32_t raw_sub = scaled_input1_val - scaled_input2_val;
const int32_t raw_output =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
raw_sub, params.output_multiplier, params.output_shift) +
params.output_offset;
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, raw_output));
output_data[i] = static_cast<uint8_t>(clamped_output);
}
}
// Element-wise add that can often be used for inner loop of broadcast add as
// well as the non-broadcast add.
inline void SubElementwise(int size, const ArithmeticParams& params,
const int8_t* input1_data, const int8_t* input2_data,
int8_t* output_data) {
const int32_t int8_max_value = std::numeric_limits<int8_t>::max();
TFLITE_DCHECK_GE(params.input1_offset, -1 * int8_max_value);
TFLITE_DCHECK_GE(params.input2_offset, -1 * int8_max_value);
TFLITE_DCHECK_LE(params.input1_offset, int8_max_value);
TFLITE_DCHECK_LE(params.input2_offset, int8_max_value);
for (int i = 0; i < size; ++i) {
const int32_t input1_val = params.input1_offset + input1_data[i];
const int32_t input2_val = params.input2_offset + input2_data[i];
const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
const int32_t scaled_input1_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input1_val, params.input1_multiplier, params.input1_shift);
const int32_t scaled_input2_val =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
shifted_input2_val, params.input2_multiplier, params.input2_shift);
const int32_t raw_sub = scaled_input1_val - scaled_input2_val;
const int32_t raw_output =
MultiplyByQuantizedMultiplierSmallerThanOneExp(
raw_sub, params.output_multiplier, params.output_shift) +
params.output_offset;
const int32_t clamped_output =
std::min(params.quantized_activation_max,
std::max(params.quantized_activation_min, raw_output));
output_data[i] = static_cast<int8_t>(clamped_output);
}
}
inline void Sub(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const uint8_t* input1_data,
const RuntimeShape& input2_shape, const uint8_t* input2_data,
const RuntimeShape& output_shape, uint8_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
TFLITE_DCHECK_GT(params.input1_offset, -256);
TFLITE_DCHECK_GT(params.input2_offset, -256);
TFLITE_DCHECK_LT(params.input1_offset, 256);
TFLITE_DCHECK_LT(params.input2_offset, 256);
SubElementwise(flat_size, params, input1_data, input2_data, output_data);
}
inline void Sub(const ArithmeticParams& params,
const RuntimeShape& input1_shape, const int8_t* input1_data,
const RuntimeShape& input2_shape, const int8_t* input2_data,
const RuntimeShape& output_shape, int8_t* output_data) {
TFLITE_DCHECK_LE(params.quantized_activation_min,
params.quantized_activation_max);
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
const int32_t int8_max_value = std::numeric_limits<int8_t>::max();
TFLITE_DCHECK_GE(params.input1_offset, -1 * int8_max_value);
TFLITE_DCHECK_GE(params.input2_offset, -1 * int8_max_value);
TFLITE_DCHECK_LE(params.input1_offset, int8_max_value);
TFLITE_DCHECK_LE(params.input2_offset, int8_max_value);
SubElementwise(flat_size, params, input1_data, input2_data, output_data);
}
template <typename T>
void Sub(const ArithmeticParams& params, const RuntimeShape& input1_shape,
const T* input1_data, const RuntimeShape& input2_shape,
const T* input2_data, const RuntimeShape& output_shape,
T* output_data) {
NdArrayDesc<4> desc1;
NdArrayDesc<4> desc2;
NdArrayDescsForElementwiseBroadcast(input1_shape, input2_shape, &desc1,
&desc2);
const RuntimeShape extended_output_shape =
RuntimeShape::ExtendedShape(4, output_shape);
// In Tensorflow, the dimensions are canonically named (batch_number, row,
// col, channel), with extents (batches, height, width, depth), with the
// trailing dimension changing most rapidly (channels has the smallest stride,
// typically 1 element).
//
// In generated C code, we store arrays with the dimensions reversed. The
// first dimension has smallest stride.
//
// We name our variables by their Tensorflow convention, but generate C code
// nesting loops such that the innermost loop has the smallest stride for the
// best cache behavior.
