tflite_micro_person_detection_init
This commit is contained in:
240
components/tflite_micro/tensorflow/lite/micro/kernels/add.cc
Normal file
240
components/tflite_micro/tensorflow/lite/micro/kernels/add.cc
Normal file
@@ -0,0 +1,240 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/reference/add.h"
|
||||
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/integer_ops/add.h"
|
||||
#include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/kernels/op_macros.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/memory_helpers.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace add {
|
||||
|
||||
constexpr int kInputTensor1 = 0;
|
||||
constexpr int kInputTensor2 = 1;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
struct OpData {
|
||||
bool requires_broadcast;
|
||||
|
||||
// These fields are used in both the general 8-bit -> 8bit quantized path,
|
||||
// and the special 16-bit -> 16bit quantized path
|
||||
int input1_shift;
|
||||
int input2_shift;
|
||||
int32_t output_activation_min;
|
||||
int32_t output_activation_max;
|
||||
|
||||
// These fields are used only in the general 8-bit -> 8bit quantized path
|
||||
int32_t input1_multiplier;
|
||||
int32_t input2_multiplier;
|
||||
int32_t output_multiplier;
|
||||
int output_shift;
|
||||
int left_shift;
|
||||
int32_t input1_offset;
|
||||
int32_t input2_offset;
|
||||
int32_t output_offset;
|
||||
|
||||
// Used only for float evals:
|
||||
float output_activation_min_f32;
|
||||
float output_activation_max_f32;
|
||||
};
|
||||
|
||||
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteAddParams* params,
|
||||
const TfLiteTensor* input1,
|
||||
const TfLiteTensor* input2, TfLiteTensor* output,
|
||||
OpData* data) {
|
||||
data->requires_broadcast = !HaveSameShapes(input1, input2);
|
||||
|
||||
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
|
||||
// 8bit -> 8bit general quantized path, with general rescalings
|
||||
data->input1_offset = -input1->params.zero_point;
|
||||
data->input2_offset = -input2->params.zero_point;
|
||||
data->output_offset = output->params.zero_point;
|
||||
data->left_shift = 20;
|
||||
const double twice_max_input_scale =
|
||||
2 * static_cast<double>(
|
||||
std::max(input1->params.scale, input2->params.scale));
|
||||
const double real_input1_multiplier =
|
||||
static_cast<double>(input1->params.scale) / twice_max_input_scale;
|
||||
const double real_input2_multiplier =
|
||||
static_cast<double>(input2->params.scale) / twice_max_input_scale;
|
||||
const double real_output_multiplier =
|
||||
twice_max_input_scale /
|
||||
((1 << data->left_shift) * static_cast<double>(output->params.scale));
|
||||
|
||||
QuantizeMultiplierSmallerThanOneExp(
|
||||
real_input1_multiplier, &data->input1_multiplier, &data->input1_shift);
|
||||
|
||||
QuantizeMultiplierSmallerThanOneExp(
|
||||
real_input2_multiplier, &data->input2_multiplier, &data->input2_shift);
|
||||
|
||||
QuantizeMultiplierSmallerThanOneExp(
|
||||
real_output_multiplier, &data->output_multiplier, &data->output_shift);
|
||||
|
||||
TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
|
||||
context, params->activation, output, &data->output_activation_min,
|
||||
&data->output_activation_max));
|
||||
} else if (output->type == kTfLiteFloat32) {
|
||||
CalculateActivationRange(params->activation,
|
||||
&data->output_activation_min_f32,
|
||||
&data->output_activation_max_f32);
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
void EvalAdd(TfLiteContext* context, TfLiteNode* node, TfLiteAddParams* params,
|
||||
const OpData* data, const TfLiteEvalTensor* input1,
|
||||
const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) {
|
||||
tflite::ArithmeticParams op_params;
|
||||
SetActivationParams(data->output_activation_min_f32,
|
||||
data->output_activation_max_f32, &op_params);
|
||||
#define TF_LITE_ADD(opname) \
|
||||
reference_ops::opname(op_params, tflite::micro::GetTensorShape(input1), \
|
||||
tflite::micro::GetTensorData<float>(input1), \
|
||||
