fix tflitemicro_person_detection
This commit is contained in:
@@ -1,329 +1,330 @@
|
||||
# TensorFlow Lite Micro移植参考指南(Keil版)
|
||||
|
||||
**作者:**
|
||||
|
||||
Github ID: [Derekduke](https://github.com/Derekduke) E-mail: dkeji627@gmail.com
|
||||
|
||||
Github ID: [QingChuanWS](https://github.com/QingChuanWS) E-mail: bingshan45@163.com
|
||||
|
||||
Github ID: [yangqings](https://github.com/yangqings) E-mail: yangqingsheng12@outlook.com
|
||||
|
||||
## 概述
|
||||
|
||||
本教程是基于STM32 NUCLEO-L496ZG(Cortex-M4, 80Mhz)开发板,在运行TencentOS tiny的基础上,使用Tensorflow Lite Micro框架和CMSIS-NN库(算子加速),在STM32L496ZG上实现了**行人检测模型**的推理。
|
||||
|
||||
关于Tensorflow Lite Micro组件的详细介绍可以参考`TencentOS-tiny\components\ai\tflite_micro`目录下的TFlite_Micro_Component_User_Guide.md文档。
|
||||
|
||||
本例程中,传入神经网络的RGB图像大小为 18kb(96*96 * 2byte),在STM32L496平台消耗的内存资源(经过优化后)如下:
|
||||
|
||||
- SRAM:168 Kbyte
|
||||
- Flash:314 Kbyte
|
||||
|
||||
理论上满足以上内存要求的STM32 Cortex-M系列MCU可以参考本指南进行移植。
|
||||
|
||||
## 一、移植前的准备
|
||||
|
||||
#### 1. 准备目标硬件(开发板/传感器/模组)
|
||||
|
||||
需要准备如下硬件:
|
||||
|
||||
- 开发板:NUCLEO-L496ZG,MCU为STM32L496ZG;
|
||||
- Camera:获取RGB图像,本例程使用OV2640摄像头;
|
||||
- LCD:显示RGB图像,本例程使用2.4寸LCD(SPI通信);
|
||||
|
||||
硬件实物图如下:
|
||||
|
||||
<div align=center>
|
||||
<img src="image/all.jpg" width=50% />
|
||||
</div>
|
||||
|
||||
#### 2.准备TencentOS tiny基础keil工程代码
|
||||
|
||||
- 首先,参考TencentOS tiny基于keil的移植教程进行移植:
|
||||
https://github.com/Tencent/TencentOS-tiny/blob/master/doc/10.Porting_Manual_for_KEIL.md
|
||||
- 为了方便初始化MCU的外设,后续要继续使用STM32CubeMX软件,请确保安装了该软件;
|
||||
|
||||
- 移植成功后,工程可以进行线程任务切换,通过串口打印"hello world",基础keil工程代码准备完毕。
|
||||
|
||||
#### 3. 获取Tensorflow Lite Micro
|
||||
|
||||
有三种方式获取tflite_micro:
|
||||
|
||||
1. 从TencentOS tiny 代码仓库 `components\ai\tflite_micro`目录获取;
|
||||
2. 以lib文件的形式使用tflite_micro组件,lib文件`TencentOS-tiny\components\ai\tflite_micro`的ARM_CortexM4_lib、ARM_CortexM7_lib和ARM_CortexM55_lib文件夹
|
||||
3. 从Tensorflow代码仓库获取,TFlite_Micro的源码已经开源,github仓库地址为:https://github.com/tensorflow/tensorflow ,可根据google TFLite Micro官方教程获得Tensorflow Lite Micro的全部源码。
|
||||
|
||||
如果没有tflite_micro开发经验,建议以**第一种**或者**第二种**方式获取tflite_micro,希望自行获取最新源码,或者编译lib文件,请参考`TencentOS-tiny\components\tflite_micro`目录的TFlite_Micro_Component_User_Guide.md文档,本指南将直接使用TencentOS tiny 代码仓库内的tflite_micro组件。
|
||||
|
||||
## 二、BSP准备
|
||||
|
||||
### 1. 工程目录规划
|
||||
|
||||
以下是整个例程的目录规划:
|
||||
|
||||
| 一级目录 | 二级目录 | 三级目录 | 说明 |
|
||||
| :-------: | :--------------------------: | :----------: | :----------------------------------------------------------: |
|
||||
| arch | arm | | TencentOS tiny适配的IP核架构(含M核中断、调度、tick相关代码) |
|
||||
| board | NUCLEO_STM32L496ZG | | 移植目标芯片的工程文件 |
|
||||
| | | BSP | 板级支持包,外设驱动代码在Hardware目录 |
|
||||
| component | ai | tflite_micro | tflite_micro源码 |
|
||||
| examples | tflitemicro_person_detection | | 行人检测demo示例 |
|
||||
| kernel | core | | TencentOS tiny内核源码 |
|
||||
| | pm | | TencentOS tiny低功耗模块源码 |
|
||||
| osal | cmsis_os | | TencentOS tiny提供的cmsis os 适配 |
|
||||
|
||||
完成TencentOS tiny基础keil工程准备工作后,在这个keil工程的基础上继续添加外设驱动代码。
|
||||
|
||||
### 2. LCD驱动
|
||||
|
||||
本例程选用一款2.4寸LCD屏幕,分辨率为 240*320, SPI 接口通信,内部控制芯片为IL9341。
|
||||
|
||||
开发者也可以使用其他LCD,自行完成LCD的驱动代码移植,方便调试摄像头,以及查看图像是否正常。
|
||||
|
||||
#### 2.1 SPI初始化
|
||||
|
||||
进入`TencentOS-tiny\board\NUCLEO_STM32L496ZG\BSP`目录,打开TencentOS_tiny.ioc工程,使用STM32CubeMX初始化MCU外设。
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/spi init.png" width=100% />
|
||||
</div>
|
||||
#### 2.2 打开keil的Manage Project Items
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/bsp_keil_manage_project.png" width=60% />
|
||||
</div>
|
||||
|
||||
#### 2.3 在project中加入新的文件夹hal
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/bsp_添加hal.png" width=80% />
|
||||
</div>
|
||||
|
||||
|
||||
#### 2.3 添加驱动代码
|
||||
|
||||
添加`lcd_2inch4.c`和`lcd_config.c`,
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/bsp_add lcd driver file.png" width=80% />
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
添加头文件`lcd_2inch4.h`和`lcd_config.h`路径
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/bsp_include_path.png" width=80% />
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/bsp_include_lcd_path.png" width=80% />
|
||||
</div>
|
||||
外设驱动的头文件.h文件都在`TencentOS-tiny\board\NUCLEO_STM32L496ZG\BSP\Hardware\Inc`路径下。
|
||||
|
||||
### 3. 摄像头驱动
|
||||
|
||||
#### 3.1 外设初始化
|
||||
|
||||
进入`TencentOS-tiny\board\NUCLEO_STM32L496ZG\BSP`目录,打开TencentOS_tiny.ioc工程,初始化DCMI外设,打开DCMI全局中断,并打开DMA通道,DMA的Direction设置为Peripheral To Memory。
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/bsp_cubemx_dcmi.png" width=100% />
|
||||
</div>
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/bsp_cubemx_dcmi_2.png" width=100% />
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
#### 3.2 添加驱动代码
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/bsp_add camera driver file.png" width=80% />
|
||||
</div>
|
||||
|
||||
**在mcu_init函数重写DCMI帧中断回调函数:**
|
||||
|
||||
值得注意的是,代码需要写在CubeMx生成的注释语句内,当使用CubeMX重新配置外设并生成代码时,所添加的代码才不会被覆盖掉,如下所示,代码添加在/* USER CODE BEGIN 4 */ 和 /* USER CODE END 4 */注释语句之间:
|
||||
|
||||
```C
|
||||
/* USER CODE BEGIN 4 */
|
||||
void HAL_DCMI_FrameEventCallback(DCMI_HandleTypeDef *hdcmi)
|
||||
{
|
||||
if(hdcmi->State == 2 && frame_flag != 1){
|
||||
frame_flag = 1;
|
||||
}
|
||||
}
|
||||
/* USER CODE END 4 */
|
||||
```
|
||||
|
||||
### 4. LCD显示摄像头图像
|
||||
|
||||
本例程的任务函数在
|
||||
|
||||
`TencentOS-tiny\examples\tflitemicro_person_detection\tflitemicro_person_detection.c`
|
||||
|
||||
```c
|
||||
void task1(void *arg)
|
||||
{
|
||||
while (1) {
|
||||
if(frame_flag == 1){
|
||||
|
||||
if(HAL_DCMI_Stop(&hdcmi))Error_Handler(); //stop DCMI
|
||||
LCD_2IN4_Display(camera_buffer,OV2640_PIXEL_WIDTH,OV2640_PIXEL_HEIGHT);