for (int b = 0; b < extended_output_shape.Dims(0); ++b) {
for (int y = 0; y < extended_output_shape.Dims(1); ++y) {
for (int x = 0; x < extended_output_shape.Dims(2); ++x) {
for (int c = 0; c < extended_output_shape.Dims(3); ++c) {
output_data[Offset(extended_output_shape, b, y, x, c)] =
input1_data[SubscriptToIndex(desc1, b, y, x, c)] -
input2_data[SubscriptToIndex(desc2, b, y, x, c)];
}
}
}
}
}
inline void SetActivationMinMax(const ArithmeticParams& params,
int32_t* activation_min,
int32_t* activation_max) {
*activation_min = params.quantized_activation_min;
*activation_max = params.quantized_activation_max;
}
inline void SetActivationMinMax(const ArithmeticParams& params,
float* activation_min, float* activation_max) {
*activation_min = params.float_activation_min;
*activation_max = params.float_activation_max;
}
inline void SetActivationMinMax(const ArithmeticParams& params,
int64_t* activation_min,
int64_t* activation_max) {
*activation_min = params.int64_activation_min;
*activation_max = params.int64_activation_max;
}
template <typename T>
inline void SubWithActivation(
const ArithmeticParams& params, const RuntimeShape& input1_shape,
const T* input1_data, const RuntimeShape& input2_shape,
const T* input2_data, const RuntimeShape& output_shape, T* output_data) {
ruy::profiler::ScopeLabel label("SubWithActivation");
const int flat_size =
MatchingElementsSize(input1_shape, input2_shape, output_shape);
T activation_min, activation_max;
SetActivationMinMax(params, &activation_min, &activation_max);
for (int i = 0; i < flat_size; ++i) {
output_data[i] = ActivationFunctionWithMinMax(
input1_data[i] - input2_data[i], activation_min, activation_max);
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_SUB_H_

View File

@@ -0,0 +1,129 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TANH_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TANH_H_
#include <cmath>
#include "fixedpoint/fixedpoint.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/cppmath.h"
#include "tensorflow/lite/kernels/internal/types.h"
#include "tensorflow/lite/kernels/op_macros.h"
namespace tflite {
namespace reference_ops {
inline void Tanh(const RuntimeShape& input_shape, const float* input_data,
const RuntimeShape& output_shape, float* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; i++) {
float val = input_data[i];
float result = std::tanh(val);
output_data[i] = result;
}
}
// Convenience version that allows, for example, generated-code calls to be
// uniform between data types.
inline void Tanh(const TanhParams&, const RuntimeShape& input_shape,
const float* input_data, const RuntimeShape& output_shape,
float* output_data) {
// Drop params: not needed.
Tanh(input_shape, input_data, output_shape, output_data);
}
inline void Tanh(const TanhParams& params, const RuntimeShape& input_shape,
const int16_t* input_data, const RuntimeShape& output_shape,
int16_t* output_data) {
const int input_left_shift = params.input_left_shift;
// Support for shifts is limited until we have a parameterized version of
// SaturatingRoundingMultiplyByPOT().
TFLITE_DCHECK_GE(input_left_shift, 0);
TFLITE_DCHECK_LE(input_left_shift, 1);
const int flat_size = MatchingFlatSize(input_shape, output_shape);
// F0 uses 0 integer bits, range [-1, 1].
// This is the return type of math functions such as tanh, logistic,
// whose range is in [-1, 1].
using F0 = gemmlowp::FixedPoint<std::int16_t, 0>;
// F3 uses 3 integer bits, range [-8, 8], the input range expected here.
using F3 = gemmlowp::FixedPoint<std::int16_t, 3>;
if (input_left_shift == 0) {
for (int i = 0; i < flat_size; i++) {
F3 input = F3::FromRaw(input_data[i]);
F0 output = gemmlowp::tanh(input);
output_data[i] = output.raw();
}
} else {
for (int i = 0; i < flat_size; i++) {
F3 input = F3::FromRaw(
gemmlowp::SaturatingRoundingMultiplyByPOT<1>(input_data[i]));
F0 output = gemmlowp::tanh(input);
output_data[i] = output.raw();
}
}
}
inline void Tanh(const TanhParams& params, const RuntimeShape& input_shape,
const uint8_t* input_data, const RuntimeShape& output_shape,
uint8_t* output_data) {
const int32_t input_zero_point = params.input_zero_point;
const int32_t input_range_radius = params.input_range_radius;
const int32_t input_multiplier = params.input_multiplier;
const int input_left_shift = params.input_left_shift;
const int32_t output_zero_point = 128;
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; i++) {
const uint8_t input_val_u8 = input_data[i];
const int32_t input_val_centered =
static_cast<int32_t>(input_val_u8) - input_zero_point;
uint8_t output_val;
if (input_val_centered <= -input_range_radius) {
output_val = 0;
} else if (input_val_centered >= input_range_radius) {
output_val = 255;
} else {
const int32_t input_val_rescaled =
MultiplyByQuantizedMultiplierGreaterThanOne(
input_val_centered, input_multiplier, input_left_shift);
using FixedPoint4 = gemmlowp::FixedPoint<int32_t, 4>;
using FixedPoint0 = gemmlowp::FixedPoint<int32_t, 0>;
const FixedPoint4 input_val_f4 = FixedPoint4::FromRaw(input_val_rescaled);
const FixedPoint0 output_val_f0 = gemmlowp::tanh(input_val_f4);
// Convert from Q0.31 to Q24.7.
using gemmlowp::RoundingDivideByPOT;
int32_t output_val_s32 = RoundingDivideByPOT(output_val_f0.raw(), 24);
output_val_s32 += output_zero_point;
if (output_val_s32 == 256) {
output_val_s32 = 255;
}
// Reinterpret as Q0.7, encoded in uint8_t.
TFLITE_DCHECK_GE(output_val_s32, 0);
TFLITE_DCHECK_LE(output_val_s32, 255);
output_val = static_cast<uint8_t>(output_val_s32);
}
output_data[i] = output_val;
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TANH_H_