tflite::micro::GetTensorShape(input2), \
|
||||
tflite::micro::GetTensorData<float>(input2), \
|
||||
tflite::micro::GetTensorShape(output), \
|
||||
tflite::micro::GetTensorData<float>(output))
|
||||
if (data->requires_broadcast) {
|
||||
TF_LITE_ADD(BroadcastAdd4DSlow);
|
||||
} else {
|
||||
TF_LITE_ADD(Add);
|
||||
}
|
||||
#undef TF_LITE_ADD
|
||||
}
|
||||
|
||||
TfLiteStatus EvalAddQuantized(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteAddParams* params, const OpData* data,
|
||||
const TfLiteEvalTensor* input1,
|
||||
const TfLiteEvalTensor* input2,
|
||||
TfLiteEvalTensor* output) {
|
||||
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
|
||||
tflite::ArithmeticParams op_params;
|
||||
op_params.left_shift = data->left_shift;
|
||||
op_params.input1_offset = data->input1_offset;
|
||||
op_params.input1_multiplier = data->input1_multiplier;
|
||||
op_params.input1_shift = data->input1_shift;
|
||||
op_params.input2_offset = data->input2_offset;
|
||||
op_params.input2_multiplier = data->input2_multiplier;
|
||||
op_params.input2_shift = data->input2_shift;
|
||||
op_params.output_offset = data->output_offset;
|
||||
op_params.output_multiplier = data->output_multiplier;
|
||||
op_params.output_shift = data->output_shift;
|
||||
SetActivationParams(data->output_activation_min,
|
||||
data->output_activation_max, &op_params);
|
||||
bool need_broadcast = reference_ops::ProcessBroadcastShapes(
|
||||
tflite::micro::GetTensorShape(input1),
|
||||
tflite::micro::GetTensorShape(input2), &op_params);
|
||||
#define TF_LITE_ADD(type, opname, dtype) \
|
||||
type::opname(op_params, tflite::micro::GetTensorShape(input1), \
|
||||
tflite::micro::GetTensorData<dtype>(input1), \
|
||||
tflite::micro::GetTensorShape(input2), \
|
||||
tflite::micro::GetTensorData<dtype>(input2), \
|
||||
tflite::micro::GetTensorShape(output), \
|
||||
tflite::micro::GetTensorData<dtype>(output));
|
||||
if (output->type == kTfLiteInt8) {
|
||||
if (need_broadcast) {
|
||||
TF_LITE_ADD(reference_integer_ops, BroadcastAdd4DSlow, int8_t);
|
||||
} else {
|
||||
TF_LITE_ADD(reference_integer_ops, Add, int8_t);
|
||||
}
|
||||
} else {
|
||||
if (need_broadcast) {
|
||||
TF_LITE_ADD(reference_ops, BroadcastAdd4DSlow, uint8_t);
|
||||
} else {
|
||||
TF_LITE_ADD(reference_ops, Add, uint8_t);
|
||||
}
|
||||
}
|
||||
#undef TF_LITE_ADD
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||
|
||||
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
|
||||
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
auto* params = reinterpret_cast<TfLiteAddParams*>(node->builtin_data);
|
||||
|
||||
TF_LITE_ENSURE_STATUS(
|
||||
CalculateOpData(context, params, input1, input2, output, data));
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
auto* params = reinterpret_cast<TfLiteAddParams*>(node->builtin_data);
|
||||
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const OpData* data = static_cast<const OpData*>(node->user_data);
|
||||
|
||||
const TfLiteEvalTensor* input1 =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor1);
|
||||
const TfLiteEvalTensor* input2 =
|
||||
tflite::micro::GetEvalInput(context, node, kInputTensor2);
|
||||
TfLiteEvalTensor* output =
|
||||
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
||||
|
||||
if (output->type == kTfLiteFloat32) {
|
||||
EvalAdd(context, node, params, data, input1, input2, output);
|
||||
} else if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
|
||||
TF_LITE_ENSURE_OK(context, EvalAddQuantized(context, node, params, data,
|
||||
input1, input2, output));
|
||||
} else {
|
||||
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
||||
TfLiteTypeGetName(output->type), output->type);
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace add
|
||||
|
||||
TfLiteRegistration Register_ADD() {
|
||||
return {/*init=*/add::Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/add::Prepare,
|
||||
/*invoke=*/add::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
Reference in New Issue
Block a user