tflite_micro_person_detection_init
This commit is contained in:
166
components/tflite_micro/tensorflow/lite/micro/kernels/prelu.cc
Normal file
166
components/tflite_micro/tensorflow/lite/micro/kernels/prelu.cc
Normal file
@@ -0,0 +1,166 @@
|
||||
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/kernels/internal/reference/prelu.h"
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
||||
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
||||
#include "tensorflow/lite/kernels/kernel_util.h"
|
||||
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace micro {
|
||||
namespace activations {
|
||||
namespace {
|
||||
|
||||
TfLiteStatus CalculatePreluParams(const TfLiteTensor* input,
|
||||
const TfLiteTensor* alpha,
|
||||
TfLiteTensor* output, PreluParams* params) {
|
||||
if (output->type == kTfLiteInt8 || output->type == kTfLiteUInt8 ||
|
||||
output->type == kTfLiteInt16) {
|
||||
double real_multiplier_1 = static_cast<double>(input->params.scale) /
|
||||
static_cast<double>(output->params.scale);
|
||||
double real_multiplier_2 = static_cast<double>(input->params.scale) *
|
||||
static_cast<double>(alpha->params.scale) /
|
||||
static_cast<double>(output->params.scale);
|
||||
QuantizeMultiplier(real_multiplier_1, ¶ms->output_multiplier_1,
|
||||
¶ms->output_shift_1);
|
||||
QuantizeMultiplier(real_multiplier_2, ¶ms->output_multiplier_2,
|
||||
¶ms->output_shift_2);
|
||||
|
||||
params->input_offset = -input->params.zero_point;
|
||||
params->alpha_offset = -alpha->params.zero_point;
|
||||
params->output_offset = output->params.zero_point;
|
||||
}
|
||||
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
inline void BroadcastPrelu4DSlowFloat(
|
||||
const RuntimeShape& unextended_input1_shape, const float* input1_data,
|
||||
const RuntimeShape& unextended_input2_shape, const float* input2_data,
|
||||
const RuntimeShape& unextended_output_shape, float* output_data) {
|
||||
TFLITE_DCHECK_LE(unextended_input1_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_LE(unextended_input2_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_LE(unextended_output_shape.DimensionsCount(), 4);
|
||||
const RuntimeShape output_shape =
|
||||
RuntimeShape::ExtendedShape(4, unextended_output_shape);
|
||||
|
||||
NdArrayDesc<4> desc1;
|
||||
NdArrayDesc<4> desc2;
|
||||
NdArrayDescsForElementwiseBroadcast(unextended_input1_shape,
|
||||
unextended_input2_shape, &desc1, &desc2);
|
||||
|
||||
for (int b = 0; b < output_shape.Dims(0); ++b) {
|
||||
for (int y = 0; y < output_shape.Dims(1); ++y) {
|
||||
for (int x = 0; x < output_shape.Dims(2); ++x) {
|
||||
for (int c = 0; c < output_shape.Dims(3); ++c) {
|
||||
auto out_idx = Offset(output_shape, b, y, x, c);
|
||||
auto in1_idx = SubscriptToIndex(desc1, b, y, x, c);
|
||||
auto in2_idx = SubscriptToIndex(desc2, b, y, x, c);
|
||||
auto in1_val = input1_data[in1_idx];
|
||||
auto in2_val = input2_data[in2_idx];
|
||||
output_data[out_idx] = in1_val >= 0.0f ? in1_val : in1_val * in2_val;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void* PreluInit(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
return context->AllocatePersistentBuffer(context, sizeof(PreluParams));
|
||||
}
|
||||
|
||||
TfLiteStatus PreluPrepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
PreluParams* params = static_cast<PreluParams*>(node->user_data);
|
||||
|
||||
const TfLiteTensor* input = GetInput(context, node, 0);
|
||||
const TfLiteTensor* alpha = GetInput(context, node, 1);
|
||||
TfLiteTensor* output = GetOutput(context, node, 0);
|
||||
|
||||
return CalculatePreluParams(input, alpha, output, params);
|
||||
}
|
||||
|
||||
TfLiteStatus PreluEval(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
const PreluParams& params =
|
||||
*(static_cast<const PreluParams*>(node->user_data));
|
||||
|
||||
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
|
||||
const TfLiteEvalTensor* alpha = tflite::micro::GetEvalInput(context, node, 1);
|
||||
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
|
||||
|
||||
switch (input->type) {
|
||||
case kTfLiteFloat32: {
|
||||
BroadcastPrelu4DSlowFloat(tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<float>(input),
|
||||
tflite::micro::GetTensorShape(alpha),
|
||||
tflite::micro::GetTensorData<float>(alpha),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<float>(output));
|
||||
return kTfLiteOk;
|
||||
} break;
|
||||
case kTfLiteUInt8: {
|
||||
reference_ops::BroadcastPrelu4DSlow(
|
||||
params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<uint8_t>(input),
|
||||
tflite::micro::GetTensorShape(alpha),
|
||||
tflite::micro::GetTensorData<uint8_t>(alpha),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<uint8_t>(output));
|
||||
return kTfLiteOk;
|
||||
} break;
|
||||
case kTfLiteInt8: {
|
||||
reference_ops::BroadcastPrelu4DSlow(
|
||||
params, tflite::micro::GetTensorShape(input),
|
||||
tflite::micro::GetTensorData<int8_t>(input),
|
||||
tflite::micro::GetTensorShape(alpha),
|
||||
tflite::micro::GetTensorData<int8_t>(alpha),
|
||||
tflite::micro::GetTensorShape(output),
|
||||
tflite::micro::GetTensorData<int8_t>(output));
|
||||
return kTfLiteOk;
|
||||
} break;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(
|
||||
context, "Only float32 and uint8_t are supported currently, got %d.",
|
||||
TfLiteTypeGetName(input->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace activations
|
||||
|
||||
TfLiteRegistration Register_PRELU() {
|
||||
return {/*init=*/activations::PreluInit,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/activations::PreluPrepare,
|
||||
/*invoke=*/activations::PreluEval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
/*custom_name=*/nullptr,
|
||||
/*version=*/0};
|
||||
}
|
||||
|
||||
} // namespace micro
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
Reference in New Issue
Block a user