Files
TencentOS-tiny/components/connectivity/iot-hub-device-c-sdk/common/cryptology/src/utils_sha1.c
2022-03-25 10:06:56 +08:00

409 lines
11 KiB
C

/**
* @copyright
*
* Tencent is pleased to support the open source community by making IoT Hub available.
* Copyright(C) 2018 - 2021 THL A29 Limited, a Tencent company.All rights reserved.
*
* Licensed under the MIT License(the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://opensource.org/licenses/MIT
*
* Unless required by applicable law or agreed to in writing, software distributed under the License is
* distributed on an "AS IS" basis, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
* either express or implied. See the License for the specific language governing permissions and
* limitations under the License.
*
* @file utils_sha1.c
* @brief SHA-1 operation, reference mbedtls
* @author fancyxu (fancyxu@tencent.com)
* @version 1.0
* @date 2021-05-31
*
* @par Change Log:
* <table>
* <tr><th>Date <th>Version <th>Author <th>Description
* <tr><td>2021-05-31 <td>1.0 <td>fancyxu <td>first commit
* <tr><td>2021-07-08 <td>1.1 <td>fancyxu <td>fix code standard of IotSha1Context
* </table>
*/
#include "utils_sha1.h"
#ifndef IOT_SHA1_GET_UINT32_BE
/**
* @brief Get 32-bit integer manipulation macros (big endian)
*
*/
#define IOT_SHA1_GET_UINT32_BE(n, b, i) \
{ \
(n) = ((uint32_t)(b)[(i)] << 24) | ((uint32_t)(b)[(i) + 1] << 16) | ((uint32_t)(b)[(i) + 2] << 8) | \
((uint32_t)(b)[(i) + 3]); \
}
#endif
#ifndef IOT_SHA1_PUT_UINT32_BE
/**
* @brief Put 32-bit integer manipulation macros (big endian)
*
*/
#define IOT_SHA1_PUT_UINT32_BE(n, b, i) \
{ \
(b)[(i)] = (unsigned char)((n) >> 24); \
(b)[(i) + 1] = (unsigned char)((n) >> 16); \
(b)[(i) + 2] = (unsigned char)((n) >> 8); \
(b)[(i) + 3] = (unsigned char)((n)); \
}
#endif
/**
* @brief Binary half byte to hex char
*
* @param[in] hb half byte
* @return hex char(0~f)
*/
static char _hb2hex(uint8_t hb)
{
hb = hb & 0xF;
return (char)(hb < 10 ? '0' + hb : hb - 10 + 'a');
}
/**
* @brief Implementation that should never be optimized out by the compiler.
*
* @param[in] v pointer to ctx
* @param[in] n sizeof ctx
*/
static void utils_sha1_zeroize(void *v, size_t n)
{
volatile unsigned char *p = v;
while (n--) {
*p++ = 0;
}
}
/**
* @brief Initialize SHA-1 context.
*
* @param[in,out] ctx SHA-1 context to be initialized
*/
void utils_sha1_init(IotSha1Context *ctx)
{
memset(ctx, 0, sizeof(IotSha1Context));
}
/**
* @brief Clear SHA-1 context.
*
* @param[in,out] ctx SHA-1 context to be cleared
*/
void utils_sha1_free(IotSha1Context *ctx)
{
if (!ctx) {
return;
}
utils_sha1_zeroize(ctx, sizeof(IotSha1Context));
}
/**
* @brief Clone (the state of) a SHA-1 context.