|
||||
//display
|
||||
frame_flag = 0;
|
||||
if(HAL_DCMI_Start_DMA(&hdcmi,DCMI_MODE_CONTINUOUS,\ //restart DCMI
|
||||
(uint32_t)camera_buffer ,\
|
||||
(OV2640_PIXEL_WIDTH*OV2640_PIXEL_HEIGHT)/2))
|
||||
Error_Handler();
|
||||
osDelay(50);
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
经过以上步骤,如果能顺利地驱动摄像头,并在LCD实时显示图像,BSP就准备完毕了,如果使用的是不同的LCD或者Camera,请根据实际情况进行外设初始化和驱动的移植。
|
||||
|
||||
## 三、Tensorflow Lite Micro移植
|
||||
|
||||
### 1. tflite_micro组件加入到keil工程
|
||||
|
||||
由于NUCLEO-L496ZG芯片中的内核为ARM Cortex M4,所以本次我们可以直接使用ARM Cortex M4版本的tensorflow_lite_micro.lib库来简化tflite_micro搭建流程。
|
||||
|
||||
#### 1.1 在project中加入新的文件夹tensorflow
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/tflu_tensorflow文件夹增加的内容.png" width=80% />
|
||||
</div>
|
||||
|
||||
#### 1.2 添加本次与行人检测demo有关的源文件
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/tflu_需要添加的文件.png" width=80% />
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
其中,retarget.c的路径为:`TencentOS-tiny\components\ai\tflite_micro\KEIL\retarget.c`
|
||||
|
||||
tensorflow_lite_micro.lib的路径为:`TencentOS-tiny\components\ai\tflite_micro\ARM_CortexM4_lib\tensorflow_lite_micro.lib`
|
||||
|
||||
其余.cc文件均在当前目录下的`tflu_person_detection`文件夹中。
|
||||
|
||||
#### 1.3 关闭Keil的MicroLib库
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/tflu_取消Microlib.png" width=80% />
|
||||
</div>
|
||||
|
||||
#### 1.4 添加tflite_micro需要的头文件
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/tflu_添加include.png" width=80% />
|
||||
</div>
|
||||
|
||||
注:最下方的路径为:
|
||||
|
||||
```
|
||||
TencentOS-tiny\components\ai\tflite_micro\ARM_CortexM4_lib\tensorflow\lite\micro\tools\make\downloads
|
||||
```
|
||||
|
||||
#### 1.5 调整优化等级和tflite_micro的交互信息输出串口:
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/tflu_STM32496宏.png" width=80% />
|
||||
</div>
|
||||
|
||||
其中宏`NUCLEO_STM32L496ZG`是指定Nucleo STM32L496的hlpuart1为系统printf函数的输出串口,具体定义在Nucleo STM32L496的BSP文件夹中的`mcu_init.c`中。
|
||||
|
||||
### 2. 编写Person_Detection 任务函数
|
||||
|
||||
本例程的任务函数在
|
||||
|
||||
`TencentOS-tiny\examples\tflitemicro_person_detection\tflitemicro_person_detection.c`目录下
|
||||
|
||||
#### 2.1 图像预处理
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/RGB565.jpg" width=50% />
|
||||
</div>
|
||||
|
||||
在本例程中,模型要求输入神经网络的图像为灰度图,为完成摄像头获取的RGB彩图到模型输入需要的灰度图转换,需从输入的RGB565像素格式中解析出R、G、B三通道的值,再根据心理学公式计算出单个像素点的灰度,具体代码如下:
|
||||
|
||||
```c
|
||||
uint8_t rgb565_to_gray(uint16_t bg_color)
|
||||
{
|
||||
uint8_t bg_r = 0;
|
||||
uint8_t bg_g = 0;
|
||||
uint8_t bg_b = 0;
|
||||
bg_r = ((bg_color>>11)&0xff)<<3;
|
||||
bg_g = ((bg_color>>5)&0x3f)<<2;
|
||||
bg_b = (bg_color&0x1f)<<2;
|
||||
uint8_t gray = (bg_r*299 + bg_g*587 + bg_b*114 + 500) / 1000;
|
||||
return gray;
|
||||
}
|
||||
|
||||
void input_convert(uint16_t* camera_buffer , uint8_t* model_buffer)
|
||||
{
|
||||
for(int i=0 ; i<OV2640_PIXEL_WIDTH*OV2640_PIXEL_HEIGHT ; i++)
|
||||
{
|
||||
model_buffer[i] = rgb565_to_gray(camera_buffer[i]);
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### 2.2 行人检测线程任务函数
|
||||
|
||||
```c
|
||||
void task1(void *arg)
|
||||
{
|
||||
while (1) {
|
||||
if(frame_flag == 1){
|
||||
printf("***person detection task\r\n");
|
||||
if(HAL_DCMI_Stop(&hdcmi))Error_Handler(); //stop DCMI
|
||||
input_convert(camera_buffer,model_buffer);//convert input
|
||||
person_detect(model_buffer); //inference
|
||||
LCD_2IN4_Display(camera_buffer,OV2640_PIXEL_WIDTH,OV2640_PIXEL_HEIGHT);
|
||||
//display
|
||||
|
||||
frame_flag = 0;
|
||||
|
||||
if(HAL_DCMI_Start_DMA(&hdcmi,DCMI_MODE_CONTINUOUS,\ //restart DCMI
|
||||
(uint32_t)camera_buffer ,\
|
||||
(OV2640_PIXEL_WIDTH*OV2640_PIXEL_HEIGHT)/2))
|
||||
Error_Handler();
|
||||
}
|
||||
osDelay(50);
|
||||
}
|
||||
}
|
||||
|
||||
void task2(void *arg)
|
||||
{
|
||||
while (1) {
|
||||
printf("***task2\r\n");
|
||||
osDelay(50);
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### 2.3 运行效果
|
||||
|
||||
通过串行输出实时打印信息,移动摄像头,镜头没有对准行人时,输出如下:
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/reasult_no_person.png" width=70% />
|
||||
</div>
|
||||
|
||||
当镜头对准行人时,输出如下:
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/reasult_person.png" width=70% />
|
||||
</div>
|
||||
|
||||
执行一帧图像推理,耗时约633 ms。
|
||||
|
||||
更多关于tflite_micro的介绍,请参考[tensorflow](https://tensorflow.google.cn/lite/microcontrollers?hl=zh_cn)官网以及`TencentOS-tiny\components\tflite_micro`目录的TFlite_Micro_Component_User_Guide.md
|
||||
|
||||
# TensorFlow Lite Micro移植参考指南(Keil版)
|
||||
|
||||
**作者:**
|
||||
|
||||
Github: [Derekduke](https://github.com/Derekduke) E-mail: dkeji627@gmail.com
|
||||
|
||||
Github: [QingChuanWS](https://github.com/QingChuanWS) E-mail: bingshan45@163.com
|
||||
|
||||
Github: [yangqings](https://github.com/yangqings) E-mail: yangqingsheng12@outlook.com
|
||||
|
||||
## 概述
|
||||
|
||||
本教程是基于STM32 NUCLEO-L496ZG(Cortex-M4, 80Mhz)开发板,在运行TencentOS tiny的基础上,使用Tensorflow Lite Micro框架和CMSIS-NN库(算子加速),在STM32L496ZG上实现了**行人检测模型**的推理。
|
||||
|
||||
关于Tensorflow Lite Micro组件的详细介绍可以参考`TencentOS-tiny\components\ai\tflite_micro`目录下的TFlite_Micro_Component_User_Guide.md文档。
|
||||
|
||||
本例程中,传入神经网络的RGB图像大小为 18kb(96*96 * 2byte),在STM32L496平台消耗的内存资源(经过优化后)如下:
|
||||
|
||||
- SRAM:168 Kbyte
|
||||
- Flash:314 Kbyte
|
||||
|
||||
理论上满足以上内存要求的STM32 Cortex-M系列MCU可以参考本指南进行移植。
|
||||
|
||||
## 一、移植前的准备
|
||||
|
||||
#### 1. 准备目标硬件(开发板/传感器/模组)
|
||||
|
||||
需要准备如下硬件:
|
||||
|
||||
- 开发板:NUCLEO-L496ZG,MCU为STM32L496ZG;
|
||||
- Camera:获取RGB图像,本例程使用OV2640摄像头;
|
||||
- LCD:显示RGB图像,本例程使用2.4寸LCD(SPI通信);
|
||||
|
||||
硬件实物图如下:
|
||||
|
||||
<div align=center>
|
||||
<img src="image/all.jpg" width=50% />
|
||||
</div>
|
||||
|
||||
#### 2.准备TencentOS tiny基础keil工程代码
|
||||
|
||||
- 首先,参考TencentOS tiny基于keil的移植教程进行移植:
|
||||
