Files
TencentOS-tiny/components/tflite_micro/Tensorflow Lite Micro使用指南.md
2020-12-10 17:11:03 +08:00

24 lines
1.4 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# Tensorflow Lite Micro 使用指南
## 1.组件介绍
TensorFlow Lite Micro组件的前身(以下简称TFLu)是Google TensorFlow团队针对微处理器(以下简称MCU)专门设计的端侧推理框架,该推理框架主要解决在资源, 功耗, 性能等资源受限的嵌入式系统中, 部署基于Tensorflow Lite框架实现深度学习模型任务本组件是基于原生Google TensorFlow Lite Micro框架对Tencent OS-tiny进行了定制化适配为Tencent OS-tiny赋能AI。
## 2.目录结构
组件内部整体的目录结构如下图所示:
```
tflite_micro
├─KEIL //针对KEIL环境需要的适配文件
├─ARM_CortexM4_lib //针对ARM Cortex M4生成的tflite person detect .lib库
└─ARM_CortexM7_lib //针对ARM Cortex M4生成的tflite person detect .lib库
```
其中KEIL文件夹中放置了针对KEIL编程环境需要额外添加的源文件如果使用的是KEIL编程环境则需要将其中的源文件一同加入工程。
ARM Cortex M4_lib文件夹和ARM Cortex M7_lib文件夹中主要放置了基于ARM Cortex M4和Cortex M7内核生成的tflite.lib库如果使用的是基于ARM Cortex M4系列的板子可以直接将其中的tflite.lib库加入工程并包含相关的头文件之后就可以完成编译运行方便模块化集成。
## 3.移植案例
参考[Neclue STM32L496RG案例](./test)