Files
LJ360/py_utils/pytorch_executor.py
2025-12-20 11:43:50 +08:00

52 lines
1.7 KiB
Python

import torch
torch.backends.quantized.engine = 'qnnpack'
def multi_list_unfold(tl):
def unfold(_inl, target):
if not isinstance(_inl, list) and not isinstance(_inl, tuple):
target.append(_inl)
else:
unfold(_inl)
def flatten_list(in_list):
flatten = lambda x: [subitem for item in x for subitem in flatten(item)] if type(x) is list else [x]
return flatten(in_list)
class Torch_model_container:
def __init__(self, model_path, qnnpack=False) -> None:
if qnnpack is True:
torch.backends.quantized.engine = 'qnnpack'
#! Backends must be set before load model.
self.pt_model = torch.jit.load(model_path)
self.pt_model.eval()
holdon = 1
def run(self, input_datas):
assert isinstance(input_datas, list), "input_datas should be a list, like [np.ndarray, np.ndarray]"
input_datas_torch_type = []
for _data in input_datas:
input_datas_torch_type.append(torch.tensor(_data))
for i,val in enumerate(input_datas_torch_type):
if val.dtype == torch.float64:
input_datas_torch_type[i] = input_datas_torch_type[i].float()
result = self.pt_model(*input_datas_torch_type)
if isinstance(result, tuple):
result = list(result)
if not isinstance(result, list):
result = [result]
result = flatten_list(result)
for i in range(len(result)):
result[i] = torch.dequantize(result[i])
for i in range(len(result)):
# TODO support quantized_output
result[i] = result[i].cpu().detach().numpy()
return result