*
* @param[out] dst The destination context
* @param[in] src The context to be cloned
*/
void utils_sha1_clone(IotSha1Context *dst, const IotSha1Context *src)
{
*dst = *src;
}
/**
* @brief SHA-1 context setup
*
* @param[in,out] ctx context to be initialized
*/
void utils_sha1_starts(IotSha1Context *ctx)
{
ctx->total[0] = 0;
ctx->total[1] = 0;
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xEFCDAB89;
ctx->state[2] = 0x98BADCFE;
ctx->state[3] = 0x10325476;
ctx->state[4] = 0xC3D2E1F0;
}
/**
* @brief SHA-1 process
*
* @param[in,out] ctx pointer to ctx
* @param[in] data data to be calculated
*/
void utils_sha1_process(IotSha1Context *ctx, const unsigned char data[64])
{
uint32_t temp, W[16], A, B, C, D, E;
IOT_SHA1_GET_UINT32_BE(W[0], data, 0);
IOT_SHA1_GET_UINT32_BE(W[1], data, 4);
IOT_SHA1_GET_UINT32_BE(W[2], data, 8);
IOT_SHA1_GET_UINT32_BE(W[3], data, 12);
IOT_SHA1_GET_UINT32_BE(W[4], data, 16);
IOT_SHA1_GET_UINT32_BE(W[5], data, 20);
IOT_SHA1_GET_UINT32_BE(W[6], data, 24);
IOT_SHA1_GET_UINT32_BE(W[7], data, 28);
IOT_SHA1_GET_UINT32_BE(W[8], data, 32);
IOT_SHA1_GET_UINT32_BE(W[9], data, 36);
IOT_SHA1_GET_UINT32_BE(W[10], data, 40);
IOT_SHA1_GET_UINT32_BE(W[11], data, 44);
IOT_SHA1_GET_UINT32_BE(W[12], data, 48);
IOT_SHA1_GET_UINT32_BE(W[13], data, 52);
IOT_SHA1_GET_UINT32_BE(W[14], data, 56);
IOT_SHA1_GET_UINT32_BE(W[15], data, 60);
#define S(x, n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n)))
#define R(t) \
(temp = W[(t - 3) & 0x0F] ^ W[(t - 8) & 0x0F] ^ W[(t - 14) & 0x0F] ^ W[t & 0x0F], (W[t & 0x0F] = S(temp, 1)))
#define P(a, b, c, d, e, x) \
{ \
e += S(a, 5) + F(b, c, d) + K + x; \
b = S(b, 30); \
}
A = ctx->state[0];
B = ctx->state[1];
C = ctx->state[2];
D = ctx->state[3];
E = ctx->state[4];
#define F(x, y, z) (z ^ (x & (y ^ z)))
#define K 0x5A827999
P(A, B, C, D, E, W[0]);
P(E, A, B, C, D, W[1]);
P(D, E, A, B, C, W[2]);
P(C, D, E, A, B, W[3]);
P(B, C, D, E, A, W[4]);
P(A, B, C, D, E, W[5]);
P(E, A, B, C, D, W[6]);
P(D, E, A, B, C, W[7]);
P(C, D, E, A, B, W[8]);
P(B, C, D, E, A, W[9]);
P(A, B, C, D, E, W[10]);
P(E, A, B, C, D, W[11]);
P(D, E, A, B, C, W[12]);
P(C, D, E, A, B, W[13]);
P(B, C, D, E, A, W[14]);
P(A, B, C, D, E, W[15]);
P(E, A, B, C, D, R(16));
P(D, E, A, B, C, R(17));
P(C, D, E, A, B, R(18));
P(B, C, D, E, A, R(19));
#undef K
#undef F
#define F(x, y, z) (x ^ y ^ z)
#define K 0x6ED9EBA1
P(A, B, C, D, E, R(20));
P(E, A, B, C, D, R(21));
P(D, E, A, B, C, R(22));
P(C, D, E, A, B, R(23));
P(B, C, D, E, A, R(24));
P(A, B, C, D, E, R(25));
P(E, A, B, C, D, R(26));
P(D, E, A, B, C, R(27));
P(C, D, E, A, B, R(28));
P(B, C, D, E, A, R(29));
P(A, B, C, D, E, R(30));
P(E, A, B, C, D, R(31));
P(D, E, A, B, C, R(32));
P(C, D, E, A, B, R(33));
P(B, C, D, E, A, R(34));
P(A, B, C, D, E, R(35));
P(E, A, B, C, D, R(36));
P(D, E, A, B, C, R(37));
P(C, D, E, A, B, R(38));
P(B, C, D, E, A, R(39));
#undef K
#undef F
#define F(x, y, z) ((x & y) | (z & (x | y)))
#define K 0x8F1BBCDC
P(A, B, C, D, E, R(40));
P(E, A, B, C, D, R(41));
P(D, E, A, B, C, R(42));
P(C, D, E, A, B, R(43));
P(B, C, D, E, A, R(44));
P(A, B, C, D, E, R(45));
P(E, A, B, C, D, R(46));
P(D, E, A, B, C, R(47));
P(C, D, E, A, B, R(48));
P(B, C, D, E, A, R(49));
P(A, B, C, D, E, R(50));
P(E, A, B, C, D, R(51));
P(D, E, A, B, C, R(52));
P(C, D, E, A, B, R(53));
P(B, C, D, E, A, R(54));
P(A, B, C, D, E, R(55));
P(E, A, B, C, D, R(56));
P(D, E, A, B, C, R(57));
P(C, D, E, A, B, R(58));
P(B, C, D, E, A, R(59));
#undef K
#undef F
#define F(x, y, z) (x ^ y ^ z)
#define K 0xCA62C1D6
P(A, B, C, D, E, R(60));
P(E, A, B, C, D, R(61));
P(D, E, A, B, C, R(62));
P(C, D, E, A, B, R(63));
P(B, C, D, E, A, R(64));
P(A, B, C, D, E, R(65));
P(E, A, B, C, D, R(66));
P(D, E, A, B, C, R(67));
P(C, D, E, A, B, R(68));
P(B, C, D, E, A, R(69));
P(A, B, C, D, E, R(70));
P(E, A, B, C, D, R(71));
P(D, E, A, B, C, R(72));
P(C, D, E, A, B, R(73));
P(B, C, D, E, A, R(74));
P(A, B, C, D, E, R(75));
P(E, A, B, C, D, R(76));
P(D, E, A, B, C, R(77));
P(C, D, E, A, B, R(78));
P(B, C, D, E, A, R(79));
#undef K
#undef F
ctx->state[0] += A;
ctx->state[1] += B;
ctx->state[2] += C;
ctx->state[3] += D;
ctx->state[4] += E;
}
/**
* @brief SHA-1 process buffer.