https://github.com/Tencent/TencentOS-tiny/blob/master/doc/10.Porting_Manual_for_KEIL.md
|
||||
- 为了方便初始化MCU的外设,后续要继续使用STM32CubeMX软件,请确保安装了该软件;
|
||||
|
||||
- 移植成功后,工程可以进行线程任务切换,通过串口打印"hello world",基础keil工程代码准备完毕。
|
||||
|
||||
#### 3. 获取Tensorflow Lite Micro
|
||||
|
||||
有三种方式获取tflite_micro:
|
||||
|
||||
1. 从TencentOS tiny 代码仓库 `components\ai\tflite_micro`目录获取;
|
||||
2. 以lib文件的形式使用tflite_micro组件,lib文件`TencentOS-tiny\components\ai\tflite_micro`的ARM_CortexM4_lib、ARM_CortexM7_lib和ARM_CortexM55_lib文件夹;
|
||||
3. 从Tensorflow代码仓库获取,TFlite_Micro的源码已经开源,github仓库地址为:https://github.com/tensorflow/tensorflow ,可根据google TFLite Micro官方教程获得Tensorflow Lite Micro的全部源码。
|
||||
|
||||
如果没有tflite_micro开发经验,建议以**第一种**或者**第二种**方式获取tflite_micro,希望自行获取最新源码,或者编译lib文件,请参考`TencentOS-tiny\components\tflite_micro`目录的TFlite_Micro_Component_User_Guide.md文档,本指南将直接使用TencentOS tiny 代码仓库内的tflite_micro组件。
|
||||
|
||||
## 二、BSP准备
|
||||
|
||||
### 1. 工程目录规划
|
||||
|
||||
以下是整个例程的目录规划:
|
||||
|
||||
| 一级目录 | 二级目录 | 三级目录 | 说明 |
|
||||
| :-------: | :--------------------------: | :-------------------: | :----------------------------------------------------------: |
|
||||
| arch | arm | | TencentOS tiny适配的IP核架构(含M核中断、调度、tick相关代码) |
|
||||
| board | NUCLEO_STM32L496ZG | | 移植目标芯片的工程文件 |
|
||||
| | | BSP | 板级支持包,外设驱动代码在Hardware目录 |
|
||||
| component | ai | tflite_micro | tflite_micro源码及有关库文件 |
|
||||
| examples | tflitemicro_person_detection | | 行人检测demo示例 |
|
||||
| | | tflu_person_detection | 行人检测实例代码 |
|
||||
| kernel | core | | TencentOS tiny内核源码 |
|
||||
| | pm | | TencentOS tiny低功耗模块源码 |
|
||||
| osal | cmsis_os | | TencentOS tiny提供的cmsis os 适配 |
|
||||
|
||||
完成TencentOS tiny基础keil工程准备工作后,在这个keil工程的基础上继续添加外设驱动代码。
|
||||
|
||||
### 2. LCD驱动
|
||||
|
||||
本例程选用一款2.4寸LCD屏幕,分辨率为 240*320, SPI 接口通信,内部控制芯片为IL9341。
|
||||
|
||||
开发者也可以使用其他LCD,自行完成LCD的驱动代码移植,方便调试摄像头,以及查看图像是否正常。
|
||||
|
||||
#### 2.1 SPI初始化
|
||||
|
||||
进入`TencentOS-tiny\board\NUCLEO_STM32L496ZG\BSP`目录,打开TencentOS_tiny.ioc工程,使用STM32CubeMX初始化MCU外设。
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/spi init.png" width=100% />
|
||||
</div>
|
||||
#### 2.2 打开keil的Manage Project Items
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/bsp_keil_manage_project.png" width=60% />
|
||||
</div>
|
||||
|
||||
#### 2.3 在project中加入新的文件夹hal
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/bsp_添加hal.png" width=80% />
|
||||
</div>
|
||||
|
||||
|
||||
#### 2.3 添加驱动代码
|
||||
|
||||
添加`lcd_2inch4.c`和`lcd_config.c`,
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/bsp_add lcd driver file.png" width=80% />
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
添加头文件`lcd_2inch4.h`和`lcd_config.h`路径
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/bsp_include_path.png" width=80% />
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/bsp_include_lcd_path.png" width=80% />
|
||||
</div>
|
||||
外设驱动的头文件.h文件都在`TencentOS-tiny\board\NUCLEO_STM32L496ZG\BSP\Hardware\Inc`路径下。
|
||||
|
||||
### 3. 摄像头驱动
|
||||
|
||||
#### 3.1 外设初始化
|
||||
|
||||
进入`TencentOS-tiny\board\NUCLEO_STM32L496ZG\BSP`目录,打开TencentOS_tiny.ioc工程,初始化DCMI外设,打开DCMI全局中断,并打开DMA通道,DMA的Direction设置为Peripheral To Memory。
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/bsp_cubemx_dcmi.png" width=100% />
|
||||
</div>
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/bsp_cubemx_dcmi_2.png" width=100% />
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
#### 3.2 添加驱动代码
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/bsp_add camera driver file.png" width=80% />
|
||||
</div>
|
||||
|
||||
**在mcu_init函数重写DCMI帧中断回调函数:**
|
||||
|
||||
值得注意的是,代码需要写在CubeMx生成的注释语句内,当使用CubeMX重新配置外设并生成代码时,所添加的代码才不会被覆盖掉,如下所示,代码添加在/* USER CODE BEGIN 4 */ 和 /* USER CODE END 4 */注释语句之间:
|
||||
|
||||
```C
|
||||
/* USER CODE BEGIN 4 */
|
||||
void HAL_DCMI_FrameEventCallback(DCMI_HandleTypeDef *hdcmi)
|
||||
{
|
||||
if(hdcmi->State == 2 && frame_flag != 1){
|
||||
frame_flag = 1;
|
||||
}
|
||||
}
|
||||
/* USER CODE END 4 */
|
||||
```
|
||||
|
||||
### 4. LCD显示摄像头图像
|
||||
|
||||
本例程的任务函数在
|
||||
|
||||
`TencentOS-tiny\examples\tflitemicro_person_detection\tflitemicro_person_detection.c`
|
||||
|
||||
```c
|
||||
void task1(void *arg)
|
||||
{
|
||||
while (1) {
|
||||
if(frame_flag == 1){
|
||||
|
||||
if(HAL_DCMI_Stop(&hdcmi))Error_Handler(); //stop DCMI
|
||||
LCD_2IN4_Display(camera_buffer,OV2640_PIXEL_WIDTH,OV2640_PIXEL_HEIGHT);
|
||||
//display
|
||||
frame_flag = 0;
|
||||
if(HAL_DCMI_Start_DMA(&hdcmi,DCMI_MODE_CONTINUOUS,\ //restart DCMI
|
||||
(uint32_t)camera_buffer ,\
|
||||
(OV2640_PIXEL_WIDTH*OV2640_PIXEL_HEIGHT)/2))
|
||||
Error_Handler();
|
||||
osDelay(50);
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
经过以上步骤,如果能顺利地驱动摄像头,并在LCD实时显示图像,BSP就准备完毕了,如果使用的是不同的LCD或者Camera,请根据实际情况进行外设初始化和驱动的移植。
|
||||
|
||||
## 三、Tensorflow Lite Micro移植
|
||||
|
||||
### 1. tflite_micro组件加入到keil工程
|
||||
|
||||
由于NUCLEO-L496ZG芯片中的内核为ARM Cortex M4,所以本次我们可以直接使用ARM Cortex M4版本的tensorflow_lite_micro.lib库来简化tflite_micro搭建流程。
|
||||
|
||||
#### 1.1 在project中加入新的文件夹tensorflow
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/tflu_tensorflow文件夹增加的内容.png" width=80% />
|
||||
</div>
|
||||
|
||||
#### 1.2 添加本次与行人检测demo有关的源文件
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/tflu_需要添加的文件.png" width=80% />
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
其中,retarget.c的路径为:`TencentOS-tiny\components\ai\tflite_micro\KEIL\retarget.c`
|
||||
|
||||
tensorflow_lite_micro.lib的路径为:`TencentOS-stiny\components\ai\tflite_micro\ARM_CortexM4_lib\tensorflow_lite_micro.lib`
|
||||
|
||||
其余.cc文件和.h均在`examples\tflu_person_detection\tflu_person_detection`文件夹中。
|
||||
|
||||
#### 1.3 关闭Keil的MicroLib库
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/tflu_取消Microlib.png" width=80% />
