149 lines
4.2 KiB
Python
149 lines
4.2 KiB
Python
import cv2
|
||
import numpy as np
|
||
|
||
|
||
def gstreamer_pipeline(cam_id=0,
|
||
capture_width=960,
|
||
capture_height=640,
|
||
framerate=60,
|
||
flip_method=2):
|
||
"""
|
||
Use libgstreamer to open csi-cameras.
|
||
"""
|
||
return ("nvarguscamerasrc sensor-id={} ! ".format(cam_id) + \
|
||
"video/x-raw(memory:NVMM), "
|
||
"width=(int)%d, height=(int)%d, "
|
||
"format=(string)NV12, framerate=(fraction)%d/1 ! "
|
||
"nvvidconv flip-method=%d ! "
|
||
"video/x-raw, format=(string)BGRx ! "
|
||
"videoconvert ! "
|
||
"video/x-raw, format=(string)BGR ! appsink"
|
||
% (capture_width,
|
||
capture_height,
|
||
framerate,
|
||
flip_method
|
||
)
|
||
)
|
||
|
||
|
||
def convert_binary_to_bool(mask):
|
||
"""
|
||
Convert a binary image (only one channel and pixels are 0 or 255) to
|
||
a bool one (all pixels are 0 or 1).
|
||
"""
|
||
return (mask.astype(np.float64) / 255.0).astype(int)
|
||
|
||
|
||
def adjust_luminance(gray, factor):
|
||
"""
|
||
Adjust the luminance of a grayscale image by a factor.
|
||
"""
|
||
return np.minimum((gray * factor), 255).astype(np.uint8)
|
||
|
||
|
||
def get_mean_statistisc(gray, mask):
|
||
"""
|
||
Get the total values of a gray image in a region defined by a mask matrix.
|
||
The mask matrix must have values either 0 or 1.
|
||
"""
|
||
return np.sum(gray * mask)
|
||
|
||
|
||
def mean_luminance_ratio(grayA, grayB, mask):
|
||
return get_mean_statistisc(grayA, mask) / get_mean_statistisc(grayB, mask)
|
||
|
||
|
||
def get_mask(img):
|
||
"""
|
||
Convert an image to a mask array.
|
||
"""
|
||
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||
ret, mask = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY)
|
||
return mask
|
||
|
||
|
||
def get_overlap_region_mask(imA, imB):
|
||
"""
|
||
Given two images of the save size, get their overlapping region and
|
||
convert this region to a mask array.
|
||
"""
|
||
overlap = cv2.bitwise_and(imA, imB)
|
||
mask = get_mask(overlap)
|
||
mask = cv2.dilate(mask, np.ones((2, 2), np.uint8), iterations=2)
|
||
return mask
|
||
|
||
|
||
def get_outmost_polygon_boundary(img):
|
||
"""
|
||
Given a mask image with the mask describes the overlapping region of
|
||
two images, get the outmost contour of this region.
|
||
"""
|
||
mask = get_mask(img)
|
||
mask = cv2.dilate(mask, np.ones((2, 2), np.uint8), iterations=2)
|
||
cnts, hierarchy = cv2.findContours(
|
||
mask,
|
||
cv2.RETR_EXTERNAL,
|
||
cv2.CHAIN_APPROX_SIMPLE)[-2:]
|
||
|
||
# get the contour with largest aera
|
||
C = sorted(cnts, key=lambda x: cv2.contourArea(x), reverse=True)[0]
|
||
|
||
# polygon approximation
|
||
polygon = cv2.approxPolyDP(C, 0.009 * cv2.arcLength(C, True), True)
|
||
|
||
return polygon
|
||
|
||
|
||
def get_weight_mask_matrix(imA, imB, dist_threshold=5):
|
||
"""
|
||
Get the weight matrix G that combines two images imA, imB smoothly.
|
||
"""
|
||
overlapMask = get_overlap_region_mask(imA, imB)
|
||
overlapMaskInv = cv2.bitwise_not(overlapMask)
|
||
indices = np.where(overlapMask == 255)
|
||
|
||
imA_diff = cv2.bitwise_and(imA, imA, mask=overlapMaskInv)
|
||
imB_diff = cv2.bitwise_and(imB, imB, mask=overlapMaskInv)
|
||
|
||
G = get_mask(imA).astype(np.float32) / 255.0
|
||
|
||
polyA = get_outmost_polygon_boundary(imA_diff)
|
||
polyB = get_outmost_polygon_boundary(imB_diff)
|
||
|
||
# 添加微小值防止除零
|
||
epsilon = 1e-8
|
||
for y, x in zip(*indices):
|
||
xy_tuple = tuple([int(x), int(y)])
|
||
distToB = cv2.pointPolygonTest(polyB, xy_tuple, True)
|
||
|
||
if distToB < dist_threshold:
|
||
distToA = cv2.pointPolygonTest(polyA, xy_tuple, True)
|
||
|
||
# 计算平方距离
|
||
distToB_sq = distToB **2
|
||
distToA_sq = distToA** 2
|
||
|
||
# 检查距离和是否为零(添加epsilon避免除零)
|
||
total = distToA_sq + distToB_sq + epsilon
|
||
G[y, x] = distToB_sq / total
|
||
|
||
return G, overlapMask
|
||
|
||
|
||
def make_white_balance(image):
|
||
"""
|
||
Adjust white balance of an image base on the means of its channels.
|
||
"""
|
||
B, G, R = cv2.split(image)
|
||
m1 = np.mean(B)
|
||
m2 = np.mean(G)
|
||
m3 = np.mean(R)
|
||
K = (m1 + m2 + m3) / 3
|
||
c1 = K / m1
|
||
c2 = K / m2
|
||
c3 = K / m3
|
||
B = adjust_luminance(B, c1)
|
||
G = adjust_luminance(G, c2)
|
||
R = adjust_luminance(R, c3)
|
||
return cv2.merge((B, G, R))
|