*
* @param[in,out] ctx SHA-1 context
* @param[in] input buffer holding the data
* @param[in] ilen length of the input data
*/
void utils_sha1_update(IotSha1Context *ctx, const unsigned char *input, size_t ilen)
{
size_t fill;
uint32_t left;
if (ilen == 0) {
return;
}
left = ctx->total[0] & 0x3F;
fill = 64 - left;
ctx->total[0] += (uint32_t)ilen;
ctx->total[0] &= 0xFFFFFFFF;
if (ctx->total[0] < (uint32_t)ilen) {
ctx->total[1]++;
}
if (left && ilen >= fill) {
memcpy((void *)(ctx->buffer + left), input, fill);
utils_sha1_process(ctx, ctx->buffer);
input += fill;
ilen -= fill;
left = 0;
}
while (ilen >= 64) {
utils_sha1_process(ctx, input);
input += 64;
ilen -= 64;
}
if (ilen > 0) {
memcpy((void *)(ctx->buffer + left), input, ilen);
}
}
static const unsigned char iot_sha1_padding[64] = {0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
/**
* @brief SHA-1 final digest
*
* @param[in,out] ctx SHA-1 context
* @param[out] output SHA-1 checksum result
*/
void utils_sha1_finish(IotSha1Context *ctx, unsigned char output[20])
{
uint32_t last, padn;
uint32_t high, low;
unsigned char msglen[8];
high = (ctx->total[0] >> 29) | (ctx->total[1] << 3);
low = (ctx->total[0] << 3);
IOT_SHA1_PUT_UINT32_BE(high, msglen, 0);
IOT_SHA1_PUT_UINT32_BE(low, msglen, 4);
last = ctx->total[0] & 0x3F;
padn = (last < 56) ? (56 - last) : (120 - last);
utils_sha1_update(ctx, iot_sha1_padding, padn);
utils_sha1_update(ctx, msglen, 8);
IOT_SHA1_PUT_UINT32_BE(ctx->state[0], output, 0);
IOT_SHA1_PUT_UINT32_BE(ctx->state[1], output, 4);
IOT_SHA1_PUT_UINT32_BE(ctx->state[2], output, 8);
IOT_SHA1_PUT_UINT32_BE(ctx->state[3], output, 12);
IOT_SHA1_PUT_UINT32_BE(ctx->state[4], output, 16);
}
/**
* @brief Output = SHA-1( input buffer )
*
* @param[in] input buffer holding the data
* @param[in] ilen length of the input data
* @param[out] output SHA-1 checksum result
*/
void utils_sha1(const unsigned char *input, size_t ilen, unsigned char output[20])
{
IotSha1Context ctx;
utils_sha1_init(&ctx);
utils_sha1_starts(&ctx);
utils_sha1_update(&ctx, input, ilen);
utils_sha1_finish(&ctx, output);
utils_sha1_free(&ctx);
}
/**
* @brief Output = SHA-1( input buffer )
*
* @param[in] input buffer holding the data
* @param[in] ilen length of the input data
* @param[out] output SHA-1 checksum result hex
*/
void utils_sha1_hex(const unsigned char *input, size_t ilen, unsigned char output_hex[40])
{
unsigned char out[20 + 1] = {0};
utils_sha1(input, ilen, out);
for (int i = 0; i < 20; ++i) {
output_hex[i * 2] = _hb2hex(out[i] >> 4);
output_hex[i * 2 + 1] = _hb2hex(out[i]);
}
}