|
||||
</div>
|
||||
|
||||
#### 1.4 添加tflite_micro需要的头文件
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/tflu_添加include.png" width=80% />
|
||||
</div>
|
||||
|
||||
注:最下方的路径为:
|
||||
|
||||
```
|
||||
TencentOS-tiny\components\ai\tflite_micro\ARM_CortexM4_lib\tensorflow\lite\micro\tools\make\downloads
|
||||
```
|
||||
|
||||
#### 1.5 调整优化等级和tflite_micro的交互信息输出串口:
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/tflu_STM32496宏.png" width=80% />
|
||||
</div>
|
||||
|
||||
其中宏`NUCLEO_STM32L496ZG`是指定Nucleo STM32L496的hlpuart1为系统printf函数的输出串口,具体定义在Nucleo STM32L496的BSP文件夹中的`mcu_init.c`中。
|
||||
|
||||
### 2. 编写Person_Detection 任务函数
|
||||
|
||||
本例程的任务函数在
|
||||
|
||||
`TencentOS-tiny\examples\tflitemicro_person_detection\tflitemicro_person_detection.c`
|
||||
|
||||
#### 2.1 图像预处理
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/RGB565.jpg" width=50% />
|
||||
</div>
|
||||
|
||||
在本例程中,模型要求输入神经网络的图像为灰度图,为完成摄像头获取的RGB彩图到模型输入需要的灰度图转换,需从输入的RGB565像素格式中解析出R、G、B三通道的值,再根据心理学公式计算出单个像素点的灰度,具体代码如下:
|
||||
|
||||
```c
|
||||
uint8_t rgb565_to_gray(uint16_t bg_color)
|
||||
{
|
||||
uint8_t bg_r = 0;
|
||||
uint8_t bg_g = 0;
|
||||
uint8_t bg_b = 0;
|
||||
bg_r = ((bg_color>>11)&0xff)<<3;
|
||||
bg_g = ((bg_color>>5)&0x3f)<<2;
|
||||
bg_b = (bg_color&0x1f)<<2;
|
||||
uint8_t gray = (bg_r*299 + bg_g*587 + bg_b*114 + 500) / 1000;
|
||||
return gray;
|
||||
}
|
||||
|
||||
void input_convert(uint16_t* camera_buffer , uint8_t* model_buffer)
|
||||
{
|
||||
for(int i=0 ; i<OV2640_PIXEL_WIDTH*OV2640_PIXEL_HEIGHT ; i++)
|
||||
{
|
||||
model_buffer[i] = rgb565_to_gray(camera_buffer[i]);
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### 2.2 行人检测线程任务函数
|
||||
|
||||
```c
|
||||
void task1(void *arg)
|
||||
{
|
||||
while (1) {
|
||||
if(frame_flag == 1){
|
||||
printf("***person detection task\r\n");
|
||||
if(HAL_DCMI_Stop(&hdcmi))Error_Handler(); //stop DCMI
|
||||
input_convert(camera_buffer,model_buffer);//convert input
|
||||
person_detect(model_buffer); //inference
|
||||
LCD_2IN4_Display(camera_buffer,OV2640_PIXEL_WIDTH,OV2640_PIXEL_HEIGHT);
|
||||
//display
|
||||
|
||||
frame_flag = 0;
|
||||
|
||||
if(HAL_DCMI_Start_DMA(&hdcmi,DCMI_MODE_CONTINUOUS,\ //restart DCMI
|
||||
(uint32_t)camera_buffer ,\
|
||||
(OV2640_PIXEL_WIDTH*OV2640_PIXEL_HEIGHT)/2))
|
||||
Error_Handler();
|
||||
}
|
||||
osDelay(50);
|
||||
}
|
||||
}
|
||||
|
||||
void task2(void *arg)
|
||||
{
|
||||
while (1) {
|
||||
printf("***task2\r\n");
|
||||
osDelay(50);
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### 2.3 运行效果
|
||||
|
||||
通过串行输出实时打印信息,移动摄像头,没有对准行人时,输出如下:
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/reasult_no_person.png" width=70% />
|
||||
</div>
|
||||
|
||||
当摄像头对准行人时,输出如下:
|
||||
|
||||
<div align=center>
|
||||
<img src="./image/reasult_person.png" width=70% />
|
||||
</div>
|
||||
|
||||
执行一帧图像推理,耗时约633 ms。
|
||||
|
||||
更多关于tflite_micro的介绍,请参考[tensorflow](https://tensorflow.google.cn/lite/microcontrollers?hl=zh_cn)官网以及`TencentOS-tiny\components\tflite_micro`目录的TFlite_Micro_Component_User_Guide.md
|
||||
|
||||
|
@@ -1,23 +0,0 @@
|
||||
## TencentOS-tiny_Person_Detection_Demo
|
||||
|
||||
### 1. 目录结构:
|
||||
|
||||
- TencentOS-tiny\board\NUCLEO_STM32L496ZG\BSP\Hardware : **外设驱动代码**
|
||||
- TencentOS-tiny\examples\tflitemicro_person_detection : **Demo任务函数**
|
||||
- TencentOS-tiny\board\NUCLEO_STM32L496ZG\KEIL\tflitemicro_person_detection : **keil工程**
|
||||
- TencentOS-tiny\components\tflite_micro\tensorflow : **tflite_micro代码**
|
||||
|
||||
### 2. 完成的工作:
|
||||
|
||||
- 使用STM32CubeMX,选择与TOS同版本的固件库重新生成外设初始化代码;
|
||||
- TOS、摄像头和LCD工作都正常工作;
|
||||
- tflite_micro 以component的形式加到工程
|
||||
- retarget.c引入工程,并通过宏进行选择
|
||||
- example中行人检测demo已经可以正常工作
|
||||
|
||||
### 3. 未完成的工作:
|
||||
|
||||
- 变量名、函数名还没有按照TOS的风格完全统一
|
||||
- keil移植指南
|
||||
- tflite_micro用户指南
|
||||
|
File diff suppressed because it is too large
Load Diff
@@ -137,7 +137,7 @@
|
||||
<DriverSelection>4107</DriverSelection>
|
||||
</Flash1>
|
||||
<bUseTDR>1</bUseTDR>
|
||||
<Flash2>STLink\ST-LINKIII-KEIL_SWO.dll</Flash2>
|
||||
<Flash2>BIN\UL2CM3.DLL</Flash2>
|
||||
<Flash3></Flash3>
|
||||
<Flash4></Flash4>
|
||||
<pFcarmOut></pFcarmOut>
|
||||
@@ -339,7 +339,7 @@
|
||||
<MiscControls></MiscControls>
|
||||
<Define>USE_HAL_DRIVER,STM32L496xx,NUCLEO_STM32L496ZG</Define>
|
||||
<Undefine></Undefine>
|
||||
<IncludePath>..\..\BSP\Inc;..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Inc;..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Inc\Legacy;..\..\..\..\platform\vendor_bsp\st\CMSIS\Device\ST\STM32L4xx\Include;..\..\..\..\platform\vendor_bsp\st\CMSIS\Include;..\..\..\..\arch\arm\arm-v7m\common\include;..\..\..\..\arch\arm\arm-v7m\cortex-m4\armcc;..\..\..\..\kernel\core\include;..\..\..\..\kernel\pm\include;..\..\..\..\osal\cmsis_os;..\..\..\..\examples\hello_world;..\..\TOS_CONFIG;..\..\..\..\net\at\include;..\..\..\..\kernel\hal\include;..\..\BSP\Hardware\Inc;..\..\..\..\components\ai\tflite_micro\ARM_CortexM4_lib;..\..\..\..\components\ai\tflite_micro\ARM_CortexM4_lib\third_party\flatbuffers\include;..\..\..\..\components\ai\tflite_micro\ARM_CortexM4_lib\third_party\gemmlowp;..\..\..\..\components\ai\tflite_micro\ARM_CortexM4_lib\third_party\kissfft;..\..\..\..\components\ai\tflite_micro\ARM_CortexM4_lib\third_party\ruy;..\..\..\..\components\ai\tflite_micro\ARM_CortexM4_lib\tensorflow\lite\micro\tools\make\downloads</IncludePath>
|
||||
