tflite_micro_person_detection_init
This commit is contained in:
80
components/tflite_micro/tensorflow/lite/kernels/padding.h
Normal file
80
components/tflite_micro/tensorflow/lite/kernels/padding.h
Normal file
@@ -0,0 +1,80 @@
|
||||
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#ifndef TENSORFLOW_LITE_KERNELS_PADDING_H_
|
||||
#define TENSORFLOW_LITE_KERNELS_PADDING_H_
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
|
||||
namespace tflite {
|
||||
|
||||
// TODO(renjieliu): Migrate others to use ComputePaddingWithLeftover.
|
||||
inline int ComputePadding(int stride, int dilation_rate, int in_size,
|
||||
int filter_size, int out_size) {
|
||||
int effective_filter_size = (filter_size - 1) * dilation_rate + 1;
|
||||
int padding = ((out_size - 1) * stride + effective_filter_size - in_size) / 2;
|
||||
return padding > 0 ? padding : 0;
|
||||
}
|
||||
|
||||
// It's not guaranteed that padding is symmetric. It's important to keep
|
||||
// offset for algorithms need all paddings.
|
||||
inline int ComputePaddingWithOffset(int stride, int dilation_rate, int in_size,
|
||||
int filter_size, int out_size,
|
||||
int* offset) {
|
||||
int effective_filter_size = (filter_size - 1) * dilation_rate + 1;
|
||||
int total_padding =
|
||||
((out_size - 1) * stride + effective_filter_size - in_size);
|
||||
total_padding = total_padding > 0 ? total_padding : 0;
|
||||
*offset = total_padding % 2;
|
||||
return total_padding / 2;
|
||||
}
|
||||
|
||||
// Matching GetWindowedOutputSize in TensorFlow.
|
||||
inline int ComputeOutSize(TfLitePadding padding, int image_size,
|
||||
int filter_size, int stride, int dilation_rate = 1) {
|
||||
int effective_filter_size = (filter_size - 1) * dilation_rate + 1;
|
||||
switch (padding) {
|
||||
case kTfLitePaddingSame:
|
||||
return (image_size + stride - 1) / stride;
|
||||
case kTfLitePaddingValid:
|
||||
return (image_size + stride - effective_filter_size) / stride;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
inline TfLitePaddingValues ComputePaddingHeightWidth(
|
||||
int stride_height, int stride_width, int dilation_rate_height,
|
||||
int dilation_rate_width, int in_height, int in_width, int filter_height,
|
||||
int filter_width, TfLitePadding padding, int* out_height, int* out_width) {
|
||||
*out_width = ComputeOutSize(padding, in_width, filter_width, stride_width,
|
||||
dilation_rate_width);
|
||||
*out_height = ComputeOutSize(padding, in_height, filter_height, stride_height,
|
||||
dilation_rate_height);
|
||||
|
||||
TfLitePaddingValues padding_values;
|
||||
int offset = 0;
|
||||
padding_values.height =
|
||||
ComputePaddingWithOffset(stride_height, dilation_rate_height, in_height,
|
||||
filter_height, *out_height, &offset);
|
||||
padding_values.height_offset = offset;
|
||||
padding_values.width =
|
||||
ComputePaddingWithOffset(stride_width, dilation_rate_width, in_width,
|
||||
filter_width, *out_width, &offset);
|
||||
padding_values.width_offset = offset;
|
||||
return padding_values;
|
||||
}
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_KERNELS_PADDING_H_
|
Reference in New Issue
Block a user