<IncludePath>..\..\BSP\Inc;..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Inc;..\..\..\..\platform\vendor_bsp\st\STM32L4xx_HAL_Driver\Inc\Legacy;..\..\..\..\platform\vendor_bsp\st\CMSIS\Device\ST\STM32L4xx\Include;..\..\..\..\platform\vendor_bsp\st\CMSIS\Include;..\..\..\..\arch\arm\arm-v7m\common\include;..\..\..\..\arch\arm\arm-v7m\cortex-m4\armcc;..\..\..\..\kernel\core\include;..\..\..\..\kernel\pm\include;..\..\..\..\osal\cmsis_os;..\..\..\..\examples\hello_world;..\..\TOS_CONFIG;..\..\..\..\net\at\include;..\..\..\..\kernel\hal\include;..\..\BSP\Hardware\Inc;..\..\..\..\components\ai\tflite_micro\ARM_CortexM4_lib;..\..\..\..\components\ai\tflite_micro\ARM_CortexM4_lib\third_party\flatbuffers\include;..\..\..\..\components\ai\tflite_micro\ARM_CortexM4_lib\third_party\gemmlowp;..\..\..\..\components\ai\tflite_micro\ARM_CortexM4_lib\third_party\kissfft;..\..\..\..\components\ai\tflite_micro\ARM_CortexM4_lib\third_party\ruy;..\..\..\..\components\ai\tflite_micro\ARM_CortexM4_lib\tensorflow\lite\micro\tools\make\downloads;..\..\..\..\examples\tflitemicro_person_detection\tflu_person_detection</IncludePath>
|
||||
</VariousControls>
|
||||
</Cads>
|
||||
<Aads>
|
||||
@@ -778,31 +778,6 @@
|
||||
<Group>
|
||||
<GroupName>tensorflow</GroupName>
|
||||
<Files>
|
||||
<File>
|
||||
<FileName>person_detect_model_data.cc</FileName>
|
||||
<FileType>8</FileType>
|
||||
<FilePath>.\tflu_person_detection\person_detect_model_data.cc</FilePath>
|
||||
</File>
|
||||
<File>
|
||||
<FileName>model_settings.cc</FileName>
|
||||
<FileType>8</FileType>
|
||||
<FilePath>.\tflu_person_detection\model_settings.cc</FilePath>
|
||||
</File>
|
||||
<File>
|
||||
<FileName>main_functions.cc</FileName>
|
||||
<FileType>8</FileType>
|
||||
<FilePath>.\tflu_person_detection\main_functions.cc</FilePath>
|
||||
</File>
|
||||
<File>
|
||||
<FileName>image_provider.cc</FileName>
|
||||
<FileType>8</FileType>
|
||||
<FilePath>.\tflu_person_detection\image_provider.cc</FilePath>
|
||||
</File>
|
||||
<File>
|
||||
<FileName>detection_responder.cc</FileName>
|
||||
<FileType>8</FileType>
|
||||
<FilePath>.\tflu_person_detection\detection_responder.cc</FilePath>
|
||||
</File>
|
||||
<File>
|
||||
<FileName>retarget.c</FileName>
|
||||
<FileType>1</FileType>
|
||||
@@ -813,6 +788,31 @@
|
||||
<FileType>4</FileType>
|
||||
<FilePath>..\..\..\..\components\ai\tflite_micro\ARM_CortexM4_lib\tensorflow_lite_micro_M4.lib</FilePath>
|
||||
</File>
|
||||
<File>
|
||||
<FileName>detection_responder.cc</FileName>
|
||||
<FileType>8</FileType>
|
||||
<FilePath>..\..\..\..\examples\tflitemicro_person_detection\tflu_person_detection\detection_responder.cc</FilePath>
|
||||
</File>
|
||||
<File>
|
||||
<FileName>image_provider.cc</FileName>
|
||||
<FileType>8</FileType>
|
||||
<FilePath>..\..\..\..\examples\tflitemicro_person_detection\tflu_person_detection\image_provider.cc</FilePath>
|
||||
</File>
|
||||
<File>
|
||||
<FileName>main_functions.cc</FileName>
|
||||
<FileType>8</FileType>
|
||||
<FilePath>..\..\..\..\examples\tflitemicro_person_detection\tflu_person_detection\main_functions.cc</FilePath>
|
||||
</File>
|
||||
<File>
|
||||
<FileName>model_settings.cc</FileName>
|
||||
<FileType>8</FileType>
|
||||
<FilePath>..\..\..\..\examples\tflitemicro_person_detection\tflu_person_detection\model_settings.cc</FilePath>
|
||||
</File>
|
||||
<File>
|
||||
<FileName>person_detect_model_data.cc</FileName>
|
||||
<FileType>8</FileType>
|
||||
<FilePath>..\..\..\..\examples\tflitemicro_person_detection\tflu_person_detection\person_detect_model_data.cc</FilePath>
|
||||
</File>
|
||||
</Files>
|
||||
</Group>
|
||||
<Group>
|
||||
|
@@ -1,70 +1,80 @@
|
||||
#include "cmsis_os.h"
|
||||
#include "mcu_init.h"
|
||||
|
||||
extern uint16_t camera_buffer[];
|
||||
extern uint8_t frame_flag;
|
||||
static uint8_t model_buffer[96*96];
|
||||
|
||||
#define TASK1_STK_SIZE 1024
|
||||
void task1(void *arg);
|
||||
osThreadDef(task1, osPriorityNormal, 1, TASK1_STK_SIZE);
|
||||
|
||||
#define TASK2_STK_SIZE 1024
|
||||
void task2(void *arg);
|
||||
osThreadDef(task2, osPriorityNormal, 1, TASK2_STK_SIZE);
|
||||
|
||||
uint8_t rgb565_to_gray(uint16_t bg_color)
|
||||
{
|
||||
uint8_t bg_r = 0;
|
||||
uint8_t bg_g = 0;
|
||||
uint8_t bg_b = 0;
|
||||
bg_r = ((bg_color>>11)&0xff)<<3;
|
||||
bg_g = ((bg_color>>5)&0x3f)<<2;
|
||||
bg_b = (bg_color&0x1f)<<2;
|
||||
uint8_t gray = (bg_r*299 + bg_g*587 + bg_b*114 + 500) / 1000;
|
||||
return gray;
|
||||
}
|
||||
|
||||
void input_convert(uint16_t* camera_buffer , uint8_t* model_buffer)
|
||||
{
|
||||
for(int i=0 ; i<OV2640_PIXEL_WIDTH*OV2640_PIXEL_HEIGHT ; i++)
|
||||
{
|
||||
model_buffer[i] = rgb565_to_gray(camera_buffer[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void task1(void *arg)
|
||||
{
|
||||
while (1) {
|
||||
if(frame_flag == 1){
|
||||
|
||||
if(HAL_DCMI_Stop(&hdcmi))Error_Handler(); //stop DCMI
|
||||
input_convert(camera_buffer,model_buffer);
|
||||
person_detect(model_buffer);
|
||||
LCD_2IN4_Display(camera_buffer,OV2640_PIXEL_WIDTH,OV2640_PIXEL_HEIGHT);
|
||||
|
||||
frame_flag = 0;
|
||||
|
||||
if(HAL_DCMI_Start_DMA(&hdcmi,DCMI_MODE_CONTINUOUS,(uint32_t)camera_buffer ,\
|
||||
(OV2640_PIXEL_WIDTH*OV2640_PIXEL_HEIGHT)/2))Error_Handler(); //restart DCMI
|
||||
}
|
||||
osDelay(50);
|
||||
}
|
||||
}
|
||||
|
||||
void task2(void *arg)
|
||||
{
|
||||
while (1) {
|
||||
printf("***person detection task\r\n");
|
||||
osDelay(50);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void application_entry(void *arg)
|
||||
{
|
||||
printf("***Start person detection task! \r\n");
|
||||
osThreadCreate(osThread(task1), NULL); // Create task1
|
||||
osThreadCreate(osThread(task2), NULL); // Create task2
|
||||
}
|
||||
|
||||
/**
|
||||
* @file tflitemicro_person_detection.c
|
||||
* @author Derekduke (dkeji627@gmail.com); QingChuanWS (bingshan45@163.com); yangqings (yangqingsheng12@outlook.com)
|
||||
* @brief Person detection example based on TencentOS-Tiny and TFlite_Micro.
|
||||
* @version 0.1
|
||||
* @date 2021-01-05
|
||||
* @copyright Copyright (c) 2021
|
||||
*
|
||||
*/
|
||||
|
||||
#include "cmsis_os.h"
|
||||
#include "mcu_init.h"
|
||||
|
||||
extern uint16_t camera_buffer[];
|
||||
extern uint8_t frame_flag;
|
||||
static uint8_t model_buffer[96*96];
|
||||
|
||||
#define TASK1_STK_SIZE 1024
|
||||
void task1(void *arg);
|
||||
osThreadDef(task1, osPriorityNormal, 1, TASK1_STK_SIZE);
|
||||
|
||||
#define TASK2_STK_SIZE 1024
|
||||
void task2(void *arg);
|
||||
osThreadDef(task2, osPriorityNormal, 1, TASK2_STK_SIZE);
|
||||
|
||||
uint8_t rgb565_to_gray(uint16_t bg_color)
|
||||
{
|
||||
uint8_t bg_r = 0;
|
||||
uint8_t bg_g = 0;
|
||||
uint8_t bg_b = 0;
|
||||
bg_r = ((bg_color>>11)&0xff)<<3;
|
||||
bg_g = ((bg_color>>5)&0x3f)<<2;
|
||||
bg_b = (bg_color&0x1f)<<2;
|
||||
uint8_t gray = (bg_r*299 + bg_g*587 + bg_b*114 + 500) / 1000;
|
||||
return gray;
|
||||
}
|
||||
|
||||
void input_convert(uint16_t* camera_buffer , uint8_t* model_buffer)
|
||||
{
|
||||
for(int i=0 ; i<OV2640_PIXEL_WIDTH*OV2640_PIXEL_HEIGHT ; i++)
|
||||
{
|
||||
model_buffer[i] = rgb565_to_gray(camera_buffer[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void task1(void *arg)
|
||||
{
|
||||
while (1) {
|
||||
if(frame_flag == 1){
|
||||
printf("*person_detect_task\r\n");
|
||||
if(HAL_DCMI_Stop(&hdcmi))Error_Handler(); //stop DCMI
|
||||
input_convert(camera_buffer,model_buffer);
|
||||
person_detect(model_buffer);
|
||||
LCD_2IN4_Display(camera_buffer,OV2640_PIXEL_WIDTH,OV2640_PIXEL_HEIGHT);
|
||||
|
||||
frame_flag = 0;
|
||||
|
||||
if(HAL_DCMI_Start_DMA(&hdcmi,DCMI_MODE_CONTINUOUS,(uint32_t)camera_buffer ,\
|
||||
(OV2640_PIXEL_WIDTH*OV2640_PIXEL_HEIGHT)/2))Error_Handler(); //restart DCMI
|
||||
}
|
||||
osDelay(50);
|
||||
}
|
||||
}
|
||||
|
||||
void task2(void *arg)
|
||||
{
|
||||
while (1) {
|
||||
//printf("***task2\r\n");
|
||||
osDelay(200);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void application_entry(void *arg)
|
||||
{
|
||||
printf("***Start person detection task! \r\n");
|
||||
osThreadCreate(osThread(task1), NULL); // Create task1
|
||||
osThreadCreate(osThread(task2), NULL); // Create task2
|
||||
}
|
||||
|
||||
|
@@ -1,25 +1,25 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/detection_responder.h"
|
||||
|
||||
// This dummy implementation writes person and no person scores to the error
|
||||
// console. Real applications will want to take some custom action instead, and
|
||||
// should implement their own versions of this function.
|
||||
void RespondToDetection(tflite::ErrorReporter* error_reporter,
|
||||
int8_t person_score, int8_t no_person_score) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter, "person score:%d no person score %d",
|
||||
person_score, no_person_score);
|
||||
}
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/detection_responder.h"
|
||||
|
||||
// This dummy implementation writes person and no person scores to the error
|
||||
// console. Real applications will want to take some custom action instead, and
|
||||
// should implement their own versions of this function.
|
||||
void RespondToDetection(tflite::ErrorReporter* error_reporter,
|
||||
int8_t person_score, int8_t no_person_score) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter, "person score:%d no person score %d",
|
||||
person_score, no_person_score);
|
||||
}
|
@@ -1,34 +1,34 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
// Provides an interface to take an action based on the output from the person
|
||||
// detection model.
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_DETECTION_RESPONDER_H_
|
||||
#define TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_DETECTION_RESPONDER_H_
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/micro/micro_error_reporter.h"
|
||||
|
||||
// Called every time the results of a person detection run are available. The
|
||||
// `person_score` has the numerical confidence that the captured image contains
|
||||
// a person, and `no_person_score` has the numerical confidence that the image
|
||||
// does not contain a person. Typically if person_score > no person score, the
|
||||
// image is considered to contain a person. This threshold may be adjusted for
|
||||
// particular applications.
|
||||
void RespondToDetection(tflite::ErrorReporter* error_reporter,
|
||||
int8_t person_score, int8_t no_person_score);
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_DETECTION_RESPONDER_H_
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
// Provides an interface to take an action based on the output from the person
|
||||
// detection model.
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_DETECTION_RESPONDER_H_
|
||||
#define TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_DETECTION_RESPONDER_H_
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/micro/micro_error_reporter.h"
|
||||
|
||||
// Called every time the results of a person detection run are available. The
|
||||
// `person_score` has the numerical confidence that the captured image contains
|
||||
// a person, and `no_person_score` has the numerical confidence that the image
|
||||
// does not contain a person. Typically if person_score > no person score, the
|
||||
// image is considered to contain a person. This threshold may be adjusted for
|
||||
// particular applications.
|
||||
void RespondToDetection(tflite::ErrorReporter* error_reporter,
|
||||
int8_t person_score, int8_t no_person_score);
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_DETECTION_RESPONDER_H_
|
@@ -1,26 +1,26 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/image_provider.h"
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/model_settings.h"
|
||||
|
||||
TfLiteStatus GetImage(tflite::ErrorReporter* error_reporter, int image_width,
|
||||
int image_height, int channels, int8_t* image_data,
|
||||
uint8_t * hardware_input) {
|
||||
for (int i = 0; i < image_width * image_height * channels; ++i) {
|
||||
image_data[i] = hardware_input[i];
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/image_provider.h"
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/model_settings.h"
|
||||
|
||||
TfLiteStatus GetImage(tflite::ErrorReporter* error_reporter, int image_width,
|
||||
int image_height, int channels, int8_t* image_data,
|
||||
uint8_t * hardware_input) {
|
||||
for (int i = 0; i < image_width * image_height * channels; ++i) {
|
||||
image_data[i] = hardware_input[i];
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
@@ -1,40 +1,40 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_IMAGE_PROVIDER_H_
|
||||
#define TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_IMAGE_PROVIDER_H_
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/micro/micro_error_reporter.h"
|
||||
|
||||
// This is an abstraction around an image source like a camera, and is
|
||||
// expected to return 8-bit sample data. The assumption is that this will be
|
||||
// called in a low duty-cycle fashion in a low-power application. In these
|
||||
// cases, the imaging sensor need not be run in a streaming mode, but rather can
|
||||
// be idled in a relatively low-power mode between calls to GetImage(). The
|
||||
// assumption is that the overhead and time of bringing the low-power sensor out
|
||||
// of this standby mode is commensurate with the expected duty cycle of the
|
||||
// application. The underlying sensor may actually be put into a streaming
|
||||
// configuration, but the image buffer provided to GetImage should not be
|
||||
// overwritten by the driver code until the next call to GetImage();
|
||||
//
|
||||
// The reference implementation can have no platform-specific dependencies, so
|
||||
// it just returns a static image. For real applications, you should
|
||||
// ensure there's a specialized implementation that accesses hardware APIs.
|
||||
TfLiteStatus GetImage(tflite::ErrorReporter* error_reporter, int image_width,
|
||||
int image_height, int channels, int8_t* image_data,
|
||||
uint8_t * hardware_input);
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_IMAGE_PROVIDER_H_
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_IMAGE_PROVIDER_H_
|
||||
#define TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_IMAGE_PROVIDER_H_
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/micro/micro_error_reporter.h"
|
||||
|
||||
// This is an abstraction around an image source like a camera, and is
|
||||
// expected to return 8-bit sample data. The assumption is that this will be
|
||||
// called in a low duty-cycle fashion in a low-power application. In these
|
||||
// cases, the imaging sensor need not be run in a streaming mode, but rather can
|
||||
// be idled in a relatively low-power mode between calls to GetImage(). The
|
||||
// assumption is that the overhead and time of bringing the low-power sensor out
|
||||
// of this standby mode is commensurate with the expected duty cycle of the
|
||||
// application. The underlying sensor may actually be put into a streaming
|
||||
// configuration, but the image buffer provided to GetImage should not be
|
||||
// overwritten by the driver code until the next call to GetImage();
|
||||
//
|
||||
// The reference implementation can have no platform-specific dependencies, so
|
||||
// it just returns a static image. For real applications, you should
|
||||
// ensure there's a specialized implementation that accesses hardware APIs.
|
||||
TfLiteStatus GetImage(tflite::ErrorReporter* error_reporter, int image_width,
|
||||
int image_height, int channels, int8_t* image_data,
|
||||
uint8_t * hardware_input);
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_IMAGE_PROVIDER_H_
|
@@ -1,119 +1,119 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/main_functions.h"
|
||||
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/detection_responder.h"
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/image_provider.h"
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/model_settings.h"
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/person_detect_model_data.h"
|
||||
#include "tensorflow/lite/micro/micro_error_reporter.h"
|
||||
#include "tensorflow/lite/micro/micro_interpreter.h"
|
||||
#include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
#include "tensorflow/lite/version.h"
|
||||
|
||||
// Globals, used for compatibility with Arduino-style sketches.
|
||||
namespace {
|
||||
tflite::ErrorReporter* error_reporter = nullptr;
|
||||
const tflite::Model* model = nullptr;
|
||||
tflite::MicroInterpreter* interpreter = nullptr;
|
||||
TfLiteTensor* input = nullptr;
|
||||
|
||||
// In order to use optimized tensorflow lite kernels, a signed int8_t quantized
|
||||
// model is preferred over the legacy unsigned model format. This means that
|
||||
// throughout this project, input images must be converted from unisgned to
|
||||
// signed format. The easiest and quickest way to convert from unsigned to
|
||||
// signed 8-bit integers is to subtract 128 from the unsigned value to get a
|
||||
// signed value.
|
||||
|
||||
// An area of memory to use for input, output, and intermediate arrays.
|
||||
constexpr int kTensorArenaSize = 115 * 1024;
|
||||
static uint8_t tensor_arena[kTensorArenaSize];
|
||||
} // namespace
|
||||
|
||||
// The name of this function is important for Arduino compatibility.
|
||||
void person_detect_init() {
|
||||
// Set up logging. Google style is to avoid globals or statics because of
|
||||
// lifetime uncertainty, but since this has a trivial destructor it's okay.
|
||||
// NOLINTNEXTLINE(runtime-global-variables)
|
||||
static tflite::MicroErrorReporter micro_error_reporter;
|
||||
error_reporter = µ_error_reporter;
|
||||
|
||||
// Map the model into a usable data structure. This doesn't involve any
|
||||
// copying or parsing, it's a very lightweight operation.
|
||||
model = tflite::GetModel(g_person_detect_model_data);
|
||||
if (model->version() != TFLITE_SCHEMA_VERSION) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter,
|
||||
"Model provided is schema version %d not equal "
|
||||
"to supported version %d.",
|
||||
model->version(), TFLITE_SCHEMA_VERSION);
|
||||
return;
|
||||
}
|
||||
|
||||
// Pull in only the operation implementations we need.
|
||||
// This relies on a complete list of all the ops needed by this graph.
|
||||
// An easier approach is to just use the AllOpsResolver, but this will
|
||||
// incur some penalty in code space for op implementations that are not
|
||||
// needed by this graph.
|
||||
//
|
||||
// tflite::AllOpsResolver resolver;
|
||||
// NOLINTNEXTLINE(runtime-global-variables)
|
||||
static tflite::MicroMutableOpResolver<5> micro_op_resolver;
|
||||
micro_op_resolver.AddAveragePool2D();
|
||||
micro_op_resolver.AddConv2D();
|
||||
micro_op_resolver.AddDepthwiseConv2D();
|
||||
micro_op_resolver.AddReshape();
|
||||
micro_op_resolver.AddSoftmax();
|
||||
|
||||
// Build an interpreter to run the model with.
|
||||
// NOLINTNEXTLINE(runtime-global-variables)
|
||||
static tflite::MicroInterpreter static_interpreter(
|
||||
model, micro_op_resolver, tensor_arena, kTensorArenaSize, error_reporter);
|
||||
interpreter = &static_interpreter;
|
||||
|
||||
// Allocate memory from the tensor_arena for the model's tensors.
|
||||
TfLiteStatus allocate_status = interpreter->AllocateTensors();
|
||||
if (allocate_status != kTfLiteOk) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter, "AllocateTensors() failed");
|
||||
return;
|
||||
}
|
||||
|
||||
// Get information about the memory area to use for the model's input.
|
||||
input = interpreter->input(0);
|
||||
}
|
||||
|
||||
// The name of this function is important for Arduino compatibility.
|
||||
int person_detect(uint8_t * hardware_input) {
|
||||
// Get image from provider.
|
||||
if (kTfLiteOk != GetImage(error_reporter, kNumCols, kNumRows, kNumChannels,
|
||||
input->data.int8, hardware_input)) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter, "Image capture failed.");
|
||||
}
|
||||
|
||||
// Run the model on this input and make sure it succeeds.
|
||||
if (kTfLiteOk != interpreter->Invoke()) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter, "Invoke failed.");
|
||||
}
|
||||
|
||||
TfLiteTensor* output = interpreter->output(0);
|
||||
|
||||
// Process the inference results.
|
||||
int8_t person_score = output->data.uint8[kPersonIndex];
|
||||
int8_t no_person_score = output->data.uint8[kNotAPersonIndex];
|
||||
RespondToDetection(error_reporter, person_score, no_person_score);
|
||||
if(person_score >= no_person_score + 50) return 1;
|
||||
else return 0;
|
||||
}
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/main_functions.h"
|
||||
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/detection_responder.h"
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/image_provider.h"
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/model_settings.h"
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/person_detect_model_data.h"
|
||||
#include "tensorflow/lite/micro/micro_error_reporter.h"
|
||||
#include "tensorflow/lite/micro/micro_interpreter.h"
|
||||
#include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
#include "tensorflow/lite/version.h"
|
||||
|
||||
// Globals, used for compatibility with Arduino-style sketches.
|
||||
namespace {
|
||||
tflite::ErrorReporter* error_reporter = nullptr;
|
||||
const tflite::Model* model = nullptr;
|
||||
tflite::MicroInterpreter* interpreter = nullptr;
|
||||
TfLiteTensor* input = nullptr;
|
||||
|
||||
// In order to use optimized tensorflow lite kernels, a signed int8_t quantized
|
||||
// model is preferred over the legacy unsigned model format. This means that
|
||||
// throughout this project, input images must be converted from unisgned to
|
||||
// signed format. The easiest and quickest way to convert from unsigned to
|
||||
// signed 8-bit integers is to subtract 128 from the unsigned value to get a
|
||||
// signed value.
|
||||
|
||||
// An area of memory to use for input, output, and intermediate arrays.
|
||||
constexpr int kTensorArenaSize = 115 * 1024;
|
||||
static uint8_t tensor_arena[kTensorArenaSize];
|
||||
} // namespace
|
||||
|
||||
// The name of this function is important for Arduino compatibility.
|
||||
void person_detect_init() {
|
||||
// Set up logging. Google style is to avoid globals or statics because of
|
||||
// lifetime uncertainty, but since this has a trivial destructor it's okay.
|
||||
// NOLINTNEXTLINE(runtime-global-variables)
|
||||
static tflite::MicroErrorReporter micro_error_reporter;
|
||||
error_reporter = µ_error_reporter;
|
||||
|
||||
// Map the model into a usable data structure. This doesn't involve any
|
||||
// copying or parsing, it's a very lightweight operation.
|
||||
model = tflite::GetModel(g_person_detect_model_data);
|
||||
if (model->version() != TFLITE_SCHEMA_VERSION) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter,
|
||||
"Model provided is schema version %d not equal "
|
||||
"to supported version %d.",
|
||||
model->version(), TFLITE_SCHEMA_VERSION);
|
||||
return;
|
||||
}
|
||||
|
||||
// Pull in only the operation implementations we need.
|
||||
// This relies on a complete list of all the ops needed by this graph.
|
||||
// An easier approach is to just use the AllOpsResolver, but this will
|
||||
// incur some penalty in code space for op implementations that are not
|
||||
// needed by this graph.
|
||||
//
|
||||
// tflite::AllOpsResolver resolver;
|
||||
// NOLINTNEXTLINE(runtime-global-variables)
|
||||
static tflite::MicroMutableOpResolver<5> micro_op_resolver;
|
||||
micro_op_resolver.AddAveragePool2D();
|
||||
micro_op_resolver.AddConv2D();
|
||||
micro_op_resolver.AddDepthwiseConv2D();
|
||||
micro_op_resolver.AddReshape();
|
||||
micro_op_resolver.AddSoftmax();
|
||||
|
||||
// Build an interpreter to run the model with.
|
||||
// NOLINTNEXTLINE(runtime-global-variables)
|
||||
static tflite::MicroInterpreter static_interpreter(
|
||||
model, micro_op_resolver, tensor_arena, kTensorArenaSize, error_reporter);
|
||||
interpreter = &static_interpreter;
|
||||
|
||||
// Allocate memory from the tensor_arena for the model's tensors.
|
||||
TfLiteStatus allocate_status = interpreter->AllocateTensors();
|
||||
if (allocate_status != kTfLiteOk) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter, "AllocateTensors() failed");
|
||||
return;
|
||||
}
|
||||
|
||||
// Get information about the memory area to use for the model's input.
|
||||
input = interpreter->input(0);
|
||||
}
|
||||
|
||||
// The name of this function is important for Arduino compatibility.
|
||||
int person_detect(uint8_t * hardware_input) {
|
||||
// Get image from provider.
|
||||
if (kTfLiteOk != GetImage(error_reporter, kNumCols, kNumRows, kNumChannels,
|
||||
input->data.int8, hardware_input)) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter, "Image capture failed.");
|
||||
}
|
||||
|
||||
// Run the model on this input and make sure it succeeds.
|
||||
if (kTfLiteOk != interpreter->Invoke()) {
|
||||
TF_LITE_REPORT_ERROR(error_reporter, "Invoke failed.");
|
||||
}
|
||||
|
||||
TfLiteTensor* output = interpreter->output(0);
|
||||
|
||||
// Process the inference results.
|
||||
int8_t person_score = output->data.uint8[kPersonIndex];
|
||||
int8_t no_person_score = output->data.uint8[kNotAPersonIndex];
|
||||
RespondToDetection(error_reporter, person_score, no_person_score);
|
||||
if(person_score >= no_person_score + 50) return 1;
|
||||
else return 0;
|
||||
}
|
@@ -1,30 +1,30 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_MAIN_FUNCTIONS_H_
|
||||
#define TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_MAIN_FUNCTIONS_H_
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
|
||||
// Initializes all data needed for the example. The name is important, and needs
|
||||
// to be setup() for Arduino compatibility.
|
||||
extern "C" void person_detect_init();
|
||||
|
||||
// Runs one iteration of data gathering and inference. This should be called
|
||||
// repeatedly from the application code. The name needs to be loop() for Arduino
|
||||
// compatibility.
|
||||
extern "C" int person_detect(uint8_t * hardware_input);
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_MAIN_FUNCTIONS_H_
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_MAIN_FUNCTIONS_H_
|
||||
#define TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_MAIN_FUNCTIONS_H_
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
|
||||
// Initializes all data needed for the example. The name is important, and needs
|
||||
// to be setup() for Arduino compatibility.
|
||||
extern "C" void person_detect_init();
|
||||
|
||||
// Runs one iteration of data gathering and inference. This should be called
|
||||
// repeatedly from the application code. The name needs to be loop() for Arduino
|
||||
// compatibility.
|
||||
extern "C" int person_detect(uint8_t * hardware_input);
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_MAIN_FUNCTIONS_H_
|
@@ -1,21 +1,21 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/model_settings.h"
|
||||
|
||||
const char* kCategoryLabels[kCategoryCount] = {
|
||||
"notperson",
|
||||
"person",
|
||||
};
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/micro/examples/person_detection_experimental/model_settings.h"
|
||||
|
||||
const char* kCategoryLabels[kCategoryCount] = {
|
||||
"notperson",
|
||||
"person",
|
||||
};
|
@@ -1,35 +1,35 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_MODEL_SETTINGS_H_
|
||||
#define TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_MODEL_SETTINGS_H_
|
||||
|
||||
// Keeping these as constant expressions allow us to allocate fixed-sized arrays
|
||||
// on the stack for our working memory.
|
||||
|
||||
// All of these values are derived from the values used during model training,
|
||||
// if you change your model you'll need to update these constants.
|
||||
constexpr int kNumCols = 96;
|
||||
constexpr int kNumRows = 96;
|
||||
constexpr int kNumChannels = 1;
|
||||
|
||||
constexpr int kMaxImageSize = kNumCols * kNumRows * kNumChannels;
|
||||
|
||||
constexpr int kCategoryCount = 2;
|
||||
constexpr int kPersonIndex = 1;
|
||||
constexpr int kNotAPersonIndex = 0;
|
||||
extern const char* kCategoryLabels[kCategoryCount];
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_MODEL_SETTINGS_H_
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_MODEL_SETTINGS_H_
|
||||
#define TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_MODEL_SETTINGS_H_
|
||||
|
||||
// Keeping these as constant expressions allow us to allocate fixed-sized arrays
|
||||
// on the stack for our working memory.
|
||||
|
||||
// All of these values are derived from the values used during model training,
|
||||
// if you change your model you'll need to update these constants.
|
||||
constexpr int kNumCols = 96;
|
||||
constexpr int kNumRows = 96;
|
||||
constexpr int kNumChannels = 1;
|
||||
|
||||
constexpr int kMaxImageSize = kNumCols * kNumRows * kNumChannels;
|
||||
|
||||
constexpr int kCategoryCount = 2;
|
||||
constexpr int kPersonIndex = 1;
|
||||
constexpr int kNotAPersonIndex = 0;
|
||||
extern const char* kCategoryLabels[kCategoryCount];
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_MODEL_SETTINGS_H_
|
File diff suppressed because it is too large
Load Diff
@@ -1,27 +1,27 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
// This is a standard TensorFlow Lite model file that has been converted into a
|
||||
// C data array, so it can be easily compiled into a binary for devices that
|
||||
// don't have a file system. It was created using the command:
|
||||
// xxd -i person_detect.tflite > person_detect_model_data.cc
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_PERSON_DETECT_MODEL_DATA_H_
|
||||
#define TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_PERSON_DETECT_MODEL_DATA_H_
|
||||
|
||||
extern const unsigned char g_person_detect_model_data[];
|
||||
extern const int g_person_detect_model_data_len;
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_PERSON_DETECT_MODEL_DATA_H_
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
// This is a standard TensorFlow Lite model file that has been converted into a
|
||||
// C data array, so it can be easily compiled into a binary for devices that
|
||||
// don't have a file system. It was created using the command:
|
||||
// xxd -i person_detect.tflite > person_detect_model_data.cc
|
||||
|
||||
#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_PERSON_DETECT_MODEL_DATA_H_
|
||||
#define TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_PERSON_DETECT_MODEL_DATA_H_
|
||||
|
||||
extern const unsigned char g_person_detect_model_data[];
|
||||
extern const int g_person_detect_model_data_len;
|
||||
|
||||
#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_PERSON_DETECTION_EXPERIMENTAL_PERSON_DETECT_MODEL_DATA_H_
|
Reference in New Issue
Block a user